blob: 2c92cc370b5390c9070da65762323766f21ec7c9 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135//===----------------------------------------------------------------------===//
136// EH Pseudo Instructions
137//
138let SchedRW = [WriteSystem] in {
139let isTerminator = 1, isReturn = 1, isBarrier = 1,
140 hasCtrlDep = 1, isCodeGenOnly = 1 in {
141def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
142 "ret\t#eh_return, addr: $addr",
143 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
144
145}
146
147let isTerminator = 1, isReturn = 1, isBarrier = 1,
148 hasCtrlDep = 1, isCodeGenOnly = 1 in {
149def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
150 "ret\t#eh_return, addr: $addr",
151 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
152
153}
154
Reid Kleckner51460c12015-11-06 01:49:05 +0000155let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
156 isCodeGenOnly = 1, isReturn = 1 in {
157 def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
158
David Majnemer2652b752015-11-09 23:07:48 +0000159 // CATCHRET needs a custom inserter for SEH.
Reid Kleckner51460c12015-11-06 01:49:05 +0000160 let usesCustomInserter = 1 in
161 def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
162 "# CATCHRET",
163 [(catchret bb:$dst, bb:$from)]>;
Reid Kleckner0e288232015-08-27 23:27:47 +0000164}
165
Reid Kleckner420f0542015-11-09 23:34:42 +0000166let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
David Majnemer2652b752015-11-09 23:07:48 +0000167 usesCustomInserter = 1 in
168def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
169
Reid Kleckner51460c12015-11-06 01:49:05 +0000170// This instruction is responsible for re-establishing stack pointers after an
171// exception has been caught and we are rejoining normal control flow in the
172// parent function or funclet. It generally sets ESP and EBP, and optionally
173// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
174// elsewhere.
Reid Kleckner420f0542015-11-09 23:34:42 +0000175let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
Reid Kleckner51460c12015-11-06 01:49:05 +0000176def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
177
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000178let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
179 usesCustomInserter = 1 in {
180 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
181 "#EH_SJLJ_SETJMP32",
182 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
183 Requires<[Not64BitMode]>;
184 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
185 "#EH_SJLJ_SETJMP64",
186 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
187 Requires<[In64BitMode]>;
188 let isTerminator = 1 in {
189 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
190 "#EH_SJLJ_LONGJMP32",
191 [(X86eh_sjlj_longjmp addr:$buf)]>,
192 Requires<[Not64BitMode]>;
193 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
194 "#EH_SJLJ_LONGJMP64",
195 [(X86eh_sjlj_longjmp addr:$buf)]>,
196 Requires<[In64BitMode]>;
197 }
198}
199} // SchedRW
200
201let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
202 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
203 "#EH_SjLj_Setup\t$dst", []>;
204}
205
206//===----------------------------------------------------------------------===//
207// Pseudo instructions used by unwind info.
208//
209let isPseudo = 1 in {
210 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
211 "#SEH_PushReg $reg", []>;
212 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
213 "#SEH_SaveReg $reg, $dst", []>;
214 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
215 "#SEH_SaveXMM $reg, $dst", []>;
216 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
217 "#SEH_StackAlloc $size", []>;
218 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
219 "#SEH_SetFrame $reg, $offset", []>;
220 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
221 "#SEH_PushFrame $mode", []>;
222 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
223 "#SEH_EndPrologue", []>;
224 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
225 "#SEH_Epilogue", []>;
226}
227
228//===----------------------------------------------------------------------===//
229// Pseudo instructions used by segmented stacks.
230//
231
232// This is lowered into a RET instruction by MCInstLower. We need
233// this so that we don't have to have a MachineBasicBlock which ends
234// with a RET and also has successors.
235let isPseudo = 1 in {
236def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
237 "", []>;
238
239// This instruction is lowered to a RET followed by a MOV. The two
240// instructions are not generated on a higher level since then the
241// verifier sees a MachineBasicBlock ending with a non-terminator.
242def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
243 "", []>;
244}
245
246//===----------------------------------------------------------------------===//
247// Alias Instructions
248//===----------------------------------------------------------------------===//
249
250// Alias instruction mapping movr0 to xor.
251// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
252let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
David Majnemer869be0a2016-01-05 02:32:06 +0000253 isPseudo = 1 in
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000254def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
255 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
256
257// Other widths can also make use of the 32-bit xor, which may have a smaller
258// encoding and avoid partial register updates.
259def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
260def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
261def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
262 let AddedComplexity = 20;
263}
264
Hans Wennborg08d59052015-12-15 17:10:28 +0000265let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
David Majnemer869be0a2016-01-05 02:32:06 +0000266 AddedComplexity = 1 in {
Hans Wennborg08d59052015-12-15 17:10:28 +0000267 // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
268 // which only require 3 bytes compared to MOV32ri which requires 5.
269 let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
270 def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
271 [(set GR32:$dst, 1)]>;
272 def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
273 [(set GR32:$dst, -1)]>;
274 }
275
276 // MOV16ri is 4 bytes, so the instructions above are smaller.
277 def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
278 def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
279}
280
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000281// Materialize i64 constant where top 32-bits are zero. This could theoretically
282// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
283// that would make it more difficult to rematerialize.
Craig Toppere00bffb2016-01-05 07:44:14 +0000284let isReMaterializable = 1, isAsCheapAsAMove = 1,
285 isPseudo = 1, hasSideEffects = 0 in
286def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000287
288// This 64-bit pseudo-move can be used for both a 64-bit constant that is
Sanjay Patel85030aa2015-10-13 16:23:00 +0000289// actually the zero-extension of a 32-bit constant and for labels in the
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000290// x86-64 small code model.
Sanjay Patel85030aa2015-10-13 16:23:00 +0000291def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000292
293let AddedComplexity = 1 in
294def : Pat<(i64 mov64imm32:$src),
295 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
296
297// Use sbb to materialize carry bit.
298let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
299// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
300// However, Pat<> can't replicate the destination reg into the inputs of the
301// result.
302def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
303 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
304def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
305 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
306def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
307 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
308def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
309 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
310} // isCodeGenOnly
311
312
313def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
314 (SETB_C16r)>;
315def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
316 (SETB_C32r)>;
317def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
318 (SETB_C64r)>;
319
320def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
321 (SETB_C16r)>;
322def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
323 (SETB_C32r)>;
324def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
325 (SETB_C64r)>;
326
327// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
328// will be eliminated and that the sbb can be extended up to a wider type. When
329// this happens, it is great. However, if we are left with an 8-bit sbb and an
330// and, we might as well just match it as a setb.
331def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
332 (SETBr)>;
333
334// (add OP, SETB) -> (adc OP, 0)
335def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
336 (ADC8ri GR8:$op, 0)>;
337def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
338 (ADC32ri8 GR32:$op, 0)>;
339def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
340 (ADC64ri8 GR64:$op, 0)>;
341
342// (sub OP, SETB) -> (sbb OP, 0)
343def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
344 (SBB8ri GR8:$op, 0)>;
345def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
346 (SBB32ri8 GR32:$op, 0)>;
347def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
348 (SBB64ri8 GR64:$op, 0)>;
349
350// (sub OP, SETCC_CARRY) -> (adc OP, 0)
351def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
352 (ADC8ri GR8:$op, 0)>;
353def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
354 (ADC32ri8 GR32:$op, 0)>;
355def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
356 (ADC64ri8 GR64:$op, 0)>;
357
358//===----------------------------------------------------------------------===//
359// String Pseudo Instructions
360//
361let SchedRW = [WriteMicrocoded] in {
362let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
363def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
364 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
365 Requires<[Not64BitMode]>;
366def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
367 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
368 Requires<[Not64BitMode]>;
369def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
370 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
371 Requires<[Not64BitMode]>;
372}
373
374let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
375def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
376 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
377 Requires<[In64BitMode]>;
378def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
379 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
380 Requires<[In64BitMode]>;
381def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
382 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
383 Requires<[In64BitMode]>;
384def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
385 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
386 Requires<[In64BitMode]>;
387}
388
389// FIXME: Should use "(X86rep_stos AL)" as the pattern.
390let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
391 let Uses = [AL,ECX,EDI] in
392 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
393 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
394 Requires<[Not64BitMode]>;
395 let Uses = [AX,ECX,EDI] in
396 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
397 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
398 Requires<[Not64BitMode]>;
399 let Uses = [EAX,ECX,EDI] in
400 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
401 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
402 Requires<[Not64BitMode]>;
403}
404
405let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
406 let Uses = [AL,RCX,RDI] in
407 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
408 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
409 Requires<[In64BitMode]>;
410 let Uses = [AX,RCX,RDI] in
411 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
412 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
413 Requires<[In64BitMode]>;
414 let Uses = [RAX,RCX,RDI] in
415 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
416 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
417 Requires<[In64BitMode]>;
418
419 let Uses = [RAX,RCX,RDI] in
420 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
421 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
422 Requires<[In64BitMode]>;
423}
424} // SchedRW
425
426//===----------------------------------------------------------------------===//
427// Thread Local Storage Instructions
428//
429
430// ELF TLS Support
431// All calls clobber the non-callee saved registers. ESP is marked as
432// a use to prevent stack-pointer assignments that appear immediately
433// before calls from potentially appearing dead.
434let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
435 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
436 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
437 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
438 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000439 usesCustomInserter = 1, Uses = [ESP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000440def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
441 "# TLS_addr32",
442 [(X86tlsaddr tls32addr:$sym)]>,
443 Requires<[Not64BitMode]>;
444def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
445 "# TLS_base_addr32",
446 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
447 Requires<[Not64BitMode]>;
448}
449
450// All calls clobber the non-callee saved registers. RSP is marked as
451// a use to prevent stack-pointer assignments that appear immediately
452// before calls from potentially appearing dead.
453let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
454 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
455 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
456 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
457 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
458 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000459 usesCustomInserter = 1, Uses = [RSP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000460def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
461 "# TLS_addr64",
462 [(X86tlsaddr tls64addr:$sym)]>,
463 Requires<[In64BitMode]>;
464def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
465 "# TLS_base_addr64",
466 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
467 Requires<[In64BitMode]>;
468}
469
470// Darwin TLS Support
471// For i386, the address of the thunk is passed on the stack, on return the
472// address of the variable is in %eax. %ecx is trashed during the function
473// call. All other registers are preserved.
474let Defs = [EAX, ECX, EFLAGS],
475 Uses = [ESP],
476 usesCustomInserter = 1 in
477def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
478 "# TLSCall_32",
479 [(X86TLSCall addr:$sym)]>,
480 Requires<[Not64BitMode]>;
481
482// For x86_64, the address of the thunk is passed in %rdi, on return
483// the address of the variable is in %rax. All other registers are preserved.
484let Defs = [RAX, EFLAGS],
485 Uses = [RSP, RDI],
486 usesCustomInserter = 1 in
487def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
488 "# TLSCall_64",
489 [(X86TLSCall addr:$sym)]>,
490 Requires<[In64BitMode]>;
491
492
493//===----------------------------------------------------------------------===//
494// Conditional Move Pseudo Instructions
495
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000496// CMOV* - Used to implement the SELECT DAG operation. Expanded after
497// instruction selection into a branch sequence.
498multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
499 def CMOV#NAME : I<0, Pseudo,
500 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
501 "#CMOV_"#NAME#" PSEUDO!",
502 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
503 EFLAGS)))]>;
504}
505
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000506let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000507 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
508 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
509 // however that requires promoting the operands, and can induce additional
510 // i8 register pressure.
511 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000512
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000513 let Predicates = [NoCMov] in {
514 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
515 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
516 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000517
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000518 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
519 // SSE1/SSE2.
520 let Predicates = [FPStackf32] in
521 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000522
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000523 let Predicates = [FPStackf64] in
524 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
525
526 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
527
528 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
529 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
Chih-Hung Hsieh7993e182015-12-14 22:08:36 +0000530 defm _FR128 : CMOVrr_PSEUDO<FR128, f128>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000531 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
532 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
533 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
534 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
535 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
536 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
537 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
538 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
539 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000540 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
541 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
542 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
543 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000544} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000545
546//===----------------------------------------------------------------------===//
547// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
548//===----------------------------------------------------------------------===//
549
550// FIXME: Use normal instructions and add lock prefix dynamically.
551
552// Memory barriers
553
554// TODO: Get this to fold the constant into the instruction.
555let isCodeGenOnly = 1, Defs = [EFLAGS] in
556def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
Craig Topper9583f512016-01-05 07:44:11 +0000557 "or{l}\t{$zero, $dst|$dst, $zero}", [],
558 IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000559 Sched<[WriteALULd, WriteRMW]>;
560
561let hasSideEffects = 1 in
562def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
563 "#MEMBARRIER",
564 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
565
566// RegOpc corresponds to the mr version of the instruction
567// ImmOpc corresponds to the mi version of the instruction
568// ImmOpc8 corresponds to the mi8 version of the instruction
569// ImmMod corresponds to the instruction format of the mi and mi8 versions
570multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000571 Format ImmMod, SDPatternOperator Op, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000572let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
573 SchedRW = [WriteALULd, WriteRMW] in {
574
575def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
576 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
577 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
578 !strconcat(mnemonic, "{b}\t",
579 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000580 [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
581 IIC_ALU_NONMEM>, LOCK;
582
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000583def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
584 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
585 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
586 !strconcat(mnemonic, "{w}\t",
587 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000588 [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
589 IIC_ALU_NONMEM>, OpSize16, LOCK;
590
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000591def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
592 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
593 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
594 !strconcat(mnemonic, "{l}\t",
595 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000596 [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
597 IIC_ALU_NONMEM>, OpSize32, LOCK;
598
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000599def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
600 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
601 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
602 !strconcat(mnemonic, "{q}\t",
603 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000604 [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
605 IIC_ALU_NONMEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000606
607def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
608 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
609 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
610 !strconcat(mnemonic, "{b}\t",
611 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000612 [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
613 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000614
615def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
616 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
617 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
618 !strconcat(mnemonic, "{w}\t",
619 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000620 [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
621 IIC_ALU_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000622
623def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
624 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
625 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
626 !strconcat(mnemonic, "{l}\t",
627 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000628 [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
629 IIC_ALU_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000630
631def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
632 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
633 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
634 !strconcat(mnemonic, "{q}\t",
635 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000636 [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
637 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000638
639def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
640 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
641 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
642 !strconcat(mnemonic, "{w}\t",
643 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000644 [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
645 IIC_ALU_MEM>, OpSize16, LOCK;
646
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000647def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
648 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
649 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
650 !strconcat(mnemonic, "{l}\t",
651 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000652 [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
653 IIC_ALU_MEM>, OpSize32, LOCK;
654
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000655def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
656 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
657 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
658 !strconcat(mnemonic, "{q}\t",
659 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000660 [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
661 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000662
663}
664
665}
666
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000667defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
668defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
669defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
670defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
671defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000672
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000673multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000674 int Increment, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000675let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000676 SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000677def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
678 !strconcat(mnemonic, "{b}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000679 [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))],
680 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000681def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
682 !strconcat(mnemonic, "{w}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000683 [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))],
684 IIC_UNARY_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000685def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
686 !strconcat(mnemonic, "{l}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000687 [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))],
688 IIC_UNARY_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000689def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
690 !strconcat(mnemonic, "{q}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000691 [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))],
692 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000693}
694}
695
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000696defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, 1, "inc">;
697defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000698
699// Atomic compare and swap.
700multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
701 SDPatternOperator frag, X86MemOperand x86memop,
702 InstrItinClass itin> {
703let isCodeGenOnly = 1 in {
704 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
705 !strconcat(mnemonic, "\t$ptr"),
706 [(frag addr:$ptr)], itin>, TB, LOCK;
707}
708}
709
710multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
711 string mnemonic, SDPatternOperator frag,
712 InstrItinClass itin8, InstrItinClass itin> {
713let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
714 let Defs = [AL, EFLAGS], Uses = [AL] in
715 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
716 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
717 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
718 let Defs = [AX, EFLAGS], Uses = [AX] in
719 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
720 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
721 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
722 let Defs = [EAX, EFLAGS], Uses = [EAX] in
723 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
724 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
725 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
726 let Defs = [RAX, EFLAGS], Uses = [RAX] in
727 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
728 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
729 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
730}
731}
732
733let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
734 SchedRW = [WriteALULd, WriteRMW] in {
735defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
736 X86cas8, i64mem,
737 IIC_CMPX_LOCK_8B>;
738}
739
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000740// This pseudo must be used when the frame uses RBX as
741// the base pointer. Indeed, in such situation RBX is a reserved
742// register and the register allocator will ignore any use/def of
743// it. In other words, the register will not fix the clobbering of
744// RBX that will happen when setting the arguments for the instrucion.
745//
746// Unlike the actual related instuction, we mark that this one
747// defines EBX (instead of using EBX).
748// The rationale is that we will define RBX during the expansion of
749// the pseudo. The argument feeding EBX is ebx_input.
750//
751// The additional argument, $ebx_save, is a temporary register used to
752// save the value of RBX accross the actual instruction.
753//
754// To make sure the register assigned to $ebx_save does not interfere with
755// the definition of the actual instruction, we use a definition $dst which
756// is tied to $rbx_save. That way, the live-range of $rbx_save spans accross
757// the instruction and we are sure we will have a valid register to restore
758// the value of RBX.
759let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
760 SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
761 Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
762def LCMPXCHG8B_SAVE_EBX :
763 I<0, Pseudo, (outs GR32:$dst),
764 (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
765 !strconcat("cmpxchg8b", "\t$ptr"),
766 [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
767 GR32:$ebx_save))],
768 IIC_CMPX_LOCK_8B>;
769}
770
771
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000772let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
773 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
774defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
775 X86cas16, i128mem,
776 IIC_CMPX_LOCK_16B>, REX_W;
777}
778
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000779// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
780let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
781 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
782 isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
783 usesCustomInserter = 1 in {
784def LCMPXCHG16B_SAVE_RBX :
785 I<0, Pseudo, (outs GR64:$dst),
786 (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
787 !strconcat("cmpxchg16b", "\t$ptr"),
788 [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
789 GR64:$rbx_save))],
790 IIC_CMPX_LOCK_16B>;
791}
792
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000793defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
794 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
795
796// Atomic exchange and add
797multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
798 string frag,
799 InstrItinClass itin8, InstrItinClass itin> {
800 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
801 SchedRW = [WriteALULd, WriteRMW] in {
802 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
803 (ins GR8:$val, i8mem:$ptr),
804 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
805 [(set GR8:$dst,
806 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
807 itin8>;
808 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
809 (ins GR16:$val, i16mem:$ptr),
810 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
811 [(set
812 GR16:$dst,
813 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
814 itin>, OpSize16;
815 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
816 (ins GR32:$val, i32mem:$ptr),
817 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
818 [(set
819 GR32:$dst,
820 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
821 itin>, OpSize32;
822 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
823 (ins GR64:$val, i64mem:$ptr),
824 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
825 [(set
826 GR64:$dst,
827 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
828 itin>;
829 }
830}
831
832defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
833 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
834 TB, LOCK;
835
836/* The following multiclass tries to make sure that in code like
837 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000838 * and
839 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000840 * an operation directly on memory is generated instead of wasting a register.
841 * It is not automatic as atomic_store/load are only lowered to MOV instructions
842 * extremely late to prevent them from being accidentally reordered in the backend
843 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
844 */
JF Bastien0f8a99b2015-08-05 23:15:37 +0000845multiclass RELEASE_BINOP_MI<SDNode op> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000846 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000847 "#BINOP "#NAME#"8mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000848 [(atomic_store_8 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000849 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000850 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
851 "#BINOP "#NAME#"8mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000852 [(atomic_store_8 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000853 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000854 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
855 // costly and avoided as far as possible by this backend anyway
856 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000857 "#BINOP "#NAME#"32mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000858 [(atomic_store_32 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000859 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000860 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
861 "#BINOP "#NAME#"32mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000862 [(atomic_store_32 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000863 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000864 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000865 "#BINOP "#NAME#"64mi32 PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000866 [(atomic_store_64 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000867 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000868 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
869 "#BINOP "#NAME#"64mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000870 [(atomic_store_64 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000871 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000872}
JF Bastien986ed682015-10-13 00:28:47 +0000873let Defs = [EFLAGS] in {
874 defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
875 defm RELEASE_AND : RELEASE_BINOP_MI<and>;
876 defm RELEASE_OR : RELEASE_BINOP_MI<or>;
877 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
878 // Note: we don't deal with sub, because substractions of constants are
879 // optimized into additions before this code can run.
880}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000881
JF Bastien86620832015-08-05 21:04:59 +0000882// Same as above, but for floating-point.
883// FIXME: imm version.
884// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
885// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
886let usesCustomInserter = 1 in {
JF Bastien0f8a99b2015-08-05 23:15:37 +0000887multiclass RELEASE_FP_BINOP_MI<SDNode op> {
JF Bastien86620832015-08-05 21:04:59 +0000888 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
889 "#BINOP "#NAME#"32mr PSEUDO!",
890 [(atomic_store_32 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000891 (i32 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000892 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
893 FR32:$src))))]>, Requires<[HasSSE1]>;
894 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
895 "#BINOP "#NAME#"64mr PSEUDO!",
896 [(atomic_store_64 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000897 (i64 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000898 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
899 FR64:$src))))]>, Requires<[HasSSE2]>;
900}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000901defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
JF Bastien86620832015-08-05 21:04:59 +0000902// FIXME: Add fsub, fmul, fdiv, ...
903}
904
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000905multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
906 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000907 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000908 [(atomic_store_8 addr:$dst, dag8)]>;
909 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000910 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000911 [(atomic_store_16 addr:$dst, dag16)]>;
912 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000913 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000914 [(atomic_store_32 addr:$dst, dag32)]>;
915 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000916 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000917 [(atomic_store_64 addr:$dst, dag64)]>;
918}
919
JF Bastien2cdd5e42015-10-15 18:24:52 +0000920let Defs = [EFLAGS] in {
921 defm RELEASE_INC : RELEASE_UNOP<
922 (add (atomic_load_8 addr:$dst), (i8 1)),
923 (add (atomic_load_16 addr:$dst), (i16 1)),
924 (add (atomic_load_32 addr:$dst), (i32 1)),
925 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
926 defm RELEASE_DEC : RELEASE_UNOP<
927 (add (atomic_load_8 addr:$dst), (i8 -1)),
928 (add (atomic_load_16 addr:$dst), (i16 -1)),
929 (add (atomic_load_32 addr:$dst), (i32 -1)),
930 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
931}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000932/*
933TODO: These don't work because the type inference of TableGen fails.
934TODO: find a way to fix it.
JF Bastien2cdd5e42015-10-15 18:24:52 +0000935let Defs = [EFLAGS] in {
936 defm RELEASE_NEG : RELEASE_UNOP<
937 (ineg (atomic_load_8 addr:$dst)),
938 (ineg (atomic_load_16 addr:$dst)),
939 (ineg (atomic_load_32 addr:$dst)),
940 (ineg (atomic_load_64 addr:$dst))>;
941}
942// NOT doesn't set flags.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000943defm RELEASE_NOT : RELEASE_UNOP<
944 (not (atomic_load_8 addr:$dst)),
945 (not (atomic_load_16 addr:$dst)),
946 (not (atomic_load_32 addr:$dst)),
947 (not (atomic_load_64 addr:$dst))>;
948*/
949
950def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000951 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000952 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
953def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000954 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000955 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
956def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000957 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000958 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
959def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000960 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000961 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
962
963def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000964 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000965 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
966def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000967 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000968 [(atomic_store_16 addr:$dst, GR16:$src)]>;
969def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000970 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000971 [(atomic_store_32 addr:$dst, GR32:$src)]>;
972def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000973 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000974 [(atomic_store_64 addr:$dst, GR64:$src)]>;
975
976def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +0000977 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000978 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
979def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000980 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000981 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
982def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000983 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000984 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
985def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000986 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000987 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000988
989//===----------------------------------------------------------------------===//
990// DAG Pattern Matching Rules
991//===----------------------------------------------------------------------===//
992
993// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
994def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
995def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
996def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
997def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
998def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000999def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001000def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
1001
1002def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
1003 (ADD32ri GR32:$src1, tconstpool:$src2)>;
1004def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
1005 (ADD32ri GR32:$src1, tjumptable:$src2)>;
1006def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
1007 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
1008def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
1009 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001010def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
1011 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001012def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
1013 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
1014
1015def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1016 (MOV32mi addr:$dst, tglobaladdr:$src)>;
1017def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
1018 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001019def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
1020 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001021def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
1022 (MOV32mi addr:$dst, tblockaddress:$src)>;
1023
1024// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
1025// code model mode, should use 'movabs'. FIXME: This is really a hack, the
1026// 'movabs' predicate should handle this sort of thing.
1027def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
1028 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
1029def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
1030 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
1031def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1032 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
1033def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1034 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001035def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1036 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001037def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1038 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
1039
1040// In kernel code model, we can get the address of a label
1041// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
1042// the MOV64ri32 should accept these.
1043def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
1044 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
1045def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
1046 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
1047def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1048 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1049def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1050 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001051def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1052 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001053def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1054 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1055
1056// If we have small model and -static mode, it is safe to store global addresses
1057// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
1058// for MOV64mi32 should handle this sort of thing.
1059def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1060 (MOV64mi32 addr:$dst, tconstpool:$src)>,
1061 Requires<[NearData, IsStatic]>;
1062def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1063 (MOV64mi32 addr:$dst, tjumptable:$src)>,
1064 Requires<[NearData, IsStatic]>;
1065def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1066 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1067 Requires<[NearData, IsStatic]>;
1068def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1069 (MOV64mi32 addr:$dst, texternalsym:$src)>,
1070 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001071def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1072 (MOV64mi32 addr:$dst, mcsym:$src)>,
1073 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001074def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1075 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1076 Requires<[NearData, IsStatic]>;
1077
Rafael Espindola36b718f2015-06-22 17:46:53 +00001078def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1079def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001080
1081// Calls
1082
1083// tls has some funny stuff here...
1084// This corresponds to movabs $foo@tpoff, %rax
1085def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1086 (MOV64ri32 tglobaltlsaddr :$dst)>;
1087// This corresponds to add $foo@tpoff, %rax
1088def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1089 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1090
1091
1092// Direct PC relative function call for small code model. 32-bit displacement
1093// sign extended to 64-bit.
1094def : Pat<(X86call (i64 tglobaladdr:$dst)),
1095 (CALL64pcrel32 tglobaladdr:$dst)>;
1096def : Pat<(X86call (i64 texternalsym:$dst)),
1097 (CALL64pcrel32 texternalsym:$dst)>;
1098
1099// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1100// can never use callee-saved registers. That is the purpose of the GR64_TC
1101// register classes.
1102//
1103// The only volatile register that is never used by the calling convention is
1104// %r11. This happens when calling a vararg function with 6 arguments.
1105//
1106// Match an X86tcret that uses less than 7 volatile registers.
1107def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1108 (X86tcret node:$ptr, node:$off), [{
1109 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1110 unsigned NumRegs = 0;
1111 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1112 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1113 return false;
1114 return true;
1115}]>;
1116
1117def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1118 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1119 Requires<[Not64BitMode]>;
1120
1121// FIXME: This is disabled for 32-bit PIC mode because the global base
1122// register which is part of the address mode may be assigned a
1123// callee-saved register.
1124def : Pat<(X86tcret (load addr:$dst), imm:$off),
1125 (TCRETURNmi addr:$dst, imm:$off)>,
1126 Requires<[Not64BitMode, IsNotPIC]>;
1127
1128def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1129 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1130 Requires<[NotLP64]>;
1131
1132def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1133 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1134 Requires<[NotLP64]>;
1135
1136def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1137 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1138 Requires<[In64BitMode]>;
1139
1140// Don't fold loads into X86tcret requiring more than 6 regs.
1141// There wouldn't be enough scratch registers for base+index.
1142def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1143 (TCRETURNmi64 addr:$dst, imm:$off)>,
1144 Requires<[In64BitMode]>;
1145
1146def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1147 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1148 Requires<[IsLP64]>;
1149
1150def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1151 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1152 Requires<[IsLP64]>;
1153
1154// Normal calls, with various flavors of addresses.
1155def : Pat<(X86call (i32 tglobaladdr:$dst)),
1156 (CALLpcrel32 tglobaladdr:$dst)>;
1157def : Pat<(X86call (i32 texternalsym:$dst)),
1158 (CALLpcrel32 texternalsym:$dst)>;
1159def : Pat<(X86call (i32 imm:$dst)),
1160 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1161
1162// Comparisons.
1163
1164// TEST R,R is smaller than CMP R,0
1165def : Pat<(X86cmp GR8:$src1, 0),
1166 (TEST8rr GR8:$src1, GR8:$src1)>;
1167def : Pat<(X86cmp GR16:$src1, 0),
1168 (TEST16rr GR16:$src1, GR16:$src1)>;
1169def : Pat<(X86cmp GR32:$src1, 0),
1170 (TEST32rr GR32:$src1, GR32:$src1)>;
1171def : Pat<(X86cmp GR64:$src1, 0),
1172 (TEST64rr GR64:$src1, GR64:$src1)>;
1173
1174// Conditional moves with folded loads with operands swapped and conditions
1175// inverted.
1176multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1177 Instruction Inst64> {
1178 let Predicates = [HasCMov] in {
1179 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1180 (Inst16 GR16:$src2, addr:$src1)>;
1181 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1182 (Inst32 GR32:$src2, addr:$src1)>;
1183 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1184 (Inst64 GR64:$src2, addr:$src1)>;
1185 }
1186}
1187
1188defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1189defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1190defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1191defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1192defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1193defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1194defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1195defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1196defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1197defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1198defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1199defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1200defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1201defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1202defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1203defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1204
1205// zextload bool -> zextload byte
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001206// i1 stored in one byte in zero-extended form.
1207// Upper bits cleanup should be executed before Store.
1208def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1209def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1210def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001211def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001212 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001213
1214// extload bool -> extload byte
1215// When extloading from 16-bit and smaller memory locations into 64-bit
1216// registers, use zero-extending loads so that the entire 64-bit register is
1217// defined, avoiding partial-register updates.
1218
1219def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1220def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1221def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1222def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1223def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1224def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1225
1226// For other extloads, use subregs, since the high contents of the register are
1227// defined after an extload.
1228def : Pat<(extloadi64i1 addr:$src),
1229 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1230def : Pat<(extloadi64i8 addr:$src),
1231 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1232def : Pat<(extloadi64i16 addr:$src),
1233 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1234def : Pat<(extloadi64i32 addr:$src),
1235 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1236
1237// anyext. Define these to do an explicit zero-extend to
1238// avoid partial-register updates.
1239def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1240 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1241def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1242
1243// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1244def : Pat<(i32 (anyext GR16:$src)),
1245 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1246
1247def : Pat<(i64 (anyext GR8 :$src)),
1248 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1249def : Pat<(i64 (anyext GR16:$src)),
1250 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1251def : Pat<(i64 (anyext GR32:$src)),
1252 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1253
1254
1255// Any instruction that defines a 32-bit result leaves the high half of the
1256// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1257// be copying from a truncate. And x86's cmov doesn't do anything if the
1258// condition is false. But any other 32-bit operation will zero-extend
1259// up to 64 bits.
1260def def32 : PatLeaf<(i32 GR32:$src), [{
1261 return N->getOpcode() != ISD::TRUNCATE &&
1262 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1263 N->getOpcode() != ISD::CopyFromReg &&
1264 N->getOpcode() != ISD::AssertSext &&
1265 N->getOpcode() != X86ISD::CMOV;
1266}]>;
1267
1268// In the case of a 32-bit def that is known to implicitly zero-extend,
1269// we can use a SUBREG_TO_REG.
1270def : Pat<(i64 (zext def32:$src)),
1271 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1272
1273//===----------------------------------------------------------------------===//
1274// Pattern match OR as ADD
1275//===----------------------------------------------------------------------===//
1276
1277// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1278// 3-addressified into an LEA instruction to avoid copies. However, we also
1279// want to finally emit these instructions as an or at the end of the code
1280// generator to make the generated code easier to read. To do this, we select
1281// into "disjoint bits" pseudo ops.
1282
1283// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1284def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1285 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1286 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1287
1288 APInt KnownZero0, KnownOne0;
1289 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1290 APInt KnownZero1, KnownOne1;
1291 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1292 return (~KnownZero0 & ~KnownZero1) == 0;
1293}]>;
1294
1295
1296// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1297// Try this before the selecting to OR.
1298let AddedComplexity = 5, SchedRW = [WriteALU] in {
1299
1300let isConvertibleToThreeAddress = 1,
1301 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1302let isCommutable = 1 in {
1303def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1304 "", // orw/addw REG, REG
1305 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1306def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1307 "", // orl/addl REG, REG
1308 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1309def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1310 "", // orq/addq REG, REG
1311 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1312} // isCommutable
1313
1314// NOTE: These are order specific, we want the ri8 forms to be listed
1315// first so that they are slightly preferred to the ri forms.
1316
1317def ADD16ri8_DB : I<0, Pseudo,
1318 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1319 "", // orw/addw REG, imm8
1320 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1321def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1322 "", // orw/addw REG, imm
1323 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1324
1325def ADD32ri8_DB : I<0, Pseudo,
1326 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1327 "", // orl/addl REG, imm8
1328 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1329def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1330 "", // orl/addl REG, imm
1331 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1332
1333
1334def ADD64ri8_DB : I<0, Pseudo,
1335 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1336 "", // orq/addq REG, imm8
1337 [(set GR64:$dst, (or_is_add GR64:$src1,
1338 i64immSExt8:$src2))]>;
1339def ADD64ri32_DB : I<0, Pseudo,
1340 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1341 "", // orq/addq REG, imm
1342 [(set GR64:$dst, (or_is_add GR64:$src1,
1343 i64immSExt32:$src2))]>;
1344}
1345} // AddedComplexity, SchedRW
1346
1347
1348//===----------------------------------------------------------------------===//
1349// Some peepholes
1350//===----------------------------------------------------------------------===//
1351
1352// Odd encoding trick: -128 fits into an 8-bit immediate field while
1353// +128 doesn't, so in this special case use a sub instead of an add.
1354def : Pat<(add GR16:$src1, 128),
1355 (SUB16ri8 GR16:$src1, -128)>;
1356def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1357 (SUB16mi8 addr:$dst, -128)>;
1358
1359def : Pat<(add GR32:$src1, 128),
1360 (SUB32ri8 GR32:$src1, -128)>;
1361def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1362 (SUB32mi8 addr:$dst, -128)>;
1363
1364def : Pat<(add GR64:$src1, 128),
1365 (SUB64ri8 GR64:$src1, -128)>;
1366def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1367 (SUB64mi8 addr:$dst, -128)>;
1368
1369// The same trick applies for 32-bit immediate fields in 64-bit
1370// instructions.
1371def : Pat<(add GR64:$src1, 0x0000000080000000),
1372 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1373def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1374 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1375
1376// To avoid needing to materialize an immediate in a register, use a 32-bit and
1377// with implicit zero-extension instead of a 64-bit and if the immediate has at
1378// least 32 bits of leading zeros. If in addition the last 32 bits can be
1379// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001380// This can also reduce instruction size by eliminating the need for the REX
1381// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001382
Craig Topper7ea899a2015-04-04 04:22:12 +00001383// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1384let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001385def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1386 (SUBREG_TO_REG
1387 (i64 0),
1388 (AND32ri8
1389 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1390 (i32 (GetLo8XForm imm:$imm))),
1391 sub_32bit)>;
1392
1393def : Pat<(and GR64:$src, i64immZExt32:$imm),
1394 (SUBREG_TO_REG
1395 (i64 0),
1396 (AND32ri
1397 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1398 (i32 (GetLo32XForm imm:$imm))),
1399 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001400} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001401
1402
Craig Topper7ea899a2015-04-04 04:22:12 +00001403// AddedComplexity is needed due to the increased complexity on the
1404// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1405// the MOVZX patterns keeps thems together in DAGIsel tables.
1406let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001407// r & (2^16-1) ==> movz
1408def : Pat<(and GR32:$src1, 0xffff),
1409 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1410// r & (2^8-1) ==> movz
1411def : Pat<(and GR32:$src1, 0xff),
1412 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1413 GR32_ABCD)),
1414 sub_8bit))>,
1415 Requires<[Not64BitMode]>;
1416// r & (2^8-1) ==> movz
1417def : Pat<(and GR16:$src1, 0xff),
1418 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1419 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1420 sub_16bit)>,
1421 Requires<[Not64BitMode]>;
1422
1423// r & (2^32-1) ==> movz
1424def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1425 (SUBREG_TO_REG (i64 0),
1426 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1427 sub_32bit)>;
1428// r & (2^16-1) ==> movz
1429def : Pat<(and GR64:$src, 0xffff),
1430 (SUBREG_TO_REG (i64 0),
1431 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1432 sub_32bit)>;
1433// r & (2^8-1) ==> movz
1434def : Pat<(and GR64:$src, 0xff),
1435 (SUBREG_TO_REG (i64 0),
1436 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1437 sub_32bit)>;
1438// r & (2^8-1) ==> movz
1439def : Pat<(and GR32:$src1, 0xff),
1440 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1441 Requires<[In64BitMode]>;
1442// r & (2^8-1) ==> movz
1443def : Pat<(and GR16:$src1, 0xff),
1444 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1445 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1446 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001447} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001448
1449
1450// sext_inreg patterns
1451def : Pat<(sext_inreg GR32:$src, i16),
1452 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1453def : Pat<(sext_inreg GR32:$src, i8),
1454 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1455 GR32_ABCD)),
1456 sub_8bit))>,
1457 Requires<[Not64BitMode]>;
1458
1459def : Pat<(sext_inreg GR16:$src, i8),
1460 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1461 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1462 sub_16bit)>,
1463 Requires<[Not64BitMode]>;
1464
1465def : Pat<(sext_inreg GR64:$src, i32),
1466 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1467def : Pat<(sext_inreg GR64:$src, i16),
1468 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1469def : Pat<(sext_inreg GR64:$src, i8),
1470 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1471def : Pat<(sext_inreg GR32:$src, i8),
1472 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1473 Requires<[In64BitMode]>;
1474def : Pat<(sext_inreg GR16:$src, i8),
1475 (EXTRACT_SUBREG (MOVSX32rr8
1476 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1477 Requires<[In64BitMode]>;
1478
1479// sext, sext_load, zext, zext_load
1480def: Pat<(i16 (sext GR8:$src)),
1481 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1482def: Pat<(sextloadi16i8 addr:$src),
1483 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1484def: Pat<(i16 (zext GR8:$src)),
1485 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1486def: Pat<(zextloadi16i8 addr:$src),
1487 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1488
1489// trunc patterns
1490def : Pat<(i16 (trunc GR32:$src)),
1491 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1492def : Pat<(i8 (trunc GR32:$src)),
1493 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1494 sub_8bit)>,
1495 Requires<[Not64BitMode]>;
1496def : Pat<(i8 (trunc GR16:$src)),
1497 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1498 sub_8bit)>,
1499 Requires<[Not64BitMode]>;
1500def : Pat<(i32 (trunc GR64:$src)),
1501 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1502def : Pat<(i16 (trunc GR64:$src)),
1503 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1504def : Pat<(i8 (trunc GR64:$src)),
1505 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1506def : Pat<(i8 (trunc GR32:$src)),
1507 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1508 Requires<[In64BitMode]>;
1509def : Pat<(i8 (trunc GR16:$src)),
1510 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1511 Requires<[In64BitMode]>;
1512
1513// h-register tricks
1514def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1515 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1516 sub_8bit_hi)>,
1517 Requires<[Not64BitMode]>;
1518def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1519 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1520 sub_8bit_hi)>,
1521 Requires<[Not64BitMode]>;
1522def : Pat<(srl GR16:$src, (i8 8)),
1523 (EXTRACT_SUBREG
1524 (MOVZX32rr8
1525 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1526 sub_8bit_hi)),
1527 sub_16bit)>,
1528 Requires<[Not64BitMode]>;
1529def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1530 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1531 GR16_ABCD)),
1532 sub_8bit_hi))>,
1533 Requires<[Not64BitMode]>;
1534def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1535 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1536 GR16_ABCD)),
1537 sub_8bit_hi))>,
1538 Requires<[Not64BitMode]>;
1539def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1540 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1541 GR32_ABCD)),
1542 sub_8bit_hi))>,
1543 Requires<[Not64BitMode]>;
1544def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1545 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1546 GR32_ABCD)),
1547 sub_8bit_hi))>,
1548 Requires<[Not64BitMode]>;
1549
1550// h-register tricks.
1551// For now, be conservative on x86-64 and use an h-register extract only if the
1552// value is immediately zero-extended or stored, which are somewhat common
1553// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1554// from being allocated in the same instruction as the h register, as there's
1555// currently no way to describe this requirement to the register allocator.
1556
1557// h-register extract and zero-extend.
1558def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1559 (SUBREG_TO_REG
1560 (i64 0),
1561 (MOVZX32_NOREXrr8
1562 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1563 sub_8bit_hi)),
1564 sub_32bit)>;
1565def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1566 (MOVZX32_NOREXrr8
1567 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1568 sub_8bit_hi))>,
1569 Requires<[In64BitMode]>;
1570def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1571 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1572 GR32_ABCD)),
1573 sub_8bit_hi))>,
1574 Requires<[In64BitMode]>;
1575def : Pat<(srl GR16:$src, (i8 8)),
1576 (EXTRACT_SUBREG
1577 (MOVZX32_NOREXrr8
1578 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1579 sub_8bit_hi)),
1580 sub_16bit)>,
1581 Requires<[In64BitMode]>;
1582def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1583 (MOVZX32_NOREXrr8
1584 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1585 sub_8bit_hi))>,
1586 Requires<[In64BitMode]>;
1587def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1588 (MOVZX32_NOREXrr8
1589 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1590 sub_8bit_hi))>,
1591 Requires<[In64BitMode]>;
1592def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1593 (SUBREG_TO_REG
1594 (i64 0),
1595 (MOVZX32_NOREXrr8
1596 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1597 sub_8bit_hi)),
1598 sub_32bit)>;
1599def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1600 (SUBREG_TO_REG
1601 (i64 0),
1602 (MOVZX32_NOREXrr8
1603 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1604 sub_8bit_hi)),
1605 sub_32bit)>;
1606
1607// h-register extract and store.
1608def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1609 (MOV8mr_NOREX
1610 addr:$dst,
1611 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1612 sub_8bit_hi))>;
1613def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1614 (MOV8mr_NOREX
1615 addr:$dst,
1616 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1617 sub_8bit_hi))>,
1618 Requires<[In64BitMode]>;
1619def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1620 (MOV8mr_NOREX
1621 addr:$dst,
1622 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1623 sub_8bit_hi))>,
1624 Requires<[In64BitMode]>;
1625
1626
1627// (shl x, 1) ==> (add x, x)
1628// Note that if x is undef (immediate or otherwise), we could theoretically
1629// end up with the two uses of x getting different values, producing a result
1630// where the least significant bit is not 0. However, the probability of this
1631// happening is considered low enough that this is officially not a
1632// "real problem".
1633def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1634def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1635def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1636def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1637
1638// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001639def immShift32 : ImmLeaf<i8, [{
1640 return countTrailingOnes<uint64_t>(Imm) >= 5;
1641}]>;
1642def immShift64 : ImmLeaf<i8, [{
1643 return countTrailingOnes<uint64_t>(Imm) >= 6;
1644}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001645
1646// Shift amount is implicitly masked.
1647multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1648 // (shift x (and y, 31)) ==> (shift x, y)
1649 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1650 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1651 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1652 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1653 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1654 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1655 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1656 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1657 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1658 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1659 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1660 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1661
1662 // (shift x (and y, 63)) ==> (shift x, y)
1663 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1664 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1665 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1666 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1667}
1668
1669defm : MaskedShiftAmountPats<shl, "SHL">;
1670defm : MaskedShiftAmountPats<srl, "SHR">;
1671defm : MaskedShiftAmountPats<sra, "SAR">;
1672defm : MaskedShiftAmountPats<rotl, "ROL">;
1673defm : MaskedShiftAmountPats<rotr, "ROR">;
1674
1675// (anyext (setcc_carry)) -> (setcc_carry)
1676def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1677 (SETB_C16r)>;
1678def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1679 (SETB_C32r)>;
1680def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1681 (SETB_C32r)>;
1682
1683
1684
1685
1686//===----------------------------------------------------------------------===//
1687// EFLAGS-defining Patterns
1688//===----------------------------------------------------------------------===//
1689
1690// add reg, reg
1691def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1692def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1693def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1694
1695// add reg, mem
1696def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1697 (ADD8rm GR8:$src1, addr:$src2)>;
1698def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1699 (ADD16rm GR16:$src1, addr:$src2)>;
1700def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1701 (ADD32rm GR32:$src1, addr:$src2)>;
1702
1703// add reg, imm
1704def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1705def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1706def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1707def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1708 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1709def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1710 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1711
1712// sub reg, reg
1713def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1714def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1715def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1716
1717// sub reg, mem
1718def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1719 (SUB8rm GR8:$src1, addr:$src2)>;
1720def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1721 (SUB16rm GR16:$src1, addr:$src2)>;
1722def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1723 (SUB32rm GR32:$src1, addr:$src2)>;
1724
1725// sub reg, imm
1726def : Pat<(sub GR8:$src1, imm:$src2),
1727 (SUB8ri GR8:$src1, imm:$src2)>;
1728def : Pat<(sub GR16:$src1, imm:$src2),
1729 (SUB16ri GR16:$src1, imm:$src2)>;
1730def : Pat<(sub GR32:$src1, imm:$src2),
1731 (SUB32ri GR32:$src1, imm:$src2)>;
1732def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1733 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1734def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1735 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1736
1737// sub 0, reg
1738def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1739def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1740def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1741def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1742
1743// mul reg, reg
1744def : Pat<(mul GR16:$src1, GR16:$src2),
1745 (IMUL16rr GR16:$src1, GR16:$src2)>;
1746def : Pat<(mul GR32:$src1, GR32:$src2),
1747 (IMUL32rr GR32:$src1, GR32:$src2)>;
1748
1749// mul reg, mem
1750def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1751 (IMUL16rm GR16:$src1, addr:$src2)>;
1752def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1753 (IMUL32rm GR32:$src1, addr:$src2)>;
1754
1755// mul reg, imm
1756def : Pat<(mul GR16:$src1, imm:$src2),
1757 (IMUL16rri GR16:$src1, imm:$src2)>;
1758def : Pat<(mul GR32:$src1, imm:$src2),
1759 (IMUL32rri GR32:$src1, imm:$src2)>;
1760def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1761 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1762def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1763 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1764
1765// reg = mul mem, imm
1766def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1767 (IMUL16rmi addr:$src1, imm:$src2)>;
1768def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1769 (IMUL32rmi addr:$src1, imm:$src2)>;
1770def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1771 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1772def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1773 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1774
1775// Patterns for nodes that do not produce flags, for instructions that do.
1776
1777// addition
1778def : Pat<(add GR64:$src1, GR64:$src2),
1779 (ADD64rr GR64:$src1, GR64:$src2)>;
1780def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1781 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1782def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1783 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1784def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1785 (ADD64rm GR64:$src1, addr:$src2)>;
1786
1787// subtraction
1788def : Pat<(sub GR64:$src1, GR64:$src2),
1789 (SUB64rr GR64:$src1, GR64:$src2)>;
1790def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1791 (SUB64rm GR64:$src1, addr:$src2)>;
1792def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1793 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1794def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1795 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1796
1797// Multiply
1798def : Pat<(mul GR64:$src1, GR64:$src2),
1799 (IMUL64rr GR64:$src1, GR64:$src2)>;
1800def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1801 (IMUL64rm GR64:$src1, addr:$src2)>;
1802def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1803 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1804def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1805 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1806def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1807 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1808def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1809 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1810
1811// Increment/Decrement reg.
1812// Do not make INC/DEC if it is slow
1813let Predicates = [NotSlowIncDec] in {
1814 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1815 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1816 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1817 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1818 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1819 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1820 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1821 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1822}
1823
1824// or reg/reg.
1825def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1826def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1827def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1828def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1829
1830// or reg/mem
1831def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1832 (OR8rm GR8:$src1, addr:$src2)>;
1833def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1834 (OR16rm GR16:$src1, addr:$src2)>;
1835def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1836 (OR32rm GR32:$src1, addr:$src2)>;
1837def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1838 (OR64rm GR64:$src1, addr:$src2)>;
1839
1840// or reg/imm
1841def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1842def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1843def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1844def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1845 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1846def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1847 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1848def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1849 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1850def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1851 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1852
1853// xor reg/reg
1854def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1855def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1856def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1857def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1858
1859// xor reg/mem
1860def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1861 (XOR8rm GR8:$src1, addr:$src2)>;
1862def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1863 (XOR16rm GR16:$src1, addr:$src2)>;
1864def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1865 (XOR32rm GR32:$src1, addr:$src2)>;
1866def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1867 (XOR64rm GR64:$src1, addr:$src2)>;
1868
1869// xor reg/imm
1870def : Pat<(xor GR8:$src1, imm:$src2),
1871 (XOR8ri GR8:$src1, imm:$src2)>;
1872def : Pat<(xor GR16:$src1, imm:$src2),
1873 (XOR16ri GR16:$src1, imm:$src2)>;
1874def : Pat<(xor GR32:$src1, imm:$src2),
1875 (XOR32ri GR32:$src1, imm:$src2)>;
1876def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1877 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1878def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1879 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1880def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1881 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1882def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1883 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1884
1885// and reg/reg
1886def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1887def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1888def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1889def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1890
1891// and reg/mem
1892def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1893 (AND8rm GR8:$src1, addr:$src2)>;
1894def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1895 (AND16rm GR16:$src1, addr:$src2)>;
1896def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1897 (AND32rm GR32:$src1, addr:$src2)>;
1898def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1899 (AND64rm GR64:$src1, addr:$src2)>;
1900
1901// and reg/imm
1902def : Pat<(and GR8:$src1, imm:$src2),
1903 (AND8ri GR8:$src1, imm:$src2)>;
1904def : Pat<(and GR16:$src1, imm:$src2),
1905 (AND16ri GR16:$src1, imm:$src2)>;
1906def : Pat<(and GR32:$src1, imm:$src2),
1907 (AND32ri GR32:$src1, imm:$src2)>;
1908def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1909 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1910def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1911 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1912def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1913 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1914def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1915 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1916
1917// Bit scan instruction patterns to match explicit zero-undef behavior.
1918def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1919def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1920def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1921def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1922def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1923def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1924
1925// When HasMOVBE is enabled it is possible to get a non-legalized
1926// register-register 16 bit bswap. This maps it to a ROL instruction.
1927let Predicates = [HasMOVBE] in {
1928 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1929}