blob: 218a52bb3b1c24e7aee6495d790d7ede7cc120fd [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
Igor Laevskye0317182015-05-19 15:59:05 +000017#include "llvm/Analysis/TargetTransformInfo.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000018#include "llvm/ADT/SetOperations.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/DenseSet.h"
Philip Reames4d80ede2015-04-10 23:11:26 +000021#include "llvm/ADT/SetVector.h"
Swaroop Sridhar665bc9c2015-05-20 01:07:23 +000022#include "llvm/ADT/StringRef.h"
Philip Reames15d55632015-09-09 23:26:08 +000023#include "llvm/ADT/MapVector.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000024#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/CallSite.h"
26#include "llvm/IR/Dominators.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/InstIterator.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Module.h"
Sanjoy Das353a19e2015-06-02 22:33:37 +000034#include "llvm/IR/MDBuilder.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000035#include "llvm/IR/Statepoint.h"
36#include "llvm/IR/Value.h"
37#include "llvm/IR/Verifier.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Transforms/Scalar.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/Transforms/Utils/Cloning.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include "llvm/Transforms/Utils/PromoteMemToReg.h"
45
46#define DEBUG_TYPE "rewrite-statepoints-for-gc"
47
48using namespace llvm;
49
Philip Reamesd16a9b12015-02-20 01:06:44 +000050// Print the liveset found at the insert location
51static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52 cl::init(false));
Philip Reames704e78b2015-04-10 22:34:56 +000053static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000055// Print out the base pointers for debugging
Philip Reames704e78b2015-04-10 22:34:56 +000056static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000058
Igor Laevskye0317182015-05-19 15:59:05 +000059// Cost threshold measuring when it is profitable to rematerialize value instead
60// of relocating it
61static cl::opt<unsigned>
62RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63 cl::init(6));
64
Filipe Cabecinhas0da99372016-04-29 15:22:48 +000065#ifdef EXPENSIVE_CHECKS
Philip Reamese73300b2015-04-13 16:41:32 +000066static bool ClobberNonLive = true;
67#else
68static bool ClobberNonLive = false;
69#endif
70static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71 cl::location(ClobberNonLive),
72 cl::Hidden);
73
Sanjoy Das25ec1a32015-10-16 02:41:00 +000074static cl::opt<bool>
75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76 cl::Hidden, cl::init(true));
77
Benjamin Kramer6f665452015-02-20 14:00:58 +000078namespace {
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000079struct RewriteStatepointsForGC : public ModulePass {
Philip Reamesd16a9b12015-02-20 01:06:44 +000080 static char ID; // Pass identification, replacement for typeid
81
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000082 RewriteStatepointsForGC() : ModulePass(ID) {
Philip Reamesd16a9b12015-02-20 01:06:44 +000083 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84 }
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000085 bool runOnFunction(Function &F);
86 bool runOnModule(Module &M) override {
87 bool Changed = false;
88 for (Function &F : M)
89 Changed |= runOnFunction(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +000090
91 if (Changed) {
Igor Laevskydde00292015-10-23 22:42:44 +000092 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
Sanjoy Das353a19e2015-06-02 22:33:37 +000093 // returns true for at least one function in the module. Since at least
94 // one function changed, we know that the precondition is satisfied.
Igor Laevskydde00292015-10-23 22:42:44 +000095 stripNonValidAttributes(M);
Sanjoy Das353a19e2015-06-02 22:33:37 +000096 }
97
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000098 return Changed;
99 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000100
101 void getAnalysisUsage(AnalysisUsage &AU) const override {
102 // We add and rewrite a bunch of instructions, but don't really do much
103 // else. We could in theory preserve a lot more analyses here.
104 AU.addRequired<DominatorTreeWrapperPass>();
Igor Laevskye0317182015-05-19 15:59:05 +0000105 AU.addRequired<TargetTransformInfoWrapperPass>();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000106 }
Sanjoy Das353a19e2015-06-02 22:33:37 +0000107
108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109 /// dereferenceability that are no longer valid/correct after
110 /// RewriteStatepointsForGC has run. This is because semantically, after
111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
Igor Laevskydde00292015-10-23 22:42:44 +0000112 /// heap. stripNonValidAttributes (conservatively) restores correctness
Sanjoy Das353a19e2015-06-02 22:33:37 +0000113 /// by erasing all attributes in the module that externally imply
114 /// dereferenceability.
Igor Laevsky1ef06552015-10-26 19:06:01 +0000115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116 /// can touch the entire heap including noalias objects.
Igor Laevskydde00292015-10-23 22:42:44 +0000117 void stripNonValidAttributes(Module &M);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000118
Igor Laevskydde00292015-10-23 22:42:44 +0000119 // Helpers for stripNonValidAttributes
120 void stripNonValidAttributesFromBody(Function &F);
121 void stripNonValidAttributesFromPrototype(Function &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000122};
Benjamin Kramer6f665452015-02-20 14:00:58 +0000123} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +0000124
125char RewriteStatepointsForGC::ID = 0;
126
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000127ModulePass *llvm::createRewriteStatepointsForGCPass() {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000128 return new RewriteStatepointsForGC();
129}
130
131INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132 "Make relocations explicit at statepoints", false, false)
133INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Davide Italiano6f852ee2016-05-16 02:29:53 +0000134INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Philip Reamesd16a9b12015-02-20 01:06:44 +0000135INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136 "Make relocations explicit at statepoints", false, false)
137
138namespace {
Philip Reamesdf1ef082015-04-10 22:53:14 +0000139struct GCPtrLivenessData {
140 /// Values defined in this block.
Igor Laevskyfb1811d2016-05-04 14:55:36 +0000141 MapVector<BasicBlock *, SetVector<Value *>> KillSet;
Philip Reamesdf1ef082015-04-10 22:53:14 +0000142 /// Values used in this block (and thus live); does not included values
143 /// killed within this block.
Igor Laevskyfb1811d2016-05-04 14:55:36 +0000144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
Philip Reamesdf1ef082015-04-10 22:53:14 +0000145
146 /// Values live into this basic block (i.e. used by any
147 /// instruction in this basic block or ones reachable from here)
Igor Laevskyfb1811d2016-05-04 14:55:36 +0000148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
Philip Reamesdf1ef082015-04-10 22:53:14 +0000149
150 /// Values live out of this basic block (i.e. live into
151 /// any successor block)
Igor Laevskyfb1811d2016-05-04 14:55:36 +0000152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
Philip Reamesdf1ef082015-04-10 22:53:14 +0000153};
154
Philip Reamesd16a9b12015-02-20 01:06:44 +0000155// The type of the internal cache used inside the findBasePointers family
156// of functions. From the callers perspective, this is an opaque type and
157// should not be inspected.
158//
159// In the actual implementation this caches two relations:
160// - The base relation itself (i.e. this pointer is based on that one)
161// - The base defining value relation (i.e. before base_phi insertion)
162// Generally, after the execution of a full findBasePointer call, only the
163// base relation will remain. Internally, we add a mixture of the two
164// types, then update all the second type to the first type
Igor Laevskyfb1811d2016-05-04 14:55:36 +0000165typedef MapVector<Value *, Value *> DefiningValueMapTy;
166typedef SetVector<Value *> StatepointLiveSetTy;
167typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
Sanjoy Das40bdd042015-10-07 21:32:35 +0000168 RematerializedValueMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000169
Philip Reamesd16a9b12015-02-20 01:06:44 +0000170struct PartiallyConstructedSafepointRecord {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000171 /// The set of values known to be live across this safepoint
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000172 StatepointLiveSetTy LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000173
174 /// Mapping from live pointers to a base-defining-value
Igor Laevskyfb1811d2016-05-04 14:55:36 +0000175 MapVector<Value *, Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000176
Philip Reames0a3240f2015-02-20 21:34:11 +0000177 /// The *new* gc.statepoint instruction itself. This produces the token
178 /// that normal path gc.relocates and the gc.result are tied to.
179 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000180
Philip Reamesf2041322015-02-20 19:26:04 +0000181 /// Instruction to which exceptional gc relocates are attached
182 /// Makes it easier to iterate through them during relocationViaAlloca.
183 Instruction *UnwindToken;
Igor Laevskye0317182015-05-19 15:59:05 +0000184
185 /// Record live values we are rematerialized instead of relocating.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000186 /// They are not included into 'LiveSet' field.
Igor Laevskye0317182015-05-19 15:59:05 +0000187 /// Maps rematerialized copy to it's original value.
188 RematerializedValueMapTy RematerializedValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000189};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000190}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000191
Sanjoy Das25ec1a32015-10-16 02:41:00 +0000192static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
Sanjoy Dasacc43d12016-01-22 19:20:40 +0000193 Optional<OperandBundleUse> DeoptBundle =
194 CS.getOperandBundle(LLVMContext::OB_deopt);
Sanjoy Das25ec1a32015-10-16 02:41:00 +0000195
196 if (!DeoptBundle.hasValue()) {
197 assert(AllowStatepointWithNoDeoptInfo &&
198 "Found non-leaf call without deopt info!");
199 return None;
200 }
201
202 return DeoptBundle.getValue().Inputs;
203}
204
Philip Reamesdf1ef082015-04-10 22:53:14 +0000205/// Compute the live-in set for every basic block in the function
206static void computeLiveInValues(DominatorTree &DT, Function &F,
207 GCPtrLivenessData &Data);
208
209/// Given results from the dataflow liveness computation, find the set of live
210/// Values at a particular instruction.
211static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212 StatepointLiveSetTy &out);
213
Philip Reamesd16a9b12015-02-20 01:06:44 +0000214// TODO: Once we can get to the GCStrategy, this becomes
Philip Reamesee8f0552015-12-23 01:42:15 +0000215// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000216
Craig Toppere3dcce92015-08-01 22:20:21 +0000217static bool isGCPointerType(Type *T) {
218 if (auto *PT = dyn_cast<PointerType>(T))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220 // GC managed heap. We know that a pointer into this heap needs to be
221 // updated and that no other pointer does.
222 return (1 == PT->getAddressSpace());
223 return false;
224}
225
Philip Reames8531d8c2015-04-10 21:48:25 +0000226// Return true if this type is one which a) is a gc pointer or contains a GC
227// pointer and b) is of a type this code expects to encounter as a live value.
228// (The insertion code will assert that a type which matches (a) and not (b)
Philip Reames704e78b2015-04-10 22:34:56 +0000229// is not encountered.)
Philip Reames8531d8c2015-04-10 21:48:25 +0000230static bool isHandledGCPointerType(Type *T) {
231 // We fully support gc pointers
232 if (isGCPointerType(T))
233 return true;
234 // We partially support vectors of gc pointers. The code will assert if it
235 // can't handle something.
236 if (auto VT = dyn_cast<VectorType>(T))
237 if (isGCPointerType(VT->getElementType()))
238 return true;
239 return false;
240}
241
242#ifndef NDEBUG
243/// Returns true if this type contains a gc pointer whether we know how to
244/// handle that type or not.
245static bool containsGCPtrType(Type *Ty) {
Philip Reames704e78b2015-04-10 22:34:56 +0000246 if (isGCPointerType(Ty))
Philip Reames8531d8c2015-04-10 21:48:25 +0000247 return true;
248 if (VectorType *VT = dyn_cast<VectorType>(Ty))
249 return isGCPointerType(VT->getScalarType());
250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251 return containsGCPtrType(AT->getElementType());
252 if (StructType *ST = dyn_cast<StructType>(Ty))
Craig Topperd896b032015-11-29 05:38:08 +0000253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
254 containsGCPtrType);
Philip Reames8531d8c2015-04-10 21:48:25 +0000255 return false;
256}
257
258// Returns true if this is a type which a) is a gc pointer or contains a GC
259// pointer and b) is of a type which the code doesn't expect (i.e. first class
260// aggregates). Used to trip assertions.
261static bool isUnhandledGCPointerType(Type *Ty) {
262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
263}
264#endif
265
Philip Reamesece70b82015-09-09 23:57:18 +0000266// Return the name of the value suffixed with the provided value, or if the
267// value didn't have a name, the default value specified.
268static std::string suffixed_name_or(Value *V, StringRef Suffix,
269 StringRef DefaultName) {
270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
271}
272
Philip Reamesdf1ef082015-04-10 22:53:14 +0000273// Conservatively identifies any definitions which might be live at the
274// given instruction. The analysis is performed immediately before the
275// given instruction. Values defined by that instruction are not considered
276// live. Values used by that instruction are considered live.
277static void analyzeParsePointLiveness(
278 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
279 const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000280 Instruction *inst = CS.getInstruction();
281
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000282 StatepointLiveSetTy LiveSet;
283 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000284
285 if (PrintLiveSet) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000286 errs() << "Live Variables:\n";
Igor Laevskyfb1811d2016-05-04 14:55:36 +0000287 for (Value *V : LiveSet)
Philip Reamesdab35f32015-09-02 21:11:44 +0000288 dbgs() << " " << V->getName() << " " << *V << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000289 }
290 if (PrintLiveSetSize) {
291 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000292 errs() << "Number live values: " << LiveSet.size() << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000293 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000294 result.LiveSet = LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000295}
296
Philip Reamesf5b8e472015-09-03 21:34:30 +0000297static bool isKnownBaseResult(Value *V);
298namespace {
299/// A single base defining value - An immediate base defining value for an
300/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
301/// For instructions which have multiple pointer [vector] inputs or that
302/// transition between vector and scalar types, there is no immediate base
303/// defining value. The 'base defining value' for 'Def' is the transitive
304/// closure of this relation stopping at the first instruction which has no
305/// immediate base defining value. The b.d.v. might itself be a base pointer,
306/// but it can also be an arbitrary derived pointer.
307struct BaseDefiningValueResult {
308 /// Contains the value which is the base defining value.
309 Value * const BDV;
310 /// True if the base defining value is also known to be an actual base
311 /// pointer.
312 const bool IsKnownBase;
313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
314 : BDV(BDV), IsKnownBase(IsKnownBase) {
315#ifndef NDEBUG
316 // Check consistency between new and old means of checking whether a BDV is
317 // a base.
318 bool MustBeBase = isKnownBaseResult(BDV);
319 assert(!MustBeBase || MustBeBase == IsKnownBase);
320#endif
321 }
322};
323}
324
325static BaseDefiningValueResult findBaseDefiningValue(Value *I);
Philip Reames311f7102015-05-12 22:19:52 +0000326
Philip Reames8fe7f132015-06-26 22:47:37 +0000327/// Return a base defining value for the 'Index' element of the given vector
328/// instruction 'I'. If Index is null, returns a BDV for the entire vector
329/// 'I'. As an optimization, this method will try to determine when the
330/// element is known to already be a base pointer. If this can be established,
331/// the second value in the returned pair will be true. Note that either a
332/// vector or a pointer typed value can be returned. For the former, the
333/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
334/// If the later, the return pointer is a BDV (or possibly a base) for the
335/// particular element in 'I'.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000336static BaseDefiningValueResult
Philip Reames66287132015-09-09 23:40:12 +0000337findBaseDefiningValueOfVector(Value *I) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000338 // Each case parallels findBaseDefiningValue below, see that code for
339 // detailed motivation.
340
341 if (isa<Argument>(I))
342 // An incoming argument to the function is a base pointer
Philip Reamesf5b8e472015-09-03 21:34:30 +0000343 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000344
Manuel Jacob734e7332016-01-09 04:02:16 +0000345 if (isa<Constant>(I))
Igor Laevskydf9db452016-05-27 13:13:59 +0000346 // Base of constant vector consists only of constant null pointers.
347 // For reasoning see similar case inside 'findBaseDefiningValue' function.
348 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
349 true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000350
Philip Reames8531d8c2015-04-10 21:48:25 +0000351 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000352 return BaseDefiningValueResult(I, true);
Philip Reamesf5b8e472015-09-03 21:34:30 +0000353
Philip Reames66287132015-09-09 23:40:12 +0000354 if (isa<InsertElementInst>(I))
Philip Reames8fe7f132015-06-26 22:47:37 +0000355 // We don't know whether this vector contains entirely base pointers or
356 // not. To be conservatively correct, we treat it as a BDV and will
357 // duplicate code as needed to construct a parallel vector of bases.
Philip Reames66287132015-09-09 23:40:12 +0000358 return BaseDefiningValueResult(I, false);
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +0000359
Philip Reames8fe7f132015-06-26 22:47:37 +0000360 if (isa<ShuffleVectorInst>(I))
361 // We don't know whether this vector contains entirely base pointers or
362 // not. To be conservatively correct, we treat it as a BDV and will
363 // duplicate code as needed to construct a parallel vector of bases.
364 // TODO: There a number of local optimizations which could be applied here
365 // for particular sufflevector patterns.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000366 return BaseDefiningValueResult(I, false);
Philip Reames8fe7f132015-06-26 22:47:37 +0000367
368 // A PHI or Select is a base defining value. The outer findBasePointer
369 // algorithm is responsible for constructing a base value for this BDV.
370 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
371 "unknown vector instruction - no base found for vector element");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000372 return BaseDefiningValueResult(I, false);
Philip Reames8531d8c2015-04-10 21:48:25 +0000373}
374
Philip Reamesd16a9b12015-02-20 01:06:44 +0000375/// Helper function for findBasePointer - Will return a value which either a)
Philip Reames9ac4e382015-08-12 21:00:20 +0000376/// defines the base pointer for the input, b) blocks the simple search
377/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
378/// from pointer to vector type or back.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000379static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
Manuel Jacob0593cfd2016-01-09 03:08:49 +0000380 assert(I->getType()->isPtrOrPtrVectorTy() &&
381 "Illegal to ask for the base pointer of a non-pointer type");
382
Philip Reames8fe7f132015-06-26 22:47:37 +0000383 if (I->getType()->isVectorTy())
Philip Reamesf5b8e472015-09-03 21:34:30 +0000384 return findBaseDefiningValueOfVector(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000385
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000386 if (isa<Argument>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000387 // An incoming argument to the function is a base pointer
388 // We should have never reached here if this argument isn't an gc value
Philip Reamesf5b8e472015-09-03 21:34:30 +0000389 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000390
Igor Laevskydf9db452016-05-27 13:13:59 +0000391 if (isa<Constant>(I)) {
Manuel Jacob75cbfdc2016-01-05 04:06:21 +0000392 // We assume that objects with a constant base (e.g. a global) can't move
393 // and don't need to be reported to the collector because they are always
Igor Laevskydf9db452016-05-27 13:13:59 +0000394 // live. Besides global references, all kinds of constants (e.g. undef,
395 // constant expressions, null pointers) can be introduced by the inliner or
396 // the optimizer, especially on dynamically dead paths.
397 // Here we treat all of them as having single null base. By doing this we
398 // trying to avoid problems reporting various conflicts in a form of
399 // "phi (const1, const2)" or "phi (const, regular gc ptr)".
400 // See constant.ll file for relevant test cases.
401
402 return BaseDefiningValueResult(
403 ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
404 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000405
Philip Reamesd16a9b12015-02-20 01:06:44 +0000406 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000407 Value *Def = CI->stripPointerCasts();
Manuel Jacob8050a492015-12-21 01:26:46 +0000408 // If stripping pointer casts changes the address space there is an
409 // addrspacecast in between.
410 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
411 cast<PointerType>(CI->getType())->getAddressSpace() &&
412 "unsupported addrspacecast");
David Blaikie82ad7872015-02-20 23:44:24 +0000413 // If we find a cast instruction here, it means we've found a cast which is
414 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
415 // handle int->ptr conversion.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000416 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
417 return findBaseDefiningValue(Def);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000418 }
419
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000420 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000421 // The value loaded is an gc base itself
422 return BaseDefiningValueResult(I, true);
423
Philip Reamesd16a9b12015-02-20 01:06:44 +0000424
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000425 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
426 // The base of this GEP is the base
427 return findBaseDefiningValue(GEP->getPointerOperand());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000428
429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
430 switch (II->getIntrinsicID()) {
431 default:
432 // fall through to general call handling
433 break;
434 case Intrinsic::experimental_gc_statepoint:
Manuel Jacob4e4f60d2015-12-22 18:44:45 +0000435 llvm_unreachable("statepoints don't produce pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000436 case Intrinsic::experimental_gc_relocate: {
437 // Rerunning safepoint insertion after safepoints are already
438 // inserted is not supported. It could probably be made to work,
439 // but why are you doing this? There's no good reason.
440 llvm_unreachable("repeat safepoint insertion is not supported");
441 }
442 case Intrinsic::gcroot:
443 // Currently, this mechanism hasn't been extended to work with gcroot.
444 // There's no reason it couldn't be, but I haven't thought about the
445 // implications much.
446 llvm_unreachable(
447 "interaction with the gcroot mechanism is not supported");
448 }
449 }
450 // We assume that functions in the source language only return base
451 // pointers. This should probably be generalized via attributes to support
452 // both source language and internal functions.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000453 if (isa<CallInst>(I) || isa<InvokeInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000454 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000455
456 // I have absolutely no idea how to implement this part yet. It's not
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000457 // necessarily hard, I just haven't really looked at it yet.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000460 if (isa<AtomicCmpXchgInst>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000461 // A CAS is effectively a atomic store and load combined under a
462 // predicate. From the perspective of base pointers, we just treat it
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000463 // like a load.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000464 return BaseDefiningValueResult(I, true);
Philip Reames704e78b2015-04-10 22:34:56 +0000465
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000466 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
Philip Reames704e78b2015-04-10 22:34:56 +0000467 "binary ops which don't apply to pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000468
469 // The aggregate ops. Aggregates can either be in the heap or on the
470 // stack, but in either case, this is simply a field load. As a result,
471 // this is a defining definition of the base just like a load is.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000472 if (isa<ExtractValueInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000473 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000474
475 // We should never see an insert vector since that would require we be
476 // tracing back a struct value not a pointer value.
477 assert(!isa<InsertValueInst>(I) &&
478 "Base pointer for a struct is meaningless");
479
Philip Reames9ac4e382015-08-12 21:00:20 +0000480 // An extractelement produces a base result exactly when it's input does.
481 // We may need to insert a parallel instruction to extract the appropriate
482 // element out of the base vector corresponding to the input. Given this,
483 // it's analogous to the phi and select case even though it's not a merge.
Philip Reames66287132015-09-09 23:40:12 +0000484 if (isa<ExtractElementInst>(I))
485 // Note: There a lot of obvious peephole cases here. This are deliberately
486 // handled after the main base pointer inference algorithm to make writing
487 // test cases to exercise that code easier.
488 return BaseDefiningValueResult(I, false);
Philip Reames9ac4e382015-08-12 21:00:20 +0000489
Philip Reamesd16a9b12015-02-20 01:06:44 +0000490 // The last two cases here don't return a base pointer. Instead, they
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000491 // return a value which dynamically selects from among several base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000492 // derived pointers (each with it's own base potentially). It's the job of
493 // the caller to resolve these.
Philip Reames704e78b2015-04-10 22:34:56 +0000494 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000495 "missing instruction case in findBaseDefiningValing");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000496 return BaseDefiningValueResult(I, false);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000497}
498
499/// Returns the base defining value for this value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000500static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
501 Value *&Cached = Cache[I];
Benjamin Kramer6f665452015-02-20 14:00:58 +0000502 if (!Cached) {
Philip Reamesf5b8e472015-09-03 21:34:30 +0000503 Cached = findBaseDefiningValue(I).BDV;
Philip Reames2a892a62015-07-23 22:25:26 +0000504 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
505 << Cached->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000506 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000507 assert(Cache[I] != nullptr);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000508 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000509}
510
511/// Return a base pointer for this value if known. Otherwise, return it's
512/// base defining value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000513static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
514 Value *Def = findBaseDefiningValueCached(I, Cache);
515 auto Found = Cache.find(Def);
516 if (Found != Cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000517 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000518 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000519 }
520 // Only a BDV available
Philip Reames18d0feb2015-03-27 05:39:32 +0000521 return Def;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000522}
523
524/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
525/// is it known to be a base pointer? Or do we need to continue searching.
Philip Reames18d0feb2015-03-27 05:39:32 +0000526static bool isKnownBaseResult(Value *V) {
Philip Reames66287132015-09-09 23:40:12 +0000527 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
528 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
529 !isa<ShuffleVectorInst>(V)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000530 // no recursion possible
531 return true;
532 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000533 if (isa<Instruction>(V) &&
534 cast<Instruction>(V)->getMetadata("is_base_value")) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000535 // This is a previously inserted base phi or select. We know
536 // that this is a base value.
537 return true;
538 }
539
540 // We need to keep searching
541 return false;
542}
543
Philip Reamesd16a9b12015-02-20 01:06:44 +0000544namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000545/// Models the state of a single base defining value in the findBasePointer
546/// algorithm for determining where a new instruction is needed to propagate
547/// the base of this BDV.
548class BDVState {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000549public:
550 enum Status { Unknown, Base, Conflict };
551
Philip Reames9b141ed2015-07-23 22:49:14 +0000552 BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000553 assert(status != Base || b);
554 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000555 explicit BDVState(Value *b) : status(Base), base(b) {}
556 BDVState() : status(Unknown), base(nullptr) {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000557
558 Status getStatus() const { return status; }
559 Value *getBase() const { return base; }
560
561 bool isBase() const { return getStatus() == Base; }
562 bool isUnknown() const { return getStatus() == Unknown; }
563 bool isConflict() const { return getStatus() == Conflict; }
564
Philip Reames9b141ed2015-07-23 22:49:14 +0000565 bool operator==(const BDVState &other) const {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000566 return base == other.base && status == other.status;
567 }
568
Philip Reames9b141ed2015-07-23 22:49:14 +0000569 bool operator!=(const BDVState &other) const { return !(*this == other); }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000570
Philip Reames2a892a62015-07-23 22:25:26 +0000571 LLVM_DUMP_METHOD
572 void dump() const { print(dbgs()); dbgs() << '\n'; }
573
574 void print(raw_ostream &OS) const {
Philip Reamesdab35f32015-09-02 21:11:44 +0000575 switch (status) {
576 case Unknown:
577 OS << "U";
578 break;
579 case Base:
580 OS << "B";
581 break;
582 case Conflict:
583 OS << "C";
584 break;
585 };
586 OS << " (" << base << " - "
Philip Reames2a892a62015-07-23 22:25:26 +0000587 << (base ? base->getName() : "nullptr") << "): ";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000588 }
589
590private:
591 Status status;
Philip Reamesdd0948a2015-12-18 03:53:28 +0000592 AssertingVH<Value> base; // non null only if status == base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000593};
Philip Reamesb3967cd2015-09-02 22:30:53 +0000594}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000595
Philip Reames6906e922015-09-02 21:57:17 +0000596#ifndef NDEBUG
Philip Reamesb3967cd2015-09-02 22:30:53 +0000597static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
Philip Reames2a892a62015-07-23 22:25:26 +0000598 State.print(OS);
599 return OS;
600}
Philip Reames6906e922015-09-02 21:57:17 +0000601#endif
Philip Reames2a892a62015-07-23 22:25:26 +0000602
Philip Reamesb3967cd2015-09-02 22:30:53 +0000603namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000604// Values of type BDVState form a lattice, and this is a helper
Philip Reamesd16a9b12015-02-20 01:06:44 +0000605// class that implementes the meet operation. The meat of the meet
Philip Reames9b141ed2015-07-23 22:49:14 +0000606// operation is implemented in MeetBDVStates::pureMeet
607class MeetBDVStates {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000608public:
Philip Reames273e6bb2015-07-23 21:41:27 +0000609 /// Initializes the currentResult to the TOP state so that if can be met with
610 /// any other state to produce that state.
Philip Reames9b141ed2015-07-23 22:49:14 +0000611 MeetBDVStates() {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000612
Philip Reames9b141ed2015-07-23 22:49:14 +0000613 // Destructively meet the current result with the given BDVState
614 void meetWith(BDVState otherState) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000615 currentResult = meet(otherState, currentResult);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000616 }
617
Philip Reames9b141ed2015-07-23 22:49:14 +0000618 BDVState getResult() const { return currentResult; }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000619
620private:
Philip Reames9b141ed2015-07-23 22:49:14 +0000621 BDVState currentResult;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000622
Philip Reames9b141ed2015-07-23 22:49:14 +0000623 /// Perform a meet operation on two elements of the BDVState lattice.
624 static BDVState meet(BDVState LHS, BDVState RHS) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000625 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
626 "math is wrong: meet does not commute!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000627 BDVState Result = pureMeet(LHS, RHS);
Philip Reames2a892a62015-07-23 22:25:26 +0000628 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
629 << " produced " << Result << "\n");
630 return Result;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000631 }
632
Philip Reames9b141ed2015-07-23 22:49:14 +0000633 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000634 switch (stateA.getStatus()) {
Philip Reames9b141ed2015-07-23 22:49:14 +0000635 case BDVState::Unknown:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000636 return stateB;
637
Philip Reames9b141ed2015-07-23 22:49:14 +0000638 case BDVState::Base:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000639 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000640 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000641 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000642
643 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000644 if (stateA.getBase() == stateB.getBase()) {
645 assert(stateA == stateB && "equality broken!");
646 return stateA;
647 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000648 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000649 }
David Blaikie82ad7872015-02-20 23:44:24 +0000650 assert(stateB.isConflict() && "only three states!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000651 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000652
Philip Reames9b141ed2015-07-23 22:49:14 +0000653 case BDVState::Conflict:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000654 return stateA;
655 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000656 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000657 }
658};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000659}
Philip Reamesb3967cd2015-09-02 22:30:53 +0000660
661
Philip Reamesd16a9b12015-02-20 01:06:44 +0000662/// For a given value or instruction, figure out what base ptr it's derived
663/// from. For gc objects, this is simply itself. On success, returns a value
664/// which is the base pointer. (This is reliable and can be used for
665/// relocation.) On failure, returns nullptr.
Philip Reamesba198492015-04-14 00:41:34 +0000666static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000667 Value *def = findBaseOrBDV(I, cache);
668
669 if (isKnownBaseResult(def)) {
670 return def;
671 }
672
673 // Here's the rough algorithm:
674 // - For every SSA value, construct a mapping to either an actual base
675 // pointer or a PHI which obscures the base pointer.
676 // - Construct a mapping from PHI to unknown TOP state. Use an
677 // optimistic algorithm to propagate base pointer information. Lattice
678 // looks like:
679 // UNKNOWN
680 // b1 b2 b3 b4
681 // CONFLICT
682 // When algorithm terminates, all PHIs will either have a single concrete
683 // base or be in a conflict state.
684 // - For every conflict, insert a dummy PHI node without arguments. Add
685 // these to the base[Instruction] = BasePtr mapping. For every
686 // non-conflict, add the actual base.
687 // - For every conflict, add arguments for the base[a] of each input
688 // arguments.
689 //
690 // Note: A simpler form of this would be to add the conflict form of all
691 // PHIs without running the optimistic algorithm. This would be
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000692 // analogous to pessimistic data flow and would likely lead to an
Philip Reamesd16a9b12015-02-20 01:06:44 +0000693 // overall worse solution.
694
Philip Reames29e9ae72015-07-24 00:42:55 +0000695#ifndef NDEBUG
Philip Reames88958b22015-07-24 00:02:11 +0000696 auto isExpectedBDVType = [](Value *BDV) {
Philip Reames66287132015-09-09 23:40:12 +0000697 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
698 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
Philip Reames88958b22015-07-24 00:02:11 +0000699 };
Philip Reames29e9ae72015-07-24 00:42:55 +0000700#endif
Philip Reames88958b22015-07-24 00:02:11 +0000701
702 // Once populated, will contain a mapping from each potentially non-base BDV
703 // to a lattice value (described above) which corresponds to that BDV.
Philip Reames15d55632015-09-09 23:26:08 +0000704 // We use the order of insertion (DFS over the def/use graph) to provide a
705 // stable deterministic ordering for visiting DenseMaps (which are unordered)
706 // below. This is important for deterministic compilation.
Philip Reames34d7a742015-09-10 00:22:49 +0000707 MapVector<Value *, BDVState> States;
Philip Reames15d55632015-09-09 23:26:08 +0000708
709 // Recursively fill in all base defining values reachable from the initial
710 // one for which we don't already know a definite base value for
Philip Reames88958b22015-07-24 00:02:11 +0000711 /* scope */ {
Philip Reames88958b22015-07-24 00:02:11 +0000712 SmallVector<Value*, 16> Worklist;
713 Worklist.push_back(def);
Philip Reames34d7a742015-09-10 00:22:49 +0000714 States.insert(std::make_pair(def, BDVState()));
Philip Reames88958b22015-07-24 00:02:11 +0000715 while (!Worklist.empty()) {
716 Value *Current = Worklist.pop_back_val();
717 assert(!isKnownBaseResult(Current) && "why did it get added?");
718
719 auto visitIncomingValue = [&](Value *InVal) {
720 Value *Base = findBaseOrBDV(InVal, cache);
721 if (isKnownBaseResult(Base))
722 // Known bases won't need new instructions introduced and can be
723 // ignored safely
724 return;
725 assert(isExpectedBDVType(Base) && "the only non-base values "
726 "we see should be base defining values");
Philip Reames34d7a742015-09-10 00:22:49 +0000727 if (States.insert(std::make_pair(Base, BDVState())).second)
Philip Reames88958b22015-07-24 00:02:11 +0000728 Worklist.push_back(Base);
729 };
730 if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
731 for (Value *InVal : Phi->incoming_values())
732 visitIncomingValue(InVal);
Philip Reames9ac4e382015-08-12 21:00:20 +0000733 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
Philip Reames88958b22015-07-24 00:02:11 +0000734 visitIncomingValue(Sel->getTrueValue());
735 visitIncomingValue(Sel->getFalseValue());
Philip Reames9ac4e382015-08-12 21:00:20 +0000736 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
737 visitIncomingValue(EE->getVectorOperand());
Philip Reames66287132015-09-09 23:40:12 +0000738 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
739 visitIncomingValue(IE->getOperand(0)); // vector operand
740 visitIncomingValue(IE->getOperand(1)); // scalar operand
Philip Reames9ac4e382015-08-12 21:00:20 +0000741 } else {
Philip Reames66287132015-09-09 23:40:12 +0000742 // There is one known class of instructions we know we don't handle.
743 assert(isa<ShuffleVectorInst>(Current));
Philip Reames9ac4e382015-08-12 21:00:20 +0000744 llvm_unreachable("unimplemented instruction case");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000745 }
746 }
747 }
748
Philip Reamesdab35f32015-09-02 21:11:44 +0000749#ifndef NDEBUG
750 DEBUG(dbgs() << "States after initialization:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000751 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000752 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000753 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000754#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000755
Philip Reames273e6bb2015-07-23 21:41:27 +0000756 // Return a phi state for a base defining value. We'll generate a new
757 // base state for known bases and expect to find a cached state otherwise.
758 auto getStateForBDV = [&](Value *baseValue) {
759 if (isKnownBaseResult(baseValue))
Philip Reames9b141ed2015-07-23 22:49:14 +0000760 return BDVState(baseValue);
Philip Reames34d7a742015-09-10 00:22:49 +0000761 auto I = States.find(baseValue);
762 assert(I != States.end() && "lookup failed!");
Philip Reames273e6bb2015-07-23 21:41:27 +0000763 return I->second;
764 };
765
Philip Reamesd16a9b12015-02-20 01:06:44 +0000766 bool progress = true;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000767 while (progress) {
Yaron Keren42a7adf2015-02-28 13:11:24 +0000768#ifndef NDEBUG
Philip Reamesb4e55f32015-09-10 00:32:56 +0000769 const size_t oldSize = States.size();
Yaron Keren42a7adf2015-02-28 13:11:24 +0000770#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000771 progress = false;
Philip Reames15d55632015-09-09 23:26:08 +0000772 // We're only changing values in this loop, thus safe to keep iterators.
773 // Since this is computing a fixed point, the order of visit does not
774 // effect the result. TODO: We could use a worklist here and make this run
775 // much faster.
Philip Reames34d7a742015-09-10 00:22:49 +0000776 for (auto Pair : States) {
Philip Reamesece70b82015-09-09 23:57:18 +0000777 Value *BDV = Pair.first;
778 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reames273e6bb2015-07-23 21:41:27 +0000779
Philip Reames9b141ed2015-07-23 22:49:14 +0000780 // Given an input value for the current instruction, return a BDVState
Philip Reames273e6bb2015-07-23 21:41:27 +0000781 // instance which represents the BDV of that value.
782 auto getStateForInput = [&](Value *V) mutable {
783 Value *BDV = findBaseOrBDV(V, cache);
784 return getStateForBDV(BDV);
785 };
786
Philip Reames9b141ed2015-07-23 22:49:14 +0000787 MeetBDVStates calculateMeet;
Philip Reamesece70b82015-09-09 23:57:18 +0000788 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000789 calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
790 calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
Philip Reamesece70b82015-09-09 23:57:18 +0000791 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000792 for (Value *Val : Phi->incoming_values())
Philip Reames273e6bb2015-07-23 21:41:27 +0000793 calculateMeet.meetWith(getStateForInput(Val));
Philip Reamesece70b82015-09-09 23:57:18 +0000794 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000795 // The 'meet' for an extractelement is slightly trivial, but it's still
796 // useful in that it drives us to conflict if our input is.
Philip Reames9ac4e382015-08-12 21:00:20 +0000797 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
Philip Reames66287132015-09-09 23:40:12 +0000798 } else {
799 // Given there's a inherent type mismatch between the operands, will
800 // *always* produce Conflict.
Philip Reamesece70b82015-09-09 23:57:18 +0000801 auto *IE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +0000802 calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
803 calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
Philip Reames9ac4e382015-08-12 21:00:20 +0000804 }
805
Philip Reames34d7a742015-09-10 00:22:49 +0000806 BDVState oldState = States[BDV];
Philip Reames9b141ed2015-07-23 22:49:14 +0000807 BDVState newState = calculateMeet.getResult();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000808 if (oldState != newState) {
809 progress = true;
Philip Reames34d7a742015-09-10 00:22:49 +0000810 States[BDV] = newState;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000811 }
812 }
813
Philip Reamesb4e55f32015-09-10 00:32:56 +0000814 assert(oldSize == States.size() &&
815 "fixed point shouldn't be adding any new nodes to state");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000816 }
817
Philip Reamesdab35f32015-09-02 21:11:44 +0000818#ifndef NDEBUG
819 DEBUG(dbgs() << "States after meet iteration:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000820 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000821 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000822 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000823#endif
824
Philip Reamesd16a9b12015-02-20 01:06:44 +0000825 // Insert Phis for all conflicts
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000826 // TODO: adjust naming patterns to avoid this order of iteration dependency
Philip Reames34d7a742015-09-10 00:22:49 +0000827 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +0000828 Instruction *I = cast<Instruction>(Pair.first);
829 BDVState State = Pair.second;
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000830 assert(!isKnownBaseResult(I) && "why did it get added?");
831 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reames9ac4e382015-08-12 21:00:20 +0000832
833 // extractelement instructions are a bit special in that we may need to
834 // insert an extract even when we know an exact base for the instruction.
835 // The problem is that we need to convert from a vector base to a scalar
836 // base for the particular indice we're interested in.
837 if (State.isBase() && isa<ExtractElementInst>(I) &&
838 isa<VectorType>(State.getBase()->getType())) {
839 auto *EE = cast<ExtractElementInst>(I);
840 // TODO: In many cases, the new instruction is just EE itself. We should
841 // exploit this, but can't do it here since it would break the invariant
842 // about the BDV not being known to be a base.
843 auto *BaseInst = ExtractElementInst::Create(State.getBase(),
844 EE->getIndexOperand(),
845 "base_ee", EE);
846 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000847 States[I] = BDVState(BDVState::Base, BaseInst);
Philip Reames9ac4e382015-08-12 21:00:20 +0000848 }
Philip Reames66287132015-09-09 23:40:12 +0000849
850 // Since we're joining a vector and scalar base, they can never be the
851 // same. As a result, we should always see insert element having reached
852 // the conflict state.
853 if (isa<InsertElementInst>(I)) {
854 assert(State.isConflict());
855 }
Philip Reames9ac4e382015-08-12 21:00:20 +0000856
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000857 if (!State.isConflict())
Philip Reamesf986d682015-02-28 00:54:41 +0000858 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000859
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000860 /// Create and insert a new instruction which will represent the base of
861 /// the given instruction 'I'.
862 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
863 if (isa<PHINode>(I)) {
864 BasicBlock *BB = I->getParent();
865 int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
866 assert(NumPreds > 0 && "how did we reach here");
Philip Reamesece70b82015-09-09 23:57:18 +0000867 std::string Name = suffixed_name_or(I, ".base", "base_phi");
Philip Reamesfa2c6302015-07-24 19:01:39 +0000868 return PHINode::Create(I->getType(), NumPreds, Name, I);
Philip Reames9ac4e382015-08-12 21:00:20 +0000869 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
870 // The undef will be replaced later
871 UndefValue *Undef = UndefValue::get(Sel->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000872 std::string Name = suffixed_name_or(I, ".base", "base_select");
Philip Reames9ac4e382015-08-12 21:00:20 +0000873 return SelectInst::Create(Sel->getCondition(), Undef,
874 Undef, Name, Sel);
Philip Reames66287132015-09-09 23:40:12 +0000875 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000876 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000877 std::string Name = suffixed_name_or(I, ".base", "base_ee");
Philip Reames9ac4e382015-08-12 21:00:20 +0000878 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
879 EE);
Philip Reames66287132015-09-09 23:40:12 +0000880 } else {
881 auto *IE = cast<InsertElementInst>(I);
882 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
883 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000884 std::string Name = suffixed_name_or(I, ".base", "base_ie");
Philip Reames66287132015-09-09 23:40:12 +0000885 return InsertElementInst::Create(VecUndef, ScalarUndef,
886 IE->getOperand(2), Name, IE);
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000887 }
Philip Reames66287132015-09-09 23:40:12 +0000888
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000889 };
890 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
891 // Add metadata marking this as a base value
892 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000893 States[I] = BDVState(BDVState::Conflict, BaseInst);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000894 }
895
Philip Reames3ea15892015-09-03 21:57:40 +0000896 // Returns a instruction which produces the base pointer for a given
897 // instruction. The instruction is assumed to be an input to one of the BDVs
898 // seen in the inference algorithm above. As such, we must either already
899 // know it's base defining value is a base, or have inserted a new
900 // instruction to propagate the base of it's BDV and have entered that newly
901 // introduced instruction into the state table. In either case, we are
902 // assured to be able to determine an instruction which produces it's base
903 // pointer.
904 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
905 Value *BDV = findBaseOrBDV(Input, cache);
906 Value *Base = nullptr;
907 if (isKnownBaseResult(BDV)) {
908 Base = BDV;
909 } else {
910 // Either conflict or base.
Philip Reames34d7a742015-09-10 00:22:49 +0000911 assert(States.count(BDV));
912 Base = States[BDV].getBase();
Philip Reames3ea15892015-09-03 21:57:40 +0000913 }
914 assert(Base && "can't be null");
915 // The cast is needed since base traversal may strip away bitcasts
916 if (Base->getType() != Input->getType() &&
917 InsertPt) {
918 Base = new BitCastInst(Base, Input->getType(), "cast",
919 InsertPt);
920 }
921 return Base;
922 };
923
Philip Reames15d55632015-09-09 23:26:08 +0000924 // Fixup all the inputs of the new PHIs. Visit order needs to be
925 // deterministic and predictable because we're naming newly created
926 // instructions.
Philip Reames34d7a742015-09-10 00:22:49 +0000927 for (auto Pair : States) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000928 Instruction *BDV = cast<Instruction>(Pair.first);
Philip Reamesc8ded462015-09-10 00:27:50 +0000929 BDVState State = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000930
Philip Reames7540e3a2015-09-10 00:01:53 +0000931 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesc8ded462015-09-10 00:27:50 +0000932 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
933 if (!State.isConflict())
Philip Reames28e61ce2015-02-28 01:57:44 +0000934 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000935
Philip Reamesc8ded462015-09-10 00:27:50 +0000936 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000937 PHINode *phi = cast<PHINode>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +0000938 unsigned NumPHIValues = phi->getNumIncomingValues();
939 for (unsigned i = 0; i < NumPHIValues; i++) {
940 Value *InVal = phi->getIncomingValue(i);
941 BasicBlock *InBB = phi->getIncomingBlock(i);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000942
Philip Reames28e61ce2015-02-28 01:57:44 +0000943 // If we've already seen InBB, add the same incoming value
944 // we added for it earlier. The IR verifier requires phi
945 // nodes with multiple entries from the same basic block
946 // to have the same incoming value for each of those
947 // entries. If we don't do this check here and basephi
948 // has a different type than base, we'll end up adding two
949 // bitcasts (and hence two distinct values) as incoming
950 // values for the same basic block.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000951
Philip Reames28e61ce2015-02-28 01:57:44 +0000952 int blockIndex = basephi->getBasicBlockIndex(InBB);
953 if (blockIndex != -1) {
954 Value *oldBase = basephi->getIncomingValue(blockIndex);
955 basephi->addIncoming(oldBase, InBB);
Philip Reames3ea15892015-09-03 21:57:40 +0000956
Philip Reamesd16a9b12015-02-20 01:06:44 +0000957#ifndef NDEBUG
Philip Reames3ea15892015-09-03 21:57:40 +0000958 Value *Base = getBaseForInput(InVal, nullptr);
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000959 // In essence this assert states: the only way two
Philip Reames28e61ce2015-02-28 01:57:44 +0000960 // values incoming from the same basic block may be
961 // different is by being different bitcasts of the same
962 // value. A cleanup that remains TODO is changing
963 // findBaseOrBDV to return an llvm::Value of the correct
964 // type (and still remain pure). This will remove the
965 // need to add bitcasts.
Philip Reames3ea15892015-09-03 21:57:40 +0000966 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
Philip Reames28e61ce2015-02-28 01:57:44 +0000967 "sanity -- findBaseOrBDV should be pure!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000968#endif
Philip Reames28e61ce2015-02-28 01:57:44 +0000969 continue;
970 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000971
Philip Reames3ea15892015-09-03 21:57:40 +0000972 // Find the instruction which produces the base for each input. We may
973 // need to insert a bitcast in the incoming block.
974 // TODO: Need to split critical edges if insertion is needed
975 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
976 basephi->addIncoming(Base, InBB);
Philip Reames28e61ce2015-02-28 01:57:44 +0000977 }
978 assert(basephi->getNumIncomingValues() == NumPHIValues);
Philip Reamesc8ded462015-09-10 00:27:50 +0000979 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000980 SelectInst *Sel = cast<SelectInst>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +0000981 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
982 // something more safe and less hacky.
983 for (int i = 1; i <= 2; i++) {
Philip Reames3ea15892015-09-03 21:57:40 +0000984 Value *InVal = Sel->getOperand(i);
985 // Find the instruction which produces the base for each input. We may
986 // need to insert a bitcast.
987 Value *Base = getBaseForInput(InVal, BaseSel);
988 BaseSel->setOperand(i, Base);
Philip Reames28e61ce2015-02-28 01:57:44 +0000989 }
Philip Reamesc8ded462015-09-10 00:27:50 +0000990 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000991 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
Philip Reames3ea15892015-09-03 21:57:40 +0000992 // Find the instruction which produces the base for each input. We may
993 // need to insert a bitcast.
994 Value *Base = getBaseForInput(InVal, BaseEE);
Philip Reames9ac4e382015-08-12 21:00:20 +0000995 BaseEE->setOperand(0, Base);
Philip Reames66287132015-09-09 23:40:12 +0000996 } else {
Philip Reamesc8ded462015-09-10 00:27:50 +0000997 auto *BaseIE = cast<InsertElementInst>(State.getBase());
Philip Reames7540e3a2015-09-10 00:01:53 +0000998 auto *BdvIE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +0000999 auto UpdateOperand = [&](int OperandIdx) {
1000 Value *InVal = BdvIE->getOperand(OperandIdx);
Philip Reames953817b2015-09-10 00:44:10 +00001001 Value *Base = getBaseForInput(InVal, BaseIE);
Philip Reames66287132015-09-09 23:40:12 +00001002 BaseIE->setOperand(OperandIdx, Base);
1003 };
1004 UpdateOperand(0); // vector operand
1005 UpdateOperand(1); // scalar operand
Philip Reamesd16a9b12015-02-20 01:06:44 +00001006 }
Philip Reames66287132015-09-09 23:40:12 +00001007
Philip Reamesd16a9b12015-02-20 01:06:44 +00001008 }
1009
1010 // Cache all of our results so we can cheaply reuse them
1011 // NOTE: This is actually two caches: one of the base defining value
1012 // relation and one of the base pointer relation! FIXME
Philip Reames34d7a742015-09-10 00:22:49 +00001013 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001014 auto *BDV = Pair.first;
1015 Value *base = Pair.second.getBase();
1016 assert(BDV && base);
Philip Reames79fa9b72016-02-22 20:45:56 +00001017 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001018
Philip Reamesece70b82015-09-09 23:57:18 +00001019 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
Philip Reamesdab35f32015-09-02 21:11:44 +00001020 DEBUG(dbgs() << "Updating base value cache"
Philip Reamesece70b82015-09-09 23:57:18 +00001021 << " for: " << BDV->getName()
Philip Reamesdab35f32015-09-02 21:11:44 +00001022 << " from: " << fromstr
Philip Reamesece70b82015-09-09 23:57:18 +00001023 << " to: " << base->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001024
Philip Reames15d55632015-09-09 23:26:08 +00001025 if (cache.count(BDV)) {
Philip Reames79fa9b72016-02-22 20:45:56 +00001026 assert(isKnownBaseResult(base) &&
1027 "must be something we 'know' is a base pointer");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001028 // Once we transition from the BDV relation being store in the cache to
1029 // the base relation being stored, it must be stable
Philip Reames15d55632015-09-09 23:26:08 +00001030 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001031 "base relation should be stable");
1032 }
Philip Reames15d55632015-09-09 23:26:08 +00001033 cache[BDV] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001034 }
Manuel Jacob67f1d3a2015-12-29 22:16:41 +00001035 assert(cache.count(def));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001036 return cache[def];
1037}
1038
1039// For a set of live pointers (base and/or derived), identify the base
1040// pointer of the object which they are derived from. This routine will
1041// mutate the IR graph as needed to make the 'base' pointer live at the
1042// definition site of 'derived'. This ensures that any use of 'derived' can
1043// also use 'base'. This may involve the insertion of a number of
1044// additional PHI nodes.
1045//
1046// preconditions: live is a set of pointer type Values
1047//
1048// side effects: may insert PHI nodes into the existing CFG, will preserve
1049// CFG, will not remove or mutate any existing nodes
1050//
Philip Reamesf2041322015-02-20 19:26:04 +00001051// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +00001052// pointer in live. Note that derived can be equal to base if the original
1053// pointer was a base pointer.
Philip Reames704e78b2015-04-10 22:34:56 +00001054static void
1055findBasePointers(const StatepointLiveSetTy &live,
Igor Laevskyfb1811d2016-05-04 14:55:36 +00001056 MapVector<Value *, Value *> &PointerToBase,
Philip Reamesba198492015-04-14 00:41:34 +00001057 DominatorTree *DT, DefiningValueMapTy &DVCache) {
Igor Laevskyfb1811d2016-05-04 14:55:36 +00001058 for (Value *ptr : live) {
Philip Reamesba198492015-04-14 00:41:34 +00001059 Value *base = findBasePointer(ptr, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001060 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +00001061 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001062 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1063 DT->dominates(cast<Instruction>(base)->getParent(),
1064 cast<Instruction>(ptr)->getParent())) &&
1065 "The base we found better dominate the derived pointer");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001066 }
1067}
1068
1069/// Find the required based pointers (and adjust the live set) for the given
1070/// parse point.
1071static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1072 const CallSite &CS,
1073 PartiallyConstructedSafepointRecord &result) {
Igor Laevskyfb1811d2016-05-04 14:55:36 +00001074 MapVector<Value *, Value *> PointerToBase;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001075 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001076
1077 if (PrintBasePointers) {
1078 errs() << "Base Pairs (w/o Relocation):\n";
Igor Laevskyfb1811d2016-05-04 14:55:36 +00001079 for (auto &Pair : PointerToBase) {
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00001080 errs() << " derived ";
Igor Laevskyfb1811d2016-05-04 14:55:36 +00001081 Pair.first->printAsOperand(errs(), false);
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00001082 errs() << " base ";
Igor Laevskyfb1811d2016-05-04 14:55:36 +00001083 Pair.second->printAsOperand(errs(), false);
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00001084 errs() << "\n";;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001085 }
1086 }
1087
Philip Reamesf2041322015-02-20 19:26:04 +00001088 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001089}
1090
Philip Reamesdf1ef082015-04-10 22:53:14 +00001091/// Given an updated version of the dataflow liveness results, update the
1092/// liveset and base pointer maps for the call site CS.
1093static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1094 const CallSite &CS,
1095 PartiallyConstructedSafepointRecord &result);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001096
Philip Reamesdf1ef082015-04-10 22:53:14 +00001097static void recomputeLiveInValues(
Justin Bogner843fb202015-12-15 19:40:57 +00001098 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001099 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001100 // TODO-PERF: reuse the original liveness, then simply run the dataflow
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001101 // again. The old values are still live and will help it stabilize quickly.
Philip Reamesdf1ef082015-04-10 22:53:14 +00001102 GCPtrLivenessData RevisedLivenessData;
1103 computeLiveInValues(DT, F, RevisedLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001104 for (size_t i = 0; i < records.size(); i++) {
1105 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001106 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001107 recomputeLiveInValues(RevisedLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001108 }
1109}
1110
Sanjoy Das7ad67642015-10-20 01:06:24 +00001111// When inserting gc.relocate and gc.result calls, we need to ensure there are
1112// no uses of the original value / return value between the gc.statepoint and
1113// the gc.relocate / gc.result call. One case which can arise is a phi node
1114// starting one of the successor blocks. We also need to be able to insert the
1115// gc.relocates only on the path which goes through the statepoint. We might
1116// need to split an edge to make this possible.
Philip Reamesf209a152015-04-13 20:00:30 +00001117static BasicBlock *
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00001118normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1119 DominatorTree &DT) {
Philip Reames69e51ca2015-04-13 18:07:21 +00001120 BasicBlock *Ret = BB;
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001121 if (!BB->getUniquePredecessor())
Chandler Carruth96ada252015-07-22 09:52:54 +00001122 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001123
Sanjoy Das7ad67642015-10-20 01:06:24 +00001124 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
Philip Reames69e51ca2015-04-13 18:07:21 +00001125 // from it
1126 FoldSingleEntryPHINodes(Ret);
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001127 assert(!isa<PHINode>(Ret->begin()) &&
1128 "All PHI nodes should have been removed!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001129
Sanjoy Das7ad67642015-10-20 01:06:24 +00001130 // At this point, we can safely insert a gc.relocate or gc.result as the first
1131 // instruction in Ret if needed.
Philip Reames69e51ca2015-04-13 18:07:21 +00001132 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001133}
1134
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001135// Create new attribute set containing only attributes which can be transferred
Philip Reamesd16a9b12015-02-20 01:06:44 +00001136// from original call to the safepoint.
1137static AttributeSet legalizeCallAttributes(AttributeSet AS) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001138 AttributeSet Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001139
1140 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001141 unsigned Index = AS.getSlotIndex(Slot);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001142
Sanjoy Das810a59d2015-10-16 02:41:11 +00001143 if (Index == AttributeSet::ReturnIndex ||
1144 Index == AttributeSet::FunctionIndex) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001145
Sanjoy Das810a59d2015-10-16 02:41:11 +00001146 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001147
1148 // Do not allow certain attributes - just skip them
1149 // Safepoint can not be read only or read none.
Sanjoy Das810a59d2015-10-16 02:41:11 +00001150 if (Attr.hasAttribute(Attribute::ReadNone) ||
1151 Attr.hasAttribute(Attribute::ReadOnly))
Philip Reamesd16a9b12015-02-20 01:06:44 +00001152 continue;
1153
Sanjoy Das58fae7c2015-10-16 02:41:23 +00001154 // These attributes control the generation of the gc.statepoint call /
1155 // invoke itself; and once the gc.statepoint is in place, they're of no
1156 // use.
Sanjoy Das31203882016-03-17 01:56:10 +00001157 if (isStatepointDirectiveAttr(Attr))
Sanjoy Das58fae7c2015-10-16 02:41:23 +00001158 continue;
1159
Sanjoy Das810a59d2015-10-16 02:41:11 +00001160 Ret = Ret.addAttributes(
1161 AS.getContext(), Index,
1162 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001163 }
1164 }
1165
1166 // Just skip parameter attributes for now
1167 }
1168
Sanjoy Das810a59d2015-10-16 02:41:11 +00001169 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001170}
1171
1172/// Helper function to place all gc relocates necessary for the given
1173/// statepoint.
1174/// Inputs:
1175/// liveVariables - list of variables to be relocated.
1176/// liveStart - index of the first live variable.
1177/// basePtrs - base pointers.
1178/// statepointToken - statepoint instruction to which relocates should be
1179/// bound.
1180/// Builder - Llvm IR builder to be used to construct new calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001181static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
Sanjoy Das5665c992015-05-11 23:47:27 +00001182 const int LiveStart,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001183 ArrayRef<Value *> BasePtrs,
Sanjoy Das5665c992015-05-11 23:47:27 +00001184 Instruction *StatepointToken,
Benjamin Kramerf044d3f2015-03-09 16:23:46 +00001185 IRBuilder<> Builder) {
Philip Reames94babb72015-07-21 17:18:03 +00001186 if (LiveVariables.empty())
1187 return;
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001188
1189 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1190 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1191 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1192 size_t Index = std::distance(LiveVec.begin(), ValIt);
1193 assert(Index < LiveVec.size() && "Bug in std::find?");
1194 return Index;
1195 };
Philip Reames74ce2e72015-07-21 16:51:17 +00001196 Module *M = StatepointToken->getModule();
Philip Reames5715f572016-01-09 01:31:13 +00001197
1198 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1199 // element type is i8 addrspace(1)*). We originally generated unique
1200 // declarations for each pointer type, but this proved problematic because
1201 // the intrinsic mangling code is incomplete and fragile. Since we're moving
1202 // towards a single unified pointer type anyways, we can just cast everything
1203 // to an i8* of the right address space. A bitcast is added later to convert
1204 // gc_relocate to the actual value's type.
1205 auto getGCRelocateDecl = [&] (Type *Ty) {
1206 assert(isHandledGCPointerType(Ty));
1207 auto AS = Ty->getScalarType()->getPointerAddressSpace();
1208 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1209 if (auto *VT = dyn_cast<VectorType>(Ty))
1210 NewTy = VectorType::get(NewTy, VT->getNumElements());
1211 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1212 {NewTy});
1213 };
1214
1215 // Lazily populated map from input types to the canonicalized form mentioned
1216 // in the comment above. This should probably be cached somewhere more
1217 // broadly.
1218 DenseMap<Type*, Value*> TypeToDeclMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001219
Sanjoy Das5665c992015-05-11 23:47:27 +00001220 for (unsigned i = 0; i < LiveVariables.size(); i++) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001221 // Generate the gc.relocate call and save the result
Sanjoy Das5665c992015-05-11 23:47:27 +00001222 Value *BaseIdx =
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001223 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
Sanjoy Das3020b1b2015-10-20 01:06:31 +00001224 Value *LiveIdx = Builder.getInt32(LiveStart + i);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001225
Philip Reames5715f572016-01-09 01:31:13 +00001226 Type *Ty = LiveVariables[i]->getType();
1227 if (!TypeToDeclMap.count(Ty))
1228 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1229 Value *GCRelocateDecl = TypeToDeclMap[Ty];
1230
Philip Reamesd16a9b12015-02-20 01:06:44 +00001231 // only specify a debug name if we can give a useful one
Philip Reames74ce2e72015-07-21 16:51:17 +00001232 CallInst *Reloc = Builder.CreateCall(
David Blaikieff6409d2015-05-18 22:13:54 +00001233 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
Philip Reamesece70b82015-09-09 23:57:18 +00001234 suffixed_name_or(LiveVariables[i], ".relocated", ""));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001235 // Trick CodeGen into thinking there are lots of free registers at this
1236 // fake call.
Philip Reames74ce2e72015-07-21 16:51:17 +00001237 Reloc->setCallingConv(CallingConv::Cold);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001238 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001239}
1240
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001241namespace {
1242
1243/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1244/// avoids having to worry about keeping around dangling pointers to Values.
1245class DeferredReplacement {
1246 AssertingVH<Instruction> Old;
1247 AssertingVH<Instruction> New;
Sanjoy Das49e974b2016-04-05 23:18:35 +00001248 bool IsDeoptimize = false;
1249
1250 DeferredReplacement() {}
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001251
1252public:
Sanjoy Das8d89a2b2016-04-05 23:18:53 +00001253 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1254 assert(Old != New && Old && New &&
1255 "Cannot RAUW equal values or to / from null!");
1256
1257 DeferredReplacement D;
1258 D.Old = Old;
1259 D.New = New;
1260 return D;
1261 }
1262
1263 static DeferredReplacement createDelete(Instruction *ToErase) {
1264 DeferredReplacement D;
1265 D.Old = ToErase;
1266 return D;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001267 }
1268
Sanjoy Das49e974b2016-04-05 23:18:35 +00001269 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1270#ifndef NDEBUG
1271 auto *F = cast<CallInst>(Old)->getCalledFunction();
1272 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1273 "Only way to construct a deoptimize deferred replacement");
1274#endif
1275 DeferredReplacement D;
1276 D.Old = Old;
1277 D.IsDeoptimize = true;
1278 return D;
1279 }
1280
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001281 /// Does the task represented by this instance.
1282 void doReplacement() {
1283 Instruction *OldI = Old;
1284 Instruction *NewI = New;
1285
1286 assert(OldI != NewI && "Disallowed at construction?!");
Richard Trieuf35d4b02016-04-06 04:22:00 +00001287 assert((!IsDeoptimize || !New) &&
1288 "Deoptimize instrinsics are not replaced!");
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001289
1290 Old = nullptr;
1291 New = nullptr;
1292
1293 if (NewI)
1294 OldI->replaceAllUsesWith(NewI);
Sanjoy Das49e974b2016-04-05 23:18:35 +00001295
1296 if (IsDeoptimize) {
1297 // Note: we've inserted instructions, so the call to llvm.deoptimize may
1298 // not necessarilly be followed by the matching return.
1299 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1300 new UnreachableInst(RI->getContext(), RI);
1301 RI->eraseFromParent();
1302 }
1303
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001304 OldI->eraseFromParent();
1305 }
1306};
1307}
1308
Philip Reamesd16a9b12015-02-20 01:06:44 +00001309static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001310makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1311 const SmallVectorImpl<Value *> &BasePtrs,
1312 const SmallVectorImpl<Value *> &LiveVariables,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001313 PartiallyConstructedSafepointRecord &Result,
1314 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001315 assert(BasePtrs.size() == LiveVariables.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001316
Philip Reamesd16a9b12015-02-20 01:06:44 +00001317 // Then go ahead and use the builder do actually do the inserts. We insert
1318 // immediately before the previous instruction under the assumption that all
1319 // arguments will be available here. We can't insert afterwards since we may
1320 // be replacing a terminator.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001321 Instruction *InsertBefore = CS.getInstruction();
1322 IRBuilder<> Builder(InsertBefore);
1323
Sanjoy Das3c520a12015-10-08 23:18:38 +00001324 ArrayRef<Value *> GCArgs(LiveVariables);
Sanjoy Dasc9058ca2016-03-17 18:42:17 +00001325 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001326 uint32_t NumPatchBytes = 0;
1327 uint32_t Flags = uint32_t(StatepointFlags::None);
Sanjoy Das3c520a12015-10-08 23:18:38 +00001328
Sanjoy Dasbcf27522016-01-29 01:03:20 +00001329 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1330 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001331 ArrayRef<Use> TransitionArgs;
Sanjoy Das40992972016-01-29 01:03:17 +00001332 if (auto TransitionBundle =
1333 CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1334 Flags |= uint32_t(StatepointFlags::GCTransition);
1335 TransitionArgs = TransitionBundle->Inputs;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001336 }
Sanjoy Das99abb272016-04-06 01:33:54 +00001337
1338 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1339 // with a return value, we lower then as never returning calls to
1340 // __llvm_deoptimize that are followed by unreachable to get better codegen.
Sanjoy Das49e974b2016-04-05 23:18:35 +00001341 bool IsDeoptimize = false;
Sanjoy Das40992972016-01-29 01:03:17 +00001342
Sanjoy Das31203882016-03-17 01:56:10 +00001343 StatepointDirectives SD =
1344 parseStatepointDirectivesFromAttrs(CS.getAttributes());
1345 if (SD.NumPatchBytes)
1346 NumPatchBytes = *SD.NumPatchBytes;
1347 if (SD.StatepointID)
1348 StatepointID = *SD.StatepointID;
Sanjoy Das40992972016-01-29 01:03:17 +00001349
Sanjoy Das31203882016-03-17 01:56:10 +00001350 Value *CallTarget = CS.getCalledValue();
Sanjoy Dasd4c78332016-03-25 20:12:13 +00001351 if (Function *F = dyn_cast<Function>(CallTarget)) {
1352 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
Sanjoy Das091fcfa2016-05-06 20:39:33 +00001353 // Calls to llvm.experimental.deoptimize are lowered to calls to the
Sanjoy Dasd4c78332016-03-25 20:12:13 +00001354 // __llvm_deoptimize symbol. We want to resolve this now, since the
1355 // verifier does not allow taking the address of an intrinsic function.
1356
1357 SmallVector<Type *, 8> DomainTy;
1358 for (Value *Arg : CallArgs)
1359 DomainTy.push_back(Arg->getType());
Sanjoy Das49e974b2016-04-05 23:18:35 +00001360 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
Sanjoy Dasd4c78332016-03-25 20:12:13 +00001361 /* isVarArg = */ false);
1362
1363 // Note: CallTarget can be a bitcast instruction of a symbol if there are
1364 // calls to @llvm.experimental.deoptimize with different argument types in
1365 // the same module. This is fine -- we assume the frontend knew what it
1366 // was doing when generating this kind of IR.
1367 CallTarget =
1368 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
Sanjoy Das49e974b2016-04-05 23:18:35 +00001369
1370 IsDeoptimize = true;
Sanjoy Dasd4c78332016-03-25 20:12:13 +00001371 }
1372 }
Sanjoy Das40992972016-01-29 01:03:17 +00001373
Philip Reamesd16a9b12015-02-20 01:06:44 +00001374 // Create the statepoint given all the arguments
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001375 Instruction *Token = nullptr;
1376 AttributeSet ReturnAttrs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001377 if (CS.isCall()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001378 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
Sanjoy Das3c520a12015-10-08 23:18:38 +00001379 CallInst *Call = Builder.CreateGCStatepointCall(
1380 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1381 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1382
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001383 Call->setTailCall(ToReplace->isTailCall());
1384 Call->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001385
1386 // Currently we will fail on parameter attributes and on certain
1387 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001388 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001389 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001390 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001391 Call->setAttributes(NewAttrs.getFnAttributes());
1392 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001393
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001394 Token = Call;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001395
1396 // Put the following gc_result and gc_relocate calls immediately after the
1397 // the old call (which we're about to delete)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001398 assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1399 Builder.SetInsertPoint(ToReplace->getNextNode());
1400 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
David Blaikie82ad7872015-02-20 23:44:24 +00001401 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001402 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001403
1404 // Insert the new invoke into the old block. We'll remove the old one in a
1405 // moment at which point this will become the new terminator for the
1406 // original block.
Sanjoy Das3c520a12015-10-08 23:18:38 +00001407 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1408 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1409 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1410 GCArgs, "statepoint_token");
1411
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001412 Invoke->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001413
1414 // Currently we will fail on parameter attributes and on certain
1415 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001416 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001417 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001418 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001419 Invoke->setAttributes(NewAttrs.getFnAttributes());
1420 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001421
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001422 Token = Invoke;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001423
1424 // Generate gc relocates in exceptional path
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001425 BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1426 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1427 UnwindBlock->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001428 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001429
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001430 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001431 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001432
Chen Lid71999e2015-12-26 07:54:32 +00001433 // Attach exceptional gc relocates to the landingpad.
1434 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001435 Result.UnwindToken = ExceptionalToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001436
Sanjoy Das3c520a12015-10-08 23:18:38 +00001437 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001438 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1439 Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001440
1441 // Generate gc relocates and returns for normal block
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001442 BasicBlock *NormalDest = ToReplace->getNormalDest();
1443 assert(!isa<PHINode>(NormalDest->begin()) &&
1444 NormalDest->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001445 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001446
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001447 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001448
1449 // gc relocates will be generated later as if it were regular call
1450 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001451 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001452 assert(Token && "Should be set in one of the above branches!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001453
Sanjoy Das49e974b2016-04-05 23:18:35 +00001454 if (IsDeoptimize) {
1455 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1456 // transform the tail-call like structure to a call to a void function
1457 // followed by unreachable to get better codegen.
1458 Replacements.push_back(
1459 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001460 } else {
Sanjoy Das49e974b2016-04-05 23:18:35 +00001461 Token->setName("statepoint_token");
1462 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1463 StringRef Name =
1464 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1465 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1466 GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1467
1468 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1469 // live set of some other safepoint, in which case that safepoint's
1470 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1471 // llvm::Instruction. Instead, we defer the replacement and deletion to
1472 // after the live sets have been made explicit in the IR, and we no longer
1473 // have raw pointers to worry about.
Sanjoy Das8d89a2b2016-04-05 23:18:53 +00001474 Replacements.emplace_back(
1475 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
Sanjoy Das49e974b2016-04-05 23:18:35 +00001476 } else {
Sanjoy Das8d89a2b2016-04-05 23:18:53 +00001477 Replacements.emplace_back(
1478 DeferredReplacement::createDelete(CS.getInstruction()));
Sanjoy Das49e974b2016-04-05 23:18:35 +00001479 }
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001480 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001481
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001482 Result.StatepointToken = Token;
Philip Reames0a3240f2015-02-20 21:34:11 +00001483
Philip Reamesd16a9b12015-02-20 01:06:44 +00001484 // Second, create a gc.relocate for every live variable
Sanjoy Das3c520a12015-10-08 23:18:38 +00001485 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001486 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001487}
1488
Philip Reamesd16a9b12015-02-20 01:06:44 +00001489// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1490// which make the relocations happening at this safepoint explicit.
Philip Reames704e78b2015-04-10 22:34:56 +00001491//
Philip Reamesd16a9b12015-02-20 01:06:44 +00001492// WARNING: Does not do any fixup to adjust users of the original live
1493// values. That's the callers responsibility.
1494static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001495makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001496 PartiallyConstructedSafepointRecord &Result,
1497 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Das1ede5362015-10-08 23:18:22 +00001498 const auto &LiveSet = Result.LiveSet;
1499 const auto &PointerToBase = Result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001500
1501 // Convert to vector for efficient cross referencing.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001502 SmallVector<Value *, 64> BaseVec, LiveVec;
1503 LiveVec.reserve(LiveSet.size());
1504 BaseVec.reserve(LiveSet.size());
1505 for (Value *L : LiveSet) {
1506 LiveVec.push_back(L);
Philip Reames74ce2e72015-07-21 16:51:17 +00001507 assert(PointerToBase.count(L));
Sanjoy Das1ede5362015-10-08 23:18:22 +00001508 Value *Base = PointerToBase.find(L)->second;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001509 BaseVec.push_back(Base);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001510 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001511 assert(LiveVec.size() == BaseVec.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001512
Philip Reamesd16a9b12015-02-20 01:06:44 +00001513 // Do the actual rewriting and delete the old statepoint
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001514 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001515}
1516
1517// Helper function for the relocationViaAlloca.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001518//
1519// It receives iterator to the statepoint gc relocates and emits a store to the
1520// assigned location (via allocaMap) for the each one of them. It adds the
1521// visited values into the visitedLiveValues set, which we will later use them
1522// for sanity checking.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001523static void
Sanjoy Das5665c992015-05-11 23:47:27 +00001524insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1525 DenseMap<Value *, Value *> &AllocaMap,
1526 DenseSet<Value *> &VisitedLiveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001527
Sanjoy Das5665c992015-05-11 23:47:27 +00001528 for (User *U : GCRelocs) {
Manuel Jacob83eefa62016-01-05 04:03:00 +00001529 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1530 if (!Relocate)
Philip Reamesd16a9b12015-02-20 01:06:44 +00001531 continue;
1532
Sanjoy Das565f7862016-01-29 16:54:49 +00001533 Value *OriginalValue = Relocate->getDerivedPtr();
Sanjoy Das5665c992015-05-11 23:47:27 +00001534 assert(AllocaMap.count(OriginalValue));
1535 Value *Alloca = AllocaMap[OriginalValue];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001536
1537 // Emit store into the related alloca
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001538 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
Sanjoy Das89c54912015-05-11 18:49:34 +00001539 // the correct type according to alloca.
Manuel Jacob83eefa62016-01-05 04:03:00 +00001540 assert(Relocate->getNextNode() &&
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001541 "Should always have one since it's not a terminator");
Manuel Jacob83eefa62016-01-05 04:03:00 +00001542 IRBuilder<> Builder(Relocate->getNextNode());
Sanjoy Das89c54912015-05-11 18:49:34 +00001543 Value *CastedRelocatedValue =
Manuel Jacob83eefa62016-01-05 04:03:00 +00001544 Builder.CreateBitCast(Relocate,
Philip Reamesece70b82015-09-09 23:57:18 +00001545 cast<AllocaInst>(Alloca)->getAllocatedType(),
Manuel Jacob83eefa62016-01-05 04:03:00 +00001546 suffixed_name_or(Relocate, ".casted", ""));
Sanjoy Das89c54912015-05-11 18:49:34 +00001547
Sanjoy Das5665c992015-05-11 23:47:27 +00001548 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1549 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001550
1551#ifndef NDEBUG
Sanjoy Das5665c992015-05-11 23:47:27 +00001552 VisitedLiveValues.insert(OriginalValue);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001553#endif
1554 }
1555}
1556
Igor Laevskye0317182015-05-19 15:59:05 +00001557// Helper function for the "relocationViaAlloca". Similar to the
1558// "insertRelocationStores" but works for rematerialized values.
Joseph Tremouletadc23762016-02-05 01:42:52 +00001559static void insertRematerializationStores(
1560 const RematerializedValueMapTy &RematerializedValues,
1561 DenseMap<Value *, Value *> &AllocaMap,
1562 DenseSet<Value *> &VisitedLiveValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001563
1564 for (auto RematerializedValuePair: RematerializedValues) {
1565 Instruction *RematerializedValue = RematerializedValuePair.first;
1566 Value *OriginalValue = RematerializedValuePair.second;
1567
1568 assert(AllocaMap.count(OriginalValue) &&
1569 "Can not find alloca for rematerialized value");
1570 Value *Alloca = AllocaMap[OriginalValue];
1571
1572 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1573 Store->insertAfter(RematerializedValue);
1574
1575#ifndef NDEBUG
1576 VisitedLiveValues.insert(OriginalValue);
1577#endif
1578 }
1579}
1580
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001581/// Do all the relocation update via allocas and mem2reg
Philip Reamesd16a9b12015-02-20 01:06:44 +00001582static void relocationViaAlloca(
Igor Laevsky285fe842015-05-19 16:29:43 +00001583 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001584 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001585#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001586 // record initial number of (static) allocas; we'll check we have the same
1587 // number when we get done.
1588 int InitialAllocaNum = 0;
Philip Reames704e78b2015-04-10 22:34:56 +00001589 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1590 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001591 if (isa<AllocaInst>(*I))
1592 InitialAllocaNum++;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001593#endif
1594
1595 // TODO-PERF: change data structures, reserve
Igor Laevsky285fe842015-05-19 16:29:43 +00001596 DenseMap<Value *, Value *> AllocaMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001597 SmallVector<AllocaInst *, 200> PromotableAllocas;
Igor Laevskye0317182015-05-19 15:59:05 +00001598 // Used later to chack that we have enough allocas to store all values
1599 std::size_t NumRematerializedValues = 0;
Igor Laevsky285fe842015-05-19 16:29:43 +00001600 PromotableAllocas.reserve(Live.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001601
Igor Laevskye0317182015-05-19 15:59:05 +00001602 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1603 // "PromotableAllocas"
1604 auto emitAllocaFor = [&](Value *LiveValue) {
1605 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1606 F.getEntryBlock().getFirstNonPHI());
Igor Laevsky285fe842015-05-19 16:29:43 +00001607 AllocaMap[LiveValue] = Alloca;
Igor Laevskye0317182015-05-19 15:59:05 +00001608 PromotableAllocas.push_back(Alloca);
1609 };
1610
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001611 // Emit alloca for each live gc pointer
1612 for (Value *V : Live)
1613 emitAllocaFor(V);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001614
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001615 // Emit allocas for rematerialized values
1616 for (const auto &Info : Records)
Igor Laevsky285fe842015-05-19 16:29:43 +00001617 for (auto RematerializedValuePair : Info.RematerializedValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001618 Value *OriginalValue = RematerializedValuePair.second;
Igor Laevsky285fe842015-05-19 16:29:43 +00001619 if (AllocaMap.count(OriginalValue) != 0)
Igor Laevskye0317182015-05-19 15:59:05 +00001620 continue;
1621
1622 emitAllocaFor(OriginalValue);
1623 ++NumRematerializedValues;
1624 }
Igor Laevsky285fe842015-05-19 16:29:43 +00001625
Philip Reamesd16a9b12015-02-20 01:06:44 +00001626 // The next two loops are part of the same conceptual operation. We need to
1627 // insert a store to the alloca after the original def and at each
1628 // redefinition. We need to insert a load before each use. These are split
1629 // into distinct loops for performance reasons.
1630
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001631 // Update gc pointer after each statepoint: either store a relocated value or
1632 // null (if no relocated value was found for this gc pointer and it is not a
1633 // gc_result). This must happen before we update the statepoint with load of
1634 // alloca otherwise we lose the link between statepoint and old def.
1635 for (const auto &Info : Records) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001636 Value *Statepoint = Info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001637
1638 // This will be used for consistency check
Igor Laevsky285fe842015-05-19 16:29:43 +00001639 DenseSet<Value *> VisitedLiveValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001640
1641 // Insert stores for normal statepoint gc relocates
Igor Laevsky285fe842015-05-19 16:29:43 +00001642 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001643
1644 // In case if it was invoke statepoint
1645 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001646 if (isa<InvokeInst>(Statepoint)) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001647 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1648 VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001649 }
1650
Igor Laevskye0317182015-05-19 15:59:05 +00001651 // Do similar thing with rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001652 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1653 VisitedLiveValues);
Igor Laevskye0317182015-05-19 15:59:05 +00001654
Philip Reamese73300b2015-04-13 16:41:32 +00001655 if (ClobberNonLive) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001656 // As a debugging aid, pretend that an unrelocated pointer becomes null at
Philip Reamese73300b2015-04-13 16:41:32 +00001657 // the gc.statepoint. This will turn some subtle GC problems into
1658 // slightly easier to debug SEGVs. Note that on large IR files with
1659 // lots of gc.statepoints this is extremely costly both memory and time
1660 // wise.
1661 SmallVector<AllocaInst *, 64> ToClobber;
Igor Laevsky285fe842015-05-19 16:29:43 +00001662 for (auto Pair : AllocaMap) {
Philip Reamese73300b2015-04-13 16:41:32 +00001663 Value *Def = Pair.first;
1664 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001665
Philip Reamese73300b2015-04-13 16:41:32 +00001666 // This value was relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001667 if (VisitedLiveValues.count(Def)) {
Philip Reamese73300b2015-04-13 16:41:32 +00001668 continue;
1669 }
1670 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001671 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001672
Philip Reamese73300b2015-04-13 16:41:32 +00001673 auto InsertClobbersAt = [&](Instruction *IP) {
1674 for (auto *AI : ToClobber) {
Eduard Burtescu90c44492016-01-18 00:10:01 +00001675 auto PT = cast<PointerType>(AI->getAllocatedType());
Philip Reamese73300b2015-04-13 16:41:32 +00001676 Constant *CPN = ConstantPointerNull::get(PT);
Igor Laevsky285fe842015-05-19 16:29:43 +00001677 StoreInst *Store = new StoreInst(CPN, AI);
1678 Store->insertBefore(IP);
Philip Reamese73300b2015-04-13 16:41:32 +00001679 }
1680 };
1681
1682 // Insert the clobbering stores. These may get intermixed with the
1683 // gc.results and gc.relocates, but that's fine.
1684 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001685 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1686 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
Philip Reamese73300b2015-04-13 16:41:32 +00001687 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001688 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001689 }
David Blaikie82ad7872015-02-20 23:44:24 +00001690 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001691 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001692
1693 // Update use with load allocas and add store for gc_relocated.
Igor Laevsky285fe842015-05-19 16:29:43 +00001694 for (auto Pair : AllocaMap) {
1695 Value *Def = Pair.first;
1696 Value *Alloca = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001697
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001698 // We pre-record the uses of allocas so that we dont have to worry about
1699 // later update that changes the user information..
1700
Igor Laevsky285fe842015-05-19 16:29:43 +00001701 SmallVector<Instruction *, 20> Uses;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001702 // PERF: trade a linear scan for repeated reallocation
Igor Laevsky285fe842015-05-19 16:29:43 +00001703 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1704 for (User *U : Def->users()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001705 if (!isa<ConstantExpr>(U)) {
1706 // If the def has a ConstantExpr use, then the def is either a
1707 // ConstantExpr use itself or null. In either case
1708 // (recursively in the first, directly in the second), the oop
1709 // it is ultimately dependent on is null and this particular
1710 // use does not need to be fixed up.
Igor Laevsky285fe842015-05-19 16:29:43 +00001711 Uses.push_back(cast<Instruction>(U));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001712 }
1713 }
1714
Igor Laevsky285fe842015-05-19 16:29:43 +00001715 std::sort(Uses.begin(), Uses.end());
1716 auto Last = std::unique(Uses.begin(), Uses.end());
1717 Uses.erase(Last, Uses.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001718
Igor Laevsky285fe842015-05-19 16:29:43 +00001719 for (Instruction *Use : Uses) {
1720 if (isa<PHINode>(Use)) {
1721 PHINode *Phi = cast<PHINode>(Use);
1722 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1723 if (Def == Phi->getIncomingValue(i)) {
1724 LoadInst *Load = new LoadInst(
1725 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1726 Phi->setIncomingValue(i, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001727 }
1728 }
1729 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001730 LoadInst *Load = new LoadInst(Alloca, "", Use);
1731 Use->replaceUsesOfWith(Def, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001732 }
1733 }
1734
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001735 // Emit store for the initial gc value. Store must be inserted after load,
1736 // otherwise store will be in alloca's use list and an extra load will be
1737 // inserted before it.
Igor Laevsky285fe842015-05-19 16:29:43 +00001738 StoreInst *Store = new StoreInst(Def, Alloca);
1739 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1740 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
Philip Reames6da37852015-03-04 00:13:52 +00001741 // InvokeInst is a TerminatorInst so the store need to be inserted
1742 // into its normal destination block.
Igor Laevsky285fe842015-05-19 16:29:43 +00001743 BasicBlock *NormalDest = Invoke->getNormalDest();
1744 Store->insertBefore(NormalDest->getFirstNonPHI());
Philip Reames6da37852015-03-04 00:13:52 +00001745 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001746 assert(!Inst->isTerminator() &&
Philip Reames6da37852015-03-04 00:13:52 +00001747 "The only TerminatorInst that can produce a value is "
1748 "InvokeInst which is handled above.");
Igor Laevsky285fe842015-05-19 16:29:43 +00001749 Store->insertAfter(Inst);
Philip Reames6da37852015-03-04 00:13:52 +00001750 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001751 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001752 assert(isa<Argument>(Def));
1753 Store->insertAfter(cast<Instruction>(Alloca));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001754 }
1755 }
1756
Igor Laevsky285fe842015-05-19 16:29:43 +00001757 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001758 "we must have the same allocas with lives");
1759 if (!PromotableAllocas.empty()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001760 // Apply mem2reg to promote alloca to SSA
Philip Reamesd16a9b12015-02-20 01:06:44 +00001761 PromoteMemToReg(PromotableAllocas, DT);
1762 }
1763
1764#ifndef NDEBUG
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001765 for (auto &I : F.getEntryBlock())
1766 if (isa<AllocaInst>(I))
Philip Reamesa6ebf072015-03-27 05:53:16 +00001767 InitialAllocaNum--;
1768 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001769#endif
1770}
1771
1772/// Implement a unique function which doesn't require we sort the input
1773/// vector. Doing so has the effect of changing the output of a couple of
1774/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001775template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
Benjamin Kramer258ea0d2015-06-13 19:50:38 +00001776 SmallSet<T, 8> Seen;
1777 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1778 return !Seen.insert(V).second;
1779 }), Vec.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001780}
1781
Philip Reamesd16a9b12015-02-20 01:06:44 +00001782/// Insert holders so that each Value is obviously live through the entire
Philip Reamesf209a152015-04-13 20:00:30 +00001783/// lifetime of the call.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001784static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesf209a152015-04-13 20:00:30 +00001785 SmallVectorImpl<CallInst *> &Holders) {
Philip Reames21142752015-04-13 19:07:47 +00001786 if (Values.empty())
1787 // No values to hold live, might as well not insert the empty holder
1788 return;
1789
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001790 Module *M = CS.getInstruction()->getModule();
Philip Reamesf209a152015-04-13 20:00:30 +00001791 // Use a dummy vararg function to actually hold the values live
1792 Function *Func = cast<Function>(M->getOrInsertFunction(
1793 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001794 if (CS.isCall()) {
1795 // For call safepoints insert dummy calls right after safepoint
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001796 Holders.push_back(CallInst::Create(Func, Values, "",
1797 &*++CS.getInstruction()->getIterator()));
Philip Reamesf209a152015-04-13 20:00:30 +00001798 return;
1799 }
1800 // For invoke safepooints insert dummy calls both in normal and
1801 // exceptional destination blocks
1802 auto *II = cast<InvokeInst>(CS.getInstruction());
1803 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001804 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
Philip Reamesf209a152015-04-13 20:00:30 +00001805 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001806 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001807}
1808
1809static void findLiveReferences(
Justin Bogner843fb202015-12-15 19:40:57 +00001810 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001811 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001812 GCPtrLivenessData OriginalLivenessData;
1813 computeLiveInValues(DT, F, OriginalLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001814 for (size_t i = 0; i < records.size(); i++) {
1815 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001816 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001817 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001818 }
1819}
1820
Igor Laevskye0317182015-05-19 15:59:05 +00001821// Helper function for the "rematerializeLiveValues". It walks use chain
1822// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1823// values are visited (currently it is GEP's and casts). Returns true if it
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001824// successfully reached "BaseValue" and false otherwise.
Igor Laevskye0317182015-05-19 15:59:05 +00001825// Fills "ChainToBase" array with all visited values. "BaseValue" is not
1826// recorded.
1827static bool findRematerializableChainToBasePointer(
1828 SmallVectorImpl<Instruction*> &ChainToBase,
1829 Value *CurrentValue, Value *BaseValue) {
1830
1831 // We have found a base value
1832 if (CurrentValue == BaseValue) {
1833 return true;
1834 }
1835
1836 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1837 ChainToBase.push_back(GEP);
1838 return findRematerializableChainToBasePointer(ChainToBase,
1839 GEP->getPointerOperand(),
1840 BaseValue);
1841 }
1842
1843 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
Igor Laevskye0317182015-05-19 15:59:05 +00001844 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1845 return false;
1846
1847 ChainToBase.push_back(CI);
Manuel Jacob9db5b932015-12-28 20:14:05 +00001848 return findRematerializableChainToBasePointer(ChainToBase,
1849 CI->getOperand(0), BaseValue);
Igor Laevskye0317182015-05-19 15:59:05 +00001850 }
1851
1852 // Not supported instruction in the chain
1853 return false;
1854}
1855
1856// Helper function for the "rematerializeLiveValues". Compute cost of the use
1857// chain we are going to rematerialize.
1858static unsigned
1859chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1860 TargetTransformInfo &TTI) {
1861 unsigned Cost = 0;
1862
1863 for (Instruction *Instr : Chain) {
1864 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1865 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1866 "non noop cast is found during rematerialization");
1867
1868 Type *SrcTy = CI->getOperand(0)->getType();
1869 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1870
1871 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1872 // Cost of the address calculation
Eduard Burtescu19eb0312016-01-19 17:28:00 +00001873 Type *ValTy = GEP->getSourceElementType();
Igor Laevskye0317182015-05-19 15:59:05 +00001874 Cost += TTI.getAddressComputationCost(ValTy);
1875
1876 // And cost of the GEP itself
1877 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1878 // allowed for the external usage)
1879 if (!GEP->hasAllConstantIndices())
1880 Cost += 2;
1881
1882 } else {
1883 llvm_unreachable("unsupported instruciton type during rematerialization");
1884 }
1885 }
1886
1887 return Cost;
1888}
1889
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001890// From the statepoint live set pick values that are cheaper to recompute then
1891// to relocate. Remove this values from the live set, rematerialize them after
Igor Laevskye0317182015-05-19 15:59:05 +00001892// statepoint and record them in "Info" structure. Note that similar to
1893// relocated values we don't do any user adjustments here.
1894static void rematerializeLiveValues(CallSite CS,
1895 PartiallyConstructedSafepointRecord &Info,
1896 TargetTransformInfo &TTI) {
Aaron Ballmanff7d4fa2015-05-20 14:53:50 +00001897 const unsigned int ChainLengthThreshold = 10;
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00001898
Igor Laevskye0317182015-05-19 15:59:05 +00001899 // Record values we are going to delete from this statepoint live set.
1900 // We can not di this in following loop due to iterator invalidation.
1901 SmallVector<Value *, 32> LiveValuesToBeDeleted;
1902
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001903 for (Value *LiveValue: Info.LiveSet) {
Igor Laevskye0317182015-05-19 15:59:05 +00001904 // For each live pointer find it's defining chain
1905 SmallVector<Instruction *, 3> ChainToBase;
Philip Reames74ce2e72015-07-21 16:51:17 +00001906 assert(Info.PointerToBase.count(LiveValue));
Igor Laevskye0317182015-05-19 15:59:05 +00001907 bool FoundChain =
1908 findRematerializableChainToBasePointer(ChainToBase,
1909 LiveValue,
1910 Info.PointerToBase[LiveValue]);
1911 // Nothing to do, or chain is too long
1912 if (!FoundChain ||
1913 ChainToBase.size() == 0 ||
1914 ChainToBase.size() > ChainLengthThreshold)
1915 continue;
1916
1917 // Compute cost of this chain
1918 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1919 // TODO: We can also account for cases when we will be able to remove some
1920 // of the rematerialized values by later optimization passes. I.e if
1921 // we rematerialized several intersecting chains. Or if original values
1922 // don't have any uses besides this statepoint.
1923
1924 // For invokes we need to rematerialize each chain twice - for normal and
1925 // for unwind basic blocks. Model this by multiplying cost by two.
1926 if (CS.isInvoke()) {
1927 Cost *= 2;
1928 }
1929 // If it's too expensive - skip it
1930 if (Cost >= RematerializationThreshold)
1931 continue;
1932
1933 // Remove value from the live set
1934 LiveValuesToBeDeleted.push_back(LiveValue);
1935
1936 // Clone instructions and record them inside "Info" structure
1937
1938 // Walk backwards to visit top-most instructions first
1939 std::reverse(ChainToBase.begin(), ChainToBase.end());
1940
1941 // Utility function which clones all instructions from "ChainToBase"
1942 // and inserts them before "InsertBefore". Returns rematerialized value
1943 // which should be used after statepoint.
1944 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1945 Instruction *LastClonedValue = nullptr;
1946 Instruction *LastValue = nullptr;
1947 for (Instruction *Instr: ChainToBase) {
1948 // Only GEP's and casts are suported as we need to be careful to not
1949 // introduce any new uses of pointers not in the liveset.
1950 // Note that it's fine to introduce new uses of pointers which were
1951 // otherwise not used after this statepoint.
1952 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1953
1954 Instruction *ClonedValue = Instr->clone();
1955 ClonedValue->insertBefore(InsertBefore);
1956 ClonedValue->setName(Instr->getName() + ".remat");
1957
1958 // If it is not first instruction in the chain then it uses previously
1959 // cloned value. We should update it to use cloned value.
1960 if (LastClonedValue) {
1961 assert(LastValue);
1962 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1963#ifndef NDEBUG
Igor Laevskyd83f6972015-05-21 13:02:14 +00001964 // Assert that cloned instruction does not use any instructions from
1965 // this chain other than LastClonedValue
1966 for (auto OpValue : ClonedValue->operand_values()) {
1967 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1968 ChainToBase.end() &&
1969 "incorrect use in rematerialization chain");
Igor Laevskye0317182015-05-19 15:59:05 +00001970 }
1971#endif
1972 }
1973
1974 LastClonedValue = ClonedValue;
1975 LastValue = Instr;
1976 }
1977 assert(LastClonedValue);
1978 return LastClonedValue;
1979 };
1980
1981 // Different cases for calls and invokes. For invokes we need to clone
1982 // instructions both on normal and unwind path.
1983 if (CS.isCall()) {
1984 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1985 assert(InsertBefore);
1986 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1987 Info.RematerializedValues[RematerializedValue] = LiveValue;
1988 } else {
1989 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1990
1991 Instruction *NormalInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001992 &*Invoke->getNormalDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00001993 Instruction *UnwindInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001994 &*Invoke->getUnwindDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00001995
1996 Instruction *NormalRematerializedValue =
1997 rematerializeChain(NormalInsertBefore);
1998 Instruction *UnwindRematerializedValue =
1999 rematerializeChain(UnwindInsertBefore);
2000
2001 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2002 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2003 }
2004 }
2005
2006 // Remove rematerializaed values from the live set
2007 for (auto LiveValue: LiveValuesToBeDeleted) {
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002008 Info.LiveSet.remove(LiveValue);
Igor Laevskye0317182015-05-19 15:59:05 +00002009 }
2010}
2011
Justin Bogner843fb202015-12-15 19:40:57 +00002012static bool insertParsePoints(Function &F, DominatorTree &DT,
2013 TargetTransformInfo &TTI,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002014 SmallVectorImpl<CallSite> &ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002015#ifndef NDEBUG
2016 // sanity check the input
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002017 std::set<CallSite> Uniqued;
2018 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2019 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00002020
Sanjoy Dasbcf27522016-01-29 01:03:20 +00002021 for (CallSite CS : ToUpdate)
2022 assert(CS.getInstruction()->getFunction() == &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002023#endif
2024
Philip Reames69e51ca2015-04-13 18:07:21 +00002025 // When inserting gc.relocates for invokes, we need to be able to insert at
2026 // the top of the successor blocks. See the comment on
2027 // normalForInvokeSafepoint on exactly what is needed. Note that this step
Philip Reamesf209a152015-04-13 20:00:30 +00002028 // may restructure the CFG.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002029 for (CallSite CS : ToUpdate) {
Philip Reamesf209a152015-04-13 20:00:30 +00002030 if (!CS.isInvoke())
2031 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002032 auto *II = cast<InvokeInst>(CS.getInstruction());
2033 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2034 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002035 }
Philip Reames69e51ca2015-04-13 18:07:21 +00002036
Philip Reamesd16a9b12015-02-20 01:06:44 +00002037 // A list of dummy calls added to the IR to keep various values obviously
2038 // live in the IR. We'll remove all of these when done.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002039 SmallVector<CallInst *, 64> Holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002040
2041 // Insert a dummy call with all of the arguments to the vm_state we'll need
2042 // for the actual safepoint insertion. This ensures reference arguments in
2043 // the deopt argument list are considered live through the safepoint (and
2044 // thus makes sure they get relocated.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002045 for (CallSite CS : ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002046 SmallVector<Value *, 64> DeoptValues;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002047
Sanjoy Das40992972016-01-29 01:03:17 +00002048 for (Value *Arg : GetDeoptBundleOperands(CS)) {
Philip Reames8531d8c2015-04-10 21:48:25 +00002049 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2050 "support for FCA unimplemented");
2051 if (isHandledGCPointerType(Arg->getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +00002052 DeoptValues.push_back(Arg);
2053 }
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002054
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002055 insertUseHolderAfter(CS, DeoptValues, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002056 }
2057
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002058 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00002059
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002060 // A) Identify all gc pointers which are statically live at the given call
Philip Reamesd16a9b12015-02-20 01:06:44 +00002061 // site.
Justin Bogner843fb202015-12-15 19:40:57 +00002062 findLiveReferences(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002063
2064 // B) Find the base pointers for each live pointer
2065 /* scope for caching */ {
2066 // Cache the 'defining value' relation used in the computation and
2067 // insertion of base phis and selects. This ensures that we don't insert
2068 // large numbers of duplicate base_phis.
2069 DefiningValueMapTy DVCache;
2070
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002071 for (size_t i = 0; i < Records.size(); i++) {
2072 PartiallyConstructedSafepointRecord &info = Records[i];
2073 findBasePointers(DT, DVCache, ToUpdate[i], info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002074 }
2075 } // end of cache scope
2076
2077 // The base phi insertion logic (for any safepoint) may have inserted new
2078 // instructions which are now live at some safepoint. The simplest such
2079 // example is:
2080 // loop:
2081 // phi a <-- will be a new base_phi here
2082 // safepoint 1 <-- that needs to be live here
2083 // gep a + 1
2084 // safepoint 2
2085 // br loop
Philip Reamesd16a9b12015-02-20 01:06:44 +00002086 // We insert some dummy calls after each safepoint to definitely hold live
2087 // the base pointers which were identified for that safepoint. We'll then
2088 // ask liveness for _every_ base inserted to see what is now live. Then we
2089 // remove the dummy calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002090 Holders.reserve(Holders.size() + Records.size());
2091 for (size_t i = 0; i < Records.size(); i++) {
2092 PartiallyConstructedSafepointRecord &Info = Records[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00002093
2094 SmallVector<Value *, 128> Bases;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002095 for (auto Pair : Info.PointerToBase)
Philip Reamesd16a9b12015-02-20 01:06:44 +00002096 Bases.push_back(Pair.second);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002097
2098 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002099 }
2100
Philip Reamesdf1ef082015-04-10 22:53:14 +00002101 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2102 // need to rerun liveness. We may *also* have inserted new defs, but that's
2103 // not the key issue.
Justin Bogner843fb202015-12-15 19:40:57 +00002104 recomputeLiveInValues(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002105
Philip Reamesd16a9b12015-02-20 01:06:44 +00002106 if (PrintBasePointers) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002107 for (auto &Info : Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002108 errs() << "Base Pairs: (w/Relocation)\n";
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00002109 for (auto Pair : Info.PointerToBase) {
2110 errs() << " derived ";
2111 Pair.first->printAsOperand(errs(), false);
2112 errs() << " base ";
2113 Pair.second->printAsOperand(errs(), false);
2114 errs() << "\n";
2115 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002116 }
2117 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002118
Manuel Jacob990dfa62015-12-22 16:50:44 +00002119 // It is possible that non-constant live variables have a constant base. For
2120 // example, a GEP with a variable offset from a global. In this case we can
2121 // remove it from the liveset. We already don't add constants to the liveset
2122 // because we assume they won't move at runtime and the GC doesn't need to be
2123 // informed about them. The same reasoning applies if the base is constant.
2124 // Note that the relocation placement code relies on this filtering for
2125 // correctness as it expects the base to be in the liveset, which isn't true
2126 // if the base is constant.
2127 for (auto &Info : Records)
2128 for (auto &BasePair : Info.PointerToBase)
2129 if (isa<Constant>(BasePair.second))
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002130 Info.LiveSet.remove(BasePair.first);
Manuel Jacob990dfa62015-12-22 16:50:44 +00002131
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002132 for (CallInst *CI : Holders)
2133 CI->eraseFromParent();
2134
2135 Holders.clear();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002136
Igor Laevskye0317182015-05-19 15:59:05 +00002137 // In order to reduce live set of statepoint we might choose to rematerialize
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002138 // some values instead of relocating them. This is purely an optimization and
Igor Laevskye0317182015-05-19 15:59:05 +00002139 // does not influence correctness.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002140 for (size_t i = 0; i < Records.size(); i++)
2141 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
Igor Laevskye0317182015-05-19 15:59:05 +00002142
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002143 // We need this to safely RAUW and delete call or invoke return values that
2144 // may themselves be live over a statepoint. For details, please see usage in
2145 // makeStatepointExplicitImpl.
2146 std::vector<DeferredReplacement> Replacements;
2147
Philip Reamesd16a9b12015-02-20 01:06:44 +00002148 // Now run through and replace the existing statepoints with new ones with
2149 // the live variables listed. We do not yet update uses of the values being
2150 // relocated. We have references to live variables that need to
2151 // survive to the last iteration of this loop. (By construction, the
2152 // previous statepoint can not be a live variable, thus we can and remove
2153 // the old statepoint calls as we go.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002154 for (size_t i = 0; i < Records.size(); i++)
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002155 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002156
2157 ToUpdate.clear(); // prevent accident use of invalid CallSites
Philip Reamesd16a9b12015-02-20 01:06:44 +00002158
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002159 for (auto &PR : Replacements)
2160 PR.doReplacement();
2161
2162 Replacements.clear();
2163
2164 for (auto &Info : Records) {
2165 // These live sets may contain state Value pointers, since we replaced calls
2166 // with operand bundles with calls wrapped in gc.statepoint, and some of
2167 // those calls may have been def'ing live gc pointers. Clear these out to
2168 // avoid accidentally using them.
2169 //
2170 // TODO: We should create a separate data structure that does not contain
2171 // these live sets, and migrate to using that data structure from this point
2172 // onward.
2173 Info.LiveSet.clear();
2174 Info.PointerToBase.clear();
2175 }
2176
Philip Reamesd16a9b12015-02-20 01:06:44 +00002177 // Do all the fixups of the original live variables to their relocated selves
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002178 SmallVector<Value *, 128> Live;
2179 for (size_t i = 0; i < Records.size(); i++) {
2180 PartiallyConstructedSafepointRecord &Info = Records[i];
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002181
Philip Reamesd16a9b12015-02-20 01:06:44 +00002182 // We can't simply save the live set from the original insertion. One of
2183 // the live values might be the result of a call which needs a safepoint.
2184 // That Value* no longer exists and we need to use the new gc_result.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002185 // Thankfully, the live set is embedded in the statepoint (and updated), so
Philip Reamesd16a9b12015-02-20 01:06:44 +00002186 // we just grab that.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002187 Statepoint Statepoint(Info.StatepointToken);
2188 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2189 Statepoint.gc_args_end());
Philip Reames9a2e01d2015-04-13 17:35:55 +00002190#ifndef NDEBUG
2191 // Do some basic sanity checks on our liveness results before performing
2192 // relocation. Relocation can and will turn mistakes in liveness results
2193 // into non-sensical code which is must harder to debug.
2194 // TODO: It would be nice to test consistency as well
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002195 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002196 "statepoint must be reachable or liveness is meaningless");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002197 for (Value *V : Statepoint.gc_args()) {
Philip Reames9a2e01d2015-04-13 17:35:55 +00002198 if (!isa<Instruction>(V))
2199 // Non-instruction values trivial dominate all possible uses
2200 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002201 auto *LiveInst = cast<Instruction>(V);
Philip Reames9a2e01d2015-04-13 17:35:55 +00002202 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2203 "unreachable values should never be live");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002204 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002205 "basic SSA liveness expectation violated by liveness analysis");
2206 }
2207#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002208 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002209 unique_unsorted(Live);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002210
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002211#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00002212 // sanity check
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002213 for (auto *Ptr : Live)
Philip Reames5715f572016-01-09 01:31:13 +00002214 assert(isHandledGCPointerType(Ptr->getType()) &&
2215 "must be a gc pointer type");
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002216#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002217
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002218 relocationViaAlloca(F, DT, Live, Records);
2219 return !Records.empty();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002220}
2221
Sanjoy Das353a19e2015-06-02 22:33:37 +00002222// Handles both return values and arguments for Functions and CallSites.
2223template <typename AttrHolder>
Igor Laevskydde00292015-10-23 22:42:44 +00002224static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2225 unsigned Index) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002226 AttrBuilder R;
2227 if (AH.getDereferenceableBytes(Index))
2228 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2229 AH.getDereferenceableBytes(Index)));
2230 if (AH.getDereferenceableOrNullBytes(Index))
2231 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2232 AH.getDereferenceableOrNullBytes(Index)));
Igor Laevsky1ef06552015-10-26 19:06:01 +00002233 if (AH.doesNotAlias(Index))
2234 R.addAttribute(Attribute::NoAlias);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002235
2236 if (!R.empty())
2237 AH.setAttributes(AH.getAttributes().removeAttributes(
2238 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
Vasileios Kalintiris9f77f612015-06-03 08:51:30 +00002239}
Sanjoy Das353a19e2015-06-02 22:33:37 +00002240
2241void
Igor Laevskydde00292015-10-23 22:42:44 +00002242RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002243 LLVMContext &Ctx = F.getContext();
2244
2245 for (Argument &A : F.args())
2246 if (isa<PointerType>(A.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002247 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002248
2249 if (isa<PointerType>(F.getReturnType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002250 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002251}
2252
Igor Laevskydde00292015-10-23 22:42:44 +00002253void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002254 if (F.empty())
2255 return;
2256
2257 LLVMContext &Ctx = F.getContext();
2258 MDBuilder Builder(Ctx);
2259
Nico Rieck78199512015-08-06 19:10:45 +00002260 for (Instruction &I : instructions(F)) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002261 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2262 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2263 bool IsImmutableTBAA =
2264 MD->getNumOperands() == 4 &&
2265 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2266
2267 if (!IsImmutableTBAA)
2268 continue; // no work to do, MD_tbaa is already marked mutable
2269
2270 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2271 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2272 uint64_t Offset =
2273 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2274
2275 MDNode *MutableTBAA =
2276 Builder.createTBAAStructTagNode(Base, Access, Offset);
2277 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2278 }
2279
2280 if (CallSite CS = CallSite(&I)) {
2281 for (int i = 0, e = CS.arg_size(); i != e; i++)
2282 if (isa<PointerType>(CS.getArgument(i)->getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002283 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002284 if (isa<PointerType>(CS.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002285 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002286 }
2287 }
2288}
2289
Philip Reamesd16a9b12015-02-20 01:06:44 +00002290/// Returns true if this function should be rewritten by this pass. The main
2291/// point of this function is as an extension point for custom logic.
2292static bool shouldRewriteStatepointsIn(Function &F) {
2293 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00002294 if (F.hasGC()) {
Mehdi Amini599ebf22016-01-08 02:28:20 +00002295 const auto &FunctionGCName = F.getGC();
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002296 const StringRef StatepointExampleName("statepoint-example");
2297 const StringRef CoreCLRName("coreclr");
2298 return (StatepointExampleName == FunctionGCName) ||
NAKAMURA Takumi5582a6a2015-05-25 01:43:34 +00002299 (CoreCLRName == FunctionGCName);
2300 } else
Philip Reames2ef029c2015-02-20 18:56:14 +00002301 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002302}
2303
Igor Laevskydde00292015-10-23 22:42:44 +00002304void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002305#ifndef NDEBUG
2306 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2307 "precondition!");
2308#endif
2309
2310 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002311 stripNonValidAttributesFromPrototype(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002312
2313 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002314 stripNonValidAttributesFromBody(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002315}
2316
Philip Reamesd16a9b12015-02-20 01:06:44 +00002317bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2318 // Nothing to do for declarations.
2319 if (F.isDeclaration() || F.empty())
2320 return false;
2321
2322 // Policy choice says not to rewrite - the most common reason is that we're
2323 // compiling code without a GCStrategy.
2324 if (!shouldRewriteStatepointsIn(F))
2325 return false;
2326
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002327 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
Justin Bogner843fb202015-12-15 19:40:57 +00002328 TargetTransformInfo &TTI =
2329 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Philip Reames704e78b2015-04-10 22:34:56 +00002330
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002331 auto NeedsRewrite = [](Instruction &I) {
Sanjoy Das40992972016-01-29 01:03:17 +00002332 if (ImmutableCallSite CS = ImmutableCallSite(&I))
Sanjoy Dasd4c78332016-03-25 20:12:13 +00002333 return !callsGCLeafFunction(CS) && !isStatepoint(CS);
Sanjoy Das40992972016-01-29 01:03:17 +00002334 return false;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002335 };
2336
Philip Reames85b36a82015-04-10 22:07:04 +00002337 // Gather all the statepoints which need rewritten. Be careful to only
2338 // consider those in reachable code since we need to ask dominance queries
2339 // when rewriting. We'll delete the unreachable ones in a moment.
Philip Reamesd2b66462015-02-20 22:39:41 +00002340 SmallVector<CallSite, 64> ParsePointNeeded;
Philip Reamesf66d7372015-04-10 22:16:58 +00002341 bool HasUnreachableStatepoint = false;
Nico Rieck78199512015-08-06 19:10:45 +00002342 for (Instruction &I : instructions(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002343 // TODO: only the ones with the flag set!
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002344 if (NeedsRewrite(I)) {
Philip Reames85b36a82015-04-10 22:07:04 +00002345 if (DT.isReachableFromEntry(I.getParent()))
2346 ParsePointNeeded.push_back(CallSite(&I));
2347 else
Philip Reamesf66d7372015-04-10 22:16:58 +00002348 HasUnreachableStatepoint = true;
Philip Reames85b36a82015-04-10 22:07:04 +00002349 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002350 }
2351
Philip Reames85b36a82015-04-10 22:07:04 +00002352 bool MadeChange = false;
Philip Reames704e78b2015-04-10 22:34:56 +00002353
Philip Reames85b36a82015-04-10 22:07:04 +00002354 // Delete any unreachable statepoints so that we don't have unrewritten
2355 // statepoints surviving this pass. This makes testing easier and the
2356 // resulting IR less confusing to human readers. Rather than be fancy, we
2357 // just reuse a utility function which removes the unreachable blocks.
Philip Reamesf66d7372015-04-10 22:16:58 +00002358 if (HasUnreachableStatepoint)
Philip Reames85b36a82015-04-10 22:07:04 +00002359 MadeChange |= removeUnreachableBlocks(F);
2360
Philip Reamesd16a9b12015-02-20 01:06:44 +00002361 // Return early if no work to do.
2362 if (ParsePointNeeded.empty())
Philip Reames85b36a82015-04-10 22:07:04 +00002363 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002364
Philip Reames85b36a82015-04-10 22:07:04 +00002365 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2366 // These are created by LCSSA. They have the effect of increasing the size
2367 // of liveness sets for no good reason. It may be harder to do this post
2368 // insertion since relocations and base phis can confuse things.
2369 for (BasicBlock &BB : F)
2370 if (BB.getUniquePredecessor()) {
2371 MadeChange = true;
2372 FoldSingleEntryPHINodes(&BB);
2373 }
2374
Philip Reames971dc3a2015-08-12 22:11:45 +00002375 // Before we start introducing relocations, we want to tweak the IR a bit to
2376 // avoid unfortunate code generation effects. The main example is that we
2377 // want to try to make sure the comparison feeding a branch is after any
2378 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2379 // values feeding a branch after relocation. This is semantically correct,
2380 // but results in extra register pressure since both the pre-relocation and
2381 // post-relocation copies must be available in registers. For code without
2382 // relocations this is handled elsewhere, but teaching the scheduler to
2383 // reverse the transform we're about to do would be slightly complex.
2384 // Note: This may extend the live range of the inputs to the icmp and thus
2385 // increase the liveset of any statepoint we move over. This is profitable
2386 // as long as all statepoints are in rare blocks. If we had in-register
2387 // lowering for live values this would be a much safer transform.
2388 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2389 if (auto *BI = dyn_cast<BranchInst>(TI))
2390 if (BI->isConditional())
2391 return dyn_cast<Instruction>(BI->getCondition());
2392 // TODO: Extend this to handle switches
2393 return nullptr;
2394 };
2395 for (BasicBlock &BB : F) {
2396 TerminatorInst *TI = BB.getTerminator();
2397 if (auto *Cond = getConditionInst(TI))
2398 // TODO: Handle more than just ICmps here. We should be able to move
2399 // most instructions without side effects or memory access.
2400 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2401 MadeChange = true;
2402 Cond->moveBefore(TI);
2403 }
2404 }
2405
Justin Bogner843fb202015-12-15 19:40:57 +00002406 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
Philip Reames85b36a82015-04-10 22:07:04 +00002407 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002408}
Philip Reamesdf1ef082015-04-10 22:53:14 +00002409
2410// liveness computation via standard dataflow
2411// -------------------------------------------------------------------
2412
2413// TODO: Consider using bitvectors for liveness, the set of potentially
2414// interesting values should be small and easy to pre-compute.
2415
Philip Reamesdf1ef082015-04-10 22:53:14 +00002416/// Compute the live-in set for the location rbegin starting from
2417/// the live-out set of the basic block
2418static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2419 BasicBlock::reverse_iterator rend,
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002420 SetVector<Value *> &LiveTmp) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002421
2422 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2423 Instruction *I = &*ritr;
2424
2425 // KILL/Def - Remove this definition from LiveIn
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002426 LiveTmp.remove(I);
Philip Reamesdf1ef082015-04-10 22:53:14 +00002427
2428 // Don't consider *uses* in PHI nodes, we handle their contribution to
2429 // predecessor blocks when we seed the LiveOut sets
2430 if (isa<PHINode>(I))
2431 continue;
2432
2433 // USE - Add to the LiveIn set for this instruction
2434 for (Value *V : I->operands()) {
2435 assert(!isUnhandledGCPointerType(V->getType()) &&
2436 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002437 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2438 // The choice to exclude all things constant here is slightly subtle.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002439 // There are two independent reasons:
Philip Reames63294cb2015-04-26 19:48:03 +00002440 // - We assume that things which are constant (from LLVM's definition)
2441 // do not move at runtime. For example, the address of a global
2442 // variable is fixed, even though it's contents may not be.
2443 // - Second, we can't disallow arbitrary inttoptr constants even
2444 // if the language frontend does. Optimization passes are free to
2445 // locally exploit facts without respect to global reachability. This
2446 // can create sections of code which are dynamically unreachable and
2447 // contain just about anything. (see constants.ll in tests)
Philip Reamesdf1ef082015-04-10 22:53:14 +00002448 LiveTmp.insert(V);
2449 }
2450 }
2451 }
2452}
2453
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002454static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002455
2456 for (BasicBlock *Succ : successors(BB)) {
2457 const BasicBlock::iterator E(Succ->getFirstNonPHI());
2458 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2459 PHINode *Phi = cast<PHINode>(&*I);
2460 Value *V = Phi->getIncomingValueForBlock(BB);
2461 assert(!isUnhandledGCPointerType(V->getType()) &&
2462 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002463 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002464 LiveTmp.insert(V);
2465 }
2466 }
2467 }
2468}
2469
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002470static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2471 SetVector<Value *> KillSet;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002472 for (Instruction &I : *BB)
2473 if (isHandledGCPointerType(I.getType()))
2474 KillSet.insert(&I);
2475 return KillSet;
2476}
2477
Philip Reames9638ff92015-04-11 00:06:47 +00002478#ifndef NDEBUG
Philip Reamesdf1ef082015-04-10 22:53:14 +00002479/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2480/// sanity check for the liveness computation.
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002481static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
Philip Reamesdf1ef082015-04-10 22:53:14 +00002482 TerminatorInst *TI, bool TermOkay = false) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002483 for (Value *V : Live) {
2484 if (auto *I = dyn_cast<Instruction>(V)) {
2485 // The terminator can be a member of the LiveOut set. LLVM's definition
2486 // of instruction dominance states that V does not dominate itself. As
2487 // such, we need to special case this to allow it.
2488 if (TermOkay && TI == I)
2489 continue;
2490 assert(DT.dominates(I, TI) &&
2491 "basic SSA liveness expectation violated by liveness analysis");
2492 }
2493 }
Philip Reamesdf1ef082015-04-10 22:53:14 +00002494}
2495
2496/// Check that all the liveness sets used during the computation of liveness
2497/// obey basic SSA properties. This is useful for finding cases where we miss
2498/// a def.
2499static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2500 BasicBlock &BB) {
2501 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2502 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2503 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2504}
Philip Reames9638ff92015-04-11 00:06:47 +00002505#endif
Philip Reamesdf1ef082015-04-10 22:53:14 +00002506
2507static void computeLiveInValues(DominatorTree &DT, Function &F,
2508 GCPtrLivenessData &Data) {
2509
Matthias Braunb30f2f512016-01-30 01:24:31 +00002510 SmallSetVector<BasicBlock *, 32> Worklist;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002511 auto AddPredsToWorklist = [&](BasicBlock *BB) {
Philip Reames4d80ede2015-04-10 23:11:26 +00002512 // We use a SetVector so that we don't have duplicates in the worklist.
2513 Worklist.insert(pred_begin(BB), pred_end(BB));
Philip Reamesdf1ef082015-04-10 22:53:14 +00002514 };
2515 auto NextItem = [&]() {
2516 BasicBlock *BB = Worklist.back();
2517 Worklist.pop_back();
Philip Reamesdf1ef082015-04-10 22:53:14 +00002518 return BB;
2519 };
2520
2521 // Seed the liveness for each individual block
2522 for (BasicBlock &BB : F) {
2523 Data.KillSet[&BB] = computeKillSet(&BB);
2524 Data.LiveSet[&BB].clear();
2525 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2526
2527#ifndef NDEBUG
2528 for (Value *Kill : Data.KillSet[&BB])
2529 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2530#endif
2531
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002532 Data.LiveOut[&BB] = SetVector<Value *>();
Philip Reamesdf1ef082015-04-10 22:53:14 +00002533 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2534 Data.LiveIn[&BB] = Data.LiveSet[&BB];
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002535 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2536 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
Philip Reamesdf1ef082015-04-10 22:53:14 +00002537 if (!Data.LiveIn[&BB].empty())
2538 AddPredsToWorklist(&BB);
2539 }
2540
2541 // Propagate that liveness until stable
2542 while (!Worklist.empty()) {
2543 BasicBlock *BB = NextItem();
2544
2545 // Compute our new liveout set, then exit early if it hasn't changed
2546 // despite the contribution of our successor.
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002547 SetVector<Value *> LiveOut = Data.LiveOut[BB];
Philip Reamesdf1ef082015-04-10 22:53:14 +00002548 const auto OldLiveOutSize = LiveOut.size();
2549 for (BasicBlock *Succ : successors(BB)) {
2550 assert(Data.LiveIn.count(Succ));
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002551 LiveOut.set_union(Data.LiveIn[Succ]);
Philip Reamesdf1ef082015-04-10 22:53:14 +00002552 }
2553 // assert OutLiveOut is a subset of LiveOut
2554 if (OldLiveOutSize == LiveOut.size()) {
2555 // If the sets are the same size, then we didn't actually add anything
2556 // when unioning our successors LiveIn Thus, the LiveIn of this block
2557 // hasn't changed.
2558 continue;
2559 }
2560 Data.LiveOut[BB] = LiveOut;
2561
2562 // Apply the effects of this basic block
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002563 SetVector<Value *> LiveTmp = LiveOut;
2564 LiveTmp.set_union(Data.LiveSet[BB]);
2565 LiveTmp.set_subtract(Data.KillSet[BB]);
Philip Reamesdf1ef082015-04-10 22:53:14 +00002566
2567 assert(Data.LiveIn.count(BB));
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002568 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
Philip Reamesdf1ef082015-04-10 22:53:14 +00002569 // assert: OldLiveIn is a subset of LiveTmp
2570 if (OldLiveIn.size() != LiveTmp.size()) {
2571 Data.LiveIn[BB] = LiveTmp;
2572 AddPredsToWorklist(BB);
2573 }
2574 } // while( !worklist.empty() )
2575
2576#ifndef NDEBUG
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002577 // Sanity check our output against SSA properties. This helps catch any
Philip Reamesdf1ef082015-04-10 22:53:14 +00002578 // missing kills during the above iteration.
2579 for (BasicBlock &BB : F) {
2580 checkBasicSSA(DT, Data, BB);
2581 }
2582#endif
2583}
2584
2585static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2586 StatepointLiveSetTy &Out) {
2587
2588 BasicBlock *BB = Inst->getParent();
2589
2590 // Note: The copy is intentional and required
2591 assert(Data.LiveOut.count(BB));
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002592 SetVector<Value *> LiveOut = Data.LiveOut[BB];
Philip Reamesdf1ef082015-04-10 22:53:14 +00002593
2594 // We want to handle the statepoint itself oddly. It's
2595 // call result is not live (normal), nor are it's arguments
2596 // (unless they're used again later). This adjustment is
2597 // specifically what we need to relocate
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002598 BasicBlock::reverse_iterator rend(Inst->getIterator());
Philip Reamesdf1ef082015-04-10 22:53:14 +00002599 computeLiveInValues(BB->rbegin(), rend, LiveOut);
Igor Laevskyfb1811d2016-05-04 14:55:36 +00002600 LiveOut.remove(Inst);
Philip Reamesdf1ef082015-04-10 22:53:14 +00002601 Out.insert(LiveOut.begin(), LiveOut.end());
2602}
2603
2604static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2605 const CallSite &CS,
2606 PartiallyConstructedSafepointRecord &Info) {
2607 Instruction *Inst = CS.getInstruction();
2608 StatepointLiveSetTy Updated;
2609 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2610
2611#ifndef NDEBUG
2612 DenseSet<Value *> Bases;
2613 for (auto KVPair : Info.PointerToBase) {
2614 Bases.insert(KVPair.second);
2615 }
2616#endif
2617 // We may have base pointers which are now live that weren't before. We need
2618 // to update the PointerToBase structure to reflect this.
2619 for (auto V : Updated)
2620 if (!Info.PointerToBase.count(V)) {
2621 assert(Bases.count(V) && "can't find base for unexpected live value");
2622 Info.PointerToBase[V] = V;
2623 continue;
2624 }
2625
2626#ifndef NDEBUG
2627 for (auto V : Updated) {
2628 assert(Info.PointerToBase.count(V) &&
2629 "must be able to find base for live value");
2630 }
2631#endif
2632
2633 // Remove any stale base mappings - this can happen since our liveness is
2634 // more precise then the one inherent in the base pointer analysis
2635 DenseSet<Value *> ToErase;
2636 for (auto KVPair : Info.PointerToBase)
2637 if (!Updated.count(KVPair.first))
2638 ToErase.insert(KVPair.first);
2639 for (auto V : ToErase)
2640 Info.PointerToBase.erase(V);
2641
2642#ifndef NDEBUG
2643 for (auto KVPair : Info.PointerToBase)
2644 assert(Updated.count(KVPair.first) && "record for non-live value");
2645#endif
2646
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002647 Info.LiveSet = Updated;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002648}