blob: 5481e722e536d996ae08e3afe783c255912ba7c5 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000017#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000020#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000021#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000022#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000023#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000025#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000026#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/IR/Metadata.h"
33#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000034#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000035#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000036#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000037#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000038#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000039using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000040using namespace llvm::PatternMatch;
41
42const unsigned MaxDepth = 6;
43
Philip Reames1c292272015-03-10 22:43:20 +000044/// Enable an experimental feature to leverage information about dominating
45/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000046/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000047/// run into compile time problems when testing, scale them back and report
48/// your findings.
49static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
50 cl::Hidden, cl::init(false));
51
52// This is expensive, so we only do it for the top level query value.
53// (TODO: evaluate cost vs profit, consider higher thresholds)
54static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
55 cl::Hidden, cl::init(1));
56
57/// How many dominating blocks should be scanned looking for dominating
58/// conditions?
59static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
60 cl::Hidden,
61 cl::init(20000));
62
63// Controls the number of uses of the value searched for possible
64// dominating comparisons.
65static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
66 cl::Hidden, cl::init(2000));
67
68// If true, don't consider only compares whose only use is a branch.
69static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
70 cl::Hidden, cl::init(false));
71
Sanjay Patelaee84212014-11-04 16:27:42 +000072/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
73/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000074static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000075 if (unsigned BitWidth = Ty->getScalarSizeInBits())
76 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000077
Mehdi Aminia28d91d2015-03-10 02:37:25 +000078 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000079}
Chris Lattner965c7692008-06-02 01:18:21 +000080
Hal Finkel60db0582014-09-07 18:57:58 +000081// Many of these functions have internal versions that take an assumption
82// exclusion set. This is because of the potential for mutual recursion to
83// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
84// classic case of this is assume(x = y), which will attempt to determine
85// bits in x from bits in y, which will attempt to determine bits in y from
86// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
87// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
88// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
89typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
90
Benjamin Kramercfd8d902014-09-12 08:56:53 +000091namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000092// Simplifying using an assume can only be done in a particular control-flow
93// context (the context instruction provides that context). If an assume and
94// the context instruction are not in the same block then the DT helps in
95// figuring out if we can use it.
96struct Query {
97 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000098 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000099 const Instruction *CxtI;
100 const DominatorTree *DT;
101
Chandler Carruth66b31302015-01-04 12:03:27 +0000102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +0000103 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +0000104 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000105
106 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +0000107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000108 ExclInvs.insert(NewExcl);
109 }
110};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000111} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000112
Sanjay Patel547e9752014-11-04 16:09:50 +0000113// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000114// the preferred context instruction (if any).
115static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
116 // If we've been provided with a context instruction, then use that (provided
117 // it has been inserted).
118 if (CxtI && CxtI->getParent())
119 return CxtI;
120
121 // If the value is really an already-inserted instruction, then use that.
122 CxtI = dyn_cast<Instruction>(V);
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 return nullptr;
127}
128
129static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000130 const DataLayout &DL, unsigned Depth,
131 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000132
133void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000134 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000135 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000136 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000138 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000139}
140
Jingyue Wuca321902015-05-14 23:53:19 +0000141bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
142 AssumptionCache *AC, const Instruction *CxtI,
143 const DominatorTree *DT) {
144 assert(LHS->getType() == RHS->getType() &&
145 "LHS and RHS should have the same type");
146 assert(LHS->getType()->isIntOrIntVectorTy() &&
147 "LHS and RHS should be integers");
148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
154}
155
Hal Finkel60db0582014-09-07 18:57:58 +0000156static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000157 const DataLayout &DL, unsigned Depth,
158 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000159
160void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000161 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000162 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000163 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000165 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000166}
167
168static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000169 const Query &Q, const DataLayout &DL);
Hal Finkel60db0582014-09-07 18:57:58 +0000170
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000172 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const Instruction *CxtI,
174 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
176 Query(AC, safeCxtI(V, CxtI), DT), DL);
177}
178
179static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
180 const Query &Q);
181
182bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
183 AssumptionCache *AC, const Instruction *CxtI,
184 const DominatorTree *DT) {
185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
186}
187
Jingyue Wu10fcea52015-08-20 18:27:04 +0000188bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
189 AssumptionCache *AC, const Instruction *CxtI,
190 const DominatorTree *DT) {
191 bool NonNegative, Negative;
192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
193 return NonNegative;
194}
195
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000196static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
197 unsigned Depth, const Query &Q);
198
199bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
200 unsigned Depth, AssumptionCache *AC,
201 const Instruction *CxtI, const DominatorTree *DT) {
202 return ::MaskedValueIsZero(V, Mask, DL, Depth,
203 Query(AC, safeCxtI(V, CxtI), DT));
204}
205
206static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
207 unsigned Depth, const Query &Q);
208
209unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
210 unsigned Depth, AssumptionCache *AC,
211 const Instruction *CxtI,
212 const DominatorTree *DT) {
213 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000214}
215
Jay Foada0653a32014-05-14 21:14:37 +0000216static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
217 APInt &KnownZero, APInt &KnownOne,
218 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const Query &Q) {
221 if (!Add) {
222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
223 // We know that the top bits of C-X are clear if X contains less bits
224 // than C (i.e. no wrap-around can happen). For example, 20-X is
225 // positive if we can prove that X is >= 0 and < 16.
226 if (!CLHS->getValue().isNegative()) {
227 unsigned BitWidth = KnownZero.getBitWidth();
228 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
229 // NLZ can't be BitWidth with no sign bit
230 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000232
233 // If all of the MaskV bits are known to be zero, then we know the
234 // output top bits are zero, because we now know that the output is
235 // from [0-C].
236 if ((KnownZero2 & MaskV) == MaskV) {
237 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
238 // Top bits known zero.
239 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
240 }
241 }
242 }
243 }
244
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000245 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000246
David Majnemer97ddca32014-08-22 00:40:43 +0000247 // If an initial sequence of bits in the result is not needed, the
248 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000249 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000250 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
251 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000252
David Majnemer97ddca32014-08-22 00:40:43 +0000253 // Carry in a 1 for a subtract, rather than a 0.
254 APInt CarryIn(BitWidth, 0);
255 if (!Add) {
256 // Sum = LHS + ~RHS + 1
257 std::swap(KnownZero2, KnownOne2);
258 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000259 }
260
David Majnemer97ddca32014-08-22 00:40:43 +0000261 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
262 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
263
264 // Compute known bits of the carry.
265 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
266 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
267
268 // Compute set of known bits (where all three relevant bits are known).
269 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
270 APInt RHSKnown = KnownZero2 | KnownOne2;
271 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
272 APInt Known = LHSKnown & RHSKnown & CarryKnown;
273
274 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
275 "known bits of sum differ");
276
277 // Compute known bits of the result.
278 KnownZero = ~PossibleSumOne & Known;
279 KnownOne = PossibleSumOne & Known;
280
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000281 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000282 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Adding two non-negative numbers, or subtracting a negative number from
285 // a non-negative one, can't wrap into negative.
286 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
287 KnownZero |= APInt::getSignBit(BitWidth);
288 // Adding two negative numbers, or subtracting a non-negative number from
289 // a negative one, can't wrap into non-negative.
290 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
291 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000292 }
293 }
294}
295
Jay Foada0653a32014-05-14 21:14:37 +0000296static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
297 APInt &KnownZero, APInt &KnownOne,
298 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000299 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000300 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000301 unsigned BitWidth = KnownZero.getBitWidth();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000302 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
303 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000304
305 bool isKnownNegative = false;
306 bool isKnownNonNegative = false;
307 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000309 if (Op0 == Op1) {
310 // The product of a number with itself is non-negative.
311 isKnownNonNegative = true;
312 } else {
313 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
314 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
315 bool isKnownNegativeOp1 = KnownOne.isNegative();
316 bool isKnownNegativeOp0 = KnownOne2.isNegative();
317 // The product of two numbers with the same sign is non-negative.
318 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
319 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
320 // The product of a negative number and a non-negative number is either
321 // negative or zero.
322 if (!isKnownNonNegative)
323 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000324 isKnownNonZero(Op0, DL, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000325 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000326 isKnownNonZero(Op1, DL, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327 }
328 }
329
330 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000331 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 // More trickiness is possible, but this is sufficient for the
333 // interesting case of alignment computation.
334 KnownOne.clearAllBits();
335 unsigned TrailZ = KnownZero.countTrailingOnes() +
336 KnownZero2.countTrailingOnes();
337 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
338 KnownZero2.countLeadingOnes(),
339 BitWidth) - BitWidth;
340
341 TrailZ = std::min(TrailZ, BitWidth);
342 LeadZ = std::min(LeadZ, BitWidth);
343 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
344 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345
346 // Only make use of no-wrap flags if we failed to compute the sign bit
347 // directly. This matters if the multiplication always overflows, in
348 // which case we prefer to follow the result of the direct computation,
349 // though as the program is invoking undefined behaviour we can choose
350 // whatever we like here.
351 if (isKnownNonNegative && !KnownOne.isNegative())
352 KnownZero.setBit(BitWidth - 1);
353 else if (isKnownNegative && !KnownZero.isNegative())
354 KnownOne.setBit(BitWidth - 1);
355}
356
Jingyue Wu37fcb592014-06-19 16:50:16 +0000357void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
358 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000359 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000360 unsigned NumRanges = Ranges.getNumOperands() / 2;
361 assert(NumRanges >= 1);
362
363 // Use the high end of the ranges to find leading zeros.
364 unsigned MinLeadingZeros = BitWidth;
365 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000366 ConstantInt *Lower =
367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
368 ConstantInt *Upper =
369 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000370 ConstantRange Range(Lower->getValue(), Upper->getValue());
371 if (Range.isWrappedSet())
372 MinLeadingZeros = 0; // -1 has no zeros
373 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
374 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
375 }
376
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000378}
Jay Foad5a29c362014-05-15 12:12:55 +0000379
Hal Finkel60db0582014-09-07 18:57:58 +0000380static bool isEphemeralValueOf(Instruction *I, const Value *E) {
381 SmallVector<const Value *, 16> WorkSet(1, I);
382 SmallPtrSet<const Value *, 32> Visited;
383 SmallPtrSet<const Value *, 16> EphValues;
384
385 while (!WorkSet.empty()) {
386 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000387 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000388 continue;
389
390 // If all uses of this value are ephemeral, then so is this value.
391 bool FoundNEUse = false;
392 for (const User *I : V->users())
393 if (!EphValues.count(I)) {
394 FoundNEUse = true;
395 break;
396 }
397
398 if (!FoundNEUse) {
399 if (V == E)
400 return true;
401
402 EphValues.insert(V);
403 if (const User *U = dyn_cast<User>(V))
404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
405 J != JE; ++J) {
406 if (isSafeToSpeculativelyExecute(*J))
407 WorkSet.push_back(*J);
408 }
409 }
410 }
411
412 return false;
413}
414
415// Is this an intrinsic that cannot be speculated but also cannot trap?
416static bool isAssumeLikeIntrinsic(const Instruction *I) {
417 if (const CallInst *CI = dyn_cast<CallInst>(I))
418 if (Function *F = CI->getCalledFunction())
419 switch (F->getIntrinsicID()) {
420 default: break;
421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
422 case Intrinsic::assume:
423 case Intrinsic::dbg_declare:
424 case Intrinsic::dbg_value:
425 case Intrinsic::invariant_start:
426 case Intrinsic::invariant_end:
427 case Intrinsic::lifetime_start:
428 case Intrinsic::lifetime_end:
429 case Intrinsic::objectsize:
430 case Intrinsic::ptr_annotation:
431 case Intrinsic::var_annotation:
432 return true;
433 }
434
435 return false;
436}
437
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000438static bool isValidAssumeForContext(Value *V, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000439 Instruction *Inv = cast<Instruction>(V);
440
441 // There are two restrictions on the use of an assume:
442 // 1. The assume must dominate the context (or the control flow must
443 // reach the assume whenever it reaches the context).
444 // 2. The context must not be in the assume's set of ephemeral values
445 // (otherwise we will use the assume to prove that the condition
446 // feeding the assume is trivially true, thus causing the removal of
447 // the assume).
448
449 if (Q.DT) {
450 if (Q.DT->dominates(Inv, Q.CxtI)) {
451 return true;
452 } else if (Inv->getParent() == Q.CxtI->getParent()) {
453 // The context comes first, but they're both in the same block. Make sure
454 // there is nothing in between that might interrupt the control flow.
455 for (BasicBlock::const_iterator I =
456 std::next(BasicBlock::const_iterator(Q.CxtI)),
457 IE(Inv); I != IE; ++I)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000458 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000459 return false;
460
461 return !isEphemeralValueOf(Inv, Q.CxtI);
462 }
463
464 return false;
465 }
466
467 // When we don't have a DT, we do a limited search...
468 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
469 return true;
470 } else if (Inv->getParent() == Q.CxtI->getParent()) {
471 // Search forward from the assume until we reach the context (or the end
472 // of the block); the common case is that the assume will come first.
473 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
474 IE = Inv->getParent()->end(); I != IE; ++I)
475 if (I == Q.CxtI)
476 return true;
477
478 // The context must come first...
479 for (BasicBlock::const_iterator I =
480 std::next(BasicBlock::const_iterator(Q.CxtI)),
481 IE(Inv); I != IE; ++I)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000482 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000483 return false;
484
485 return !isEphemeralValueOf(Inv, Q.CxtI);
486 }
487
488 return false;
489}
490
491bool llvm::isValidAssumeForContext(const Instruction *I,
492 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000493 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000494 return ::isValidAssumeForContext(const_cast<Instruction *>(I),
495 Query(nullptr, CxtI, DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000496}
497
498template<typename LHS, typename RHS>
499inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
501m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
503}
504
505template<typename LHS, typename RHS>
506inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
507 BinaryOp_match<RHS, LHS, Instruction::And>>
508m_c_And(const LHS &L, const RHS &R) {
509 return m_CombineOr(m_And(L, R), m_And(R, L));
510}
511
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000512template<typename LHS, typename RHS>
513inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
514 BinaryOp_match<RHS, LHS, Instruction::Or>>
515m_c_Or(const LHS &L, const RHS &R) {
516 return m_CombineOr(m_Or(L, R), m_Or(R, L));
517}
518
519template<typename LHS, typename RHS>
520inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
521 BinaryOp_match<RHS, LHS, Instruction::Xor>>
522m_c_Xor(const LHS &L, const RHS &R) {
523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
524}
525
Philip Reames1c292272015-03-10 22:43:20 +0000526/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
527/// true (at the context instruction.) This is mostly a utility function for
528/// the prototype dominating conditions reasoning below.
529static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
530 APInt &KnownZero,
531 APInt &KnownOne,
532 const DataLayout &DL,
533 unsigned Depth, const Query &Q) {
534 Value *LHS = Cmp->getOperand(0);
535 Value *RHS = Cmp->getOperand(1);
536 // TODO: We could potentially be more aggressive here. This would be worth
537 // evaluating. If we can, explore commoning this code with the assume
538 // handling logic.
539 if (LHS != V && RHS != V)
540 return;
541
542 const unsigned BitWidth = KnownZero.getBitWidth();
543
544 switch (Cmp->getPredicate()) {
545 default:
546 // We know nothing from this condition
547 break;
548 // TODO: implement unsigned bound from below (known one bits)
549 // TODO: common condition check implementations with assumes
550 // TODO: implement other patterns from assume (e.g. V & B == A)
551 case ICmpInst::ICMP_SGT:
552 if (LHS == V) {
553 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
554 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
555 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
556 // We know that the sign bit is zero.
557 KnownZero |= APInt::getSignBit(BitWidth);
558 }
559 }
560 break;
561 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000562 {
563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
564 if (LHS == V)
565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
566 else if (RHS == V)
567 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
568 else
569 llvm_unreachable("missing use?");
570 KnownZero |= KnownZeroTemp;
571 KnownOne |= KnownOneTemp;
572 }
Philip Reames1c292272015-03-10 22:43:20 +0000573 break;
574 case ICmpInst::ICMP_ULE:
575 if (LHS == V) {
576 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
577 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
578 // The known zero bits carry over
579 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
580 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
581 }
582 break;
583 case ICmpInst::ICMP_ULT:
584 if (LHS == V) {
585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
587 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
588 // power of 2, then one more).
589 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
590 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
591 SignBits++;
592 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
593 }
594 break;
595 };
596}
597
598/// Compute known bits in 'V' from conditions which are known to be true along
599/// all paths leading to the context instruction. In particular, look for
600/// cases where one branch of an interesting condition dominates the context
601/// instruction. This does not do general dataflow.
602/// NOTE: This code is EXPERIMENTAL and currently off by default.
603static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
604 APInt &KnownOne,
605 const DataLayout &DL,
606 unsigned Depth,
607 const Query &Q) {
608 // Need both the dominator tree and the query location to do anything useful
609 if (!Q.DT || !Q.CxtI)
610 return;
611 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000612 // The context instruction might be in a statically unreachable block. If
613 // so, asking dominator queries may yield suprising results. (e.g. the block
614 // may not have a dom tree node)
615 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
616 return;
Philip Reames1c292272015-03-10 22:43:20 +0000617
618 // Avoid useless work
619 if (auto VI = dyn_cast<Instruction>(V))
620 if (VI->getParent() == Cxt->getParent())
621 return;
622
623 // Note: We currently implement two options. It's not clear which of these
624 // will survive long term, we need data for that.
625 // Option 1 - Try walking the dominator tree looking for conditions which
626 // might apply. This works well for local conditions (loop guards, etc..),
627 // but not as well for things far from the context instruction (presuming a
628 // low max blocks explored). If we can set an high enough limit, this would
629 // be all we need.
630 // Option 2 - We restrict out search to those conditions which are uses of
631 // the value we're interested in. This is independent of dom structure,
632 // but is slightly less powerful without looking through lots of use chains.
633 // It does handle conditions far from the context instruction (e.g. early
634 // function exits on entry) really well though.
635
636 // Option 1 - Search the dom tree
637 unsigned NumBlocksExplored = 0;
638 BasicBlock *Current = Cxt->getParent();
639 while (true) {
640 // Stop searching if we've gone too far up the chain
641 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
642 break;
643 NumBlocksExplored++;
644
645 if (!Q.DT->getNode(Current)->getIDom())
646 break;
647 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
648 if (!Current)
649 // found function entry
650 break;
651
652 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
653 if (!BI || BI->isUnconditional())
654 continue;
655 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
656 if (!Cmp)
657 continue;
658
659 // We're looking for conditions that are guaranteed to hold at the context
660 // instruction. Finding a condition where one path dominates the context
661 // isn't enough because both the true and false cases could merge before
662 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000663 // to ensure that the taken *edge* dominates the context instruction. We
664 // know that the edge must be reachable since we started from a reachable
665 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000666 BasicBlock *BB0 = BI->getSuccessor(0);
667 BasicBlockEdge Edge(BI->getParent(), BB0);
668 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
669 continue;
670
671 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
672 Q);
673 }
674
675 // Option 2 - Search the other uses of V
676 unsigned NumUsesExplored = 0;
677 for (auto U : V->users()) {
678 // Avoid massive lists
679 if (NumUsesExplored >= DomConditionsMaxUses)
680 break;
681 NumUsesExplored++;
682 // Consider only compare instructions uniquely controlling a branch
683 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
684 if (!Cmp)
685 continue;
686
687 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
688 continue;
689
690 for (auto *CmpU : Cmp->users()) {
691 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
692 if (!BI || BI->isUnconditional())
693 continue;
694 // We're looking for conditions that are guaranteed to hold at the
695 // context instruction. Finding a condition where one path dominates
696 // the context isn't enough because both the true and false cases could
697 // merge before the context instruction we're actually interested in.
698 // Instead, we need to ensure that the taken *edge* dominates the context
699 // instruction.
700 BasicBlock *BB0 = BI->getSuccessor(0);
701 BasicBlockEdge Edge(BI->getParent(), BB0);
702 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
703 continue;
704
705 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
706 Q);
707 }
708 }
709}
710
Hal Finkel60db0582014-09-07 18:57:58 +0000711static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000712 APInt &KnownOne, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +0000713 unsigned Depth, const Query &Q) {
714 // Use of assumptions is context-sensitive. If we don't have a context, we
715 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000716 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000717 return;
718
719 unsigned BitWidth = KnownZero.getBitWidth();
720
Chandler Carruth66b31302015-01-04 12:03:27 +0000721 for (auto &AssumeVH : Q.AC->assumptions()) {
722 if (!AssumeVH)
723 continue;
724 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000725 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000726 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000727 if (Q.ExclInvs.count(I))
728 continue;
729
Philip Reames00d3b272014-11-24 23:44:28 +0000730 // Warning: This loop can end up being somewhat performance sensetive.
731 // We're running this loop for once for each value queried resulting in a
732 // runtime of ~O(#assumes * #values).
733
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000734 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000735 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000736
Philip Reames00d3b272014-11-24 23:44:28 +0000737 Value *Arg = I->getArgOperand(0);
738
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000739 if (Arg == V && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000740 assert(BitWidth == 1 && "assume operand is not i1?");
741 KnownZero.clearAllBits();
742 KnownOne.setAllBits();
743 return;
744 }
745
David Majnemer9b609752014-12-12 23:59:29 +0000746 // The remaining tests are all recursive, so bail out if we hit the limit.
747 if (Depth == MaxDepth)
748 continue;
749
Hal Finkel60db0582014-09-07 18:57:58 +0000750 Value *A, *B;
751 auto m_V = m_CombineOr(m_Specific(V),
752 m_CombineOr(m_PtrToInt(m_Specific(V)),
753 m_BitCast(m_Specific(V))));
754
755 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000757 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000758 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000759 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
762 KnownZero |= RHSKnownZero;
763 KnownOne |= RHSKnownOne;
764 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000765 } else if (match(Arg,
766 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
767 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
770 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
771 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
772
773 // For those bits in the mask that are known to be one, we can propagate
774 // known bits from the RHS to V.
775 KnownZero |= RHSKnownZero & MaskKnownOne;
776 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000778 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
779 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000780 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000781 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
782 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
783 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
784 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
785
786 // For those bits in the mask that are known to be one, we can propagate
787 // inverted known bits from the RHS to V.
788 KnownZero |= RHSKnownOne & MaskKnownOne;
789 KnownOne |= RHSKnownZero & MaskKnownOne;
790 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000791 } else if (match(Arg,
792 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
793 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000794 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
795 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
796 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
797 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
798
799 // For those bits in B that are known to be zero, we can propagate known
800 // bits from the RHS to V.
801 KnownZero |= RHSKnownZero & BKnownZero;
802 KnownOne |= RHSKnownOne & BKnownZero;
803 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000804 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
805 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000806 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000807 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
808 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
809 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
810 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
811
812 // For those bits in B that are known to be zero, we can propagate
813 // inverted known bits from the RHS to V.
814 KnownZero |= RHSKnownOne & BKnownZero;
815 KnownOne |= RHSKnownZero & BKnownZero;
816 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000817 } else if (match(Arg,
818 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
819 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000820 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
821 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
822 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
823 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
824
825 // For those bits in B that are known to be zero, we can propagate known
826 // bits from the RHS to V. For those bits in B that are known to be one,
827 // we can propagate inverted known bits from the RHS to V.
828 KnownZero |= RHSKnownZero & BKnownZero;
829 KnownOne |= RHSKnownOne & BKnownZero;
830 KnownZero |= RHSKnownOne & BKnownOne;
831 KnownOne |= RHSKnownZero & BKnownOne;
832 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000833 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
834 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
840
841 // For those bits in B that are known to be zero, we can propagate
842 // inverted known bits from the RHS to V. For those bits in B that are
843 // known to be one, we can propagate known bits from the RHS to V.
844 KnownZero |= RHSKnownOne & BKnownZero;
845 KnownOne |= RHSKnownZero & BKnownZero;
846 KnownZero |= RHSKnownZero & BKnownOne;
847 KnownOne |= RHSKnownOne & BKnownOne;
848 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000849 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
850 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
854 // For those bits in RHS that are known, we can propagate them to known
855 // bits in V shifted to the right by C.
856 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
857 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
858 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000859 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
860 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000861 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000862 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
863 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
864 // For those bits in RHS that are known, we can propagate them inverted
865 // to known bits in V shifted to the right by C.
866 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
867 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
868 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000869 } else if (match(Arg,
870 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000871 m_AShr(m_V, m_ConstantInt(C))),
872 m_Value(A))) &&
873 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000874 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
875 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
876 // For those bits in RHS that are known, we can propagate them to known
877 // bits in V shifted to the right by C.
878 KnownZero |= RHSKnownZero << C->getZExtValue();
879 KnownOne |= RHSKnownOne << C->getZExtValue();
880 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000881 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000882 m_LShr(m_V, m_ConstantInt(C)),
883 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000884 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000885 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000886 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
887 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
888 // For those bits in RHS that are known, we can propagate them inverted
889 // to known bits in V shifted to the right by C.
890 KnownZero |= RHSKnownOne << C->getZExtValue();
891 KnownOne |= RHSKnownZero << C->getZExtValue();
892 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000893 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000894 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000895 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
896 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
897
898 if (RHSKnownZero.isNegative()) {
899 // We know that the sign bit is zero.
900 KnownZero |= APInt::getSignBit(BitWidth);
901 }
902 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000903 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000904 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000905 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
906 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
907
908 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
909 // We know that the sign bit is zero.
910 KnownZero |= APInt::getSignBit(BitWidth);
911 }
912 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000913 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000914 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000915 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
916 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
917
918 if (RHSKnownOne.isNegative()) {
919 // We know that the sign bit is one.
920 KnownOne |= APInt::getSignBit(BitWidth);
921 }
922 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000923 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000924 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000925 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
926 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
927
928 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
929 // We know that the sign bit is one.
930 KnownOne |= APInt::getSignBit(BitWidth);
931 }
932 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000933 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000934 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
937
938 // Whatever high bits in c are zero are known to be zero.
939 KnownZero |=
940 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
941 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000942 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000943 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000944 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
945 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
946
947 // Whatever high bits in c are zero are known to be zero (if c is a power
948 // of 2, then one more).
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000949 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000950 KnownZero |=
951 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
952 else
953 KnownZero |=
954 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000955 }
956 }
957}
958
Jingyue Wu12b0c282015-06-15 05:46:29 +0000959static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
960 APInt &KnownOne, const DataLayout &DL,
961 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000962 unsigned BitWidth = KnownZero.getBitWidth();
963
Chris Lattner965c7692008-06-02 01:18:21 +0000964 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000965 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000966 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000967 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000969 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000970 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000971 case Instruction::And: {
972 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000973 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
974 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000975
Chris Lattner965c7692008-06-02 01:18:21 +0000976 // Output known-1 bits are only known if set in both the LHS & RHS.
977 KnownOne &= KnownOne2;
978 // Output known-0 are known to be clear if zero in either the LHS | RHS.
979 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000980 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000981 }
982 case Instruction::Or: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000983 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
984 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000985
Chris Lattner965c7692008-06-02 01:18:21 +0000986 // Output known-0 bits are only known if clear in both the LHS & RHS.
987 KnownZero &= KnownZero2;
988 // Output known-1 are known to be set if set in either the LHS | RHS.
989 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 }
992 case Instruction::Xor: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000993 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
994 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000995
Chris Lattner965c7692008-06-02 01:18:21 +0000996 // Output known-0 bits are known if clear or set in both the LHS & RHS.
997 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
998 // Output known-1 are known to be set if set in only one of the LHS, RHS.
999 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1000 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001001 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001002 }
1003 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001004 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001005 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1006 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001007 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001008 }
1009 case Instruction::UDiv: {
1010 // For the purposes of computing leading zeros we can conservatively
1011 // treat a udiv as a logical right shift by the power of 2 known to
1012 // be less than the denominator.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001013 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001014 unsigned LeadZ = KnownZero2.countLeadingOnes();
1015
Jay Foad25a5e4c2010-12-01 08:53:58 +00001016 KnownOne2.clearAllBits();
1017 KnownZero2.clearAllBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001018 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001019 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1020 if (RHSUnknownLeadingOnes != BitWidth)
1021 LeadZ = std::min(BitWidth,
1022 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1023
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001024 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001025 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001026 }
1027 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001028 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
1029 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001030
1031 // Only known if known in both the LHS and RHS.
1032 KnownOne &= KnownOne2;
1033 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001034 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001035 case Instruction::FPTrunc:
1036 case Instruction::FPExt:
1037 case Instruction::FPToUI:
1038 case Instruction::FPToSI:
1039 case Instruction::SIToFP:
1040 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001041 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001042 case Instruction::PtrToInt:
1043 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001044 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001045 // FALL THROUGH and handle them the same as zext/trunc.
1046 case Instruction::ZExt:
1047 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001048 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001049
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001050 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001051 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1052 // which fall through here.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001053 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001054
1055 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001056 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1057 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001059 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1060 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001061 // Any top bits are known to be zero.
1062 if (BitWidth > SrcBitWidth)
1063 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001064 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001065 }
1066 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001067 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00001068 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001069 // TODO: For now, not handling conversions like:
1070 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001071 !I->getType()->isVectorTy()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001072 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001073 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001074 }
1075 break;
1076 }
1077 case Instruction::SExt: {
1078 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001079 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001080
Jay Foad583abbc2010-12-07 08:25:19 +00001081 KnownZero = KnownZero.trunc(SrcBitWidth);
1082 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001083 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001084 KnownZero = KnownZero.zext(BitWidth);
1085 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001086
1087 // If the sign bit of the input is known set or clear, then we know the
1088 // top bits of the result.
1089 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1090 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1091 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1092 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001093 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001094 }
1095 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001096 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001097 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1098 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001099 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001100 KnownZero <<= ShiftAmt;
1101 KnownOne <<= ShiftAmt;
1102 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001103 }
1104 break;
1105 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001106 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001107 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1108 // Compute the new bits that are at the top now.
1109 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001110
Chris Lattner965c7692008-06-02 01:18:21 +00001111 // Unsigned shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001112 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001113 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1114 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1115 // high bits known zero.
1116 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001117 }
1118 break;
1119 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001120 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001121 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1122 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001123 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001124
Chris Lattner965c7692008-06-02 01:18:21 +00001125 // Signed shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001126 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001127 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1128 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001129
Chris Lattner965c7692008-06-02 01:18:21 +00001130 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1131 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1132 KnownZero |= HighBits;
1133 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1134 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001135 }
1136 break;
1137 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001139 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001140 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1141 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001142 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001143 }
Chris Lattner965c7692008-06-02 01:18:21 +00001144 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001145 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001146 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001147 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1148 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001149 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001150 }
1151 case Instruction::SRem:
1152 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001153 APInt RA = Rem->getValue().abs();
1154 if (RA.isPowerOf2()) {
1155 APInt LowBits = RA - 1;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001156 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
1157 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001158
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001159 // The low bits of the first operand are unchanged by the srem.
1160 KnownZero = KnownZero2 & LowBits;
1161 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001162
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001163 // If the first operand is non-negative or has all low bits zero, then
1164 // the upper bits are all zero.
1165 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1166 KnownZero |= ~LowBits;
1167
1168 // If the first operand is negative and not all low bits are zero, then
1169 // the upper bits are all one.
1170 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1171 KnownOne |= ~LowBits;
1172
Craig Topper1bef2c82012-12-22 19:15:35 +00001173 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001174 }
1175 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001176
1177 // The sign bit is the LHS's sign bit, except when the result of the
1178 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001179 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001180 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001181 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
1182 Depth + 1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001183 // If it's known zero, our sign bit is also zero.
1184 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001185 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001186 }
1187
Chris Lattner965c7692008-06-02 01:18:21 +00001188 break;
1189 case Instruction::URem: {
1190 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1191 APInt RA = Rem->getValue();
1192 if (RA.isPowerOf2()) {
1193 APInt LowBits = (RA - 1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
1195 Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001196 KnownZero |= ~LowBits;
1197 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 }
1200 }
1201
1202 // Since the result is less than or equal to either operand, any leading
1203 // zero bits in either operand must also exist in the result.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1205 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001206
Chris Lattner4612ae12009-01-20 18:22:57 +00001207 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001208 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001209 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001210 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001211 break;
1212 }
1213
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001214 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001215 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001216 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001217 if (Align == 0)
1218 Align = DL.getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001219
Chris Lattner965c7692008-06-02 01:18:21 +00001220 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001221 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001222 break;
1223 }
1224 case Instruction::GetElementPtr: {
1225 // Analyze all of the subscripts of this getelementptr instruction
1226 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001227 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001228 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
1229 Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001230 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1231
1232 gep_type_iterator GTI = gep_type_begin(I);
1233 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1234 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001235 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001236 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001237
1238 // Handle case when index is vector zeroinitializer
1239 Constant *CIndex = cast<Constant>(Index);
1240 if (CIndex->isZeroValue())
1241 continue;
1242
1243 if (CIndex->getType()->isVectorTy())
1244 Index = CIndex->getSplatValue();
1245
Chris Lattner965c7692008-06-02 01:18:21 +00001246 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001247 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001249 TrailZ = std::min<unsigned>(TrailZ,
1250 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001251 } else {
1252 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001253 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001254 if (!IndexedTy->isSized()) {
1255 TrailZ = 0;
1256 break;
1257 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001258 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001259 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001260 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001261 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
1262 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001264 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001265 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001266 }
1267 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001268
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001269 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001270 break;
1271 }
1272 case Instruction::PHI: {
1273 PHINode *P = cast<PHINode>(I);
1274 // Handle the case of a simple two-predecessor recurrence PHI.
1275 // There's a lot more that could theoretically be done here, but
1276 // this is sufficient to catch some interesting cases.
1277 if (P->getNumIncomingValues() == 2) {
1278 for (unsigned i = 0; i != 2; ++i) {
1279 Value *L = P->getIncomingValue(i);
1280 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001281 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001282 if (!LU)
1283 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001284 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001285 // Check for operations that have the property that if
1286 // both their operands have low zero bits, the result
1287 // will have low zero bits.
1288 if (Opcode == Instruction::Add ||
1289 Opcode == Instruction::Sub ||
1290 Opcode == Instruction::And ||
1291 Opcode == Instruction::Or ||
1292 Opcode == Instruction::Mul) {
1293 Value *LL = LU->getOperand(0);
1294 Value *LR = LU->getOperand(1);
1295 // Find a recurrence.
1296 if (LL == I)
1297 L = LR;
1298 else if (LR == I)
1299 L = LL;
1300 else
1301 break;
1302 // Ok, we have a PHI of the form L op= R. Check for low
1303 // zero bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001304 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001305
1306 // We need to take the minimum number of known bits
1307 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001308 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001309
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001310 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001311 std::min(KnownZero2.countTrailingOnes(),
1312 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001313 break;
1314 }
1315 }
1316 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001317
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001318 // Unreachable blocks may have zero-operand PHI nodes.
1319 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001320 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001321
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001322 // Otherwise take the unions of the known bit sets of the operands,
1323 // taking conservative care to avoid excessive recursion.
1324 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001325 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001326 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001327 break;
1328
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001329 KnownZero = APInt::getAllOnesValue(BitWidth);
1330 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001331 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001332 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001333 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001334
1335 KnownZero2 = APInt(BitWidth, 0);
1336 KnownOne2 = APInt(BitWidth, 0);
1337 // Recurse, but cap the recursion to one level, because we don't
1338 // want to waste time spinning around in loops.
Pete Cooper833f34d2015-05-12 20:05:31 +00001339 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001340 MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001341 KnownZero &= KnownZero2;
1342 KnownOne &= KnownOne2;
1343 // If all bits have been ruled out, there's no need to check
1344 // more operands.
1345 if (!KnownZero && !KnownOne)
1346 break;
1347 }
1348 }
Chris Lattner965c7692008-06-02 01:18:21 +00001349 break;
1350 }
1351 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001352 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001353 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001354 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1355 // If a range metadata is attached to this IntrinsicInst, intersect the
1356 // explicit range specified by the metadata and the implicit range of
1357 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001358 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1359 switch (II->getIntrinsicID()) {
1360 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001361 case Intrinsic::ctlz:
1362 case Intrinsic::cttz: {
1363 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001364 // If this call is undefined for 0, the result will be less than 2^n.
1365 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1366 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001367 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001368 break;
1369 }
1370 case Intrinsic::ctpop: {
1371 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001372 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001373 break;
1374 }
Chad Rosierb3628842011-05-26 23:13:19 +00001375 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001376 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001377 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001378 }
1379 }
1380 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001381 case Instruction::ExtractValue:
1382 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1383 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1384 if (EVI->getNumIndices() != 1) break;
1385 if (EVI->getIndices()[0] == 0) {
1386 switch (II->getIntrinsicID()) {
1387 default: break;
1388 case Intrinsic::uadd_with_overflow:
1389 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001390 computeKnownBitsAddSub(true, II->getArgOperand(0),
1391 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001392 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001393 break;
1394 case Intrinsic::usub_with_overflow:
1395 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001396 computeKnownBitsAddSub(false, II->getArgOperand(0),
1397 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001398 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001399 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001400 case Intrinsic::umul_with_overflow:
1401 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001402 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1403 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1404 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001405 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001406 }
1407 }
1408 }
Chris Lattner965c7692008-06-02 01:18:21 +00001409 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001410}
1411
1412/// Determine which bits of V are known to be either zero or one and return
1413/// them in the KnownZero/KnownOne bit sets.
1414///
1415/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1416/// we cannot optimize based on the assumption that it is zero without changing
1417/// it to be an explicit zero. If we don't change it to zero, other code could
1418/// optimized based on the contradictory assumption that it is non-zero.
1419/// Because instcombine aggressively folds operations with undef args anyway,
1420/// this won't lose us code quality.
1421///
1422/// This function is defined on values with integer type, values with pointer
1423/// type, and vectors of integers. In the case
1424/// where V is a vector, known zero, and known one values are the
1425/// same width as the vector element, and the bit is set only if it is true
1426/// for all of the elements in the vector.
1427void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1428 const DataLayout &DL, unsigned Depth, const Query &Q) {
1429 assert(V && "No Value?");
1430 assert(Depth <= MaxDepth && "Limit Search Depth");
1431 unsigned BitWidth = KnownZero.getBitWidth();
1432
1433 assert((V->getType()->isIntOrIntVectorTy() ||
1434 V->getType()->getScalarType()->isPointerTy()) &&
1435 "Not integer or pointer type!");
1436 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1437 (!V->getType()->isIntOrIntVectorTy() ||
1438 V->getType()->getScalarSizeInBits() == BitWidth) &&
1439 KnownZero.getBitWidth() == BitWidth &&
1440 KnownOne.getBitWidth() == BitWidth &&
1441 "V, KnownOne and KnownZero should have same BitWidth");
1442
1443 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1444 // We know all of the bits for a constant!
1445 KnownOne = CI->getValue();
1446 KnownZero = ~KnownOne;
1447 return;
1448 }
1449 // Null and aggregate-zero are all-zeros.
1450 if (isa<ConstantPointerNull>(V) ||
1451 isa<ConstantAggregateZero>(V)) {
1452 KnownOne.clearAllBits();
1453 KnownZero = APInt::getAllOnesValue(BitWidth);
1454 return;
1455 }
1456 // Handle a constant vector by taking the intersection of the known bits of
1457 // each element. There is no real need to handle ConstantVector here, because
1458 // we don't handle undef in any particularly useful way.
1459 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1460 // We know that CDS must be a vector of integers. Take the intersection of
1461 // each element.
1462 KnownZero.setAllBits(); KnownOne.setAllBits();
1463 APInt Elt(KnownZero.getBitWidth(), 0);
1464 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1465 Elt = CDS->getElementAsInteger(i);
1466 KnownZero &= ~Elt;
1467 KnownOne &= Elt;
1468 }
1469 return;
1470 }
1471
1472 // The address of an aligned GlobalValue has trailing zeros.
1473 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1474 unsigned Align = GO->getAlignment();
1475 if (Align == 0) {
1476 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1477 Type *ObjectType = GVar->getType()->getElementType();
1478 if (ObjectType->isSized()) {
1479 // If the object is defined in the current Module, we'll be giving
1480 // it the preferred alignment. Otherwise, we have to assume that it
1481 // may only have the minimum ABI alignment.
Peter Collingbourne6a9d1772015-07-05 20:52:35 +00001482 if (GVar->isStrongDefinitionForLinker())
Jingyue Wu12b0c282015-06-15 05:46:29 +00001483 Align = DL.getPreferredAlignment(GVar);
1484 else
1485 Align = DL.getABITypeAlignment(ObjectType);
1486 }
1487 }
1488 }
1489 if (Align > 0)
1490 KnownZero = APInt::getLowBitsSet(BitWidth,
1491 countTrailingZeros(Align));
1492 else
1493 KnownZero.clearAllBits();
1494 KnownOne.clearAllBits();
1495 return;
1496 }
1497
1498 if (Argument *A = dyn_cast<Argument>(V)) {
1499 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1500
1501 if (!Align && A->hasStructRetAttr()) {
1502 // An sret parameter has at least the ABI alignment of the return type.
1503 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1504 if (EltTy->isSized())
1505 Align = DL.getABITypeAlignment(EltTy);
1506 }
1507
1508 if (Align)
1509 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1510 else
1511 KnownZero.clearAllBits();
1512 KnownOne.clearAllBits();
1513
1514 // Don't give up yet... there might be an assumption that provides more
1515 // information...
1516 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1517
1518 // Or a dominating condition for that matter
1519 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1520 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL,
1521 Depth, Q);
1522 return;
1523 }
1524
1525 // Start out not knowing anything.
1526 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1527
1528 // Limit search depth.
1529 // All recursive calls that increase depth must come after this.
1530 if (Depth == MaxDepth)
1531 return;
1532
1533 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1534 // the bits of its aliasee.
1535 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1536 if (!GA->mayBeOverridden())
1537 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
1538 return;
1539 }
1540
1541 if (Operator *I = dyn_cast<Operator>(V))
1542 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001543
Jingyue Wu12b0c282015-06-15 05:46:29 +00001544 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1545 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1546 // computeKnownBitsFromOperator.
1547
1548 // Check whether a nearby assume intrinsic can determine some known bits.
1549 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1550
1551 // Check whether there's a dominating condition which implies something about
1552 // this value at the given context.
1553 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1554 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
1555 Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001556
1557 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001558}
1559
Sanjay Patelaee84212014-11-04 16:27:42 +00001560/// Determine whether the sign bit is known to be zero or one.
1561/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001562void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001563 const DataLayout &DL, unsigned Depth, const Query &Q) {
1564 unsigned BitWidth = getBitWidth(V->getType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001565 if (!BitWidth) {
1566 KnownZero = false;
1567 KnownOne = false;
1568 return;
1569 }
1570 APInt ZeroBits(BitWidth, 0);
1571 APInt OneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001572 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001573 KnownOne = OneBits[BitWidth - 1];
1574 KnownZero = ZeroBits[BitWidth - 1];
1575}
1576
Sanjay Patelaee84212014-11-04 16:27:42 +00001577/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001578/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001579/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001580/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001581bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001582 const Query &Q, const DataLayout &DL) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001583 if (Constant *C = dyn_cast<Constant>(V)) {
1584 if (C->isNullValue())
1585 return OrZero;
1586 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1587 return CI->getValue().isPowerOf2();
1588 // TODO: Handle vector constants.
1589 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001590
1591 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1592 // it is shifted off the end then the result is undefined.
1593 if (match(V, m_Shl(m_One(), m_Value())))
1594 return true;
1595
1596 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1597 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001598 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001599 return true;
1600
1601 // The remaining tests are all recursive, so bail out if we hit the limit.
1602 if (Depth++ == MaxDepth)
1603 return false;
1604
Craig Topper9f008862014-04-15 04:59:12 +00001605 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001606 // A shift of a power of two is a power of two or zero.
1607 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1608 match(V, m_Shr(m_Value(X), m_Value()))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001609 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
Duncan Sands985ba632011-10-28 18:30:05 +00001610
Duncan Sandsd3951082011-01-25 09:38:29 +00001611 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001612 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001613
1614 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001615 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
1616 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
Duncan Sandsba286d72011-10-26 20:55:21 +00001617
Duncan Sandsba286d72011-10-26 20:55:21 +00001618 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1619 // A power of two and'd with anything is a power of two or zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001620 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
1621 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
Duncan Sandsba286d72011-10-26 20:55:21 +00001622 return true;
1623 // X & (-X) is always a power of two or zero.
1624 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1625 return true;
1626 return false;
1627 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001628
David Majnemerb7d54092013-07-30 21:01:36 +00001629 // Adding a power-of-two or zero to the same power-of-two or zero yields
1630 // either the original power-of-two, a larger power-of-two or zero.
1631 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1632 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1633 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1634 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1635 match(X, m_And(m_Value(), m_Specific(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001636 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001637 return true;
1638 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1639 match(Y, m_And(m_Value(), m_Specific(X))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001640 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001641 return true;
1642
1643 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1644 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001645 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001646
1647 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001648 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001649 // If i8 V is a power of two or zero:
1650 // ZeroBits: 1 1 1 0 1 1 1 1
1651 // ~ZeroBits: 0 0 0 1 0 0 0 0
1652 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1653 // If OrZero isn't set, we cannot give back a zero result.
1654 // Make sure either the LHS or RHS has a bit set.
1655 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1656 return true;
1657 }
1658 }
David Majnemerbeab5672013-05-18 19:30:37 +00001659
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001660 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001661 // is a power of two only if the first operand is a power of two and not
1662 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001663 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1664 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001665 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001666 Depth, Q, DL);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001667 }
1668
Duncan Sandsd3951082011-01-25 09:38:29 +00001669 return false;
1670}
1671
Chandler Carruth80d3e562012-12-07 02:08:58 +00001672/// \brief Test whether a GEP's result is known to be non-null.
1673///
1674/// Uses properties inherent in a GEP to try to determine whether it is known
1675/// to be non-null.
1676///
1677/// Currently this routine does not support vector GEPs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001678static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001679 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001680 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1681 return false;
1682
1683 // FIXME: Support vector-GEPs.
1684 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1685
1686 // If the base pointer is non-null, we cannot walk to a null address with an
1687 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001688 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001689 return true;
1690
Chandler Carruth80d3e562012-12-07 02:08:58 +00001691 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1692 // If so, then the GEP cannot produce a null pointer, as doing so would
1693 // inherently violate the inbounds contract within address space zero.
1694 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1695 GTI != GTE; ++GTI) {
1696 // Struct types are easy -- they must always be indexed by a constant.
1697 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1698 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1699 unsigned ElementIdx = OpC->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001700 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001701 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1702 if (ElementOffset > 0)
1703 return true;
1704 continue;
1705 }
1706
1707 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001708 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 continue;
1710
1711 // Fast path the constant operand case both for efficiency and so we don't
1712 // increment Depth when just zipping down an all-constant GEP.
1713 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1714 if (!OpC->isZero())
1715 return true;
1716 continue;
1717 }
1718
1719 // We post-increment Depth here because while isKnownNonZero increments it
1720 // as well, when we pop back up that increment won't persist. We don't want
1721 // to recurse 10k times just because we have 10k GEP operands. We don't
1722 // bail completely out because we want to handle constant GEPs regardless
1723 // of depth.
1724 if (Depth++ >= MaxDepth)
1725 continue;
1726
Hal Finkel60db0582014-09-07 18:57:58 +00001727 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001728 return true;
1729 }
1730
1731 return false;
1732}
1733
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001734/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1735/// ensure that the value it's attached to is never Value? 'RangeType' is
1736/// is the type of the value described by the range.
1737static bool rangeMetadataExcludesValue(MDNode* Ranges,
1738 const APInt& Value) {
1739 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1740 assert(NumRanges >= 1);
1741 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001742 ConstantInt *Lower =
1743 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1744 ConstantInt *Upper =
1745 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001746 ConstantRange Range(Lower->getValue(), Upper->getValue());
1747 if (Range.contains(Value))
1748 return false;
1749 }
1750 return true;
1751}
1752
Sanjay Patelaee84212014-11-04 16:27:42 +00001753/// Return true if the given value is known to be non-zero when defined.
1754/// For vectors return true if every element is known to be non-zero when
1755/// defined. Supports values with integer or pointer type and vectors of
1756/// integers.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001757bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +00001758 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001759 if (Constant *C = dyn_cast<Constant>(V)) {
1760 if (C->isNullValue())
1761 return false;
1762 if (isa<ConstantInt>(C))
1763 // Must be non-zero due to null test above.
1764 return true;
1765 // TODO: Handle vectors
1766 return false;
1767 }
1768
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001769 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001770 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001771 // If the possible ranges don't contain zero, then the value is
1772 // definitely non-zero.
1773 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1774 const APInt ZeroValue(Ty->getBitWidth(), 0);
1775 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1776 return true;
1777 }
1778 }
1779 }
1780
Duncan Sandsd3951082011-01-25 09:38:29 +00001781 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001782 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001783 return false;
1784
Chandler Carruth80d3e562012-12-07 02:08:58 +00001785 // Check for pointer simplifications.
1786 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001787 if (isKnownNonNull(V))
1788 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001789 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001790 if (isGEPKnownNonNull(GEP, DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001791 return true;
1792 }
1793
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001794 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001795
1796 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001797 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001798 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001799 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001800
1801 // ext X != 0 if X != 0.
1802 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001803 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001804
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001805 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001806 // if the lowest bit is shifted off the end.
1807 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001808 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001809 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001810 if (BO->hasNoUnsignedWrap())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001811 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001812
Duncan Sandsd3951082011-01-25 09:38:29 +00001813 APInt KnownZero(BitWidth, 0);
1814 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001815 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001816 if (KnownOne[0])
1817 return true;
1818 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001819 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001820 // defined if the sign bit is shifted off the end.
1821 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001822 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001823 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001824 if (BO->isExact())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001825 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001826
Duncan Sandsd3951082011-01-25 09:38:29 +00001827 bool XKnownNonNegative, XKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001828 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001829 if (XKnownNegative)
1830 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001831
1832 // If the shifter operand is a constant, and all of the bits shifted
1833 // out are known to be zero, and X is known non-zero then at least one
1834 // non-zero bit must remain.
1835 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1836 APInt KnownZero(BitWidth, 0);
1837 APInt KnownOne(BitWidth, 0);
1838 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
1839
1840 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1841 // Is there a known one in the portion not shifted out?
1842 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1843 return true;
1844 // Are all the bits to be shifted out known zero?
1845 if (KnownZero.countTrailingOnes() >= ShiftVal)
1846 return isKnownNonZero(X, DL, Depth, Q);
1847 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001848 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001849 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001850 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001851 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001852 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001853 // X + Y.
1854 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1855 bool XKnownNonNegative, XKnownNegative;
1856 bool YKnownNonNegative, YKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001857 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1858 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001859
1860 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001861 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001862 if (XKnownNonNegative && YKnownNonNegative)
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001863 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001864 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001865
1866 // If X and Y are both negative (as signed values) then their sum is not
1867 // zero unless both X and Y equal INT_MIN.
1868 if (BitWidth && XKnownNegative && YKnownNegative) {
1869 APInt KnownZero(BitWidth, 0);
1870 APInt KnownOne(BitWidth, 0);
1871 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1872 // The sign bit of X is set. If some other bit is set then X is not equal
1873 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001874 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001875 if ((KnownOne & Mask) != 0)
1876 return true;
1877 // The sign bit of Y is set. If some other bit is set then Y is not equal
1878 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001879 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001880 if ((KnownOne & Mask) != 0)
1881 return true;
1882 }
1883
1884 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001885 if (XKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001886 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001887 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001888 if (YKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001889 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001890 return true;
1891 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001892 // X * Y.
1893 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1894 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1895 // If X and Y are non-zero then so is X * Y as long as the multiplication
1896 // does not overflow.
1897 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001898 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001899 return true;
1900 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001901 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1902 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001903 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
1904 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001905 return true;
1906 }
1907
1908 if (!BitWidth) return false;
1909 APInt KnownZero(BitWidth, 0);
1910 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001911 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001912 return KnownOne != 0;
1913}
1914
Sanjay Patelaee84212014-11-04 16:27:42 +00001915/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1916/// simplify operations downstream. Mask is known to be zero for bits that V
1917/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001918///
1919/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001920/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001921/// where V is a vector, the mask, known zero, and known one values are the
1922/// same width as the vector element, and the bit is set only if it is true
1923/// for all of the elements in the vector.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001924bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
1925 unsigned Depth, const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001926 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001927 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001928 return (KnownZero & Mask) == Mask;
1929}
1930
1931
1932
Sanjay Patelaee84212014-11-04 16:27:42 +00001933/// Return the number of times the sign bit of the register is replicated into
1934/// the other bits. We know that at least 1 bit is always equal to the sign bit
1935/// (itself), but other cases can give us information. For example, immediately
1936/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1937/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001938///
1939/// 'Op' must have a scalar integer type.
1940///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001941unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
1942 const Query &Q) {
1943 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001944 unsigned Tmp, Tmp2;
1945 unsigned FirstAnswer = 1;
1946
Jay Foada0653a32014-05-14 21:14:37 +00001947 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001948 // below.
1949
Chris Lattner965c7692008-06-02 01:18:21 +00001950 if (Depth == 6)
1951 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001952
Dan Gohman80ca01c2009-07-17 20:47:02 +00001953 Operator *U = dyn_cast<Operator>(V);
1954 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001955 default: break;
1956 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001957 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001958 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001959
Nadav Rotemc99a3872015-03-06 00:23:58 +00001960 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001961 const APInt *Denominator;
1962 // sdiv X, C -> adds log(C) sign bits.
1963 if (match(U->getOperand(1), m_APInt(Denominator))) {
1964
1965 // Ignore non-positive denominator.
1966 if (!Denominator->isStrictlyPositive())
1967 break;
1968
1969 // Calculate the incoming numerator bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001970 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001971
1972 // Add floor(log(C)) bits to the numerator bits.
1973 return std::min(TyBits, NumBits + Denominator->logBase2());
1974 }
1975 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001976 }
1977
1978 case Instruction::SRem: {
1979 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001980 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1981 // positive constant. This let us put a lower bound on the number of sign
1982 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001983 if (match(U->getOperand(1), m_APInt(Denominator))) {
1984
1985 // Ignore non-positive denominator.
1986 if (!Denominator->isStrictlyPositive())
1987 break;
1988
1989 // Calculate the incoming numerator bits. SRem by a positive constant
1990 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001991 unsigned NumrBits =
1992 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001993
1994 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001995 // denominator. Given that the denominator is positive, there are two
1996 // cases:
1997 //
1998 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1999 // (1 << ceilLogBase2(C)).
2000 //
2001 // 2. the numerator is negative. Then the result range is (-C,0] and
2002 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2003 //
2004 // Thus a lower bound on the number of sign bits is `TyBits -
2005 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002006
Sanjoy Dase561fee2015-03-25 22:33:53 +00002007 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002008 return std::max(NumrBits, ResBits);
2009 }
2010 break;
2011 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002012
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002013 case Instruction::AShr: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002014 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002015 // ashr X, C -> adds C sign bits. Vectors too.
2016 const APInt *ShAmt;
2017 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2018 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002019 if (Tmp > TyBits) Tmp = TyBits;
2020 }
2021 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002022 }
2023 case Instruction::Shl: {
2024 const APInt *ShAmt;
2025 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002026 // shl destroys sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002027 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002028 Tmp2 = ShAmt->getZExtValue();
2029 if (Tmp2 >= TyBits || // Bad shift.
2030 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2031 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002032 }
2033 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002034 }
Chris Lattner965c7692008-06-02 01:18:21 +00002035 case Instruction::And:
2036 case Instruction::Or:
2037 case Instruction::Xor: // NOT is handled here.
2038 // Logical binary ops preserve the number of sign bits at the worst.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002039 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002040 if (Tmp != 1) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002041 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002042 FirstAnswer = std::min(Tmp, Tmp2);
2043 // We computed what we know about the sign bits as our first
2044 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002045 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002046 }
2047 break;
2048
2049 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002050 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002051 if (Tmp == 1) return 1; // Early out.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002052 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002053 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002054
Chris Lattner965c7692008-06-02 01:18:21 +00002055 case Instruction::Add:
2056 // Add can have at most one carry bit. Thus we know that the output
2057 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002058 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002059 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002060
Chris Lattner965c7692008-06-02 01:18:21 +00002061 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002062 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002063 if (CRHS->isAllOnesValue()) {
2064 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002065 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
2066 Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002067
Chris Lattner965c7692008-06-02 01:18:21 +00002068 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2069 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002070 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002071 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002072
Chris Lattner965c7692008-06-02 01:18:21 +00002073 // If we are subtracting one from a positive number, there is no carry
2074 // out of the result.
2075 if (KnownZero.isNegative())
2076 return Tmp;
2077 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002078
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002079 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002080 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002081 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002082
Chris Lattner965c7692008-06-02 01:18:21 +00002083 case Instruction::Sub:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002084 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002085 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002086
Chris Lattner965c7692008-06-02 01:18:21 +00002087 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002088 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002089 if (CLHS->isNullValue()) {
2090 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002091 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
2092 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002093 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2094 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002095 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002096 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002097
Chris Lattner965c7692008-06-02 01:18:21 +00002098 // If the input is known to be positive (the sign bit is known clear),
2099 // the output of the NEG has the same number of sign bits as the input.
2100 if (KnownZero.isNegative())
2101 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002102
Chris Lattner965c7692008-06-02 01:18:21 +00002103 // Otherwise, we treat this like a SUB.
2104 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002105
Chris Lattner965c7692008-06-02 01:18:21 +00002106 // Sub can have at most one carry bit. Thus we know that the output
2107 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002108 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002109 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002110 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002111
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002112 case Instruction::PHI: {
2113 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002114 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002115 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002116 if (NumIncomingValues > 4) break;
2117 // Unreachable blocks may have zero-operand PHI nodes.
2118 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002119
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002120 // Take the minimum of all incoming values. This can't infinitely loop
2121 // because of our depth threshold.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002122 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002123 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002124 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002125 Tmp = std::min(
2126 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002127 }
2128 return Tmp;
2129 }
2130
Chris Lattner965c7692008-06-02 01:18:21 +00002131 case Instruction::Trunc:
2132 // FIXME: it's tricky to do anything useful for this, but it is an important
2133 // case for targets like X86.
2134 break;
2135 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002136
Chris Lattner965c7692008-06-02 01:18:21 +00002137 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2138 // use this information.
2139 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002140 APInt Mask;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002141 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002142
Chris Lattner965c7692008-06-02 01:18:21 +00002143 if (KnownZero.isNegative()) { // sign bit is 0
2144 Mask = KnownZero;
2145 } else if (KnownOne.isNegative()) { // sign bit is 1;
2146 Mask = KnownOne;
2147 } else {
2148 // Nothing known.
2149 return FirstAnswer;
2150 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002151
Chris Lattner965c7692008-06-02 01:18:21 +00002152 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2153 // the number of identical bits in the top of the input value.
2154 Mask = ~Mask;
2155 Mask <<= Mask.getBitWidth()-TyBits;
2156 // Return # leading zeros. We use 'min' here in case Val was zero before
2157 // shifting. We don't want to return '64' as for an i32 "0".
2158 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2159}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002160
Sanjay Patelaee84212014-11-04 16:27:42 +00002161/// This function computes the integer multiple of Base that equals V.
2162/// If successful, it returns true and returns the multiple in
2163/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002164/// through SExt instructions only if LookThroughSExt is true.
2165bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002166 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002167 const unsigned MaxDepth = 6;
2168
Dan Gohman6a976bb2009-11-18 00:58:27 +00002169 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002170 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002171 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002172
Chris Lattner229907c2011-07-18 04:54:35 +00002173 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002174
Dan Gohman6a976bb2009-11-18 00:58:27 +00002175 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002176
2177 if (Base == 0)
2178 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002179
Victor Hernandez47444882009-11-10 08:28:35 +00002180 if (Base == 1) {
2181 Multiple = V;
2182 return true;
2183 }
2184
2185 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2186 Constant *BaseVal = ConstantInt::get(T, Base);
2187 if (CO && CO == BaseVal) {
2188 // Multiple is 1.
2189 Multiple = ConstantInt::get(T, 1);
2190 return true;
2191 }
2192
2193 if (CI && CI->getZExtValue() % Base == 0) {
2194 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002195 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002196 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002197
Victor Hernandez47444882009-11-10 08:28:35 +00002198 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002199
Victor Hernandez47444882009-11-10 08:28:35 +00002200 Operator *I = dyn_cast<Operator>(V);
2201 if (!I) return false;
2202
2203 switch (I->getOpcode()) {
2204 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002205 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002206 if (!LookThroughSExt) return false;
2207 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002208 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002209 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2210 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002211 case Instruction::Shl:
2212 case Instruction::Mul: {
2213 Value *Op0 = I->getOperand(0);
2214 Value *Op1 = I->getOperand(1);
2215
2216 if (I->getOpcode() == Instruction::Shl) {
2217 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2218 if (!Op1CI) return false;
2219 // Turn Op0 << Op1 into Op0 * 2^Op1
2220 APInt Op1Int = Op1CI->getValue();
2221 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002222 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002223 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002224 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002225 }
2226
Craig Topper9f008862014-04-15 04:59:12 +00002227 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002228 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2229 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2230 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002231 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002232 MulC->getType()->getPrimitiveSizeInBits())
2233 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002234 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002235 MulC->getType()->getPrimitiveSizeInBits())
2236 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002237
Chris Lattner72d283c2010-09-05 17:20:46 +00002238 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2239 Multiple = ConstantExpr::getMul(MulC, Op1C);
2240 return true;
2241 }
Victor Hernandez47444882009-11-10 08:28:35 +00002242
2243 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2244 if (Mul0CI->getValue() == 1) {
2245 // V == Base * Op1, so return Op1
2246 Multiple = Op1;
2247 return true;
2248 }
2249 }
2250
Craig Topper9f008862014-04-15 04:59:12 +00002251 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002252 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2253 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2254 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002255 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002256 MulC->getType()->getPrimitiveSizeInBits())
2257 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002258 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002259 MulC->getType()->getPrimitiveSizeInBits())
2260 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002261
Chris Lattner72d283c2010-09-05 17:20:46 +00002262 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2263 Multiple = ConstantExpr::getMul(MulC, Op0C);
2264 return true;
2265 }
Victor Hernandez47444882009-11-10 08:28:35 +00002266
2267 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2268 if (Mul1CI->getValue() == 1) {
2269 // V == Base * Op0, so return Op0
2270 Multiple = Op0;
2271 return true;
2272 }
2273 }
Victor Hernandez47444882009-11-10 08:28:35 +00002274 }
2275 }
2276
2277 // We could not determine if V is a multiple of Base.
2278 return false;
2279}
2280
Sanjay Patelaee84212014-11-04 16:27:42 +00002281/// Return true if we can prove that the specified FP value is never equal to
2282/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002283///
2284/// NOTE: this function will need to be revisited when we support non-default
2285/// rounding modes!
2286///
2287bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2288 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2289 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002291 // FIXME: Magic number! At the least, this should be given a name because it's
2292 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2293 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002294 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002295 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002296
Dan Gohman80ca01c2009-07-17 20:47:02 +00002297 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002298 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002299
2300 // Check if the nsz fast-math flag is set
2301 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2302 if (FPO->hasNoSignedZeros())
2303 return true;
2304
Chris Lattnera12a6de2008-06-02 01:29:46 +00002305 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002306 if (I->getOpcode() == Instruction::FAdd)
2307 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2308 if (CFP->isNullValue())
2309 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002310
Chris Lattnera12a6de2008-06-02 01:29:46 +00002311 // sitofp and uitofp turn into +0.0 for zero.
2312 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2313 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002314
Chris Lattnera12a6de2008-06-02 01:29:46 +00002315 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2316 // sqrt(-0.0) = -0.0, no other negative results are possible.
2317 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002318 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002319
Chris Lattnera12a6de2008-06-02 01:29:46 +00002320 if (const CallInst *CI = dyn_cast<CallInst>(I))
2321 if (const Function *F = CI->getCalledFunction()) {
2322 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002323 // abs(x) != -0.0
2324 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002325 // fabs[lf](x) != -0.0
2326 if (F->getName() == "fabs") return true;
2327 if (F->getName() == "fabsf") return true;
2328 if (F->getName() == "fabsl") return true;
2329 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2330 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002331 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002332 }
2333 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002334
Chris Lattnera12a6de2008-06-02 01:29:46 +00002335 return false;
2336}
2337
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002338bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2339 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2340 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2341
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002342 // FIXME: Magic number! At the least, this should be given a name because it's
2343 // used similarly in CannotBeNegativeZero(). A better fix may be to
2344 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002345 if (Depth == 6)
2346 return false; // Limit search depth.
2347
2348 const Operator *I = dyn_cast<Operator>(V);
2349 if (!I) return false;
2350
2351 switch (I->getOpcode()) {
2352 default: break;
2353 case Instruction::FMul:
2354 // x*x is always non-negative or a NaN.
2355 if (I->getOperand(0) == I->getOperand(1))
2356 return true;
2357 // Fall through
2358 case Instruction::FAdd:
2359 case Instruction::FDiv:
2360 case Instruction::FRem:
2361 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2362 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2363 case Instruction::FPExt:
2364 case Instruction::FPTrunc:
2365 // Widening/narrowing never change sign.
2366 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2367 case Instruction::Call:
2368 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2369 switch (II->getIntrinsicID()) {
2370 default: break;
2371 case Intrinsic::exp:
2372 case Intrinsic::exp2:
2373 case Intrinsic::fabs:
2374 case Intrinsic::sqrt:
2375 return true;
2376 case Intrinsic::powi:
2377 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2378 // powi(x,n) is non-negative if n is even.
2379 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2380 return true;
2381 }
2382 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2383 case Intrinsic::fma:
2384 case Intrinsic::fmuladd:
2385 // x*x+y is non-negative if y is non-negative.
2386 return I->getOperand(0) == I->getOperand(1) &&
2387 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2388 }
2389 break;
2390 }
2391 return false;
2392}
2393
Sanjay Patelaee84212014-11-04 16:27:42 +00002394/// If the specified value can be set by repeating the same byte in memory,
2395/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002396/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2397/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2398/// byte store (e.g. i16 0x1234), return null.
2399Value *llvm::isBytewiseValue(Value *V) {
2400 // All byte-wide stores are splatable, even of arbitrary variables.
2401 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002402
2403 // Handle 'null' ConstantArrayZero etc.
2404 if (Constant *C = dyn_cast<Constant>(V))
2405 if (C->isNullValue())
2406 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002407
Chris Lattner9cb10352010-12-26 20:15:01 +00002408 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002409 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002410 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2411 if (CFP->getType()->isFloatTy())
2412 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2413 if (CFP->getType()->isDoubleTy())
2414 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2415 // Don't handle long double formats, which have strange constraints.
2416 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002417
Benjamin Kramer17d90152015-02-07 19:29:02 +00002418 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002419 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002420 if (CI->getBitWidth() % 8 == 0) {
2421 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002422
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002423 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002424 return nullptr;
2425 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002426 }
2427 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002428
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002429 // A ConstantDataArray/Vector is splatable if all its members are equal and
2430 // also splatable.
2431 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2432 Value *Elt = CA->getElementAsConstant(0);
2433 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002434 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002435 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002437 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2438 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002439 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002440
Chris Lattner9cb10352010-12-26 20:15:01 +00002441 return Val;
2442 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002443
Chris Lattner9cb10352010-12-26 20:15:01 +00002444 // Conceptually, we could handle things like:
2445 // %a = zext i8 %X to i16
2446 // %b = shl i16 %a, 8
2447 // %c = or i16 %a, %b
2448 // but until there is an example that actually needs this, it doesn't seem
2449 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002450 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002451}
2452
2453
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002454// This is the recursive version of BuildSubAggregate. It takes a few different
2455// arguments. Idxs is the index within the nested struct From that we are
2456// looking at now (which is of type IndexedType). IdxSkip is the number of
2457// indices from Idxs that should be left out when inserting into the resulting
2458// struct. To is the result struct built so far, new insertvalue instructions
2459// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002460static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002461 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002462 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002463 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002464 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002465 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002466 // Save the original To argument so we can modify it
2467 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002468 // General case, the type indexed by Idxs is a struct
2469 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2470 // Process each struct element recursively
2471 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002472 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002473 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002474 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002475 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002476 if (!To) {
2477 // Couldn't find any inserted value for this index? Cleanup
2478 while (PrevTo != OrigTo) {
2479 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2480 PrevTo = Del->getAggregateOperand();
2481 Del->eraseFromParent();
2482 }
2483 // Stop processing elements
2484 break;
2485 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002486 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002487 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002488 if (To)
2489 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002490 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002491 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2492 // the struct's elements had a value that was inserted directly. In the latter
2493 // case, perhaps we can't determine each of the subelements individually, but
2494 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002495
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002496 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002497 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002498
2499 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002500 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002501
2502 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002503 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002504 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002505}
2506
2507// This helper takes a nested struct and extracts a part of it (which is again a
2508// struct) into a new value. For example, given the struct:
2509// { a, { b, { c, d }, e } }
2510// and the indices "1, 1" this returns
2511// { c, d }.
2512//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002513// It does this by inserting an insertvalue for each element in the resulting
2514// struct, as opposed to just inserting a single struct. This will only work if
2515// each of the elements of the substruct are known (ie, inserted into From by an
2516// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002517//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002518// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002519static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002520 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002521 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002522 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002523 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002524 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002525 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002526 unsigned IdxSkip = Idxs.size();
2527
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002528 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002529}
2530
Sanjay Patelaee84212014-11-04 16:27:42 +00002531/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002532/// the scalar value indexed is already around as a register, for example if it
2533/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002534///
2535/// If InsertBefore is not null, this function will duplicate (modified)
2536/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002537Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2538 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002539 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002540 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002541 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002542 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002543 // We have indices, so V should have an indexable type.
2544 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2545 "Not looking at a struct or array?");
2546 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2547 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002548
Chris Lattner67058832012-01-25 06:48:06 +00002549 if (Constant *C = dyn_cast<Constant>(V)) {
2550 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002551 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002552 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2553 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002554
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002555 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002556 // Loop the indices for the insertvalue instruction in parallel with the
2557 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002558 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002559 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2560 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002561 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002562 // We can't handle this without inserting insertvalues
2563 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002564 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002565
2566 // The requested index identifies a part of a nested aggregate. Handle
2567 // this specially. For example,
2568 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2569 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2570 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2571 // This can be changed into
2572 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2573 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2574 // which allows the unused 0,0 element from the nested struct to be
2575 // removed.
2576 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2577 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002578 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002579
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002580 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002581 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002582 // looking for, then.
2583 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002584 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002585 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002586 }
2587 // If we end up here, the indices of the insertvalue match with those
2588 // requested (though possibly only partially). Now we recursively look at
2589 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002590 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002591 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002592 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002593 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002594
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002595 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002596 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002597 // something else, we can extract from that something else directly instead.
2598 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002599
2600 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002601 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002602 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002603 SmallVector<unsigned, 5> Idxs;
2604 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002605 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002606 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002607
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002608 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002609 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002610
Craig Topper1bef2c82012-12-22 19:15:35 +00002611 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002612 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002613
Jay Foad57aa6362011-07-13 10:26:04 +00002614 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002615 }
2616 // Otherwise, we don't know (such as, extracting from a function return value
2617 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002618 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002619}
Evan Chengda3db112008-06-30 07:31:25 +00002620
Sanjay Patelaee84212014-11-04 16:27:42 +00002621/// Analyze the specified pointer to see if it can be expressed as a base
2622/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002623Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002624 const DataLayout &DL) {
2625 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002626 APInt ByteOffset(BitWidth, 0);
2627 while (1) {
2628 if (Ptr->getType()->isVectorTy())
2629 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002630
Nuno Lopes368c4d02012-12-31 20:48:35 +00002631 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002632 APInt GEPOffset(BitWidth, 0);
2633 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2634 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002635
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002636 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002637
Nuno Lopes368c4d02012-12-31 20:48:35 +00002638 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002639 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2640 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002641 Ptr = cast<Operator>(Ptr)->getOperand(0);
2642 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2643 if (GA->mayBeOverridden())
2644 break;
2645 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002646 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002647 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002648 }
2649 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002650 Offset = ByteOffset.getSExtValue();
2651 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002652}
2653
2654
Sanjay Patelaee84212014-11-04 16:27:42 +00002655/// This function computes the length of a null-terminated C string pointed to
2656/// by V. If successful, it returns true and returns the string in Str.
2657/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002658bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2659 uint64_t Offset, bool TrimAtNul) {
2660 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002661
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002662 // Look through bitcast instructions and geps.
2663 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002664
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002665 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002666 // offset.
2667 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002668 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002669 if (GEP->getNumOperands() != 3)
2670 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002671
Evan Chengda3db112008-06-30 07:31:25 +00002672 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002673 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2674 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002675 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002676 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002677
Evan Chengda3db112008-06-30 07:31:25 +00002678 // Check to make sure that the first operand of the GEP is an integer and
2679 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002680 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002681 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002682 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002683
Evan Chengda3db112008-06-30 07:31:25 +00002684 // If the second index isn't a ConstantInt, then this is a variable index
2685 // into the array. If this occurs, we can't say anything meaningful about
2686 // the string.
2687 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002688 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002689 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002690 else
2691 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002692 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2693 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002694 }
Nick Lewycky46209882011-10-20 00:34:35 +00002695
Evan Chengda3db112008-06-30 07:31:25 +00002696 // The GEP instruction, constant or instruction, must reference a global
2697 // variable that is a constant and is initialized. The referenced constant
2698 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002699 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002700 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002701 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002702
Nick Lewycky46209882011-10-20 00:34:35 +00002703 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002704 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002705 // This is a degenerate case. The initializer is constant zero so the
2706 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002707 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002708 return true;
2709 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002710
Evan Chengda3db112008-06-30 07:31:25 +00002711 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002712 const ConstantDataArray *Array =
2713 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002714 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002715 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002716
Evan Chengda3db112008-06-30 07:31:25 +00002717 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002718 uint64_t NumElts = Array->getType()->getArrayNumElements();
2719
2720 // Start out with the entire array in the StringRef.
2721 Str = Array->getAsString();
2722
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002723 if (Offset > NumElts)
2724 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002725
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002726 // Skip over 'offset' bytes.
2727 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002728
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002729 if (TrimAtNul) {
2730 // Trim off the \0 and anything after it. If the array is not nul
2731 // terminated, we just return the whole end of string. The client may know
2732 // some other way that the string is length-bound.
2733 Str = Str.substr(0, Str.find('\0'));
2734 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002735 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002736}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002737
2738// These next two are very similar to the above, but also look through PHI
2739// nodes.
2740// TODO: See if we can integrate these two together.
2741
Sanjay Patelaee84212014-11-04 16:27:42 +00002742/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002743/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002744static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002745 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002746 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002747
2748 // If this is a PHI node, there are two cases: either we have already seen it
2749 // or we haven't.
2750 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002751 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002752 return ~0ULL; // already in the set.
2753
2754 // If it was new, see if all the input strings are the same length.
2755 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002756 for (Value *IncValue : PN->incoming_values()) {
2757 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002758 if (Len == 0) return 0; // Unknown length -> unknown.
2759
2760 if (Len == ~0ULL) continue;
2761
2762 if (Len != LenSoFar && LenSoFar != ~0ULL)
2763 return 0; // Disagree -> unknown.
2764 LenSoFar = Len;
2765 }
2766
2767 // Success, all agree.
2768 return LenSoFar;
2769 }
2770
2771 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2772 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2773 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2774 if (Len1 == 0) return 0;
2775 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2776 if (Len2 == 0) return 0;
2777 if (Len1 == ~0ULL) return Len2;
2778 if (Len2 == ~0ULL) return Len1;
2779 if (Len1 != Len2) return 0;
2780 return Len1;
2781 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002782
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002783 // Otherwise, see if we can read the string.
2784 StringRef StrData;
2785 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002786 return 0;
2787
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002788 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002789}
2790
Sanjay Patelaee84212014-11-04 16:27:42 +00002791/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002792/// the specified pointer, return 'len+1'. If we can't, return 0.
2793uint64_t llvm::GetStringLength(Value *V) {
2794 if (!V->getType()->isPointerTy()) return 0;
2795
2796 SmallPtrSet<PHINode*, 32> PHIs;
2797 uint64_t Len = GetStringLengthH(V, PHIs);
2798 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2799 // an empty string as a length.
2800 return Len == ~0ULL ? 1 : Len;
2801}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002802
Adam Nemete2b885c2015-04-23 20:09:20 +00002803/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2804/// previous iteration of the loop was referring to the same object as \p PN.
2805static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2806 // Find the loop-defined value.
2807 Loop *L = LI->getLoopFor(PN->getParent());
2808 if (PN->getNumIncomingValues() != 2)
2809 return true;
2810
2811 // Find the value from previous iteration.
2812 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2813 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2814 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2815 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2816 return true;
2817
2818 // If a new pointer is loaded in the loop, the pointer references a different
2819 // object in every iteration. E.g.:
2820 // for (i)
2821 // int *p = a[i];
2822 // ...
2823 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2824 if (!L->isLoopInvariant(Load->getPointerOperand()))
2825 return false;
2826 return true;
2827}
2828
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002829Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2830 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002831 if (!V->getType()->isPointerTy())
2832 return V;
2833 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2834 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2835 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002836 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2837 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002838 V = cast<Operator>(V)->getOperand(0);
2839 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2840 if (GA->mayBeOverridden())
2841 return V;
2842 V = GA->getAliasee();
2843 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002844 // See if InstructionSimplify knows any relevant tricks.
2845 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002846 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002847 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002848 V = Simplified;
2849 continue;
2850 }
2851
Dan Gohmana4fcd242010-12-15 20:02:24 +00002852 return V;
2853 }
2854 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2855 }
2856 return V;
2857}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002858
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002859void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002860 const DataLayout &DL, LoopInfo *LI,
2861 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002862 SmallPtrSet<Value *, 4> Visited;
2863 SmallVector<Value *, 4> Worklist;
2864 Worklist.push_back(V);
2865 do {
2866 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002867 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002868
David Blaikie70573dc2014-11-19 07:49:26 +00002869 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002870 continue;
2871
2872 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2873 Worklist.push_back(SI->getTrueValue());
2874 Worklist.push_back(SI->getFalseValue());
2875 continue;
2876 }
2877
2878 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002879 // If this PHI changes the underlying object in every iteration of the
2880 // loop, don't look through it. Consider:
2881 // int **A;
2882 // for (i) {
2883 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
2884 // Curr = A[i];
2885 // *Prev, *Curr;
2886 //
2887 // Prev is tracking Curr one iteration behind so they refer to different
2888 // underlying objects.
2889 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
2890 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00002891 for (Value *IncValue : PN->incoming_values())
2892 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002893 continue;
2894 }
2895
2896 Objects.push_back(P);
2897 } while (!Worklist.empty());
2898}
2899
Sanjay Patelaee84212014-11-04 16:27:42 +00002900/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002901bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002902 for (const User *U : V->users()) {
2903 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002904 if (!II) return false;
2905
2906 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2907 II->getIntrinsicID() != Intrinsic::lifetime_end)
2908 return false;
2909 }
2910 return true;
2911}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002912
Philip Reames5461d452015-04-23 17:36:48 +00002913static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002914 Type *Ty, const DataLayout &DL,
2915 const Instruction *CtxI,
2916 const DominatorTree *DT,
2917 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002918 assert(Offset.isNonNegative() && "offset can't be negative");
2919 assert(Ty->isSized() && "must be sized");
2920
2921 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002922 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00002923 if (const Argument *A = dyn_cast<Argument>(BV)) {
2924 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002925 if (!DerefBytes.getBoolValue()) {
2926 DerefBytes = A->getDereferenceableOrNullBytes();
2927 CheckForNonNull = true;
2928 }
Philip Reames5461d452015-04-23 17:36:48 +00002929 } else if (auto CS = ImmutableCallSite(BV)) {
2930 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002931 if (!DerefBytes.getBoolValue()) {
2932 DerefBytes = CS.getDereferenceableOrNullBytes(0);
2933 CheckForNonNull = true;
2934 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00002935 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
2936 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
2937 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2938 DerefBytes = CI->getLimitedValue();
2939 }
2940 if (!DerefBytes.getBoolValue()) {
2941 if (MDNode *MD =
2942 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
2943 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2944 DerefBytes = CI->getLimitedValue();
2945 }
2946 CheckForNonNull = true;
2947 }
Philip Reames5461d452015-04-23 17:36:48 +00002948 }
2949
2950 if (DerefBytes.getBoolValue())
2951 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002952 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
2953 return true;
2954
Philip Reames5461d452015-04-23 17:36:48 +00002955 return false;
2956}
2957
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002958static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
2959 const Instruction *CtxI,
2960 const DominatorTree *DT,
2961 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002962 Type *VTy = V->getType();
2963 Type *Ty = VTy->getPointerElementType();
2964 if (!Ty->isSized())
2965 return false;
2966
2967 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002968 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00002969}
2970
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002971static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
2972 const DataLayout &DL) {
2973 APInt BaseAlign(Offset.getBitWidth(), 0);
2974 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base))
2975 BaseAlign = AI->getAlignment();
2976 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base))
2977 BaseAlign = GV->getAlignment();
2978 else if (const Argument *A = dyn_cast<Argument>(Base))
2979 BaseAlign = A->getParamAlignment();
Artur Pilipenko84bc62f2015-09-18 12:33:31 +00002980 else if (auto CS = ImmutableCallSite(Base))
2981 BaseAlign = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
Artur Pilipenkob4d00902015-09-28 17:41:08 +00002982 else if (const LoadInst *LI = dyn_cast<LoadInst>(Base))
2983 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
2984 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2985 BaseAlign = CI->getLimitedValue();
2986 }
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002987
2988 if (!BaseAlign) {
2989 Type *Ty = Base->getType()->getPointerElementType();
2990 BaseAlign = DL.getABITypeAlignment(Ty);
2991 }
2992
2993 APInt Alignment(Offset.getBitWidth(), Align);
2994
2995 assert(Alignment.isPowerOf2() && "must be a power of 2!");
2996 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
2997}
2998
2999static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3000 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0);
3001 return isAligned(Base, Offset, Align, DL);
3002}
3003
Philip Reames5461d452015-04-23 17:36:48 +00003004/// Test if V is always a pointer to allocated and suitably aligned memory for
3005/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003006static bool isDereferenceableAndAlignedPointer(
3007 const Value *V, unsigned Align, const DataLayout &DL,
3008 const Instruction *CtxI, const DominatorTree *DT,
3009 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003010 // Note that it is not safe to speculate into a malloc'd region because
3011 // malloc may return null.
3012
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003013 // These are obviously ok if aligned.
3014 if (isa<AllocaInst>(V))
3015 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003016
3017 // It's not always safe to follow a bitcast, for example:
3018 // bitcast i8* (alloca i8) to i32*
3019 // would result in a 4-byte load from a 1-byte alloca. However,
3020 // if we're casting from a pointer from a type of larger size
3021 // to a type of smaller size (or the same size), and the alignment
3022 // is at least as large as for the resulting pointer type, then
3023 // we can look through the bitcast.
3024 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3025 Type *STy = BC->getSrcTy()->getPointerElementType(),
3026 *DTy = BC->getDestTy()->getPointerElementType();
3027 if (STy->isSized() && DTy->isSized() &&
3028 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3029 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003030 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3031 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003032 }
3033
3034 // Global variables which can't collapse to null are ok.
3035 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003036 if (!GV->hasExternalWeakLinkage())
3037 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003038
3039 // byval arguments are okay.
3040 if (const Argument *A = dyn_cast<Argument>(V))
3041 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003042 return isAligned(V, Align, DL);
3043
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003044 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003045 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003046
3047 // For GEPs, determine if the indexing lands within the allocated object.
3048 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003049 Type *VTy = GEP->getType();
3050 Type *Ty = VTy->getPointerElementType();
3051 const Value *Base = GEP->getPointerOperand();
3052
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003053 // Conservatively require that the base pointer be fully dereferenceable
3054 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003055 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003056 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003057 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3058 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003059 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003060
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003061 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
3062 if (!GEP->accumulateConstantOffset(DL, Offset))
3063 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003064
3065 // Check if the load is within the bounds of the underlying object
3066 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003067 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3068 Type *BaseType = Base->getType()->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003069 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3070 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3071 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003072 }
3073
3074 // For gc.relocate, look through relocations
3075 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
3076 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
3077 GCRelocateOperands RelocateInst(I);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003078 return isDereferenceableAndAlignedPointer(
3079 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003080 }
3081
3082 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003083 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3084 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003085
3086 // If we don't know, assume the worst.
3087 return false;
3088}
3089
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003090bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3091 const DataLayout &DL,
3092 const Instruction *CtxI,
3093 const DominatorTree *DT,
3094 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003095 // When dereferenceability information is provided by a dereferenceable
3096 // attribute, we know exactly how many bytes are dereferenceable. If we can
3097 // determine the exact offset to the attributed variable, we can use that
3098 // information here.
3099 Type *VTy = V->getType();
3100 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003101
3102 // Require ABI alignment for loads without alignment specification
3103 if (Align == 0)
3104 Align = DL.getABITypeAlignment(Ty);
3105
Philip Reames5461d452015-04-23 17:36:48 +00003106 if (Ty->isSized()) {
3107 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3108 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003109
Philip Reames5461d452015-04-23 17:36:48 +00003110 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003111 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3112 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003113 return true;
3114 }
3115
3116 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003117 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3118 Visited);
3119}
3120
3121bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3122 const Instruction *CtxI,
3123 const DominatorTree *DT,
3124 const TargetLibraryInfo *TLI) {
3125 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003126}
3127
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003128bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3129 const Instruction *CtxI,
3130 const DominatorTree *DT,
3131 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003132 const Operator *Inst = dyn_cast<Operator>(V);
3133 if (!Inst)
3134 return false;
3135
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003136 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3137 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3138 if (C->canTrap())
3139 return false;
3140
3141 switch (Inst->getOpcode()) {
3142 default:
3143 return true;
3144 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003145 case Instruction::URem: {
3146 // x / y is undefined if y == 0.
3147 const APInt *V;
3148 if (match(Inst->getOperand(1), m_APInt(V)))
3149 return *V != 0;
3150 return false;
3151 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003152 case Instruction::SDiv:
3153 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003154 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003155 const APInt *Numerator, *Denominator;
3156 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3157 return false;
3158 // We cannot hoist this division if the denominator is 0.
3159 if (*Denominator == 0)
3160 return false;
3161 // It's safe to hoist if the denominator is not 0 or -1.
3162 if (*Denominator != -1)
3163 return true;
3164 // At this point we know that the denominator is -1. It is safe to hoist as
3165 // long we know that the numerator is not INT_MIN.
3166 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3167 return !Numerator->isMinSignedValue();
3168 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003169 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003170 }
3171 case Instruction::Load: {
3172 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003173 if (!LI->isUnordered() ||
3174 // Speculative load may create a race that did not exist in the source.
3175 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003176 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003177 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003178 return isDereferenceableAndAlignedPointer(
3179 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003180 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003181 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003182 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3183 switch (II->getIntrinsicID()) {
3184 // These synthetic intrinsics have no side-effects and just mark
3185 // information about their operands.
3186 // FIXME: There are other no-op synthetic instructions that potentially
3187 // should be considered at least *safe* to speculate...
3188 case Intrinsic::dbg_declare:
3189 case Intrinsic::dbg_value:
3190 return true;
3191
3192 case Intrinsic::bswap:
3193 case Intrinsic::ctlz:
3194 case Intrinsic::ctpop:
3195 case Intrinsic::cttz:
3196 case Intrinsic::objectsize:
3197 case Intrinsic::sadd_with_overflow:
3198 case Intrinsic::smul_with_overflow:
3199 case Intrinsic::ssub_with_overflow:
3200 case Intrinsic::uadd_with_overflow:
3201 case Intrinsic::umul_with_overflow:
3202 case Intrinsic::usub_with_overflow:
3203 return true;
3204 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3205 // errno like libm sqrt would.
3206 case Intrinsic::sqrt:
3207 case Intrinsic::fma:
3208 case Intrinsic::fmuladd:
3209 case Intrinsic::fabs:
3210 case Intrinsic::minnum:
3211 case Intrinsic::maxnum:
3212 return true;
3213 // TODO: some fp intrinsics are marked as having the same error handling
3214 // as libm. They're safe to speculate when they won't error.
3215 // TODO: are convert_{from,to}_fp16 safe?
3216 // TODO: can we list target-specific intrinsics here?
3217 default: break;
3218 }
3219 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003220 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003221 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003222 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003223 case Instruction::VAArg:
3224 case Instruction::Alloca:
3225 case Instruction::Invoke:
3226 case Instruction::PHI:
3227 case Instruction::Store:
3228 case Instruction::Ret:
3229 case Instruction::Br:
3230 case Instruction::IndirectBr:
3231 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003232 case Instruction::Unreachable:
3233 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003234 case Instruction::AtomicRMW:
3235 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003236 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003237 case Instruction::Resume:
David Majnemer654e1302015-07-31 17:58:14 +00003238 case Instruction::CatchPad:
3239 case Instruction::CatchEndPad:
3240 case Instruction::CatchRet:
3241 case Instruction::CleanupPad:
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00003242 case Instruction::CleanupEndPad:
David Majnemer654e1302015-07-31 17:58:14 +00003243 case Instruction::CleanupRet:
3244 case Instruction::TerminatePad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003245 return false; // Misc instructions which have effects
3246 }
3247}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003248
Quentin Colombet6443cce2015-08-06 18:44:34 +00003249bool llvm::mayBeMemoryDependent(const Instruction &I) {
3250 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3251}
3252
Sanjay Patelaee84212014-11-04 16:27:42 +00003253/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003254bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003255 assert(V->getType()->isPointerTy() && "V must be pointer type");
3256
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003257 // Alloca never returns null, malloc might.
3258 if (isa<AllocaInst>(V)) return true;
3259
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003260 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003261 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003262 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003263
Pete Cooper6b716212015-08-27 03:16:29 +00003264 // A global variable in address space 0 is non null unless extern weak.
3265 // Other address spaces may have null as a valid address for a global,
3266 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003267 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003268 return !GV->hasExternalWeakLinkage() &&
3269 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003270
Philip Reamescdb72f32014-10-20 22:40:55 +00003271 // A Load tagged w/nonnull metadata is never null.
3272 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003273 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003274
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003275 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003276 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003277 return true;
3278
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003279 // operator new never returns null.
3280 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
3281 return true;
3282
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003283 return false;
3284}
David Majnemer491331a2015-01-02 07:29:43 +00003285
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003286static bool isKnownNonNullFromDominatingCondition(const Value *V,
3287 const Instruction *CtxI,
3288 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003289 assert(V->getType()->isPointerTy() && "V must be pointer type");
3290
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003291 unsigned NumUsesExplored = 0;
3292 for (auto U : V->users()) {
3293 // Avoid massive lists
3294 if (NumUsesExplored >= DomConditionsMaxUses)
3295 break;
3296 NumUsesExplored++;
3297 // Consider only compare instructions uniquely controlling a branch
3298 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3299 if (!Cmp)
3300 continue;
3301
3302 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3303 continue;
3304
3305 for (auto *CmpU : Cmp->users()) {
3306 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3307 if (!BI)
3308 continue;
3309
3310 assert(BI->isConditional() && "uses a comparison!");
3311
3312 BasicBlock *NonNullSuccessor = nullptr;
3313 CmpInst::Predicate Pred;
3314
3315 if (match(const_cast<ICmpInst*>(Cmp),
3316 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3317 if (Pred == ICmpInst::ICMP_EQ)
3318 NonNullSuccessor = BI->getSuccessor(1);
3319 else if (Pred == ICmpInst::ICMP_NE)
3320 NonNullSuccessor = BI->getSuccessor(0);
3321 }
3322
3323 if (NonNullSuccessor) {
3324 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3325 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3326 return true;
3327 }
3328 }
3329 }
3330
3331 return false;
3332}
3333
3334bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3335 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3336 if (isKnownNonNull(V, TLI))
3337 return true;
3338
3339 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3340}
3341
David Majnemer491331a2015-01-02 07:29:43 +00003342OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003343 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003344 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003345 const Instruction *CxtI,
3346 const DominatorTree *DT) {
3347 // Multiplying n * m significant bits yields a result of n + m significant
3348 // bits. If the total number of significant bits does not exceed the
3349 // result bit width (minus 1), there is no overflow.
3350 // This means if we have enough leading zero bits in the operands
3351 // we can guarantee that the result does not overflow.
3352 // Ref: "Hacker's Delight" by Henry Warren
3353 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3354 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003355 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003356 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003357 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003358 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3359 DT);
3360 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3361 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003362 // Note that underestimating the number of zero bits gives a more
3363 // conservative answer.
3364 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3365 RHSKnownZero.countLeadingOnes();
3366 // First handle the easy case: if we have enough zero bits there's
3367 // definitely no overflow.
3368 if (ZeroBits >= BitWidth)
3369 return OverflowResult::NeverOverflows;
3370
3371 // Get the largest possible values for each operand.
3372 APInt LHSMax = ~LHSKnownZero;
3373 APInt RHSMax = ~RHSKnownZero;
3374
3375 // We know the multiply operation doesn't overflow if the maximum values for
3376 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003377 bool MaxOverflow;
3378 LHSMax.umul_ov(RHSMax, MaxOverflow);
3379 if (!MaxOverflow)
3380 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003381
David Majnemerc8a576b2015-01-02 07:29:47 +00003382 // We know it always overflows if multiplying the smallest possible values for
3383 // the operands also results in overflow.
3384 bool MinOverflow;
3385 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3386 if (MinOverflow)
3387 return OverflowResult::AlwaysOverflows;
3388
3389 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003390}
David Majnemer5310c1e2015-01-07 00:39:50 +00003391
3392OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003393 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003394 AssumptionCache *AC,
3395 const Instruction *CxtI,
3396 const DominatorTree *DT) {
3397 bool LHSKnownNonNegative, LHSKnownNegative;
3398 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3399 AC, CxtI, DT);
3400 if (LHSKnownNonNegative || LHSKnownNegative) {
3401 bool RHSKnownNonNegative, RHSKnownNegative;
3402 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3403 AC, CxtI, DT);
3404
3405 if (LHSKnownNegative && RHSKnownNegative) {
3406 // The sign bit is set in both cases: this MUST overflow.
3407 // Create a simple add instruction, and insert it into the struct.
3408 return OverflowResult::AlwaysOverflows;
3409 }
3410
3411 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3412 // The sign bit is clear in both cases: this CANNOT overflow.
3413 // Create a simple add instruction, and insert it into the struct.
3414 return OverflowResult::NeverOverflows;
3415 }
3416 }
3417
3418 return OverflowResult::MayOverflow;
3419}
James Molloy71b91c22015-05-11 14:42:20 +00003420
Jingyue Wu10fcea52015-08-20 18:27:04 +00003421static OverflowResult computeOverflowForSignedAdd(
3422 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3423 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3424 if (Add && Add->hasNoSignedWrap()) {
3425 return OverflowResult::NeverOverflows;
3426 }
3427
3428 bool LHSKnownNonNegative, LHSKnownNegative;
3429 bool RHSKnownNonNegative, RHSKnownNegative;
3430 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3431 AC, CxtI, DT);
3432 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3433 AC, CxtI, DT);
3434
3435 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3436 (LHSKnownNegative && RHSKnownNonNegative)) {
3437 // The sign bits are opposite: this CANNOT overflow.
3438 return OverflowResult::NeverOverflows;
3439 }
3440
3441 // The remaining code needs Add to be available. Early returns if not so.
3442 if (!Add)
3443 return OverflowResult::MayOverflow;
3444
3445 // If the sign of Add is the same as at least one of the operands, this add
3446 // CANNOT overflow. This is particularly useful when the sum is
3447 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3448 // operands.
3449 bool LHSOrRHSKnownNonNegative =
3450 (LHSKnownNonNegative || RHSKnownNonNegative);
3451 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3452 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3453 bool AddKnownNonNegative, AddKnownNegative;
3454 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3455 /*Depth=*/0, AC, CxtI, DT);
3456 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3457 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3458 return OverflowResult::NeverOverflows;
3459 }
3460 }
3461
3462 return OverflowResult::MayOverflow;
3463}
3464
3465OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3466 const DataLayout &DL,
3467 AssumptionCache *AC,
3468 const Instruction *CxtI,
3469 const DominatorTree *DT) {
3470 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3471 Add, DL, AC, CxtI, DT);
3472}
3473
3474OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3475 const DataLayout &DL,
3476 AssumptionCache *AC,
3477 const Instruction *CxtI,
3478 const DominatorTree *DT) {
3479 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3480}
3481
Jingyue Wu42f1d672015-07-28 18:22:40 +00003482bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3483 // FIXME: This conservative implementation can be relaxed. E.g. most
3484 // atomic operations are guaranteed to terminate on most platforms
3485 // and most functions terminate.
3486
3487 return !I->isAtomic() && // atomics may never succeed on some platforms
3488 !isa<CallInst>(I) && // could throw and might not terminate
3489 !isa<InvokeInst>(I) && // might not terminate and could throw to
3490 // non-successor (see bug 24185 for details).
3491 !isa<ResumeInst>(I) && // has no successors
3492 !isa<ReturnInst>(I); // has no successors
3493}
3494
3495bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3496 const Loop *L) {
3497 // The loop header is guaranteed to be executed for every iteration.
3498 //
3499 // FIXME: Relax this constraint to cover all basic blocks that are
3500 // guaranteed to be executed at every iteration.
3501 if (I->getParent() != L->getHeader()) return false;
3502
3503 for (const Instruction &LI : *L->getHeader()) {
3504 if (&LI == I) return true;
3505 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3506 }
3507 llvm_unreachable("Instruction not contained in its own parent basic block.");
3508}
3509
3510bool llvm::propagatesFullPoison(const Instruction *I) {
3511 switch (I->getOpcode()) {
3512 case Instruction::Add:
3513 case Instruction::Sub:
3514 case Instruction::Xor:
3515 case Instruction::Trunc:
3516 case Instruction::BitCast:
3517 case Instruction::AddrSpaceCast:
3518 // These operations all propagate poison unconditionally. Note that poison
3519 // is not any particular value, so xor or subtraction of poison with
3520 // itself still yields poison, not zero.
3521 return true;
3522
3523 case Instruction::AShr:
3524 case Instruction::SExt:
3525 // For these operations, one bit of the input is replicated across
3526 // multiple output bits. A replicated poison bit is still poison.
3527 return true;
3528
3529 case Instruction::Shl: {
3530 // Left shift *by* a poison value is poison. The number of
3531 // positions to shift is unsigned, so no negative values are
3532 // possible there. Left shift by zero places preserves poison. So
3533 // it only remains to consider left shift of poison by a positive
3534 // number of places.
3535 //
3536 // A left shift by a positive number of places leaves the lowest order bit
3537 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3538 // make the poison operand violate that flag, yielding a fresh full-poison
3539 // value.
3540 auto *OBO = cast<OverflowingBinaryOperator>(I);
3541 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3542 }
3543
3544 case Instruction::Mul: {
3545 // A multiplication by zero yields a non-poison zero result, so we need to
3546 // rule out zero as an operand. Conservatively, multiplication by a
3547 // non-zero constant is not multiplication by zero.
3548 //
3549 // Multiplication by a non-zero constant can leave some bits
3550 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3551 // order bit unpoisoned. So we need to consider that.
3552 //
3553 // Multiplication by 1 preserves poison. If the multiplication has a
3554 // no-wrap flag, then we can make the poison operand violate that flag
3555 // when multiplied by any integer other than 0 and 1.
3556 auto *OBO = cast<OverflowingBinaryOperator>(I);
3557 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3558 for (Value *V : OBO->operands()) {
3559 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3560 // A ConstantInt cannot yield poison, so we can assume that it is
3561 // the other operand that is poison.
3562 return !CI->isZero();
3563 }
3564 }
3565 }
3566 return false;
3567 }
3568
3569 case Instruction::GetElementPtr:
3570 // A GEP implicitly represents a sequence of additions, subtractions,
3571 // truncations, sign extensions and multiplications. The multiplications
3572 // are by the non-zero sizes of some set of types, so we do not have to be
3573 // concerned with multiplication by zero. If the GEP is in-bounds, then
3574 // these operations are implicitly no-signed-wrap so poison is propagated
3575 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3576 return cast<GEPOperator>(I)->isInBounds();
3577
3578 default:
3579 return false;
3580 }
3581}
3582
3583const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3584 switch (I->getOpcode()) {
3585 case Instruction::Store:
3586 return cast<StoreInst>(I)->getPointerOperand();
3587
3588 case Instruction::Load:
3589 return cast<LoadInst>(I)->getPointerOperand();
3590
3591 case Instruction::AtomicCmpXchg:
3592 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3593
3594 case Instruction::AtomicRMW:
3595 return cast<AtomicRMWInst>(I)->getPointerOperand();
3596
3597 case Instruction::UDiv:
3598 case Instruction::SDiv:
3599 case Instruction::URem:
3600 case Instruction::SRem:
3601 return I->getOperand(1);
3602
3603 default:
3604 return nullptr;
3605 }
3606}
3607
3608bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3609 // We currently only look for uses of poison values within the same basic
3610 // block, as that makes it easier to guarantee that the uses will be
3611 // executed given that PoisonI is executed.
3612 //
3613 // FIXME: Expand this to consider uses beyond the same basic block. To do
3614 // this, look out for the distinction between post-dominance and strong
3615 // post-dominance.
3616 const BasicBlock *BB = PoisonI->getParent();
3617
3618 // Set of instructions that we have proved will yield poison if PoisonI
3619 // does.
3620 SmallSet<const Value *, 16> YieldsPoison;
3621 YieldsPoison.insert(PoisonI);
3622
3623 for (const Instruction *I = PoisonI, *E = BB->end(); I != E;
3624 I = I->getNextNode()) {
3625 if (I != PoisonI) {
3626 const Value *NotPoison = getGuaranteedNonFullPoisonOp(I);
3627 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3628 if (!isGuaranteedToTransferExecutionToSuccessor(I)) return false;
3629 }
3630
3631 // Mark poison that propagates from I through uses of I.
3632 if (YieldsPoison.count(I)) {
3633 for (const User *User : I->users()) {
3634 const Instruction *UserI = cast<Instruction>(User);
3635 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3636 YieldsPoison.insert(User);
3637 }
3638 }
3639 }
3640 return false;
3641}
3642
James Molloy134bec22015-08-11 09:12:57 +00003643static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3644 if (FMF.noNaNs())
3645 return true;
3646
3647 if (auto *C = dyn_cast<ConstantFP>(V))
3648 return !C->isNaN();
3649 return false;
3650}
3651
3652static bool isKnownNonZero(Value *V) {
3653 if (auto *C = dyn_cast<ConstantFP>(V))
3654 return !C->isZero();
3655 return false;
3656}
3657
3658static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3659 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003660 Value *CmpLHS, Value *CmpRHS,
3661 Value *TrueVal, Value *FalseVal,
3662 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003663 LHS = CmpLHS;
3664 RHS = CmpRHS;
3665
James Molloy134bec22015-08-11 09:12:57 +00003666 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3667 // return inconsistent results between implementations.
3668 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3669 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3670 // Therefore we behave conservatively and only proceed if at least one of the
3671 // operands is known to not be zero, or if we don't care about signed zeroes.
3672 switch (Pred) {
3673 default: break;
3674 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3675 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3676 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3677 !isKnownNonZero(CmpRHS))
3678 return {SPF_UNKNOWN, SPNB_NA, false};
3679 }
3680
3681 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3682 bool Ordered = false;
3683
3684 // When given one NaN and one non-NaN input:
3685 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3686 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3687 // ordered comparison fails), which could be NaN or non-NaN.
3688 // so here we discover exactly what NaN behavior is required/accepted.
3689 if (CmpInst::isFPPredicate(Pred)) {
3690 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3691 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3692
3693 if (LHSSafe && RHSSafe) {
3694 // Both operands are known non-NaN.
3695 NaNBehavior = SPNB_RETURNS_ANY;
3696 } else if (CmpInst::isOrdered(Pred)) {
3697 // An ordered comparison will return false when given a NaN, so it
3698 // returns the RHS.
3699 Ordered = true;
3700 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003701 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003702 NaNBehavior = SPNB_RETURNS_NAN;
3703 else if (RHSSafe)
3704 NaNBehavior = SPNB_RETURNS_OTHER;
3705 else
3706 // Completely unsafe.
3707 return {SPF_UNKNOWN, SPNB_NA, false};
3708 } else {
3709 Ordered = false;
3710 // An unordered comparison will return true when given a NaN, so it
3711 // returns the LHS.
3712 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003713 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003714 NaNBehavior = SPNB_RETURNS_OTHER;
3715 else if (RHSSafe)
3716 NaNBehavior = SPNB_RETURNS_NAN;
3717 else
3718 // Completely unsafe.
3719 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003720 }
3721 }
3722
James Molloy71b91c22015-05-11 14:42:20 +00003723 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003724 std::swap(CmpLHS, CmpRHS);
3725 Pred = CmpInst::getSwappedPredicate(Pred);
3726 if (NaNBehavior == SPNB_RETURNS_NAN)
3727 NaNBehavior = SPNB_RETURNS_OTHER;
3728 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3729 NaNBehavior = SPNB_RETURNS_NAN;
3730 Ordered = !Ordered;
3731 }
3732
3733 // ([if]cmp X, Y) ? X : Y
3734 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003735 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003736 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003737 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003738 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003739 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003740 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003741 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003742 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003743 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003744 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3745 case FCmpInst::FCMP_UGT:
3746 case FCmpInst::FCMP_UGE:
3747 case FCmpInst::FCMP_OGT:
3748 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3749 case FCmpInst::FCMP_ULT:
3750 case FCmpInst::FCMP_ULE:
3751 case FCmpInst::FCMP_OLT:
3752 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003753 }
3754 }
3755
3756 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3757 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3758 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3759
3760 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3761 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3762 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003763 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003764 }
3765
3766 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3767 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3768 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003769 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003770 }
3771 }
3772
3773 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3774 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3775 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3776 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3777 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3778 LHS = TrueVal;
3779 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003780 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003781 }
3782 }
3783 }
3784
3785 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3786
James Molloy134bec22015-08-11 09:12:57 +00003787 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003788}
James Molloy270ef8c2015-05-15 16:04:50 +00003789
James Molloy569cea62015-09-02 17:25:25 +00003790static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3791 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003792 CastInst *CI = dyn_cast<CastInst>(V1);
3793 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003794 CastInst *CI2 = dyn_cast<CastInst>(V2);
3795 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003796 return nullptr;
3797 *CastOp = CI->getOpcode();
3798
James Molloy569cea62015-09-02 17:25:25 +00003799 if (CI2) {
3800 // If V1 and V2 are both the same cast from the same type, we can look
3801 // through V1.
3802 if (CI2->getOpcode() == CI->getOpcode() &&
3803 CI2->getSrcTy() == CI->getSrcTy())
3804 return CI2->getOperand(0);
3805 return nullptr;
3806 } else if (!C) {
3807 return nullptr;
3808 }
3809
James Molloy2b21a7c2015-05-20 18:41:25 +00003810 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3811 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3812 // This is only valid if the truncated value can be sign-extended
3813 // back to the original value.
3814 if (ConstantExpr::getSExt(T, C->getType()) == C)
3815 return T;
3816 return nullptr;
3817 }
3818 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003819 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3820
3821 if (isa<TruncInst>(CI))
3822 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3823
James Molloy134bec22015-08-11 09:12:57 +00003824 if (isa<FPToUIInst>(CI))
3825 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3826
3827 if (isa<FPToSIInst>(CI))
3828 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3829
3830 if (isa<UIToFPInst>(CI))
3831 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3832
3833 if (isa<SIToFPInst>(CI))
3834 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3835
3836 if (isa<FPTruncInst>(CI))
3837 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3838
3839 if (isa<FPExtInst>(CI))
3840 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3841
James Molloy270ef8c2015-05-15 16:04:50 +00003842 return nullptr;
3843}
3844
James Molloy134bec22015-08-11 09:12:57 +00003845SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003846 Value *&LHS, Value *&RHS,
3847 Instruction::CastOps *CastOp) {
3848 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003849 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003850
James Molloy134bec22015-08-11 09:12:57 +00003851 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3852 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003853
James Molloy134bec22015-08-11 09:12:57 +00003854 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003855 Value *CmpLHS = CmpI->getOperand(0);
3856 Value *CmpRHS = CmpI->getOperand(1);
3857 Value *TrueVal = SI->getTrueValue();
3858 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003859 FastMathFlags FMF;
3860 if (isa<FPMathOperator>(CmpI))
3861 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003862
3863 // Bail out early.
3864 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003865 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003866
3867 // Deal with type mismatches.
3868 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003869 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003870 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003871 cast<CastInst>(TrueVal)->getOperand(0), C,
3872 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003873 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003874 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003875 C, cast<CastInst>(FalseVal)->getOperand(0),
3876 LHS, RHS);
3877 }
James Molloy134bec22015-08-11 09:12:57 +00003878 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003879 LHS, RHS);
3880}