blob: 52ec97888d168c1734bfbba4e94b986f8e25fd8b [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_linkonce">'<tt>linkonce_odr</tt>' Linkage</a></li>
35 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000039 </ol>
40 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000043 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000044 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000046 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000047 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000048 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000049 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000050 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000051 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000052 </ol>
53 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000054 <li><a href="#typesystem">Type System</a>
55 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000056 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000057 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000058 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000059 <li><a href="#t_floating">Floating Point Types</a></li>
60 <li><a href="#t_void">Void Type</a></li>
61 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000062 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000063 </ol>
64 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000065 <li><a href="#t_derived">Derived Types</a>
66 <ol>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +000067 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000068 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000069 <li><a href="#t_function">Function Type</a></li>
70 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000072 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000073 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000074 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000075 </ol>
76 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000077 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000078 </ol>
79 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000080 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000081 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000082 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000083 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000084 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
85 <li><a href="#undefvalues">Undefined Values</a></li>
86 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky49f89192009-04-04 07:22:01 +000087 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000088 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000089 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000090 <li><a href="#othervalues">Other Values</a>
91 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000092 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +000093 </ol>
94 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +000095 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
96 <ol>
97 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +000098 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
99 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000100 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
101 Global Variable</a></li>
102 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
103 Global Variable</a></li>
104 </ol>
105 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000106 <li><a href="#instref">Instruction Reference</a>
107 <ol>
108 <li><a href="#terminators">Terminator Instructions</a>
109 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000110 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
111 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000112 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
113 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000114 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000115 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000116 </ol>
117 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000118 <li><a href="#binaryops">Binary Operations</a>
119 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000120 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000121 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000122 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000123 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000124 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000125 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000126 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
127 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
128 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000129 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
130 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
131 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 </ol>
133 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000134 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
135 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000136 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
137 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
138 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000139 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000140 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000141 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000142 </ol>
143 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000144 <li><a href="#vectorops">Vector Operations</a>
145 <ol>
146 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
147 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
148 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000149 </ol>
150 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000151 <li><a href="#aggregateops">Aggregate Operations</a>
152 <ol>
153 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
154 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
155 </ol>
156 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000157 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000158 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000159 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
160 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
161 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000162 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
163 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
164 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000165 </ol>
166 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000167 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000168 <ol>
169 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
170 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
171 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
172 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
173 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000174 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
175 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
176 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000178 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
179 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000180 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000181 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000182 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000183 <li><a href="#otherops">Other Operations</a>
184 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000185 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
186 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000187 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000188 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000189 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000190 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000191 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000192 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000193 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000194 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000195 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000196 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000197 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
198 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000199 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
200 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
201 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000202 </ol>
203 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000204 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
205 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000206 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
207 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
208 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000209 </ol>
210 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000211 <li><a href="#int_codegen">Code Generator Intrinsics</a>
212 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000213 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
214 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
215 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
216 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
217 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
218 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
219 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000220 </ol>
221 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000222 <li><a href="#int_libc">Standard C Library Intrinsics</a>
223 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000224 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
225 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
226 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
227 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
228 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000229 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
230 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000232 </ol>
233 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000234 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000235 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000236 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000237 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
238 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
239 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000240 </ol>
241 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000242 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
243 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000244 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
245 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
246 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
247 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
248 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000249 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000250 </ol>
251 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000252 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000253 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000254 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000255 <ol>
256 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000257 </ol>
258 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000259 <li><a href="#int_atomics">Atomic intrinsics</a>
260 <ol>
261 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
262 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
263 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
264 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
265 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
266 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
267 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
268 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
269 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
270 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
271 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
272 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
273 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
274 </ol>
275 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000276 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000277 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000278 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000279 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000280 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000281 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000282 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000283 '<tt>llvm.trap</tt>' Intrinsic</a></li>
284 <li><a href="#int_stackprotector">
285 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000286 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000287 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000288 </ol>
289 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000290</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000291
292<div class="doc_author">
293 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
294 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000295</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000296
Chris Lattner2f7c9632001-06-06 20:29:01 +0000297<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000298<div class="doc_section"> <a name="abstract">Abstract </a></div>
299<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000300
Misha Brukman76307852003-11-08 01:05:38 +0000301<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000302
303<p>This document is a reference manual for the LLVM assembly language. LLVM is
304 a Static Single Assignment (SSA) based representation that provides type
305 safety, low-level operations, flexibility, and the capability of representing
306 'all' high-level languages cleanly. It is the common code representation
307 used throughout all phases of the LLVM compilation strategy.</p>
308
Misha Brukman76307852003-11-08 01:05:38 +0000309</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000310
Chris Lattner2f7c9632001-06-06 20:29:01 +0000311<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000312<div class="doc_section"> <a name="introduction">Introduction</a> </div>
313<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000314
Misha Brukman76307852003-11-08 01:05:38 +0000315<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000316
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000317<p>The LLVM code representation is designed to be used in three different forms:
318 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
319 for fast loading by a Just-In-Time compiler), and as a human readable
320 assembly language representation. This allows LLVM to provide a powerful
321 intermediate representation for efficient compiler transformations and
322 analysis, while providing a natural means to debug and visualize the
323 transformations. The three different forms of LLVM are all equivalent. This
324 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000325
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000326<p>The LLVM representation aims to be light-weight and low-level while being
327 expressive, typed, and extensible at the same time. It aims to be a
328 "universal IR" of sorts, by being at a low enough level that high-level ideas
329 may be cleanly mapped to it (similar to how microprocessors are "universal
330 IR's", allowing many source languages to be mapped to them). By providing
331 type information, LLVM can be used as the target of optimizations: for
332 example, through pointer analysis, it can be proven that a C automatic
333 variable is never accessed outside of the current function... allowing it to
334 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000335
Misha Brukman76307852003-11-08 01:05:38 +0000336</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000337
Chris Lattner2f7c9632001-06-06 20:29:01 +0000338<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000339<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Misha Brukman76307852003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000342
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000343<p>It is important to note that this document describes 'well formed' LLVM
344 assembly language. There is a difference between what the parser accepts and
345 what is considered 'well formed'. For example, the following instruction is
346 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000347
Bill Wendling3716c5d2007-05-29 09:04:49 +0000348<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000349<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000350%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000351</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000352</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000353
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000354<p>...because the definition of <tt>%x</tt> does not dominate all of its
355 uses. The LLVM infrastructure provides a verification pass that may be used
356 to verify that an LLVM module is well formed. This pass is automatically run
357 by the parser after parsing input assembly and by the optimizer before it
358 outputs bitcode. The violations pointed out by the verifier pass indicate
359 bugs in transformation passes or input to the parser.</p>
360
Bill Wendling3716c5d2007-05-29 09:04:49 +0000361</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000362
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000363<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000364
Chris Lattner2f7c9632001-06-06 20:29:01 +0000365<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000366<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000367<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000368
Misha Brukman76307852003-11-08 01:05:38 +0000369<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000370
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000371<p>LLVM identifiers come in two basic types: global and local. Global
372 identifiers (functions, global variables) begin with the <tt>'@'</tt>
373 character. Local identifiers (register names, types) begin with
374 the <tt>'%'</tt> character. Additionally, there are three different formats
375 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000376
Chris Lattner2f7c9632001-06-06 20:29:01 +0000377<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000378 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000379 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
380 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
381 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
382 other characters in their names can be surrounded with quotes. Special
383 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
384 ASCII code for the character in hexadecimal. In this way, any character
385 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000386
Reid Spencerb23b65f2007-08-07 14:34:28 +0000387 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000388 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000389
Reid Spencer8f08d802004-12-09 18:02:53 +0000390 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000391 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000392</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000393
Reid Spencerb23b65f2007-08-07 14:34:28 +0000394<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000395 don't need to worry about name clashes with reserved words, and the set of
396 reserved words may be expanded in the future without penalty. Additionally,
397 unnamed identifiers allow a compiler to quickly come up with a temporary
398 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000399
Chris Lattner48b383b02003-11-25 01:02:51 +0000400<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000401 languages. There are keywords for different opcodes
402 ('<tt><a href="#i_add">add</a></tt>',
403 '<tt><a href="#i_bitcast">bitcast</a></tt>',
404 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
405 ('<tt><a href="#t_void">void</a></tt>',
406 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
407 reserved words cannot conflict with variable names, because none of them
408 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000409
410<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000411 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
Misha Brukman76307852003-11-08 01:05:38 +0000413<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000414
Bill Wendling3716c5d2007-05-29 09:04:49 +0000415<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000416<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000417%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000418</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000419</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000420
Misha Brukman76307852003-11-08 01:05:38 +0000421<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
Bill Wendling3716c5d2007-05-29 09:04:49 +0000423<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000425%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000426</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000427</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000428
Misha Brukman76307852003-11-08 01:05:38 +0000429<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000430
Bill Wendling3716c5d2007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000432<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000433<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
434<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
435%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000436</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000437</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000439<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
440 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000441
Chris Lattner2f7c9632001-06-06 20:29:01 +0000442<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000443 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000444 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000445
446 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000447 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000448
Misha Brukman76307852003-11-08 01:05:38 +0000449 <li>Unnamed temporaries are numbered sequentially</li>
450</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000451
John Criswell02fdc6f2005-05-12 16:52:32 +0000452<p>...and it also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000453 demonstrating instructions, we will follow an instruction with a comment that
454 defines the type and name of value produced. Comments are shown in italic
455 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000456
Misha Brukman76307852003-11-08 01:05:38 +0000457</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000458
459<!-- *********************************************************************** -->
460<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
461<!-- *********************************************************************** -->
462
463<!-- ======================================================================= -->
464<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
465</div>
466
467<div class="doc_text">
468
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000469<p>LLVM programs are composed of "Module"s, each of which is a translation unit
470 of the input programs. Each module consists of functions, global variables,
471 and symbol table entries. Modules may be combined together with the LLVM
472 linker, which merges function (and global variable) definitions, resolves
473 forward declarations, and merges symbol table entries. Here is an example of
474 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000475
Bill Wendling3716c5d2007-05-29 09:04:49 +0000476<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000477<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000478<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
479 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000480
481<i>; External declaration of the puts function</i>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000482<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000483
484<i>; Definition of main function</i>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000485define i32 @main() { <i>; i32()* </i>
Dan Gohman623806e2009-01-04 23:44:43 +0000486 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000487 %cast210 = <a
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000488 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000489
490 <i>; Call puts function to write out the string to stdout...</i>
491 <a
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000492 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000494 href="#i_ret">ret</a> i32 0<br>}<br>
495</pre>
496</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000497
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000498<p>This example is made up of a <a href="#globalvars">global variable</a> named
499 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
500 a <a href="#functionstructure">function definition</a> for
501 "<tt>main</tt>".</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000502
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000503<p>In general, a module is made up of a list of global values, where both
504 functions and global variables are global values. Global values are
505 represented by a pointer to a memory location (in this case, a pointer to an
506 array of char, and a pointer to a function), and have one of the
507 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000508
Chris Lattnerd79749a2004-12-09 16:36:40 +0000509</div>
510
511<!-- ======================================================================= -->
512<div class="doc_subsection">
513 <a name="linkage">Linkage Types</a>
514</div>
515
516<div class="doc_text">
517
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000518<p>All Global Variables and Functions have one of the following types of
519 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000520
521<dl>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000522 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000523 <dd>Global values with private linkage are only directly accessible by objects
524 in the current module. In particular, linking code into a module with an
525 private global value may cause the private to be renamed as necessary to
526 avoid collisions. Because the symbol is private to the module, all
527 references can be updated. This doesn't show up in any symbol table in the
528 object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000529
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000530 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000531 <dd>Similar to private, but the symbol is passed through the assembler and
532 removed by the linker after evaluation.</dd>
533
Dale Johannesen4188aad2008-05-23 23:13:41 +0000534 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000535 <dd>Similar to private, but the value shows as a local symbol
536 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
537 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000538
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000539 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000540 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000541 into the object file corresponding to the LLVM module. They exist to
542 allow inlining and other optimizations to take place given knowledge of
543 the definition of the global, which is known to be somewhere outside the
544 module. Globals with <tt>available_externally</tt> linkage are allowed to
545 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
546 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000547
Chris Lattner6af02f32004-12-09 16:11:40 +0000548 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000549 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000550 the same name when linkage occurs. This is typically used to implement
551 inline functions, templates, or other code which must be generated in each
552 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
553 allowed to be discarded.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000554
Chris Lattner6af02f32004-12-09 16:11:40 +0000555 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000556 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
557 <tt>linkonce</tt> linkage, except that unreferenced globals with
558 <tt>weak</tt> linkage may not be discarded. This is used for globals that
559 are declared "weak" in C source code.</dd>
560
561 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
562 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
563 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
564 global scope.
565 Symbols with "<tt>common</tt>" linkage are merged in the same way as
566 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
567 Further, <tt>common</tt> symbols may not have an explicit section, and
568 must have a zero initializer. Functions and aliases may not have common
569 linkage.</dd>
570
Chris Lattnerd79749a2004-12-09 16:36:40 +0000571
Chris Lattner6af02f32004-12-09 16:11:40 +0000572 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000573 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000574 pointer to array type. When two global variables with appending linkage
575 are linked together, the two global arrays are appended together. This is
576 the LLVM, typesafe, equivalent of having the system linker append together
577 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000578
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000579 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000580 <dd>The semantics of this linkage follow the ELF object file model: the symbol
581 is weak until linked, if not linked, the symbol becomes null instead of
582 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000583
Duncan Sands12da8ce2009-03-07 15:45:40 +0000584 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000585 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000586 <dd>Some languages allow differing globals to be merged, such as two functions
587 with different semantics. Other languages, such as <tt>C++</tt>, ensure
588 that only equivalent globals are ever merged (the "one definition rule" -
589 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
590 and <tt>weak_odr</tt> linkage types to indicate that the global will only
591 be merged with equivalent globals. These linkage types are otherwise the
592 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000593
Chris Lattner6af02f32004-12-09 16:11:40 +0000594 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000595 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000596 visible, meaning that it participates in linkage and can be used to
597 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000598</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000599
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000600<p>The next two types of linkage are targeted for Microsoft Windows platform
601 only. They are designed to support importing (exporting) symbols from (to)
602 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000603
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000604<dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000605 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000606 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000607 or variable via a global pointer to a pointer that is set up by the DLL
608 exporting the symbol. On Microsoft Windows targets, the pointer name is
609 formed by combining <code>__imp_</code> and the function or variable
610 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000611
612 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000613 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000614 pointer to a pointer in a DLL, so that it can be referenced with the
615 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
616 name is formed by combining <code>__imp_</code> and the function or
617 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000618</dl>
619
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000620<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
621 another module defined a "<tt>.LC0</tt>" variable and was linked with this
622 one, one of the two would be renamed, preventing a collision. Since
623 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
624 declarations), they are accessible outside of the current module.</p>
625
626<p>It is illegal for a function <i>declaration</i> to have any linkage type
627 other than "externally visible", <tt>dllimport</tt>
628 or <tt>extern_weak</tt>.</p>
629
Duncan Sands12da8ce2009-03-07 15:45:40 +0000630<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000631 or <tt>weak_odr</tt> linkages.</p>
632
Chris Lattner6af02f32004-12-09 16:11:40 +0000633</div>
634
635<!-- ======================================================================= -->
636<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000637 <a name="callingconv">Calling Conventions</a>
638</div>
639
640<div class="doc_text">
641
642<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000643 and <a href="#i_invoke">invokes</a> can all have an optional calling
644 convention specified for the call. The calling convention of any pair of
645 dynamic caller/callee must match, or the behavior of the program is
646 undefined. The following calling conventions are supported by LLVM, and more
647 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000648
649<dl>
650 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000651 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000652 specified) matches the target C calling conventions. This calling
653 convention supports varargs function calls and tolerates some mismatch in
654 the declared prototype and implemented declaration of the function (as
655 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000656
657 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000658 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000659 (e.g. by passing things in registers). This calling convention allows the
660 target to use whatever tricks it wants to produce fast code for the
661 target, without having to conform to an externally specified ABI
662 (Application Binary Interface). Implementations of this convention should
663 allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
664 optimization</a> to be supported. This calling convention does not
665 support varargs and requires the prototype of all callees to exactly match
666 the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000667
668 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000669 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000670 as possible under the assumption that the call is not commonly executed.
671 As such, these calls often preserve all registers so that the call does
672 not break any live ranges in the caller side. This calling convention
673 does not support varargs and requires the prototype of all callees to
674 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000675
Chris Lattner573f64e2005-05-07 01:46:40 +0000676 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000677 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000678 target-specific calling conventions to be used. Target specific calling
679 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000680</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000681
682<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000683 support Pascal conventions or any other well-known target-independent
684 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000685
686</div>
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000690 <a name="visibility">Visibility Styles</a>
691</div>
692
693<div class="doc_text">
694
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000695<p>All Global Variables and Functions have one of the following visibility
696 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000697
698<dl>
699 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000700 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000701 that the declaration is visible to other modules and, in shared libraries,
702 means that the declared entity may be overridden. On Darwin, default
703 visibility means that the declaration is visible to other modules. Default
704 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000705
706 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000707 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000708 object if they are in the same shared object. Usually, hidden visibility
709 indicates that the symbol will not be placed into the dynamic symbol
710 table, so no other module (executable or shared library) can reference it
711 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000712
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000713 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000714 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000715 the dynamic symbol table, but that references within the defining module
716 will bind to the local symbol. That is, the symbol cannot be overridden by
717 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000718</dl>
719
720</div>
721
722<!-- ======================================================================= -->
723<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000724 <a name="namedtypes">Named Types</a>
725</div>
726
727<div class="doc_text">
728
729<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000730 it easier to read the IR and make the IR more condensed (particularly when
731 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000732
733<div class="doc_code">
734<pre>
735%mytype = type { %mytype*, i32 }
736</pre>
737</div>
738
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000739<p>You may give a name to any <a href="#typesystem">type</a> except
740 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
741 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000742
743<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000744 and that you can therefore specify multiple names for the same type. This
745 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
746 uses structural typing, the name is not part of the type. When printing out
747 LLVM IR, the printer will pick <em>one name</em> to render all types of a
748 particular shape. This means that if you have code where two different
749 source types end up having the same LLVM type, that the dumper will sometimes
750 print the "wrong" or unexpected type. This is an important design point and
751 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000752
753</div>
754
Chris Lattnerbc088212009-01-11 20:53:49 +0000755<!-- ======================================================================= -->
756<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000757 <a name="globalvars">Global Variables</a>
758</div>
759
760<div class="doc_text">
761
Chris Lattner5d5aede2005-02-12 19:30:21 +0000762<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000763 instead of run-time. Global variables may optionally be initialized, may
764 have an explicit section to be placed in, and may have an optional explicit
765 alignment specified. A variable may be defined as "thread_local", which
766 means that it will not be shared by threads (each thread will have a
767 separated copy of the variable). A variable may be defined as a global
768 "constant," which indicates that the contents of the variable
769 will <b>never</b> be modified (enabling better optimization, allowing the
770 global data to be placed in the read-only section of an executable, etc).
771 Note that variables that need runtime initialization cannot be marked
772 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000773
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000774<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
775 constant, even if the final definition of the global is not. This capability
776 can be used to enable slightly better optimization of the program, but
777 requires the language definition to guarantee that optimizations based on the
778 'constantness' are valid for the translation units that do not include the
779 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000780
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000781<p>As SSA values, global variables define pointer values that are in scope
782 (i.e. they dominate) all basic blocks in the program. Global variables
783 always define a pointer to their "content" type because they describe a
784 region of memory, and all memory objects in LLVM are accessed through
785 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000786
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000787<p>A global variable may be declared to reside in a target-specific numbered
788 address space. For targets that support them, address spaces may affect how
789 optimizations are performed and/or what target instructions are used to
790 access the variable. The default address space is zero. The address space
791 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000792
Chris Lattner662c8722005-11-12 00:45:07 +0000793<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000794 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000795
Chris Lattner54611b42005-11-06 08:02:57 +0000796<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000797 the alignment is set to zero, the alignment of the global is set by the
798 target to whatever it feels convenient. If an explicit alignment is
799 specified, the global is forced to have at least that much alignment. All
800 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000801
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000802<p>For example, the following defines a global in a numbered address space with
803 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000804
Bill Wendling3716c5d2007-05-29 09:04:49 +0000805<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000806<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000807@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000808</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000809</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000810
Chris Lattner6af02f32004-12-09 16:11:40 +0000811</div>
812
813
814<!-- ======================================================================= -->
815<div class="doc_subsection">
816 <a name="functionstructure">Functions</a>
817</div>
818
819<div class="doc_text">
820
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000821<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
822 optional <a href="#linkage">linkage type</a>, an optional
823 <a href="#visibility">visibility style</a>, an optional
824 <a href="#callingconv">calling convention</a>, a return type, an optional
825 <a href="#paramattrs">parameter attribute</a> for the return type, a function
826 name, a (possibly empty) argument list (each with optional
827 <a href="#paramattrs">parameter attributes</a>), optional
828 <a href="#fnattrs">function attributes</a>, an optional section, an optional
829 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
830 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000831
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000832<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
833 optional <a href="#linkage">linkage type</a>, an optional
834 <a href="#visibility">visibility style</a>, an optional
835 <a href="#callingconv">calling convention</a>, a return type, an optional
836 <a href="#paramattrs">parameter attribute</a> for the return type, a function
837 name, a possibly empty list of arguments, an optional alignment, and an
838 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000839
Chris Lattner67c37d12008-08-05 18:29:16 +0000840<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000841 (Control Flow Graph) for the function. Each basic block may optionally start
842 with a label (giving the basic block a symbol table entry), contains a list
843 of instructions, and ends with a <a href="#terminators">terminator</a>
844 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000845
Chris Lattnera59fb102007-06-08 16:52:14 +0000846<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000847 executed on entrance to the function, and it is not allowed to have
848 predecessor basic blocks (i.e. there can not be any branches to the entry
849 block of a function). Because the block can have no predecessors, it also
850 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000851
Chris Lattner662c8722005-11-12 00:45:07 +0000852<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000853 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000854
Chris Lattner54611b42005-11-06 08:02:57 +0000855<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000856 the alignment is set to zero, the alignment of the function is set by the
857 target to whatever it feels convenient. If an explicit alignment is
858 specified, the function is forced to have at least that much alignment. All
859 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000860
Bill Wendling30235112009-07-20 02:39:26 +0000861<h5>Syntax:</h5>
Devang Patel02256232008-10-07 17:48:33 +0000862<div class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000863<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +0000864define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000865 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
866 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
867 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
868 [<a href="#gc">gc</a>] { ... }
869</pre>
Devang Patel02256232008-10-07 17:48:33 +0000870</div>
871
Chris Lattner6af02f32004-12-09 16:11:40 +0000872</div>
873
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000874<!-- ======================================================================= -->
875<div class="doc_subsection">
876 <a name="aliasstructure">Aliases</a>
877</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000878
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000879<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000880
881<p>Aliases act as "second name" for the aliasee value (which can be either
882 function, global variable, another alias or bitcast of global value). Aliases
883 may have an optional <a href="#linkage">linkage type</a>, and an
884 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000885
Bill Wendling30235112009-07-20 02:39:26 +0000886<h5>Syntax:</h5>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000887<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000888<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000889@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000890</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000891</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000892
893</div>
894
Chris Lattner91c15c42006-01-23 23:23:47 +0000895<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000896<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000897
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000898<div class="doc_text">
899
900<p>The return type and each parameter of a function type may have a set of
901 <i>parameter attributes</i> associated with them. Parameter attributes are
902 used to communicate additional information about the result or parameters of
903 a function. Parameter attributes are considered to be part of the function,
904 not of the function type, so functions with different parameter attributes
905 can have the same function type.</p>
906
907<p>Parameter attributes are simple keywords that follow the type specified. If
908 multiple parameter attributes are needed, they are space separated. For
909 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000910
911<div class="doc_code">
912<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000913declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000914declare i32 @atoi(i8 zeroext)
915declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000916</pre>
917</div>
918
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000919<p>Note that any attributes for the function result (<tt>nounwind</tt>,
920 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000921
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000922<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000923
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000924<dl>
925 <dt><tt>zeroext</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000926 <dd>This indicates to the code generator that the parameter or return value
927 should be zero-extended to a 32-bit value by the caller (for a parameter)
928 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000929
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000930 <dt><tt>signext</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000931 <dd>This indicates to the code generator that the parameter or return value
932 should be sign-extended to a 32-bit value by the caller (for a parameter)
933 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000934
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000935 <dt><tt>inreg</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000936 <dd>This indicates that this parameter or return value should be treated in a
937 special target-dependent fashion during while emitting code for a function
938 call or return (usually, by putting it in a register as opposed to memory,
939 though some targets use it to distinguish between two different kinds of
940 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000941
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000942 <dt><tt><a name="byval">byval</a></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000943 <dd>This indicates that the pointer parameter should really be passed by value
944 to the function. The attribute implies that a hidden copy of the pointee
945 is made between the caller and the callee, so the callee is unable to
946 modify the value in the callee. This attribute is only valid on LLVM
947 pointer arguments. It is generally used to pass structs and arrays by
948 value, but is also valid on pointers to scalars. The copy is considered
949 to belong to the caller not the callee (for example,
950 <tt><a href="#readonly">readonly</a></tt> functions should not write to
951 <tt>byval</tt> parameters). This is not a valid attribute for return
952 values. The byval attribute also supports specifying an alignment with
953 the align attribute. This has a target-specific effect on the code
954 generator that usually indicates a desired alignment for the synthesized
955 stack slot.</dd>
956
957 <dt><tt>sret</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000958 <dd>This indicates that the pointer parameter specifies the address of a
959 structure that is the return value of the function in the source program.
960 This pointer must be guaranteed by the caller to be valid: loads and
961 stores to the structure may be assumed by the callee to not to trap. This
962 may only be applied to the first parameter. This is not a valid attribute
963 for return values. </dd>
964
965 <dt><tt>noalias</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000966 <dd>This indicates that the pointer does not alias any global or any other
967 parameter. The caller is responsible for ensuring that this is the
968 case. On a function return value, <tt>noalias</tt> additionally indicates
969 that the pointer does not alias any other pointers visible to the
970 caller. For further details, please see the discussion of the NoAlias
971 response in
972 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
973 analysis</a>.</dd>
974
975 <dt><tt>nocapture</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000976 <dd>This indicates that the callee does not make any copies of the pointer
977 that outlive the callee itself. This is not a valid attribute for return
978 values.</dd>
979
980 <dt><tt>nest</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000981 <dd>This indicates that the pointer parameter can be excised using the
982 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
983 attribute for return values.</dd>
984</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000985
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000986</div>
987
988<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +0000989<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +0000990 <a name="gc">Garbage Collector Names</a>
991</div>
992
993<div class="doc_text">
Gordon Henriksen71183b62007-12-10 03:18:06 +0000994
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000995<p>Each function may specify a garbage collector name, which is simply a
996 string:</p>
997
998<div class="doc_code">
999<pre>
1000define void @f() gc "name" { ...
1001</pre>
1002</div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001003
1004<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001005 collector which will cause the compiler to alter its output in order to
1006 support the named garbage collection algorithm.</p>
1007
Gordon Henriksen71183b62007-12-10 03:18:06 +00001008</div>
1009
1010<!-- ======================================================================= -->
1011<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001012 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001013</div>
1014
1015<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001016
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017<p>Function attributes are set to communicate additional information about a
1018 function. Function attributes are considered to be part of the function, not
1019 of the function type, so functions with different parameter attributes can
1020 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001021
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001022<p>Function attributes are simple keywords that follow the type specified. If
1023 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001024
1025<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001026<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001027define void @f() noinline { ... }
1028define void @f() alwaysinline { ... }
1029define void @f() alwaysinline optsize { ... }
1030define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +00001031</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001032</div>
1033
Bill Wendlingb175fa42008-09-07 10:26:33 +00001034<dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001035 <dt><tt>alwaysinline</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001036 <dd>This attribute indicates that the inliner should attempt to inline this
1037 function into callers whenever possible, ignoring any active inlining size
1038 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001039
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001040 <dt><tt>noinline</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001041 <dd>This attribute indicates that the inliner should never inline this
1042 function in any situation. This attribute may not be used together with
1043 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001044
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001045 <dt><tt>optsize</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001046 <dd>This attribute suggests that optimization passes and code generator passes
1047 make choices that keep the code size of this function low, and otherwise
1048 do optimizations specifically to reduce code size.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001049
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001050 <dt><tt>noreturn</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001051 <dd>This function attribute indicates that the function never returns
1052 normally. This produces undefined behavior at runtime if the function
1053 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001054
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001055 <dt><tt>nounwind</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001056 <dd>This function attribute indicates that the function never returns with an
1057 unwind or exceptional control flow. If the function does unwind, its
1058 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001059
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001060 <dt><tt>readnone</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001061 <dd>This attribute indicates that the function computes its result (or decides
1062 to unwind an exception) based strictly on its arguments, without
1063 dereferencing any pointer arguments or otherwise accessing any mutable
1064 state (e.g. memory, control registers, etc) visible to caller functions.
1065 It does not write through any pointer arguments
1066 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1067 changes any state visible to callers. This means that it cannot unwind
1068 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1069 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001070
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001071 <dt><tt><a name="readonly">readonly</a></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001072 <dd>This attribute indicates that the function does not write through any
1073 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1074 arguments) or otherwise modify any state (e.g. memory, control registers,
1075 etc) visible to caller functions. It may dereference pointer arguments
1076 and read state that may be set in the caller. A readonly function always
1077 returns the same value (or unwinds an exception identically) when called
1078 with the same set of arguments and global state. It cannot unwind an
1079 exception by calling the <tt>C++</tt> exception throwing methods, but may
1080 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001081
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001082 <dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001083 <dd>This attribute indicates that the function should emit a stack smashing
1084 protector. It is in the form of a "canary"&mdash;a random value placed on
1085 the stack before the local variables that's checked upon return from the
1086 function to see if it has been overwritten. A heuristic is used to
1087 determine if a function needs stack protectors or not.<br>
1088<br>
1089 If a function that has an <tt>ssp</tt> attribute is inlined into a
1090 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1091 function will have an <tt>ssp</tt> attribute.</dd>
1092
1093 <dt><tt>sspreq</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001094 <dd>This attribute indicates that the function should <em>always</em> emit a
1095 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001096 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1097<br>
1098 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1099 function that doesn't have an <tt>sspreq</tt> attribute or which has
1100 an <tt>ssp</tt> attribute, then the resulting function will have
1101 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001102
1103 <dt><tt>noredzone</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001104 <dd>This attribute indicates that the code generator should not use a red
1105 zone, even if the target-specific ABI normally permits it.</dd>
1106
1107 <dt><tt>noimplicitfloat</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001108 <dd>This attributes disables implicit floating point instructions.</dd>
1109
1110 <dt><tt>naked</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001111 <dd>This attribute disables prologue / epilogue emission for the function.
1112 This can have very system-specific consequences.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001113</dl>
1114
Devang Patelcaacdba2008-09-04 23:05:13 +00001115</div>
1116
1117<!-- ======================================================================= -->
1118<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001119 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001120</div>
1121
1122<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001123
1124<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1125 the GCC "file scope inline asm" blocks. These blocks are internally
1126 concatenated by LLVM and treated as a single unit, but may be separated in
1127 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001128
Bill Wendling3716c5d2007-05-29 09:04:49 +00001129<div class="doc_code">
1130<pre>
1131module asm "inline asm code goes here"
1132module asm "more can go here"
1133</pre>
1134</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001135
1136<p>The strings can contain any character by escaping non-printable characters.
1137 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001138 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001139
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001140<p>The inline asm code is simply printed to the machine code .s file when
1141 assembly code is generated.</p>
1142
Chris Lattner91c15c42006-01-23 23:23:47 +00001143</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001144
Reid Spencer50c723a2007-02-19 23:54:10 +00001145<!-- ======================================================================= -->
1146<div class="doc_subsection">
1147 <a name="datalayout">Data Layout</a>
1148</div>
1149
1150<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001151
Reid Spencer50c723a2007-02-19 23:54:10 +00001152<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001153 data is to be laid out in memory. The syntax for the data layout is
1154 simply:</p>
1155
1156<div class="doc_code">
1157<pre>
1158target datalayout = "<i>layout specification</i>"
1159</pre>
1160</div>
1161
1162<p>The <i>layout specification</i> consists of a list of specifications
1163 separated by the minus sign character ('-'). Each specification starts with
1164 a letter and may include other information after the letter to define some
1165 aspect of the data layout. The specifications accepted are as follows:</p>
1166
Reid Spencer50c723a2007-02-19 23:54:10 +00001167<dl>
1168 <dt><tt>E</tt></dt>
1169 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001170 bits with the most significance have the lowest address location.</dd>
1171
Reid Spencer50c723a2007-02-19 23:54:10 +00001172 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001173 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001174 the bits with the least significance have the lowest address
1175 location.</dd>
1176
Reid Spencer50c723a2007-02-19 23:54:10 +00001177 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1178 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001179 <i>preferred</i> alignments. All sizes are in bits. Specifying
1180 the <i>pref</i> alignment is optional. If omitted, the
1181 preceding <tt>:</tt> should be omitted too.</dd>
1182
Reid Spencer50c723a2007-02-19 23:54:10 +00001183 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1184 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001185 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1186
Reid Spencer50c723a2007-02-19 23:54:10 +00001187 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1188 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001189 <i>size</i>.</dd>
1190
Reid Spencer50c723a2007-02-19 23:54:10 +00001191 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1192 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001193 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1194 (double).</dd>
1195
Reid Spencer50c723a2007-02-19 23:54:10 +00001196 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1197 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001198 <i>size</i>.</dd>
1199
Daniel Dunbar7921a592009-06-08 22:17:53 +00001200 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1201 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001202 <i>size</i>.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001203</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001204
Reid Spencer50c723a2007-02-19 23:54:10 +00001205<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001206 default set of specifications which are then (possibly) overriden by the
1207 specifications in the <tt>datalayout</tt> keyword. The default specifications
1208 are given in this list:</p>
1209
Reid Spencer50c723a2007-02-19 23:54:10 +00001210<ul>
1211 <li><tt>E</tt> - big endian</li>
1212 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1213 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1214 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1215 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1216 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001217 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001218 alignment of 64-bits</li>
1219 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1220 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1221 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1222 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1223 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001224 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001225</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001226
1227<p>When LLVM is determining the alignment for a given type, it uses the
1228 following rules:</p>
1229
Reid Spencer50c723a2007-02-19 23:54:10 +00001230<ol>
1231 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001232 specification is used.</li>
1233
Reid Spencer50c723a2007-02-19 23:54:10 +00001234 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001235 smallest integer type that is larger than the bitwidth of the sought type
1236 is used. If none of the specifications are larger than the bitwidth then
1237 the the largest integer type is used. For example, given the default
1238 specifications above, the i7 type will use the alignment of i8 (next
1239 largest) while both i65 and i256 will use the alignment of i64 (largest
1240 specified).</li>
1241
Reid Spencer50c723a2007-02-19 23:54:10 +00001242 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001243 largest vector type that is smaller than the sought vector type will be
1244 used as a fall back. This happens because &lt;128 x double&gt; can be
1245 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001246</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001247
Reid Spencer50c723a2007-02-19 23:54:10 +00001248</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001249
Dan Gohman6154a012009-07-27 18:07:55 +00001250<!-- ======================================================================= -->
1251<div class="doc_subsection">
1252 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1253</div>
1254
1255<div class="doc_text">
1256
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001257<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001258with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001259is undefined. Pointer values are associated with address ranges
1260according to the following rules:</p>
1261
1262<ul>
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001263 <li>A pointer value formed from a
1264 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1265 is associated with the addresses associated with the first operand
1266 of the <tt>getelementptr</tt>.</li>
1267 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001268 range of the variable's storage.</li>
1269 <li>The result value of an allocation instruction is associated with
1270 the address range of the allocated storage.</li>
1271 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001272 no address.</li>
1273 <li>A pointer value formed by an
1274 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1275 address ranges of all pointer values that contribute (directly or
1276 indirectly) to the computation of the pointer's value.</li>
1277 <li>The result value of a
1278 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman6154a012009-07-27 18:07:55 +00001279 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1280 <li>An integer constant other than zero or a pointer value returned
1281 from a function not defined within LLVM may be associated with address
1282 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001283 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001284 allocated by mechanisms provided by LLVM.</li>
1285 </ul>
1286
1287<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001288<tt><a href="#i_load">load</a></tt> merely indicates the size and
1289alignment of the memory from which to load, as well as the
1290interpretation of the value. The first operand of a
1291<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1292and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001293
1294<p>Consequently, type-based alias analysis, aka TBAA, aka
1295<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1296LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1297additional information which specialized optimization passes may use
1298to implement type-based alias analysis.</p>
1299
1300</div>
1301
Chris Lattner2f7c9632001-06-06 20:29:01 +00001302<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001303<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1304<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001305
Misha Brukman76307852003-11-08 01:05:38 +00001306<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001307
Misha Brukman76307852003-11-08 01:05:38 +00001308<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001309 intermediate representation. Being typed enables a number of optimizations
1310 to be performed on the intermediate representation directly, without having
1311 to do extra analyses on the side before the transformation. A strong type
1312 system makes it easier to read the generated code and enables novel analyses
1313 and transformations that are not feasible to perform on normal three address
1314 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001315
1316</div>
1317
Chris Lattner2f7c9632001-06-06 20:29:01 +00001318<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001319<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001320Classifications</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001321
Misha Brukman76307852003-11-08 01:05:38 +00001322<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001323
1324<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001325
1326<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001327 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001328 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001329 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001330 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001331 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001332 </tr>
1333 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001334 <td><a href="#t_floating">floating point</a></td>
1335 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001336 </tr>
1337 <tr>
1338 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001339 <td><a href="#t_integer">integer</a>,
1340 <a href="#t_floating">floating point</a>,
1341 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001342 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001343 <a href="#t_struct">structure</a>,
1344 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001345 <a href="#t_label">label</a>,
1346 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001347 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001348 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001349 <tr>
1350 <td><a href="#t_primitive">primitive</a></td>
1351 <td><a href="#t_label">label</a>,
1352 <a href="#t_void">void</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001353 <a href="#t_floating">floating point</a>,
1354 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001355 </tr>
1356 <tr>
1357 <td><a href="#t_derived">derived</a></td>
1358 <td><a href="#t_integer">integer</a>,
1359 <a href="#t_array">array</a>,
1360 <a href="#t_function">function</a>,
1361 <a href="#t_pointer">pointer</a>,
1362 <a href="#t_struct">structure</a>,
1363 <a href="#t_pstruct">packed structure</a>,
1364 <a href="#t_vector">vector</a>,
1365 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001366 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001367 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001368 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001369</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001370
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001371<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1372 important. Values of these types are the only ones which can be produced by
1373 instructions, passed as arguments, or used as operands to instructions.</p>
1374
Misha Brukman76307852003-11-08 01:05:38 +00001375</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001376
Chris Lattner2f7c9632001-06-06 20:29:01 +00001377<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001378<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001379
Chris Lattner7824d182008-01-04 04:32:38 +00001380<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001381
Chris Lattner7824d182008-01-04 04:32:38 +00001382<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001383 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001384
Chris Lattner43542b32008-01-04 04:34:14 +00001385</div>
1386
Chris Lattner7824d182008-01-04 04:32:38 +00001387<!-- _______________________________________________________________________ -->
1388<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1389
1390<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001391
1392<table>
1393 <tbody>
1394 <tr><th>Type</th><th>Description</th></tr>
1395 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1396 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1397 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1398 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1399 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1400 </tbody>
1401</table>
1402
Chris Lattner7824d182008-01-04 04:32:38 +00001403</div>
1404
1405<!-- _______________________________________________________________________ -->
1406<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1407
1408<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001409
Chris Lattner7824d182008-01-04 04:32:38 +00001410<h5>Overview:</h5>
1411<p>The void type does not represent any value and has no size.</p>
1412
1413<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001414<pre>
1415 void
1416</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001417
Chris Lattner7824d182008-01-04 04:32:38 +00001418</div>
1419
1420<!-- _______________________________________________________________________ -->
1421<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1422
1423<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001424
Chris Lattner7824d182008-01-04 04:32:38 +00001425<h5>Overview:</h5>
1426<p>The label type represents code labels.</p>
1427
1428<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001429<pre>
1430 label
1431</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001432
Chris Lattner7824d182008-01-04 04:32:38 +00001433</div>
1434
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001435<!-- _______________________________________________________________________ -->
1436<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1437
1438<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001439
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001440<h5>Overview:</h5>
1441<p>The metadata type represents embedded metadata. The only derived type that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001442 may contain metadata is <tt>metadata*</tt> or a function type that returns or
1443 takes metadata typed parameters, but not pointer to metadata types.</p>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001444
1445<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001446<pre>
1447 metadata
1448</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001449
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001450</div>
1451
Chris Lattner7824d182008-01-04 04:32:38 +00001452
1453<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001454<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001455
Misha Brukman76307852003-11-08 01:05:38 +00001456<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001457
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001458<p>The real power in LLVM comes from the derived types in the system. This is
1459 what allows a programmer to represent arrays, functions, pointers, and other
1460 useful types. Note that these derived types may be recursive: For example,
1461 it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001462
Misha Brukman76307852003-11-08 01:05:38 +00001463</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001464
Chris Lattner2f7c9632001-06-06 20:29:01 +00001465<!-- _______________________________________________________________________ -->
Reid Spencer138249b2007-05-16 18:44:01 +00001466<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1467
1468<div class="doc_text">
1469
1470<h5>Overview:</h5>
1471<p>The integer type is a very simple derived type that simply specifies an
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001472 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1473 2^23-1 (about 8 million) can be specified.</p>
Reid Spencer138249b2007-05-16 18:44:01 +00001474
1475<h5>Syntax:</h5>
Reid Spencer138249b2007-05-16 18:44:01 +00001476<pre>
1477 iN
1478</pre>
1479
1480<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001481 value.</p>
Reid Spencer138249b2007-05-16 18:44:01 +00001482
1483<h5>Examples:</h5>
1484<table class="layout">
Nick Lewyckyaab930a2009-05-24 02:46:06 +00001485 <tr class="layout">
1486 <td class="left"><tt>i1</tt></td>
1487 <td class="left">a single-bit integer.</td>
Reid Spencer138249b2007-05-16 18:44:01 +00001488 </tr>
Nick Lewyckyaab930a2009-05-24 02:46:06 +00001489 <tr class="layout">
1490 <td class="left"><tt>i32</tt></td>
1491 <td class="left">a 32-bit integer.</td>
1492 </tr>
1493 <tr class="layout">
1494 <td class="left"><tt>i1942652</tt></td>
1495 <td class="left">a really big integer of over 1 million bits.</td>
1496 </tr>
Reid Spencer138249b2007-05-16 18:44:01 +00001497</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001498
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001499<p>Note that the code generator does not yet support large integer types to be
1500 used as function return types. The specific limit on how large a return type
1501 the code generator can currently handle is target-dependent; currently it's
1502 often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001503
Bill Wendling3716c5d2007-05-29 09:04:49 +00001504</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001505
1506<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001507<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001508
Misha Brukman76307852003-11-08 01:05:38 +00001509<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001510
Chris Lattner2f7c9632001-06-06 20:29:01 +00001511<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001512<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001513 sequentially in memory. The array type requires a size (number of elements)
1514 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001515
Chris Lattner590645f2002-04-14 06:13:44 +00001516<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001517<pre>
1518 [&lt;# elements&gt; x &lt;elementtype&gt;]
1519</pre>
1520
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001521<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1522 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001523
Chris Lattner590645f2002-04-14 06:13:44 +00001524<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001525<table class="layout">
1526 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001527 <td class="left"><tt>[40 x i32]</tt></td>
1528 <td class="left">Array of 40 32-bit integer values.</td>
1529 </tr>
1530 <tr class="layout">
1531 <td class="left"><tt>[41 x i32]</tt></td>
1532 <td class="left">Array of 41 32-bit integer values.</td>
1533 </tr>
1534 <tr class="layout">
1535 <td class="left"><tt>[4 x i8]</tt></td>
1536 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001537 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001538</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001539<p>Here are some examples of multidimensional arrays:</p>
1540<table class="layout">
1541 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001542 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1543 <td class="left">3x4 array of 32-bit integer values.</td>
1544 </tr>
1545 <tr class="layout">
1546 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1547 <td class="left">12x10 array of single precision floating point values.</td>
1548 </tr>
1549 <tr class="layout">
1550 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1551 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001552 </tr>
1553</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001554
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001555<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1556 length array. Normally, accesses past the end of an array are undefined in
1557 LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As
1558 a special case, however, zero length arrays are recognized to be variable
1559 length. This allows implementation of 'pascal style arrays' with the LLVM
1560 type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001561
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001562<p>Note that the code generator does not yet support large aggregate types to be
1563 used as function return types. The specific limit on how large an aggregate
1564 return type the code generator can currently handle is target-dependent, and
1565 also dependent on the aggregate element types.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001566
Misha Brukman76307852003-11-08 01:05:38 +00001567</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001568
Chris Lattner2f7c9632001-06-06 20:29:01 +00001569<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001570<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001571
Misha Brukman76307852003-11-08 01:05:38 +00001572<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001573
Chris Lattner2f7c9632001-06-06 20:29:01 +00001574<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001575<p>The function type can be thought of as a function signature. It consists of
1576 a return type and a list of formal parameter types. The return type of a
1577 function type is a scalar type, a void type, or a struct type. If the return
1578 type is a struct type then all struct elements must be of first class types,
1579 and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001580
Chris Lattner2f7c9632001-06-06 20:29:01 +00001581<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001582<pre>
1583 &lt;returntype list&gt; (&lt;parameter list&gt;)
1584</pre>
1585
John Criswell4c0cf7f2005-10-24 16:17:18 +00001586<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001587 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1588 which indicates that the function takes a variable number of arguments.
1589 Variable argument functions can access their arguments with
1590 the <a href="#int_varargs">variable argument handling intrinsic</a>
1591 functions. '<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1592 <a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001593
Chris Lattner2f7c9632001-06-06 20:29:01 +00001594<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001595<table class="layout">
1596 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001597 <td class="left"><tt>i32 (i32)</tt></td>
1598 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001599 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001600 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001601 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001602 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001603 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1604 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001605 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001606 <tt>float</tt>.
1607 </td>
1608 </tr><tr class="layout">
1609 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1610 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001611 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001612 which returns an integer. This is the signature for <tt>printf</tt> in
1613 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001614 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001615 </tr><tr class="layout">
1616 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanc9813bd2008-11-27 06:41:20 +00001617 <td class="left">A function taking an <tt>i32</tt>, returning two
1618 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001619 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001620 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001621</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001622
Misha Brukman76307852003-11-08 01:05:38 +00001623</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001624
Chris Lattner2f7c9632001-06-06 20:29:01 +00001625<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001626<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001627
Misha Brukman76307852003-11-08 01:05:38 +00001628<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001629
Chris Lattner2f7c9632001-06-06 20:29:01 +00001630<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001631<p>The structure type is used to represent a collection of data members together
1632 in memory. The packing of the field types is defined to match the ABI of the
1633 underlying processor. The elements of a structure may be any type that has a
1634 size.</p>
1635
1636<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1637 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1638 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1639
Chris Lattner2f7c9632001-06-06 20:29:01 +00001640<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001641<pre>
1642 { &lt;type list&gt; }
1643</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001644
Chris Lattner2f7c9632001-06-06 20:29:01 +00001645<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001646<table class="layout">
1647 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001648 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1649 <td class="left">A triple of three <tt>i32</tt> values</td>
1650 </tr><tr class="layout">
1651 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1652 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1653 second element is a <a href="#t_pointer">pointer</a> to a
1654 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1655 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001656 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001657</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001658
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001659<p>Note that the code generator does not yet support large aggregate types to be
1660 used as function return types. The specific limit on how large an aggregate
1661 return type the code generator can currently handle is target-dependent, and
1662 also dependent on the aggregate element types.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001663
Misha Brukman76307852003-11-08 01:05:38 +00001664</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001665
Chris Lattner2f7c9632001-06-06 20:29:01 +00001666<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001667<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1668</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001669
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001670<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001671
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001672<h5>Overview:</h5>
1673<p>The packed structure type is used to represent a collection of data members
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001674 together in memory. There is no padding between fields. Further, the
1675 alignment of a packed structure is 1 byte. The elements of a packed
1676 structure may be any type that has a size.</p>
1677
1678<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1679 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1680 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1681
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001682<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001683<pre>
1684 &lt; { &lt;type list&gt; } &gt;
1685</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001686
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001687<h5>Examples:</h5>
1688<table class="layout">
1689 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001690 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1691 <td class="left">A triple of three <tt>i32</tt> values</td>
1692 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001693 <td class="left">
1694<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001695 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1696 second element is a <a href="#t_pointer">pointer</a> to a
1697 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1698 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001699 </tr>
1700</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001701
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001702</div>
1703
1704<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001705<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner4a67c912009-02-08 19:53:29 +00001706
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001707<div class="doc_text">
1708
1709<h5>Overview:</h5>
1710<p>As in many languages, the pointer type represents a pointer or reference to
1711 another object, which must live in memory. Pointer types may have an optional
1712 address space attribute defining the target-specific numbered address space
1713 where the pointed-to object resides. The default address space is zero.</p>
1714
1715<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1716 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001717
Chris Lattner590645f2002-04-14 06:13:44 +00001718<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001719<pre>
1720 &lt;type&gt; *
1721</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001722
Chris Lattner590645f2002-04-14 06:13:44 +00001723<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001724<table class="layout">
1725 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001726 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001727 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1728 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1729 </tr>
1730 <tr class="layout">
1731 <td class="left"><tt>i32 (i32 *) *</tt></td>
1732 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001733 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001734 <tt>i32</tt>.</td>
1735 </tr>
1736 <tr class="layout">
1737 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1738 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1739 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001740 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001741</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001742
Misha Brukman76307852003-11-08 01:05:38 +00001743</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001744
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001745<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001746<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001747
Misha Brukman76307852003-11-08 01:05:38 +00001748<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001749
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001750<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001751<p>A vector type is a simple derived type that represents a vector of elements.
1752 Vector types are used when multiple primitive data are operated in parallel
1753 using a single instruction (SIMD). A vector type requires a size (number of
1754 elements) and an underlying primitive data type. Vectors must have a power
1755 of two length (1, 2, 4, 8, 16 ...). Vector types are considered
1756 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001757
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001758<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001759<pre>
1760 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1761</pre>
1762
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001763<p>The number of elements is a constant integer value; elementtype may be any
1764 integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001765
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001766<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001767<table class="layout">
1768 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001769 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1770 <td class="left">Vector of 4 32-bit integer values.</td>
1771 </tr>
1772 <tr class="layout">
1773 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1774 <td class="left">Vector of 8 32-bit floating-point values.</td>
1775 </tr>
1776 <tr class="layout">
1777 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1778 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001779 </tr>
1780</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001781
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001782<p>Note that the code generator does not yet support large vector types to be
1783 used as function return types. The specific limit on how large a vector
1784 return type codegen can currently handle is target-dependent; currently it's
1785 often a few times longer than a hardware vector register.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001786
Misha Brukman76307852003-11-08 01:05:38 +00001787</div>
1788
Chris Lattner37b6b092005-04-25 17:34:15 +00001789<!-- _______________________________________________________________________ -->
1790<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1791<div class="doc_text">
1792
1793<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001794<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001795 corresponds (for example) to the C notion of a forward declared structure
1796 type. In LLVM, opaque types can eventually be resolved to any type (not just
1797 a structure type).</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001798
1799<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001800<pre>
1801 opaque
1802</pre>
1803
1804<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001805<table class="layout">
1806 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001807 <td class="left"><tt>opaque</tt></td>
1808 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001809 </tr>
1810</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001811
Chris Lattner37b6b092005-04-25 17:34:15 +00001812</div>
1813
Chris Lattnercf7a5842009-02-02 07:32:36 +00001814<!-- ======================================================================= -->
1815<div class="doc_subsection">
1816 <a name="t_uprefs">Type Up-references</a>
1817</div>
1818
1819<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001820
Chris Lattnercf7a5842009-02-02 07:32:36 +00001821<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001822<p>An "up reference" allows you to refer to a lexically enclosing type without
1823 requiring it to have a name. For instance, a structure declaration may
1824 contain a pointer to any of the types it is lexically a member of. Example
1825 of up references (with their equivalent as named type declarations)
1826 include:</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001827
1828<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001829 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001830 { \2 }* %y = type { %y }*
1831 \1* %z = type %z*
1832</pre>
1833
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001834<p>An up reference is needed by the asmprinter for printing out cyclic types
1835 when there is no declared name for a type in the cycle. Because the
1836 asmprinter does not want to print out an infinite type string, it needs a
1837 syntax to handle recursive types that have no names (all names are optional
1838 in llvm IR).</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001839
1840<h5>Syntax:</h5>
1841<pre>
1842 \&lt;level&gt;
1843</pre>
1844
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001845<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001846
1847<h5>Examples:</h5>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001848<table class="layout">
1849 <tr class="layout">
1850 <td class="left"><tt>\1*</tt></td>
1851 <td class="left">Self-referential pointer.</td>
1852 </tr>
1853 <tr class="layout">
1854 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1855 <td class="left">Recursive structure where the upref refers to the out-most
1856 structure.</td>
1857 </tr>
1858</table>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001859
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001860</div>
Chris Lattner37b6b092005-04-25 17:34:15 +00001861
Chris Lattner74d3f822004-12-09 17:30:23 +00001862<!-- *********************************************************************** -->
1863<div class="doc_section"> <a name="constants">Constants</a> </div>
1864<!-- *********************************************************************** -->
1865
1866<div class="doc_text">
1867
1868<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001869 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001870
1871</div>
1872
1873<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001874<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001875
1876<div class="doc_text">
1877
1878<dl>
1879 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001880 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001881 constants of the <tt><a href="#t_primitive">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001882
1883 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001884 <dd>Standard integers (such as '4') are constants of
1885 the <a href="#t_integer">integer</a> type. Negative numbers may be used
1886 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001887
1888 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001889 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001890 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1891 notation (see below). The assembler requires the exact decimal value of a
1892 floating-point constant. For example, the assembler accepts 1.25 but
1893 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1894 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001895
1896 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00001897 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001898 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001899</dl>
1900
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001901<p>The one non-intuitive notation for constants is the hexadecimal form of
1902 floating point constants. For example, the form '<tt>double
1903 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1904 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
1905 constants are required (and the only time that they are generated by the
1906 disassembler) is when a floating point constant must be emitted but it cannot
1907 be represented as a decimal floating point number in a reasonable number of
1908 digits. For example, NaN's, infinities, and other special values are
1909 represented in their IEEE hexadecimal format so that assembly and disassembly
1910 do not cause any bits to change in the constants.</p>
1911
Dale Johannesencd4a3012009-02-11 22:14:51 +00001912<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001913 represented using the 16-digit form shown above (which matches the IEEE754
1914 representation for double); float values must, however, be exactly
1915 representable as IEE754 single precision. Hexadecimal format is always used
1916 for long double, and there are three forms of long double. The 80-bit format
1917 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
1918 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1919 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
1920 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
1921 currently supported target uses this format. Long doubles will only work if
1922 they match the long double format on your target. All hexadecimal formats
1923 are big-endian (sign bit at the left).</p>
1924
Chris Lattner74d3f822004-12-09 17:30:23 +00001925</div>
1926
1927<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00001928<div class="doc_subsection">
Bill Wendling972b7202009-07-20 02:32:41 +00001929<a name="aggregateconstants"></a> <!-- old anchor -->
1930<a name="complexconstants">Complex Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +00001931</div>
1932
1933<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001934
Chris Lattner361bfcd2009-02-28 18:32:25 +00001935<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001936 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001937
1938<dl>
1939 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001940 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001941 type definitions (a comma separated list of elements, surrounded by braces
1942 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1943 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
1944 Structure constants must have <a href="#t_struct">structure type</a>, and
1945 the number and types of elements must match those specified by the
1946 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001947
1948 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001949 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001950 definitions (a comma separated list of elements, surrounded by square
1951 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
1952 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
1953 the number and types of elements must match those specified by the
1954 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001955
Reid Spencer404a3252007-02-15 03:07:05 +00001956 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00001957 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001958 definitions (a comma separated list of elements, surrounded by
1959 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
1960 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
1961 have <a href="#t_vector">vector type</a>, and the number and types of
1962 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001963
1964 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001965 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001966 value to zero of <em>any</em> type, including scalar and aggregate types.
1967 This is often used to avoid having to print large zero initializers
1968 (e.g. for large arrays) and is always exactly equivalent to using explicit
1969 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00001970
1971 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00001972 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001973 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
1974 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
1975 be interpreted as part of the instruction stream, metadata is a place to
1976 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001977</dl>
1978
1979</div>
1980
1981<!-- ======================================================================= -->
1982<div class="doc_subsection">
1983 <a name="globalconstants">Global Variable and Function Addresses</a>
1984</div>
1985
1986<div class="doc_text">
1987
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001988<p>The addresses of <a href="#globalvars">global variables</a>
1989 and <a href="#functionstructure">functions</a> are always implicitly valid
1990 (link-time) constants. These constants are explicitly referenced when
1991 the <a href="#identifiers">identifier for the global</a> is used and always
1992 have <a href="#t_pointer">pointer</a> type. For example, the following is a
1993 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001994
Bill Wendling3716c5d2007-05-29 09:04:49 +00001995<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00001996<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00001997@X = global i32 17
1998@Y = global i32 42
1999@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002000</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002001</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002002
2003</div>
2004
2005<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00002006<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002007<div class="doc_text">
2008
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002009<p>The string '<tt>undef</tt>' is recognized as a type-less constant that has no
2010 specific value. Undefined values may be of any type and be used anywhere a
2011 constant is permitted.</p>
2012
2013<p>Undefined values indicate to the compiler that the program is well defined no
2014 matter what value is used, giving the compiler more freedom to optimize.</p>
2015
Chris Lattner74d3f822004-12-09 17:30:23 +00002016</div>
2017
2018<!-- ======================================================================= -->
2019<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2020</div>
2021
2022<div class="doc_text">
2023
2024<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002025 to be used as constants. Constant expressions may be of
2026 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2027 operation that does not have side effects (e.g. load and call are not
2028 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002029
2030<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002031 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002032 <dd>Truncate a constant to another type. The bit size of CST must be larger
2033 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002034
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002035 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002036 <dd>Zero extend a constant to another type. The bit size of CST must be
2037 smaller or equal to the bit size of TYPE. Both types must be
2038 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002039
2040 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002041 <dd>Sign extend a constant to another type. The bit size of CST must be
2042 smaller or equal to the bit size of TYPE. Both types must be
2043 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002044
2045 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002046 <dd>Truncate a floating point constant to another floating point type. The
2047 size of CST must be larger than the size of TYPE. Both types must be
2048 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002049
2050 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002051 <dd>Floating point extend a constant to another type. The size of CST must be
2052 smaller or equal to the size of TYPE. Both types must be floating
2053 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002054
Reid Spencer753163d2007-07-31 14:40:14 +00002055 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002056 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002057 constant. TYPE must be a scalar or vector integer type. CST must be of
2058 scalar or vector floating point type. Both CST and TYPE must be scalars,
2059 or vectors of the same number of elements. If the value won't fit in the
2060 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002061
Reid Spencer51b07252006-11-09 23:03:26 +00002062 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002063 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002064 constant. TYPE must be a scalar or vector integer type. CST must be of
2065 scalar or vector floating point type. Both CST and TYPE must be scalars,
2066 or vectors of the same number of elements. If the value won't fit in the
2067 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002068
Reid Spencer51b07252006-11-09 23:03:26 +00002069 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002070 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002071 constant. TYPE must be a scalar or vector floating point type. CST must be
2072 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2073 vectors of the same number of elements. If the value won't fit in the
2074 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002075
Reid Spencer51b07252006-11-09 23:03:26 +00002076 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002077 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002078 constant. TYPE must be a scalar or vector floating point type. CST must be
2079 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2080 vectors of the same number of elements. If the value won't fit in the
2081 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002082
Reid Spencer5b950642006-11-11 23:08:07 +00002083 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2084 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002085 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2086 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2087 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002088
2089 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002090 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2091 type. CST must be of integer type. The CST value is zero extended,
2092 truncated, or unchanged to make it fit in a pointer size. This one is
2093 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002094
2095 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002096 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2097 are the same as those for the <a href="#i_bitcast">bitcast
2098 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002099
2100 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohman1639c392009-07-27 21:53:46 +00002101 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002102 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002103 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2104 instruction, the index list may have zero or more indexes, which are
2105 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002106
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002107 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002108 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002109
2110 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2111 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2112
2113 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2114 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002115
2116 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002117 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2118 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002119
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002120 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002121 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2122 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002123
2124 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002125 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2126 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002127
Chris Lattner74d3f822004-12-09 17:30:23 +00002128 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002129 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2130 be any of the <a href="#binaryops">binary</a>
2131 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2132 on operands are the same as those for the corresponding instruction
2133 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002134</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002135
Chris Lattner74d3f822004-12-09 17:30:23 +00002136</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002137
Nick Lewycky49f89192009-04-04 07:22:01 +00002138<!-- ======================================================================= -->
2139<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2140</div>
2141
2142<div class="doc_text">
2143
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002144<p>Embedded metadata provides a way to attach arbitrary data to the instruction
2145 stream without affecting the behaviour of the program. There are two
2146 metadata primitives, strings and nodes. All metadata has the
2147 <tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2148 point ('<tt>!</tt>').</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002149
2150<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002151 any character by escaping non-printable characters with "\xx" where "xx" is
2152 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002153
2154<p>Metadata nodes are represented with notation similar to structure constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002155 (a comma separated list of elements, surrounded by braces and preceeded by an
2156 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2157 10}</tt>".</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002158
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002159<p>A metadata node will attempt to track changes to the values it holds. In the
2160 event that a value is deleted, it will be replaced with a typeless
2161 "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckyb8f9b7a2009-05-10 20:57:05 +00002162
Nick Lewycky49f89192009-04-04 07:22:01 +00002163<p>Optimizations may rely on metadata to provide additional information about
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002164 the program that isn't available in the instructions, or that isn't easily
2165 computable. Similarly, the code generator may expect a certain metadata
2166 format to be used to express debugging information.</p>
2167
Nick Lewycky49f89192009-04-04 07:22:01 +00002168</div>
2169
Chris Lattner2f7c9632001-06-06 20:29:01 +00002170<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002171<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2172<!-- *********************************************************************** -->
2173
2174<!-- ======================================================================= -->
2175<div class="doc_subsection">
2176<a name="inlineasm">Inline Assembler Expressions</a>
2177</div>
2178
2179<div class="doc_text">
2180
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002181<p>LLVM supports inline assembler expressions (as opposed
2182 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2183 a special value. This value represents the inline assembler as a string
2184 (containing the instructions to emit), a list of operand constraints (stored
2185 as a string), and a flag that indicates whether or not the inline asm
2186 expression has side effects. An example inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002187
Bill Wendling3716c5d2007-05-29 09:04:49 +00002188<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002189<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002190i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002191</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002192</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002193
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002194<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2195 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2196 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002197
Bill Wendling3716c5d2007-05-29 09:04:49 +00002198<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002199<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002200%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002201</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002202</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002203
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002204<p>Inline asms with side effects not visible in the constraint list must be
2205 marked as having side effects. This is done through the use of the
2206 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002207
Bill Wendling3716c5d2007-05-29 09:04:49 +00002208<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002209<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002210call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002211</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002212</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002213
2214<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002215 documented here. Constraints on what can be done (e.g. duplication, moving,
2216 etc need to be documented). This is probably best done by reference to
2217 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002218
2219</div>
2220
Chris Lattnerae76db52009-07-20 05:55:19 +00002221
2222<!-- *********************************************************************** -->
2223<div class="doc_section">
2224 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2225</div>
2226<!-- *********************************************************************** -->
2227
2228<p>LLVM has a number of "magic" global variables that contain data that affect
2229code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002230of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2231section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2232by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002233
2234<!-- ======================================================================= -->
2235<div class="doc_subsection">
2236<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2237</div>
2238
2239<div class="doc_text">
2240
2241<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2242href="#linkage_appending">appending linkage</a>. This array contains a list of
2243pointers to global variables and functions which may optionally have a pointer
2244cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2245
2246<pre>
2247 @X = global i8 4
2248 @Y = global i32 123
2249
2250 @llvm.used = appending global [2 x i8*] [
2251 i8* @X,
2252 i8* bitcast (i32* @Y to i8*)
2253 ], section "llvm.metadata"
2254</pre>
2255
2256<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2257compiler, assembler, and linker are required to treat the symbol as if there is
2258a reference to the global that it cannot see. For example, if a variable has
2259internal linkage and no references other than that from the <tt>@llvm.used</tt>
2260list, it cannot be deleted. This is commonly used to represent references from
2261inline asms and other things the compiler cannot "see", and corresponds to
2262"attribute((used))" in GNU C.</p>
2263
2264<p>On some targets, the code generator must emit a directive to the assembler or
2265object file to prevent the assembler and linker from molesting the symbol.</p>
2266
2267</div>
2268
2269<!-- ======================================================================= -->
2270<div class="doc_subsection">
Chris Lattner58f9bb22009-07-20 06:14:25 +00002271<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2272</div>
2273
2274<div class="doc_text">
2275
2276<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2277<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2278touching the symbol. On targets that support it, this allows an intelligent
2279linker to optimize references to the symbol without being impeded as it would be
2280by <tt>@llvm.used</tt>.</p>
2281
2282<p>This is a rare construct that should only be used in rare circumstances, and
2283should not be exposed to source languages.</p>
2284
2285</div>
2286
2287<!-- ======================================================================= -->
2288<div class="doc_subsection">
Chris Lattnerae76db52009-07-20 05:55:19 +00002289<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2290</div>
2291
2292<div class="doc_text">
2293
2294<p>TODO: Describe this.</p>
2295
2296</div>
2297
2298<!-- ======================================================================= -->
2299<div class="doc_subsection">
2300<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2301</div>
2302
2303<div class="doc_text">
2304
2305<p>TODO: Describe this.</p>
2306
2307</div>
2308
2309
Chris Lattner98f013c2006-01-25 23:47:57 +00002310<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002311<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2312<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002313
Misha Brukman76307852003-11-08 01:05:38 +00002314<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002315
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002316<p>The LLVM instruction set consists of several different classifications of
2317 instructions: <a href="#terminators">terminator
2318 instructions</a>, <a href="#binaryops">binary instructions</a>,
2319 <a href="#bitwiseops">bitwise binary instructions</a>,
2320 <a href="#memoryops">memory instructions</a>, and
2321 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002322
Misha Brukman76307852003-11-08 01:05:38 +00002323</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002324
Chris Lattner2f7c9632001-06-06 20:29:01 +00002325<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002326<div class="doc_subsection"> <a name="terminators">Terminator
2327Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002328
Misha Brukman76307852003-11-08 01:05:38 +00002329<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002330
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002331<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2332 in a program ends with a "Terminator" instruction, which indicates which
2333 block should be executed after the current block is finished. These
2334 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2335 control flow, not values (the one exception being the
2336 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2337
2338<p>There are six different terminator instructions: the
2339 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2340 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2341 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2342 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2343 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2344 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002345
Misha Brukman76307852003-11-08 01:05:38 +00002346</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002347
Chris Lattner2f7c9632001-06-06 20:29:01 +00002348<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002349<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2350Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002351
Misha Brukman76307852003-11-08 01:05:38 +00002352<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002353
Chris Lattner2f7c9632001-06-06 20:29:01 +00002354<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002355<pre>
2356 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002357 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002358</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002359
Chris Lattner2f7c9632001-06-06 20:29:01 +00002360<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002361<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2362 a value) from a function back to the caller.</p>
2363
2364<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2365 value and then causes control flow, and one that just causes control flow to
2366 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002367
Chris Lattner2f7c9632001-06-06 20:29:01 +00002368<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002369<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2370 return value. The type of the return value must be a
2371 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002372
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002373<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2374 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2375 value or a return value with a type that does not match its type, or if it
2376 has a void return type and contains a '<tt>ret</tt>' instruction with a
2377 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002378
Chris Lattner2f7c9632001-06-06 20:29:01 +00002379<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002380<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2381 the calling function's context. If the caller is a
2382 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2383 instruction after the call. If the caller was an
2384 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2385 the beginning of the "normal" destination block. If the instruction returns
2386 a value, that value shall set the call or invoke instruction's return
2387 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002388
Chris Lattner2f7c9632001-06-06 20:29:01 +00002389<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002390<pre>
2391 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002392 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002393 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002394</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002395
Dan Gohman142ccc02009-01-24 15:58:40 +00002396<p>Note that the code generator does not yet fully support large
2397 return values. The specific sizes that are currently supported are
2398 dependent on the target. For integers, on 32-bit targets the limit
2399 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2400 For aggregate types, the current limits are dependent on the element
2401 types; for example targets are often limited to 2 total integer
2402 elements and 2 total floating-point elements.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00002403
Misha Brukman76307852003-11-08 01:05:38 +00002404</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002405<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002406<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002407
Misha Brukman76307852003-11-08 01:05:38 +00002408<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002409
Chris Lattner2f7c9632001-06-06 20:29:01 +00002410<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002411<pre>
2412 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002413</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002414
Chris Lattner2f7c9632001-06-06 20:29:01 +00002415<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002416<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2417 different basic block in the current function. There are two forms of this
2418 instruction, corresponding to a conditional branch and an unconditional
2419 branch.</p>
2420
Chris Lattner2f7c9632001-06-06 20:29:01 +00002421<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002422<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2423 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2424 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2425 target.</p>
2426
Chris Lattner2f7c9632001-06-06 20:29:01 +00002427<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002428<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002429 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2430 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2431 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2432
Chris Lattner2f7c9632001-06-06 20:29:01 +00002433<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002434<pre>
2435Test:
2436 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2437 br i1 %cond, label %IfEqual, label %IfUnequal
2438IfEqual:
2439 <a href="#i_ret">ret</a> i32 1
2440IfUnequal:
2441 <a href="#i_ret">ret</a> i32 0
2442</pre>
2443
Misha Brukman76307852003-11-08 01:05:38 +00002444</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002445
Chris Lattner2f7c9632001-06-06 20:29:01 +00002446<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002447<div class="doc_subsubsection">
2448 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2449</div>
2450
Misha Brukman76307852003-11-08 01:05:38 +00002451<div class="doc_text">
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002452
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002453<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002454<pre>
2455 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2456</pre>
2457
Chris Lattner2f7c9632001-06-06 20:29:01 +00002458<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002459<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002460 several different places. It is a generalization of the '<tt>br</tt>'
2461 instruction, allowing a branch to occur to one of many possible
2462 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002463
Chris Lattner2f7c9632001-06-06 20:29:01 +00002464<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002465<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002466 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2467 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2468 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002469
Chris Lattner2f7c9632001-06-06 20:29:01 +00002470<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002471<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002472 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2473 is searched for the given value. If the value is found, control flow is
2474 transfered to the corresponding destination; otherwise, control flow is
2475 transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002476
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002477<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002478<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002479 <tt>switch</tt> instruction, this instruction may be code generated in
2480 different ways. For example, it could be generated as a series of chained
2481 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002482
2483<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002484<pre>
2485 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002486 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002487 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002488
2489 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002490 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002491
2492 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002493 switch i32 %val, label %otherwise [ i32 0, label %onzero
2494 i32 1, label %onone
2495 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002496</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002497
Misha Brukman76307852003-11-08 01:05:38 +00002498</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002499
Chris Lattner2f7c9632001-06-06 20:29:01 +00002500<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002501<div class="doc_subsubsection">
2502 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2503</div>
2504
Misha Brukman76307852003-11-08 01:05:38 +00002505<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002506
Chris Lattner2f7c9632001-06-06 20:29:01 +00002507<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002508<pre>
Devang Patel02256232008-10-07 17:48:33 +00002509 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002510 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002511</pre>
2512
Chris Lattnera8292f32002-05-06 22:08:29 +00002513<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002514<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002515 function, with the possibility of control flow transfer to either the
2516 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2517 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2518 control flow will return to the "normal" label. If the callee (or any
2519 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2520 instruction, control is interrupted and continued at the dynamically nearest
2521 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002522
Chris Lattner2f7c9632001-06-06 20:29:01 +00002523<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002524<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002525
Chris Lattner2f7c9632001-06-06 20:29:01 +00002526<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002527 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2528 convention</a> the call should use. If none is specified, the call
2529 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002530
2531 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002532 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2533 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002534
Chris Lattner0132aff2005-05-06 22:57:40 +00002535 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002536 function value being invoked. In most cases, this is a direct function
2537 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2538 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002539
2540 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002541 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002542
2543 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002544 signature argument types. If the function signature indicates the
2545 function accepts a variable number of arguments, the extra arguments can
2546 be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002547
2548 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002549 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002550
2551 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002552 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002553
Devang Patel02256232008-10-07 17:48:33 +00002554 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002555 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2556 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002557</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002558
Chris Lattner2f7c9632001-06-06 20:29:01 +00002559<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002560<p>This instruction is designed to operate as a standard
2561 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2562 primary difference is that it establishes an association with a label, which
2563 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002564
2565<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002566 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2567 exception. Additionally, this is important for implementation of
2568 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002569
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002570<p>For the purposes of the SSA form, the definition of the value returned by the
2571 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2572 block to the "normal" label. If the callee unwinds then no return value is
2573 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00002574
Chris Lattner2f7c9632001-06-06 20:29:01 +00002575<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002576<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002577 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002578 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002579 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002580 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002581</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002582
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002583</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002584
Chris Lattner5ed60612003-09-03 00:41:47 +00002585<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002586
Chris Lattner48b383b02003-11-25 01:02:51 +00002587<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2588Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002589
Misha Brukman76307852003-11-08 01:05:38 +00002590<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002591
Chris Lattner5ed60612003-09-03 00:41:47 +00002592<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002593<pre>
2594 unwind
2595</pre>
2596
Chris Lattner5ed60612003-09-03 00:41:47 +00002597<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002598<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002599 at the first callee in the dynamic call stack which used
2600 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2601 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002602
Chris Lattner5ed60612003-09-03 00:41:47 +00002603<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002604<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002605 immediately halt. The dynamic call stack is then searched for the
2606 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2607 Once found, execution continues at the "exceptional" destination block
2608 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2609 instruction in the dynamic call chain, undefined behavior results.</p>
2610
Misha Brukman76307852003-11-08 01:05:38 +00002611</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002612
2613<!-- _______________________________________________________________________ -->
2614
2615<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2616Instruction</a> </div>
2617
2618<div class="doc_text">
2619
2620<h5>Syntax:</h5>
2621<pre>
2622 unreachable
2623</pre>
2624
2625<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002626<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002627 instruction is used to inform the optimizer that a particular portion of the
2628 code is not reachable. This can be used to indicate that the code after a
2629 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002630
2631<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002632<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002633
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002634</div>
2635
Chris Lattner2f7c9632001-06-06 20:29:01 +00002636<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002637<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002638
Misha Brukman76307852003-11-08 01:05:38 +00002639<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002640
2641<p>Binary operators are used to do most of the computation in a program. They
2642 require two operands of the same type, execute an operation on them, and
2643 produce a single value. The operands might represent multiple data, as is
2644 the case with the <a href="#t_vector">vector</a> data type. The result value
2645 has the same type as its operands.</p>
2646
Misha Brukman76307852003-11-08 01:05:38 +00002647<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002648
Misha Brukman76307852003-11-08 01:05:38 +00002649</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002650
Chris Lattner2f7c9632001-06-06 20:29:01 +00002651<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002652<div class="doc_subsubsection">
2653 <a name="i_add">'<tt>add</tt>' Instruction</a>
2654</div>
2655
Misha Brukman76307852003-11-08 01:05:38 +00002656<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002657
Chris Lattner2f7c9632001-06-06 20:29:01 +00002658<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002659<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00002660 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman902dfff2009-07-22 22:44:56 +00002661 &lt;result&gt; = nuw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2662 &lt;result&gt; = nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2663 &lt;result&gt; = nuw nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002664</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002665
Chris Lattner2f7c9632001-06-06 20:29:01 +00002666<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002667<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002668
Chris Lattner2f7c9632001-06-06 20:29:01 +00002669<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002670<p>The two arguments to the '<tt>add</tt>' instruction must
2671 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2672 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002673
Chris Lattner2f7c9632001-06-06 20:29:01 +00002674<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002675<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002676
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002677<p>If the sum has unsigned overflow, the result returned is the mathematical
2678 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002679
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002680<p>Because LLVM integers use a two's complement representation, this instruction
2681 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002682
Dan Gohman902dfff2009-07-22 22:44:56 +00002683<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2684 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2685 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
2686 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002687
Chris Lattner2f7c9632001-06-06 20:29:01 +00002688<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002689<pre>
2690 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002691</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002692
Misha Brukman76307852003-11-08 01:05:38 +00002693</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002694
Chris Lattner2f7c9632001-06-06 20:29:01 +00002695<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002696<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002697 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2698</div>
2699
2700<div class="doc_text">
2701
2702<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002703<pre>
2704 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2705</pre>
2706
2707<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002708<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2709
2710<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002711<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002712 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2713 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002714
2715<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002716<p>The value produced is the floating point sum of the two operands.</p>
2717
2718<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002719<pre>
2720 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2721</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002722
Dan Gohmana5b96452009-06-04 22:49:04 +00002723</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002724
Dan Gohmana5b96452009-06-04 22:49:04 +00002725<!-- _______________________________________________________________________ -->
2726<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002727 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2728</div>
2729
Misha Brukman76307852003-11-08 01:05:38 +00002730<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002731
Chris Lattner2f7c9632001-06-06 20:29:01 +00002732<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002733<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00002734 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2735 &lt;result&gt; = nuw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2736 &lt;result&gt; = nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2737 &lt;result&gt; = nuw nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002738</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002739
Chris Lattner2f7c9632001-06-06 20:29:01 +00002740<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002741<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002742 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002743
2744<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002745 '<tt>neg</tt>' instruction present in most other intermediate
2746 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002747
Chris Lattner2f7c9632001-06-06 20:29:01 +00002748<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002749<p>The two arguments to the '<tt>sub</tt>' instruction must
2750 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2751 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002752
Chris Lattner2f7c9632001-06-06 20:29:01 +00002753<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002754<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002755
Dan Gohmana5b96452009-06-04 22:49:04 +00002756<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002757 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
2758 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002759
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002760<p>Because LLVM integers use a two's complement representation, this instruction
2761 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002762
Dan Gohman902dfff2009-07-22 22:44:56 +00002763<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2764 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2765 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
2766 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002767
Chris Lattner2f7c9632001-06-06 20:29:01 +00002768<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002769<pre>
2770 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002771 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002772</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002773
Misha Brukman76307852003-11-08 01:05:38 +00002774</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002775
Chris Lattner2f7c9632001-06-06 20:29:01 +00002776<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002777<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002778 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2779</div>
2780
2781<div class="doc_text">
2782
2783<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002784<pre>
2785 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2786</pre>
2787
2788<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002789<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002790 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002791
2792<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002793 '<tt>fneg</tt>' instruction present in most other intermediate
2794 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002795
2796<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00002797<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002798 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2799 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002800
2801<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002802<p>The value produced is the floating point difference of the two operands.</p>
2803
2804<h5>Example:</h5>
2805<pre>
2806 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2807 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2808</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002809
Dan Gohmana5b96452009-06-04 22:49:04 +00002810</div>
2811
2812<!-- _______________________________________________________________________ -->
2813<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002814 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2815</div>
2816
Misha Brukman76307852003-11-08 01:05:38 +00002817<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002818
Chris Lattner2f7c9632001-06-06 20:29:01 +00002819<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002820<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00002821 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2822 &lt;result&gt; = nuw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2823 &lt;result&gt; = nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2824 &lt;result&gt; = nuw nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002825</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002826
Chris Lattner2f7c9632001-06-06 20:29:01 +00002827<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002828<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002829
Chris Lattner2f7c9632001-06-06 20:29:01 +00002830<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002831<p>The two arguments to the '<tt>mul</tt>' instruction must
2832 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2833 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002834
Chris Lattner2f7c9632001-06-06 20:29:01 +00002835<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002836<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002837
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002838<p>If the result of the multiplication has unsigned overflow, the result
2839 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
2840 width of the result.</p>
2841
2842<p>Because LLVM integers use a two's complement representation, and the result
2843 is the same width as the operands, this instruction returns the correct
2844 result for both signed and unsigned integers. If a full product
2845 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
2846 be sign-extended or zero-extended as appropriate to the width of the full
2847 product.</p>
2848
Dan Gohman902dfff2009-07-22 22:44:56 +00002849<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2850 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2851 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
2852 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002853
Chris Lattner2f7c9632001-06-06 20:29:01 +00002854<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002855<pre>
2856 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002857</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002858
Misha Brukman76307852003-11-08 01:05:38 +00002859</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002860
Chris Lattner2f7c9632001-06-06 20:29:01 +00002861<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00002862<div class="doc_subsubsection">
2863 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2864</div>
2865
2866<div class="doc_text">
2867
2868<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002869<pre>
2870 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00002871</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002872
Dan Gohmana5b96452009-06-04 22:49:04 +00002873<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002874<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002875
2876<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002877<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002878 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2879 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002880
2881<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002882<p>The value produced is the floating point product of the two operands.</p>
2883
2884<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002885<pre>
2886 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00002887</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002888
Dan Gohmana5b96452009-06-04 22:49:04 +00002889</div>
2890
2891<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002892<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2893</a></div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002894
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002895<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002896
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002897<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002898<pre>
2899 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002900</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002901
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002902<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002903<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002904
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002905<h5>Arguments:</h5>
2906<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002907 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2908 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002909
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002910<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002911<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002912
Chris Lattner2f2427e2008-01-28 00:36:27 +00002913<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002914 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2915
Chris Lattner2f2427e2008-01-28 00:36:27 +00002916<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002917
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002918<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002919<pre>
2920 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002921</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002922
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002923</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002924
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002925<!-- _______________________________________________________________________ -->
2926<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2927</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002928
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002929<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002930
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002931<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002932<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00002933 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2934 &lt;result&gt; = exact sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002935</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002936
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002937<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002938<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002939
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002940<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002941<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002942 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2943 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002944
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002945<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002946<p>The value produced is the signed integer quotient of the two operands rounded
2947 towards zero.</p>
2948
Chris Lattner2f2427e2008-01-28 00:36:27 +00002949<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002950 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2951
Chris Lattner2f2427e2008-01-28 00:36:27 +00002952<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002953 undefined behavior; this is a rare case, but can occur, for example, by doing
2954 a 32-bit division of -2147483648 by -1.</p>
2955
Dan Gohman71dfd782009-07-22 00:04:19 +00002956<p>If the <tt>exact</tt> keyword is present, the result value of the
2957 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
2958 would occur.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002959
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002960<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002961<pre>
2962 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002963</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002964
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002965</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002966
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002967<!-- _______________________________________________________________________ -->
2968<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002969Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002970
Misha Brukman76307852003-11-08 01:05:38 +00002971<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002972
Chris Lattner2f7c9632001-06-06 20:29:01 +00002973<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002974<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002975 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002976</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002977
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002978<h5>Overview:</h5>
2979<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002980
Chris Lattner48b383b02003-11-25 01:02:51 +00002981<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00002982<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002983 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2984 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002985
Chris Lattner48b383b02003-11-25 01:02:51 +00002986<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002987<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002988
Chris Lattner48b383b02003-11-25 01:02:51 +00002989<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002990<pre>
2991 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002992</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002993
Chris Lattner48b383b02003-11-25 01:02:51 +00002994</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002995
Chris Lattner48b383b02003-11-25 01:02:51 +00002996<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00002997<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2998</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002999
Reid Spencer7eb55b32006-11-02 01:53:59 +00003000<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003001
Reid Spencer7eb55b32006-11-02 01:53:59 +00003002<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003003<pre>
3004 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003005</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003006
Reid Spencer7eb55b32006-11-02 01:53:59 +00003007<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003008<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3009 division of its two arguments.</p>
3010
Reid Spencer7eb55b32006-11-02 01:53:59 +00003011<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003012<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003013 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3014 values. Both arguments must have identical types.</p>
3015
Reid Spencer7eb55b32006-11-02 01:53:59 +00003016<h5>Semantics:</h5>
3017<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003018 This instruction always performs an unsigned division to get the
3019 remainder.</p>
3020
Chris Lattner2f2427e2008-01-28 00:36:27 +00003021<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003022 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3023
Chris Lattner2f2427e2008-01-28 00:36:27 +00003024<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003025
Reid Spencer7eb55b32006-11-02 01:53:59 +00003026<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003027<pre>
3028 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003029</pre>
3030
3031</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003032
Reid Spencer7eb55b32006-11-02 01:53:59 +00003033<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003034<div class="doc_subsubsection">
3035 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3036</div>
3037
Chris Lattner48b383b02003-11-25 01:02:51 +00003038<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003039
Chris Lattner48b383b02003-11-25 01:02:51 +00003040<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003041<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003042 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003043</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003044
Chris Lattner48b383b02003-11-25 01:02:51 +00003045<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003046<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3047 division of its two operands. This instruction can also take
3048 <a href="#t_vector">vector</a> versions of the values in which case the
3049 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003050
Chris Lattner48b383b02003-11-25 01:02:51 +00003051<h5>Arguments:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003052<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003053 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3054 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003055
Chris Lattner48b383b02003-11-25 01:02:51 +00003056<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003057<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003058 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3059 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3060 a value. For more information about the difference,
3061 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3062 Math Forum</a>. For a table of how this is implemented in various languages,
3063 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3064 Wikipedia: modulo operation</a>.</p>
3065
Chris Lattner2f2427e2008-01-28 00:36:27 +00003066<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003067 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3068
Chris Lattner2f2427e2008-01-28 00:36:27 +00003069<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003070 Overflow also leads to undefined behavior; this is a rare case, but can
3071 occur, for example, by taking the remainder of a 32-bit division of
3072 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3073 lets srem be implemented using instructions that return both the result of
3074 the division and the remainder.)</p>
3075
Chris Lattner48b383b02003-11-25 01:02:51 +00003076<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003077<pre>
3078 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003079</pre>
3080
3081</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003082
Reid Spencer7eb55b32006-11-02 01:53:59 +00003083<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003084<div class="doc_subsubsection">
3085 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3086
Reid Spencer7eb55b32006-11-02 01:53:59 +00003087<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003088
Reid Spencer7eb55b32006-11-02 01:53:59 +00003089<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003090<pre>
3091 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003092</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003093
Reid Spencer7eb55b32006-11-02 01:53:59 +00003094<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003095<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3096 its two operands.</p>
3097
Reid Spencer7eb55b32006-11-02 01:53:59 +00003098<h5>Arguments:</h5>
3099<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003100 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3101 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003102
Reid Spencer7eb55b32006-11-02 01:53:59 +00003103<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003104<p>This instruction returns the <i>remainder</i> of a division. The remainder
3105 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003106
Reid Spencer7eb55b32006-11-02 01:53:59 +00003107<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003108<pre>
3109 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003110</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003111
Misha Brukman76307852003-11-08 01:05:38 +00003112</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003113
Reid Spencer2ab01932007-02-02 13:57:07 +00003114<!-- ======================================================================= -->
3115<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3116Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003117
Reid Spencer2ab01932007-02-02 13:57:07 +00003118<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003119
3120<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3121 program. They are generally very efficient instructions and can commonly be
3122 strength reduced from other instructions. They require two operands of the
3123 same type, execute an operation on them, and produce a single value. The
3124 resulting value is the same type as its operands.</p>
3125
Reid Spencer2ab01932007-02-02 13:57:07 +00003126</div>
3127
Reid Spencer04e259b2007-01-31 21:39:12 +00003128<!-- _______________________________________________________________________ -->
3129<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3130Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003131
Reid Spencer04e259b2007-01-31 21:39:12 +00003132<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003133
Reid Spencer04e259b2007-01-31 21:39:12 +00003134<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003135<pre>
3136 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003137</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003138
Reid Spencer04e259b2007-01-31 21:39:12 +00003139<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003140<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3141 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003142
Reid Spencer04e259b2007-01-31 21:39:12 +00003143<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003144<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3145 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3146 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003147
Reid Spencer04e259b2007-01-31 21:39:12 +00003148<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003149<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3150 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3151 is (statically or dynamically) negative or equal to or larger than the number
3152 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3153 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3154 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003155
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003156<h5>Example:</h5>
3157<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00003158 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3159 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3160 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003161 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003162 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003163</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003164
Reid Spencer04e259b2007-01-31 21:39:12 +00003165</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003166
Reid Spencer04e259b2007-01-31 21:39:12 +00003167<!-- _______________________________________________________________________ -->
3168<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3169Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003170
Reid Spencer04e259b2007-01-31 21:39:12 +00003171<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003172
Reid Spencer04e259b2007-01-31 21:39:12 +00003173<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003174<pre>
3175 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003176</pre>
3177
3178<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003179<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3180 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003181
3182<h5>Arguments:</h5>
3183<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003184 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3185 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003186
3187<h5>Semantics:</h5>
3188<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003189 significant bits of the result will be filled with zero bits after the shift.
3190 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3191 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3192 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3193 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003194
3195<h5>Example:</h5>
3196<pre>
3197 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3198 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3199 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3200 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003201 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003202 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003203</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003204
Reid Spencer04e259b2007-01-31 21:39:12 +00003205</div>
3206
Reid Spencer2ab01932007-02-02 13:57:07 +00003207<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00003208<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3209Instruction</a> </div>
3210<div class="doc_text">
3211
3212<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003213<pre>
3214 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003215</pre>
3216
3217<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003218<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3219 operand shifted to the right a specified number of bits with sign
3220 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003221
3222<h5>Arguments:</h5>
3223<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003224 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3225 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003226
3227<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003228<p>This instruction always performs an arithmetic shift right operation, The
3229 most significant bits of the result will be filled with the sign bit
3230 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3231 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3232 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3233 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003234
3235<h5>Example:</h5>
3236<pre>
3237 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3238 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3239 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3240 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003241 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003242 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003243</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003244
Reid Spencer04e259b2007-01-31 21:39:12 +00003245</div>
3246
Chris Lattner2f7c9632001-06-06 20:29:01 +00003247<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003248<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3249Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003250
Misha Brukman76307852003-11-08 01:05:38 +00003251<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003252
Chris Lattner2f7c9632001-06-06 20:29:01 +00003253<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003254<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003255 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003256</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003257
Chris Lattner2f7c9632001-06-06 20:29:01 +00003258<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003259<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3260 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003261
Chris Lattner2f7c9632001-06-06 20:29:01 +00003262<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003263<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003264 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3265 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003266
Chris Lattner2f7c9632001-06-06 20:29:01 +00003267<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003268<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003269
Misha Brukman76307852003-11-08 01:05:38 +00003270<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003271 <tbody>
3272 <tr>
3273 <td>In0</td>
3274 <td>In1</td>
3275 <td>Out</td>
3276 </tr>
3277 <tr>
3278 <td>0</td>
3279 <td>0</td>
3280 <td>0</td>
3281 </tr>
3282 <tr>
3283 <td>0</td>
3284 <td>1</td>
3285 <td>0</td>
3286 </tr>
3287 <tr>
3288 <td>1</td>
3289 <td>0</td>
3290 <td>0</td>
3291 </tr>
3292 <tr>
3293 <td>1</td>
3294 <td>1</td>
3295 <td>1</td>
3296 </tr>
3297 </tbody>
3298</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003299
Chris Lattner2f7c9632001-06-06 20:29:01 +00003300<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003301<pre>
3302 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003303 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3304 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003305</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003306</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003307<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003308<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003309
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003310<div class="doc_text">
3311
3312<h5>Syntax:</h5>
3313<pre>
3314 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3315</pre>
3316
3317<h5>Overview:</h5>
3318<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3319 two operands.</p>
3320
3321<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003322<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003323 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3324 values. Both arguments must have identical types.</p>
3325
Chris Lattner2f7c9632001-06-06 20:29:01 +00003326<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003327<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003328
Chris Lattner48b383b02003-11-25 01:02:51 +00003329<table border="1" cellspacing="0" cellpadding="4">
3330 <tbody>
3331 <tr>
3332 <td>In0</td>
3333 <td>In1</td>
3334 <td>Out</td>
3335 </tr>
3336 <tr>
3337 <td>0</td>
3338 <td>0</td>
3339 <td>0</td>
3340 </tr>
3341 <tr>
3342 <td>0</td>
3343 <td>1</td>
3344 <td>1</td>
3345 </tr>
3346 <tr>
3347 <td>1</td>
3348 <td>0</td>
3349 <td>1</td>
3350 </tr>
3351 <tr>
3352 <td>1</td>
3353 <td>1</td>
3354 <td>1</td>
3355 </tr>
3356 </tbody>
3357</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003358
Chris Lattner2f7c9632001-06-06 20:29:01 +00003359<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003360<pre>
3361 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003362 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3363 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003364</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003365
Misha Brukman76307852003-11-08 01:05:38 +00003366</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003367
Chris Lattner2f7c9632001-06-06 20:29:01 +00003368<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003369<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3370Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003371
Misha Brukman76307852003-11-08 01:05:38 +00003372<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003373
Chris Lattner2f7c9632001-06-06 20:29:01 +00003374<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003375<pre>
3376 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003377</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003378
Chris Lattner2f7c9632001-06-06 20:29:01 +00003379<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003380<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3381 its two operands. The <tt>xor</tt> is used to implement the "one's
3382 complement" operation, which is the "~" operator in C.</p>
3383
Chris Lattner2f7c9632001-06-06 20:29:01 +00003384<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003385<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003386 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3387 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003388
Chris Lattner2f7c9632001-06-06 20:29:01 +00003389<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003390<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003391
Chris Lattner48b383b02003-11-25 01:02:51 +00003392<table border="1" cellspacing="0" cellpadding="4">
3393 <tbody>
3394 <tr>
3395 <td>In0</td>
3396 <td>In1</td>
3397 <td>Out</td>
3398 </tr>
3399 <tr>
3400 <td>0</td>
3401 <td>0</td>
3402 <td>0</td>
3403 </tr>
3404 <tr>
3405 <td>0</td>
3406 <td>1</td>
3407 <td>1</td>
3408 </tr>
3409 <tr>
3410 <td>1</td>
3411 <td>0</td>
3412 <td>1</td>
3413 </tr>
3414 <tr>
3415 <td>1</td>
3416 <td>1</td>
3417 <td>0</td>
3418 </tr>
3419 </tbody>
3420</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003421
Chris Lattner2f7c9632001-06-06 20:29:01 +00003422<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003423<pre>
3424 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003425 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3426 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3427 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003428</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003429
Misha Brukman76307852003-11-08 01:05:38 +00003430</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003431
Chris Lattner2f7c9632001-06-06 20:29:01 +00003432<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00003433<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003434 <a name="vectorops">Vector Operations</a>
3435</div>
3436
3437<div class="doc_text">
3438
3439<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003440 target-independent manner. These instructions cover the element-access and
3441 vector-specific operations needed to process vectors effectively. While LLVM
3442 does directly support these vector operations, many sophisticated algorithms
3443 will want to use target-specific intrinsics to take full advantage of a
3444 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003445
3446</div>
3447
3448<!-- _______________________________________________________________________ -->
3449<div class="doc_subsubsection">
3450 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3451</div>
3452
3453<div class="doc_text">
3454
3455<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003456<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003457 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003458</pre>
3459
3460<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003461<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3462 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003463
3464
3465<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003466<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3467 of <a href="#t_vector">vector</a> type. The second operand is an index
3468 indicating the position from which to extract the element. The index may be
3469 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003470
3471<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003472<p>The result is a scalar of the same type as the element type of
3473 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3474 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3475 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003476
3477<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003478<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003479 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003480</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003481
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003482</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003483
3484<!-- _______________________________________________________________________ -->
3485<div class="doc_subsubsection">
3486 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3487</div>
3488
3489<div class="doc_text">
3490
3491<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003492<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003493 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003494</pre>
3495
3496<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003497<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3498 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003499
3500<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003501<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3502 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3503 whose type must equal the element type of the first operand. The third
3504 operand is an index indicating the position at which to insert the value.
3505 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003506
3507<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003508<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3509 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3510 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3511 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003512
3513<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003514<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003515 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003516</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003517
Chris Lattnerce83bff2006-04-08 23:07:04 +00003518</div>
3519
3520<!-- _______________________________________________________________________ -->
3521<div class="doc_subsubsection">
3522 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3523</div>
3524
3525<div class="doc_text">
3526
3527<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003528<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003529 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003530</pre>
3531
3532<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003533<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3534 from two input vectors, returning a vector with the same element type as the
3535 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003536
3537<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003538<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3539 with types that match each other. The third argument is a shuffle mask whose
3540 element type is always 'i32'. The result of the instruction is a vector
3541 whose length is the same as the shuffle mask and whose element type is the
3542 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003543
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003544<p>The shuffle mask operand is required to be a constant vector with either
3545 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003546
3547<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003548<p>The elements of the two input vectors are numbered from left to right across
3549 both of the vectors. The shuffle mask operand specifies, for each element of
3550 the result vector, which element of the two input vectors the result element
3551 gets. The element selector may be undef (meaning "don't care") and the
3552 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003553
3554<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003555<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003556 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003557 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003558 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3559 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wang25f01062008-11-10 04:46:22 +00003560 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3561 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3562 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3563 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003564</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003565
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003566</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003567
Chris Lattnerce83bff2006-04-08 23:07:04 +00003568<!-- ======================================================================= -->
3569<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003570 <a name="aggregateops">Aggregate Operations</a>
3571</div>
3572
3573<div class="doc_text">
3574
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003575<p>LLVM supports several instructions for working with aggregate values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003576
3577</div>
3578
3579<!-- _______________________________________________________________________ -->
3580<div class="doc_subsubsection">
3581 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3582</div>
3583
3584<div class="doc_text">
3585
3586<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003587<pre>
3588 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3589</pre>
3590
3591<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003592<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3593 or array element from an aggregate value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003594
3595<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003596<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
3597 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3598 operands are constant indices to specify which value to extract in a similar
3599 manner as indices in a
3600 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003601
3602<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003603<p>The result is the value at the position in the aggregate specified by the
3604 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003605
3606<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003607<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003608 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003609</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003610
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003611</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003612
3613<!-- _______________________________________________________________________ -->
3614<div class="doc_subsubsection">
3615 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3616</div>
3617
3618<div class="doc_text">
3619
3620<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003621<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003622 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003623</pre>
3624
3625<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003626<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
3627 array element in an aggregate.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003628
3629
3630<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003631<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
3632 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3633 second operand is a first-class value to insert. The following operands are
3634 constant indices indicating the position at which to insert the value in a
3635 similar manner as indices in a
3636 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3637 value to insert must have the same type as the value identified by the
3638 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003639
3640<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003641<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3642 that of <tt>val</tt> except that the value at the position specified by the
3643 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003644
3645<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003646<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003647 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003648</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003649
Dan Gohmanb9d66602008-05-12 23:51:09 +00003650</div>
3651
3652
3653<!-- ======================================================================= -->
3654<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003655 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003656</div>
3657
Misha Brukman76307852003-11-08 01:05:38 +00003658<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003659
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003660<p>A key design point of an SSA-based representation is how it represents
3661 memory. In LLVM, no memory locations are in SSA form, which makes things
3662 very simple. This section describes how to read, write, allocate, and free
3663 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003664
Misha Brukman76307852003-11-08 01:05:38 +00003665</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003666
Chris Lattner2f7c9632001-06-06 20:29:01 +00003667<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003668<div class="doc_subsubsection">
3669 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3670</div>
3671
Misha Brukman76307852003-11-08 01:05:38 +00003672<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003673
Chris Lattner2f7c9632001-06-06 20:29:01 +00003674<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003675<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003676 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003677</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003678
Chris Lattner2f7c9632001-06-06 20:29:01 +00003679<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003680<p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and
3681 returns a pointer to it. The object is always allocated in the generic
3682 address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003683
Chris Lattner2f7c9632001-06-06 20:29:01 +00003684<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003685<p>The '<tt>malloc</tt>' instruction allocates
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003686 <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
3687 system and returns a pointer of the appropriate type to the program. If
3688 "NumElements" is specified, it is the number of elements allocated, otherwise
3689 "NumElements" is defaulted to be one. If a constant alignment is specified,
3690 the value result of the allocation is guaranteed to be aligned to at least
3691 that boundary. If not specified, or if zero, the target can choose to align
3692 the allocation on any convenient boundary compatible with the type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003693
Misha Brukman76307852003-11-08 01:05:38 +00003694<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003695
Chris Lattner2f7c9632001-06-06 20:29:01 +00003696<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003697<p>Memory is allocated using the system "<tt>malloc</tt>" function, and a
3698 pointer is returned. The result of a zero byte allocation is undefined. The
3699 result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003700
Chris Lattner54611b42005-11-06 08:02:57 +00003701<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003702<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003703 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003704
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003705 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3706 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3707 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3708 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3709 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003710</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003711
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003712<p>Note that the code generator does not yet respect the alignment value.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00003713
Misha Brukman76307852003-11-08 01:05:38 +00003714</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003715
Chris Lattner2f7c9632001-06-06 20:29:01 +00003716<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003717<div class="doc_subsubsection">
3718 <a name="i_free">'<tt>free</tt>' Instruction</a>
3719</div>
3720
Misha Brukman76307852003-11-08 01:05:38 +00003721<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003722
Chris Lattner2f7c9632001-06-06 20:29:01 +00003723<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003724<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003725 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003726</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003727
Chris Lattner2f7c9632001-06-06 20:29:01 +00003728<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003729<p>The '<tt>free</tt>' instruction returns memory back to the unused memory heap
3730 to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003731
Chris Lattner2f7c9632001-06-06 20:29:01 +00003732<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003733<p>'<tt>value</tt>' shall be a pointer value that points to a value that was
3734 allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003735
Chris Lattner2f7c9632001-06-06 20:29:01 +00003736<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003737<p>Access to the memory pointed to by the pointer is no longer defined after
3738 this instruction executes. If the pointer is null, the operation is a
3739 noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003740
Chris Lattner2f7c9632001-06-06 20:29:01 +00003741<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003742<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003743 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003744 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003745</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003746
Misha Brukman76307852003-11-08 01:05:38 +00003747</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003748
Chris Lattner2f7c9632001-06-06 20:29:01 +00003749<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003750<div class="doc_subsubsection">
3751 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3752</div>
3753
Misha Brukman76307852003-11-08 01:05:38 +00003754<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003755
Chris Lattner2f7c9632001-06-06 20:29:01 +00003756<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003757<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003758 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003759</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003760
Chris Lattner2f7c9632001-06-06 20:29:01 +00003761<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003762<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003763 currently executing function, to be automatically released when this function
3764 returns to its caller. The object is always allocated in the generic address
3765 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003766
Chris Lattner2f7c9632001-06-06 20:29:01 +00003767<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003768<p>The '<tt>alloca</tt>' instruction
3769 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
3770 runtime stack, returning a pointer of the appropriate type to the program.
3771 If "NumElements" is specified, it is the number of elements allocated,
3772 otherwise "NumElements" is defaulted to be one. If a constant alignment is
3773 specified, the value result of the allocation is guaranteed to be aligned to
3774 at least that boundary. If not specified, or if zero, the target can choose
3775 to align the allocation on any convenient boundary compatible with the
3776 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003777
Misha Brukman76307852003-11-08 01:05:38 +00003778<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003779
Chris Lattner2f7c9632001-06-06 20:29:01 +00003780<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00003781<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003782 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3783 memory is automatically released when the function returns. The
3784 '<tt>alloca</tt>' instruction is commonly used to represent automatic
3785 variables that must have an address available. When the function returns
3786 (either with the <tt><a href="#i_ret">ret</a></tt>
3787 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
3788 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003789
Chris Lattner2f7c9632001-06-06 20:29:01 +00003790<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003791<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003792 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3793 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3794 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3795 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003796</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003797
Misha Brukman76307852003-11-08 01:05:38 +00003798</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003799
Chris Lattner2f7c9632001-06-06 20:29:01 +00003800<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003801<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3802Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003803
Misha Brukman76307852003-11-08 01:05:38 +00003804<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003805
Chris Lattner095735d2002-05-06 03:03:22 +00003806<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003807<pre>
3808 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3809 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3810</pre>
3811
Chris Lattner095735d2002-05-06 03:03:22 +00003812<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003813<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003814
Chris Lattner095735d2002-05-06 03:03:22 +00003815<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003816<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
3817 from which to load. The pointer must point to
3818 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3819 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
3820 number or order of execution of this <tt>load</tt> with other
3821 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3822 instructions. </p>
3823
3824<p>The optional constant "align" argument specifies the alignment of the
3825 operation (that is, the alignment of the memory address). A value of 0 or an
3826 omitted "align" argument means that the operation has the preferential
3827 alignment for the target. It is the responsibility of the code emitter to
3828 ensure that the alignment information is correct. Overestimating the
3829 alignment results in an undefined behavior. Underestimating the alignment may
3830 produce less efficient code. An alignment of 1 is always safe.</p>
3831
Chris Lattner095735d2002-05-06 03:03:22 +00003832<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003833<p>The location of memory pointed to is loaded. If the value being loaded is of
3834 scalar type then the number of bytes read does not exceed the minimum number
3835 of bytes needed to hold all bits of the type. For example, loading an
3836 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
3837 <tt>i20</tt> with a size that is not an integral number of bytes, the result
3838 is undefined if the value was not originally written using a store of the
3839 same type.</p>
3840
Chris Lattner095735d2002-05-06 03:03:22 +00003841<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842<pre>
3843 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3844 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003845 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003846</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003847
Misha Brukman76307852003-11-08 01:05:38 +00003848</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003849
Chris Lattner095735d2002-05-06 03:03:22 +00003850<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003851<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3852Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003853
Reid Spencera89fb182006-11-09 21:18:01 +00003854<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003855
Chris Lattner095735d2002-05-06 03:03:22 +00003856<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003857<pre>
3858 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Christopher Lambbff50202007-04-21 08:16:25 +00003859 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003860</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003861
Chris Lattner095735d2002-05-06 03:03:22 +00003862<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003863<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003864
Chris Lattner095735d2002-05-06 03:03:22 +00003865<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003866<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
3867 and an address at which to store it. The type of the
3868 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
3869 the <a href="#t_firstclass">first class</a> type of the
3870 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
3871 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
3872 or order of execution of this <tt>store</tt> with other
3873 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3874 instructions.</p>
3875
3876<p>The optional constant "align" argument specifies the alignment of the
3877 operation (that is, the alignment of the memory address). A value of 0 or an
3878 omitted "align" argument means that the operation has the preferential
3879 alignment for the target. It is the responsibility of the code emitter to
3880 ensure that the alignment information is correct. Overestimating the
3881 alignment results in an undefined behavior. Underestimating the alignment may
3882 produce less efficient code. An alignment of 1 is always safe.</p>
3883
Chris Lattner48b383b02003-11-25 01:02:51 +00003884<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003885<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
3886 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
3887 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
3888 does not exceed the minimum number of bytes needed to hold all bits of the
3889 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
3890 writing a value of a type like <tt>i20</tt> with a size that is not an
3891 integral number of bytes, it is unspecified what happens to the extra bits
3892 that do not belong to the type, but they will typically be overwritten.</p>
3893
Chris Lattner095735d2002-05-06 03:03:22 +00003894<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003895<pre>
3896 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00003897 store i32 3, i32* %ptr <i>; yields {void}</i>
3898 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003899</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003900
Reid Spencer443460a2006-11-09 21:15:49 +00003901</div>
3902
Chris Lattner095735d2002-05-06 03:03:22 +00003903<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00003904<div class="doc_subsubsection">
3905 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3906</div>
3907
Misha Brukman76307852003-11-08 01:05:38 +00003908<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003909
Chris Lattner590645f2002-04-14 06:13:44 +00003910<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003911<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003912 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00003913 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00003914</pre>
3915
Chris Lattner590645f2002-04-14 06:13:44 +00003916<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003917<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
3918 subelement of an aggregate data structure. It performs address calculation
3919 only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003920
Chris Lattner590645f2002-04-14 06:13:44 +00003921<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003922<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00003923 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003924 elements of the aggregate object are indexed. The interpretation of each
3925 index is dependent on the type being indexed into. The first index always
3926 indexes the pointer value given as the first argument, the second index
3927 indexes a value of the type pointed to (not necessarily the value directly
3928 pointed to, since the first index can be non-zero), etc. The first type
3929 indexed into must be a pointer value, subsequent types can be arrays, vectors
3930 and structs. Note that subsequent types being indexed into can never be
3931 pointers, since that would require loading the pointer before continuing
3932 calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003933
3934<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnera40b9122009-07-29 06:44:13 +00003935 When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003936 <b>constants</b> are allowed. When indexing into an array, pointer or
Chris Lattnera40b9122009-07-29 06:44:13 +00003937 vector, integers of any width are allowed, and they are not required to be
3938 constant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003939
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003940<p>For example, let's consider a C code fragment and how it gets compiled to
3941 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003942
Bill Wendling3716c5d2007-05-29 09:04:49 +00003943<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003944<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003945struct RT {
3946 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00003947 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00003948 char C;
3949};
3950struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00003951 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00003952 double Y;
3953 struct RT Z;
3954};
Chris Lattner33fd7022004-04-05 01:30:49 +00003955
Chris Lattnera446f1b2007-05-29 15:43:56 +00003956int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003957 return &amp;s[1].Z.B[5][13];
3958}
Chris Lattner33fd7022004-04-05 01:30:49 +00003959</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003960</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003961
Misha Brukman76307852003-11-08 01:05:38 +00003962<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003963
Bill Wendling3716c5d2007-05-29 09:04:49 +00003964<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003965<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00003966%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3967%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00003968
Dan Gohman6b867702009-07-25 02:23:48 +00003969define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003970entry:
3971 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3972 ret i32* %reg
3973}
Chris Lattner33fd7022004-04-05 01:30:49 +00003974</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003975</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003976
Chris Lattner590645f2002-04-14 06:13:44 +00003977<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003978<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003979 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3980 }</tt>' type, a structure. The second index indexes into the third element
3981 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3982 i8 }</tt>' type, another structure. The third index indexes into the second
3983 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3984 array. The two dimensions of the array are subscripted into, yielding an
3985 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
3986 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003987
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003988<p>Note that it is perfectly legal to index partially through a structure,
3989 returning a pointer to an inner element. Because of this, the LLVM code for
3990 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003991
3992<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00003993 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003994 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00003995 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3996 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003997 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3998 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3999 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00004000 }
Chris Lattnera8292f32002-05-06 22:08:29 +00004001</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00004002
Dan Gohman1639c392009-07-27 21:53:46 +00004003<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman61acaaa2009-07-29 16:00:30 +00004004 <tt>getelementptr</tt> is undefined if the base pointer is not an
4005 <i>in bounds</i> address of an allocated object, or if any of the addresses
4006 formed by successive addition of the offsets implied by the indices to
4007 the base address are not an <i>in bounds</i> address of that allocated
4008 object.
4009 The <i>in bounds</i> addresses for an allocated object are all the addresses
4010 that point into the object, plus the address one past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00004011
4012<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4013 the base address with silently-wrapping two's complement arithmetic, and
4014 the result value of the <tt>getelementptr</tt> may be outside the object
4015 pointed to by the base pointer. The result value may not necessarily be
4016 used to access memory though, even if it happens to point into allocated
4017 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4018 section for more information.</p>
4019
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004020<p>The getelementptr instruction is often confusing. For some more insight into
4021 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00004022
Chris Lattner590645f2002-04-14 06:13:44 +00004023<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004024<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004025 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004026 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4027 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004028 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004029 <i>; yields i8*:eptr</i>
4030 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00004031 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00004032 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00004033</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004034
Chris Lattner33fd7022004-04-05 01:30:49 +00004035</div>
Reid Spencer443460a2006-11-09 21:15:49 +00004036
Chris Lattner2f7c9632001-06-06 20:29:01 +00004037<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00004038<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00004039</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004040
Misha Brukman76307852003-11-08 01:05:38 +00004041<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004042
Reid Spencer97c5fa42006-11-08 01:18:52 +00004043<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004044 which all take a single operand and a type. They perform various bit
4045 conversions on the operand.</p>
4046
Misha Brukman76307852003-11-08 01:05:38 +00004047</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004048
Chris Lattnera8292f32002-05-06 22:08:29 +00004049<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004050<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004051 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4052</div>
4053<div class="doc_text">
4054
4055<h5>Syntax:</h5>
4056<pre>
4057 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4058</pre>
4059
4060<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004061<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4062 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004063
4064<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004065<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4066 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4067 size and type of the result, which must be
4068 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4069 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4070 allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004071
4072<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004073<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4074 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4075 source size must be larger than the destination size, <tt>trunc</tt> cannot
4076 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004077
4078<h5>Example:</h5>
4079<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004080 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004081 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4082 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004083</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004084
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004085</div>
4086
4087<!-- _______________________________________________________________________ -->
4088<div class="doc_subsubsection">
4089 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4090</div>
4091<div class="doc_text">
4092
4093<h5>Syntax:</h5>
4094<pre>
4095 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4096</pre>
4097
4098<h5>Overview:</h5>
4099<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004100 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004101
4102
4103<h5>Arguments:</h5>
4104<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004105 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4106 also be of <a href="#t_integer">integer</a> type. The bit size of the
4107 <tt>value</tt> must be smaller than the bit size of the destination type,
4108 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004109
4110<h5>Semantics:</h5>
4111<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004112 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004113
Reid Spencer07c9c682007-01-12 15:46:11 +00004114<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004115
4116<h5>Example:</h5>
4117<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004118 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004119 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004120</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004121
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004122</div>
4123
4124<!-- _______________________________________________________________________ -->
4125<div class="doc_subsubsection">
4126 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4127</div>
4128<div class="doc_text">
4129
4130<h5>Syntax:</h5>
4131<pre>
4132 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4133</pre>
4134
4135<h5>Overview:</h5>
4136<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4137
4138<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004139<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4140 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4141 also be of <a href="#t_integer">integer</a> type. The bit size of the
4142 <tt>value</tt> must be smaller than the bit size of the destination type,
4143 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004144
4145<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004146<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4147 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4148 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004149
Reid Spencer36a15422007-01-12 03:35:51 +00004150<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004151
4152<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004153<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004154 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004155 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004156</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004157
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004158</div>
4159
4160<!-- _______________________________________________________________________ -->
4161<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00004162 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4163</div>
4164
4165<div class="doc_text">
4166
4167<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004168<pre>
4169 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4170</pre>
4171
4172<h5>Overview:</h5>
4173<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004174 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004175
4176<h5>Arguments:</h5>
4177<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004178 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4179 to cast it to. The size of <tt>value</tt> must be larger than the size of
4180 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4181 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004182
4183<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004184<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4185 <a href="#t_floating">floating point</a> type to a smaller
4186 <a href="#t_floating">floating point</a> type. If the value cannot fit
4187 within the destination type, <tt>ty2</tt>, then the results are
4188 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004189
4190<h5>Example:</h5>
4191<pre>
4192 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4193 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4194</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004195
Reid Spencer2e2740d2006-11-09 21:48:10 +00004196</div>
4197
4198<!-- _______________________________________________________________________ -->
4199<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004200 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4201</div>
4202<div class="doc_text">
4203
4204<h5>Syntax:</h5>
4205<pre>
4206 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4207</pre>
4208
4209<h5>Overview:</h5>
4210<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004211 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004212
4213<h5>Arguments:</h5>
4214<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004215 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4216 a <a href="#t_floating">floating point</a> type to cast it to. The source
4217 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004218
4219<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004220<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004221 <a href="#t_floating">floating point</a> type to a larger
4222 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4223 used to make a <i>no-op cast</i> because it always changes bits. Use
4224 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004225
4226<h5>Example:</h5>
4227<pre>
4228 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4229 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4230</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004231
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004232</div>
4233
4234<!-- _______________________________________________________________________ -->
4235<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004236 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004237</div>
4238<div class="doc_text">
4239
4240<h5>Syntax:</h5>
4241<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004242 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004243</pre>
4244
4245<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004246<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004247 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004248
4249<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004250<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4251 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4252 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4253 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4254 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004255
4256<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004257<p>The '<tt>fptoui</tt>' instruction converts its
4258 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4259 towards zero) unsigned integer value. If the value cannot fit
4260 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004261
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004262<h5>Example:</h5>
4263<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004264 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004265 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00004266 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004267</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004268
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004269</div>
4270
4271<!-- _______________________________________________________________________ -->
4272<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004273 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004274</div>
4275<div class="doc_text">
4276
4277<h5>Syntax:</h5>
4278<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004279 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004280</pre>
4281
4282<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004283<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004284 <a href="#t_floating">floating point</a> <tt>value</tt> to
4285 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004286
Chris Lattnera8292f32002-05-06 22:08:29 +00004287<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004288<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4289 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4290 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4291 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4292 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004293
Chris Lattnera8292f32002-05-06 22:08:29 +00004294<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004295<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004296 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4297 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4298 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004299
Chris Lattner70de6632001-07-09 00:26:23 +00004300<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004301<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004302 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004303 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004304 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004305</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004306
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004307</div>
4308
4309<!-- _______________________________________________________________________ -->
4310<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004311 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004312</div>
4313<div class="doc_text">
4314
4315<h5>Syntax:</h5>
4316<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004317 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004318</pre>
4319
4320<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004321<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004322 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004323
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004324<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004325<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004326 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4327 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4328 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4329 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004330
4331<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004332<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004333 integer quantity and converts it to the corresponding floating point
4334 value. If the value cannot fit in the floating point value, the results are
4335 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004336
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004337<h5>Example:</h5>
4338<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004339 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004340 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004341</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004342
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004343</div>
4344
4345<!-- _______________________________________________________________________ -->
4346<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004347 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004348</div>
4349<div class="doc_text">
4350
4351<h5>Syntax:</h5>
4352<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004353 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004354</pre>
4355
4356<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004357<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4358 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004359
4360<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004361<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004362 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4363 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4364 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4365 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004366
4367<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004368<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4369 quantity and converts it to the corresponding floating point value. If the
4370 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004371
4372<h5>Example:</h5>
4373<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004374 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004375 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004376</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004377
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004378</div>
4379
4380<!-- _______________________________________________________________________ -->
4381<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004382 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4383</div>
4384<div class="doc_text">
4385
4386<h5>Syntax:</h5>
4387<pre>
4388 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4389</pre>
4390
4391<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004392<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4393 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004394
4395<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004396<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4397 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4398 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004399
4400<h5>Semantics:</h5>
4401<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004402 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4403 truncating or zero extending that value to the size of the integer type. If
4404 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4405 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4406 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4407 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004408
4409<h5>Example:</h5>
4410<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004411 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4412 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004413</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004414
Reid Spencerb7344ff2006-11-11 21:00:47 +00004415</div>
4416
4417<!-- _______________________________________________________________________ -->
4418<div class="doc_subsubsection">
4419 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4420</div>
4421<div class="doc_text">
4422
4423<h5>Syntax:</h5>
4424<pre>
4425 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4426</pre>
4427
4428<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004429<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4430 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004431
4432<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004433<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004434 value to cast, and a type to cast it to, which must be a
4435 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004436
4437<h5>Semantics:</h5>
4438<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004439 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4440 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4441 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4442 than the size of a pointer then a zero extension is done. If they are the
4443 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004444
4445<h5>Example:</h5>
4446<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004447 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4448 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4449 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004450</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004451
Reid Spencerb7344ff2006-11-11 21:00:47 +00004452</div>
4453
4454<!-- _______________________________________________________________________ -->
4455<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004456 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004457</div>
4458<div class="doc_text">
4459
4460<h5>Syntax:</h5>
4461<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004462 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004463</pre>
4464
4465<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004466<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004467 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004468
4469<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004470<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4471 non-aggregate first class value, and a type to cast it to, which must also be
4472 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4473 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4474 identical. If the source type is a pointer, the destination type must also be
4475 a pointer. This instruction supports bitwise conversion of vectors to
4476 integers and to vectors of other types (as long as they have the same
4477 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004478
4479<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004480<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004481 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4482 this conversion. The conversion is done as if the <tt>value</tt> had been
4483 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4484 be converted to other pointer types with this instruction. To convert
4485 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4486 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004487
4488<h5>Example:</h5>
4489<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004490 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004491 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004492 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004493</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004494
Misha Brukman76307852003-11-08 01:05:38 +00004495</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004496
Reid Spencer97c5fa42006-11-08 01:18:52 +00004497<!-- ======================================================================= -->
4498<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004499
Reid Spencer97c5fa42006-11-08 01:18:52 +00004500<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004501
4502<p>The instructions in this category are the "miscellaneous" instructions, which
4503 defy better classification.</p>
4504
Reid Spencer97c5fa42006-11-08 01:18:52 +00004505</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004506
4507<!-- _______________________________________________________________________ -->
4508<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4509</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004510
Reid Spencerc828a0e2006-11-18 21:50:54 +00004511<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004512
Reid Spencerc828a0e2006-11-18 21:50:54 +00004513<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004514<pre>
4515 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004516</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004517
Reid Spencerc828a0e2006-11-18 21:50:54 +00004518<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004519<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4520 boolean values based on comparison of its two integer, integer vector, or
4521 pointer operands.</p>
4522
Reid Spencerc828a0e2006-11-18 21:50:54 +00004523<h5>Arguments:</h5>
4524<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004525 the condition code indicating the kind of comparison to perform. It is not a
4526 value, just a keyword. The possible condition code are:</p>
4527
Reid Spencerc828a0e2006-11-18 21:50:54 +00004528<ol>
4529 <li><tt>eq</tt>: equal</li>
4530 <li><tt>ne</tt>: not equal </li>
4531 <li><tt>ugt</tt>: unsigned greater than</li>
4532 <li><tt>uge</tt>: unsigned greater or equal</li>
4533 <li><tt>ult</tt>: unsigned less than</li>
4534 <li><tt>ule</tt>: unsigned less or equal</li>
4535 <li><tt>sgt</tt>: signed greater than</li>
4536 <li><tt>sge</tt>: signed greater or equal</li>
4537 <li><tt>slt</tt>: signed less than</li>
4538 <li><tt>sle</tt>: signed less or equal</li>
4539</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004540
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004541<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004542 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4543 typed. They must also be identical types.</p>
4544
Reid Spencerc828a0e2006-11-18 21:50:54 +00004545<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004546<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4547 condition code given as <tt>cond</tt>. The comparison performed always yields
4548 either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt>
4549 result, as follows:</p>
4550
Reid Spencerc828a0e2006-11-18 21:50:54 +00004551<ol>
4552 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004553 <tt>false</tt> otherwise. No sign interpretation is necessary or
4554 performed.</li>
4555
Reid Spencerc828a0e2006-11-18 21:50:54 +00004556 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004557 <tt>false</tt> otherwise. No sign interpretation is necessary or
4558 performed.</li>
4559
Reid Spencerc828a0e2006-11-18 21:50:54 +00004560 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004561 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4562
Reid Spencerc828a0e2006-11-18 21:50:54 +00004563 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004564 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4565 to <tt>op2</tt>.</li>
4566
Reid Spencerc828a0e2006-11-18 21:50:54 +00004567 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004568 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4569
Reid Spencerc828a0e2006-11-18 21:50:54 +00004570 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004571 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4572
Reid Spencerc828a0e2006-11-18 21:50:54 +00004573 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004574 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4575
Reid Spencerc828a0e2006-11-18 21:50:54 +00004576 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004577 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4578 to <tt>op2</tt>.</li>
4579
Reid Spencerc828a0e2006-11-18 21:50:54 +00004580 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004581 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4582
Reid Spencerc828a0e2006-11-18 21:50:54 +00004583 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004584 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004585</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004586
Reid Spencerc828a0e2006-11-18 21:50:54 +00004587<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004588 values are compared as if they were integers.</p>
4589
4590<p>If the operands are integer vectors, then they are compared element by
4591 element. The result is an <tt>i1</tt> vector with the same number of elements
4592 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004593
4594<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004595<pre>
4596 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004597 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4598 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4599 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4600 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4601 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004602</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004603
4604<p>Note that the code generator does not yet support vector types with
4605 the <tt>icmp</tt> instruction.</p>
4606
Reid Spencerc828a0e2006-11-18 21:50:54 +00004607</div>
4608
4609<!-- _______________________________________________________________________ -->
4610<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4611</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004612
Reid Spencerc828a0e2006-11-18 21:50:54 +00004613<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004614
Reid Spencerc828a0e2006-11-18 21:50:54 +00004615<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004616<pre>
4617 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004618</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004619
Reid Spencerc828a0e2006-11-18 21:50:54 +00004620<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004621<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4622 values based on comparison of its operands.</p>
4623
4624<p>If the operands are floating point scalars, then the result type is a boolean
4625(<a href="#t_primitive"><tt>i1</tt></a>).</p>
4626
4627<p>If the operands are floating point vectors, then the result type is a vector
4628 of boolean with the same number of elements as the operands being
4629 compared.</p>
4630
Reid Spencerc828a0e2006-11-18 21:50:54 +00004631<h5>Arguments:</h5>
4632<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004633 the condition code indicating the kind of comparison to perform. It is not a
4634 value, just a keyword. The possible condition code are:</p>
4635
Reid Spencerc828a0e2006-11-18 21:50:54 +00004636<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004637 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004638 <li><tt>oeq</tt>: ordered and equal</li>
4639 <li><tt>ogt</tt>: ordered and greater than </li>
4640 <li><tt>oge</tt>: ordered and greater than or equal</li>
4641 <li><tt>olt</tt>: ordered and less than </li>
4642 <li><tt>ole</tt>: ordered and less than or equal</li>
4643 <li><tt>one</tt>: ordered and not equal</li>
4644 <li><tt>ord</tt>: ordered (no nans)</li>
4645 <li><tt>ueq</tt>: unordered or equal</li>
4646 <li><tt>ugt</tt>: unordered or greater than </li>
4647 <li><tt>uge</tt>: unordered or greater than or equal</li>
4648 <li><tt>ult</tt>: unordered or less than </li>
4649 <li><tt>ule</tt>: unordered or less than or equal</li>
4650 <li><tt>une</tt>: unordered or not equal</li>
4651 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004652 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004653</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004654
Jeff Cohen222a8a42007-04-29 01:07:00 +00004655<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004656 <i>unordered</i> means that either operand may be a QNAN.</p>
4657
4658<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4659 a <a href="#t_floating">floating point</a> type or
4660 a <a href="#t_vector">vector</a> of floating point type. They must have
4661 identical types.</p>
4662
Reid Spencerc828a0e2006-11-18 21:50:54 +00004663<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004664<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004665 according to the condition code given as <tt>cond</tt>. If the operands are
4666 vectors, then the vectors are compared element by element. Each comparison
4667 performed always yields an <a href="#t_primitive">i1</a> result, as
4668 follows:</p>
4669
Reid Spencerc828a0e2006-11-18 21:50:54 +00004670<ol>
4671 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004672
Reid Spencerf69acf32006-11-19 03:00:14 +00004673 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004674 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4675
Reid Spencerf69acf32006-11-19 03:00:14 +00004676 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004677 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4678
Reid Spencerf69acf32006-11-19 03:00:14 +00004679 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004680 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4681
Reid Spencerf69acf32006-11-19 03:00:14 +00004682 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004683 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4684
Reid Spencerf69acf32006-11-19 03:00:14 +00004685 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004686 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4687
Reid Spencerf69acf32006-11-19 03:00:14 +00004688 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004689 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4690
Reid Spencerf69acf32006-11-19 03:00:14 +00004691 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004692
Reid Spencerf69acf32006-11-19 03:00:14 +00004693 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004694 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4695
Reid Spencerf69acf32006-11-19 03:00:14 +00004696 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004697 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4698
Reid Spencerf69acf32006-11-19 03:00:14 +00004699 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004700 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4701
Reid Spencerf69acf32006-11-19 03:00:14 +00004702 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004703 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4704
Reid Spencerf69acf32006-11-19 03:00:14 +00004705 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004706 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4707
Reid Spencerf69acf32006-11-19 03:00:14 +00004708 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004709 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4710
Reid Spencerf69acf32006-11-19 03:00:14 +00004711 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004712
Reid Spencerc828a0e2006-11-18 21:50:54 +00004713 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4714</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004715
4716<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004717<pre>
4718 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004719 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4720 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4721 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004722</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004723
4724<p>Note that the code generator does not yet support vector types with
4725 the <tt>fcmp</tt> instruction.</p>
4726
Reid Spencerc828a0e2006-11-18 21:50:54 +00004727</div>
4728
Reid Spencer97c5fa42006-11-08 01:18:52 +00004729<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004730<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004731 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4732</div>
4733
Reid Spencer97c5fa42006-11-08 01:18:52 +00004734<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004735
Reid Spencer97c5fa42006-11-08 01:18:52 +00004736<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004737<pre>
4738 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
4739</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004740
Reid Spencer97c5fa42006-11-08 01:18:52 +00004741<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004742<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
4743 SSA graph representing the function.</p>
4744
Reid Spencer97c5fa42006-11-08 01:18:52 +00004745<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004746<p>The type of the incoming values is specified with the first type field. After
4747 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
4748 one pair for each predecessor basic block of the current block. Only values
4749 of <a href="#t_firstclass">first class</a> type may be used as the value
4750 arguments to the PHI node. Only labels may be used as the label
4751 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004752
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004753<p>There must be no non-phi instructions between the start of a basic block and
4754 the PHI instructions: i.e. PHI instructions must be first in a basic
4755 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004756
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004757<p>For the purposes of the SSA form, the use of each incoming value is deemed to
4758 occur on the edge from the corresponding predecessor block to the current
4759 block (but after any definition of an '<tt>invoke</tt>' instruction's return
4760 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00004761
Reid Spencer97c5fa42006-11-08 01:18:52 +00004762<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004763<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004764 specified by the pair corresponding to the predecessor basic block that
4765 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004766
Reid Spencer97c5fa42006-11-08 01:18:52 +00004767<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004768<pre>
4769Loop: ; Infinite loop that counts from 0 on up...
4770 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4771 %nextindvar = add i32 %indvar, 1
4772 br label %Loop
4773</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004774
Reid Spencer97c5fa42006-11-08 01:18:52 +00004775</div>
4776
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004777<!-- _______________________________________________________________________ -->
4778<div class="doc_subsubsection">
4779 <a name="i_select">'<tt>select</tt>' Instruction</a>
4780</div>
4781
4782<div class="doc_text">
4783
4784<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004785<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004786 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4787
Dan Gohmanef9462f2008-10-14 16:51:45 +00004788 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004789</pre>
4790
4791<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004792<p>The '<tt>select</tt>' instruction is used to choose one value based on a
4793 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004794
4795
4796<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004797<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
4798 values indicating the condition, and two values of the
4799 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
4800 vectors and the condition is a scalar, then entire vectors are selected, not
4801 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004802
4803<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004804<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
4805 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004806
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004807<p>If the condition is a vector of i1, then the value arguments must be vectors
4808 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004809
4810<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004811<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004812 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004813</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004814
4815<p>Note that the code generator does not yet support conditions
4816 with vector type.</p>
4817
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004818</div>
4819
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004820<!-- _______________________________________________________________________ -->
4821<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004822 <a name="i_call">'<tt>call</tt>' Instruction</a>
4823</div>
4824
Misha Brukman76307852003-11-08 01:05:38 +00004825<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004826
Chris Lattner2f7c9632001-06-06 20:29:01 +00004827<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004828<pre>
Devang Patel02256232008-10-07 17:48:33 +00004829 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004830</pre>
4831
Chris Lattner2f7c9632001-06-06 20:29:01 +00004832<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004833<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004834
Chris Lattner2f7c9632001-06-06 20:29:01 +00004835<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004836<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004837
Chris Lattnera8292f32002-05-06 22:08:29 +00004838<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004839 <li>The optional "tail" marker indicates whether the callee function accesses
4840 any allocas or varargs in the caller. If the "tail" marker is present,
4841 the function call is eligible for tail call optimization. Note that calls
4842 may be marked "tail" even if they do not occur before
4843 a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004844
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004845 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
4846 convention</a> the call should use. If none is specified, the call
4847 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004848
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004849 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4850 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
4851 '<tt>inreg</tt>' attributes are valid here.</li>
4852
4853 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
4854 type of the return value. Functions that return no value are marked
4855 <tt><a href="#t_void">void</a></tt>.</li>
4856
4857 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
4858 being invoked. The argument types must match the types implied by this
4859 signature. This type can be omitted if the function is not varargs and if
4860 the function type does not return a pointer to a function.</li>
4861
4862 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4863 be invoked. In most cases, this is a direct function invocation, but
4864 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4865 to function value.</li>
4866
4867 <li>'<tt>function args</tt>': argument list whose types match the function
4868 signature argument types. All arguments must be of
4869 <a href="#t_firstclass">first class</a> type. If the function signature
4870 indicates the function accepts a variable number of arguments, the extra
4871 arguments can be specified.</li>
4872
4873 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
4874 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4875 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00004876</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00004877
Chris Lattner2f7c9632001-06-06 20:29:01 +00004878<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004879<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
4880 a specified function, with its incoming arguments bound to the specified
4881 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
4882 function, control flow continues with the instruction after the function
4883 call, and the return value of the function is bound to the result
4884 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004885
Chris Lattner2f7c9632001-06-06 20:29:01 +00004886<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004887<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004888 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00004889 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4890 %X = tail call i32 @foo() <i>; yields i32</i>
4891 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4892 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00004893
4894 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00004895 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00004896 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4897 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00004898 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00004899 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00004900</pre>
4901
Misha Brukman76307852003-11-08 01:05:38 +00004902</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004903
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004904<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00004905<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00004906 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004907</div>
4908
Misha Brukman76307852003-11-08 01:05:38 +00004909<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00004910
Chris Lattner26ca62e2003-10-18 05:51:36 +00004911<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004912<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004913 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00004914</pre>
4915
Chris Lattner26ca62e2003-10-18 05:51:36 +00004916<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004917<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004918 the "variable argument" area of a function call. It is used to implement the
4919 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004920
Chris Lattner26ca62e2003-10-18 05:51:36 +00004921<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004922<p>This instruction takes a <tt>va_list*</tt> value and the type of the
4923 argument. It returns a value of the specified argument type and increments
4924 the <tt>va_list</tt> to point to the next argument. The actual type
4925 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004926
Chris Lattner26ca62e2003-10-18 05:51:36 +00004927<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004928<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
4929 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
4930 to the next argument. For more information, see the variable argument
4931 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004932
4933<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004934 take a variable number of arguments, for example, the <tt>vfprintf</tt>
4935 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004936
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004937<p><tt>va_arg</tt> is an LLVM instruction instead of
4938 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
4939 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004940
Chris Lattner26ca62e2003-10-18 05:51:36 +00004941<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004942<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4943
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004944<p>Note that the code generator does not yet fully support va_arg on many
4945 targets. Also, it does not currently support va_arg with aggregate types on
4946 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00004947
Misha Brukman76307852003-11-08 01:05:38 +00004948</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004949
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004950<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004951<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4952<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00004953
Misha Brukman76307852003-11-08 01:05:38 +00004954<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00004955
4956<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004957 well known names and semantics and are required to follow certain
4958 restrictions. Overall, these intrinsics represent an extension mechanism for
4959 the LLVM language that does not require changing all of the transformations
4960 in LLVM when adding to the language (or the bitcode reader/writer, the
4961 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004962
John Criswell88190562005-05-16 16:17:45 +00004963<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004964 prefix is reserved in LLVM for intrinsic names; thus, function names may not
4965 begin with this prefix. Intrinsic functions must always be external
4966 functions: you cannot define the body of intrinsic functions. Intrinsic
4967 functions may only be used in call or invoke instructions: it is illegal to
4968 take the address of an intrinsic function. Additionally, because intrinsic
4969 functions are part of the LLVM language, it is required if any are added that
4970 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004971
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004972<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
4973 family of functions that perform the same operation but on different data
4974 types. Because LLVM can represent over 8 million different integer types,
4975 overloading is used commonly to allow an intrinsic function to operate on any
4976 integer type. One or more of the argument types or the result type can be
4977 overloaded to accept any integer type. Argument types may also be defined as
4978 exactly matching a previous argument's type or the result type. This allows
4979 an intrinsic function which accepts multiple arguments, but needs all of them
4980 to be of the same type, to only be overloaded with respect to a single
4981 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004982
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004983<p>Overloaded intrinsics will have the names of its overloaded argument types
4984 encoded into its function name, each preceded by a period. Only those types
4985 which are overloaded result in a name suffix. Arguments whose type is matched
4986 against another type do not. For example, the <tt>llvm.ctpop</tt> function
4987 can take an integer of any width and returns an integer of exactly the same
4988 integer width. This leads to a family of functions such as
4989 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
4990 %val)</tt>. Only one type, the return type, is overloaded, and only one type
4991 suffix is required. Because the argument's type is matched against the return
4992 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00004993
4994<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004995 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004996
Misha Brukman76307852003-11-08 01:05:38 +00004997</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004998
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004999<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00005000<div class="doc_subsection">
5001 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5002</div>
5003
Misha Brukman76307852003-11-08 01:05:38 +00005004<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005005
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005006<p>Variable argument support is defined in LLVM with
5007 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5008 intrinsic functions. These functions are related to the similarly named
5009 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005010
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005011<p>All of these functions operate on arguments that use a target-specific value
5012 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5013 not define what this type is, so all transformations should be prepared to
5014 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005015
Chris Lattner30b868d2006-05-15 17:26:46 +00005016<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005017 instruction and the variable argument handling intrinsic functions are
5018 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005019
Bill Wendling3716c5d2007-05-29 09:04:49 +00005020<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00005021<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005022define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00005023 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00005024 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005025 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005026 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005027
5028 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00005029 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00005030
5031 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00005032 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005033 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00005034 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005035 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005036
5037 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005038 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005039 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00005040}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005041
5042declare void @llvm.va_start(i8*)
5043declare void @llvm.va_copy(i8*, i8*)
5044declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00005045</pre>
Misha Brukman76307852003-11-08 01:05:38 +00005046</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005047
Bill Wendling3716c5d2007-05-29 09:04:49 +00005048</div>
5049
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005050<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005051<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005052 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005053</div>
5054
5055
Misha Brukman76307852003-11-08 01:05:38 +00005056<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005057
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005058<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005059<pre>
5060 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5061</pre>
5062
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005063<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005064<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5065 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005066
5067<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005068<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005069
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005070<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005071<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005072 macro available in C. In a target-dependent way, it initializes
5073 the <tt>va_list</tt> element to which the argument points, so that the next
5074 call to <tt>va_arg</tt> will produce the first variable argument passed to
5075 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5076 need to know the last argument of the function as the compiler can figure
5077 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005078
Misha Brukman76307852003-11-08 01:05:38 +00005079</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005080
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005081<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005082<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005083 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005084</div>
5085
Misha Brukman76307852003-11-08 01:05:38 +00005086<div class="doc_text">
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005087
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005088<h5>Syntax:</h5>
5089<pre>
5090 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5091</pre>
5092
5093<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005094<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005095 which has been initialized previously
5096 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5097 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005098
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005099<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005100<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005101
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005102<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005103<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005104 macro available in C. In a target-dependent way, it destroys
5105 the <tt>va_list</tt> element to which the argument points. Calls
5106 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5107 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5108 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005109
Misha Brukman76307852003-11-08 01:05:38 +00005110</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005111
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005112<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005113<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005114 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005115</div>
5116
Misha Brukman76307852003-11-08 01:05:38 +00005117<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005118
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005119<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005120<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005121 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005122</pre>
5123
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005124<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005125<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005126 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005127
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005128<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005129<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005130 The second argument is a pointer to a <tt>va_list</tt> element to copy
5131 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005132
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005133<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005134<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005135 macro available in C. In a target-dependent way, it copies the
5136 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5137 element. This intrinsic is necessary because
5138 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5139 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005140
Misha Brukman76307852003-11-08 01:05:38 +00005141</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005142
Chris Lattnerfee11462004-02-12 17:01:32 +00005143<!-- ======================================================================= -->
5144<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005145 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5146</div>
5147
5148<div class="doc_text">
5149
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005150<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005151Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005152intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5153roots on the stack</a>, as well as garbage collector implementations that
5154require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5155barriers. Front-ends for type-safe garbage collected languages should generate
5156these intrinsics to make use of the LLVM garbage collectors. For more details,
5157see <a href="GarbageCollection.html">Accurate Garbage Collection with
5158LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005159
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005160<p>The garbage collection intrinsics only operate on objects in the generic
5161 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005162
Chris Lattner757528b0b2004-05-23 21:06:01 +00005163</div>
5164
5165<!-- _______________________________________________________________________ -->
5166<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005167 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005168</div>
5169
5170<div class="doc_text">
5171
5172<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005173<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005174 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005175</pre>
5176
5177<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00005178<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005179 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005180
5181<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005182<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005183 root pointer. The second pointer (which must be either a constant or a
5184 global value address) contains the meta-data to be associated with the
5185 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005186
5187<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00005188<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005189 location. At compile-time, the code generator generates information to allow
5190 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5191 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5192 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005193
5194</div>
5195
Chris Lattner757528b0b2004-05-23 21:06:01 +00005196<!-- _______________________________________________________________________ -->
5197<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005198 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005199</div>
5200
5201<div class="doc_text">
5202
5203<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005204<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005205 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005206</pre>
5207
5208<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005209<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005210 locations, allowing garbage collector implementations that require read
5211 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005212
5213<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005214<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005215 allocated from the garbage collector. The first object is a pointer to the
5216 start of the referenced object, if needed by the language runtime (otherwise
5217 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005218
5219<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005220<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005221 instruction, but may be replaced with substantially more complex code by the
5222 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5223 may only be used in a function which <a href="#gc">specifies a GC
5224 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005225
5226</div>
5227
Chris Lattner757528b0b2004-05-23 21:06:01 +00005228<!-- _______________________________________________________________________ -->
5229<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005230 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005231</div>
5232
5233<div class="doc_text">
5234
5235<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005236<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005237 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005238</pre>
5239
5240<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005241<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005242 locations, allowing garbage collector implementations that require write
5243 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005244
5245<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005246<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005247 object to store it to, and the third is the address of the field of Obj to
5248 store to. If the runtime does not require a pointer to the object, Obj may
5249 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005250
5251<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005252<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005253 instruction, but may be replaced with substantially more complex code by the
5254 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5255 may only be used in a function which <a href="#gc">specifies a GC
5256 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005257
5258</div>
5259
Chris Lattner757528b0b2004-05-23 21:06:01 +00005260<!-- ======================================================================= -->
5261<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005262 <a name="int_codegen">Code Generator Intrinsics</a>
5263</div>
5264
5265<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005266
5267<p>These intrinsics are provided by LLVM to expose special features that may
5268 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005269
5270</div>
5271
5272<!-- _______________________________________________________________________ -->
5273<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005274 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005275</div>
5276
5277<div class="doc_text">
5278
5279<h5>Syntax:</h5>
5280<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005281 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005282</pre>
5283
5284<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005285<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5286 target-specific value indicating the return address of the current function
5287 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005288
5289<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005290<p>The argument to this intrinsic indicates which function to return the address
5291 for. Zero indicates the calling function, one indicates its caller, etc.
5292 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005293
5294<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005295<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5296 indicating the return address of the specified call frame, or zero if it
5297 cannot be identified. The value returned by this intrinsic is likely to be
5298 incorrect or 0 for arguments other than zero, so it should only be used for
5299 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005300
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005301<p>Note that calling this intrinsic does not prevent function inlining or other
5302 aggressive transformations, so the value returned may not be that of the
5303 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005304
Chris Lattner3649c3a2004-02-14 04:08:35 +00005305</div>
5306
Chris Lattner3649c3a2004-02-14 04:08:35 +00005307<!-- _______________________________________________________________________ -->
5308<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005309 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005310</div>
5311
5312<div class="doc_text">
5313
5314<h5>Syntax:</h5>
5315<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005316 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005317</pre>
5318
5319<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005320<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5321 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005322
5323<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005324<p>The argument to this intrinsic indicates which function to return the frame
5325 pointer for. Zero indicates the calling function, one indicates its caller,
5326 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005327
5328<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005329<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5330 indicating the frame address of the specified call frame, or zero if it
5331 cannot be identified. The value returned by this intrinsic is likely to be
5332 incorrect or 0 for arguments other than zero, so it should only be used for
5333 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005334
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005335<p>Note that calling this intrinsic does not prevent function inlining or other
5336 aggressive transformations, so the value returned may not be that of the
5337 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005338
Chris Lattner3649c3a2004-02-14 04:08:35 +00005339</div>
5340
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005341<!-- _______________________________________________________________________ -->
5342<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005343 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005344</div>
5345
5346<div class="doc_text">
5347
5348<h5>Syntax:</h5>
5349<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005350 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005351</pre>
5352
5353<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005354<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5355 of the function stack, for use
5356 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5357 useful for implementing language features like scoped automatic variable
5358 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005359
5360<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005361<p>This intrinsic returns a opaque pointer value that can be passed
5362 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5363 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5364 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5365 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5366 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5367 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005368
5369</div>
5370
5371<!-- _______________________________________________________________________ -->
5372<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005373 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005374</div>
5375
5376<div class="doc_text">
5377
5378<h5>Syntax:</h5>
5379<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005380 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005381</pre>
5382
5383<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005384<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5385 the function stack to the state it was in when the
5386 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5387 executed. This is useful for implementing language features like scoped
5388 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005389
5390<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005391<p>See the description
5392 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005393
5394</div>
5395
Chris Lattner2f0f0012006-01-13 02:03:13 +00005396<!-- _______________________________________________________________________ -->
5397<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005398 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005399</div>
5400
5401<div class="doc_text">
5402
5403<h5>Syntax:</h5>
5404<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005405 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005406</pre>
5407
5408<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005409<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5410 insert a prefetch instruction if supported; otherwise, it is a noop.
5411 Prefetches have no effect on the behavior of the program but can change its
5412 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005413
5414<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005415<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5416 specifier determining if the fetch should be for a read (0) or write (1),
5417 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5418 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5419 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005420
5421<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005422<p>This intrinsic does not modify the behavior of the program. In particular,
5423 prefetches cannot trap and do not produce a value. On targets that support
5424 this intrinsic, the prefetch can provide hints to the processor cache for
5425 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005426
5427</div>
5428
Andrew Lenharthb4427912005-03-28 20:05:49 +00005429<!-- _______________________________________________________________________ -->
5430<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005431 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005432</div>
5433
5434<div class="doc_text">
5435
5436<h5>Syntax:</h5>
5437<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005438 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005439</pre>
5440
5441<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005442<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5443 Counter (PC) in a region of code to simulators and other tools. The method
5444 is target specific, but it is expected that the marker will use exported
5445 symbols to transmit the PC of the marker. The marker makes no guarantees
5446 that it will remain with any specific instruction after optimizations. It is
5447 possible that the presence of a marker will inhibit optimizations. The
5448 intended use is to be inserted after optimizations to allow correlations of
5449 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005450
5451<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005452<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005453
5454<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005455<p>This intrinsic does not modify the behavior of the program. Backends that do
5456 not support this intrinisic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005457
5458</div>
5459
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005460<!-- _______________________________________________________________________ -->
5461<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005462 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005463</div>
5464
5465<div class="doc_text">
5466
5467<h5>Syntax:</h5>
5468<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005469 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005470</pre>
5471
5472<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005473<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5474 counter register (or similar low latency, high accuracy clocks) on those
5475 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5476 should map to RPCC. As the backing counters overflow quickly (on the order
5477 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005478
5479<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005480<p>When directly supported, reading the cycle counter should not modify any
5481 memory. Implementations are allowed to either return a application specific
5482 value or a system wide value. On backends without support, this is lowered
5483 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005484
5485</div>
5486
Chris Lattner3649c3a2004-02-14 04:08:35 +00005487<!-- ======================================================================= -->
5488<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005489 <a name="int_libc">Standard C Library Intrinsics</a>
5490</div>
5491
5492<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005493
5494<p>LLVM provides intrinsics for a few important standard C library functions.
5495 These intrinsics allow source-language front-ends to pass information about
5496 the alignment of the pointer arguments to the code generator, providing
5497 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005498
5499</div>
5500
5501<!-- _______________________________________________________________________ -->
5502<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005503 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005504</div>
5505
5506<div class="doc_text">
5507
5508<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005509<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5510 integer bit width. Not all targets support all bit widths however.</p>
5511
Chris Lattnerfee11462004-02-12 17:01:32 +00005512<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005513 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005514 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005515 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5516 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005517 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005518 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005519 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005520 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005521</pre>
5522
5523<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005524<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5525 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005526
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005527<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5528 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005529
5530<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005531<p>The first argument is a pointer to the destination, the second is a pointer
5532 to the source. The third argument is an integer argument specifying the
5533 number of bytes to copy, and the fourth argument is the alignment of the
5534 source and destination locations.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005535
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005536<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5537 then the caller guarantees that both the source and destination pointers are
5538 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005539
Chris Lattnerfee11462004-02-12 17:01:32 +00005540<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005541<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5542 source location to the destination location, which are not allowed to
5543 overlap. It copies "len" bytes of memory over. If the argument is known to
5544 be aligned to some boundary, this can be specified as the fourth argument,
5545 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005546
Chris Lattnerfee11462004-02-12 17:01:32 +00005547</div>
5548
Chris Lattnerf30152e2004-02-12 18:10:10 +00005549<!-- _______________________________________________________________________ -->
5550<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005551 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005552</div>
5553
5554<div class="doc_text">
5555
5556<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005557<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005558 width. Not all targets support all bit widths however.</p>
5559
Chris Lattnerf30152e2004-02-12 18:10:10 +00005560<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005561 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005562 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005563 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5564 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005565 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005566 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005567 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005568 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005569</pre>
5570
5571<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005572<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5573 source location to the destination location. It is similar to the
5574 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5575 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005576
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005577<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5578 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005579
5580<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005581<p>The first argument is a pointer to the destination, the second is a pointer
5582 to the source. The third argument is an integer argument specifying the
5583 number of bytes to copy, and the fourth argument is the alignment of the
5584 source and destination locations.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005585
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005586<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5587 then the caller guarantees that the source and destination pointers are
5588 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005589
Chris Lattnerf30152e2004-02-12 18:10:10 +00005590<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005591<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5592 source location to the destination location, which may overlap. It copies
5593 "len" bytes of memory over. If the argument is known to be aligned to some
5594 boundary, this can be specified as the fourth argument, otherwise it should
5595 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005596
Chris Lattnerf30152e2004-02-12 18:10:10 +00005597</div>
5598
Chris Lattner3649c3a2004-02-14 04:08:35 +00005599<!-- _______________________________________________________________________ -->
5600<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005601 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005602</div>
5603
5604<div class="doc_text">
5605
5606<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005607<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005608 width. Not all targets support all bit widths however.</p>
5609
Chris Lattner3649c3a2004-02-14 04:08:35 +00005610<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005611 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005612 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005613 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5614 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005615 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005616 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005617 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005618 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005619</pre>
5620
5621<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005622<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5623 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005624
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005625<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5626 intrinsic does not return a value, and takes an extra alignment argument.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005627
5628<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005629<p>The first argument is a pointer to the destination to fill, the second is the
5630 byte value to fill it with, the third argument is an integer argument
5631 specifying the number of bytes to fill, and the fourth argument is the known
5632 alignment of destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005633
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005634<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5635 then the caller guarantees that the destination pointer is aligned to that
5636 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005637
5638<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005639<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5640 at the destination location. If the argument is known to be aligned to some
5641 boundary, this can be specified as the fourth argument, otherwise it should
5642 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005643
Chris Lattner3649c3a2004-02-14 04:08:35 +00005644</div>
5645
Chris Lattner3b4f4372004-06-11 02:28:03 +00005646<!-- _______________________________________________________________________ -->
5647<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005648 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005649</div>
5650
5651<div class="doc_text">
5652
5653<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005654<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5655 floating point or vector of floating point type. Not all targets support all
5656 types however.</p>
5657
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005658<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005659 declare float @llvm.sqrt.f32(float %Val)
5660 declare double @llvm.sqrt.f64(double %Val)
5661 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5662 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5663 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005664</pre>
5665
5666<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005667<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5668 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5669 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5670 behavior for negative numbers other than -0.0 (which allows for better
5671 optimization, because there is no need to worry about errno being
5672 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005673
5674<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005675<p>The argument and return value are floating point numbers of the same
5676 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005677
5678<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005679<p>This function returns the sqrt of the specified operand if it is a
5680 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005681
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005682</div>
5683
Chris Lattner33b73f92006-09-08 06:34:02 +00005684<!-- _______________________________________________________________________ -->
5685<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005686 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005687</div>
5688
5689<div class="doc_text">
5690
5691<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005692<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5693 floating point or vector of floating point type. Not all targets support all
5694 types however.</p>
5695
Chris Lattner33b73f92006-09-08 06:34:02 +00005696<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005697 declare float @llvm.powi.f32(float %Val, i32 %power)
5698 declare double @llvm.powi.f64(double %Val, i32 %power)
5699 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5700 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5701 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005702</pre>
5703
5704<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005705<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5706 specified (positive or negative) power. The order of evaluation of
5707 multiplications is not defined. When a vector of floating point type is
5708 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005709
5710<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005711<p>The second argument is an integer power, and the first is a value to raise to
5712 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005713
5714<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005715<p>This function returns the first value raised to the second power with an
5716 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005717
Chris Lattner33b73f92006-09-08 06:34:02 +00005718</div>
5719
Dan Gohmanb6324c12007-10-15 20:30:11 +00005720<!-- _______________________________________________________________________ -->
5721<div class="doc_subsubsection">
5722 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5723</div>
5724
5725<div class="doc_text">
5726
5727<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005728<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5729 floating point or vector of floating point type. Not all targets support all
5730 types however.</p>
5731
Dan Gohmanb6324c12007-10-15 20:30:11 +00005732<pre>
5733 declare float @llvm.sin.f32(float %Val)
5734 declare double @llvm.sin.f64(double %Val)
5735 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5736 declare fp128 @llvm.sin.f128(fp128 %Val)
5737 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5738</pre>
5739
5740<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005741<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005742
5743<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005744<p>The argument and return value are floating point numbers of the same
5745 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005746
5747<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005748<p>This function returns the sine of the specified operand, returning the same
5749 values as the libm <tt>sin</tt> functions would, and handles error conditions
5750 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005751
Dan Gohmanb6324c12007-10-15 20:30:11 +00005752</div>
5753
5754<!-- _______________________________________________________________________ -->
5755<div class="doc_subsubsection">
5756 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5757</div>
5758
5759<div class="doc_text">
5760
5761<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005762<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5763 floating point or vector of floating point type. Not all targets support all
5764 types however.</p>
5765
Dan Gohmanb6324c12007-10-15 20:30:11 +00005766<pre>
5767 declare float @llvm.cos.f32(float %Val)
5768 declare double @llvm.cos.f64(double %Val)
5769 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5770 declare fp128 @llvm.cos.f128(fp128 %Val)
5771 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5772</pre>
5773
5774<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005775<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005776
5777<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005778<p>The argument and return value are floating point numbers of the same
5779 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005780
5781<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005782<p>This function returns the cosine of the specified operand, returning the same
5783 values as the libm <tt>cos</tt> functions would, and handles error conditions
5784 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005785
Dan Gohmanb6324c12007-10-15 20:30:11 +00005786</div>
5787
5788<!-- _______________________________________________________________________ -->
5789<div class="doc_subsubsection">
5790 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5791</div>
5792
5793<div class="doc_text">
5794
5795<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005796<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5797 floating point or vector of floating point type. Not all targets support all
5798 types however.</p>
5799
Dan Gohmanb6324c12007-10-15 20:30:11 +00005800<pre>
5801 declare float @llvm.pow.f32(float %Val, float %Power)
5802 declare double @llvm.pow.f64(double %Val, double %Power)
5803 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5804 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5805 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5806</pre>
5807
5808<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005809<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5810 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005811
5812<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005813<p>The second argument is a floating point power, and the first is a value to
5814 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005815
5816<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005817<p>This function returns the first value raised to the second power, returning
5818 the same values as the libm <tt>pow</tt> functions would, and handles error
5819 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005820
Dan Gohmanb6324c12007-10-15 20:30:11 +00005821</div>
5822
Andrew Lenharth1d463522005-05-03 18:01:48 +00005823<!-- ======================================================================= -->
5824<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005825 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005826</div>
5827
5828<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005829
5830<p>LLVM provides intrinsics for a few important bit manipulation operations.
5831 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005832
5833</div>
5834
5835<!-- _______________________________________________________________________ -->
5836<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005837 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005838</div>
5839
5840<div class="doc_text">
5841
5842<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005843<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005844 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
5845
Nate Begeman0f223bb2006-01-13 23:26:38 +00005846<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005847 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5848 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5849 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00005850</pre>
5851
5852<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005853<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5854 values with an even number of bytes (positive multiple of 16 bits). These
5855 are useful for performing operations on data that is not in the target's
5856 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005857
5858<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005859<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
5860 and low byte of the input i16 swapped. Similarly,
5861 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
5862 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
5863 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
5864 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
5865 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
5866 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005867
5868</div>
5869
5870<!-- _______________________________________________________________________ -->
5871<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005872 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005873</div>
5874
5875<div class="doc_text">
5876
5877<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005878<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005879 width. Not all targets support all bit widths however.</p>
5880
Andrew Lenharth1d463522005-05-03 18:01:48 +00005881<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005882 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005883 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005884 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005885 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5886 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005887</pre>
5888
5889<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005890<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
5891 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005892
5893<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005894<p>The only argument is the value to be counted. The argument may be of any
5895 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005896
5897<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005898<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005899
Andrew Lenharth1d463522005-05-03 18:01:48 +00005900</div>
5901
5902<!-- _______________________________________________________________________ -->
5903<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005904 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005905</div>
5906
5907<div class="doc_text">
5908
5909<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005910<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5911 integer bit width. Not all targets support all bit widths however.</p>
5912
Andrew Lenharth1d463522005-05-03 18:01:48 +00005913<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005914 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5915 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005916 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005917 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5918 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005919</pre>
5920
5921<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005922<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5923 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005924
5925<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005926<p>The only argument is the value to be counted. The argument may be of any
5927 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005928
5929<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005930<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
5931 zeros in a variable. If the src == 0 then the result is the size in bits of
5932 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005933
Andrew Lenharth1d463522005-05-03 18:01:48 +00005934</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00005935
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005936<!-- _______________________________________________________________________ -->
5937<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005938 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005939</div>
5940
5941<div class="doc_text">
5942
5943<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005944<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5945 integer bit width. Not all targets support all bit widths however.</p>
5946
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005947<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005948 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5949 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005950 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005951 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5952 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005953</pre>
5954
5955<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005956<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5957 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005958
5959<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005960<p>The only argument is the value to be counted. The argument may be of any
5961 integer type. The return type must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005962
5963<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005964<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
5965 zeros in a variable. If the src == 0 then the result is the size in bits of
5966 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005967
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005968</div>
5969
Bill Wendlingfd2bd722009-02-08 04:04:40 +00005970<!-- ======================================================================= -->
5971<div class="doc_subsection">
5972 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5973</div>
5974
5975<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005976
5977<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00005978
5979</div>
5980
Bill Wendlingf4d70622009-02-08 01:40:31 +00005981<!-- _______________________________________________________________________ -->
5982<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00005983 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005984</div>
5985
5986<div class="doc_text">
5987
5988<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005989<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005990 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005991
5992<pre>
5993 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5994 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5995 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5996</pre>
5997
5998<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005999<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006000 a signed addition of the two arguments, and indicate whether an overflow
6001 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006002
6003<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006004<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006005 be of integer types of any bit width, but they must have the same bit
6006 width. The second element of the result structure must be of
6007 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6008 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006009
6010<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006011<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006012 a signed addition of the two variables. They return a structure &mdash; the
6013 first element of which is the signed summation, and the second element of
6014 which is a bit specifying if the signed summation resulted in an
6015 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006016
6017<h5>Examples:</h5>
6018<pre>
6019 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6020 %sum = extractvalue {i32, i1} %res, 0
6021 %obit = extractvalue {i32, i1} %res, 1
6022 br i1 %obit, label %overflow, label %normal
6023</pre>
6024
6025</div>
6026
6027<!-- _______________________________________________________________________ -->
6028<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006029 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006030</div>
6031
6032<div class="doc_text">
6033
6034<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006035<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006036 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006037
6038<pre>
6039 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6040 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6041 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6042</pre>
6043
6044<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006045<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006046 an unsigned addition of the two arguments, and indicate whether a carry
6047 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006048
6049<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006050<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006051 be of integer types of any bit width, but they must have the same bit
6052 width. The second element of the result structure must be of
6053 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6054 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006055
6056<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006057<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006058 an unsigned addition of the two arguments. They return a structure &mdash;
6059 the first element of which is the sum, and the second element of which is a
6060 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006061
6062<h5>Examples:</h5>
6063<pre>
6064 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6065 %sum = extractvalue {i32, i1} %res, 0
6066 %obit = extractvalue {i32, i1} %res, 1
6067 br i1 %obit, label %carry, label %normal
6068</pre>
6069
6070</div>
6071
6072<!-- _______________________________________________________________________ -->
6073<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006074 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006075</div>
6076
6077<div class="doc_text">
6078
6079<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006080<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006081 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006082
6083<pre>
6084 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6085 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6086 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6087</pre>
6088
6089<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006090<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006091 a signed subtraction of the two arguments, and indicate whether an overflow
6092 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006093
6094<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006095<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006096 be of integer types of any bit width, but they must have the same bit
6097 width. The second element of the result structure must be of
6098 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6099 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006100
6101<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006102<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006103 a signed subtraction of the two arguments. They return a structure &mdash;
6104 the first element of which is the subtraction, and the second element of
6105 which is a bit specifying if the signed subtraction resulted in an
6106 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006107
6108<h5>Examples:</h5>
6109<pre>
6110 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6111 %sum = extractvalue {i32, i1} %res, 0
6112 %obit = extractvalue {i32, i1} %res, 1
6113 br i1 %obit, label %overflow, label %normal
6114</pre>
6115
6116</div>
6117
6118<!-- _______________________________________________________________________ -->
6119<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006120 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006121</div>
6122
6123<div class="doc_text">
6124
6125<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006126<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006127 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006128
6129<pre>
6130 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6131 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6132 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6133</pre>
6134
6135<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006136<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006137 an unsigned subtraction of the two arguments, and indicate whether an
6138 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006139
6140<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006141<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006142 be of integer types of any bit width, but they must have the same bit
6143 width. The second element of the result structure must be of
6144 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6145 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006146
6147<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006148<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006149 an unsigned subtraction of the two arguments. They return a structure &mdash;
6150 the first element of which is the subtraction, and the second element of
6151 which is a bit specifying if the unsigned subtraction resulted in an
6152 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006153
6154<h5>Examples:</h5>
6155<pre>
6156 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6157 %sum = extractvalue {i32, i1} %res, 0
6158 %obit = extractvalue {i32, i1} %res, 1
6159 br i1 %obit, label %overflow, label %normal
6160</pre>
6161
6162</div>
6163
6164<!-- _______________________________________________________________________ -->
6165<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006166 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006167</div>
6168
6169<div class="doc_text">
6170
6171<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006172<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006173 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006174
6175<pre>
6176 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6177 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6178 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6179</pre>
6180
6181<h5>Overview:</h5>
6182
6183<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006184 a signed multiplication of the two arguments, and indicate whether an
6185 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006186
6187<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006188<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006189 be of integer types of any bit width, but they must have the same bit
6190 width. The second element of the result structure must be of
6191 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6192 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006193
6194<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006195<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006196 a signed multiplication of the two arguments. They return a structure &mdash;
6197 the first element of which is the multiplication, and the second element of
6198 which is a bit specifying if the signed multiplication resulted in an
6199 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006200
6201<h5>Examples:</h5>
6202<pre>
6203 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6204 %sum = extractvalue {i32, i1} %res, 0
6205 %obit = extractvalue {i32, i1} %res, 1
6206 br i1 %obit, label %overflow, label %normal
6207</pre>
6208
Reid Spencer5bf54c82007-04-11 23:23:49 +00006209</div>
6210
Bill Wendlingb9a73272009-02-08 23:00:09 +00006211<!-- _______________________________________________________________________ -->
6212<div class="doc_subsubsection">
6213 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6214</div>
6215
6216<div class="doc_text">
6217
6218<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006219<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006220 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006221
6222<pre>
6223 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6224 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6225 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6226</pre>
6227
6228<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006229<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006230 a unsigned multiplication of the two arguments, and indicate whether an
6231 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006232
6233<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006234<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006235 be of integer types of any bit width, but they must have the same bit
6236 width. The second element of the result structure must be of
6237 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6238 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006239
6240<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006241<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006242 an unsigned multiplication of the two arguments. They return a structure
6243 &mdash; the first element of which is the multiplication, and the second
6244 element of which is a bit specifying if the unsigned multiplication resulted
6245 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006246
6247<h5>Examples:</h5>
6248<pre>
6249 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6250 %sum = extractvalue {i32, i1} %res, 0
6251 %obit = extractvalue {i32, i1} %res, 1
6252 br i1 %obit, label %overflow, label %normal
6253</pre>
6254
6255</div>
6256
Chris Lattner941515c2004-01-06 05:31:32 +00006257<!-- ======================================================================= -->
6258<div class="doc_subsection">
6259 <a name="int_debugger">Debugger Intrinsics</a>
6260</div>
6261
6262<div class="doc_text">
Chris Lattner941515c2004-01-06 05:31:32 +00006263
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006264<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6265 prefix), are described in
6266 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6267 Level Debugging</a> document.</p>
6268
6269</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006270
Jim Laskey2211f492007-03-14 19:31:19 +00006271<!-- ======================================================================= -->
6272<div class="doc_subsection">
6273 <a name="int_eh">Exception Handling Intrinsics</a>
6274</div>
6275
6276<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006277
6278<p>The LLVM exception handling intrinsics (which all start with
6279 <tt>llvm.eh.</tt> prefix), are described in
6280 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6281 Handling</a> document.</p>
6282
Jim Laskey2211f492007-03-14 19:31:19 +00006283</div>
6284
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006285<!-- ======================================================================= -->
6286<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006287 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006288</div>
6289
6290<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006291
6292<p>This intrinsic makes it possible to excise one parameter, marked with
6293 the <tt>nest</tt> attribute, from a function. The result is a callable
6294 function pointer lacking the nest parameter - the caller does not need to
6295 provide a value for it. Instead, the value to use is stored in advance in a
6296 "trampoline", a block of memory usually allocated on the stack, which also
6297 contains code to splice the nest value into the argument list. This is used
6298 to implement the GCC nested function address extension.</p>
6299
6300<p>For example, if the function is
6301 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6302 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6303 follows:</p>
6304
6305<div class="doc_code">
Duncan Sands644f9172007-07-27 12:58:54 +00006306<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006307 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6308 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6309 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6310 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006311</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006312</div>
6313
6314<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6315 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6316
Duncan Sands644f9172007-07-27 12:58:54 +00006317</div>
6318
6319<!-- _______________________________________________________________________ -->
6320<div class="doc_subsubsection">
6321 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6322</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006323
Duncan Sands644f9172007-07-27 12:58:54 +00006324<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006325
Duncan Sands644f9172007-07-27 12:58:54 +00006326<h5>Syntax:</h5>
6327<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006328 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006329</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006330
Duncan Sands644f9172007-07-27 12:58:54 +00006331<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006332<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6333 function pointer suitable for executing it.</p>
6334
Duncan Sands644f9172007-07-27 12:58:54 +00006335<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006336<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6337 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6338 sufficiently aligned block of memory; this memory is written to by the
6339 intrinsic. Note that the size and the alignment are target-specific - LLVM
6340 currently provides no portable way of determining them, so a front-end that
6341 generates this intrinsic needs to have some target-specific knowledge.
6342 The <tt>func</tt> argument must hold a function bitcast to
6343 an <tt>i8*</tt>.</p>
6344
Duncan Sands644f9172007-07-27 12:58:54 +00006345<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006346<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6347 dependent code, turning it into a function. A pointer to this function is
6348 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6349 function pointer type</a> before being called. The new function's signature
6350 is the same as that of <tt>func</tt> with any arguments marked with
6351 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6352 is allowed, and it must be of pointer type. Calling the new function is
6353 equivalent to calling <tt>func</tt> with the same argument list, but
6354 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6355 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6356 by <tt>tramp</tt> is modified, then the effect of any later call to the
6357 returned function pointer is undefined.</p>
6358
Duncan Sands644f9172007-07-27 12:58:54 +00006359</div>
6360
6361<!-- ======================================================================= -->
6362<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006363 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6364</div>
6365
6366<div class="doc_text">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006367
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006368<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6369 hardware constructs for atomic operations and memory synchronization. This
6370 provides an interface to the hardware, not an interface to the programmer. It
6371 is aimed at a low enough level to allow any programming models or APIs
6372 (Application Programming Interfaces) which need atomic behaviors to map
6373 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6374 hardware provides a "universal IR" for source languages, it also provides a
6375 starting point for developing a "universal" atomic operation and
6376 synchronization IR.</p>
6377
6378<p>These do <em>not</em> form an API such as high-level threading libraries,
6379 software transaction memory systems, atomic primitives, and intrinsic
6380 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6381 application libraries. The hardware interface provided by LLVM should allow
6382 a clean implementation of all of these APIs and parallel programming models.
6383 No one model or paradigm should be selected above others unless the hardware
6384 itself ubiquitously does so.</p>
6385
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006386</div>
6387
6388<!-- _______________________________________________________________________ -->
6389<div class="doc_subsubsection">
6390 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6391</div>
6392<div class="doc_text">
6393<h5>Syntax:</h5>
6394<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006395 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006396</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006397
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006398<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006399<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6400 specific pairs of memory access types.</p>
6401
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006402<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006403<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6404 The first four arguments enables a specific barrier as listed below. The
6405 fith argument specifies that the barrier applies to io or device or uncached
6406 memory.</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006407
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006408<ul>
6409 <li><tt>ll</tt>: load-load barrier</li>
6410 <li><tt>ls</tt>: load-store barrier</li>
6411 <li><tt>sl</tt>: store-load barrier</li>
6412 <li><tt>ss</tt>: store-store barrier</li>
6413 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6414</ul>
6415
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006416<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006417<p>This intrinsic causes the system to enforce some ordering constraints upon
6418 the loads and stores of the program. This barrier does not
6419 indicate <em>when</em> any events will occur, it only enforces
6420 an <em>order</em> in which they occur. For any of the specified pairs of load
6421 and store operations (f.ex. load-load, or store-load), all of the first
6422 operations preceding the barrier will complete before any of the second
6423 operations succeeding the barrier begin. Specifically the semantics for each
6424 pairing is as follows:</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006425
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006426<ul>
6427 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6428 after the barrier begins.</li>
6429 <li><tt>ls</tt>: All loads before the barrier must complete before any
6430 store after the barrier begins.</li>
6431 <li><tt>ss</tt>: All stores before the barrier must complete before any
6432 store after the barrier begins.</li>
6433 <li><tt>sl</tt>: All stores before the barrier must complete before any
6434 load after the barrier begins.</li>
6435</ul>
6436
6437<p>These semantics are applied with a logical "and" behavior when more than one
6438 is enabled in a single memory barrier intrinsic.</p>
6439
6440<p>Backends may implement stronger barriers than those requested when they do
6441 not support as fine grained a barrier as requested. Some architectures do
6442 not need all types of barriers and on such architectures, these become
6443 noops.</p>
6444
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006445<h5>Example:</h5>
6446<pre>
6447%ptr = malloc i32
6448 store i32 4, %ptr
6449
6450%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6451 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6452 <i>; guarantee the above finishes</i>
6453 store i32 8, %ptr <i>; before this begins</i>
6454</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006455
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006456</div>
6457
Andrew Lenharth95528942008-02-21 06:45:13 +00006458<!-- _______________________________________________________________________ -->
6459<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006460 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006461</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006462
Andrew Lenharth95528942008-02-21 06:45:13 +00006463<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006464
Andrew Lenharth95528942008-02-21 06:45:13 +00006465<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006466<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6467 any integer bit width and for different address spaces. Not all targets
6468 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006469
6470<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006471 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6472 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6473 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6474 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006475</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006476
Andrew Lenharth95528942008-02-21 06:45:13 +00006477<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006478<p>This loads a value in memory and compares it to a given value. If they are
6479 equal, it stores a new value into the memory.</p>
6480
Andrew Lenharth95528942008-02-21 06:45:13 +00006481<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006482<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6483 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6484 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6485 this integer type. While any bit width integer may be used, targets may only
6486 lower representations they support in hardware.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006487
Andrew Lenharth95528942008-02-21 06:45:13 +00006488<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006489<p>This entire intrinsic must be executed atomically. It first loads the value
6490 in memory pointed to by <tt>ptr</tt> and compares it with the
6491 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6492 memory. The loaded value is yielded in all cases. This provides the
6493 equivalent of an atomic compare-and-swap operation within the SSA
6494 framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006495
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006496<h5>Examples:</h5>
Andrew Lenharth95528942008-02-21 06:45:13 +00006497<pre>
6498%ptr = malloc i32
6499 store i32 4, %ptr
6500
6501%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006502%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006503 <i>; yields {i32}:result1 = 4</i>
6504%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6505%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6506
6507%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006508%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006509 <i>; yields {i32}:result2 = 8</i>
6510%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6511
6512%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6513</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006514
Andrew Lenharth95528942008-02-21 06:45:13 +00006515</div>
6516
6517<!-- _______________________________________________________________________ -->
6518<div class="doc_subsubsection">
6519 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6520</div>
6521<div class="doc_text">
6522<h5>Syntax:</h5>
6523
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006524<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6525 integer bit width. Not all targets support all bit widths however.</p>
6526
Andrew Lenharth95528942008-02-21 06:45:13 +00006527<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006528 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6529 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6530 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6531 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006532</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006533
Andrew Lenharth95528942008-02-21 06:45:13 +00006534<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006535<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6536 the value from memory. It then stores the value in <tt>val</tt> in the memory
6537 at <tt>ptr</tt>.</p>
6538
Andrew Lenharth95528942008-02-21 06:45:13 +00006539<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006540<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6541 the <tt>val</tt> argument and the result must be integers of the same bit
6542 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6543 integer type. The targets may only lower integer representations they
6544 support.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006545
Andrew Lenharth95528942008-02-21 06:45:13 +00006546<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006547<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6548 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6549 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006550
Andrew Lenharth95528942008-02-21 06:45:13 +00006551<h5>Examples:</h5>
6552<pre>
6553%ptr = malloc i32
6554 store i32 4, %ptr
6555
6556%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006557%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006558 <i>; yields {i32}:result1 = 4</i>
6559%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6560%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6561
6562%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006563%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006564 <i>; yields {i32}:result2 = 8</i>
6565
6566%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6567%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6568</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006569
Andrew Lenharth95528942008-02-21 06:45:13 +00006570</div>
6571
6572<!-- _______________________________________________________________________ -->
6573<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006574 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006575
6576</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006577
Andrew Lenharth95528942008-02-21 06:45:13 +00006578<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006579
Andrew Lenharth95528942008-02-21 06:45:13 +00006580<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006581<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6582 any integer bit width. Not all targets support all bit widths however.</p>
6583
Andrew Lenharth95528942008-02-21 06:45:13 +00006584<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006585 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6586 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6587 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6588 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006589</pre>
Andrew Lenharth95528942008-02-21 06:45:13 +00006590
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006591<h5>Overview:</h5>
6592<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6593 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6594
6595<h5>Arguments:</h5>
6596<p>The intrinsic takes two arguments, the first a pointer to an integer value
6597 and the second an integer value. The result is also an integer value. These
6598 integer types can have any bit width, but they must all have the same bit
6599 width. The targets may only lower integer representations they support.</p>
6600
Andrew Lenharth95528942008-02-21 06:45:13 +00006601<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006602<p>This intrinsic does a series of operations atomically. It first loads the
6603 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6604 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006605
6606<h5>Examples:</h5>
6607<pre>
6608%ptr = malloc i32
6609 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006610%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006611 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006612%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006613 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006614%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006615 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006616%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006617</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006618
Andrew Lenharth95528942008-02-21 06:45:13 +00006619</div>
6620
Mon P Wang6a490372008-06-25 08:15:39 +00006621<!-- _______________________________________________________________________ -->
6622<div class="doc_subsubsection">
6623 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6624
6625</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006626
Mon P Wang6a490372008-06-25 08:15:39 +00006627<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006628
Mon P Wang6a490372008-06-25 08:15:39 +00006629<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006630<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6631 any integer bit width and for different address spaces. Not all targets
6632 support all bit widths however.</p>
6633
Mon P Wang6a490372008-06-25 08:15:39 +00006634<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006635 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6636 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6637 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6638 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006639</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00006640
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006641<h5>Overview:</h5>
6642<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6643 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6644
6645<h5>Arguments:</h5>
6646<p>The intrinsic takes two arguments, the first a pointer to an integer value
6647 and the second an integer value. The result is also an integer value. These
6648 integer types can have any bit width, but they must all have the same bit
6649 width. The targets may only lower integer representations they support.</p>
6650
Mon P Wang6a490372008-06-25 08:15:39 +00006651<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006652<p>This intrinsic does a series of operations atomically. It first loads the
6653 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6654 result to <tt>ptr</tt>. It yields the original value stored
6655 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006656
6657<h5>Examples:</h5>
6658<pre>
6659%ptr = malloc i32
6660 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006661%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006662 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006663%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006664 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006665%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006666 <i>; yields {i32}:result3 = 2</i>
6667%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6668</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006669
Mon P Wang6a490372008-06-25 08:15:39 +00006670</div>
6671
6672<!-- _______________________________________________________________________ -->
6673<div class="doc_subsubsection">
6674 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6675 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6676 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6677 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00006678</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006679
Mon P Wang6a490372008-06-25 08:15:39 +00006680<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006681
Mon P Wang6a490372008-06-25 08:15:39 +00006682<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006683<p>These are overloaded intrinsics. You can
6684 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6685 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6686 bit width and for different address spaces. Not all targets support all bit
6687 widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006688
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006689<pre>
6690 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6691 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6692 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6693 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006694</pre>
6695
6696<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006697 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6698 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6699 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6700 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006701</pre>
6702
6703<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006704 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6705 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6706 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6707 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006708</pre>
6709
6710<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006711 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6712 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6713 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6714 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006715</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006716
Mon P Wang6a490372008-06-25 08:15:39 +00006717<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006718<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6719 the value stored in memory at <tt>ptr</tt>. It yields the original value
6720 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006721
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006722<h5>Arguments:</h5>
6723<p>These intrinsics take two arguments, the first a pointer to an integer value
6724 and the second an integer value. The result is also an integer value. These
6725 integer types can have any bit width, but they must all have the same bit
6726 width. The targets may only lower integer representations they support.</p>
6727
Mon P Wang6a490372008-06-25 08:15:39 +00006728<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006729<p>These intrinsics does a series of operations atomically. They first load the
6730 value stored at <tt>ptr</tt>. They then do the bitwise
6731 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
6732 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006733
6734<h5>Examples:</h5>
6735<pre>
6736%ptr = malloc i32
6737 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006738%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006739 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006740%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006741 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006742%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006743 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006744%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006745 <i>; yields {i32}:result3 = FF</i>
6746%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6747</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00006748
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006749</div>
Mon P Wang6a490372008-06-25 08:15:39 +00006750
6751<!-- _______________________________________________________________________ -->
6752<div class="doc_subsubsection">
6753 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6754 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6755 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6756 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00006757</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006758
Mon P Wang6a490372008-06-25 08:15:39 +00006759<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006760
Mon P Wang6a490372008-06-25 08:15:39 +00006761<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006762<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6763 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6764 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6765 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006766
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006767<pre>
6768 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6769 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6770 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6771 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006772</pre>
6773
6774<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006775 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6776 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6777 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6778 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006779</pre>
6780
6781<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006782 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6783 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6784 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6785 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006786</pre>
6787
6788<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006789 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6790 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6791 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6792 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006793</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006794
Mon P Wang6a490372008-06-25 08:15:39 +00006795<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006796<p>These intrinsics takes the signed or unsigned minimum or maximum of
6797 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6798 original value at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006799
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006800<h5>Arguments:</h5>
6801<p>These intrinsics take two arguments, the first a pointer to an integer value
6802 and the second an integer value. The result is also an integer value. These
6803 integer types can have any bit width, but they must all have the same bit
6804 width. The targets may only lower integer representations they support.</p>
6805
Mon P Wang6a490372008-06-25 08:15:39 +00006806<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006807<p>These intrinsics does a series of operations atomically. They first load the
6808 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
6809 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
6810 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006811
6812<h5>Examples:</h5>
6813<pre>
6814%ptr = malloc i32
6815 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006816%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006817 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006818%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006819 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006820%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006821 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006822%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006823 <i>; yields {i32}:result3 = 8</i>
6824%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6825</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006826
Mon P Wang6a490372008-06-25 08:15:39 +00006827</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006828
6829<!-- ======================================================================= -->
6830<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006831 <a name="int_general">General Intrinsics</a>
6832</div>
6833
6834<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006835
6836<p>This class of intrinsics is designed to be generic and has no specific
6837 purpose.</p>
6838
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006839</div>
6840
6841<!-- _______________________________________________________________________ -->
6842<div class="doc_subsubsection">
6843 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6844</div>
6845
6846<div class="doc_text">
6847
6848<h5>Syntax:</h5>
6849<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006850 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006851</pre>
6852
6853<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006854<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006855
6856<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006857<p>The first argument is a pointer to a value, the second is a pointer to a
6858 global string, the third is a pointer to a global string which is the source
6859 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006860
6861<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006862<p>This intrinsic allows annotation of local variables with arbitrary strings.
6863 This can be useful for special purpose optimizations that want to look for
6864 these annotations. These have no other defined use, they are ignored by code
6865 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006866
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006867</div>
6868
Tanya Lattner293c0372007-09-21 22:59:12 +00006869<!-- _______________________________________________________________________ -->
6870<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00006871 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00006872</div>
6873
6874<div class="doc_text">
6875
6876<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006877<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6878 any integer bit width.</p>
6879
Tanya Lattner293c0372007-09-21 22:59:12 +00006880<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00006881 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6882 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6883 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6884 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6885 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00006886</pre>
6887
6888<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006889<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006890
6891<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006892<p>The first argument is an integer value (result of some expression), the
6893 second is a pointer to a global string, the third is a pointer to a global
6894 string which is the source file name, and the last argument is the line
6895 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006896
6897<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006898<p>This intrinsic allows annotations to be put on arbitrary expressions with
6899 arbitrary strings. This can be useful for special purpose optimizations that
6900 want to look for these annotations. These have no other defined use, they
6901 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006902
Tanya Lattner293c0372007-09-21 22:59:12 +00006903</div>
Jim Laskey2211f492007-03-14 19:31:19 +00006904
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006905<!-- _______________________________________________________________________ -->
6906<div class="doc_subsubsection">
6907 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6908</div>
6909
6910<div class="doc_text">
6911
6912<h5>Syntax:</h5>
6913<pre>
6914 declare void @llvm.trap()
6915</pre>
6916
6917<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006918<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006919
6920<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006921<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006922
6923<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006924<p>This intrinsics is lowered to the target dependent trap instruction. If the
6925 target does not have a trap instruction, this intrinsic will be lowered to
6926 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006927
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006928</div>
6929
Bill Wendling14313312008-11-19 05:56:17 +00006930<!-- _______________________________________________________________________ -->
6931<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00006932 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00006933</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006934
Bill Wendling14313312008-11-19 05:56:17 +00006935<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006936
Bill Wendling14313312008-11-19 05:56:17 +00006937<h5>Syntax:</h5>
6938<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006939 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendling14313312008-11-19 05:56:17 +00006940</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006941
Bill Wendling14313312008-11-19 05:56:17 +00006942<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006943<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
6944 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
6945 ensure that it is placed on the stack before local variables.</p>
6946
Bill Wendling14313312008-11-19 05:56:17 +00006947<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006948<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
6949 arguments. The first argument is the value loaded from the stack
6950 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
6951 that has enough space to hold the value of the guard.</p>
6952
Bill Wendling14313312008-11-19 05:56:17 +00006953<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006954<p>This intrinsic causes the prologue/epilogue inserter to force the position of
6955 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6956 stack. This is to ensure that if a local variable on the stack is
6957 overwritten, it will destroy the value of the guard. When the function exits,
6958 the guard on the stack is checked against the original guard. If they're
6959 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
6960 function.</p>
6961
Bill Wendling14313312008-11-19 05:56:17 +00006962</div>
6963
Chris Lattner2f7c9632001-06-06 20:29:01 +00006964<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00006965<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00006966<address>
6967 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00006968 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00006969 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00006970 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00006971
6972 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00006973 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00006974 Last modified: $Date$
6975</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00006976
Misha Brukman76307852003-11-08 01:05:38 +00006977</body>
6978</html>