blob: deb89153e41831adf301d6579bb9ebc63311ce53 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnerd79749a2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattner0132aff2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000040 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000063 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky49f89192009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000070 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000129 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000152 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000153 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemand2195702008-05-12 19:01:56 +0000158 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
159 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000160 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000161 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000162 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000163 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000164 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000165 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000166 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000167 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000168 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000169 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000170 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
171 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000172 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
173 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
174 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000175 </ol>
176 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000177 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
178 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000179 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
180 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
181 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000182 </ol>
183 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000184 <li><a href="#int_codegen">Code Generator Intrinsics</a>
185 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000186 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
187 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
188 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
189 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
190 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
191 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
192 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000193 </ol>
194 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000195 <li><a href="#int_libc">Standard C Library Intrinsics</a>
196 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000197 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000202 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
203 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
204 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000205 </ol>
206 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000207 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000208 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000209 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000210 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
211 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
212 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencer5bf54c82007-04-11 23:23:49 +0000213 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
214 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000215 </ol>
216 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000217 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
218 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000219 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
220 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
221 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
222 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
223 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000224 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000225 </ol>
226 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000227 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000228 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000229 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000230 <ol>
231 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000232 </ol>
233 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000234 <li><a href="#int_atomics">Atomic intrinsics</a>
235 <ol>
236 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
237 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
238 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
239 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
240 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
241 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
242 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
243 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
244 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
245 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
246 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
247 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
248 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
249 </ol>
250 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000251 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000252 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000253 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000254 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000255 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000256 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000257 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000258 '<tt>llvm.trap</tt>' Intrinsic</a></li>
259 <li><a href="#int_stackprotector">
260 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000261 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000262 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000263 </ol>
264 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000265</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000266
267<div class="doc_author">
268 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
269 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000270</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000271
Chris Lattner2f7c9632001-06-06 20:29:01 +0000272<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000273<div class="doc_section"> <a name="abstract">Abstract </a></div>
274<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000275
Misha Brukman76307852003-11-08 01:05:38 +0000276<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000277<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling6e03f9a2008-08-05 22:29:16 +0000278LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner67c37d12008-08-05 18:29:16 +0000279type safety, low-level operations, flexibility, and the capability of
280representing 'all' high-level languages cleanly. It is the common code
Chris Lattner48b383b02003-11-25 01:02:51 +0000281representation used throughout all phases of the LLVM compilation
282strategy.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000283</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000284
Chris Lattner2f7c9632001-06-06 20:29:01 +0000285<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000286<div class="doc_section"> <a name="introduction">Introduction</a> </div>
287<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000288
Misha Brukman76307852003-11-08 01:05:38 +0000289<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000290
Chris Lattner48b383b02003-11-25 01:02:51 +0000291<p>The LLVM code representation is designed to be used in three
Gabor Greifa54634a2007-07-06 22:07:22 +0000292different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner48b383b02003-11-25 01:02:51 +0000293representation (suitable for fast loading by a Just-In-Time compiler),
294and as a human readable assembly language representation. This allows
295LLVM to provide a powerful intermediate representation for efficient
296compiler transformations and analysis, while providing a natural means
297to debug and visualize the transformations. The three different forms
298of LLVM are all equivalent. This document describes the human readable
299representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000300
John Criswell4a3327e2005-05-13 22:25:59 +0000301<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner48b383b02003-11-25 01:02:51 +0000302while being expressive, typed, and extensible at the same time. It
303aims to be a "universal IR" of sorts, by being at a low enough level
304that high-level ideas may be cleanly mapped to it (similar to how
305microprocessors are "universal IR's", allowing many source languages to
306be mapped to them). By providing type information, LLVM can be used as
307the target of optimizations: for example, through pointer analysis, it
308can be proven that a C automatic variable is never accessed outside of
309the current function... allowing it to be promoted to a simple SSA
310value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000311
Misha Brukman76307852003-11-08 01:05:38 +0000312</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000313
Chris Lattner2f7c9632001-06-06 20:29:01 +0000314<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000315<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000316
Misha Brukman76307852003-11-08 01:05:38 +0000317<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000318
Chris Lattner48b383b02003-11-25 01:02:51 +0000319<p>It is important to note that this document describes 'well formed'
320LLVM assembly language. There is a difference between what the parser
321accepts and what is considered 'well formed'. For example, the
322following instruction is syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000323
Bill Wendling3716c5d2007-05-29 09:04:49 +0000324<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000325<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000326%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000327</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000328</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000329
Chris Lattner48b383b02003-11-25 01:02:51 +0000330<p>...because the definition of <tt>%x</tt> does not dominate all of
331its uses. The LLVM infrastructure provides a verification pass that may
332be used to verify that an LLVM module is well formed. This pass is
John Criswell4a3327e2005-05-13 22:25:59 +0000333automatically run by the parser after parsing input assembly and by
Gabor Greifa54634a2007-07-06 22:07:22 +0000334the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner48b383b02003-11-25 01:02:51 +0000335by the verifier pass indicate bugs in transformation passes or input to
336the parser.</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000337</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000338
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000339<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Chris Lattner2f7c9632001-06-06 20:29:01 +0000341<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000342<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000343<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000344
Misha Brukman76307852003-11-08 01:05:38 +0000345<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000346
Reid Spencerb23b65f2007-08-07 14:34:28 +0000347 <p>LLVM identifiers come in two basic types: global and local. Global
348 identifiers (functions, global variables) begin with the @ character. Local
349 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohmanef9462f2008-10-14 16:51:45 +0000350 there are three different formats for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000351
Chris Lattner2f7c9632001-06-06 20:29:01 +0000352<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000353 <li>Named values are represented as a string of characters with their prefix.
354 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
355 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000356 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar0f8155a2008-10-14 23:51:43 +0000357 with quotes. Special characters may be escaped using "\xx" where xx is the
358 ASCII code for the character in hexadecimal. In this way, any character can
359 be used in a name value, even quotes themselves.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000360
Reid Spencerb23b65f2007-08-07 14:34:28 +0000361 <li>Unnamed values are represented as an unsigned numeric value with their
362 prefix. For example, %12, @2, %44.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000363
Reid Spencer8f08d802004-12-09 18:02:53 +0000364 <li>Constants, which are described in a <a href="#constants">section about
365 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000366</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000367
Reid Spencerb23b65f2007-08-07 14:34:28 +0000368<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnerd79749a2004-12-09 16:36:40 +0000369don't need to worry about name clashes with reserved words, and the set of
370reserved words may be expanded in the future without penalty. Additionally,
371unnamed identifiers allow a compiler to quickly come up with a temporary
372variable without having to avoid symbol table conflicts.</p>
373
Chris Lattner48b383b02003-11-25 01:02:51 +0000374<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5b950642006-11-11 23:08:07 +0000375languages. There are keywords for different opcodes
376('<tt><a href="#i_add">add</a></tt>',
377 '<tt><a href="#i_bitcast">bitcast</a></tt>',
378 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000379href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnerd79749a2004-12-09 16:36:40 +0000380and others. These reserved words cannot conflict with variable names, because
Reid Spencerb23b65f2007-08-07 14:34:28 +0000381none of them start with a prefix character ('%' or '@').</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000382
383<p>Here is an example of LLVM code to multiply the integer variable
384'<tt>%X</tt>' by 8:</p>
385
Misha Brukman76307852003-11-08 01:05:38 +0000386<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000387
Bill Wendling3716c5d2007-05-29 09:04:49 +0000388<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000389<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000390%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000391</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000392</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000393
Misha Brukman76307852003-11-08 01:05:38 +0000394<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000395
Bill Wendling3716c5d2007-05-29 09:04:49 +0000396<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000397<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000398%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000399</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000400</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000401
Misha Brukman76307852003-11-08 01:05:38 +0000402<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000403
Bill Wendling3716c5d2007-05-29 09:04:49 +0000404<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000406<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
407<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
408%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000409</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000410</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000411
Chris Lattner48b383b02003-11-25 01:02:51 +0000412<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
413important lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000414
Chris Lattner2f7c9632001-06-06 20:29:01 +0000415<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000416
417 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
418 line.</li>
419
420 <li>Unnamed temporaries are created when the result of a computation is not
421 assigned to a named value.</li>
422
Misha Brukman76307852003-11-08 01:05:38 +0000423 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424
Misha Brukman76307852003-11-08 01:05:38 +0000425</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000426
John Criswell02fdc6f2005-05-12 16:52:32 +0000427<p>...and it also shows a convention that we follow in this document. When
Chris Lattnerd79749a2004-12-09 16:36:40 +0000428demonstrating instructions, we will follow an instruction with a comment that
429defines the type and name of value produced. Comments are shown in italic
430text.</p>
431
Misha Brukman76307852003-11-08 01:05:38 +0000432</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000433
434<!-- *********************************************************************** -->
435<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
436<!-- *********************************************************************** -->
437
438<!-- ======================================================================= -->
439<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
440</div>
441
442<div class="doc_text">
443
444<p>LLVM programs are composed of "Module"s, each of which is a
445translation unit of the input programs. Each module consists of
446functions, global variables, and symbol table entries. Modules may be
447combined together with the LLVM linker, which merges function (and
448global variable) definitions, resolves forward declarations, and merges
449symbol table entries. Here is an example of the "hello world" module:</p>
450
Bill Wendling3716c5d2007-05-29 09:04:49 +0000451<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000452<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000453<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
454 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000455
456<i>; External declaration of the puts function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000457<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000458
459<i>; Definition of main function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000460define i32 @main() { <i>; i32()* </i>
Dan Gohman623806e2009-01-04 23:44:43 +0000461 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000462 %cast210 = <a
Dan Gohman623806e2009-01-04 23:44:43 +0000463 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000464
465 <i>; Call puts function to write out the string to stdout...</i>
466 <a
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000467 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000468 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000469 href="#i_ret">ret</a> i32 0<br>}<br>
470</pre>
471</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000472
473<p>This example is made up of a <a href="#globalvars">global variable</a>
474named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
475function, and a <a href="#functionstructure">function definition</a>
476for "<tt>main</tt>".</p>
477
Chris Lattnerd79749a2004-12-09 16:36:40 +0000478<p>In general, a module is made up of a list of global values,
479where both functions and global variables are global values. Global values are
480represented by a pointer to a memory location (in this case, a pointer to an
481array of char, and a pointer to a function), and have one of the following <a
482href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000483
Chris Lattnerd79749a2004-12-09 16:36:40 +0000484</div>
485
486<!-- ======================================================================= -->
487<div class="doc_subsection">
488 <a name="linkage">Linkage Types</a>
489</div>
490
491<div class="doc_text">
492
493<p>
494All Global Variables and Functions have one of the following types of linkage:
495</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000496
497<dl>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000498
Rafael Espindola6de96a12009-01-15 20:18:42 +0000499 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
500
501 <dd>Global values with private linkage are only directly accessible by
502 objects in the current module. In particular, linking code into a module with
503 an private global value may cause the private to be renamed as necessary to
504 avoid collisions. Because the symbol is private to the module, all
505 references can be updated. This doesn't show up in any symbol table in the
506 object file.
507 </dd>
508
Dale Johannesen4188aad2008-05-23 23:13:41 +0000509 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000510
Duncan Sands35e43c12009-01-16 09:29:46 +0000511 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindola6de96a12009-01-15 20:18:42 +0000512 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattnere20b4702007-01-14 06:51:48 +0000513 '<tt>static</tt>' keyword in C.
Chris Lattner6af02f32004-12-09 16:11:40 +0000514 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000515
Chris Lattner184f1be2009-04-13 05:44:34 +0000516 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
517 </dt>
518
519 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
520 into the object file corresponding to the LLVM module. They exist to
521 allow inlining and other optimizations to take place given knowledge of the
522 definition of the global, which is known to be somewhere outside the module.
523 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
524 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
525 type is only allowed on definitions, not declarations.</dd>
526
Chris Lattner6af02f32004-12-09 16:11:40 +0000527 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000528
Chris Lattnere20b4702007-01-14 06:51:48 +0000529 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
530 the same name when linkage occurs. This is typically used to implement
531 inline functions, templates, or other code which must be generated in each
532 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
533 allowed to be discarded.
Chris Lattner6af02f32004-12-09 16:11:40 +0000534 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000535
Dale Johannesen4188aad2008-05-23 23:13:41 +0000536 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
537
538 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
539 linkage, except that unreferenced <tt>common</tt> globals may not be
540 discarded. This is used for globals that may be emitted in multiple
541 translation units, but that are not guaranteed to be emitted into every
542 translation unit that uses them. One example of this is tentative
543 definitions in C, such as "<tt>int X;</tt>" at global scope.
544 </dd>
545
Chris Lattner6af02f32004-12-09 16:11:40 +0000546 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000547
Dale Johannesen4188aad2008-05-23 23:13:41 +0000548 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
549 that some targets may choose to emit different assembly sequences for them
550 for target-dependent reasons. This is used for globals that are declared
551 "weak" in C source code.
Chris Lattner6af02f32004-12-09 16:11:40 +0000552 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000553
Chris Lattner6af02f32004-12-09 16:11:40 +0000554 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000555
556 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
557 pointer to array type. When two global variables with appending linkage are
558 linked together, the two global arrays are appended together. This is the
559 LLVM, typesafe, equivalent of having the system linker append together
560 "sections" with identical names when .o files are linked.
Chris Lattner6af02f32004-12-09 16:11:40 +0000561 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000562
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000563 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000564
Chris Lattner67c37d12008-08-05 18:29:16 +0000565 <dd>The semantics of this linkage follow the ELF object file model: the
566 symbol is weak until linked, if not linked, the symbol becomes null instead
567 of being an undefined reference.
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000568 </dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000569
Duncan Sands12da8ce2009-03-07 15:45:40 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000571 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000572 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands12da8ce2009-03-07 15:45:40 +0000573 functions with different semantics. Other languages, such as <tt>C++</tt>,
574 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner184f1be2009-04-13 05:44:34 +0000575 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4581beb2009-03-11 20:14:15 +0000576 and <tt>weak_odr</tt> linkage types to indicate that the global will only
577 be merged with equivalent globals. These linkage types are otherwise the
578 same as their non-<tt>odr</tt> versions.
Duncan Sands12da8ce2009-03-07 15:45:40 +0000579 </dd>
580
Chris Lattner6af02f32004-12-09 16:11:40 +0000581 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000582
583 <dd>If none of the above identifiers are used, the global is externally
584 visible, meaning that it participates in linkage and can be used to resolve
585 external symbol references.
Chris Lattner6af02f32004-12-09 16:11:40 +0000586 </dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000587</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000588
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000589 <p>
590 The next two types of linkage are targeted for Microsoft Windows platform
591 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner67c37d12008-08-05 18:29:16 +0000592 DLLs (Dynamic Link Libraries).
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000593 </p>
594
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000595 <dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000596 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
597
598 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
599 or variable via a global pointer to a pointer that is set up by the DLL
600 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman33a9cef2009-01-12 21:35:55 +0000601 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000602 </dd>
603
604 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
605
606 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
607 pointer to a pointer in a DLL, so that it can be referenced with the
608 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman33a9cef2009-01-12 21:35:55 +0000609 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000610 name.
611 </dd>
612
Chris Lattner6af02f32004-12-09 16:11:40 +0000613</dl>
614
Dan Gohman8ef44982008-11-24 17:18:39 +0000615<p>For example, since the "<tt>.LC0</tt>"
Chris Lattner6af02f32004-12-09 16:11:40 +0000616variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
617variable and was linked with this one, one of the two would be renamed,
618preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
619external (i.e., lacking any linkage declarations), they are accessible
Reid Spencer92c671e2007-01-05 00:59:10 +0000620outside of the current module.</p>
621<p>It is illegal for a function <i>declaration</i>
Duncan Sandse2881052009-03-11 08:08:06 +0000622to have any linkage type other than "externally visible", <tt>dllimport</tt>
623or <tt>extern_weak</tt>.</p>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000624<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
625or <tt>weak_odr</tt> linkages.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000626</div>
627
628<!-- ======================================================================= -->
629<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000630 <a name="callingconv">Calling Conventions</a>
631</div>
632
633<div class="doc_text">
634
635<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
636and <a href="#i_invoke">invokes</a> can all have an optional calling convention
637specified for the call. The calling convention of any pair of dynamic
638caller/callee must match, or the behavior of the program is undefined. The
639following calling conventions are supported by LLVM, and more may be added in
640the future:</p>
641
642<dl>
643 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
644
645 <dd>This calling convention (the default if no other calling convention is
646 specified) matches the target C calling conventions. This calling convention
John Criswell02fdc6f2005-05-12 16:52:32 +0000647 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencer72ba4992006-12-31 21:30:18 +0000648 prototype and implemented declaration of the function (as does normal C).
Chris Lattner0132aff2005-05-06 22:57:40 +0000649 </dd>
650
651 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
652
653 <dd>This calling convention attempts to make calls as fast as possible
654 (e.g. by passing things in registers). This calling convention allows the
655 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner67c37d12008-08-05 18:29:16 +0000656 without having to conform to an externally specified ABI (Application Binary
657 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer2c6b8882008-05-14 09:17:12 +0000658 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
659 supported. This calling convention does not support varargs and requires the
660 prototype of all callees to exactly match the prototype of the function
661 definition.
Chris Lattner0132aff2005-05-06 22:57:40 +0000662 </dd>
663
664 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
665
666 <dd>This calling convention attempts to make code in the caller as efficient
667 as possible under the assumption that the call is not commonly executed. As
668 such, these calls often preserve all registers so that the call does not break
669 any live ranges in the caller side. This calling convention does not support
670 varargs and requires the prototype of all callees to exactly match the
671 prototype of the function definition.
672 </dd>
673
Chris Lattner573f64e2005-05-07 01:46:40 +0000674 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000675
676 <dd>Any calling convention may be specified by number, allowing
677 target-specific calling conventions to be used. Target specific calling
678 conventions start at 64.
679 </dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000680</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000681
682<p>More calling conventions can be added/defined on an as-needed basis, to
683support pascal conventions or any other well-known target-independent
684convention.</p>
685
686</div>
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000690 <a name="visibility">Visibility Styles</a>
691</div>
692
693<div class="doc_text">
694
695<p>
696All Global Variables and Functions have one of the following visibility styles:
697</p>
698
699<dl>
700 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
701
Chris Lattner67c37d12008-08-05 18:29:16 +0000702 <dd>On targets that use the ELF object file format, default visibility means
703 that the declaration is visible to other
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000704 modules and, in shared libraries, means that the declared entity may be
705 overridden. On Darwin, default visibility means that the declaration is
706 visible to other modules. Default visibility corresponds to "external
707 linkage" in the language.
708 </dd>
709
710 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
711
712 <dd>Two declarations of an object with hidden visibility refer to the same
713 object if they are in the same shared object. Usually, hidden visibility
714 indicates that the symbol will not be placed into the dynamic symbol table,
715 so no other module (executable or shared library) can reference it
716 directly.
717 </dd>
718
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000719 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
720
721 <dd>On ELF, protected visibility indicates that the symbol will be placed in
722 the dynamic symbol table, but that references within the defining module will
723 bind to the local symbol. That is, the symbol cannot be overridden by another
724 module.
725 </dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000726</dl>
727
728</div>
729
730<!-- ======================================================================= -->
731<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000732 <a name="namedtypes">Named Types</a>
733</div>
734
735<div class="doc_text">
736
737<p>LLVM IR allows you to specify name aliases for certain types. This can make
738it easier to read the IR and make the IR more condensed (particularly when
739recursive types are involved). An example of a name specification is:
740</p>
741
742<div class="doc_code">
743<pre>
744%mytype = type { %mytype*, i32 }
745</pre>
746</div>
747
748<p>You may give a name to any <a href="#typesystem">type</a> except "<a
749href="t_void">void</a>". Type name aliases may be used anywhere a type is
750expected with the syntax "%mytype".</p>
751
752<p>Note that type names are aliases for the structural type that they indicate,
753and that you can therefore specify multiple names for the same type. This often
754leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
755structural typing, the name is not part of the type. When printing out LLVM IR,
756the printer will pick <em>one name</em> to render all types of a particular
757shape. This means that if you have code where two different source types end up
758having the same LLVM type, that the dumper will sometimes print the "wrong" or
759unexpected type. This is an important design point and isn't going to
760change.</p>
761
762</div>
763
Chris Lattnerbc088212009-01-11 20:53:49 +0000764<!-- ======================================================================= -->
765<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000766 <a name="globalvars">Global Variables</a>
767</div>
768
769<div class="doc_text">
770
Chris Lattner5d5aede2005-02-12 19:30:21 +0000771<p>Global variables define regions of memory allocated at compilation time
Chris Lattner662c8722005-11-12 00:45:07 +0000772instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000773an explicit section to be placed in, and may have an optional explicit alignment
774specified. A variable may be defined as "thread_local", which means that it
775will not be shared by threads (each thread will have a separated copy of the
776variable). A variable may be defined as a global "constant," which indicates
777that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner5d5aede2005-02-12 19:30:21 +0000778optimization, allowing the global data to be placed in the read-only section of
779an executable, etc). Note that variables that need runtime initialization
John Criswell4c0cf7f2005-10-24 16:17:18 +0000780cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000781
782<p>
783LLVM explicitly allows <em>declarations</em> of global variables to be marked
784constant, even if the final definition of the global is not. This capability
785can be used to enable slightly better optimization of the program, but requires
786the language definition to guarantee that optimizations based on the
787'constantness' are valid for the translation units that do not include the
788definition.
789</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000790
791<p>As SSA values, global variables define pointer values that are in
792scope (i.e. they dominate) all basic blocks in the program. Global
793variables always define a pointer to their "content" type because they
794describe a region of memory, and all memory objects in LLVM are
795accessed through pointers.</p>
796
Christopher Lamb308121c2007-12-11 09:31:00 +0000797<p>A global variable may be declared to reside in a target-specifc numbered
798address space. For targets that support them, address spaces may affect how
799optimizations are performed and/or what target instructions are used to access
Christopher Lamb25f50762007-12-12 08:44:39 +0000800the variable. The default address space is zero. The address space qualifier
801must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000802
Chris Lattner662c8722005-11-12 00:45:07 +0000803<p>LLVM allows an explicit section to be specified for globals. If the target
804supports it, it will emit globals to the section specified.</p>
805
Chris Lattner54611b42005-11-06 08:02:57 +0000806<p>An explicit alignment may be specified for a global. If not present, or if
807the alignment is set to zero, the alignment of the global is set by the target
808to whatever it feels convenient. If an explicit alignment is specified, the
809global is forced to have at least that much alignment. All alignments must be
810a power of 2.</p>
811
Christopher Lamb308121c2007-12-11 09:31:00 +0000812<p>For example, the following defines a global in a numbered address space with
813an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000814
Bill Wendling3716c5d2007-05-29 09:04:49 +0000815<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000816<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000817@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000818</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000819</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000820
Chris Lattner6af02f32004-12-09 16:11:40 +0000821</div>
822
823
824<!-- ======================================================================= -->
825<div class="doc_subsection">
826 <a name="functionstructure">Functions</a>
827</div>
828
829<div class="doc_text">
830
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000831<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
832an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000833<a href="#visibility">visibility style</a>, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000834<a href="#callingconv">calling convention</a>, a return type, an optional
835<a href="#paramattrs">parameter attribute</a> for the return type, a function
836name, a (possibly empty) argument list (each with optional
Devang Patel7e9b05e2008-10-06 18:50:38 +0000837<a href="#paramattrs">parameter attributes</a>), optional
838<a href="#fnattrs">function attributes</a>, an optional section,
839an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattnercbc4d2a2008-10-04 18:10:21 +0000840an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000841
842LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
843optional <a href="#linkage">linkage type</a>, an optional
844<a href="#visibility">visibility style</a>, an optional
845<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000846<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen71183b62007-12-10 03:18:06 +0000847name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksendc5cafb2007-12-10 03:30:21 +0000848<a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000849
Chris Lattner67c37d12008-08-05 18:29:16 +0000850<p>A function definition contains a list of basic blocks, forming the CFG
851(Control Flow Graph) for
Chris Lattner6af02f32004-12-09 16:11:40 +0000852the function. Each basic block may optionally start with a label (giving the
853basic block a symbol table entry), contains a list of instructions, and ends
854with a <a href="#terminators">terminator</a> instruction (such as a branch or
855function return).</p>
856
Chris Lattnera59fb102007-06-08 16:52:14 +0000857<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattner6af02f32004-12-09 16:11:40 +0000858executed on entrance to the function, and it is not allowed to have predecessor
859basic blocks (i.e. there can not be any branches to the entry block of a
860function). Because the block can have no predecessors, it also cannot have any
861<a href="#i_phi">PHI nodes</a>.</p>
862
Chris Lattner662c8722005-11-12 00:45:07 +0000863<p>LLVM allows an explicit section to be specified for functions. If the target
864supports it, it will emit functions to the section specified.</p>
865
Chris Lattner54611b42005-11-06 08:02:57 +0000866<p>An explicit alignment may be specified for a function. If not present, or if
867the alignment is set to zero, the alignment of the function is set by the target
868to whatever it feels convenient. If an explicit alignment is specified, the
869function is forced to have at least that much alignment. All alignments must be
870a power of 2.</p>
871
Devang Patel02256232008-10-07 17:48:33 +0000872 <h5>Syntax:</h5>
873
874<div class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000875<tt>
876define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
877 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
878 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
879 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
880 [<a href="#gc">gc</a>] { ... }
881</tt>
Devang Patel02256232008-10-07 17:48:33 +0000882</div>
883
Chris Lattner6af02f32004-12-09 16:11:40 +0000884</div>
885
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000886
887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="aliasstructure">Aliases</a>
890</div>
891<div class="doc_text">
892 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov25b2e822008-03-22 08:36:14 +0000893 function, global variable, another alias or bitcast of global value). Aliases
894 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000895 optional <a href="#visibility">visibility style</a>.</p>
896
897 <h5>Syntax:</h5>
898
Bill Wendling3716c5d2007-05-29 09:04:49 +0000899<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000900<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000901@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000902</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000903</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000904
905</div>
906
907
908
Chris Lattner91c15c42006-01-23 23:23:47 +0000909<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000910<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
911<div class="doc_text">
912 <p>The return type and each parameter of a function type may have a set of
913 <i>parameter attributes</i> associated with them. Parameter attributes are
914 used to communicate additional information about the result or parameters of
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000915 a function. Parameter attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000918
Reid Spencercf7ebf52007-01-15 18:27:39 +0000919 <p>Parameter attributes are simple keywords that follow the type specified. If
920 multiple parameter attributes are needed, they are space separated. For
Bill Wendling3716c5d2007-05-29 09:04:49 +0000921 example:</p>
922
923<div class="doc_code">
924<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000925declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000926declare i32 @atoi(i8 zeroext)
927declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000928</pre>
929</div>
930
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000931 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
932 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000933
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000934 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000935 <dl>
Reid Spencer314e1cb2007-07-19 23:13:04 +0000936 <dt><tt>zeroext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000937 <dd>This indicates to the code generator that the parameter or return value
938 should be zero-extended to a 32-bit value by the caller (for a parameter)
939 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000940
Reid Spencer314e1cb2007-07-19 23:13:04 +0000941 <dt><tt>signext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000942 <dd>This indicates to the code generator that the parameter or return value
943 should be sign-extended to a 32-bit value by the caller (for a parameter)
944 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000945
Anton Korobeynikove8166852007-01-28 14:30:45 +0000946 <dt><tt>inreg</tt></dt>
Dale Johannesenc50ada22008-09-25 20:47:45 +0000947 <dd>This indicates that this parameter or return value should be treated
948 in a special target-dependent fashion during while emitting code for a
949 function call or return (usually, by putting it in a register as opposed
Chris Lattnerd2597d72008-10-04 18:33:34 +0000950 to memory, though some targets use it to distinguish between two different
951 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000952
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000953 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner352ab9b2008-01-15 04:34:22 +0000954 <dd>This indicates that the pointer parameter should really be passed by
955 value to the function. The attribute implies that a hidden copy of the
956 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner1ca5c642008-08-05 18:21:08 +0000957 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner352ab9b2008-01-15 04:34:22 +0000958 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000959 value, but is also valid on pointers to scalars. The copy is considered to
960 belong to the caller not the callee (for example,
961 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patel7e9b05e2008-10-06 18:50:38 +0000962 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattner08aa9062009-02-05 05:42:28 +0000963 values. The byval attribute also supports specifying an alignment with the
964 align attribute. This has a target-specific effect on the code generator
965 that usually indicates a desired alignment for the synthesized stack
966 slot.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000967
Anton Korobeynikove8166852007-01-28 14:30:45 +0000968 <dt><tt>sret</tt></dt>
Duncan Sandsfa4b6732008-02-18 04:19:38 +0000969 <dd>This indicates that the pointer parameter specifies the address of a
970 structure that is the return value of the function in the source program.
Chris Lattnerd2597d72008-10-04 18:33:34 +0000971 This pointer must be guaranteed by the caller to be valid: loads and stores
972 to the structure may be assumed by the callee to not to trap. This may only
Devang Patel7e9b05e2008-10-06 18:50:38 +0000973 be applied to the first parameter. This is not a valid attribute for
974 return values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000975
Zhou Sheng2444a9a2007-06-05 05:28:26 +0000976 <dt><tt>noalias</tt></dt>
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +0000977 <dd>This indicates that the pointer does not alias any global or any other
978 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyd59572c2008-11-24 05:00:44 +0000979 case. On a function return value, <tt>noalias</tt> additionally indicates
980 that the pointer does not alias any other pointers visible to the
Nick Lewycky2abb1082008-12-19 06:39:12 +0000981 caller. For further details, please see the discussion of the NoAlias
982 response in
983 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
984 analysis</a>.</dd>
985
986 <dt><tt>nocapture</tt></dt>
987 <dd>This indicates that the callee does not make any copies of the pointer
988 that outlive the callee itself. This is not a valid attribute for return
989 values.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000990
Duncan Sands27e91592007-07-27 19:57:41 +0000991 <dt><tt>nest</tt></dt>
Duncan Sands825bde42008-07-08 09:27:25 +0000992 <dd>This indicates that the pointer parameter can be excised using the
Devang Patel7e9b05e2008-10-06 18:50:38 +0000993 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
994 attribute for return values.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000995 </dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000996
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000997</div>
998
999<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +00001000<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001001 <a name="gc">Garbage Collector Names</a>
1002</div>
1003
1004<div class="doc_text">
1005<p>Each function may specify a garbage collector name, which is simply a
1006string.</p>
1007
1008<div class="doc_code"><pre
1009>define void @f() gc "name" { ...</pre></div>
1010
1011<p>The compiler declares the supported values of <i>name</i>. Specifying a
1012collector which will cause the compiler to alter its output in order to support
1013the named garbage collection algorithm.</p>
1014</div>
1015
1016<!-- ======================================================================= -->
1017<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001018 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001019</div>
1020
1021<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001022
1023<p>Function attributes are set to communicate additional information about
1024 a function. Function attributes are considered to be part of the function,
1025 not of the function type, so functions with different parameter attributes
1026 can have the same function type.</p>
1027
1028 <p>Function attributes are simple keywords that follow the type specified. If
1029 multiple attributes are needed, they are space separated. For
1030 example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001031
1032<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001033<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001034define void @f() noinline { ... }
1035define void @f() alwaysinline { ... }
1036define void @f() alwaysinline optsize { ... }
1037define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +00001038</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001039</div>
1040
Bill Wendlingb175fa42008-09-07 10:26:33 +00001041<dl>
Devang Patel9eb525d2008-09-26 23:51:19 +00001042<dt><tt>alwaysinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001043<dd>This attribute indicates that the inliner should attempt to inline this
1044function into callers whenever possible, ignoring any active inlining size
1045threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001046
Devang Patel9eb525d2008-09-26 23:51:19 +00001047<dt><tt>noinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001048<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner0625c282008-10-05 17:14:59 +00001049in any situation. This attribute may not be used together with the
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001050<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001051
Devang Patel9eb525d2008-09-26 23:51:19 +00001052<dt><tt>optsize</tt></dt>
Devang Patele9743902008-09-29 18:34:44 +00001053<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001054make choices that keep the code size of this function low, and otherwise do
1055optimizations specifically to reduce code size.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001056
Devang Patel9eb525d2008-09-26 23:51:19 +00001057<dt><tt>noreturn</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001058<dd>This function attribute indicates that the function never returns normally.
1059This produces undefined behavior at runtime if the function ever does
1060dynamically return.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001061
1062<dt><tt>nounwind</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001063<dd>This function attribute indicates that the function never returns with an
1064unwind or exceptional control flow. If the function does unwind, its runtime
1065behavior is undefined.</dd>
1066
1067<dt><tt>readnone</tt></dt>
Duncan Sands1efabaa2009-05-06 06:49:50 +00001068<dd>This attribute indicates that the function computes its result (or decides to
1069unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001070pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1071registers, etc) visible to caller functions. It does not write through any
1072pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands1efabaa2009-05-06 06:49:50 +00001073never changes any state visible to callers. This means that it cannot unwind
1074exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1075use the <tt>unwind</tt> instruction.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001076
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001077<dt><tt><a name="readonly">readonly</a></tt></dt>
1078<dd>This attribute indicates that the function does not write through any
1079pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1080or otherwise modify any state (e.g. memory, control registers, etc) visible to
1081caller functions. It may dereference pointer arguments and read state that may
Duncan Sands1efabaa2009-05-06 06:49:50 +00001082be set in the caller. A readonly function always returns the same value (or
1083unwinds an exception identically) when called with the same set of arguments
1084and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1085exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001086
1087<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001088<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendlinga8130172008-11-13 01:02:51 +00001089protector. It is in the form of a "canary"&mdash;a random value placed on the
1090stack before the local variables that's checked upon return from the function to
1091see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendling6e41add2008-11-26 19:19:05 +00001092needs stack protectors or not.
Bill Wendlinga8130172008-11-13 01:02:51 +00001093
Devang Patel310fd4a2009-06-12 19:45:19 +00001094<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
Bill Wendling0f5541e2008-11-26 19:07:40 +00001095that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
Devang Patel310fd4a2009-06-12 19:45:19 +00001096have an <tt>ssp</tt> attribute.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001097
1098<dt><tt>sspreq</tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001099<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendlinga8130172008-11-13 01:02:51 +00001100stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001101function attribute.
Bill Wendling0f5541e2008-11-26 19:07:40 +00001102
Devang Patel310fd4a2009-06-12 19:45:19 +00001103If a function that has an <tt>sspreq</tt> attribute is inlined into a
Bill Wendling0f5541e2008-11-26 19:07:40 +00001104function that doesn't have an <tt>sspreq</tt> attribute or which has
1105an <tt>ssp</tt> attribute, then the resulting function will have
Devang Patel310fd4a2009-06-12 19:45:19 +00001106an <tt>sspreq</tt> attribute.</dd>
1107
1108<dt><tt>noredzone</tt></dt>
1109<dd>This attribute indicates that the code generator should not enforce red zone
1110mandated by target specific ABI.</dd>
1111
1112<dt><tt>noimplicitfloat</tt></dt>
1113<dd>This attributes disables implicit floating point instructions.</dd>
1114
Bill Wendlingb175fa42008-09-07 10:26:33 +00001115</dl>
1116
Devang Patelcaacdba2008-09-04 23:05:13 +00001117</div>
1118
1119<!-- ======================================================================= -->
1120<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001121 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001122</div>
1123
1124<div class="doc_text">
1125<p>
1126Modules may contain "module-level inline asm" blocks, which corresponds to the
1127GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1128LLVM and treated as a single unit, but may be separated in the .ll file if
1129desired. The syntax is very simple:
1130</p>
1131
Bill Wendling3716c5d2007-05-29 09:04:49 +00001132<div class="doc_code">
1133<pre>
1134module asm "inline asm code goes here"
1135module asm "more can go here"
1136</pre>
1137</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001138
1139<p>The strings can contain any character by escaping non-printable characters.
1140 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1141 for the number.
1142</p>
1143
1144<p>
1145 The inline asm code is simply printed to the machine code .s file when
1146 assembly code is generated.
1147</p>
1148</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001149
Reid Spencer50c723a2007-02-19 23:54:10 +00001150<!-- ======================================================================= -->
1151<div class="doc_subsection">
1152 <a name="datalayout">Data Layout</a>
1153</div>
1154
1155<div class="doc_text">
1156<p>A module may specify a target specific data layout string that specifies how
Reid Spencer7972c472007-04-11 23:49:50 +00001157data is to be laid out in memory. The syntax for the data layout is simply:</p>
1158<pre> target datalayout = "<i>layout specification</i>"</pre>
1159<p>The <i>layout specification</i> consists of a list of specifications
1160separated by the minus sign character ('-'). Each specification starts with a
1161letter and may include other information after the letter to define some
1162aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001163<dl>
1164 <dt><tt>E</tt></dt>
1165 <dd>Specifies that the target lays out data in big-endian form. That is, the
1166 bits with the most significance have the lowest address location.</dd>
1167 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001168 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencer50c723a2007-02-19 23:54:10 +00001169 the bits with the least significance have the lowest address location.</dd>
1170 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1171 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1172 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1173 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1174 too.</dd>
1175 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1176 <dd>This specifies the alignment for an integer type of a given bit
1177 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1178 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1179 <dd>This specifies the alignment for a vector type of a given bit
1180 <i>size</i>.</dd>
1181 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1182 <dd>This specifies the alignment for a floating point type of a given bit
1183 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1184 (double).</dd>
1185 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1186 <dd>This specifies the alignment for an aggregate type of a given bit
1187 <i>size</i>.</dd>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001188 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1189 <dd>This specifies the alignment for a stack object of a given bit
1190 <i>size</i>.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001191</dl>
1192<p>When constructing the data layout for a given target, LLVM starts with a
1193default set of specifications which are then (possibly) overriden by the
1194specifications in the <tt>datalayout</tt> keyword. The default specifications
1195are given in this list:</p>
1196<ul>
1197 <li><tt>E</tt> - big endian</li>
1198 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1199 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1200 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1201 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1202 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001203 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001204 alignment of 64-bits</li>
1205 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1206 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1207 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1208 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1209 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001210 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001211</ul>
Chris Lattner1ca5c642008-08-05 18:21:08 +00001212<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanef9462f2008-10-14 16:51:45 +00001213following rules:</p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001214<ol>
1215 <li>If the type sought is an exact match for one of the specifications, that
1216 specification is used.</li>
1217 <li>If no match is found, and the type sought is an integer type, then the
1218 smallest integer type that is larger than the bitwidth of the sought type is
1219 used. If none of the specifications are larger than the bitwidth then the the
1220 largest integer type is used. For example, given the default specifications
1221 above, the i7 type will use the alignment of i8 (next largest) while both
1222 i65 and i256 will use the alignment of i64 (largest specified).</li>
1223 <li>If no match is found, and the type sought is a vector type, then the
1224 largest vector type that is smaller than the sought vector type will be used
Dan Gohmanef9462f2008-10-14 16:51:45 +00001225 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1226 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001227</ol>
1228</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001229
Chris Lattner2f7c9632001-06-06 20:29:01 +00001230<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001231<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1232<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001233
Misha Brukman76307852003-11-08 01:05:38 +00001234<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001235
Misha Brukman76307852003-11-08 01:05:38 +00001236<p>The LLVM type system is one of the most important features of the
Chris Lattner48b383b02003-11-25 01:02:51 +00001237intermediate representation. Being typed enables a number of
Chris Lattner67c37d12008-08-05 18:29:16 +00001238optimizations to be performed on the intermediate representation directly,
1239without having to do
Chris Lattner48b383b02003-11-25 01:02:51 +00001240extra analyses on the side before the transformation. A strong type
1241system makes it easier to read the generated code and enables novel
1242analyses and transformations that are not feasible to perform on normal
1243three address code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001244
1245</div>
1246
Chris Lattner2f7c9632001-06-06 20:29:01 +00001247<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001248<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001249Classifications</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001250<div class="doc_text">
Chris Lattner7824d182008-01-04 04:32:38 +00001251<p>The types fall into a few useful
Chris Lattner48b383b02003-11-25 01:02:51 +00001252classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001253
1254<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001255 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001256 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001257 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001258 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001259 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001260 </tr>
1261 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001262 <td><a href="#t_floating">floating point</a></td>
1263 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001264 </tr>
1265 <tr>
1266 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001267 <td><a href="#t_integer">integer</a>,
1268 <a href="#t_floating">floating point</a>,
1269 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001270 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001271 <a href="#t_struct">structure</a>,
1272 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001273 <a href="#t_label">label</a>,
1274 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001275 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001276 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001277 <tr>
1278 <td><a href="#t_primitive">primitive</a></td>
1279 <td><a href="#t_label">label</a>,
1280 <a href="#t_void">void</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001281 <a href="#t_floating">floating point</a>,
1282 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001283 </tr>
1284 <tr>
1285 <td><a href="#t_derived">derived</a></td>
1286 <td><a href="#t_integer">integer</a>,
1287 <a href="#t_array">array</a>,
1288 <a href="#t_function">function</a>,
1289 <a href="#t_pointer">pointer</a>,
1290 <a href="#t_struct">structure</a>,
1291 <a href="#t_pstruct">packed structure</a>,
1292 <a href="#t_vector">vector</a>,
1293 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001294 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001295 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001296 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001297</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001298
Chris Lattner48b383b02003-11-25 01:02:51 +00001299<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1300most important. Values of these types are the only ones which can be
1301produced by instructions, passed as arguments, or used as operands to
Dan Gohman34d1c0d2008-05-23 21:53:15 +00001302instructions.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001303</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001304
Chris Lattner2f7c9632001-06-06 20:29:01 +00001305<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001306<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001307
Chris Lattner7824d182008-01-04 04:32:38 +00001308<div class="doc_text">
1309<p>The primitive types are the fundamental building blocks of the LLVM
1310system.</p>
1311
Chris Lattner43542b32008-01-04 04:34:14 +00001312</div>
1313
Chris Lattner7824d182008-01-04 04:32:38 +00001314<!-- _______________________________________________________________________ -->
1315<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1316
1317<div class="doc_text">
1318 <table>
1319 <tbody>
1320 <tr><th>Type</th><th>Description</th></tr>
1321 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1322 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1323 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1324 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1325 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1326 </tbody>
1327 </table>
1328</div>
1329
1330<!-- _______________________________________________________________________ -->
1331<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1332
1333<div class="doc_text">
1334<h5>Overview:</h5>
1335<p>The void type does not represent any value and has no size.</p>
1336
1337<h5>Syntax:</h5>
1338
1339<pre>
1340 void
1341</pre>
1342</div>
1343
1344<!-- _______________________________________________________________________ -->
1345<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1346
1347<div class="doc_text">
1348<h5>Overview:</h5>
1349<p>The label type represents code labels.</p>
1350
1351<h5>Syntax:</h5>
1352
1353<pre>
1354 label
1355</pre>
1356</div>
1357
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001358<!-- _______________________________________________________________________ -->
1359<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1360
1361<div class="doc_text">
1362<h5>Overview:</h5>
1363<p>The metadata type represents embedded metadata. The only derived type that
1364may contain metadata is <tt>metadata*</tt> or a function type that returns or
1365takes metadata typed parameters, but not pointer to metadata types.</p>
1366
1367<h5>Syntax:</h5>
1368
1369<pre>
1370 metadata
1371</pre>
1372</div>
1373
Chris Lattner7824d182008-01-04 04:32:38 +00001374
1375<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001376<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001377
Misha Brukman76307852003-11-08 01:05:38 +00001378<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001379
Chris Lattner48b383b02003-11-25 01:02:51 +00001380<p>The real power in LLVM comes from the derived types in the system.
1381This is what allows a programmer to represent arrays, functions,
1382pointers, and other useful types. Note that these derived types may be
1383recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001384
Misha Brukman76307852003-11-08 01:05:38 +00001385</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001386
Chris Lattner2f7c9632001-06-06 20:29:01 +00001387<!-- _______________________________________________________________________ -->
Reid Spencer138249b2007-05-16 18:44:01 +00001388<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1389
1390<div class="doc_text">
1391
1392<h5>Overview:</h5>
1393<p>The integer type is a very simple derived type that simply specifies an
1394arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13952^23-1 (about 8 million) can be specified.</p>
1396
1397<h5>Syntax:</h5>
1398
1399<pre>
1400 iN
1401</pre>
1402
1403<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1404value.</p>
1405
1406<h5>Examples:</h5>
1407<table class="layout">
Nick Lewyckyaab930a2009-05-24 02:46:06 +00001408 <tr class="layout">
1409 <td class="left"><tt>i1</tt></td>
1410 <td class="left">a single-bit integer.</td>
Reid Spencer138249b2007-05-16 18:44:01 +00001411 </tr>
Nick Lewyckyaab930a2009-05-24 02:46:06 +00001412 <tr class="layout">
1413 <td class="left"><tt>i32</tt></td>
1414 <td class="left">a 32-bit integer.</td>
1415 </tr>
1416 <tr class="layout">
1417 <td class="left"><tt>i1942652</tt></td>
1418 <td class="left">a really big integer of over 1 million bits.</td>
1419 </tr>
Reid Spencer138249b2007-05-16 18:44:01 +00001420</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001421
1422<p>Note that the code generator does not yet support large integer types
1423to be used as function return types. The specific limit on how large a
1424return type the code generator can currently handle is target-dependent;
1425currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1426targets.</p>
1427
Bill Wendling3716c5d2007-05-29 09:04:49 +00001428</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001429
1430<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001431<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001432
Misha Brukman76307852003-11-08 01:05:38 +00001433<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001434
Chris Lattner2f7c9632001-06-06 20:29:01 +00001435<h5>Overview:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001436
Misha Brukman76307852003-11-08 01:05:38 +00001437<p>The array type is a very simple derived type that arranges elements
Chris Lattner48b383b02003-11-25 01:02:51 +00001438sequentially in memory. The array type requires a size (number of
1439elements) and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001440
Chris Lattner590645f2002-04-14 06:13:44 +00001441<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001442
1443<pre>
1444 [&lt;# elements&gt; x &lt;elementtype&gt;]
1445</pre>
1446
John Criswell02fdc6f2005-05-12 16:52:32 +00001447<p>The number of elements is a constant integer value; elementtype may
Chris Lattner48b383b02003-11-25 01:02:51 +00001448be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001449
Chris Lattner590645f2002-04-14 06:13:44 +00001450<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001451<table class="layout">
1452 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001453 <td class="left"><tt>[40 x i32]</tt></td>
1454 <td class="left">Array of 40 32-bit integer values.</td>
1455 </tr>
1456 <tr class="layout">
1457 <td class="left"><tt>[41 x i32]</tt></td>
1458 <td class="left">Array of 41 32-bit integer values.</td>
1459 </tr>
1460 <tr class="layout">
1461 <td class="left"><tt>[4 x i8]</tt></td>
1462 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001463 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001464</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001465<p>Here are some examples of multidimensional arrays:</p>
1466<table class="layout">
1467 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001468 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1469 <td class="left">3x4 array of 32-bit integer values.</td>
1470 </tr>
1471 <tr class="layout">
1472 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1473 <td class="left">12x10 array of single precision floating point values.</td>
1474 </tr>
1475 <tr class="layout">
1476 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1477 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001478 </tr>
1479</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001480
John Criswell4c0cf7f2005-10-24 16:17:18 +00001481<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1482length array. Normally, accesses past the end of an array are undefined in
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001483LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1484As a special case, however, zero length arrays are recognized to be variable
1485length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001486type "{ i32, [0 x float]}", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001487
Dan Gohman142ccc02009-01-24 15:58:40 +00001488<p>Note that the code generator does not yet support large aggregate types
1489to be used as function return types. The specific limit on how large an
1490aggregate return type the code generator can currently handle is
1491target-dependent, and also dependent on the aggregate element types.</p>
1492
Misha Brukman76307852003-11-08 01:05:38 +00001493</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001494
Chris Lattner2f7c9632001-06-06 20:29:01 +00001495<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001496<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001497<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001498
Chris Lattner2f7c9632001-06-06 20:29:01 +00001499<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001500
Chris Lattner48b383b02003-11-25 01:02:51 +00001501<p>The function type can be thought of as a function signature. It
Devang Patele3dfc1c2008-03-24 05:35:41 +00001502consists of a return type and a list of formal parameter types. The
Chris Lattnerda508ac2008-04-23 04:59:35 +00001503return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel9c1f8b12008-03-24 20:52:42 +00001504If the return type is a struct type then all struct elements must be of first
Chris Lattnerda508ac2008-04-23 04:59:35 +00001505class types, and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001506
Chris Lattner2f7c9632001-06-06 20:29:01 +00001507<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001508
1509<pre>
1510 &lt;returntype list&gt; (&lt;parameter list&gt;)
1511</pre>
1512
John Criswell4c0cf7f2005-10-24 16:17:18 +00001513<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukman20f9a622004-08-12 20:16:08 +00001514specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner5ed60612003-09-03 00:41:47 +00001515which indicates that the function takes a variable number of arguments.
1516Variable argument functions can access their arguments with the <a
Devang Pateld6cff512008-03-10 20:49:15 +00001517 href="#int_varargs">variable argument handling intrinsic</a> functions.
1518'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1519<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001520
Chris Lattner2f7c9632001-06-06 20:29:01 +00001521<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001522<table class="layout">
1523 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001524 <td class="left"><tt>i32 (i32)</tt></td>
1525 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001526 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001527 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001528 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001529 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001530 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1531 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001532 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001533 <tt>float</tt>.
1534 </td>
1535 </tr><tr class="layout">
1536 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1537 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001538 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001539 which returns an integer. This is the signature for <tt>printf</tt> in
1540 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001541 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001542 </tr><tr class="layout">
1543 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanc9813bd2008-11-27 06:41:20 +00001544 <td class="left">A function taking an <tt>i32</tt>, returning two
1545 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001546 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001547 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001548</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001549
Misha Brukman76307852003-11-08 01:05:38 +00001550</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001551<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001552<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001553<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001554<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001555<p>The structure type is used to represent a collection of data members
1556together in memory. The packing of the field types is defined to match
1557the ABI of the underlying processor. The elements of a structure may
1558be any type that has a size.</p>
1559<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1560and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1561field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1562instruction.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001563<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001564<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001565<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001566<table class="layout">
1567 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001568 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1569 <td class="left">A triple of three <tt>i32</tt> values</td>
1570 </tr><tr class="layout">
1571 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1572 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1573 second element is a <a href="#t_pointer">pointer</a> to a
1574 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1575 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001576 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001577</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001578
1579<p>Note that the code generator does not yet support large aggregate types
1580to be used as function return types. The specific limit on how large an
1581aggregate return type the code generator can currently handle is
1582target-dependent, and also dependent on the aggregate element types.</p>
1583
Misha Brukman76307852003-11-08 01:05:38 +00001584</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001585
Chris Lattner2f7c9632001-06-06 20:29:01 +00001586<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001587<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1588</div>
1589<div class="doc_text">
1590<h5>Overview:</h5>
1591<p>The packed structure type is used to represent a collection of data members
1592together in memory. There is no padding between fields. Further, the alignment
1593of a packed structure is 1 byte. The elements of a packed structure may
1594be any type that has a size.</p>
1595<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1596and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1597field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1598instruction.</p>
1599<h5>Syntax:</h5>
1600<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1601<h5>Examples:</h5>
1602<table class="layout">
1603 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001604 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1605 <td class="left">A triple of three <tt>i32</tt> values</td>
1606 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001607 <td class="left">
1608<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001609 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1610 second element is a <a href="#t_pointer">pointer</a> to a
1611 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1612 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001613 </tr>
1614</table>
1615</div>
1616
1617<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001618<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001619<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00001620<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001621<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb308121c2007-12-11 09:31:00 +00001622reference to another object, which must live in memory. Pointer types may have
1623an optional address space attribute defining the target-specific numbered
1624address space where the pointed-to object resides. The default address space is
1625zero.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001626
1627<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnerd1d4cff2009-02-08 22:21:28 +00001628it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001629
Chris Lattner590645f2002-04-14 06:13:44 +00001630<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001631<pre> &lt;type&gt; *<br></pre>
Chris Lattner590645f2002-04-14 06:13:44 +00001632<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001633<table class="layout">
1634 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001635 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001636 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1637 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1638 </tr>
1639 <tr class="layout">
1640 <td class="left"><tt>i32 (i32 *) *</tt></td>
1641 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001642 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001643 <tt>i32</tt>.</td>
1644 </tr>
1645 <tr class="layout">
1646 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1647 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1648 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001649 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001650</table>
Misha Brukman76307852003-11-08 01:05:38 +00001651</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001652
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001653<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001654<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001655<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001656
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001657<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001658
Reid Spencer404a3252007-02-15 03:07:05 +00001659<p>A vector type is a simple derived type that represents a vector
1660of elements. Vector types are used when multiple primitive data
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001661are operated in parallel using a single instruction (SIMD).
Reid Spencer404a3252007-02-15 03:07:05 +00001662A vector type requires a size (number of
Chris Lattner330ce692005-11-10 01:44:22 +00001663elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer404a3252007-02-15 03:07:05 +00001664of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001665considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001666
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001667<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001668
1669<pre>
1670 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1671</pre>
1672
John Criswell4a3327e2005-05-13 22:25:59 +00001673<p>The number of elements is a constant integer value; elementtype may
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001674be any integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001675
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001676<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001677
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001678<table class="layout">
1679 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001680 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1681 <td class="left">Vector of 4 32-bit integer values.</td>
1682 </tr>
1683 <tr class="layout">
1684 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1685 <td class="left">Vector of 8 32-bit floating-point values.</td>
1686 </tr>
1687 <tr class="layout">
1688 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1689 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001690 </tr>
1691</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001692
1693<p>Note that the code generator does not yet support large vector types
1694to be used as function return types. The specific limit on how large a
1695vector return type codegen can currently handle is target-dependent;
1696currently it's often a few times longer than a hardware vector register.</p>
1697
Misha Brukman76307852003-11-08 01:05:38 +00001698</div>
1699
Chris Lattner37b6b092005-04-25 17:34:15 +00001700<!-- _______________________________________________________________________ -->
1701<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1702<div class="doc_text">
1703
1704<h5>Overview:</h5>
1705
1706<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksena699c4d2007-10-14 00:34:53 +00001707corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner37b6b092005-04-25 17:34:15 +00001708In LLVM, opaque types can eventually be resolved to any type (not just a
1709structure type).</p>
1710
1711<h5>Syntax:</h5>
1712
1713<pre>
1714 opaque
1715</pre>
1716
1717<h5>Examples:</h5>
1718
1719<table class="layout">
1720 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001721 <td class="left"><tt>opaque</tt></td>
1722 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001723 </tr>
1724</table>
1725</div>
1726
Chris Lattnercf7a5842009-02-02 07:32:36 +00001727<!-- ======================================================================= -->
1728<div class="doc_subsection">
1729 <a name="t_uprefs">Type Up-references</a>
1730</div>
1731
1732<div class="doc_text">
1733<h5>Overview:</h5>
1734<p>
1735An "up reference" allows you to refer to a lexically enclosing type without
1736requiring it to have a name. For instance, a structure declaration may contain a
1737pointer to any of the types it is lexically a member of. Example of up
1738references (with their equivalent as named type declarations) include:</p>
1739
1740<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001741 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001742 { \2 }* %y = type { %y }*
1743 \1* %z = type %z*
1744</pre>
1745
1746<p>
1747An up reference is needed by the asmprinter for printing out cyclic types when
1748there is no declared name for a type in the cycle. Because the asmprinter does
1749not want to print out an infinite type string, it needs a syntax to handle
1750recursive types that have no names (all names are optional in llvm IR).
1751</p>
1752
1753<h5>Syntax:</h5>
1754<pre>
1755 \&lt;level&gt;
1756</pre>
1757
1758<p>
1759The level is the count of the lexical type that is being referred to.
1760</p>
1761
1762<h5>Examples:</h5>
1763
1764<table class="layout">
1765 <tr class="layout">
1766 <td class="left"><tt>\1*</tt></td>
1767 <td class="left">Self-referential pointer.</td>
1768 </tr>
1769 <tr class="layout">
1770 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1771 <td class="left">Recursive structure where the upref refers to the out-most
1772 structure.</td>
1773 </tr>
1774</table>
1775</div>
1776
Chris Lattner37b6b092005-04-25 17:34:15 +00001777
Chris Lattner74d3f822004-12-09 17:30:23 +00001778<!-- *********************************************************************** -->
1779<div class="doc_section"> <a name="constants">Constants</a> </div>
1780<!-- *********************************************************************** -->
1781
1782<div class="doc_text">
1783
1784<p>LLVM has several different basic types of constants. This section describes
1785them all and their syntax.</p>
1786
1787</div>
1788
1789<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001790<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001791
1792<div class="doc_text">
1793
1794<dl>
1795 <dt><b>Boolean constants</b></dt>
1796
1797 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencer36a15422007-01-12 03:35:51 +00001798 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattner74d3f822004-12-09 17:30:23 +00001799 </dd>
1800
1801 <dt><b>Integer constants</b></dt>
1802
Reid Spencer8f08d802004-12-09 18:02:53 +00001803 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencer3e628eb92007-01-04 16:43:23 +00001804 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattner74d3f822004-12-09 17:30:23 +00001805 integer types.
1806 </dd>
1807
1808 <dt><b>Floating point constants</b></dt>
1809
1810 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1811 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattner1429e6f2008-04-01 18:45:27 +00001812 notation (see below). The assembler requires the exact decimal value of
1813 a floating-point constant. For example, the assembler accepts 1.25 but
1814 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1815 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001816
1817 <dt><b>Null pointer constants</b></dt>
1818
John Criswelldfe6a862004-12-10 15:51:16 +00001819 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattner74d3f822004-12-09 17:30:23 +00001820 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1821
1822</dl>
1823
Dale Johannesencd4a3012009-02-11 22:14:51 +00001824<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattner74d3f822004-12-09 17:30:23 +00001825of floating point constants. For example, the form '<tt>double
18260x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18274.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencer8f08d802004-12-09 18:02:53 +00001828(and the only time that they are generated by the disassembler) is when a
1829floating point constant must be emitted but it cannot be represented as a
Dale Johannesencd4a3012009-02-11 22:14:51 +00001830decimal floating point number in a reasonable number of digits. For example,
1831NaN's, infinities, and other
Reid Spencer8f08d802004-12-09 18:02:53 +00001832special values are represented in their IEEE hexadecimal format so that
1833assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesencd4a3012009-02-11 22:14:51 +00001834<p>When using the hexadecimal form, constants of types float and double are
1835represented using the 16-digit form shown above (which matches the IEEE754
1836representation for double); float values must, however, be exactly representable
1837as IEE754 single precision.
1838Hexadecimal format is always used for long
1839double, and there are three forms of long double. The 80-bit
1840format used by x86 is represented as <tt>0xK</tt>
1841followed by 20 hexadecimal digits.
1842The 128-bit format used by PowerPC (two adjacent doubles) is represented
1843by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1844format is represented
1845by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1846target uses this format. Long doubles will only work if they match
1847the long double format on your target. All hexadecimal formats are big-endian
1848(sign bit at the left).</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001849</div>
1850
1851<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00001852<div class="doc_subsection">
1853<a name="aggregateconstants"> <!-- old anchor -->
1854<a name="complexconstants">Complex Constants</a></a>
Chris Lattner74d3f822004-12-09 17:30:23 +00001855</div>
1856
1857<div class="doc_text">
Chris Lattner361bfcd2009-02-28 18:32:25 +00001858<p>Complex constants are a (potentially recursive) combination of simple
1859constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001860
1861<dl>
1862 <dt><b>Structure constants</b></dt>
1863
1864 <dd>Structure constants are represented with notation similar to structure
1865 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerbea11172007-12-25 20:34:52 +00001866 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1867 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattner455fc8c2005-03-07 22:13:59 +00001868 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattner74d3f822004-12-09 17:30:23 +00001869 types of elements must match those specified by the type.
1870 </dd>
1871
1872 <dt><b>Array constants</b></dt>
1873
1874 <dd>Array constants are represented with notation similar to array type
1875 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001876 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattner74d3f822004-12-09 17:30:23 +00001877 constants must have <a href="#t_array">array type</a>, and the number and
1878 types of elements must match those specified by the type.
1879 </dd>
1880
Reid Spencer404a3252007-02-15 03:07:05 +00001881 <dt><b>Vector constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001882
Reid Spencer404a3252007-02-15 03:07:05 +00001883 <dd>Vector constants are represented with notation similar to vector type
Chris Lattner74d3f822004-12-09 17:30:23 +00001884 definitions (a comma separated list of elements, surrounded by
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001885 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen5819f182007-04-22 01:17:39 +00001886 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer404a3252007-02-15 03:07:05 +00001887 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattner74d3f822004-12-09 17:30:23 +00001888 match those specified by the type.
1889 </dd>
1890
1891 <dt><b>Zero initialization</b></dt>
1892
1893 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1894 value to zero of <em>any</em> type, including scalar and aggregate types.
1895 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell4c0cf7f2005-10-24 16:17:18 +00001896 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattner74d3f822004-12-09 17:30:23 +00001897 initializers.
1898 </dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00001899
1900 <dt><b>Metadata node</b></dt>
1901
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00001902 <dd>A metadata node is a structure-like constant with
1903 <a href="#t_metadata">metadata type</a>. For example:
1904 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1905 that are meant to be interpreted as part of the instruction stream, metadata
1906 is a place to attach additional information such as debug info.
Nick Lewycky49f89192009-04-04 07:22:01 +00001907 </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001908</dl>
1909
1910</div>
1911
1912<!-- ======================================================================= -->
1913<div class="doc_subsection">
1914 <a name="globalconstants">Global Variable and Function Addresses</a>
1915</div>
1916
1917<div class="doc_text">
1918
1919<p>The addresses of <a href="#globalvars">global variables</a> and <a
1920href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswelldfe6a862004-12-10 15:51:16 +00001921constants. These constants are explicitly referenced when the <a
1922href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001923href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1924file:</p>
1925
Bill Wendling3716c5d2007-05-29 09:04:49 +00001926<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00001927<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00001928@X = global i32 17
1929@Y = global i32 42
1930@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00001931</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001932</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001933
1934</div>
1935
1936<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00001937<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001938<div class="doc_text">
Reid Spencer641f5c92004-12-09 18:13:12 +00001939 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswell4a3327e2005-05-13 22:25:59 +00001940 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer641f5c92004-12-09 18:13:12 +00001941 a constant is permitted.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001942
Reid Spencer641f5c92004-12-09 18:13:12 +00001943 <p>Undefined values indicate to the compiler that the program is well defined
1944 no matter what value is used, giving the compiler more freedom to optimize.
1945 </p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001946</div>
1947
1948<!-- ======================================================================= -->
1949<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1950</div>
1951
1952<div class="doc_text">
1953
1954<p>Constant expressions are used to allow expressions involving other constants
1955to be used as constants. Constant expressions may be of any <a
John Criswell4a3327e2005-05-13 22:25:59 +00001956href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattner74d3f822004-12-09 17:30:23 +00001957that does not have side effects (e.g. load and call are not supported). The
1958following is the syntax for constant expressions:</p>
1959
1960<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001961 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1962 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001963 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001964
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001965 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1966 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001967 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001968
1969 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1970 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001971 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001972
1973 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1974 <dd>Truncate a floating point constant to another floating point type. The
1975 size of CST must be larger than the size of TYPE. Both types must be
1976 floating point.</dd>
1977
1978 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1979 <dd>Floating point extend a constant to another type. The size of CST must be
1980 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1981
Reid Spencer753163d2007-07-31 14:40:14 +00001982 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001983 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001984 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1985 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1986 of the same number of elements. If the value won't fit in the integer type,
1987 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001988
Reid Spencer51b07252006-11-09 23:03:26 +00001989 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001990 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001991 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1992 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1993 of the same number of elements. If the value won't fit in the integer type,
1994 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001995
Reid Spencer51b07252006-11-09 23:03:26 +00001996 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001997 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001998 constant. TYPE must be a scalar or vector floating point type. CST must be of
1999 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2000 of the same number of elements. If the value won't fit in the floating point
2001 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002002
Reid Spencer51b07252006-11-09 23:03:26 +00002003 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002004 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00002005 constant. TYPE must be a scalar or vector floating point type. CST must be of
2006 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2007 of the same number of elements. If the value won't fit in the floating point
2008 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002009
Reid Spencer5b950642006-11-11 23:08:07 +00002010 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2011 <dd>Convert a pointer typed constant to the corresponding integer constant
2012 TYPE must be an integer type. CST must be of pointer type. The CST value is
2013 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2014
2015 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2016 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2017 pointer type. CST must be of integer type. The CST value is zero extended,
2018 truncated, or unchanged to make it fit in a pointer size. This one is
2019 <i>really</i> dangerous!</dd>
2020
2021 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002022 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2023 are the same as those for the <a href="#i_bitcast">bitcast
2024 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002025
2026 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2027
2028 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2029 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2030 instruction, the index list may have zero or more indexes, which are required
2031 to make sense for the type of "CSTPTR".</dd>
2032
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002033 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2034
2035 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer9965ee72006-12-04 19:23:19 +00002036 constants.</dd>
2037
2038 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2039 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2040
2041 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2042 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002043
Nate Begemand2195702008-05-12 19:01:56 +00002044 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2045 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2046
2047 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2048 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2049
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002050 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2051
2052 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohmanef9462f2008-10-14 16:51:45 +00002053 operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002054
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002055 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2056
2057 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer9965ee72006-12-04 19:23:19 +00002058 operation</a> on constants.</dd>
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002059
Chris Lattner016a0e52006-04-08 00:13:41 +00002060
2061 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2062
2063 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer9965ee72006-12-04 19:23:19 +00002064 operation</a> on constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002065
Chris Lattner74d3f822004-12-09 17:30:23 +00002066 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2067
Reid Spencer641f5c92004-12-09 18:13:12 +00002068 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2069 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattner74d3f822004-12-09 17:30:23 +00002070 binary</a> operations. The constraints on operands are the same as those for
2071 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswell02fdc6f2005-05-12 16:52:32 +00002072 values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002073</dl>
Chris Lattner74d3f822004-12-09 17:30:23 +00002074</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002075
Nick Lewycky49f89192009-04-04 07:22:01 +00002076<!-- ======================================================================= -->
2077<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2078</div>
2079
2080<div class="doc_text">
2081
2082<p>Embedded metadata provides a way to attach arbitrary data to the
2083instruction stream without affecting the behaviour of the program. There are
Nick Lewyckyadbc2842009-05-30 05:06:04 +00002084two metadata primitives, strings and nodes. All metadata has the
2085<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2086point ('<tt>!</tt>').
Nick Lewycky49f89192009-04-04 07:22:01 +00002087</p>
2088
2089<p>A metadata string is a string surrounded by double quotes. It can contain
2090any character by escaping non-printable characters with "\xx" where "xx" is
2091the two digit hex code. For example: "<tt>!"test\00"</tt>".
2092</p>
2093
2094<p>Metadata nodes are represented with notation similar to structure constants
2095(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewyckyadbc2842009-05-30 05:06:04 +00002096exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky49f89192009-04-04 07:22:01 +00002097</p>
2098
Nick Lewyckyb8f9b7a2009-05-10 20:57:05 +00002099<p>A metadata node will attempt to track changes to the values it holds. In
2100the event that a value is deleted, it will be replaced with a typeless
Nick Lewyckyadbc2842009-05-30 05:06:04 +00002101"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckyb8f9b7a2009-05-10 20:57:05 +00002102
Nick Lewycky49f89192009-04-04 07:22:01 +00002103<p>Optimizations may rely on metadata to provide additional information about
2104the program that isn't available in the instructions, or that isn't easily
2105computable. Similarly, the code generator may expect a certain metadata format
2106to be used to express debugging information.</p>
2107</div>
2108
Chris Lattner2f7c9632001-06-06 20:29:01 +00002109<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002110<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2111<!-- *********************************************************************** -->
2112
2113<!-- ======================================================================= -->
2114<div class="doc_subsection">
2115<a name="inlineasm">Inline Assembler Expressions</a>
2116</div>
2117
2118<div class="doc_text">
2119
2120<p>
2121LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2122Module-Level Inline Assembly</a>) through the use of a special value. This
2123value represents the inline assembler as a string (containing the instructions
2124to emit), a list of operand constraints (stored as a string), and a flag that
2125indicates whether or not the inline asm expression has side effects. An example
2126inline assembler expression is:
2127</p>
2128
Bill Wendling3716c5d2007-05-29 09:04:49 +00002129<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002130<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002131i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002132</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002133</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002134
2135<p>
2136Inline assembler expressions may <b>only</b> be used as the callee operand of
2137a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2138</p>
2139
Bill Wendling3716c5d2007-05-29 09:04:49 +00002140<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002141<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002142%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002143</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002144</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002145
2146<p>
2147Inline asms with side effects not visible in the constraint list must be marked
2148as having side effects. This is done through the use of the
2149'<tt>sideeffect</tt>' keyword, like so:
2150</p>
2151
Bill Wendling3716c5d2007-05-29 09:04:49 +00002152<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002153<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002154call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002155</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002156</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002157
2158<p>TODO: The format of the asm and constraints string still need to be
2159documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattnerd5528262008-10-04 18:36:02 +00002160need to be documented). This is probably best done by reference to another
2161document that covers inline asm from a holistic perspective.
Chris Lattner98f013c2006-01-25 23:47:57 +00002162</p>
2163
2164</div>
2165
2166<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002167<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2168<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002169
Misha Brukman76307852003-11-08 01:05:38 +00002170<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002171
Chris Lattner48b383b02003-11-25 01:02:51 +00002172<p>The LLVM instruction set consists of several different
2173classifications of instructions: <a href="#terminators">terminator
John Criswell4a3327e2005-05-13 22:25:59 +00002174instructions</a>, <a href="#binaryops">binary instructions</a>,
2175<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002176 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2177instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002178
Misha Brukman76307852003-11-08 01:05:38 +00002179</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002180
Chris Lattner2f7c9632001-06-06 20:29:01 +00002181<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002182<div class="doc_subsection"> <a name="terminators">Terminator
2183Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002184
Misha Brukman76307852003-11-08 01:05:38 +00002185<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002186
Chris Lattner48b383b02003-11-25 01:02:51 +00002187<p>As mentioned <a href="#functionstructure">previously</a>, every
2188basic block in a program ends with a "Terminator" instruction, which
2189indicates which block should be executed after the current block is
2190finished. These terminator instructions typically yield a '<tt>void</tt>'
2191value: they produce control flow, not values (the one exception being
2192the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswelldfe6a862004-12-10 15:51:16 +00002193<p>There are six different terminator instructions: the '<a
Chris Lattner48b383b02003-11-25 01:02:51 +00002194 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2195instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002196the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2197 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2198 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002199
Misha Brukman76307852003-11-08 01:05:38 +00002200</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002201
Chris Lattner2f7c9632001-06-06 20:29:01 +00002202<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002203<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2204Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002205<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002206<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002207<pre>
2208 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002209 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002210</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002211
Chris Lattner2f7c9632001-06-06 20:29:01 +00002212<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002213
Dan Gohmancc3132e2008-10-04 19:00:07 +00002214<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2215optionally a value) from a function back to the caller.</p>
John Criswell417228d2004-04-09 16:48:45 +00002216<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmancc3132e2008-10-04 19:00:07 +00002217returns a value and then causes control flow, and one that just causes
Chris Lattner48b383b02003-11-25 01:02:51 +00002218control flow to occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002219
Chris Lattner2f7c9632001-06-06 20:29:01 +00002220<h5>Arguments:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002221
Dan Gohmancc3132e2008-10-04 19:00:07 +00002222<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2223the return value. The type of the return value must be a
2224'<a href="#t_firstclass">first class</a>' type.</p>
2225
2226<p>A function is not <a href="#wellformed">well formed</a> if
2227it it has a non-void return type and contains a '<tt>ret</tt>'
2228instruction with no return value or a return value with a type that
2229does not match its type, or if it has a void return type and contains
2230a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002231
Chris Lattner2f7c9632001-06-06 20:29:01 +00002232<h5>Semantics:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002233
Chris Lattner48b383b02003-11-25 01:02:51 +00002234<p>When the '<tt>ret</tt>' instruction is executed, control flow
2235returns back to the calling function's context. If the caller is a "<a
John Criswell40db33f2004-06-25 15:16:57 +00002236 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner48b383b02003-11-25 01:02:51 +00002237the instruction after the call. If the caller was an "<a
2238 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswell02fdc6f2005-05-12 16:52:32 +00002239at the beginning of the "normal" destination block. If the instruction
Chris Lattner48b383b02003-11-25 01:02:51 +00002240returns a value, that value shall set the call or invoke instruction's
Dan Gohmanef9462f2008-10-14 16:51:45 +00002241return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002242
Chris Lattner2f7c9632001-06-06 20:29:01 +00002243<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002244
2245<pre>
2246 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002247 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002248 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002249</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002250
Dan Gohman142ccc02009-01-24 15:58:40 +00002251<p>Note that the code generator does not yet fully support large
2252 return values. The specific sizes that are currently supported are
2253 dependent on the target. For integers, on 32-bit targets the limit
2254 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2255 For aggregate types, the current limits are dependent on the element
2256 types; for example targets are often limited to 2 total integer
2257 elements and 2 total floating-point elements.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00002258
Misha Brukman76307852003-11-08 01:05:38 +00002259</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002260<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002261<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002262<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002263<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002264<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002265</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002266<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002267<p>The '<tt>br</tt>' instruction is used to cause control flow to
2268transfer to a different basic block in the current function. There are
2269two forms of this instruction, corresponding to a conditional branch
2270and an unconditional branch.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002271<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002272<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencer36a15422007-01-12 03:35:51 +00002273single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencer50c723a2007-02-19 23:54:10 +00002274unconditional form of the '<tt>br</tt>' instruction takes a single
2275'<tt>label</tt>' value as a target.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002276<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002277<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002278argument is evaluated. If the value is <tt>true</tt>, control flows
2279to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2280control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002281<h5>Example:</h5>
Chris Lattnere648c282009-05-09 18:11:50 +00002282<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002283 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman76307852003-11-08 01:05:38 +00002284</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002285<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002286<div class="doc_subsubsection">
2287 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2288</div>
2289
Misha Brukman76307852003-11-08 01:05:38 +00002290<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002291<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002292
2293<pre>
2294 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2295</pre>
2296
Chris Lattner2f7c9632001-06-06 20:29:01 +00002297<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002298
2299<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2300several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman76307852003-11-08 01:05:38 +00002301instruction, allowing a branch to occur to one of many possible
2302destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002303
2304
Chris Lattner2f7c9632001-06-06 20:29:01 +00002305<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002306
2307<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2308comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2309an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2310table is not allowed to contain duplicate constant entries.</p>
2311
Chris Lattner2f7c9632001-06-06 20:29:01 +00002312<h5>Semantics:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002313
Chris Lattner48b383b02003-11-25 01:02:51 +00002314<p>The <tt>switch</tt> instruction specifies a table of values and
2315destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswellbcbb18c2004-06-25 16:05:06 +00002316table is searched for the given value. If the value is found, control flow is
2317transfered to the corresponding destination; otherwise, control flow is
2318transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002319
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002320<h5>Implementation:</h5>
2321
2322<p>Depending on properties of the target machine and the particular
2323<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswellbcbb18c2004-06-25 16:05:06 +00002324ways. For example, it could be generated as a series of chained conditional
2325branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002326
2327<h5>Example:</h5>
2328
2329<pre>
2330 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002331 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002332 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002333
2334 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002335 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002336
2337 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002338 switch i32 %val, label %otherwise [ i32 0, label %onzero
2339 i32 1, label %onone
2340 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002341</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002342</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002343
Chris Lattner2f7c9632001-06-06 20:29:01 +00002344<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002345<div class="doc_subsubsection">
2346 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2347</div>
2348
Misha Brukman76307852003-11-08 01:05:38 +00002349<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002350
Chris Lattner2f7c9632001-06-06 20:29:01 +00002351<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002352
2353<pre>
Devang Patel02256232008-10-07 17:48:33 +00002354 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002355 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002356</pre>
2357
Chris Lattnera8292f32002-05-06 22:08:29 +00002358<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002359
2360<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2361function, with the possibility of control flow transfer to either the
John Criswell02fdc6f2005-05-12 16:52:32 +00002362'<tt>normal</tt>' label or the
2363'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattner0132aff2005-05-06 22:57:40 +00002364"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2365"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswell02fdc6f2005-05-12 16:52:32 +00002366href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmanef9462f2008-10-14 16:51:45 +00002367continued at the dynamically nearest "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002368
Chris Lattner2f7c9632001-06-06 20:29:01 +00002369<h5>Arguments:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002370
Misha Brukman76307852003-11-08 01:05:38 +00002371<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002372
Chris Lattner2f7c9632001-06-06 20:29:01 +00002373<ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002374 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00002375 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00002376 convention</a> the call should use. If none is specified, the call defaults
2377 to using C calling conventions.
2378 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002379
2380 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2381 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2382 and '<tt>inreg</tt>' attributes are valid here.</li>
2383
Chris Lattner0132aff2005-05-06 22:57:40 +00002384 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2385 function value being invoked. In most cases, this is a direct function
2386 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2387 an arbitrary pointer to function value.
2388 </li>
2389
2390 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2391 function to be invoked. </li>
2392
2393 <li>'<tt>function args</tt>': argument list whose types match the function
2394 signature argument types. If the function signature indicates the function
2395 accepts a variable number of arguments, the extra arguments can be
2396 specified. </li>
2397
2398 <li>'<tt>normal label</tt>': the label reached when the called function
2399 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2400
2401 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2402 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2403
Devang Patel02256232008-10-07 17:48:33 +00002404 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00002405 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2406 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002407</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002408
Chris Lattner2f7c9632001-06-06 20:29:01 +00002409<h5>Semantics:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002410
Misha Brukman76307852003-11-08 01:05:38 +00002411<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattner0132aff2005-05-06 22:57:40 +00002412href="#i_call">call</a></tt>' instruction in most regards. The primary
2413difference is that it establishes an association with a label, which is used by
2414the runtime library to unwind the stack.</p>
2415
2416<p>This instruction is used in languages with destructors to ensure that proper
2417cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2418exception. Additionally, this is important for implementation of
2419'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2420
Jay Foad1a4eea52009-06-03 10:20:10 +00002421<p>For the purposes of the SSA form, the definition of the value
2422returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2423the edge from the current block to the "normal" label. If the callee
2424unwinds then no return value is available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00002425
Chris Lattner2f7c9632001-06-06 20:29:01 +00002426<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002427<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002428 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002429 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002430 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002431 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002432</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002433</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002434
2435
Chris Lattner5ed60612003-09-03 00:41:47 +00002436<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002437
Chris Lattner48b383b02003-11-25 01:02:51 +00002438<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2439Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002440
Misha Brukman76307852003-11-08 01:05:38 +00002441<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002442
Chris Lattner5ed60612003-09-03 00:41:47 +00002443<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002444<pre>
2445 unwind
2446</pre>
2447
Chris Lattner5ed60612003-09-03 00:41:47 +00002448<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002449
2450<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2451at the first callee in the dynamic call stack which used an <a
2452href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2453primarily used to implement exception handling.</p>
2454
Chris Lattner5ed60612003-09-03 00:41:47 +00002455<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002456
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002457<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002458immediately halt. The dynamic call stack is then searched for the first <a
2459href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2460execution continues at the "exceptional" destination block specified by the
2461<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2462dynamic call chain, undefined behavior results.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002463</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002464
2465<!-- _______________________________________________________________________ -->
2466
2467<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2468Instruction</a> </div>
2469
2470<div class="doc_text">
2471
2472<h5>Syntax:</h5>
2473<pre>
2474 unreachable
2475</pre>
2476
2477<h5>Overview:</h5>
2478
2479<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2480instruction is used to inform the optimizer that a particular portion of the
2481code is not reachable. This can be used to indicate that the code after a
2482no-return function cannot be reached, and other facts.</p>
2483
2484<h5>Semantics:</h5>
2485
2486<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2487</div>
2488
2489
2490
Chris Lattner2f7c9632001-06-06 20:29:01 +00002491<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002492<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002493<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00002494<p>Binary operators are used to do most of the computation in a
Chris Lattner81f92972008-04-01 18:47:32 +00002495program. They require two operands of the same type, execute an operation on them, and
John Criswelldfe6a862004-12-10 15:51:16 +00002496produce a single value. The operands might represent
Reid Spencer404a3252007-02-15 03:07:05 +00002497multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner81f92972008-04-01 18:47:32 +00002498The result value has the same type as its operands.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002499<p>There are several different binary operators:</p>
Misha Brukman76307852003-11-08 01:05:38 +00002500</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002501<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002502<div class="doc_subsubsection">
2503 <a name="i_add">'<tt>add</tt>' Instruction</a>
2504</div>
2505
Misha Brukman76307852003-11-08 01:05:38 +00002506<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002507
Chris Lattner2f7c9632001-06-06 20:29:01 +00002508<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002509
2510<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002511 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002512</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002513
Chris Lattner2f7c9632001-06-06 20:29:01 +00002514<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002515
Misha Brukman76307852003-11-08 01:05:38 +00002516<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002517
Chris Lattner2f7c9632001-06-06 20:29:01 +00002518<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002519
2520<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmana5b96452009-06-04 22:49:04 +00002521 href="#t_integer">integer</a> or
2522 <a href="#t_vector">vector</a> of integer values. Both arguments must
2523 have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002524
Chris Lattner2f7c9632001-06-06 20:29:01 +00002525<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002526
Dan Gohmana5b96452009-06-04 22:49:04 +00002527<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002528
Dan Gohmana5b96452009-06-04 22:49:04 +00002529<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner2f2427e2008-01-28 00:36:27 +00002530mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2531the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002532
Chris Lattner2f2427e2008-01-28 00:36:27 +00002533<p>Because LLVM integers use a two's complement representation, this
2534instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002535
Chris Lattner2f7c9632001-06-06 20:29:01 +00002536<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002537
2538<pre>
2539 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002540</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002541</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002542<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002543<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002544 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2545</div>
2546
2547<div class="doc_text">
2548
2549<h5>Syntax:</h5>
2550
2551<pre>
2552 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2553</pre>
2554
2555<h5>Overview:</h5>
2556
2557<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2558
2559<h5>Arguments:</h5>
2560
2561<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2562<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2563floating point values. Both arguments must have identical types.</p>
2564
2565<h5>Semantics:</h5>
2566
2567<p>The value produced is the floating point sum of the two operands.</p>
2568
2569<h5>Example:</h5>
2570
2571<pre>
2572 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2573</pre>
2574</div>
2575<!-- _______________________________________________________________________ -->
2576<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002577 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2578</div>
2579
Misha Brukman76307852003-11-08 01:05:38 +00002580<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002581
Chris Lattner2f7c9632001-06-06 20:29:01 +00002582<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002583
2584<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002585 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002586</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002587
Chris Lattner2f7c9632001-06-06 20:29:01 +00002588<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002589
Misha Brukman76307852003-11-08 01:05:38 +00002590<p>The '<tt>sub</tt>' instruction returns the difference of its two
2591operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002592
2593<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2594'<tt>neg</tt>' instruction present in most other intermediate
2595representations.</p>
2596
Chris Lattner2f7c9632001-06-06 20:29:01 +00002597<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002598
2599<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmana5b96452009-06-04 22:49:04 +00002600 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2601 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002602
Chris Lattner2f7c9632001-06-06 20:29:01 +00002603<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002604
Dan Gohmana5b96452009-06-04 22:49:04 +00002605<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002606
Dan Gohmana5b96452009-06-04 22:49:04 +00002607<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner2f2427e2008-01-28 00:36:27 +00002608mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2609the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002610
Chris Lattner2f2427e2008-01-28 00:36:27 +00002611<p>Because LLVM integers use a two's complement representation, this
2612instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002613
Chris Lattner2f7c9632001-06-06 20:29:01 +00002614<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002615<pre>
2616 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002617 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002618</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002619</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002620
Chris Lattner2f7c9632001-06-06 20:29:01 +00002621<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002622<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002623 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2624</div>
2625
2626<div class="doc_text">
2627
2628<h5>Syntax:</h5>
2629
2630<pre>
2631 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2632</pre>
2633
2634<h5>Overview:</h5>
2635
2636<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2637operands.</p>
2638
2639<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2640'<tt>fneg</tt>' instruction present in most other intermediate
2641representations.</p>
2642
2643<h5>Arguments:</h5>
2644
2645<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2646 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2647 of floating point values. Both arguments must have identical types.</p>
2648
2649<h5>Semantics:</h5>
2650
2651<p>The value produced is the floating point difference of the two operands.</p>
2652
2653<h5>Example:</h5>
2654<pre>
2655 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2656 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2657</pre>
2658</div>
2659
2660<!-- _______________________________________________________________________ -->
2661<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002662 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2663</div>
2664
Misha Brukman76307852003-11-08 01:05:38 +00002665<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002666
Chris Lattner2f7c9632001-06-06 20:29:01 +00002667<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002668<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002669</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002670<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002671<p>The '<tt>mul</tt>' instruction returns the product of its two
2672operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002673
Chris Lattner2f7c9632001-06-06 20:29:01 +00002674<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002675
2676<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmana5b96452009-06-04 22:49:04 +00002677href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2678values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002679
Chris Lattner2f7c9632001-06-06 20:29:01 +00002680<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002681
Dan Gohmana5b96452009-06-04 22:49:04 +00002682<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002683
Dan Gohmana5b96452009-06-04 22:49:04 +00002684<p>If the result of the multiplication has unsigned overflow,
Chris Lattner2f2427e2008-01-28 00:36:27 +00002685the result returned is the mathematical result modulo
26862<sup>n</sup>, where n is the bit width of the result.</p>
2687<p>Because LLVM integers use a two's complement representation, and the
2688result is the same width as the operands, this instruction returns the
2689correct result for both signed and unsigned integers. If a full product
2690(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2691should be sign-extended or zero-extended as appropriate to the
2692width of the full product.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002693<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002694<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002695</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002696</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002697
Chris Lattner2f7c9632001-06-06 20:29:01 +00002698<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00002699<div class="doc_subsubsection">
2700 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2701</div>
2702
2703<div class="doc_text">
2704
2705<h5>Syntax:</h5>
2706<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2707</pre>
2708<h5>Overview:</h5>
2709<p>The '<tt>fmul</tt>' instruction returns the product of its two
2710operands.</p>
2711
2712<h5>Arguments:</h5>
2713
2714<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2715<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2716of floating point values. Both arguments must have identical types.</p>
2717
2718<h5>Semantics:</h5>
2719
2720<p>The value produced is the floating point product of the two operands.</p>
2721
2722<h5>Example:</h5>
2723<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2724</pre>
2725</div>
2726
2727<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002728<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2729</a></div>
2730<div class="doc_text">
2731<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002732<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002733</pre>
2734<h5>Overview:</h5>
2735<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2736operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002737
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002738<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002739
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002740<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002741<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2742values. Both arguments must have identical types.</p>
2743
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002744<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002745
Chris Lattner2f2427e2008-01-28 00:36:27 +00002746<p>The value produced is the unsigned integer quotient of the two operands.</p>
2747<p>Note that unsigned integer division and signed integer division are distinct
2748operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2749<p>Division by zero leads to undefined behavior.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002750<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002751<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002752</pre>
2753</div>
2754<!-- _______________________________________________________________________ -->
2755<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2756</a> </div>
2757<div class="doc_text">
2758<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002759<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002760 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002761</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002762
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002763<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002764
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002765<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2766operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002767
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002768<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002769
2770<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2771<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2772values. Both arguments must have identical types.</p>
2773
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002774<h5>Semantics:</h5>
Chris Lattner1429e6f2008-04-01 18:45:27 +00002775<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002776<p>Note that signed integer division and unsigned integer division are distinct
2777operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2778<p>Division by zero leads to undefined behavior. Overflow also leads to
2779undefined behavior; this is a rare case, but can occur, for example,
2780by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002781<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002782<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002783</pre>
2784</div>
2785<!-- _______________________________________________________________________ -->
2786<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002787Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002788<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002789<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002790<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002791 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002792</pre>
2793<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002794
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002795<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner48b383b02003-11-25 01:02:51 +00002796operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002797
Chris Lattner48b383b02003-11-25 01:02:51 +00002798<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002799
Jeff Cohen5819f182007-04-22 01:17:39 +00002800<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002801<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2802of floating point values. Both arguments must have identical types.</p>
2803
Chris Lattner48b383b02003-11-25 01:02:51 +00002804<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002805
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002806<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002807
Chris Lattner48b383b02003-11-25 01:02:51 +00002808<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002809
2810<pre>
2811 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002812</pre>
2813</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002814
Chris Lattner48b383b02003-11-25 01:02:51 +00002815<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00002816<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2817</div>
2818<div class="doc_text">
2819<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002820<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002821</pre>
2822<h5>Overview:</h5>
2823<p>The '<tt>urem</tt>' instruction returns the remainder from the
2824unsigned division of its two arguments.</p>
2825<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002826<p>The two arguments to the '<tt>urem</tt>' instruction must be
2827<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2828values. Both arguments must have identical types.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002829<h5>Semantics:</h5>
2830<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattner1429e6f2008-04-01 18:45:27 +00002831This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002832<p>Note that unsigned integer remainder and signed integer remainder are
2833distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2834<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002835<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002836<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002837</pre>
2838
2839</div>
2840<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002841<div class="doc_subsubsection">
2842 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2843</div>
2844
Chris Lattner48b383b02003-11-25 01:02:51 +00002845<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002846
Chris Lattner48b383b02003-11-25 01:02:51 +00002847<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002848
2849<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002850 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002851</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002852
Chris Lattner48b383b02003-11-25 01:02:51 +00002853<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002854
Reid Spencer7eb55b32006-11-02 01:53:59 +00002855<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman08143e32007-11-05 23:35:22 +00002856signed division of its two operands. This instruction can also take
2857<a href="#t_vector">vector</a> versions of the values in which case
2858the elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00002859
Chris Lattner48b383b02003-11-25 01:02:51 +00002860<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002861
Reid Spencer7eb55b32006-11-02 01:53:59 +00002862<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002863<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2864values. Both arguments must have identical types.</p>
2865
Chris Lattner48b383b02003-11-25 01:02:51 +00002866<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002867
Reid Spencer7eb55b32006-11-02 01:53:59 +00002868<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greif0f75ad02008-08-07 21:46:00 +00002869has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2870operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencer806ad6a2007-03-24 22:23:39 +00002871a value. For more information about the difference, see <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002872 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencer806ad6a2007-03-24 22:23:39 +00002873Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencerdb3b93b2007-03-24 22:40:44 +00002874please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencer806ad6a2007-03-24 22:23:39 +00002875Wikipedia: modulo operation</a>.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002876<p>Note that signed integer remainder and unsigned integer remainder are
2877distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2878<p>Taking the remainder of a division by zero leads to undefined behavior.
2879Overflow also leads to undefined behavior; this is a rare case, but can occur,
2880for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2881(The remainder doesn't actually overflow, but this rule lets srem be
2882implemented using instructions that return both the result of the division
2883and the remainder.)</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002884<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002885<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002886</pre>
2887
2888</div>
2889<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002890<div class="doc_subsubsection">
2891 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2892
Reid Spencer7eb55b32006-11-02 01:53:59 +00002893<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002894
Reid Spencer7eb55b32006-11-02 01:53:59 +00002895<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002896<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002897</pre>
2898<h5>Overview:</h5>
2899<p>The '<tt>frem</tt>' instruction returns the remainder from the
2900division of its two operands.</p>
2901<h5>Arguments:</h5>
2902<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002903<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2904of floating point values. Both arguments must have identical types.</p>
2905
Reid Spencer7eb55b32006-11-02 01:53:59 +00002906<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002907
Chris Lattner1429e6f2008-04-01 18:45:27 +00002908<p>This instruction returns the <i>remainder</i> of a division.
2909The remainder has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002910
Reid Spencer7eb55b32006-11-02 01:53:59 +00002911<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002912
2913<pre>
2914 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002915</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002916</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00002917
Reid Spencer2ab01932007-02-02 13:57:07 +00002918<!-- ======================================================================= -->
2919<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2920Operations</a> </div>
2921<div class="doc_text">
2922<p>Bitwise binary operators are used to do various forms of
2923bit-twiddling in a program. They are generally very efficient
2924instructions and can commonly be strength reduced from other
Chris Lattner1429e6f2008-04-01 18:45:27 +00002925instructions. They require two operands of the same type, execute an operation on them,
2926and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer2ab01932007-02-02 13:57:07 +00002927</div>
2928
Reid Spencer04e259b2007-01-31 21:39:12 +00002929<!-- _______________________________________________________________________ -->
2930<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2931Instruction</a> </div>
2932<div class="doc_text">
2933<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002934<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002935</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002936
Reid Spencer04e259b2007-01-31 21:39:12 +00002937<h5>Overview:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002938
Reid Spencer04e259b2007-01-31 21:39:12 +00002939<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2940the left a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002941
Reid Spencer04e259b2007-01-31 21:39:12 +00002942<h5>Arguments:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002943
Reid Spencer04e259b2007-01-31 21:39:12 +00002944<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002945 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002946type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002947
Reid Spencer04e259b2007-01-31 21:39:12 +00002948<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002949
Gabor Greif0f75ad02008-08-07 21:46:00 +00002950<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2951where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang68d4eee2008-12-10 08:55:09 +00002952equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2953If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2954corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002955
Reid Spencer04e259b2007-01-31 21:39:12 +00002956<h5>Example:</h5><pre>
2957 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2958 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2959 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002960 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002961 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002962</pre>
2963</div>
2964<!-- _______________________________________________________________________ -->
2965<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2966Instruction</a> </div>
2967<div class="doc_text">
2968<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002969<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002970</pre>
2971
2972<h5>Overview:</h5>
2973<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002974operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002975
2976<h5>Arguments:</h5>
2977<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002978<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002979type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002980
2981<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002982
Reid Spencer04e259b2007-01-31 21:39:12 +00002983<p>This instruction always performs a logical shift right operation. The most
2984significant bits of the result will be filled with zero bits after the
Gabor Greif0f75ad02008-08-07 21:46:00 +00002985shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang68d4eee2008-12-10 08:55:09 +00002986the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2987vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2988amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002989
2990<h5>Example:</h5>
2991<pre>
2992 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2993 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2994 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2995 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002996 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002997 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002998</pre>
2999</div>
3000
Reid Spencer2ab01932007-02-02 13:57:07 +00003001<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00003002<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3003Instruction</a> </div>
3004<div class="doc_text">
3005
3006<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003007<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003008</pre>
3009
3010<h5>Overview:</h5>
3011<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00003012operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003013
3014<h5>Arguments:</h5>
3015<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00003016<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00003017type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003018
3019<h5>Semantics:</h5>
3020<p>This instruction always performs an arithmetic shift right operation,
3021The most significant bits of the result will be filled with the sign bit
Gabor Greif0f75ad02008-08-07 21:46:00 +00003022of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang68d4eee2008-12-10 08:55:09 +00003023larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3024arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3025corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003026
3027<h5>Example:</h5>
3028<pre>
3029 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3030 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3031 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3032 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003033 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003034 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003035</pre>
3036</div>
3037
Chris Lattner2f7c9632001-06-06 20:29:01 +00003038<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003039<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3040Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003041
Misha Brukman76307852003-11-08 01:05:38 +00003042<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003043
Chris Lattner2f7c9632001-06-06 20:29:01 +00003044<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003045
3046<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003047 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003048</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003049
Chris Lattner2f7c9632001-06-06 20:29:01 +00003050<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003051
Chris Lattner48b383b02003-11-25 01:02:51 +00003052<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3053its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003054
Chris Lattner2f7c9632001-06-06 20:29:01 +00003055<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003056
3057<p>The two arguments to the '<tt>and</tt>' instruction must be
3058<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3059values. Both arguments must have identical types.</p>
3060
Chris Lattner2f7c9632001-06-06 20:29:01 +00003061<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003062<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003063<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003064<div>
Misha Brukman76307852003-11-08 01:05:38 +00003065<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003066 <tbody>
3067 <tr>
3068 <td>In0</td>
3069 <td>In1</td>
3070 <td>Out</td>
3071 </tr>
3072 <tr>
3073 <td>0</td>
3074 <td>0</td>
3075 <td>0</td>
3076 </tr>
3077 <tr>
3078 <td>0</td>
3079 <td>1</td>
3080 <td>0</td>
3081 </tr>
3082 <tr>
3083 <td>1</td>
3084 <td>0</td>
3085 <td>0</td>
3086 </tr>
3087 <tr>
3088 <td>1</td>
3089 <td>1</td>
3090 <td>1</td>
3091 </tr>
3092 </tbody>
3093</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003094</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003095<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003096<pre>
3097 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003098 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3099 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003100</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003101</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003102<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003103<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003104<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00003105<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003106<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003107</pre>
Chris Lattner48b383b02003-11-25 01:02:51 +00003108<h5>Overview:</h5>
3109<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3110or of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003111<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003112
3113<p>The two arguments to the '<tt>or</tt>' instruction must be
3114<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3115values. Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003116<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003117<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003118<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003119<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003120<table border="1" cellspacing="0" cellpadding="4">
3121 <tbody>
3122 <tr>
3123 <td>In0</td>
3124 <td>In1</td>
3125 <td>Out</td>
3126 </tr>
3127 <tr>
3128 <td>0</td>
3129 <td>0</td>
3130 <td>0</td>
3131 </tr>
3132 <tr>
3133 <td>0</td>
3134 <td>1</td>
3135 <td>1</td>
3136 </tr>
3137 <tr>
3138 <td>1</td>
3139 <td>0</td>
3140 <td>1</td>
3141 </tr>
3142 <tr>
3143 <td>1</td>
3144 <td>1</td>
3145 <td>1</td>
3146 </tr>
3147 </tbody>
3148</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003149</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003150<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003151<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3152 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3153 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003154</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003155</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003156<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003157<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3158Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003159<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00003160<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003161<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003162</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003163<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003164<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3165or of its two operands. The <tt>xor</tt> is used to implement the
3166"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003167<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003168<p>The two arguments to the '<tt>xor</tt>' instruction must be
3169<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3170values. Both arguments must have identical types.</p>
3171
Chris Lattner2f7c9632001-06-06 20:29:01 +00003172<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003173
Misha Brukman76307852003-11-08 01:05:38 +00003174<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003175<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003176<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003177<table border="1" cellspacing="0" cellpadding="4">
3178 <tbody>
3179 <tr>
3180 <td>In0</td>
3181 <td>In1</td>
3182 <td>Out</td>
3183 </tr>
3184 <tr>
3185 <td>0</td>
3186 <td>0</td>
3187 <td>0</td>
3188 </tr>
3189 <tr>
3190 <td>0</td>
3191 <td>1</td>
3192 <td>1</td>
3193 </tr>
3194 <tr>
3195 <td>1</td>
3196 <td>0</td>
3197 <td>1</td>
3198 </tr>
3199 <tr>
3200 <td>1</td>
3201 <td>1</td>
3202 <td>0</td>
3203 </tr>
3204 </tbody>
3205</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003206</div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003207<p> </p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003208<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003209<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3210 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3211 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3212 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003213</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003214</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003215
Chris Lattner2f7c9632001-06-06 20:29:01 +00003216<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00003217<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003218 <a name="vectorops">Vector Operations</a>
3219</div>
3220
3221<div class="doc_text">
3222
3223<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen5819f182007-04-22 01:17:39 +00003224target-independent manner. These instructions cover the element-access and
Chris Lattnerce83bff2006-04-08 23:07:04 +00003225vector-specific operations needed to process vectors effectively. While LLVM
3226does directly support these vector operations, many sophisticated algorithms
3227will want to use target-specific intrinsics to take full advantage of a specific
3228target.</p>
3229
3230</div>
3231
3232<!-- _______________________________________________________________________ -->
3233<div class="doc_subsubsection">
3234 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3235</div>
3236
3237<div class="doc_text">
3238
3239<h5>Syntax:</h5>
3240
3241<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003242 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003243</pre>
3244
3245<h5>Overview:</h5>
3246
3247<p>
3248The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003249element from a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003250</p>
3251
3252
3253<h5>Arguments:</h5>
3254
3255<p>
3256The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003257value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattnerce83bff2006-04-08 23:07:04 +00003258an index indicating the position from which to extract the element.
3259The index may be a variable.</p>
3260
3261<h5>Semantics:</h5>
3262
3263<p>
3264The result is a scalar of the same type as the element type of
3265<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3266<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3267results are undefined.
3268</p>
3269
3270<h5>Example:</h5>
3271
3272<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003273 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003274</pre>
3275</div>
3276
3277
3278<!-- _______________________________________________________________________ -->
3279<div class="doc_subsubsection">
3280 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3281</div>
3282
3283<div class="doc_text">
3284
3285<h5>Syntax:</h5>
3286
3287<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003288 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003289</pre>
3290
3291<h5>Overview:</h5>
3292
3293<p>
3294The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003295element into a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003296</p>
3297
3298
3299<h5>Arguments:</h5>
3300
3301<p>
3302The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003303value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattnerce83bff2006-04-08 23:07:04 +00003304scalar value whose type must equal the element type of the first
3305operand. The third operand is an index indicating the position at
3306which to insert the value. The index may be a variable.</p>
3307
3308<h5>Semantics:</h5>
3309
3310<p>
Reid Spencer404a3252007-02-15 03:07:05 +00003311The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattnerce83bff2006-04-08 23:07:04 +00003312element values are those of <tt>val</tt> except at position
3313<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3314exceeds the length of <tt>val</tt>, the results are undefined.
3315</p>
3316
3317<h5>Example:</h5>
3318
3319<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003320 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003321</pre>
3322</div>
3323
3324<!-- _______________________________________________________________________ -->
3325<div class="doc_subsubsection">
3326 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3327</div>
3328
3329<div class="doc_text">
3330
3331<h5>Syntax:</h5>
3332
3333<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003334 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003335</pre>
3336
3337<h5>Overview:</h5>
3338
3339<p>
3340The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wang25f01062008-11-10 04:46:22 +00003341from two input vectors, returning a vector with the same element type as
3342the input and length that is the same as the shuffle mask.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003343</p>
3344
3345<h5>Arguments:</h5>
3346
3347<p>
Mon P Wang25f01062008-11-10 04:46:22 +00003348The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3349with types that match each other. The third argument is a shuffle mask whose
3350element type is always 'i32'. The result of the instruction is a vector whose
3351length is the same as the shuffle mask and whose element type is the same as
3352the element type of the first two operands.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003353</p>
3354
3355<p>
3356The shuffle mask operand is required to be a constant vector with either
3357constant integer or undef values.
3358</p>
3359
3360<h5>Semantics:</h5>
3361
3362<p>
3363The elements of the two input vectors are numbered from left to right across
3364both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wang25f01062008-11-10 04:46:22 +00003365the result vector, which element of the two input vectors the result element
Chris Lattnerce83bff2006-04-08 23:07:04 +00003366gets. The element selector may be undef (meaning "don't care") and the second
3367operand may be undef if performing a shuffle from only one vector.
3368</p>
3369
3370<h5>Example:</h5>
3371
3372<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003373 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003374 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003375 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3376 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wang25f01062008-11-10 04:46:22 +00003377 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3378 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3379 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3380 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003381</pre>
3382</div>
3383
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003384
Chris Lattnerce83bff2006-04-08 23:07:04 +00003385<!-- ======================================================================= -->
3386<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003387 <a name="aggregateops">Aggregate Operations</a>
3388</div>
3389
3390<div class="doc_text">
3391
3392<p>LLVM supports several instructions for working with aggregate values.
3393</p>
3394
3395</div>
3396
3397<!-- _______________________________________________________________________ -->
3398<div class="doc_subsubsection">
3399 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3400</div>
3401
3402<div class="doc_text">
3403
3404<h5>Syntax:</h5>
3405
3406<pre>
3407 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3408</pre>
3409
3410<h5>Overview:</h5>
3411
3412<p>
Dan Gohman35a835c2008-05-13 18:16:06 +00003413The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3414or array element from an aggregate value.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003415</p>
3416
3417
3418<h5>Arguments:</h5>
3419
3420<p>
3421The first operand of an '<tt>extractvalue</tt>' instruction is a
3422value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman35a835c2008-05-13 18:16:06 +00003423type. The operands are constant indices to specify which value to extract
Dan Gohman1ecaf452008-05-31 00:58:22 +00003424in a similar manner as indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003425'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3426</p>
3427
3428<h5>Semantics:</h5>
3429
3430<p>
3431The result is the value at the position in the aggregate specified by
3432the index operands.
3433</p>
3434
3435<h5>Example:</h5>
3436
3437<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003438 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003439</pre>
3440</div>
3441
3442
3443<!-- _______________________________________________________________________ -->
3444<div class="doc_subsubsection">
3445 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3446</div>
3447
3448<div class="doc_text">
3449
3450<h5>Syntax:</h5>
3451
3452<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003453 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003454</pre>
3455
3456<h5>Overview:</h5>
3457
3458<p>
3459The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman35a835c2008-05-13 18:16:06 +00003460into a struct field or array element in an aggregate.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003461</p>
3462
3463
3464<h5>Arguments:</h5>
3465
3466<p>
3467The first operand of an '<tt>insertvalue</tt>' instruction is a
3468value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3469The second operand is a first-class value to insert.
Dan Gohman34d1c0d2008-05-23 21:53:15 +00003470The following operands are constant indices
Dan Gohman1ecaf452008-05-31 00:58:22 +00003471indicating the position at which to insert the value in a similar manner as
Dan Gohman35a835c2008-05-13 18:16:06 +00003472indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003473'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3474The value to insert must have the same type as the value identified
Dan Gohman35a835c2008-05-13 18:16:06 +00003475by the indices.
Dan Gohmanef9462f2008-10-14 16:51:45 +00003476</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003477
3478<h5>Semantics:</h5>
3479
3480<p>
3481The result is an aggregate of the same type as <tt>val</tt>. Its
3482value is that of <tt>val</tt> except that the value at the position
Dan Gohman35a835c2008-05-13 18:16:06 +00003483specified by the indices is that of <tt>elt</tt>.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003484</p>
3485
3486<h5>Example:</h5>
3487
3488<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003489 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003490</pre>
3491</div>
3492
3493
3494<!-- ======================================================================= -->
3495<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003496 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003497</div>
3498
Misha Brukman76307852003-11-08 01:05:38 +00003499<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003500
Chris Lattner48b383b02003-11-25 01:02:51 +00003501<p>A key design point of an SSA-based representation is how it
3502represents memory. In LLVM, no memory locations are in SSA form, which
3503makes things very simple. This section describes how to read, write,
John Criswelldfe6a862004-12-10 15:51:16 +00003504allocate, and free memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003505
Misha Brukman76307852003-11-08 01:05:38 +00003506</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003507
Chris Lattner2f7c9632001-06-06 20:29:01 +00003508<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003509<div class="doc_subsubsection">
3510 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3511</div>
3512
Misha Brukman76307852003-11-08 01:05:38 +00003513<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003514
Chris Lattner2f7c9632001-06-06 20:29:01 +00003515<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003516
3517<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003518 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003519</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003520
Chris Lattner2f7c9632001-06-06 20:29:01 +00003521<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003522
Chris Lattner48b383b02003-11-25 01:02:51 +00003523<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003524heap and returns a pointer to it. The object is always allocated in the generic
3525address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003526
Chris Lattner2f7c9632001-06-06 20:29:01 +00003527<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003528
3529<p>The '<tt>malloc</tt>' instruction allocates
3530<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswella92e5862004-02-24 16:13:56 +00003531bytes of memory from the operating system and returns a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00003532appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003533number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003534If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greifdd1fc982008-02-09 22:24:34 +00003535be aligned to at least that boundary. If not specified, or if zero, the target can
3536choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003537
Misha Brukman76307852003-11-08 01:05:38 +00003538<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003539
Chris Lattner2f7c9632001-06-06 20:29:01 +00003540<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003541
Chris Lattner48b383b02003-11-25 01:02:51 +00003542<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +00003543a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003544result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003545
Chris Lattner54611b42005-11-06 08:02:57 +00003546<h5>Example:</h5>
3547
3548<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003549 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003550
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003551 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3552 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3553 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3554 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3555 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003556</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003557
3558<p>Note that the code generator does not yet respect the
3559 alignment value.</p>
3560
Misha Brukman76307852003-11-08 01:05:38 +00003561</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003562
Chris Lattner2f7c9632001-06-06 20:29:01 +00003563<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003564<div class="doc_subsubsection">
3565 <a name="i_free">'<tt>free</tt>' Instruction</a>
3566</div>
3567
Misha Brukman76307852003-11-08 01:05:38 +00003568<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003569
Chris Lattner2f7c9632001-06-06 20:29:01 +00003570<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003571
3572<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003573 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003574</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003575
Chris Lattner2f7c9632001-06-06 20:29:01 +00003576<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003577
Chris Lattner48b383b02003-11-25 01:02:51 +00003578<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswell4a3327e2005-05-13 22:25:59 +00003579memory heap to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003580
Chris Lattner2f7c9632001-06-06 20:29:01 +00003581<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003582
Chris Lattner48b383b02003-11-25 01:02:51 +00003583<p>'<tt>value</tt>' shall be a pointer value that points to a value
3584that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3585instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003586
Chris Lattner2f7c9632001-06-06 20:29:01 +00003587<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003588
John Criswelldfe6a862004-12-10 15:51:16 +00003589<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner0f103e12008-04-19 22:41:32 +00003590after this instruction executes. If the pointer is null, the operation
3591is a noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003592
Chris Lattner2f7c9632001-06-06 20:29:01 +00003593<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003594
3595<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003596 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003597 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003598</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003599</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003600
Chris Lattner2f7c9632001-06-06 20:29:01 +00003601<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003602<div class="doc_subsubsection">
3603 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3604</div>
3605
Misha Brukman76307852003-11-08 01:05:38 +00003606<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003607
Chris Lattner2f7c9632001-06-06 20:29:01 +00003608<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003609
3610<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003611 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003612</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003613
Chris Lattner2f7c9632001-06-06 20:29:01 +00003614<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003615
Jeff Cohen5819f182007-04-22 01:17:39 +00003616<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3617currently executing function, to be automatically released when this function
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003618returns to its caller. The object is always allocated in the generic address
3619space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003620
Chris Lattner2f7c9632001-06-06 20:29:01 +00003621<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003622
John Criswelldfe6a862004-12-10 15:51:16 +00003623<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00003624bytes of memory on the runtime stack, returning a pointer of the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003625appropriate type to the program. If "NumElements" is specified, it is the
3626number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003627If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greifdd1fc982008-02-09 22:24:34 +00003628to be aligned to at least that boundary. If not specified, or if zero, the target
3629can choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003630
Misha Brukman76307852003-11-08 01:05:38 +00003631<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003632
Chris Lattner2f7c9632001-06-06 20:29:01 +00003633<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003634
Bill Wendling9ee6a312009-05-08 20:49:29 +00003635<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003636there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner48b383b02003-11-25 01:02:51 +00003637memory is automatically released when the function returns. The '<tt>alloca</tt>'
3638instruction is commonly used to represent automatic variables that must
3639have an address available. When the function returns (either with the <tt><a
John Criswellc932bef2005-05-12 16:55:34 +00003640 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003641instructions), the memory is reclaimed. Allocating zero bytes
3642is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003643
Chris Lattner2f7c9632001-06-06 20:29:01 +00003644<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003645
3646<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003647 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3648 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3649 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3650 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003651</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003652</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003653
Chris Lattner2f7c9632001-06-06 20:29:01 +00003654<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003655<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3656Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003657<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003658<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003659<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003660<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003661<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003662<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003663<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell4c0cf7f2005-10-24 16:17:18 +00003664address from which to load. The pointer must point to a <a
Chris Lattner10ee9652004-06-03 22:57:15 +00003665 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell4c0cf7f2005-10-24 16:17:18 +00003666marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner48b383b02003-11-25 01:02:51 +00003667the number or order of execution of this <tt>load</tt> with other
3668volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3669instructions. </p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003670<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003671The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003672(that is, the alignment of the memory address). A value of 0 or an
3673omitted "align" argument means that the operation has the preferential
3674alignment for the target. It is the responsibility of the code emitter
3675to ensure that the alignment information is correct. Overestimating
3676the alignment results in an undefined behavior. Underestimating the
3677alignment may produce less efficient code. An alignment of 1 is always
3678safe.
3679</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003680<h5>Semantics:</h5>
Duncan Sandsb1656c12009-03-22 11:33:16 +00003681<p>The location of memory pointed to is loaded. If the value being loaded
3682is of scalar type then the number of bytes read does not exceed the minimum
3683number of bytes needed to hold all bits of the type. For example, loading an
3684<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3685<tt>i20</tt> with a size that is not an integral number of bytes, the result
3686is undefined if the value was not originally written using a store of the
3687same type.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003688<h5>Examples:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003689<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003690 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003691 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3692 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003693</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003694</div>
Chris Lattner095735d2002-05-06 03:03:22 +00003695<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003696<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3697Instruction</a> </div>
Reid Spencera89fb182006-11-09 21:18:01 +00003698<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003699<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003700<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3701 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003702</pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003703<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003704<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003705<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003706<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen5819f182007-04-22 01:17:39 +00003707to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner1f17cce2008-04-02 00:38:26 +00003708operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3709of the '<tt>&lt;value&gt;</tt>'
John Criswell4a3327e2005-05-13 22:25:59 +00003710operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner48b383b02003-11-25 01:02:51 +00003711optimizer is not allowed to modify the number or order of execution of
3712this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3713 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003714<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003715The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003716(that is, the alignment of the memory address). A value of 0 or an
3717omitted "align" argument means that the operation has the preferential
3718alignment for the target. It is the responsibility of the code emitter
3719to ensure that the alignment information is correct. Overestimating
3720the alignment results in an undefined behavior. Underestimating the
3721alignment may produce less efficient code. An alignment of 1 is always
3722safe.
3723</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003724<h5>Semantics:</h5>
3725<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sandsb1656c12009-03-22 11:33:16 +00003726at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3727If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3728written does not exceed the minimum number of bytes needed to hold all
3729bits of the type. For example, storing an <tt>i24</tt> writes at most
3730three bytes. When writing a value of a type like <tt>i20</tt> with a
3731size that is not an integral number of bytes, it is unspecified what
3732happens to the extra bits that do not belong to the type, but they will
3733typically be overwritten.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003734<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003735<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00003736 store i32 3, i32* %ptr <i>; yields {void}</i>
3737 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003738</pre>
Reid Spencer443460a2006-11-09 21:15:49 +00003739</div>
3740
Chris Lattner095735d2002-05-06 03:03:22 +00003741<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00003742<div class="doc_subsubsection">
3743 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3744</div>
3745
Misha Brukman76307852003-11-08 01:05:38 +00003746<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00003747<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003748<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003749 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00003750</pre>
3751
Chris Lattner590645f2002-04-14 06:13:44 +00003752<h5>Overview:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003753
3754<p>
3755The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003756subelement of an aggregate data structure. It performs address calculation only
3757and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003758
Chris Lattner590645f2002-04-14 06:13:44 +00003759<h5>Arguments:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003760
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003761<p>The first argument is always a pointer, and forms the basis of the
3762calculation. The remaining arguments are indices, that indicate which of the
3763elements of the aggregate object are indexed. The interpretation of each index
3764is dependent on the type being indexed into. The first index always indexes the
3765pointer value given as the first argument, the second index indexes a value of
3766the type pointed to (not necessarily the value directly pointed to, since the
3767first index can be non-zero), etc. The first type indexed into must be a pointer
3768value, subsequent types can be arrays, vectors and structs. Note that subsequent
3769types being indexed into can never be pointers, since that would require loading
3770the pointer before continuing calculation.</p>
3771
3772<p>The type of each index argument depends on the type it is indexing into.
3773When indexing into a (packed) structure, only <tt>i32</tt> integer
3774<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta1f8555a2009-04-27 03:21:00 +00003775integers of any width are allowed (also non-constants).</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003776
Chris Lattner48b383b02003-11-25 01:02:51 +00003777<p>For example, let's consider a C code fragment and how it gets
3778compiled to LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003779
Bill Wendling3716c5d2007-05-29 09:04:49 +00003780<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003781<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003782struct RT {
3783 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00003784 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00003785 char C;
3786};
3787struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00003788 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00003789 double Y;
3790 struct RT Z;
3791};
Chris Lattner33fd7022004-04-05 01:30:49 +00003792
Chris Lattnera446f1b2007-05-29 15:43:56 +00003793int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003794 return &amp;s[1].Z.B[5][13];
3795}
Chris Lattner33fd7022004-04-05 01:30:49 +00003796</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003797</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003798
Misha Brukman76307852003-11-08 01:05:38 +00003799<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003800
Bill Wendling3716c5d2007-05-29 09:04:49 +00003801<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003802<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00003803%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3804%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00003805
Bill Wendling3716c5d2007-05-29 09:04:49 +00003806define i32* %foo(%ST* %s) {
3807entry:
3808 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3809 ret i32* %reg
3810}
Chris Lattner33fd7022004-04-05 01:30:49 +00003811</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003812</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003813
Chris Lattner590645f2002-04-14 06:13:44 +00003814<h5>Semantics:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003815
Misha Brukman76307852003-11-08 01:05:38 +00003816<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003817type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattner33fd7022004-04-05 01:30:49 +00003818}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003819the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3820i8 }</tt>' type, another structure. The third index indexes into the second
3821element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattner33fd7022004-04-05 01:30:49 +00003822array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003823'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3824to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003825
Chris Lattner48b383b02003-11-25 01:02:51 +00003826<p>Note that it is perfectly legal to index partially through a
3827structure, returning a pointer to an inner element. Because of this,
3828the LLVM code for the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003829
3830<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003831 define i32* %foo(%ST* %s) {
3832 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00003833 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3834 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003835 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3836 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3837 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00003838 }
Chris Lattnera8292f32002-05-06 22:08:29 +00003839</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003840
Chris Lattnerdd282822009-03-09 20:55:18 +00003841<p>Note that it is undefined to access an array out of bounds: array
3842and pointer indexes must always be within the defined bounds of the
3843array type when accessed with an instruction that dereferences the
3844pointer (e.g. a load or store instruction). The one exception for
3845this rule is zero length arrays. These arrays are defined to be
3846accessible as variable length arrays, which requires access beyond the
3847zero'th element.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003848
Chris Lattner6ab66722006-08-15 00:45:58 +00003849<p>The getelementptr instruction is often confusing. For some more insight
3850into how it works, see <a href="GetElementPtr.html">the getelementptr
3851FAQ</a>.</p>
3852
Chris Lattner590645f2002-04-14 06:13:44 +00003853<h5>Example:</h5>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003854
Chris Lattner33fd7022004-04-05 01:30:49 +00003855<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003856 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003857 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3858 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00003859 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003860 <i>; yields i8*:eptr</i>
3861 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00003862 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00003863 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00003864</pre>
Chris Lattner33fd7022004-04-05 01:30:49 +00003865</div>
Reid Spencer443460a2006-11-09 21:15:49 +00003866
Chris Lattner2f7c9632001-06-06 20:29:01 +00003867<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00003868<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00003869</div>
Misha Brukman76307852003-11-08 01:05:38 +00003870<div class="doc_text">
Reid Spencer97c5fa42006-11-08 01:18:52 +00003871<p>The instructions in this category are the conversion instructions (casting)
3872which all take a single operand and a type. They perform various bit conversions
3873on the operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003874</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003875
Chris Lattnera8292f32002-05-06 22:08:29 +00003876<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003877<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003878 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3879</div>
3880<div class="doc_text">
3881
3882<h5>Syntax:</h5>
3883<pre>
3884 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3885</pre>
3886
3887<h5>Overview:</h5>
3888<p>
3889The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3890</p>
3891
3892<h5>Arguments:</h5>
3893<p>
3894The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3895be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003896and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencer51b07252006-11-09 23:03:26 +00003897type. The bit size of <tt>value</tt> must be larger than the bit size of
3898<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003899
3900<h5>Semantics:</h5>
3901<p>
3902The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencer51b07252006-11-09 23:03:26 +00003903and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3904larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3905It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003906
3907<h5>Example:</h5>
3908<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003909 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003910 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3911 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003912</pre>
3913</div>
3914
3915<!-- _______________________________________________________________________ -->
3916<div class="doc_subsubsection">
3917 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3918</div>
3919<div class="doc_text">
3920
3921<h5>Syntax:</h5>
3922<pre>
3923 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3924</pre>
3925
3926<h5>Overview:</h5>
3927<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3928<tt>ty2</tt>.</p>
3929
3930
3931<h5>Arguments:</h5>
3932<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003933<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3934also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003935<tt>value</tt> must be smaller than the bit size of the destination type,
3936<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003937
3938<h5>Semantics:</h5>
3939<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003940bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003941
Reid Spencer07c9c682007-01-12 15:46:11 +00003942<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003943
3944<h5>Example:</h5>
3945<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003946 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003947 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003948</pre>
3949</div>
3950
3951<!-- _______________________________________________________________________ -->
3952<div class="doc_subsubsection">
3953 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3954</div>
3955<div class="doc_text">
3956
3957<h5>Syntax:</h5>
3958<pre>
3959 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3960</pre>
3961
3962<h5>Overview:</h5>
3963<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3964
3965<h5>Arguments:</h5>
3966<p>
3967The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003968<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3969also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003970<tt>value</tt> must be smaller than the bit size of the destination type,
3971<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003972
3973<h5>Semantics:</h5>
3974<p>
3975The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3976bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003977the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003978
Reid Spencer36a15422007-01-12 03:35:51 +00003979<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003980
3981<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003982<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003983 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003984 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003985</pre>
3986</div>
3987
3988<!-- _______________________________________________________________________ -->
3989<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00003990 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3991</div>
3992
3993<div class="doc_text">
3994
3995<h5>Syntax:</h5>
3996
3997<pre>
3998 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3999</pre>
4000
4001<h5>Overview:</h5>
4002<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4003<tt>ty2</tt>.</p>
4004
4005
4006<h5>Arguments:</h5>
4007<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4008 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
4009cast it to. The size of <tt>value</tt> must be larger than the size of
4010<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4011<i>no-op cast</i>.</p>
4012
4013<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004014<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4015<a href="#t_floating">floating point</a> type to a smaller
4016<a href="#t_floating">floating point</a> type. If the value cannot fit within
4017the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004018
4019<h5>Example:</h5>
4020<pre>
4021 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4022 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4023</pre>
4024</div>
4025
4026<!-- _______________________________________________________________________ -->
4027<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004028 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4029</div>
4030<div class="doc_text">
4031
4032<h5>Syntax:</h5>
4033<pre>
4034 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4035</pre>
4036
4037<h5>Overview:</h5>
4038<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4039floating point value.</p>
4040
4041<h5>Arguments:</h5>
4042<p>The '<tt>fpext</tt>' instruction takes a
4043<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencer51b07252006-11-09 23:03:26 +00004044and a <a href="#t_floating">floating point</a> type to cast it to. The source
4045type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004046
4047<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004048<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands16f122e2007-03-30 12:22:09 +00004049<a href="#t_floating">floating point</a> type to a larger
4050<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencer51b07252006-11-09 23:03:26 +00004051used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5b950642006-11-11 23:08:07 +00004052<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004053
4054<h5>Example:</h5>
4055<pre>
4056 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4057 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4058</pre>
4059</div>
4060
4061<!-- _______________________________________________________________________ -->
4062<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004063 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004064</div>
4065<div class="doc_text">
4066
4067<h5>Syntax:</h5>
4068<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004069 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004070</pre>
4071
4072<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004073<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004074unsigned integer equivalent of type <tt>ty2</tt>.
4075</p>
4076
4077<h5>Arguments:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004078<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00004079scalar or vector <a href="#t_floating">floating point</a> value, and a type
4080to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4081type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4082vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004083
4084<h5>Semantics:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004085<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004086<a href="#t_floating">floating point</a> operand into the nearest (rounding
4087towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4088the results are undefined.</p>
4089
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004090<h5>Example:</h5>
4091<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004092 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004093 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00004094 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004095</pre>
4096</div>
4097
4098<!-- _______________________________________________________________________ -->
4099<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004100 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004101</div>
4102<div class="doc_text">
4103
4104<h5>Syntax:</h5>
4105<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004106 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004107</pre>
4108
4109<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004110<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004111<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004112</p>
4113
Chris Lattnera8292f32002-05-06 22:08:29 +00004114<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004115<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00004116scalar or vector <a href="#t_floating">floating point</a> value, and a type
4117to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4118type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4119vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004120
Chris Lattnera8292f32002-05-06 22:08:29 +00004121<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004122<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004123<a href="#t_floating">floating point</a> operand into the nearest (rounding
4124towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4125the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004126
Chris Lattner70de6632001-07-09 00:26:23 +00004127<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004128<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004129 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004130 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004131 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004132</pre>
4133</div>
4134
4135<!-- _______________________________________________________________________ -->
4136<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004137 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004138</div>
4139<div class="doc_text">
4140
4141<h5>Syntax:</h5>
4142<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004143 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004144</pre>
4145
4146<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004147<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004148integer and converts that value to the <tt>ty2</tt> type.</p>
4149
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004150<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004151<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4152scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4153to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4154type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4155floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004156
4157<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004158<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004159integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004160the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004161
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004162<h5>Example:</h5>
4163<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004164 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004165 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004166</pre>
4167</div>
4168
4169<!-- _______________________________________________________________________ -->
4170<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004171 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004172</div>
4173<div class="doc_text">
4174
4175<h5>Syntax:</h5>
4176<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004177 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004178</pre>
4179
4180<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004181<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004182integer and converts that value to the <tt>ty2</tt> type.</p>
4183
4184<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004185<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4186scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4187to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4188type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4189floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004190
4191<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004192<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004193integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004194the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004195
4196<h5>Example:</h5>
4197<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004198 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004199 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004200</pre>
4201</div>
4202
4203<!-- _______________________________________________________________________ -->
4204<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004205 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4206</div>
4207<div class="doc_text">
4208
4209<h5>Syntax:</h5>
4210<pre>
4211 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4212</pre>
4213
4214<h5>Overview:</h5>
4215<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4216the integer type <tt>ty2</tt>.</p>
4217
4218<h5>Arguments:</h5>
4219<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands16f122e2007-03-30 12:22:09 +00004220must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohmanef9462f2008-10-14 16:51:45 +00004221<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004222
4223<h5>Semantics:</h5>
4224<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4225<tt>ty2</tt> by interpreting the pointer value as an integer and either
4226truncating or zero extending that value to the size of the integer type. If
4227<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4228<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohen222a8a42007-04-29 01:07:00 +00004229are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4230change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004231
4232<h5>Example:</h5>
4233<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004234 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4235 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004236</pre>
4237</div>
4238
4239<!-- _______________________________________________________________________ -->
4240<div class="doc_subsubsection">
4241 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4242</div>
4243<div class="doc_text">
4244
4245<h5>Syntax:</h5>
4246<pre>
4247 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4248</pre>
4249
4250<h5>Overview:</h5>
4251<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4252a pointer type, <tt>ty2</tt>.</p>
4253
4254<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004255<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004256value to cast, and a type to cast it to, which must be a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004257<a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004258
4259<h5>Semantics:</h5>
4260<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4261<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4262the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4263size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4264the size of a pointer then a zero extension is done. If they are the same size,
4265nothing is done (<i>no-op cast</i>).</p>
4266
4267<h5>Example:</h5>
4268<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004269 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4270 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4271 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004272</pre>
4273</div>
4274
4275<!-- _______________________________________________________________________ -->
4276<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004277 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004278</div>
4279<div class="doc_text">
4280
4281<h5>Syntax:</h5>
4282<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004283 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004284</pre>
4285
4286<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004287
Reid Spencer5b950642006-11-11 23:08:07 +00004288<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004289<tt>ty2</tt> without changing any bits.</p>
4290
4291<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004292
Reid Spencer5b950642006-11-11 23:08:07 +00004293<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohmanc05dca92008-09-08 16:45:59 +00004294a non-aggregate first class value, and a type to cast it to, which must also be
4295a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4296<tt>value</tt>
Reid Spencere3db84c2007-01-09 20:08:58 +00004297and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004298type is a pointer, the destination type must also be a pointer. This
4299instruction supports bitwise conversion of vectors to integers and to vectors
4300of other types (as long as they have the same size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004301
4302<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004303<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencerb7344ff2006-11-11 21:00:47 +00004304<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4305this conversion. The conversion is done as if the <tt>value</tt> had been
4306stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4307converted to other pointer types with this instruction. To convert pointers to
4308other types, use the <a href="#i_inttoptr">inttoptr</a> or
4309<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004310
4311<h5>Example:</h5>
4312<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004313 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004314 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004315 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004316</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004317</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004318
Reid Spencer97c5fa42006-11-08 01:18:52 +00004319<!-- ======================================================================= -->
4320<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4321<div class="doc_text">
4322<p>The instructions in this category are the "miscellaneous"
4323instructions, which defy better classification.</p>
4324</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004325
4326<!-- _______________________________________________________________________ -->
4327<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4328</div>
4329<div class="doc_text">
4330<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004331<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004332</pre>
4333<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004334<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4335a vector of boolean values based on comparison
4336of its two integer, integer vector, or pointer operands.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004337<h5>Arguments:</h5>
4338<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004339the condition code indicating the kind of comparison to perform. It is not
4340a value, just a keyword. The possible condition code are:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004341</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004342<ol>
4343 <li><tt>eq</tt>: equal</li>
4344 <li><tt>ne</tt>: not equal </li>
4345 <li><tt>ugt</tt>: unsigned greater than</li>
4346 <li><tt>uge</tt>: unsigned greater or equal</li>
4347 <li><tt>ult</tt>: unsigned less than</li>
4348 <li><tt>ule</tt>: unsigned less or equal</li>
4349 <li><tt>sgt</tt>: signed greater than</li>
4350 <li><tt>sge</tt>: signed greater or equal</li>
4351 <li><tt>slt</tt>: signed less than</li>
4352 <li><tt>sle</tt>: signed less or equal</li>
4353</ol>
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004354<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanc579d972008-09-09 01:02:47 +00004355<a href="#t_pointer">pointer</a>
4356or integer <a href="#t_vector">vector</a> typed.
4357They must also be identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004358<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004359<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerc828a0e2006-11-18 21:50:54 +00004360the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanc579d972008-09-09 01:02:47 +00004361yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004362</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004363<ol>
4364 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4365 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4366 </li>
4367 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohmanef9462f2008-10-14 16:51:45 +00004368 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004369 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004370 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004371 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004372 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004373 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004374 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004375 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004376 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004377 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004378 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004379 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004380 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004381 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004382 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004383 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004384 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004385</ol>
4386<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohen222a8a42007-04-29 01:07:00 +00004387values are compared as if they were integers.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004388<p>If the operands are integer vectors, then they are compared
4389element by element. The result is an <tt>i1</tt> vector with
4390the same number of elements as the values being compared.
4391Otherwise, the result is an <tt>i1</tt>.
4392</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004393
4394<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004395<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4396 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4397 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4398 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4399 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4400 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004401</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004402
4403<p>Note that the code generator does not yet support vector types with
4404 the <tt>icmp</tt> instruction.</p>
4405
Reid Spencerc828a0e2006-11-18 21:50:54 +00004406</div>
4407
4408<!-- _______________________________________________________________________ -->
4409<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4410</div>
4411<div class="doc_text">
4412<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004413<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004414</pre>
4415<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004416<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4417or vector of boolean values based on comparison
Dan Gohmanef9462f2008-10-14 16:51:45 +00004418of its operands.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004419<p>
4420If the operands are floating point scalars, then the result
4421type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4422</p>
4423<p>If the operands are floating point vectors, then the result type
4424is a vector of boolean with the same number of elements as the
4425operands being compared.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004426<h5>Arguments:</h5>
4427<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004428the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004429a value, just a keyword. The possible condition code are:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004430<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004431 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004432 <li><tt>oeq</tt>: ordered and equal</li>
4433 <li><tt>ogt</tt>: ordered and greater than </li>
4434 <li><tt>oge</tt>: ordered and greater than or equal</li>
4435 <li><tt>olt</tt>: ordered and less than </li>
4436 <li><tt>ole</tt>: ordered and less than or equal</li>
4437 <li><tt>one</tt>: ordered and not equal</li>
4438 <li><tt>ord</tt>: ordered (no nans)</li>
4439 <li><tt>ueq</tt>: unordered or equal</li>
4440 <li><tt>ugt</tt>: unordered or greater than </li>
4441 <li><tt>uge</tt>: unordered or greater than or equal</li>
4442 <li><tt>ult</tt>: unordered or less than </li>
4443 <li><tt>ule</tt>: unordered or less than or equal</li>
4444 <li><tt>une</tt>: unordered or not equal</li>
4445 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004446 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004447</ol>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004448<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer02e0d1d2006-12-06 07:08:07 +00004449<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004450<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4451either a <a href="#t_floating">floating point</a> type
4452or a <a href="#t_vector">vector</a> of floating point type.
4453They must have identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004454<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004455<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanc579d972008-09-09 01:02:47 +00004456according to the condition code given as <tt>cond</tt>.
4457If the operands are vectors, then the vectors are compared
4458element by element.
4459Each comparison performed
Dan Gohmanef9462f2008-10-14 16:51:45 +00004460always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004461<ol>
4462 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004463 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004464 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004465 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004466 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004467 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004468 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004469 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004470 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004471 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004472 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004473 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004474 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004475 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4476 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004477 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004478 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004479 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004480 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004481 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004482 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004483 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004484 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004485 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004486 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004487 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004488 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004489 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4490</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004491
4492<h5>Example:</h5>
4493<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004494 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4495 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4496 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004497</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004498
4499<p>Note that the code generator does not yet support vector types with
4500 the <tt>fcmp</tt> instruction.</p>
4501
Reid Spencerc828a0e2006-11-18 21:50:54 +00004502</div>
4503
Reid Spencer97c5fa42006-11-08 01:18:52 +00004504<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004505<div class="doc_subsubsection">
4506 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4507</div>
4508<div class="doc_text">
4509<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004510<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemand2195702008-05-12 19:01:56 +00004511</pre>
4512<h5>Overview:</h5>
4513<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4514element-wise comparison of its two integer vector operands.</p>
4515<h5>Arguments:</h5>
4516<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4517the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004518a value, just a keyword. The possible condition code are:</p>
Nate Begemand2195702008-05-12 19:01:56 +00004519<ol>
4520 <li><tt>eq</tt>: equal</li>
4521 <li><tt>ne</tt>: not equal </li>
4522 <li><tt>ugt</tt>: unsigned greater than</li>
4523 <li><tt>uge</tt>: unsigned greater or equal</li>
4524 <li><tt>ult</tt>: unsigned less than</li>
4525 <li><tt>ule</tt>: unsigned less or equal</li>
4526 <li><tt>sgt</tt>: signed greater than</li>
4527 <li><tt>sge</tt>: signed greater or equal</li>
4528 <li><tt>slt</tt>: signed less than</li>
4529 <li><tt>sle</tt>: signed less or equal</li>
4530</ol>
Dan Gohmanc579d972008-09-09 01:02:47 +00004531<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemand2195702008-05-12 19:01:56 +00004532<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4533<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004534<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004535according to the condition code given as <tt>cond</tt>. The comparison yields a
4536<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4537identical type as the values being compared. The most significant bit in each
4538element is 1 if the element-wise comparison evaluates to true, and is 0
4539otherwise. All other bits of the result are undefined. The condition codes
4540are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohmanef9462f2008-10-14 16:51:45 +00004541instruction</a>.</p>
Nate Begemand2195702008-05-12 19:01:56 +00004542
4543<h5>Example:</h5>
4544<pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004545 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4546 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemand2195702008-05-12 19:01:56 +00004547</pre>
4548</div>
4549
4550<!-- _______________________________________________________________________ -->
4551<div class="doc_subsubsection">
4552 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4553</div>
4554<div class="doc_text">
4555<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004556<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemand2195702008-05-12 19:01:56 +00004557<h5>Overview:</h5>
4558<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4559element-wise comparison of its two floating point vector operands. The output
4560elements have the same width as the input elements.</p>
4561<h5>Arguments:</h5>
4562<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4563the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004564a value, just a keyword. The possible condition code are:</p>
Nate Begemand2195702008-05-12 19:01:56 +00004565<ol>
4566 <li><tt>false</tt>: no comparison, always returns false</li>
4567 <li><tt>oeq</tt>: ordered and equal</li>
4568 <li><tt>ogt</tt>: ordered and greater than </li>
4569 <li><tt>oge</tt>: ordered and greater than or equal</li>
4570 <li><tt>olt</tt>: ordered and less than </li>
4571 <li><tt>ole</tt>: ordered and less than or equal</li>
4572 <li><tt>one</tt>: ordered and not equal</li>
4573 <li><tt>ord</tt>: ordered (no nans)</li>
4574 <li><tt>ueq</tt>: unordered or equal</li>
4575 <li><tt>ugt</tt>: unordered or greater than </li>
4576 <li><tt>uge</tt>: unordered or greater than or equal</li>
4577 <li><tt>ult</tt>: unordered or less than </li>
4578 <li><tt>ule</tt>: unordered or less than or equal</li>
4579 <li><tt>une</tt>: unordered or not equal</li>
4580 <li><tt>uno</tt>: unordered (either nans)</li>
4581 <li><tt>true</tt>: no comparison, always returns true</li>
4582</ol>
4583<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4584<a href="#t_floating">floating point</a> typed. They must also be identical
4585types.</p>
4586<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004587<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004588according to the condition code given as <tt>cond</tt>. The comparison yields a
4589<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4590an identical number of elements as the values being compared, and each element
4591having identical with to the width of the floating point elements. The most
4592significant bit in each element is 1 if the element-wise comparison evaluates to
4593true, and is 0 otherwise. All other bits of the result are undefined. The
4594condition codes are evaluated identically to the
Dan Gohmanef9462f2008-10-14 16:51:45 +00004595<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemand2195702008-05-12 19:01:56 +00004596
4597<h5>Example:</h5>
4598<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +00004599 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4600 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4601
4602 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4603 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemand2195702008-05-12 19:01:56 +00004604</pre>
4605</div>
4606
4607<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004608<div class="doc_subsubsection">
4609 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4610</div>
4611
Reid Spencer97c5fa42006-11-08 01:18:52 +00004612<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004613
Reid Spencer97c5fa42006-11-08 01:18:52 +00004614<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004615
Reid Spencer97c5fa42006-11-08 01:18:52 +00004616<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4617<h5>Overview:</h5>
4618<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4619the SSA graph representing the function.</p>
4620<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004621
Jeff Cohen222a8a42007-04-29 01:07:00 +00004622<p>The type of the incoming values is specified with the first type
Reid Spencer97c5fa42006-11-08 01:18:52 +00004623field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4624as arguments, with one pair for each predecessor basic block of the
4625current block. Only values of <a href="#t_firstclass">first class</a>
4626type may be used as the value arguments to the PHI node. Only labels
4627may be used as the label arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004628
Reid Spencer97c5fa42006-11-08 01:18:52 +00004629<p>There must be no non-phi instructions between the start of a basic
4630block and the PHI instructions: i.e. PHI instructions must be first in
4631a basic block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004632
Jay Foad1a4eea52009-06-03 10:20:10 +00004633<p>For the purposes of the SSA form, the use of each incoming value is
4634deemed to occur on the edge from the corresponding predecessor block
4635to the current block (but after any definition of an '<tt>invoke</tt>'
4636instruction's return value on the same edge).</p>
4637
Reid Spencer97c5fa42006-11-08 01:18:52 +00004638<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004639
Jeff Cohen222a8a42007-04-29 01:07:00 +00004640<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4641specified by the pair corresponding to the predecessor basic block that executed
4642just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004643
Reid Spencer97c5fa42006-11-08 01:18:52 +00004644<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004645<pre>
4646Loop: ; Infinite loop that counts from 0 on up...
4647 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4648 %nextindvar = add i32 %indvar, 1
4649 br label %Loop
4650</pre>
Reid Spencer97c5fa42006-11-08 01:18:52 +00004651</div>
4652
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004653<!-- _______________________________________________________________________ -->
4654<div class="doc_subsubsection">
4655 <a name="i_select">'<tt>select</tt>' Instruction</a>
4656</div>
4657
4658<div class="doc_text">
4659
4660<h5>Syntax:</h5>
4661
4662<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004663 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4664
Dan Gohmanef9462f2008-10-14 16:51:45 +00004665 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004666</pre>
4667
4668<h5>Overview:</h5>
4669
4670<p>
4671The '<tt>select</tt>' instruction is used to choose one value based on a
4672condition, without branching.
4673</p>
4674
4675
4676<h5>Arguments:</h5>
4677
4678<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004679The '<tt>select</tt>' instruction requires an 'i1' value or
4680a vector of 'i1' values indicating the
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004681condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanc579d972008-09-09 01:02:47 +00004682type. If the val1/val2 are vectors and
4683the condition is a scalar, then entire vectors are selected, not
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004684individual elements.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004685</p>
4686
4687<h5>Semantics:</h5>
4688
4689<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004690If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswell88190562005-05-16 16:17:45 +00004691value argument; otherwise, it returns the second value argument.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004692</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004693<p>
4694If the condition is a vector of i1, then the value arguments must
4695be vectors of the same size, and the selection is done element
4696by element.
4697</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004698
4699<h5>Example:</h5>
4700
4701<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004702 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004703</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004704
4705<p>Note that the code generator does not yet support conditions
4706 with vector type.</p>
4707
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004708</div>
4709
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004710
4711<!-- _______________________________________________________________________ -->
4712<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004713 <a name="i_call">'<tt>call</tt>' Instruction</a>
4714</div>
4715
Misha Brukman76307852003-11-08 01:05:38 +00004716<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004717
Chris Lattner2f7c9632001-06-06 20:29:01 +00004718<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004719<pre>
Devang Patel02256232008-10-07 17:48:33 +00004720 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004721</pre>
4722
Chris Lattner2f7c9632001-06-06 20:29:01 +00004723<h5>Overview:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004724
Misha Brukman76307852003-11-08 01:05:38 +00004725<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004726
Chris Lattner2f7c9632001-06-06 20:29:01 +00004727<h5>Arguments:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004728
Misha Brukman76307852003-11-08 01:05:38 +00004729<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004730
Chris Lattnera8292f32002-05-06 22:08:29 +00004731<ol>
Chris Lattner48b383b02003-11-25 01:02:51 +00004732 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00004733 <p>The optional "tail" marker indicates whether the callee function accesses
4734 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattnere23c1392005-05-06 05:47:36 +00004735 function call is eligible for tail call optimization. Note that calls may
4736 be marked "tail" even if they do not occur before a <a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004737 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004738 </li>
4739 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00004740 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00004741 convention</a> the call should use. If none is specified, the call defaults
Dan Gohmanef9462f2008-10-14 16:51:45 +00004742 to using C calling conventions.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00004743 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004744
4745 <li>
4746 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4747 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4748 and '<tt>inreg</tt>' attributes are valid here.</p>
4749 </li>
4750
Chris Lattner0132aff2005-05-06 22:57:40 +00004751 <li>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004752 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4753 the type of the return value. Functions that return no value are marked
4754 <tt><a href="#t_void">void</a></tt>.</p>
4755 </li>
4756 <li>
4757 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4758 value being invoked. The argument types must match the types implied by
4759 this signature. This type can be omitted if the function is not varargs
4760 and if the function type does not return a pointer to a function.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004761 </li>
4762 <li>
4763 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4764 be invoked. In most cases, this is a direct function invocation, but
4765 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswell88190562005-05-16 16:17:45 +00004766 to function value.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004767 </li>
4768 <li>
4769 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencerd845d162005-05-01 22:22:57 +00004770 function signature argument types. All arguments must be of
4771 <a href="#t_firstclass">first class</a> type. If the function signature
4772 indicates the function accepts a variable number of arguments, the extra
4773 arguments can be specified.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004774 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004775 <li>
Devang Patel02256232008-10-07 17:48:33 +00004776 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00004777 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4778 '<tt>readnone</tt>' attributes are valid here.</p>
4779 </li>
Chris Lattnera8292f32002-05-06 22:08:29 +00004780</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00004781
Chris Lattner2f7c9632001-06-06 20:29:01 +00004782<h5>Semantics:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004783
Chris Lattner48b383b02003-11-25 01:02:51 +00004784<p>The '<tt>call</tt>' instruction is used to cause control flow to
4785transfer to a specified function, with its incoming arguments bound to
4786the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4787instruction in the called function, control flow continues with the
4788instruction after the function call, and the return value of the
Dan Gohmanef9462f2008-10-14 16:51:45 +00004789function is bound to the result argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004790
Chris Lattner2f7c9632001-06-06 20:29:01 +00004791<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004792
4793<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004794 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00004795 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4796 %X = tail call i32 @foo() <i>; yields i32</i>
4797 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4798 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00004799
4800 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00004801 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00004802 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4803 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00004804 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00004805 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00004806</pre>
4807
Misha Brukman76307852003-11-08 01:05:38 +00004808</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004809
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004810<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00004811<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00004812 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004813</div>
4814
Misha Brukman76307852003-11-08 01:05:38 +00004815<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00004816
Chris Lattner26ca62e2003-10-18 05:51:36 +00004817<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004818
4819<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004820 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00004821</pre>
4822
Chris Lattner26ca62e2003-10-18 05:51:36 +00004823<h5>Overview:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004824
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004825<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattner6a4a0492004-09-27 21:51:25 +00004826the "variable argument" area of a function call. It is used to implement the
4827<tt>va_arg</tt> macro in C.</p>
4828
Chris Lattner26ca62e2003-10-18 05:51:36 +00004829<h5>Arguments:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004830
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004831<p>This instruction takes a <tt>va_list*</tt> value and the type of
4832the argument. It returns a value of the specified argument type and
Jeff Cohen222a8a42007-04-29 01:07:00 +00004833increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004834actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004835
Chris Lattner26ca62e2003-10-18 05:51:36 +00004836<h5>Semantics:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004837
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004838<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4839type from the specified <tt>va_list</tt> and causes the
4840<tt>va_list</tt> to point to the next argument. For more information,
4841see the variable argument handling <a href="#int_varargs">Intrinsic
4842Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004843
4844<p>It is legal for this instruction to be called in a function which does not
4845take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman76307852003-11-08 01:05:38 +00004846function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004847
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004848<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswell88190562005-05-16 16:17:45 +00004849href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattner6a4a0492004-09-27 21:51:25 +00004850argument.</p>
4851
Chris Lattner26ca62e2003-10-18 05:51:36 +00004852<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004853
4854<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4855
Dan Gohman3065b612009-01-12 23:12:39 +00004856<p>Note that the code generator does not yet fully support va_arg
4857 on many targets. Also, it does not currently support va_arg with
4858 aggregate types on any target.</p>
4859
Misha Brukman76307852003-11-08 01:05:38 +00004860</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004861
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004862<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004863<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4864<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00004865
Misha Brukman76307852003-11-08 01:05:38 +00004866<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00004867
4868<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer4eefaab2007-04-01 08:04:23 +00004869well known names and semantics and are required to follow certain restrictions.
4870Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohen222a8a42007-04-29 01:07:00 +00004871language that does not require changing all of the transformations in LLVM when
Gabor Greifa54634a2007-07-06 22:07:22 +00004872adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004873
John Criswell88190562005-05-16 16:17:45 +00004874<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohen222a8a42007-04-29 01:07:00 +00004875prefix is reserved in LLVM for intrinsic names; thus, function names may not
4876begin with this prefix. Intrinsic functions must always be external functions:
4877you cannot define the body of intrinsic functions. Intrinsic functions may
4878only be used in call or invoke instructions: it is illegal to take the address
4879of an intrinsic function. Additionally, because intrinsic functions are part
4880of the LLVM language, it is required if any are added that they be documented
4881here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004882
Chandler Carruth7132e002007-08-04 01:51:18 +00004883<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4884a family of functions that perform the same operation but on different data
4885types. Because LLVM can represent over 8 million different integer types,
4886overloading is used commonly to allow an intrinsic function to operate on any
4887integer type. One or more of the argument types or the result type can be
4888overloaded to accept any integer type. Argument types may also be defined as
4889exactly matching a previous argument's type or the result type. This allows an
4890intrinsic function which accepts multiple arguments, but needs all of them to
4891be of the same type, to only be overloaded with respect to a single argument or
4892the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004893
Chandler Carruth7132e002007-08-04 01:51:18 +00004894<p>Overloaded intrinsics will have the names of its overloaded argument types
4895encoded into its function name, each preceded by a period. Only those types
4896which are overloaded result in a name suffix. Arguments whose type is matched
4897against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4898take an integer of any width and returns an integer of exactly the same integer
4899width. This leads to a family of functions such as
4900<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4901Only one type, the return type, is overloaded, and only one type suffix is
4902required. Because the argument's type is matched against the return type, it
4903does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00004904
4905<p>To learn how to add an intrinsic function, please see the
4906<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattnerfee11462004-02-12 17:01:32 +00004907</p>
4908
Misha Brukman76307852003-11-08 01:05:38 +00004909</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004910
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004911<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00004912<div class="doc_subsection">
4913 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4914</div>
4915
Misha Brukman76307852003-11-08 01:05:38 +00004916<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004917
Misha Brukman76307852003-11-08 01:05:38 +00004918<p>Variable argument support is defined in LLVM with the <a
Chris Lattner33337472006-01-13 23:26:01 +00004919 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner48b383b02003-11-25 01:02:51 +00004920intrinsic functions. These functions are related to the similarly
4921named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004922
Chris Lattner48b383b02003-11-25 01:02:51 +00004923<p>All of these functions operate on arguments that use a
4924target-specific value type "<tt>va_list</tt>". The LLVM assembly
4925language reference manual does not define what this type is, so all
Jeff Cohen222a8a42007-04-29 01:07:00 +00004926transformations should be prepared to handle these functions regardless of
4927the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004928
Chris Lattner30b868d2006-05-15 17:26:46 +00004929<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner48b383b02003-11-25 01:02:51 +00004930instruction and the variable argument handling intrinsic functions are
4931used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004932
Bill Wendling3716c5d2007-05-29 09:04:49 +00004933<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00004934<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004935define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00004936 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00004937 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004938 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004939 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004940
4941 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00004942 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00004943
4944 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00004945 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004946 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00004947 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004948 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004949
4950 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004951 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004952 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00004953}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004954
4955declare void @llvm.va_start(i8*)
4956declare void @llvm.va_copy(i8*, i8*)
4957declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00004958</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004959</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004960
Bill Wendling3716c5d2007-05-29 09:04:49 +00004961</div>
4962
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004963<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004964<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004965 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004966</div>
4967
4968
Misha Brukman76307852003-11-08 01:05:38 +00004969<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004970<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004971<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004972<h5>Overview:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004973<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004974<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4975href="#i_va_arg">va_arg</a></tt>.</p>
4976
4977<h5>Arguments:</h5>
4978
Dan Gohmanef9462f2008-10-14 16:51:45 +00004979<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004980
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004981<h5>Semantics:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004982
Dan Gohmanef9462f2008-10-14 16:51:45 +00004983<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004984macro available in C. In a target-dependent way, it initializes the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004985<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004986<tt>va_arg</tt> will produce the first variable argument passed to the function.
4987Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004988last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004989
Misha Brukman76307852003-11-08 01:05:38 +00004990</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004991
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004992<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004993<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004994 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004995</div>
4996
Misha Brukman76307852003-11-08 01:05:38 +00004997<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004998<h5>Syntax:</h5>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004999<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005000<h5>Overview:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005001
Jeff Cohen222a8a42007-04-29 01:07:00 +00005002<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencer96a5f022007-04-04 02:42:35 +00005003which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00005004or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005005
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005006<h5>Arguments:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005007
Jeff Cohen222a8a42007-04-29 01:07:00 +00005008<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005009
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005010<h5>Semantics:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005011
Misha Brukman76307852003-11-08 01:05:38 +00005012<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005013macro available in C. In a target-dependent way, it destroys the
5014<tt>va_list</tt> element to which the argument points. Calls to <a
5015href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
5016<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
5017<tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005018
Misha Brukman76307852003-11-08 01:05:38 +00005019</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005020
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005021<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005022<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005023 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005024</div>
5025
Misha Brukman76307852003-11-08 01:05:38 +00005026<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005027
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005028<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005029
5030<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005031 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005032</pre>
5033
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005034<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005035
Jeff Cohen222a8a42007-04-29 01:07:00 +00005036<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5037from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005038
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005039<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005040
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005041<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharth5305ea52005-06-22 20:38:11 +00005042The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005043
Chris Lattner757528b0b2004-05-23 21:06:01 +00005044
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005045<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005046
Jeff Cohen222a8a42007-04-29 01:07:00 +00005047<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5048macro available in C. In a target-dependent way, it copies the source
5049<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
5050intrinsic is necessary because the <tt><a href="#int_va_start">
5051llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
5052example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005053
Misha Brukman76307852003-11-08 01:05:38 +00005054</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005055
Chris Lattnerfee11462004-02-12 17:01:32 +00005056<!-- ======================================================================= -->
5057<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005058 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5059</div>
5060
5061<div class="doc_text">
5062
5063<p>
5064LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005065Collection</a> (GC) requires the implementation and generation of these
5066intrinsics.
Reid Spencer96a5f022007-04-04 02:42:35 +00005067These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattner757528b0b2004-05-23 21:06:01 +00005068stack</a>, as well as garbage collector implementations that require <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005069href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattner757528b0b2004-05-23 21:06:01 +00005070Front-ends for type-safe garbage collected languages should generate these
5071intrinsics to make use of the LLVM garbage collectors. For more details, see <a
5072href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
5073</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005074
5075<p>The garbage collection intrinsics only operate on objects in the generic
5076 address space (address space zero).</p>
5077
Chris Lattner757528b0b2004-05-23 21:06:01 +00005078</div>
5079
5080<!-- _______________________________________________________________________ -->
5081<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005082 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005083</div>
5084
5085<div class="doc_text">
5086
5087<h5>Syntax:</h5>
5088
5089<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005090 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005091</pre>
5092
5093<h5>Overview:</h5>
5094
John Criswelldfe6a862004-12-10 15:51:16 +00005095<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattner757528b0b2004-05-23 21:06:01 +00005096the code generator, and allows some metadata to be associated with it.</p>
5097
5098<h5>Arguments:</h5>
5099
5100<p>The first argument specifies the address of a stack object that contains the
5101root pointer. The second pointer (which must be either a constant or a global
5102value address) contains the meta-data to be associated with the root.</p>
5103
5104<h5>Semantics:</h5>
5105
Chris Lattner851b7712008-04-24 05:59:56 +00005106<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattner757528b0b2004-05-23 21:06:01 +00005107location. At compile-time, the code generator generates information to allow
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005108the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5109intrinsic may only be used in a function which <a href="#gc">specifies a GC
5110algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005111
5112</div>
5113
5114
5115<!-- _______________________________________________________________________ -->
5116<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005117 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005118</div>
5119
5120<div class="doc_text">
5121
5122<h5>Syntax:</h5>
5123
5124<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005125 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005126</pre>
5127
5128<h5>Overview:</h5>
5129
5130<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5131locations, allowing garbage collector implementations that require read
5132barriers.</p>
5133
5134<h5>Arguments:</h5>
5135
Chris Lattnerf9228072006-03-14 20:02:51 +00005136<p>The second argument is the address to read from, which should be an address
5137allocated from the garbage collector. The first object is a pointer to the
5138start of the referenced object, if needed by the language runtime (otherwise
5139null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005140
5141<h5>Semantics:</h5>
5142
5143<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5144instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005145garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5146may only be used in a function which <a href="#gc">specifies a GC
5147algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005148
5149</div>
5150
5151
5152<!-- _______________________________________________________________________ -->
5153<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005154 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005155</div>
5156
5157<div class="doc_text">
5158
5159<h5>Syntax:</h5>
5160
5161<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005162 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005163</pre>
5164
5165<h5>Overview:</h5>
5166
5167<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5168locations, allowing garbage collector implementations that require write
5169barriers (such as generational or reference counting collectors).</p>
5170
5171<h5>Arguments:</h5>
5172
Chris Lattnerf9228072006-03-14 20:02:51 +00005173<p>The first argument is the reference to store, the second is the start of the
5174object to store it to, and the third is the address of the field of Obj to
5175store to. If the runtime does not require a pointer to the object, Obj may be
5176null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005177
5178<h5>Semantics:</h5>
5179
5180<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5181instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005182garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5183may only be used in a function which <a href="#gc">specifies a GC
5184algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005185
5186</div>
5187
5188
5189
5190<!-- ======================================================================= -->
5191<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005192 <a name="int_codegen">Code Generator Intrinsics</a>
5193</div>
5194
5195<div class="doc_text">
5196<p>
5197These intrinsics are provided by LLVM to expose special features that may only
5198be implemented with code generator support.
5199</p>
5200
5201</div>
5202
5203<!-- _______________________________________________________________________ -->
5204<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005205 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005206</div>
5207
5208<div class="doc_text">
5209
5210<h5>Syntax:</h5>
5211<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005212 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005213</pre>
5214
5215<h5>Overview:</h5>
5216
5217<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005218The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5219target-specific value indicating the return address of the current function
5220or one of its callers.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005221</p>
5222
5223<h5>Arguments:</h5>
5224
5225<p>
5226The argument to this intrinsic indicates which function to return the address
5227for. Zero indicates the calling function, one indicates its caller, etc. The
5228argument is <b>required</b> to be a constant integer value.
5229</p>
5230
5231<h5>Semantics:</h5>
5232
5233<p>
5234The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5235the return address of the specified call frame, or zero if it cannot be
5236identified. The value returned by this intrinsic is likely to be incorrect or 0
5237for arguments other than zero, so it should only be used for debugging purposes.
5238</p>
5239
5240<p>
5241Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005242aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005243source-language caller.
5244</p>
5245</div>
5246
5247
5248<!-- _______________________________________________________________________ -->
5249<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005250 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005251</div>
5252
5253<div class="doc_text">
5254
5255<h5>Syntax:</h5>
5256<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005257 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005258</pre>
5259
5260<h5>Overview:</h5>
5261
5262<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005263The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5264target-specific frame pointer value for the specified stack frame.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005265</p>
5266
5267<h5>Arguments:</h5>
5268
5269<p>
5270The argument to this intrinsic indicates which function to return the frame
5271pointer for. Zero indicates the calling function, one indicates its caller,
5272etc. The argument is <b>required</b> to be a constant integer value.
5273</p>
5274
5275<h5>Semantics:</h5>
5276
5277<p>
5278The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5279the frame address of the specified call frame, or zero if it cannot be
5280identified. The value returned by this intrinsic is likely to be incorrect or 0
5281for arguments other than zero, so it should only be used for debugging purposes.
5282</p>
5283
5284<p>
5285Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005286aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005287source-language caller.
5288</p>
5289</div>
5290
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005291<!-- _______________________________________________________________________ -->
5292<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005293 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005294</div>
5295
5296<div class="doc_text">
5297
5298<h5>Syntax:</h5>
5299<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005300 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005301</pre>
5302
5303<h5>Overview:</h5>
5304
5305<p>
5306The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencer96a5f022007-04-04 02:42:35 +00005307the function stack, for use with <a href="#int_stackrestore">
Chris Lattner2f0f0012006-01-13 02:03:13 +00005308<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5309features like scoped automatic variable sized arrays in C99.
5310</p>
5311
5312<h5>Semantics:</h5>
5313
5314<p>
5315This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005316href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner2f0f0012006-01-13 02:03:13 +00005317<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5318<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5319state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5320practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5321that were allocated after the <tt>llvm.stacksave</tt> was executed.
5322</p>
5323
5324</div>
5325
5326<!-- _______________________________________________________________________ -->
5327<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005328 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005329</div>
5330
5331<div class="doc_text">
5332
5333<h5>Syntax:</h5>
5334<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005335 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005336</pre>
5337
5338<h5>Overview:</h5>
5339
5340<p>
5341The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5342the function stack to the state it was in when the corresponding <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005343href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner2f0f0012006-01-13 02:03:13 +00005344useful for implementing language features like scoped automatic variable sized
5345arrays in C99.
5346</p>
5347
5348<h5>Semantics:</h5>
5349
5350<p>
Reid Spencer96a5f022007-04-04 02:42:35 +00005351See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner2f0f0012006-01-13 02:03:13 +00005352</p>
5353
5354</div>
5355
5356
5357<!-- _______________________________________________________________________ -->
5358<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005359 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005360</div>
5361
5362<div class="doc_text">
5363
5364<h5>Syntax:</h5>
5365<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005366 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005367</pre>
5368
5369<h5>Overview:</h5>
5370
5371
5372<p>
5373The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswell88190562005-05-16 16:17:45 +00005374a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5375no
5376effect on the behavior of the program but can change its performance
Chris Lattnerff851072005-02-28 19:47:14 +00005377characteristics.
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005378</p>
5379
5380<h5>Arguments:</h5>
5381
5382<p>
5383<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5384determining if the fetch should be for a read (0) or write (1), and
5385<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattnerd3e641c2005-03-07 20:31:38 +00005386locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005387<tt>locality</tt> arguments must be constant integers.
5388</p>
5389
5390<h5>Semantics:</h5>
5391
5392<p>
5393This intrinsic does not modify the behavior of the program. In particular,
5394prefetches cannot trap and do not produce a value. On targets that support this
5395intrinsic, the prefetch can provide hints to the processor cache for better
5396performance.
5397</p>
5398
5399</div>
5400
Andrew Lenharthb4427912005-03-28 20:05:49 +00005401<!-- _______________________________________________________________________ -->
5402<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005403 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005404</div>
5405
5406<div class="doc_text">
5407
5408<h5>Syntax:</h5>
5409<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005410 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005411</pre>
5412
5413<h5>Overview:</h5>
5414
5415
5416<p>
John Criswell88190562005-05-16 16:17:45 +00005417The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner67c37d12008-08-05 18:29:16 +00005418(PC) in a region of
5419code to simulators and other tools. The method is target specific, but it is
5420expected that the marker will use exported symbols to transmit the PC of the
5421marker.
5422The marker makes no guarantees that it will remain with any specific instruction
5423after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb40261e2006-03-24 07:16:10 +00005424optimizations. The intended use is to be inserted after optimizations to allow
John Criswell88190562005-05-16 16:17:45 +00005425correlations of simulation runs.
Andrew Lenharthb4427912005-03-28 20:05:49 +00005426</p>
5427
5428<h5>Arguments:</h5>
5429
5430<p>
5431<tt>id</tt> is a numerical id identifying the marker.
5432</p>
5433
5434<h5>Semantics:</h5>
5435
5436<p>
5437This intrinsic does not modify the behavior of the program. Backends that do not
5438support this intrinisic may ignore it.
5439</p>
5440
5441</div>
5442
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005443<!-- _______________________________________________________________________ -->
5444<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005445 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005446</div>
5447
5448<div class="doc_text">
5449
5450<h5>Syntax:</h5>
5451<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005452 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005453</pre>
5454
5455<h5>Overview:</h5>
5456
5457
5458<p>
5459The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5460counter register (or similar low latency, high accuracy clocks) on those targets
5461that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5462As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5463should only be used for small timings.
5464</p>
5465
5466<h5>Semantics:</h5>
5467
5468<p>
5469When directly supported, reading the cycle counter should not modify any memory.
5470Implementations are allowed to either return a application specific value or a
5471system wide value. On backends without support, this is lowered to a constant 0.
5472</p>
5473
5474</div>
5475
Chris Lattner3649c3a2004-02-14 04:08:35 +00005476<!-- ======================================================================= -->
5477<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005478 <a name="int_libc">Standard C Library Intrinsics</a>
5479</div>
5480
5481<div class="doc_text">
5482<p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005483LLVM provides intrinsics for a few important standard C library functions.
5484These intrinsics allow source-language front-ends to pass information about the
5485alignment of the pointer arguments to the code generator, providing opportunity
5486for more efficient code generation.
Chris Lattnerfee11462004-02-12 17:01:32 +00005487</p>
5488
5489</div>
5490
5491<!-- _______________________________________________________________________ -->
5492<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005493 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005494</div>
5495
5496<div class="doc_text">
5497
5498<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005499<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5500width. Not all targets support all bit widths however.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005501<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005502 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5503 i8 &lt;len&gt;, i32 &lt;align&gt;)
5504 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5505 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005506 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005507 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005508 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005509 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005510</pre>
5511
5512<h5>Overview:</h5>
5513
5514<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005515The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005516location to the destination location.
5517</p>
5518
5519<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005520Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5521intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerfee11462004-02-12 17:01:32 +00005522</p>
5523
5524<h5>Arguments:</h5>
5525
5526<p>
5527The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005528the source. The third argument is an integer argument
Chris Lattnerfee11462004-02-12 17:01:32 +00005529specifying the number of bytes to copy, and the fourth argument is the alignment
5530of the source and destination locations.
5531</p>
5532
Chris Lattner4c67c482004-02-12 21:18:15 +00005533<p>
5534If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005535the caller guarantees that both the source and destination pointers are aligned
5536to that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005537</p>
5538
Chris Lattnerfee11462004-02-12 17:01:32 +00005539<h5>Semantics:</h5>
5540
5541<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005542The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005543location to the destination location, which are not allowed to overlap. It
5544copies "len" bytes of memory over. If the argument is known to be aligned to
5545some boundary, this can be specified as the fourth argument, otherwise it should
5546be set to 0 or 1.
5547</p>
5548</div>
5549
5550
Chris Lattnerf30152e2004-02-12 18:10:10 +00005551<!-- _______________________________________________________________________ -->
5552<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005553 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005554</div>
5555
5556<div class="doc_text">
5557
5558<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005559<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5560width. Not all targets support all bit widths however.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005561<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005562 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5563 i8 &lt;len&gt;, i32 &lt;align&gt;)
5564 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5565 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005566 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005567 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005568 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005569 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005570</pre>
5571
5572<h5>Overview:</h5>
5573
5574<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005575The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5576location to the destination location. It is similar to the
Chris Lattnerec564022008-01-06 19:51:52 +00005577'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005578</p>
5579
5580<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005581Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5582intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005583</p>
5584
5585<h5>Arguments:</h5>
5586
5587<p>
5588The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005589the source. The third argument is an integer argument
Chris Lattnerf30152e2004-02-12 18:10:10 +00005590specifying the number of bytes to copy, and the fourth argument is the alignment
5591of the source and destination locations.
5592</p>
5593
Chris Lattner4c67c482004-02-12 21:18:15 +00005594<p>
5595If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005596the caller guarantees that the source and destination pointers are aligned to
5597that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005598</p>
5599
Chris Lattnerf30152e2004-02-12 18:10:10 +00005600<h5>Semantics:</h5>
5601
5602<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005603The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerf30152e2004-02-12 18:10:10 +00005604location to the destination location, which may overlap. It
5605copies "len" bytes of memory over. If the argument is known to be aligned to
5606some boundary, this can be specified as the fourth argument, otherwise it should
5607be set to 0 or 1.
5608</p>
5609</div>
5610
Chris Lattner941515c2004-01-06 05:31:32 +00005611
Chris Lattner3649c3a2004-02-14 04:08:35 +00005612<!-- _______________________________________________________________________ -->
5613<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005614 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005615</div>
5616
5617<div class="doc_text">
5618
5619<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005620<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5621width. Not all targets support all bit widths however.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005622<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005623 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5624 i8 &lt;len&gt;, i32 &lt;align&gt;)
5625 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5626 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005627 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005628 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005629 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005630 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005631</pre>
5632
5633<h5>Overview:</h5>
5634
5635<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005636The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner3649c3a2004-02-14 04:08:35 +00005637byte value.
5638</p>
5639
5640<p>
5641Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5642does not return a value, and takes an extra alignment argument.
5643</p>
5644
5645<h5>Arguments:</h5>
5646
5647<p>
5648The first argument is a pointer to the destination to fill, the second is the
Chris Lattner0c8b2592006-03-03 00:07:20 +00005649byte value to fill it with, the third argument is an integer
Chris Lattner3649c3a2004-02-14 04:08:35 +00005650argument specifying the number of bytes to fill, and the fourth argument is the
5651known alignment of destination location.
5652</p>
5653
5654<p>
5655If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005656the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005657</p>
5658
5659<h5>Semantics:</h5>
5660
5661<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005662The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5663the
Chris Lattner3649c3a2004-02-14 04:08:35 +00005664destination location. If the argument is known to be aligned to some boundary,
5665this can be specified as the fourth argument, otherwise it should be set to 0 or
56661.
5667</p>
5668</div>
5669
5670
Chris Lattner3b4f4372004-06-11 02:28:03 +00005671<!-- _______________________________________________________________________ -->
5672<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005673 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005674</div>
5675
5676<div class="doc_text">
5677
5678<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005679<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005680floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005681types however.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005682<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005683 declare float @llvm.sqrt.f32(float %Val)
5684 declare double @llvm.sqrt.f64(double %Val)
5685 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5686 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5687 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005688</pre>
5689
5690<h5>Overview:</h5>
5691
5692<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005693The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohmanb6324c12007-10-15 20:30:11 +00005694returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005695<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner00d7cb92008-01-29 07:00:44 +00005696negative numbers other than -0.0 (which allows for better optimization, because
5697there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5698defined to return -0.0 like IEEE sqrt.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005699</p>
5700
5701<h5>Arguments:</h5>
5702
5703<p>
5704The argument and return value are floating point numbers of the same type.
5705</p>
5706
5707<h5>Semantics:</h5>
5708
5709<p>
Dan Gohman33988db2007-07-16 14:37:41 +00005710This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005711floating point number.
5712</p>
5713</div>
5714
Chris Lattner33b73f92006-09-08 06:34:02 +00005715<!-- _______________________________________________________________________ -->
5716<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005717 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005718</div>
5719
5720<div class="doc_text">
5721
5722<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005723<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005724floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005725types however.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005726<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005727 declare float @llvm.powi.f32(float %Val, i32 %power)
5728 declare double @llvm.powi.f64(double %Val, i32 %power)
5729 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5730 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5731 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005732</pre>
5733
5734<h5>Overview:</h5>
5735
5736<p>
5737The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5738specified (positive or negative) power. The order of evaluation of
Dan Gohmanb6324c12007-10-15 20:30:11 +00005739multiplications is not defined. When a vector of floating point type is
5740used, the second argument remains a scalar integer value.
Chris Lattner33b73f92006-09-08 06:34:02 +00005741</p>
5742
5743<h5>Arguments:</h5>
5744
5745<p>
5746The second argument is an integer power, and the first is a value to raise to
5747that power.
5748</p>
5749
5750<h5>Semantics:</h5>
5751
5752<p>
5753This function returns the first value raised to the second power with an
5754unspecified sequence of rounding operations.</p>
5755</div>
5756
Dan Gohmanb6324c12007-10-15 20:30:11 +00005757<!-- _______________________________________________________________________ -->
5758<div class="doc_subsubsection">
5759 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5760</div>
5761
5762<div class="doc_text">
5763
5764<h5>Syntax:</h5>
5765<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5766floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005767types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005768<pre>
5769 declare float @llvm.sin.f32(float %Val)
5770 declare double @llvm.sin.f64(double %Val)
5771 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5772 declare fp128 @llvm.sin.f128(fp128 %Val)
5773 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5774</pre>
5775
5776<h5>Overview:</h5>
5777
5778<p>
5779The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5780</p>
5781
5782<h5>Arguments:</h5>
5783
5784<p>
5785The argument and return value are floating point numbers of the same type.
5786</p>
5787
5788<h5>Semantics:</h5>
5789
5790<p>
5791This function returns the sine of the specified operand, returning the
5792same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005793conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005794</div>
5795
5796<!-- _______________________________________________________________________ -->
5797<div class="doc_subsubsection">
5798 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5799</div>
5800
5801<div class="doc_text">
5802
5803<h5>Syntax:</h5>
5804<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5805floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005806types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005807<pre>
5808 declare float @llvm.cos.f32(float %Val)
5809 declare double @llvm.cos.f64(double %Val)
5810 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5811 declare fp128 @llvm.cos.f128(fp128 %Val)
5812 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5813</pre>
5814
5815<h5>Overview:</h5>
5816
5817<p>
5818The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5819</p>
5820
5821<h5>Arguments:</h5>
5822
5823<p>
5824The argument and return value are floating point numbers of the same type.
5825</p>
5826
5827<h5>Semantics:</h5>
5828
5829<p>
5830This function returns the cosine of the specified operand, returning the
5831same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005832conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005833</div>
5834
5835<!-- _______________________________________________________________________ -->
5836<div class="doc_subsubsection">
5837 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5838</div>
5839
5840<div class="doc_text">
5841
5842<h5>Syntax:</h5>
5843<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5844floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005845types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005846<pre>
5847 declare float @llvm.pow.f32(float %Val, float %Power)
5848 declare double @llvm.pow.f64(double %Val, double %Power)
5849 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5850 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5851 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5852</pre>
5853
5854<h5>Overview:</h5>
5855
5856<p>
5857The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5858specified (positive or negative) power.
5859</p>
5860
5861<h5>Arguments:</h5>
5862
5863<p>
5864The second argument is a floating point power, and the first is a value to
5865raise to that power.
5866</p>
5867
5868<h5>Semantics:</h5>
5869
5870<p>
5871This function returns the first value raised to the second power,
5872returning the
5873same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005874conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005875</div>
5876
Chris Lattner33b73f92006-09-08 06:34:02 +00005877
Andrew Lenharth1d463522005-05-03 18:01:48 +00005878<!-- ======================================================================= -->
5879<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005880 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005881</div>
5882
5883<div class="doc_text">
5884<p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005885LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005886These allow efficient code generation for some algorithms.
5887</p>
5888
5889</div>
5890
5891<!-- _______________________________________________________________________ -->
5892<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005893 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005894</div>
5895
5896<div class="doc_text">
5897
5898<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005899<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohmanef9462f2008-10-14 16:51:45 +00005900type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005901<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005902 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5903 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5904 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00005905</pre>
5906
5907<h5>Overview:</h5>
5908
5909<p>
Reid Spencerf361c4f2007-04-02 02:25:19 +00005910The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer4eefaab2007-04-01 08:04:23 +00005911values with an even number of bytes (positive multiple of 16 bits). These are
5912useful for performing operations on data that is not in the target's native
5913byte order.
Nate Begeman0f223bb2006-01-13 23:26:38 +00005914</p>
5915
5916<h5>Semantics:</h5>
5917
5918<p>
Chandler Carruth7132e002007-08-04 01:51:18 +00005919The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005920and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5921intrinsic returns an i32 value that has the four bytes of the input i32
5922swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth7132e002007-08-04 01:51:18 +00005923i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5924<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer4eefaab2007-04-01 08:04:23 +00005925additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005926</p>
5927
5928</div>
5929
5930<!-- _______________________________________________________________________ -->
5931<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005932 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005933</div>
5934
5935<div class="doc_text">
5936
5937<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005938<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohmanef9462f2008-10-14 16:51:45 +00005939width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005940<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005941 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005942 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005943 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005944 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5945 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005946</pre>
5947
5948<h5>Overview:</h5>
5949
5950<p>
Chris Lattner069b5bd2006-01-16 22:38:59 +00005951The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5952value.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005953</p>
5954
5955<h5>Arguments:</h5>
5956
5957<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005958The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005959integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005960</p>
5961
5962<h5>Semantics:</h5>
5963
5964<p>
5965The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5966</p>
5967</div>
5968
5969<!-- _______________________________________________________________________ -->
5970<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005971 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005972</div>
5973
5974<div class="doc_text">
5975
5976<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005977<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00005978integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005979<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005980 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5981 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005982 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005983 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5984 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005985</pre>
5986
5987<h5>Overview:</h5>
5988
5989<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005990The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5991leading zeros in a variable.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005992</p>
5993
5994<h5>Arguments:</h5>
5995
5996<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005997The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005998integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005999</p>
6000
6001<h5>Semantics:</h5>
6002
6003<p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006004The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
6005in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006006of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharth1d463522005-05-03 18:01:48 +00006007</p>
6008</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00006009
6010
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006011
6012<!-- _______________________________________________________________________ -->
6013<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006014 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006015</div>
6016
6017<div class="doc_text">
6018
6019<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006020<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00006021integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006022<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006023 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6024 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006025 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006026 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6027 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006028</pre>
6029
6030<h5>Overview:</h5>
6031
6032<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00006033The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6034trailing zeros.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006035</p>
6036
6037<h5>Arguments:</h5>
6038
6039<p>
6040The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00006041integer type. The return type must match the argument type.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006042</p>
6043
6044<h5>Semantics:</h5>
6045
6046<p>
6047The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
6048in a variable. If the src == 0 then the result is the size in bits of the type
6049of src. For example, <tt>llvm.cttz(2) = 1</tt>.
6050</p>
6051</div>
6052
Reid Spencer8a5799f2007-04-01 08:27:01 +00006053<!-- _______________________________________________________________________ -->
6054<div class="doc_subsubsection">
Reid Spencerea2945e2007-04-10 02:51:31 +00006055 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencer8bc7d952007-04-01 19:00:37 +00006056</div>
6057
6058<div class="doc_text">
6059
6060<h5>Syntax:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00006061<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006062on any integer bit width.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00006063<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006064 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
6065 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencer8bc7d952007-04-01 19:00:37 +00006066</pre>
6067
6068<h5>Overview:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00006069<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencer8bc7d952007-04-01 19:00:37 +00006070range of bits from an integer value and returns them in the same bit width as
6071the original value.</p>
6072
6073<h5>Arguments:</h5>
6074<p>The first argument, <tt>%val</tt> and the result may be integer types of
6075any bit width but they must have the same bit width. The second and third
Reid Spencer96a5f022007-04-04 02:42:35 +00006076arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00006077
6078<h5>Semantics:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00006079<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencer96a5f022007-04-04 02:42:35 +00006080of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
6081<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
6082operates in forward mode.</p>
6083<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
6084right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencer8bc7d952007-04-01 19:00:37 +00006085only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
6086<ol>
6087 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
6088 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
6089 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
6090 to determine the number of bits to retain.</li>
6091 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006092 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencer8bc7d952007-04-01 19:00:37 +00006093</ol>
Reid Spencer70845c02007-05-14 16:14:57 +00006094<p>In reverse mode, a similar computation is made except that the bits are
6095returned in the reverse order. So, for example, if <tt>X</tt> has the value
6096<tt>i16 0x0ACF (101011001111)</tt> and we apply
6097<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
6098<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00006099</div>
6100
Reid Spencer5bf54c82007-04-11 23:23:49 +00006101<div class="doc_subsubsection">
6102 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
6103</div>
6104
6105<div class="doc_text">
6106
6107<h5>Syntax:</h5>
6108<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006109on any integer bit width.</p>
Reid Spencer5bf54c82007-04-11 23:23:49 +00006110<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006111 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
6112 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencer5bf54c82007-04-11 23:23:49 +00006113</pre>
6114
6115<h5>Overview:</h5>
6116<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
6117of bits in an integer value with another integer value. It returns the integer
6118with the replaced bits.</p>
6119
6120<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006121<p>The first argument, <tt>%val</tt>, and the result may be integer types of
6122any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencer5bf54c82007-04-11 23:23:49 +00006123whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
6124integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
6125type since they specify only a bit index.</p>
6126
6127<h5>Semantics:</h5>
6128<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
6129of operation: forwards and reverse. If <tt>%lo</tt> is greater than
6130<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
6131operates in forward mode.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006132
Reid Spencer5bf54c82007-04-11 23:23:49 +00006133<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
6134truncating it down to the size of the replacement area or zero extending it
6135up to that size.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006136
Reid Spencer5bf54c82007-04-11 23:23:49 +00006137<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
6138are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
6139in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohmanef9462f2008-10-14 16:51:45 +00006140to the <tt>%hi</tt>th bit.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006141
Reid Spencer146281c2007-05-14 16:50:20 +00006142<p>In reverse mode, a similar computation is made except that the bits are
6143reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohmanef9462f2008-10-14 16:51:45 +00006144<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006145
Reid Spencer5bf54c82007-04-11 23:23:49 +00006146<h5>Examples:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006147
Reid Spencer5bf54c82007-04-11 23:23:49 +00006148<pre>
Reid Spencerc70afc32007-04-12 01:03:03 +00006149 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencer146281c2007-05-14 16:50:20 +00006150 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6151 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6152 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerc70afc32007-04-12 01:03:03 +00006153 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencer7972c472007-04-11 23:49:50 +00006154</pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006155
6156</div>
6157
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006158<!-- ======================================================================= -->
6159<div class="doc_subsection">
6160 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6161</div>
6162
6163<div class="doc_text">
6164<p>
6165LLVM provides intrinsics for some arithmetic with overflow operations.
6166</p>
6167
6168</div>
6169
Bill Wendlingf4d70622009-02-08 01:40:31 +00006170<!-- _______________________________________________________________________ -->
6171<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006172 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006173</div>
6174
6175<div class="doc_text">
6176
6177<h5>Syntax:</h5>
6178
6179<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006180on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006181
6182<pre>
6183 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6184 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6185 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6186</pre>
6187
6188<h5>Overview:</h5>
6189
6190<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6191a signed addition of the two arguments, and indicate whether an overflow
6192occurred during the signed summation.</p>
6193
6194<h5>Arguments:</h5>
6195
6196<p>The arguments (%a and %b) and the first element of the result structure may
6197be of integer types of any bit width, but they must have the same bit width. The
6198second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6199and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6200
6201<h5>Semantics:</h5>
6202
6203<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6204a signed addition of the two variables. They return a structure &mdash; the
6205first element of which is the signed summation, and the second element of which
6206is a bit specifying if the signed summation resulted in an overflow.</p>
6207
6208<h5>Examples:</h5>
6209<pre>
6210 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6211 %sum = extractvalue {i32, i1} %res, 0
6212 %obit = extractvalue {i32, i1} %res, 1
6213 br i1 %obit, label %overflow, label %normal
6214</pre>
6215
6216</div>
6217
6218<!-- _______________________________________________________________________ -->
6219<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006220 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006221</div>
6222
6223<div class="doc_text">
6224
6225<h5>Syntax:</h5>
6226
6227<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006228on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006229
6230<pre>
6231 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6232 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6233 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6234</pre>
6235
6236<h5>Overview:</h5>
6237
6238<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6239an unsigned addition of the two arguments, and indicate whether a carry occurred
6240during the unsigned summation.</p>
6241
6242<h5>Arguments:</h5>
6243
6244<p>The arguments (%a and %b) and the first element of the result structure may
6245be of integer types of any bit width, but they must have the same bit width. The
6246second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6247and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6248
6249<h5>Semantics:</h5>
6250
6251<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6252an unsigned addition of the two arguments. They return a structure &mdash; the
6253first element of which is the sum, and the second element of which is a bit
6254specifying if the unsigned summation resulted in a carry.</p>
6255
6256<h5>Examples:</h5>
6257<pre>
6258 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6259 %sum = extractvalue {i32, i1} %res, 0
6260 %obit = extractvalue {i32, i1} %res, 1
6261 br i1 %obit, label %carry, label %normal
6262</pre>
6263
6264</div>
6265
6266<!-- _______________________________________________________________________ -->
6267<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006268 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006269</div>
6270
6271<div class="doc_text">
6272
6273<h5>Syntax:</h5>
6274
6275<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006276on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006277
6278<pre>
6279 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6280 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6281 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6282</pre>
6283
6284<h5>Overview:</h5>
6285
6286<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6287a signed subtraction of the two arguments, and indicate whether an overflow
6288occurred during the signed subtraction.</p>
6289
6290<h5>Arguments:</h5>
6291
6292<p>The arguments (%a and %b) and the first element of the result structure may
6293be of integer types of any bit width, but they must have the same bit width. The
6294second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6295and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6296
6297<h5>Semantics:</h5>
6298
6299<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6300a signed subtraction of the two arguments. They return a structure &mdash; the
6301first element of which is the subtraction, and the second element of which is a bit
6302specifying if the signed subtraction resulted in an overflow.</p>
6303
6304<h5>Examples:</h5>
6305<pre>
6306 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6307 %sum = extractvalue {i32, i1} %res, 0
6308 %obit = extractvalue {i32, i1} %res, 1
6309 br i1 %obit, label %overflow, label %normal
6310</pre>
6311
6312</div>
6313
6314<!-- _______________________________________________________________________ -->
6315<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006316 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006317</div>
6318
6319<div class="doc_text">
6320
6321<h5>Syntax:</h5>
6322
6323<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006324on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006325
6326<pre>
6327 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6328 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6329 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6330</pre>
6331
6332<h5>Overview:</h5>
6333
6334<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6335an unsigned subtraction of the two arguments, and indicate whether an overflow
6336occurred during the unsigned subtraction.</p>
6337
6338<h5>Arguments:</h5>
6339
6340<p>The arguments (%a and %b) and the first element of the result structure may
6341be of integer types of any bit width, but they must have the same bit width. The
6342second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6343and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6344
6345<h5>Semantics:</h5>
6346
6347<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6348an unsigned subtraction of the two arguments. They return a structure &mdash; the
6349first element of which is the subtraction, and the second element of which is a bit
6350specifying if the unsigned subtraction resulted in an overflow.</p>
6351
6352<h5>Examples:</h5>
6353<pre>
6354 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6355 %sum = extractvalue {i32, i1} %res, 0
6356 %obit = extractvalue {i32, i1} %res, 1
6357 br i1 %obit, label %overflow, label %normal
6358</pre>
6359
6360</div>
6361
6362<!-- _______________________________________________________________________ -->
6363<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006364 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006365</div>
6366
6367<div class="doc_text">
6368
6369<h5>Syntax:</h5>
6370
6371<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006372on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006373
6374<pre>
6375 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6376 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6377 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6378</pre>
6379
6380<h5>Overview:</h5>
6381
6382<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6383a signed multiplication of the two arguments, and indicate whether an overflow
6384occurred during the signed multiplication.</p>
6385
6386<h5>Arguments:</h5>
6387
6388<p>The arguments (%a and %b) and the first element of the result structure may
6389be of integer types of any bit width, but they must have the same bit width. The
6390second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6391and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6392
6393<h5>Semantics:</h5>
6394
6395<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6396a signed multiplication of the two arguments. They return a structure &mdash;
6397the first element of which is the multiplication, and the second element of
6398which is a bit specifying if the signed multiplication resulted in an
6399overflow.</p>
6400
6401<h5>Examples:</h5>
6402<pre>
6403 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6404 %sum = extractvalue {i32, i1} %res, 0
6405 %obit = extractvalue {i32, i1} %res, 1
6406 br i1 %obit, label %overflow, label %normal
6407</pre>
6408
Reid Spencer5bf54c82007-04-11 23:23:49 +00006409</div>
6410
Bill Wendlingb9a73272009-02-08 23:00:09 +00006411<!-- _______________________________________________________________________ -->
6412<div class="doc_subsubsection">
6413 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6414</div>
6415
6416<div class="doc_text">
6417
6418<h5>Syntax:</h5>
6419
6420<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6421on any integer bit width.</p>
6422
6423<pre>
6424 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6425 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6426 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6427</pre>
6428
6429<h5>Overview:</h5>
6430
6431<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6432actively being fixed, but it should not currently be used!</i></p>
6433
6434<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6435a unsigned multiplication of the two arguments, and indicate whether an overflow
6436occurred during the unsigned multiplication.</p>
6437
6438<h5>Arguments:</h5>
6439
6440<p>The arguments (%a and %b) and the first element of the result structure may
6441be of integer types of any bit width, but they must have the same bit width. The
6442second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6443and <tt>%b</tt> are the two values that will undergo unsigned
6444multiplication.</p>
6445
6446<h5>Semantics:</h5>
6447
6448<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6449an unsigned multiplication of the two arguments. They return a structure &mdash;
6450the first element of which is the multiplication, and the second element of
6451which is a bit specifying if the unsigned multiplication resulted in an
6452overflow.</p>
6453
6454<h5>Examples:</h5>
6455<pre>
6456 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6457 %sum = extractvalue {i32, i1} %res, 0
6458 %obit = extractvalue {i32, i1} %res, 1
6459 br i1 %obit, label %overflow, label %normal
6460</pre>
6461
6462</div>
6463
Chris Lattner941515c2004-01-06 05:31:32 +00006464<!-- ======================================================================= -->
6465<div class="doc_subsection">
6466 <a name="int_debugger">Debugger Intrinsics</a>
6467</div>
6468
6469<div class="doc_text">
6470<p>
6471The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6472are described in the <a
6473href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6474Debugging</a> document.
6475</p>
6476</div>
6477
6478
Jim Laskey2211f492007-03-14 19:31:19 +00006479<!-- ======================================================================= -->
6480<div class="doc_subsection">
6481 <a name="int_eh">Exception Handling Intrinsics</a>
6482</div>
6483
6484<div class="doc_text">
6485<p> The LLVM exception handling intrinsics (which all start with
6486<tt>llvm.eh.</tt> prefix), are described in the <a
6487href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6488Handling</a> document. </p>
6489</div>
6490
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006491<!-- ======================================================================= -->
6492<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006493 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006494</div>
6495
6496<div class="doc_text">
6497<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006498 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands644f9172007-07-27 12:58:54 +00006499 the <tt>nest</tt> attribute, from a function. The result is a callable
6500 function pointer lacking the nest parameter - the caller does not need
6501 to provide a value for it. Instead, the value to use is stored in
6502 advance in a "trampoline", a block of memory usually allocated
6503 on the stack, which also contains code to splice the nest value into the
6504 argument list. This is used to implement the GCC nested function address
6505 extension.
6506</p>
6507<p>
6508 For example, if the function is
6509 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling252570f2007-09-22 09:23:55 +00006510 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006511<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006512 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6513 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6514 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6515 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006516</pre>
Bill Wendling252570f2007-09-22 09:23:55 +00006517 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6518 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006519</div>
6520
6521<!-- _______________________________________________________________________ -->
6522<div class="doc_subsubsection">
6523 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6524</div>
6525<div class="doc_text">
6526<h5>Syntax:</h5>
6527<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006528declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006529</pre>
6530<h5>Overview:</h5>
6531<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006532 This fills the memory pointed to by <tt>tramp</tt> with code
6533 and returns a function pointer suitable for executing it.
Duncan Sands644f9172007-07-27 12:58:54 +00006534</p>
6535<h5>Arguments:</h5>
6536<p>
6537 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6538 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6539 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsf2bcd372007-08-22 23:39:54 +00006540 intrinsic. Note that the size and the alignment are target-specific - LLVM
6541 currently provides no portable way of determining them, so a front-end that
6542 generates this intrinsic needs to have some target-specific knowledge.
6543 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands644f9172007-07-27 12:58:54 +00006544</p>
6545<h5>Semantics:</h5>
6546<p>
6547 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands86e01192007-09-11 14:10:23 +00006548 dependent code, turning it into a function. A pointer to this function is
6549 returned, but needs to be bitcast to an
Duncan Sands644f9172007-07-27 12:58:54 +00006550 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands86e01192007-09-11 14:10:23 +00006551 before being called. The new function's signature is the same as that of
6552 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6553 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6554 of pointer type. Calling the new function is equivalent to calling
6555 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6556 missing <tt>nest</tt> argument. If, after calling
6557 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6558 modified, then the effect of any later call to the returned function pointer is
6559 undefined.
Duncan Sands644f9172007-07-27 12:58:54 +00006560</p>
6561</div>
6562
6563<!-- ======================================================================= -->
6564<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006565 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6566</div>
6567
6568<div class="doc_text">
6569<p>
6570 These intrinsic functions expand the "universal IR" of LLVM to represent
6571 hardware constructs for atomic operations and memory synchronization. This
6572 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner67c37d12008-08-05 18:29:16 +00006573 is aimed at a low enough level to allow any programming models or APIs
6574 (Application Programming Interfaces) which
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006575 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6576 hardware behavior. Just as hardware provides a "universal IR" for source
6577 languages, it also provides a starting point for developing a "universal"
6578 atomic operation and synchronization IR.
6579</p>
6580<p>
6581 These do <em>not</em> form an API such as high-level threading libraries,
6582 software transaction memory systems, atomic primitives, and intrinsic
6583 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6584 application libraries. The hardware interface provided by LLVM should allow
6585 a clean implementation of all of these APIs and parallel programming models.
6586 No one model or paradigm should be selected above others unless the hardware
6587 itself ubiquitously does so.
6588
6589</p>
6590</div>
6591
6592<!-- _______________________________________________________________________ -->
6593<div class="doc_subsubsection">
6594 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6595</div>
6596<div class="doc_text">
6597<h5>Syntax:</h5>
6598<pre>
6599declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6600i1 &lt;device&gt; )
6601
6602</pre>
6603<h5>Overview:</h5>
6604<p>
6605 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6606 specific pairs of memory access types.
6607</p>
6608<h5>Arguments:</h5>
6609<p>
6610 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6611 The first four arguments enables a specific barrier as listed below. The fith
6612 argument specifies that the barrier applies to io or device or uncached memory.
6613
6614</p>
6615 <ul>
6616 <li><tt>ll</tt>: load-load barrier</li>
6617 <li><tt>ls</tt>: load-store barrier</li>
6618 <li><tt>sl</tt>: store-load barrier</li>
6619 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006620 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006621 </ul>
6622<h5>Semantics:</h5>
6623<p>
6624 This intrinsic causes the system to enforce some ordering constraints upon
6625 the loads and stores of the program. This barrier does not indicate
6626 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6627 which they occur. For any of the specified pairs of load and store operations
6628 (f.ex. load-load, or store-load), all of the first operations preceding the
6629 barrier will complete before any of the second operations succeeding the
6630 barrier begin. Specifically the semantics for each pairing is as follows:
6631</p>
6632 <ul>
6633 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6634 after the barrier begins.</li>
6635
6636 <li><tt>ls</tt>: All loads before the barrier must complete before any
6637 store after the barrier begins.</li>
6638 <li><tt>ss</tt>: All stores before the barrier must complete before any
6639 store after the barrier begins.</li>
6640 <li><tt>sl</tt>: All stores before the barrier must complete before any
6641 load after the barrier begins.</li>
6642 </ul>
6643<p>
6644 These semantics are applied with a logical "and" behavior when more than one
6645 is enabled in a single memory barrier intrinsic.
6646</p>
6647<p>
6648 Backends may implement stronger barriers than those requested when they do not
6649 support as fine grained a barrier as requested. Some architectures do not
6650 need all types of barriers and on such architectures, these become noops.
6651</p>
6652<h5>Example:</h5>
6653<pre>
6654%ptr = malloc i32
6655 store i32 4, %ptr
6656
6657%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6658 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6659 <i>; guarantee the above finishes</i>
6660 store i32 8, %ptr <i>; before this begins</i>
6661</pre>
6662</div>
6663
Andrew Lenharth95528942008-02-21 06:45:13 +00006664<!-- _______________________________________________________________________ -->
6665<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006666 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006667</div>
6668<div class="doc_text">
6669<h5>Syntax:</h5>
6670<p>
Mon P Wang2c839d42008-07-30 04:36:53 +00006671 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6672 any integer bit width and for different address spaces. Not all targets
6673 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006674
6675<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006676declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6677declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6678declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6679declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006680
6681</pre>
6682<h5>Overview:</h5>
6683<p>
6684 This loads a value in memory and compares it to a given value. If they are
6685 equal, it stores a new value into the memory.
6686</p>
6687<h5>Arguments:</h5>
6688<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006689 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharth95528942008-02-21 06:45:13 +00006690 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6691 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6692 this integer type. While any bit width integer may be used, targets may only
6693 lower representations they support in hardware.
6694
6695</p>
6696<h5>Semantics:</h5>
6697<p>
6698 This entire intrinsic must be executed atomically. It first loads the value
6699 in memory pointed to by <tt>ptr</tt> and compares it with the value
6700 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6701 loaded value is yielded in all cases. This provides the equivalent of an
6702 atomic compare-and-swap operation within the SSA framework.
6703</p>
6704<h5>Examples:</h5>
6705
6706<pre>
6707%ptr = malloc i32
6708 store i32 4, %ptr
6709
6710%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006711%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006712 <i>; yields {i32}:result1 = 4</i>
6713%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6714%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6715
6716%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006717%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006718 <i>; yields {i32}:result2 = 8</i>
6719%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6720
6721%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6722</pre>
6723</div>
6724
6725<!-- _______________________________________________________________________ -->
6726<div class="doc_subsubsection">
6727 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6728</div>
6729<div class="doc_text">
6730<h5>Syntax:</h5>
6731
6732<p>
6733 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6734 integer bit width. Not all targets support all bit widths however.</p>
6735<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006736declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6737declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6738declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6739declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006740
6741</pre>
6742<h5>Overview:</h5>
6743<p>
6744 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6745 the value from memory. It then stores the value in <tt>val</tt> in the memory
6746 at <tt>ptr</tt>.
6747</p>
6748<h5>Arguments:</h5>
6749
6750<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006751 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharth95528942008-02-21 06:45:13 +00006752 <tt>val</tt> argument and the result must be integers of the same bit width.
6753 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6754 integer type. The targets may only lower integer representations they
6755 support.
6756</p>
6757<h5>Semantics:</h5>
6758<p>
6759 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6760 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6761 equivalent of an atomic swap operation within the SSA framework.
6762
6763</p>
6764<h5>Examples:</h5>
6765<pre>
6766%ptr = malloc i32
6767 store i32 4, %ptr
6768
6769%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006770%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006771 <i>; yields {i32}:result1 = 4</i>
6772%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6773%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6774
6775%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006776%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006777 <i>; yields {i32}:result2 = 8</i>
6778
6779%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6780%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6781</pre>
6782</div>
6783
6784<!-- _______________________________________________________________________ -->
6785<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006786 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006787
6788</div>
6789<div class="doc_text">
6790<h5>Syntax:</h5>
6791<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006792 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharth95528942008-02-21 06:45:13 +00006793 integer bit width. Not all targets support all bit widths however.</p>
6794<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006795declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6796declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6797declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6798declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006799
6800</pre>
6801<h5>Overview:</h5>
6802<p>
6803 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6804 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6805</p>
6806<h5>Arguments:</h5>
6807<p>
6808
6809 The intrinsic takes two arguments, the first a pointer to an integer value
6810 and the second an integer value. The result is also an integer value. These
6811 integer types can have any bit width, but they must all have the same bit
6812 width. The targets may only lower integer representations they support.
6813</p>
6814<h5>Semantics:</h5>
6815<p>
6816 This intrinsic does a series of operations atomically. It first loads the
6817 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6818 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6819</p>
6820
6821<h5>Examples:</h5>
6822<pre>
6823%ptr = malloc i32
6824 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006825%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006826 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006827%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006828 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006829%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006830 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006831%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006832</pre>
6833</div>
6834
Mon P Wang6a490372008-06-25 08:15:39 +00006835<!-- _______________________________________________________________________ -->
6836<div class="doc_subsubsection">
6837 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6838
6839</div>
6840<div class="doc_text">
6841<h5>Syntax:</h5>
6842<p>
6843 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wang2c839d42008-07-30 04:36:53 +00006844 any integer bit width and for different address spaces. Not all targets
6845 support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006846<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006847declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6848declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6849declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6850declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006851
6852</pre>
6853<h5>Overview:</h5>
6854<p>
6855 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6856 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6857</p>
6858<h5>Arguments:</h5>
6859<p>
6860
6861 The intrinsic takes two arguments, the first a pointer to an integer value
6862 and the second an integer value. The result is also an integer value. These
6863 integer types can have any bit width, but they must all have the same bit
6864 width. The targets may only lower integer representations they support.
6865</p>
6866<h5>Semantics:</h5>
6867<p>
6868 This intrinsic does a series of operations atomically. It first loads the
6869 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6870 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6871</p>
6872
6873<h5>Examples:</h5>
6874<pre>
6875%ptr = malloc i32
6876 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006877%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006878 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006879%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006880 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006881%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006882 <i>; yields {i32}:result3 = 2</i>
6883%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6884</pre>
6885</div>
6886
6887<!-- _______________________________________________________________________ -->
6888<div class="doc_subsubsection">
6889 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6890 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6891 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6892 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6893
6894</div>
6895<div class="doc_text">
6896<h5>Syntax:</h5>
6897<p>
6898 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6899 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006900 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6901 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006902<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006903declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6904declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6905declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6906declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006907
6908</pre>
6909
6910<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006911declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6912declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6913declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6914declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006915
6916</pre>
6917
6918<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006919declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6920declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6921declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6922declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006923
6924</pre>
6925
6926<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006927declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6928declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6929declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6930declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006931
6932</pre>
6933<h5>Overview:</h5>
6934<p>
6935 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6936 the value stored in memory at <tt>ptr</tt>. It yields the original value
6937 at <tt>ptr</tt>.
6938</p>
6939<h5>Arguments:</h5>
6940<p>
6941
6942 These intrinsics take two arguments, the first a pointer to an integer value
6943 and the second an integer value. The result is also an integer value. These
6944 integer types can have any bit width, but they must all have the same bit
6945 width. The targets may only lower integer representations they support.
6946</p>
6947<h5>Semantics:</h5>
6948<p>
6949 These intrinsics does a series of operations atomically. They first load the
6950 value stored at <tt>ptr</tt>. They then do the bitwise operation
6951 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6952 value stored at <tt>ptr</tt>.
6953</p>
6954
6955<h5>Examples:</h5>
6956<pre>
6957%ptr = malloc i32
6958 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006959%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006960 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006961%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006962 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006963%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006964 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006965%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006966 <i>; yields {i32}:result3 = FF</i>
6967%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6968</pre>
6969</div>
6970
6971
6972<!-- _______________________________________________________________________ -->
6973<div class="doc_subsubsection">
6974 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6975 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6976 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6977 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6978
6979</div>
6980<div class="doc_text">
6981<h5>Syntax:</h5>
6982<p>
6983 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6984 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006985 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6986 address spaces. Not all targets
Mon P Wang6a490372008-06-25 08:15:39 +00006987 support all bit widths however.</p>
6988<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006989declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6990declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6991declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6992declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006993
6994</pre>
6995
6996<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006997declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6998declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6999declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7000declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007001
7002</pre>
7003
7004<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00007005declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7006declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7007declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7008declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007009
7010</pre>
7011
7012<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00007013declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7014declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7015declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7016declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00007017
7018</pre>
7019<h5>Overview:</h5>
7020<p>
7021 These intrinsics takes the signed or unsigned minimum or maximum of
7022 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7023 original value at <tt>ptr</tt>.
7024</p>
7025<h5>Arguments:</h5>
7026<p>
7027
7028 These intrinsics take two arguments, the first a pointer to an integer value
7029 and the second an integer value. The result is also an integer value. These
7030 integer types can have any bit width, but they must all have the same bit
7031 width. The targets may only lower integer representations they support.
7032</p>
7033<h5>Semantics:</h5>
7034<p>
7035 These intrinsics does a series of operations atomically. They first load the
7036 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
7037 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
7038 the original value stored at <tt>ptr</tt>.
7039</p>
7040
7041<h5>Examples:</h5>
7042<pre>
7043%ptr = malloc i32
7044 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00007045%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00007046 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007047%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00007048 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007049%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00007050 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00007051%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00007052 <i>; yields {i32}:result3 = 8</i>
7053%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7054</pre>
7055</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007056
7057<!-- ======================================================================= -->
7058<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007059 <a name="int_general">General Intrinsics</a>
7060</div>
7061
7062<div class="doc_text">
7063<p> This class of intrinsics is designed to be generic and has
7064no specific purpose. </p>
7065</div>
7066
7067<!-- _______________________________________________________________________ -->
7068<div class="doc_subsubsection">
7069 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7070</div>
7071
7072<div class="doc_text">
7073
7074<h5>Syntax:</h5>
7075<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00007076 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007077</pre>
7078
7079<h5>Overview:</h5>
7080
7081<p>
7082The '<tt>llvm.var.annotation</tt>' intrinsic
7083</p>
7084
7085<h5>Arguments:</h5>
7086
7087<p>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00007088The first argument is a pointer to a value, the second is a pointer to a
7089global string, the third is a pointer to a global string which is the source
7090file name, and the last argument is the line number.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007091</p>
7092
7093<h5>Semantics:</h5>
7094
7095<p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007096This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007097This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007098annotations. These have no other defined use, they are ignored by code
7099generation and optimization.
7100</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007101</div>
7102
Tanya Lattner293c0372007-09-21 22:59:12 +00007103<!-- _______________________________________________________________________ -->
7104<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00007105 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00007106</div>
7107
7108<div class="doc_text">
7109
7110<h5>Syntax:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00007111<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7112any integer bit width.
7113</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007114<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00007115 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7116 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7117 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7118 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7119 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00007120</pre>
7121
7122<h5>Overview:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00007123
7124<p>
7125The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattner293c0372007-09-21 22:59:12 +00007126</p>
7127
7128<h5>Arguments:</h5>
7129
7130<p>
7131The first argument is an integer value (result of some expression),
7132the second is a pointer to a global string, the third is a pointer to a global
7133string which is the source file name, and the last argument is the line number.
Tanya Lattner23dbd572007-09-21 23:56:27 +00007134It returns the value of the first argument.
Tanya Lattner293c0372007-09-21 22:59:12 +00007135</p>
7136
7137<h5>Semantics:</h5>
7138
7139<p>
7140This intrinsic allows annotations to be put on arbitrary expressions
7141with arbitrary strings. This can be useful for special purpose optimizations
7142that want to look for these annotations. These have no other defined use, they
7143are ignored by code generation and optimization.
Dan Gohmanef9462f2008-10-14 16:51:45 +00007144</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007145</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007146
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007147<!-- _______________________________________________________________________ -->
7148<div class="doc_subsubsection">
7149 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7150</div>
7151
7152<div class="doc_text">
7153
7154<h5>Syntax:</h5>
7155<pre>
7156 declare void @llvm.trap()
7157</pre>
7158
7159<h5>Overview:</h5>
7160
7161<p>
7162The '<tt>llvm.trap</tt>' intrinsic
7163</p>
7164
7165<h5>Arguments:</h5>
7166
7167<p>
7168None
7169</p>
7170
7171<h5>Semantics:</h5>
7172
7173<p>
7174This intrinsics is lowered to the target dependent trap instruction. If the
7175target does not have a trap instruction, this intrinsic will be lowered to the
7176call of the abort() function.
7177</p>
7178</div>
7179
Bill Wendling14313312008-11-19 05:56:17 +00007180<!-- _______________________________________________________________________ -->
7181<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007182 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007183</div>
7184<div class="doc_text">
7185<h5>Syntax:</h5>
7186<pre>
7187declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7188
7189</pre>
7190<h5>Overview:</h5>
7191<p>
7192 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7193 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7194 it is placed on the stack before local variables.
7195</p>
7196<h5>Arguments:</h5>
7197<p>
7198 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7199 first argument is the value loaded from the stack guard
7200 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7201 has enough space to hold the value of the guard.
7202</p>
7203<h5>Semantics:</h5>
7204<p>
7205 This intrinsic causes the prologue/epilogue inserter to force the position of
7206 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7207 stack. This is to ensure that if a local variable on the stack is overwritten,
7208 it will destroy the value of the guard. When the function exits, the guard on
7209 the stack is checked against the original guard. If they're different, then
7210 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7211</p>
7212</div>
7213
Chris Lattner2f7c9632001-06-06 20:29:01 +00007214<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007215<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007216<address>
7217 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007218 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007219 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007220 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007221
7222 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007223 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007224 Last modified: $Date$
7225</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007226
Misha Brukman76307852003-11-08 01:05:38 +00007227</body>
7228</html>