blob: 36eae718e358309c34364a4c12ce3fd695033481 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnerd79749a2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattner0132aff2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000040 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000056 </ol>
57 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000058 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000059 </ol>
60 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000061 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000062 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000063 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000064 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000065 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
66 <li><a href="#undefvalues">Undefined Values</a></li>
67 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky49f89192009-04-04 07:22:01 +000068 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000069 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000070 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000071 <li><a href="#othervalues">Other Values</a>
72 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000073 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +000074 </ol>
75 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000076 <li><a href="#instref">Instruction Reference</a>
77 <ol>
78 <li><a href="#terminators">Terminator Instructions</a>
79 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000080 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
81 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000082 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
83 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000084 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +000085 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000086 </ol>
87 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000088 <li><a href="#binaryops">Binary Operations</a>
89 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000090 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
91 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
92 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +000093 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
94 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
95 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +000096 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
97 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
98 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </ol>
100 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000101 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
102 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000103 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
104 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
105 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000106 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000107 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000108 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000109 </ol>
110 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000111 <li><a href="#vectorops">Vector Operations</a>
112 <ol>
113 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
114 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
115 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000116 </ol>
117 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000118 <li><a href="#aggregateops">Aggregate Operations</a>
119 <ol>
120 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
121 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
122 </ol>
123 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000124 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000125 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
127 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
128 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000129 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
130 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
131 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 </ol>
133 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000134 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000135 <ol>
136 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
140 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000141 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
142 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
143 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
144 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000145 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
146 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000147 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000148 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000149 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000150 <li><a href="#otherops">Other Operations</a>
151 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000152 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
153 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemand2195702008-05-12 19:01:56 +0000154 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
155 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000156 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000157 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000158 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000159 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000160 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000161 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000162 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000163 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000164 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000165 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000166 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
167 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000168 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
169 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
170 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000171 </ol>
172 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000173 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
174 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000175 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
176 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
177 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000178 </ol>
179 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000180 <li><a href="#int_codegen">Code Generator Intrinsics</a>
181 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000182 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
183 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
184 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
185 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
186 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
187 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
188 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000189 </ol>
190 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000191 <li><a href="#int_libc">Standard C Library Intrinsics</a>
192 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000193 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000198 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000201 </ol>
202 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000203 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000204 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000205 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000206 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
208 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencer5bf54c82007-04-11 23:23:49 +0000209 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
210 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000211 </ol>
212 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000213 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
214 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000215 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
219 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000220 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000221 </ol>
222 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000223 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000224 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000225 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000226 <ol>
227 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000228 </ol>
229 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000230 <li><a href="#int_atomics">Atomic intrinsics</a>
231 <ol>
232 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
233 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
234 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
235 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
236 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
237 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
238 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
239 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
240 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
241 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
242 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
243 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
244 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
245 </ol>
246 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000247 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000248 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000249 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000250 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000251 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000252 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000253 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000254 '<tt>llvm.trap</tt>' Intrinsic</a></li>
255 <li><a href="#int_stackprotector">
256 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000257 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000258 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000259 </ol>
260 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000261</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000262
263<div class="doc_author">
264 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
265 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000266</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000267
Chris Lattner2f7c9632001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="abstract">Abstract </a></div>
270<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000271
Misha Brukman76307852003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000273<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling6e03f9a2008-08-05 22:29:16 +0000274LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner67c37d12008-08-05 18:29:16 +0000275type safety, low-level operations, flexibility, and the capability of
276representing 'all' high-level languages cleanly. It is the common code
Chris Lattner48b383b02003-11-25 01:02:51 +0000277representation used throughout all phases of the LLVM compilation
278strategy.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000279</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000280
Chris Lattner2f7c9632001-06-06 20:29:01 +0000281<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000282<div class="doc_section"> <a name="introduction">Introduction</a> </div>
283<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000284
Misha Brukman76307852003-11-08 01:05:38 +0000285<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000286
Chris Lattner48b383b02003-11-25 01:02:51 +0000287<p>The LLVM code representation is designed to be used in three
Gabor Greifa54634a2007-07-06 22:07:22 +0000288different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner48b383b02003-11-25 01:02:51 +0000289representation (suitable for fast loading by a Just-In-Time compiler),
290and as a human readable assembly language representation. This allows
291LLVM to provide a powerful intermediate representation for efficient
292compiler transformations and analysis, while providing a natural means
293to debug and visualize the transformations. The three different forms
294of LLVM are all equivalent. This document describes the human readable
295representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000296
John Criswell4a3327e2005-05-13 22:25:59 +0000297<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner48b383b02003-11-25 01:02:51 +0000298while being expressive, typed, and extensible at the same time. It
299aims to be a "universal IR" of sorts, by being at a low enough level
300that high-level ideas may be cleanly mapped to it (similar to how
301microprocessors are "universal IR's", allowing many source languages to
302be mapped to them). By providing type information, LLVM can be used as
303the target of optimizations: for example, through pointer analysis, it
304can be proven that a C automatic variable is never accessed outside of
305the current function... allowing it to be promoted to a simple SSA
306value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000307
Misha Brukman76307852003-11-08 01:05:38 +0000308</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000309
Chris Lattner2f7c9632001-06-06 20:29:01 +0000310<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000311<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000312
Misha Brukman76307852003-11-08 01:05:38 +0000313<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000314
Chris Lattner48b383b02003-11-25 01:02:51 +0000315<p>It is important to note that this document describes 'well formed'
316LLVM assembly language. There is a difference between what the parser
317accepts and what is considered 'well formed'. For example, the
318following instruction is syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000319
Bill Wendling3716c5d2007-05-29 09:04:49 +0000320<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000321<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000322%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000323</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000324</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000325
Chris Lattner48b383b02003-11-25 01:02:51 +0000326<p>...because the definition of <tt>%x</tt> does not dominate all of
327its uses. The LLVM infrastructure provides a verification pass that may
328be used to verify that an LLVM module is well formed. This pass is
John Criswell4a3327e2005-05-13 22:25:59 +0000329automatically run by the parser after parsing input assembly and by
Gabor Greifa54634a2007-07-06 22:07:22 +0000330the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner48b383b02003-11-25 01:02:51 +0000331by the verifier pass indicate bugs in transformation passes or input to
332the parser.</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000333</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000334
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000335<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000336
Chris Lattner2f7c9632001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000338<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000339<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Misha Brukman76307852003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000342
Reid Spencerb23b65f2007-08-07 14:34:28 +0000343 <p>LLVM identifiers come in two basic types: global and local. Global
344 identifiers (functions, global variables) begin with the @ character. Local
345 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohmanef9462f2008-10-14 16:51:45 +0000346 there are three different formats for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000347
Chris Lattner2f7c9632001-06-06 20:29:01 +0000348<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000349 <li>Named values are represented as a string of characters with their prefix.
350 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
351 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000352 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar0f8155a2008-10-14 23:51:43 +0000353 with quotes. Special characters may be escaped using "\xx" where xx is the
354 ASCII code for the character in hexadecimal. In this way, any character can
355 be used in a name value, even quotes themselves.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000356
Reid Spencerb23b65f2007-08-07 14:34:28 +0000357 <li>Unnamed values are represented as an unsigned numeric value with their
358 prefix. For example, %12, @2, %44.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000359
Reid Spencer8f08d802004-12-09 18:02:53 +0000360 <li>Constants, which are described in a <a href="#constants">section about
361 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000362</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000363
Reid Spencerb23b65f2007-08-07 14:34:28 +0000364<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnerd79749a2004-12-09 16:36:40 +0000365don't need to worry about name clashes with reserved words, and the set of
366reserved words may be expanded in the future without penalty. Additionally,
367unnamed identifiers allow a compiler to quickly come up with a temporary
368variable without having to avoid symbol table conflicts.</p>
369
Chris Lattner48b383b02003-11-25 01:02:51 +0000370<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5b950642006-11-11 23:08:07 +0000371languages. There are keywords for different opcodes
372('<tt><a href="#i_add">add</a></tt>',
373 '<tt><a href="#i_bitcast">bitcast</a></tt>',
374 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000375href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnerd79749a2004-12-09 16:36:40 +0000376and others. These reserved words cannot conflict with variable names, because
Reid Spencerb23b65f2007-08-07 14:34:28 +0000377none of them start with a prefix character ('%' or '@').</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000378
379<p>Here is an example of LLVM code to multiply the integer variable
380'<tt>%X</tt>' by 8:</p>
381
Misha Brukman76307852003-11-08 01:05:38 +0000382<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000383
Bill Wendling3716c5d2007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000385<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000386%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000387</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000388</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000389
Misha Brukman76307852003-11-08 01:05:38 +0000390<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000391
Bill Wendling3716c5d2007-05-29 09:04:49 +0000392<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000393<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000394%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000395</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000396</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000397
Misha Brukman76307852003-11-08 01:05:38 +0000398<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000399
Bill Wendling3716c5d2007-05-29 09:04:49 +0000400<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000401<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000402<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
403<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
404%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000406</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000407
Chris Lattner48b383b02003-11-25 01:02:51 +0000408<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
409important lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000410
Chris Lattner2f7c9632001-06-06 20:29:01 +0000411<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
413 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
414 line.</li>
415
416 <li>Unnamed temporaries are created when the result of a computation is not
417 assigned to a named value.</li>
418
Misha Brukman76307852003-11-08 01:05:38 +0000419 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000420
Misha Brukman76307852003-11-08 01:05:38 +0000421</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
John Criswell02fdc6f2005-05-12 16:52:32 +0000423<p>...and it also shows a convention that we follow in this document. When
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424demonstrating instructions, we will follow an instruction with a comment that
425defines the type and name of value produced. Comments are shown in italic
426text.</p>
427
Misha Brukman76307852003-11-08 01:05:38 +0000428</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000429
430<!-- *********************************************************************** -->
431<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
432<!-- *********************************************************************** -->
433
434<!-- ======================================================================= -->
435<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
436</div>
437
438<div class="doc_text">
439
440<p>LLVM programs are composed of "Module"s, each of which is a
441translation unit of the input programs. Each module consists of
442functions, global variables, and symbol table entries. Modules may be
443combined together with the LLVM linker, which merges function (and
444global variable) definitions, resolves forward declarations, and merges
445symbol table entries. Here is an example of the "hello world" module:</p>
446
Bill Wendling3716c5d2007-05-29 09:04:49 +0000447<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000448<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000449<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
450 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000451
452<i>; External declaration of the puts function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000453<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000454
455<i>; Definition of main function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000456define i32 @main() { <i>; i32()* </i>
Dan Gohman623806e2009-01-04 23:44:43 +0000457 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000458 %cast210 = <a
Dan Gohman623806e2009-01-04 23:44:43 +0000459 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000460
461 <i>; Call puts function to write out the string to stdout...</i>
462 <a
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000463 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000464 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000465 href="#i_ret">ret</a> i32 0<br>}<br>
466</pre>
467</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000468
469<p>This example is made up of a <a href="#globalvars">global variable</a>
470named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
471function, and a <a href="#functionstructure">function definition</a>
472for "<tt>main</tt>".</p>
473
Chris Lattnerd79749a2004-12-09 16:36:40 +0000474<p>In general, a module is made up of a list of global values,
475where both functions and global variables are global values. Global values are
476represented by a pointer to a memory location (in this case, a pointer to an
477array of char, and a pointer to a function), and have one of the following <a
478href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000479
Chris Lattnerd79749a2004-12-09 16:36:40 +0000480</div>
481
482<!-- ======================================================================= -->
483<div class="doc_subsection">
484 <a name="linkage">Linkage Types</a>
485</div>
486
487<div class="doc_text">
488
489<p>
490All Global Variables and Functions have one of the following types of linkage:
491</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000492
493<dl>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000494
Rafael Espindola6de96a12009-01-15 20:18:42 +0000495 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
496
497 <dd>Global values with private linkage are only directly accessible by
498 objects in the current module. In particular, linking code into a module with
499 an private global value may cause the private to be renamed as necessary to
500 avoid collisions. Because the symbol is private to the module, all
501 references can be updated. This doesn't show up in any symbol table in the
502 object file.
503 </dd>
504
Dale Johannesen4188aad2008-05-23 23:13:41 +0000505 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000506
Duncan Sands35e43c12009-01-16 09:29:46 +0000507 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindola6de96a12009-01-15 20:18:42 +0000508 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattnere20b4702007-01-14 06:51:48 +0000509 '<tt>static</tt>' keyword in C.
Chris Lattner6af02f32004-12-09 16:11:40 +0000510 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000511
Chris Lattner184f1be2009-04-13 05:44:34 +0000512 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
513 </dt>
514
515 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
516 into the object file corresponding to the LLVM module. They exist to
517 allow inlining and other optimizations to take place given knowledge of the
518 definition of the global, which is known to be somewhere outside the module.
519 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
520 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
521 type is only allowed on definitions, not declarations.</dd>
522
Chris Lattner6af02f32004-12-09 16:11:40 +0000523 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000524
Chris Lattnere20b4702007-01-14 06:51:48 +0000525 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
526 the same name when linkage occurs. This is typically used to implement
527 inline functions, templates, or other code which must be generated in each
528 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
529 allowed to be discarded.
Chris Lattner6af02f32004-12-09 16:11:40 +0000530 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000531
Dale Johannesen4188aad2008-05-23 23:13:41 +0000532 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
533
534 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
535 linkage, except that unreferenced <tt>common</tt> globals may not be
536 discarded. This is used for globals that may be emitted in multiple
537 translation units, but that are not guaranteed to be emitted into every
538 translation unit that uses them. One example of this is tentative
539 definitions in C, such as "<tt>int X;</tt>" at global scope.
540 </dd>
541
Chris Lattner6af02f32004-12-09 16:11:40 +0000542 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000543
Dale Johannesen4188aad2008-05-23 23:13:41 +0000544 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
545 that some targets may choose to emit different assembly sequences for them
546 for target-dependent reasons. This is used for globals that are declared
547 "weak" in C source code.
Chris Lattner6af02f32004-12-09 16:11:40 +0000548 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000549
Chris Lattner6af02f32004-12-09 16:11:40 +0000550 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000551
552 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
553 pointer to array type. When two global variables with appending linkage are
554 linked together, the two global arrays are appended together. This is the
555 LLVM, typesafe, equivalent of having the system linker append together
556 "sections" with identical names when .o files are linked.
Chris Lattner6af02f32004-12-09 16:11:40 +0000557 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000558
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000559 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000560
Chris Lattner67c37d12008-08-05 18:29:16 +0000561 <dd>The semantics of this linkage follow the ELF object file model: the
562 symbol is weak until linked, if not linked, the symbol becomes null instead
563 of being an undefined reference.
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000564 </dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000565
Duncan Sands12da8ce2009-03-07 15:45:40 +0000566 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000567 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000568 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands12da8ce2009-03-07 15:45:40 +0000569 functions with different semantics. Other languages, such as <tt>C++</tt>,
570 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner184f1be2009-04-13 05:44:34 +0000571 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4581beb2009-03-11 20:14:15 +0000572 and <tt>weak_odr</tt> linkage types to indicate that the global will only
573 be merged with equivalent globals. These linkage types are otherwise the
574 same as their non-<tt>odr</tt> versions.
Duncan Sands12da8ce2009-03-07 15:45:40 +0000575 </dd>
576
Chris Lattner6af02f32004-12-09 16:11:40 +0000577 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000578
579 <dd>If none of the above identifiers are used, the global is externally
580 visible, meaning that it participates in linkage and can be used to resolve
581 external symbol references.
Chris Lattner6af02f32004-12-09 16:11:40 +0000582 </dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000583</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000584
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000585 <p>
586 The next two types of linkage are targeted for Microsoft Windows platform
587 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner67c37d12008-08-05 18:29:16 +0000588 DLLs (Dynamic Link Libraries).
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000589 </p>
590
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000591 <dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000592 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
593
594 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
595 or variable via a global pointer to a pointer that is set up by the DLL
596 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman33a9cef2009-01-12 21:35:55 +0000597 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000598 </dd>
599
600 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
601
602 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
603 pointer to a pointer in a DLL, so that it can be referenced with the
604 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman33a9cef2009-01-12 21:35:55 +0000605 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000606 name.
607 </dd>
608
Chris Lattner6af02f32004-12-09 16:11:40 +0000609</dl>
610
Dan Gohman8ef44982008-11-24 17:18:39 +0000611<p>For example, since the "<tt>.LC0</tt>"
Chris Lattner6af02f32004-12-09 16:11:40 +0000612variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
613variable and was linked with this one, one of the two would be renamed,
614preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
615external (i.e., lacking any linkage declarations), they are accessible
Reid Spencer92c671e2007-01-05 00:59:10 +0000616outside of the current module.</p>
617<p>It is illegal for a function <i>declaration</i>
Duncan Sandse2881052009-03-11 08:08:06 +0000618to have any linkage type other than "externally visible", <tt>dllimport</tt>
619or <tt>extern_weak</tt>.</p>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000620<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
621or <tt>weak_odr</tt> linkages.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000622</div>
623
624<!-- ======================================================================= -->
625<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000626 <a name="callingconv">Calling Conventions</a>
627</div>
628
629<div class="doc_text">
630
631<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
632and <a href="#i_invoke">invokes</a> can all have an optional calling convention
633specified for the call. The calling convention of any pair of dynamic
634caller/callee must match, or the behavior of the program is undefined. The
635following calling conventions are supported by LLVM, and more may be added in
636the future:</p>
637
638<dl>
639 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
640
641 <dd>This calling convention (the default if no other calling convention is
642 specified) matches the target C calling conventions. This calling convention
John Criswell02fdc6f2005-05-12 16:52:32 +0000643 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencer72ba4992006-12-31 21:30:18 +0000644 prototype and implemented declaration of the function (as does normal C).
Chris Lattner0132aff2005-05-06 22:57:40 +0000645 </dd>
646
647 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
648
649 <dd>This calling convention attempts to make calls as fast as possible
650 (e.g. by passing things in registers). This calling convention allows the
651 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner67c37d12008-08-05 18:29:16 +0000652 without having to conform to an externally specified ABI (Application Binary
653 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer2c6b8882008-05-14 09:17:12 +0000654 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
655 supported. This calling convention does not support varargs and requires the
656 prototype of all callees to exactly match the prototype of the function
657 definition.
Chris Lattner0132aff2005-05-06 22:57:40 +0000658 </dd>
659
660 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
661
662 <dd>This calling convention attempts to make code in the caller as efficient
663 as possible under the assumption that the call is not commonly executed. As
664 such, these calls often preserve all registers so that the call does not break
665 any live ranges in the caller side. This calling convention does not support
666 varargs and requires the prototype of all callees to exactly match the
667 prototype of the function definition.
668 </dd>
669
Chris Lattner573f64e2005-05-07 01:46:40 +0000670 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000671
672 <dd>Any calling convention may be specified by number, allowing
673 target-specific calling conventions to be used. Target specific calling
674 conventions start at 64.
675 </dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000676</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000677
678<p>More calling conventions can be added/defined on an as-needed basis, to
679support pascal conventions or any other well-known target-independent
680convention.</p>
681
682</div>
683
684<!-- ======================================================================= -->
685<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000686 <a name="visibility">Visibility Styles</a>
687</div>
688
689<div class="doc_text">
690
691<p>
692All Global Variables and Functions have one of the following visibility styles:
693</p>
694
695<dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
697
Chris Lattner67c37d12008-08-05 18:29:16 +0000698 <dd>On targets that use the ELF object file format, default visibility means
699 that the declaration is visible to other
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000700 modules and, in shared libraries, means that the declared entity may be
701 overridden. On Darwin, default visibility means that the declaration is
702 visible to other modules. Default visibility corresponds to "external
703 linkage" in the language.
704 </dd>
705
706 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
707
708 <dd>Two declarations of an object with hidden visibility refer to the same
709 object if they are in the same shared object. Usually, hidden visibility
710 indicates that the symbol will not be placed into the dynamic symbol table,
711 so no other module (executable or shared library) can reference it
712 directly.
713 </dd>
714
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000715 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
716
717 <dd>On ELF, protected visibility indicates that the symbol will be placed in
718 the dynamic symbol table, but that references within the defining module will
719 bind to the local symbol. That is, the symbol cannot be overridden by another
720 module.
721 </dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000722</dl>
723
724</div>
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000728 <a name="namedtypes">Named Types</a>
729</div>
730
731<div class="doc_text">
732
733<p>LLVM IR allows you to specify name aliases for certain types. This can make
734it easier to read the IR and make the IR more condensed (particularly when
735recursive types are involved). An example of a name specification is:
736</p>
737
738<div class="doc_code">
739<pre>
740%mytype = type { %mytype*, i32 }
741</pre>
742</div>
743
744<p>You may give a name to any <a href="#typesystem">type</a> except "<a
745href="t_void">void</a>". Type name aliases may be used anywhere a type is
746expected with the syntax "%mytype".</p>
747
748<p>Note that type names are aliases for the structural type that they indicate,
749and that you can therefore specify multiple names for the same type. This often
750leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
751structural typing, the name is not part of the type. When printing out LLVM IR,
752the printer will pick <em>one name</em> to render all types of a particular
753shape. This means that if you have code where two different source types end up
754having the same LLVM type, that the dumper will sometimes print the "wrong" or
755unexpected type. This is an important design point and isn't going to
756change.</p>
757
758</div>
759
Chris Lattnerbc088212009-01-11 20:53:49 +0000760<!-- ======================================================================= -->
761<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000762 <a name="globalvars">Global Variables</a>
763</div>
764
765<div class="doc_text">
766
Chris Lattner5d5aede2005-02-12 19:30:21 +0000767<p>Global variables define regions of memory allocated at compilation time
Chris Lattner662c8722005-11-12 00:45:07 +0000768instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000769an explicit section to be placed in, and may have an optional explicit alignment
770specified. A variable may be defined as "thread_local", which means that it
771will not be shared by threads (each thread will have a separated copy of the
772variable). A variable may be defined as a global "constant," which indicates
773that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner5d5aede2005-02-12 19:30:21 +0000774optimization, allowing the global data to be placed in the read-only section of
775an executable, etc). Note that variables that need runtime initialization
John Criswell4c0cf7f2005-10-24 16:17:18 +0000776cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000777
778<p>
779LLVM explicitly allows <em>declarations</em> of global variables to be marked
780constant, even if the final definition of the global is not. This capability
781can be used to enable slightly better optimization of the program, but requires
782the language definition to guarantee that optimizations based on the
783'constantness' are valid for the translation units that do not include the
784definition.
785</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000786
787<p>As SSA values, global variables define pointer values that are in
788scope (i.e. they dominate) all basic blocks in the program. Global
789variables always define a pointer to their "content" type because they
790describe a region of memory, and all memory objects in LLVM are
791accessed through pointers.</p>
792
Christopher Lamb308121c2007-12-11 09:31:00 +0000793<p>A global variable may be declared to reside in a target-specifc numbered
794address space. For targets that support them, address spaces may affect how
795optimizations are performed and/or what target instructions are used to access
Christopher Lamb25f50762007-12-12 08:44:39 +0000796the variable. The default address space is zero. The address space qualifier
797must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000798
Chris Lattner662c8722005-11-12 00:45:07 +0000799<p>LLVM allows an explicit section to be specified for globals. If the target
800supports it, it will emit globals to the section specified.</p>
801
Chris Lattner54611b42005-11-06 08:02:57 +0000802<p>An explicit alignment may be specified for a global. If not present, or if
803the alignment is set to zero, the alignment of the global is set by the target
804to whatever it feels convenient. If an explicit alignment is specified, the
805global is forced to have at least that much alignment. All alignments must be
806a power of 2.</p>
807
Christopher Lamb308121c2007-12-11 09:31:00 +0000808<p>For example, the following defines a global in a numbered address space with
809an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000810
Bill Wendling3716c5d2007-05-29 09:04:49 +0000811<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000812<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000813@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000814</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000815</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000816
Chris Lattner6af02f32004-12-09 16:11:40 +0000817</div>
818
819
820<!-- ======================================================================= -->
821<div class="doc_subsection">
822 <a name="functionstructure">Functions</a>
823</div>
824
825<div class="doc_text">
826
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000827<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
828an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000829<a href="#visibility">visibility style</a>, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000830<a href="#callingconv">calling convention</a>, a return type, an optional
831<a href="#paramattrs">parameter attribute</a> for the return type, a function
832name, a (possibly empty) argument list (each with optional
Devang Patel7e9b05e2008-10-06 18:50:38 +0000833<a href="#paramattrs">parameter attributes</a>), optional
834<a href="#fnattrs">function attributes</a>, an optional section,
835an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattnercbc4d2a2008-10-04 18:10:21 +0000836an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000837
838LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
839optional <a href="#linkage">linkage type</a>, an optional
840<a href="#visibility">visibility style</a>, an optional
841<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000842<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen71183b62007-12-10 03:18:06 +0000843name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksendc5cafb2007-12-10 03:30:21 +0000844<a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000845
Chris Lattner67c37d12008-08-05 18:29:16 +0000846<p>A function definition contains a list of basic blocks, forming the CFG
847(Control Flow Graph) for
Chris Lattner6af02f32004-12-09 16:11:40 +0000848the function. Each basic block may optionally start with a label (giving the
849basic block a symbol table entry), contains a list of instructions, and ends
850with a <a href="#terminators">terminator</a> instruction (such as a branch or
851function return).</p>
852
Chris Lattnera59fb102007-06-08 16:52:14 +0000853<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattner6af02f32004-12-09 16:11:40 +0000854executed on entrance to the function, and it is not allowed to have predecessor
855basic blocks (i.e. there can not be any branches to the entry block of a
856function). Because the block can have no predecessors, it also cannot have any
857<a href="#i_phi">PHI nodes</a>.</p>
858
Chris Lattner662c8722005-11-12 00:45:07 +0000859<p>LLVM allows an explicit section to be specified for functions. If the target
860supports it, it will emit functions to the section specified.</p>
861
Chris Lattner54611b42005-11-06 08:02:57 +0000862<p>An explicit alignment may be specified for a function. If not present, or if
863the alignment is set to zero, the alignment of the function is set by the target
864to whatever it feels convenient. If an explicit alignment is specified, the
865function is forced to have at least that much alignment. All alignments must be
866a power of 2.</p>
867
Devang Patel02256232008-10-07 17:48:33 +0000868 <h5>Syntax:</h5>
869
870<div class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000871<tt>
872define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
873 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
874 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
875 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
876 [<a href="#gc">gc</a>] { ... }
877</tt>
Devang Patel02256232008-10-07 17:48:33 +0000878</div>
879
Chris Lattner6af02f32004-12-09 16:11:40 +0000880</div>
881
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000882
883<!-- ======================================================================= -->
884<div class="doc_subsection">
885 <a name="aliasstructure">Aliases</a>
886</div>
887<div class="doc_text">
888 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov25b2e822008-03-22 08:36:14 +0000889 function, global variable, another alias or bitcast of global value). Aliases
890 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000891 optional <a href="#visibility">visibility style</a>.</p>
892
893 <h5>Syntax:</h5>
894
Bill Wendling3716c5d2007-05-29 09:04:49 +0000895<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000896<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000897@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000898</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000899</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000900
901</div>
902
903
904
Chris Lattner91c15c42006-01-23 23:23:47 +0000905<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000906<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
907<div class="doc_text">
908 <p>The return type and each parameter of a function type may have a set of
909 <i>parameter attributes</i> associated with them. Parameter attributes are
910 used to communicate additional information about the result or parameters of
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000911 a function. Parameter attributes are considered to be part of the function,
912 not of the function type, so functions with different parameter attributes
913 can have the same function type.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000914
Reid Spencercf7ebf52007-01-15 18:27:39 +0000915 <p>Parameter attributes are simple keywords that follow the type specified. If
916 multiple parameter attributes are needed, they are space separated. For
Bill Wendling3716c5d2007-05-29 09:04:49 +0000917 example:</p>
918
919<div class="doc_code">
920<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000921declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000922declare i32 @atoi(i8 zeroext)
923declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000924</pre>
925</div>
926
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000927 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
928 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000929
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000930 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000931 <dl>
Reid Spencer314e1cb2007-07-19 23:13:04 +0000932 <dt><tt>zeroext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000933 <dd>This indicates to the code generator that the parameter or return value
934 should be zero-extended to a 32-bit value by the caller (for a parameter)
935 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000936
Reid Spencer314e1cb2007-07-19 23:13:04 +0000937 <dt><tt>signext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000938 <dd>This indicates to the code generator that the parameter or return value
939 should be sign-extended to a 32-bit value by the caller (for a parameter)
940 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000941
Anton Korobeynikove8166852007-01-28 14:30:45 +0000942 <dt><tt>inreg</tt></dt>
Dale Johannesenc50ada22008-09-25 20:47:45 +0000943 <dd>This indicates that this parameter or return value should be treated
944 in a special target-dependent fashion during while emitting code for a
945 function call or return (usually, by putting it in a register as opposed
Chris Lattnerd2597d72008-10-04 18:33:34 +0000946 to memory, though some targets use it to distinguish between two different
947 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000948
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000949 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner352ab9b2008-01-15 04:34:22 +0000950 <dd>This indicates that the pointer parameter should really be passed by
951 value to the function. The attribute implies that a hidden copy of the
952 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner1ca5c642008-08-05 18:21:08 +0000953 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner352ab9b2008-01-15 04:34:22 +0000954 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000955 value, but is also valid on pointers to scalars. The copy is considered to
956 belong to the caller not the callee (for example,
957 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patel7e9b05e2008-10-06 18:50:38 +0000958 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattner08aa9062009-02-05 05:42:28 +0000959 values. The byval attribute also supports specifying an alignment with the
960 align attribute. This has a target-specific effect on the code generator
961 that usually indicates a desired alignment for the synthesized stack
962 slot.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000963
Anton Korobeynikove8166852007-01-28 14:30:45 +0000964 <dt><tt>sret</tt></dt>
Duncan Sandsfa4b6732008-02-18 04:19:38 +0000965 <dd>This indicates that the pointer parameter specifies the address of a
966 structure that is the return value of the function in the source program.
Chris Lattnerd2597d72008-10-04 18:33:34 +0000967 This pointer must be guaranteed by the caller to be valid: loads and stores
968 to the structure may be assumed by the callee to not to trap. This may only
Devang Patel7e9b05e2008-10-06 18:50:38 +0000969 be applied to the first parameter. This is not a valid attribute for
970 return values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000971
Zhou Sheng2444a9a2007-06-05 05:28:26 +0000972 <dt><tt>noalias</tt></dt>
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +0000973 <dd>This indicates that the pointer does not alias any global or any other
974 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyd59572c2008-11-24 05:00:44 +0000975 case. On a function return value, <tt>noalias</tt> additionally indicates
976 that the pointer does not alias any other pointers visible to the
Nick Lewycky2abb1082008-12-19 06:39:12 +0000977 caller. For further details, please see the discussion of the NoAlias
978 response in
979 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
980 analysis</a>.</dd>
981
982 <dt><tt>nocapture</tt></dt>
983 <dd>This indicates that the callee does not make any copies of the pointer
984 that outlive the callee itself. This is not a valid attribute for return
985 values.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000986
Duncan Sands27e91592007-07-27 19:57:41 +0000987 <dt><tt>nest</tt></dt>
Duncan Sands825bde42008-07-08 09:27:25 +0000988 <dd>This indicates that the pointer parameter can be excised using the
Devang Patel7e9b05e2008-10-06 18:50:38 +0000989 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
990 attribute for return values.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000991 </dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000992
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000993</div>
994
995<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +0000996<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +0000997 <a name="gc">Garbage Collector Names</a>
998</div>
999
1000<div class="doc_text">
1001<p>Each function may specify a garbage collector name, which is simply a
1002string.</p>
1003
1004<div class="doc_code"><pre
1005>define void @f() gc "name" { ...</pre></div>
1006
1007<p>The compiler declares the supported values of <i>name</i>. Specifying a
1008collector which will cause the compiler to alter its output in order to support
1009the named garbage collection algorithm.</p>
1010</div>
1011
1012<!-- ======================================================================= -->
1013<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001014 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001015</div>
1016
1017<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001018
1019<p>Function attributes are set to communicate additional information about
1020 a function. Function attributes are considered to be part of the function,
1021 not of the function type, so functions with different parameter attributes
1022 can have the same function type.</p>
1023
1024 <p>Function attributes are simple keywords that follow the type specified. If
1025 multiple attributes are needed, they are space separated. For
1026 example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001027
1028<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001029<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001030define void @f() noinline { ... }
1031define void @f() alwaysinline { ... }
1032define void @f() alwaysinline optsize { ... }
1033define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +00001034</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001035</div>
1036
Bill Wendlingb175fa42008-09-07 10:26:33 +00001037<dl>
Devang Patel9eb525d2008-09-26 23:51:19 +00001038<dt><tt>alwaysinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001039<dd>This attribute indicates that the inliner should attempt to inline this
1040function into callers whenever possible, ignoring any active inlining size
1041threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001042
Devang Patel9eb525d2008-09-26 23:51:19 +00001043<dt><tt>noinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001044<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner0625c282008-10-05 17:14:59 +00001045in any situation. This attribute may not be used together with the
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001046<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001047
Devang Patel9eb525d2008-09-26 23:51:19 +00001048<dt><tt>optsize</tt></dt>
Devang Patele9743902008-09-29 18:34:44 +00001049<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001050make choices that keep the code size of this function low, and otherwise do
1051optimizations specifically to reduce code size.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001052
Devang Patel9eb525d2008-09-26 23:51:19 +00001053<dt><tt>noreturn</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001054<dd>This function attribute indicates that the function never returns normally.
1055This produces undefined behavior at runtime if the function ever does
1056dynamically return.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001057
1058<dt><tt>nounwind</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001059<dd>This function attribute indicates that the function never returns with an
1060unwind or exceptional control flow. If the function does unwind, its runtime
1061behavior is undefined.</dd>
1062
1063<dt><tt>readnone</tt></dt>
Duncan Sands1efabaa2009-05-06 06:49:50 +00001064<dd>This attribute indicates that the function computes its result (or decides to
1065unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001066pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1067registers, etc) visible to caller functions. It does not write through any
1068pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands1efabaa2009-05-06 06:49:50 +00001069never changes any state visible to callers. This means that it cannot unwind
1070exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1071use the <tt>unwind</tt> instruction.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001072
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001073<dt><tt><a name="readonly">readonly</a></tt></dt>
1074<dd>This attribute indicates that the function does not write through any
1075pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1076or otherwise modify any state (e.g. memory, control registers, etc) visible to
1077caller functions. It may dereference pointer arguments and read state that may
Duncan Sands1efabaa2009-05-06 06:49:50 +00001078be set in the caller. A readonly function always returns the same value (or
1079unwinds an exception identically) when called with the same set of arguments
1080and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1081exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001082
1083<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001084<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendlinga8130172008-11-13 01:02:51 +00001085protector. It is in the form of a "canary"&mdash;a random value placed on the
1086stack before the local variables that's checked upon return from the function to
1087see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendling6e41add2008-11-26 19:19:05 +00001088needs stack protectors or not.
Bill Wendlinga8130172008-11-13 01:02:51 +00001089
Bill Wendling0f5541e2008-11-26 19:07:40 +00001090<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1091that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1092have an <tt>ssp</tt> attribute.</p></dd>
1093
1094<dt><tt>sspreq</tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001095<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendlinga8130172008-11-13 01:02:51 +00001096stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001097function attribute.
Bill Wendling0f5541e2008-11-26 19:07:40 +00001098
1099<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1100function that doesn't have an <tt>sspreq</tt> attribute or which has
1101an <tt>ssp</tt> attribute, then the resulting function will have
1102an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001103</dl>
1104
Devang Patelcaacdba2008-09-04 23:05:13 +00001105</div>
1106
1107<!-- ======================================================================= -->
1108<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001109 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001110</div>
1111
1112<div class="doc_text">
1113<p>
1114Modules may contain "module-level inline asm" blocks, which corresponds to the
1115GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1116LLVM and treated as a single unit, but may be separated in the .ll file if
1117desired. The syntax is very simple:
1118</p>
1119
Bill Wendling3716c5d2007-05-29 09:04:49 +00001120<div class="doc_code">
1121<pre>
1122module asm "inline asm code goes here"
1123module asm "more can go here"
1124</pre>
1125</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001126
1127<p>The strings can contain any character by escaping non-printable characters.
1128 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1129 for the number.
1130</p>
1131
1132<p>
1133 The inline asm code is simply printed to the machine code .s file when
1134 assembly code is generated.
1135</p>
1136</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001137
Reid Spencer50c723a2007-02-19 23:54:10 +00001138<!-- ======================================================================= -->
1139<div class="doc_subsection">
1140 <a name="datalayout">Data Layout</a>
1141</div>
1142
1143<div class="doc_text">
1144<p>A module may specify a target specific data layout string that specifies how
Reid Spencer7972c472007-04-11 23:49:50 +00001145data is to be laid out in memory. The syntax for the data layout is simply:</p>
1146<pre> target datalayout = "<i>layout specification</i>"</pre>
1147<p>The <i>layout specification</i> consists of a list of specifications
1148separated by the minus sign character ('-'). Each specification starts with a
1149letter and may include other information after the letter to define some
1150aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001151<dl>
1152 <dt><tt>E</tt></dt>
1153 <dd>Specifies that the target lays out data in big-endian form. That is, the
1154 bits with the most significance have the lowest address location.</dd>
1155 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001156 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencer50c723a2007-02-19 23:54:10 +00001157 the bits with the least significance have the lowest address location.</dd>
1158 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1159 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1160 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1161 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1162 too.</dd>
1163 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1164 <dd>This specifies the alignment for an integer type of a given bit
1165 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1166 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1167 <dd>This specifies the alignment for a vector type of a given bit
1168 <i>size</i>.</dd>
1169 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1170 <dd>This specifies the alignment for a floating point type of a given bit
1171 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1172 (double).</dd>
1173 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1174 <dd>This specifies the alignment for an aggregate type of a given bit
1175 <i>size</i>.</dd>
1176</dl>
1177<p>When constructing the data layout for a given target, LLVM starts with a
1178default set of specifications which are then (possibly) overriden by the
1179specifications in the <tt>datalayout</tt> keyword. The default specifications
1180are given in this list:</p>
1181<ul>
1182 <li><tt>E</tt> - big endian</li>
1183 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1184 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1185 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1186 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1187 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001188 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001189 alignment of 64-bits</li>
1190 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1191 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1192 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1193 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1194 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1195</ul>
Chris Lattner1ca5c642008-08-05 18:21:08 +00001196<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanef9462f2008-10-14 16:51:45 +00001197following rules:</p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001198<ol>
1199 <li>If the type sought is an exact match for one of the specifications, that
1200 specification is used.</li>
1201 <li>If no match is found, and the type sought is an integer type, then the
1202 smallest integer type that is larger than the bitwidth of the sought type is
1203 used. If none of the specifications are larger than the bitwidth then the the
1204 largest integer type is used. For example, given the default specifications
1205 above, the i7 type will use the alignment of i8 (next largest) while both
1206 i65 and i256 will use the alignment of i64 (largest specified).</li>
1207 <li>If no match is found, and the type sought is a vector type, then the
1208 largest vector type that is smaller than the sought vector type will be used
Dan Gohmanef9462f2008-10-14 16:51:45 +00001209 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1210 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001211</ol>
1212</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001213
Chris Lattner2f7c9632001-06-06 20:29:01 +00001214<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001215<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1216<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001217
Misha Brukman76307852003-11-08 01:05:38 +00001218<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001219
Misha Brukman76307852003-11-08 01:05:38 +00001220<p>The LLVM type system is one of the most important features of the
Chris Lattner48b383b02003-11-25 01:02:51 +00001221intermediate representation. Being typed enables a number of
Chris Lattner67c37d12008-08-05 18:29:16 +00001222optimizations to be performed on the intermediate representation directly,
1223without having to do
Chris Lattner48b383b02003-11-25 01:02:51 +00001224extra analyses on the side before the transformation. A strong type
1225system makes it easier to read the generated code and enables novel
1226analyses and transformations that are not feasible to perform on normal
1227three address code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001228
1229</div>
1230
Chris Lattner2f7c9632001-06-06 20:29:01 +00001231<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001232<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001233Classifications</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001234<div class="doc_text">
Chris Lattner7824d182008-01-04 04:32:38 +00001235<p>The types fall into a few useful
Chris Lattner48b383b02003-11-25 01:02:51 +00001236classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001237
1238<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001239 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001240 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001241 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001242 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001243 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001244 </tr>
1245 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001246 <td><a href="#t_floating">floating point</a></td>
1247 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001248 </tr>
1249 <tr>
1250 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001251 <td><a href="#t_integer">integer</a>,
1252 <a href="#t_floating">floating point</a>,
1253 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001254 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001255 <a href="#t_struct">structure</a>,
1256 <a href="#t_array">array</a>,
Dan Gohmanda52d212008-05-23 22:50:26 +00001257 <a href="#t_label">label</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001258 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001259 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001260 <tr>
1261 <td><a href="#t_primitive">primitive</a></td>
1262 <td><a href="#t_label">label</a>,
1263 <a href="#t_void">void</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001264 <a href="#t_floating">floating point</a>.</td>
1265 </tr>
1266 <tr>
1267 <td><a href="#t_derived">derived</a></td>
1268 <td><a href="#t_integer">integer</a>,
1269 <a href="#t_array">array</a>,
1270 <a href="#t_function">function</a>,
1271 <a href="#t_pointer">pointer</a>,
1272 <a href="#t_struct">structure</a>,
1273 <a href="#t_pstruct">packed structure</a>,
1274 <a href="#t_vector">vector</a>,
1275 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001276 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001277 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001278 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001279</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001280
Chris Lattner48b383b02003-11-25 01:02:51 +00001281<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1282most important. Values of these types are the only ones which can be
1283produced by instructions, passed as arguments, or used as operands to
Dan Gohman34d1c0d2008-05-23 21:53:15 +00001284instructions.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001285</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001286
Chris Lattner2f7c9632001-06-06 20:29:01 +00001287<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001288<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001289
Chris Lattner7824d182008-01-04 04:32:38 +00001290<div class="doc_text">
1291<p>The primitive types are the fundamental building blocks of the LLVM
1292system.</p>
1293
Chris Lattner43542b32008-01-04 04:34:14 +00001294</div>
1295
Chris Lattner7824d182008-01-04 04:32:38 +00001296<!-- _______________________________________________________________________ -->
1297<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1298
1299<div class="doc_text">
1300 <table>
1301 <tbody>
1302 <tr><th>Type</th><th>Description</th></tr>
1303 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1304 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1305 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1306 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1307 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1308 </tbody>
1309 </table>
1310</div>
1311
1312<!-- _______________________________________________________________________ -->
1313<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1314
1315<div class="doc_text">
1316<h5>Overview:</h5>
1317<p>The void type does not represent any value and has no size.</p>
1318
1319<h5>Syntax:</h5>
1320
1321<pre>
1322 void
1323</pre>
1324</div>
1325
1326<!-- _______________________________________________________________________ -->
1327<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1328
1329<div class="doc_text">
1330<h5>Overview:</h5>
1331<p>The label type represents code labels.</p>
1332
1333<h5>Syntax:</h5>
1334
1335<pre>
1336 label
1337</pre>
1338</div>
1339
1340
1341<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001342<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001343
Misha Brukman76307852003-11-08 01:05:38 +00001344<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001345
Chris Lattner48b383b02003-11-25 01:02:51 +00001346<p>The real power in LLVM comes from the derived types in the system.
1347This is what allows a programmer to represent arrays, functions,
1348pointers, and other useful types. Note that these derived types may be
1349recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001350
Misha Brukman76307852003-11-08 01:05:38 +00001351</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001352
Chris Lattner2f7c9632001-06-06 20:29:01 +00001353<!-- _______________________________________________________________________ -->
Reid Spencer138249b2007-05-16 18:44:01 +00001354<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1355
1356<div class="doc_text">
1357
1358<h5>Overview:</h5>
1359<p>The integer type is a very simple derived type that simply specifies an
1360arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13612^23-1 (about 8 million) can be specified.</p>
1362
1363<h5>Syntax:</h5>
1364
1365<pre>
1366 iN
1367</pre>
1368
1369<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1370value.</p>
1371
1372<h5>Examples:</h5>
1373<table class="layout">
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001374 <tbody>
1375 <tr>
1376 <td><tt>i1</tt></td>
1377 <td>a single-bit integer.</td>
1378 </tr><tr>
1379 <td><tt>i32</tt></td>
1380 <td>a 32-bit integer.</td>
1381 </tr><tr>
1382 <td><tt>i1942652</tt></td>
1383 <td>a really big integer of over 1 million bits.</td>
Reid Spencer138249b2007-05-16 18:44:01 +00001384 </tr>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001385 </tbody>
Reid Spencer138249b2007-05-16 18:44:01 +00001386</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001387
1388<p>Note that the code generator does not yet support large integer types
1389to be used as function return types. The specific limit on how large a
1390return type the code generator can currently handle is target-dependent;
1391currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1392targets.</p>
1393
Bill Wendling3716c5d2007-05-29 09:04:49 +00001394</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001395
1396<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001397<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001398
Misha Brukman76307852003-11-08 01:05:38 +00001399<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001400
Chris Lattner2f7c9632001-06-06 20:29:01 +00001401<h5>Overview:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001402
Misha Brukman76307852003-11-08 01:05:38 +00001403<p>The array type is a very simple derived type that arranges elements
Chris Lattner48b383b02003-11-25 01:02:51 +00001404sequentially in memory. The array type requires a size (number of
1405elements) and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001406
Chris Lattner590645f2002-04-14 06:13:44 +00001407<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001408
1409<pre>
1410 [&lt;# elements&gt; x &lt;elementtype&gt;]
1411</pre>
1412
John Criswell02fdc6f2005-05-12 16:52:32 +00001413<p>The number of elements is a constant integer value; elementtype may
Chris Lattner48b383b02003-11-25 01:02:51 +00001414be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001415
Chris Lattner590645f2002-04-14 06:13:44 +00001416<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001417<table class="layout">
1418 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001419 <td class="left"><tt>[40 x i32]</tt></td>
1420 <td class="left">Array of 40 32-bit integer values.</td>
1421 </tr>
1422 <tr class="layout">
1423 <td class="left"><tt>[41 x i32]</tt></td>
1424 <td class="left">Array of 41 32-bit integer values.</td>
1425 </tr>
1426 <tr class="layout">
1427 <td class="left"><tt>[4 x i8]</tt></td>
1428 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001429 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001430</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001431<p>Here are some examples of multidimensional arrays:</p>
1432<table class="layout">
1433 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001434 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1435 <td class="left">3x4 array of 32-bit integer values.</td>
1436 </tr>
1437 <tr class="layout">
1438 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1439 <td class="left">12x10 array of single precision floating point values.</td>
1440 </tr>
1441 <tr class="layout">
1442 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1443 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001444 </tr>
1445</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001446
John Criswell4c0cf7f2005-10-24 16:17:18 +00001447<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1448length array. Normally, accesses past the end of an array are undefined in
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001449LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1450As a special case, however, zero length arrays are recognized to be variable
1451length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001452type "{ i32, [0 x float]}", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001453
Dan Gohman142ccc02009-01-24 15:58:40 +00001454<p>Note that the code generator does not yet support large aggregate types
1455to be used as function return types. The specific limit on how large an
1456aggregate return type the code generator can currently handle is
1457target-dependent, and also dependent on the aggregate element types.</p>
1458
Misha Brukman76307852003-11-08 01:05:38 +00001459</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001460
Chris Lattner2f7c9632001-06-06 20:29:01 +00001461<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001462<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001463<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001464
Chris Lattner2f7c9632001-06-06 20:29:01 +00001465<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001466
Chris Lattner48b383b02003-11-25 01:02:51 +00001467<p>The function type can be thought of as a function signature. It
Devang Patele3dfc1c2008-03-24 05:35:41 +00001468consists of a return type and a list of formal parameter types. The
Chris Lattnerda508ac2008-04-23 04:59:35 +00001469return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel9c1f8b12008-03-24 20:52:42 +00001470If the return type is a struct type then all struct elements must be of first
Chris Lattnerda508ac2008-04-23 04:59:35 +00001471class types, and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001472
Chris Lattner2f7c9632001-06-06 20:29:01 +00001473<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001474
1475<pre>
1476 &lt;returntype list&gt; (&lt;parameter list&gt;)
1477</pre>
1478
John Criswell4c0cf7f2005-10-24 16:17:18 +00001479<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukman20f9a622004-08-12 20:16:08 +00001480specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner5ed60612003-09-03 00:41:47 +00001481which indicates that the function takes a variable number of arguments.
1482Variable argument functions can access their arguments with the <a
Devang Pateld6cff512008-03-10 20:49:15 +00001483 href="#int_varargs">variable argument handling intrinsic</a> functions.
1484'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1485<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001486
Chris Lattner2f7c9632001-06-06 20:29:01 +00001487<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001488<table class="layout">
1489 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001490 <td class="left"><tt>i32 (i32)</tt></td>
1491 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001492 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001493 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001494 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001495 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001496 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1497 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001498 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001499 <tt>float</tt>.
1500 </td>
1501 </tr><tr class="layout">
1502 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1503 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001504 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001505 which returns an integer. This is the signature for <tt>printf</tt> in
1506 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001507 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001508 </tr><tr class="layout">
1509 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanc9813bd2008-11-27 06:41:20 +00001510 <td class="left">A function taking an <tt>i32</tt>, returning two
1511 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001512 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001513 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001514</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001515
Misha Brukman76307852003-11-08 01:05:38 +00001516</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001517<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001518<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001519<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001520<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001521<p>The structure type is used to represent a collection of data members
1522together in memory. The packing of the field types is defined to match
1523the ABI of the underlying processor. The elements of a structure may
1524be any type that has a size.</p>
1525<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1526and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1527field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1528instruction.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001529<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001530<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001531<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001532<table class="layout">
1533 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001534 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1535 <td class="left">A triple of three <tt>i32</tt> values</td>
1536 </tr><tr class="layout">
1537 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1538 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1539 second element is a <a href="#t_pointer">pointer</a> to a
1540 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1541 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001542 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001543</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001544
1545<p>Note that the code generator does not yet support large aggregate types
1546to be used as function return types. The specific limit on how large an
1547aggregate return type the code generator can currently handle is
1548target-dependent, and also dependent on the aggregate element types.</p>
1549
Misha Brukman76307852003-11-08 01:05:38 +00001550</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001551
Chris Lattner2f7c9632001-06-06 20:29:01 +00001552<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001553<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1554</div>
1555<div class="doc_text">
1556<h5>Overview:</h5>
1557<p>The packed structure type is used to represent a collection of data members
1558together in memory. There is no padding between fields. Further, the alignment
1559of a packed structure is 1 byte. The elements of a packed structure may
1560be any type that has a size.</p>
1561<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1562and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1563field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1564instruction.</p>
1565<h5>Syntax:</h5>
1566<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1567<h5>Examples:</h5>
1568<table class="layout">
1569 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001570 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1571 <td class="left">A triple of three <tt>i32</tt> values</td>
1572 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001573 <td class="left">
1574<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001575 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1576 second element is a <a href="#t_pointer">pointer</a> to a
1577 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1578 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001579 </tr>
1580</table>
1581</div>
1582
1583<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001584<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001585<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00001586<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001587<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb308121c2007-12-11 09:31:00 +00001588reference to another object, which must live in memory. Pointer types may have
1589an optional address space attribute defining the target-specific numbered
1590address space where the pointed-to object resides. The default address space is
1591zero.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001592
1593<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnerd1d4cff2009-02-08 22:21:28 +00001594it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001595
Chris Lattner590645f2002-04-14 06:13:44 +00001596<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001597<pre> &lt;type&gt; *<br></pre>
Chris Lattner590645f2002-04-14 06:13:44 +00001598<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001599<table class="layout">
1600 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001601 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001602 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1603 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1604 </tr>
1605 <tr class="layout">
1606 <td class="left"><tt>i32 (i32 *) *</tt></td>
1607 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001608 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001609 <tt>i32</tt>.</td>
1610 </tr>
1611 <tr class="layout">
1612 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1613 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1614 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001615 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001616</table>
Misha Brukman76307852003-11-08 01:05:38 +00001617</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001618
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001619<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001620<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001621<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001622
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001623<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001624
Reid Spencer404a3252007-02-15 03:07:05 +00001625<p>A vector type is a simple derived type that represents a vector
1626of elements. Vector types are used when multiple primitive data
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001627are operated in parallel using a single instruction (SIMD).
Reid Spencer404a3252007-02-15 03:07:05 +00001628A vector type requires a size (number of
Chris Lattner330ce692005-11-10 01:44:22 +00001629elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer404a3252007-02-15 03:07:05 +00001630of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001631considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001632
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001633<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001634
1635<pre>
1636 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1637</pre>
1638
John Criswell4a3327e2005-05-13 22:25:59 +00001639<p>The number of elements is a constant integer value; elementtype may
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001640be any integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001641
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001642<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001643
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001644<table class="layout">
1645 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001646 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1647 <td class="left">Vector of 4 32-bit integer values.</td>
1648 </tr>
1649 <tr class="layout">
1650 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1651 <td class="left">Vector of 8 32-bit floating-point values.</td>
1652 </tr>
1653 <tr class="layout">
1654 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1655 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001656 </tr>
1657</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001658
1659<p>Note that the code generator does not yet support large vector types
1660to be used as function return types. The specific limit on how large a
1661vector return type codegen can currently handle is target-dependent;
1662currently it's often a few times longer than a hardware vector register.</p>
1663
Misha Brukman76307852003-11-08 01:05:38 +00001664</div>
1665
Chris Lattner37b6b092005-04-25 17:34:15 +00001666<!-- _______________________________________________________________________ -->
1667<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1668<div class="doc_text">
1669
1670<h5>Overview:</h5>
1671
1672<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksena699c4d2007-10-14 00:34:53 +00001673corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner37b6b092005-04-25 17:34:15 +00001674In LLVM, opaque types can eventually be resolved to any type (not just a
1675structure type).</p>
1676
1677<h5>Syntax:</h5>
1678
1679<pre>
1680 opaque
1681</pre>
1682
1683<h5>Examples:</h5>
1684
1685<table class="layout">
1686 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001687 <td class="left"><tt>opaque</tt></td>
1688 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001689 </tr>
1690</table>
1691</div>
1692
Chris Lattnercf7a5842009-02-02 07:32:36 +00001693<!-- ======================================================================= -->
1694<div class="doc_subsection">
1695 <a name="t_uprefs">Type Up-references</a>
1696</div>
1697
1698<div class="doc_text">
1699<h5>Overview:</h5>
1700<p>
1701An "up reference" allows you to refer to a lexically enclosing type without
1702requiring it to have a name. For instance, a structure declaration may contain a
1703pointer to any of the types it is lexically a member of. Example of up
1704references (with their equivalent as named type declarations) include:</p>
1705
1706<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001707 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001708 { \2 }* %y = type { %y }*
1709 \1* %z = type %z*
1710</pre>
1711
1712<p>
1713An up reference is needed by the asmprinter for printing out cyclic types when
1714there is no declared name for a type in the cycle. Because the asmprinter does
1715not want to print out an infinite type string, it needs a syntax to handle
1716recursive types that have no names (all names are optional in llvm IR).
1717</p>
1718
1719<h5>Syntax:</h5>
1720<pre>
1721 \&lt;level&gt;
1722</pre>
1723
1724<p>
1725The level is the count of the lexical type that is being referred to.
1726</p>
1727
1728<h5>Examples:</h5>
1729
1730<table class="layout">
1731 <tr class="layout">
1732 <td class="left"><tt>\1*</tt></td>
1733 <td class="left">Self-referential pointer.</td>
1734 </tr>
1735 <tr class="layout">
1736 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1737 <td class="left">Recursive structure where the upref refers to the out-most
1738 structure.</td>
1739 </tr>
1740</table>
1741</div>
1742
Chris Lattner37b6b092005-04-25 17:34:15 +00001743
Chris Lattner74d3f822004-12-09 17:30:23 +00001744<!-- *********************************************************************** -->
1745<div class="doc_section"> <a name="constants">Constants</a> </div>
1746<!-- *********************************************************************** -->
1747
1748<div class="doc_text">
1749
1750<p>LLVM has several different basic types of constants. This section describes
1751them all and their syntax.</p>
1752
1753</div>
1754
1755<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001756<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001757
1758<div class="doc_text">
1759
1760<dl>
1761 <dt><b>Boolean constants</b></dt>
1762
1763 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencer36a15422007-01-12 03:35:51 +00001764 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattner74d3f822004-12-09 17:30:23 +00001765 </dd>
1766
1767 <dt><b>Integer constants</b></dt>
1768
Reid Spencer8f08d802004-12-09 18:02:53 +00001769 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencer3e628eb92007-01-04 16:43:23 +00001770 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattner74d3f822004-12-09 17:30:23 +00001771 integer types.
1772 </dd>
1773
1774 <dt><b>Floating point constants</b></dt>
1775
1776 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1777 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattner1429e6f2008-04-01 18:45:27 +00001778 notation (see below). The assembler requires the exact decimal value of
1779 a floating-point constant. For example, the assembler accepts 1.25 but
1780 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1781 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001782
1783 <dt><b>Null pointer constants</b></dt>
1784
John Criswelldfe6a862004-12-10 15:51:16 +00001785 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattner74d3f822004-12-09 17:30:23 +00001786 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1787
1788</dl>
1789
Dale Johannesencd4a3012009-02-11 22:14:51 +00001790<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattner74d3f822004-12-09 17:30:23 +00001791of floating point constants. For example, the form '<tt>double
17920x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
17934.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencer8f08d802004-12-09 18:02:53 +00001794(and the only time that they are generated by the disassembler) is when a
1795floating point constant must be emitted but it cannot be represented as a
Dale Johannesencd4a3012009-02-11 22:14:51 +00001796decimal floating point number in a reasonable number of digits. For example,
1797NaN's, infinities, and other
Reid Spencer8f08d802004-12-09 18:02:53 +00001798special values are represented in their IEEE hexadecimal format so that
1799assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesencd4a3012009-02-11 22:14:51 +00001800<p>When using the hexadecimal form, constants of types float and double are
1801represented using the 16-digit form shown above (which matches the IEEE754
1802representation for double); float values must, however, be exactly representable
1803as IEE754 single precision.
1804Hexadecimal format is always used for long
1805double, and there are three forms of long double. The 80-bit
1806format used by x86 is represented as <tt>0xK</tt>
1807followed by 20 hexadecimal digits.
1808The 128-bit format used by PowerPC (two adjacent doubles) is represented
1809by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1810format is represented
1811by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1812target uses this format. Long doubles will only work if they match
1813the long double format on your target. All hexadecimal formats are big-endian
1814(sign bit at the left).</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001815</div>
1816
1817<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00001818<div class="doc_subsection">
1819<a name="aggregateconstants"> <!-- old anchor -->
1820<a name="complexconstants">Complex Constants</a></a>
Chris Lattner74d3f822004-12-09 17:30:23 +00001821</div>
1822
1823<div class="doc_text">
Chris Lattner361bfcd2009-02-28 18:32:25 +00001824<p>Complex constants are a (potentially recursive) combination of simple
1825constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001826
1827<dl>
1828 <dt><b>Structure constants</b></dt>
1829
1830 <dd>Structure constants are represented with notation similar to structure
1831 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerbea11172007-12-25 20:34:52 +00001832 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1833 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattner455fc8c2005-03-07 22:13:59 +00001834 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattner74d3f822004-12-09 17:30:23 +00001835 types of elements must match those specified by the type.
1836 </dd>
1837
1838 <dt><b>Array constants</b></dt>
1839
1840 <dd>Array constants are represented with notation similar to array type
1841 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001842 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattner74d3f822004-12-09 17:30:23 +00001843 constants must have <a href="#t_array">array type</a>, and the number and
1844 types of elements must match those specified by the type.
1845 </dd>
1846
Reid Spencer404a3252007-02-15 03:07:05 +00001847 <dt><b>Vector constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001848
Reid Spencer404a3252007-02-15 03:07:05 +00001849 <dd>Vector constants are represented with notation similar to vector type
Chris Lattner74d3f822004-12-09 17:30:23 +00001850 definitions (a comma separated list of elements, surrounded by
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001851 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen5819f182007-04-22 01:17:39 +00001852 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer404a3252007-02-15 03:07:05 +00001853 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattner74d3f822004-12-09 17:30:23 +00001854 match those specified by the type.
1855 </dd>
1856
1857 <dt><b>Zero initialization</b></dt>
1858
1859 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1860 value to zero of <em>any</em> type, including scalar and aggregate types.
1861 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell4c0cf7f2005-10-24 16:17:18 +00001862 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattner74d3f822004-12-09 17:30:23 +00001863 initializers.
1864 </dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00001865
1866 <dt><b>Metadata node</b></dt>
1867
1868 <dd>A metadata node is a structure-like constant with the type of an empty
1869 struct. For example: "<tt>{ } !{ i32 0, { } !"test" }</tt>". Unlike other
1870 constants that are meant to be interpreted as part of the instruction stream,
1871 metadata is a place to attach additional information such as debug info.
1872 </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001873</dl>
1874
1875</div>
1876
1877<!-- ======================================================================= -->
1878<div class="doc_subsection">
1879 <a name="globalconstants">Global Variable and Function Addresses</a>
1880</div>
1881
1882<div class="doc_text">
1883
1884<p>The addresses of <a href="#globalvars">global variables</a> and <a
1885href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswelldfe6a862004-12-10 15:51:16 +00001886constants. These constants are explicitly referenced when the <a
1887href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001888href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1889file:</p>
1890
Bill Wendling3716c5d2007-05-29 09:04:49 +00001891<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00001892<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00001893@X = global i32 17
1894@Y = global i32 42
1895@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00001896</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001897</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001898
1899</div>
1900
1901<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00001902<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001903<div class="doc_text">
Reid Spencer641f5c92004-12-09 18:13:12 +00001904 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswell4a3327e2005-05-13 22:25:59 +00001905 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer641f5c92004-12-09 18:13:12 +00001906 a constant is permitted.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001907
Reid Spencer641f5c92004-12-09 18:13:12 +00001908 <p>Undefined values indicate to the compiler that the program is well defined
1909 no matter what value is used, giving the compiler more freedom to optimize.
1910 </p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001911</div>
1912
1913<!-- ======================================================================= -->
1914<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1915</div>
1916
1917<div class="doc_text">
1918
1919<p>Constant expressions are used to allow expressions involving other constants
1920to be used as constants. Constant expressions may be of any <a
John Criswell4a3327e2005-05-13 22:25:59 +00001921href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattner74d3f822004-12-09 17:30:23 +00001922that does not have side effects (e.g. load and call are not supported). The
1923following is the syntax for constant expressions:</p>
1924
1925<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001926 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1927 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001928 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001929
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001930 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1931 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001932 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001933
1934 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1935 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001936 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001937
1938 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1939 <dd>Truncate a floating point constant to another floating point type. The
1940 size of CST must be larger than the size of TYPE. Both types must be
1941 floating point.</dd>
1942
1943 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1944 <dd>Floating point extend a constant to another type. The size of CST must be
1945 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1946
Reid Spencer753163d2007-07-31 14:40:14 +00001947 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001948 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001949 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1950 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1951 of the same number of elements. If the value won't fit in the integer type,
1952 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001953
Reid Spencer51b07252006-11-09 23:03:26 +00001954 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001955 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001956 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1957 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1958 of the same number of elements. If the value won't fit in the integer type,
1959 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001960
Reid Spencer51b07252006-11-09 23:03:26 +00001961 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001962 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001963 constant. TYPE must be a scalar or vector floating point type. CST must be of
1964 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1965 of the same number of elements. If the value won't fit in the floating point
1966 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001967
Reid Spencer51b07252006-11-09 23:03:26 +00001968 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001969 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001970 constant. TYPE must be a scalar or vector floating point type. CST must be of
1971 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1972 of the same number of elements. If the value won't fit in the floating point
1973 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001974
Reid Spencer5b950642006-11-11 23:08:07 +00001975 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1976 <dd>Convert a pointer typed constant to the corresponding integer constant
1977 TYPE must be an integer type. CST must be of pointer type. The CST value is
1978 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1979
1980 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1981 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1982 pointer type. CST must be of integer type. The CST value is zero extended,
1983 truncated, or unchanged to make it fit in a pointer size. This one is
1984 <i>really</i> dangerous!</dd>
1985
1986 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00001987 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
1988 are the same as those for the <a href="#i_bitcast">bitcast
1989 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001990
1991 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1992
1993 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1994 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1995 instruction, the index list may have zero or more indexes, which are required
1996 to make sense for the type of "CSTPTR".</dd>
1997
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001998 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1999
2000 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer9965ee72006-12-04 19:23:19 +00002001 constants.</dd>
2002
2003 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2004 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2005
2006 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2007 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002008
Nate Begemand2195702008-05-12 19:01:56 +00002009 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2010 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2011
2012 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2013 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2014
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002015 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2016
2017 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohmanef9462f2008-10-14 16:51:45 +00002018 operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002019
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002020 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2021
2022 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer9965ee72006-12-04 19:23:19 +00002023 operation</a> on constants.</dd>
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002024
Chris Lattner016a0e52006-04-08 00:13:41 +00002025
2026 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2027
2028 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer9965ee72006-12-04 19:23:19 +00002029 operation</a> on constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002030
Chris Lattner74d3f822004-12-09 17:30:23 +00002031 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2032
Reid Spencer641f5c92004-12-09 18:13:12 +00002033 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2034 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattner74d3f822004-12-09 17:30:23 +00002035 binary</a> operations. The constraints on operands are the same as those for
2036 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswell02fdc6f2005-05-12 16:52:32 +00002037 values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002038</dl>
Chris Lattner74d3f822004-12-09 17:30:23 +00002039</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002040
Nick Lewycky49f89192009-04-04 07:22:01 +00002041<!-- ======================================================================= -->
2042<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2043</div>
2044
2045<div class="doc_text">
2046
2047<p>Embedded metadata provides a way to attach arbitrary data to the
2048instruction stream without affecting the behaviour of the program. There are
2049two metadata primitives, strings and nodes. All metadata has the type of an
2050empty struct and is identified in syntax by a preceding exclamation point
2051('<tt>!</tt>').
2052</p>
2053
2054<p>A metadata string is a string surrounded by double quotes. It can contain
2055any character by escaping non-printable characters with "\xx" where "xx" is
2056the two digit hex code. For example: "<tt>!"test\00"</tt>".
2057</p>
2058
2059<p>Metadata nodes are represented with notation similar to structure constants
2060(a comma separated list of elements, surrounded by braces and preceeded by an
2061exclamation point). For example: "<tt>!{ { } !"test\00", i32 10}</tt>".
2062</p>
2063
2064<p>Optimizations may rely on metadata to provide additional information about
2065the program that isn't available in the instructions, or that isn't easily
2066computable. Similarly, the code generator may expect a certain metadata format
2067to be used to express debugging information.</p>
2068</div>
2069
Chris Lattner2f7c9632001-06-06 20:29:01 +00002070<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002071<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2072<!-- *********************************************************************** -->
2073
2074<!-- ======================================================================= -->
2075<div class="doc_subsection">
2076<a name="inlineasm">Inline Assembler Expressions</a>
2077</div>
2078
2079<div class="doc_text">
2080
2081<p>
2082LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2083Module-Level Inline Assembly</a>) through the use of a special value. This
2084value represents the inline assembler as a string (containing the instructions
2085to emit), a list of operand constraints (stored as a string), and a flag that
2086indicates whether or not the inline asm expression has side effects. An example
2087inline assembler expression is:
2088</p>
2089
Bill Wendling3716c5d2007-05-29 09:04:49 +00002090<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002091<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002092i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002093</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002094</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002095
2096<p>
2097Inline assembler expressions may <b>only</b> be used as the callee operand of
2098a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2099</p>
2100
Bill Wendling3716c5d2007-05-29 09:04:49 +00002101<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002102<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002103%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002104</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002105</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002106
2107<p>
2108Inline asms with side effects not visible in the constraint list must be marked
2109as having side effects. This is done through the use of the
2110'<tt>sideeffect</tt>' keyword, like so:
2111</p>
2112
Bill Wendling3716c5d2007-05-29 09:04:49 +00002113<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002114<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002115call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002116</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002117</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002118
2119<p>TODO: The format of the asm and constraints string still need to be
2120documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattnerd5528262008-10-04 18:36:02 +00002121need to be documented). This is probably best done by reference to another
2122document that covers inline asm from a holistic perspective.
Chris Lattner98f013c2006-01-25 23:47:57 +00002123</p>
2124
2125</div>
2126
2127<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002128<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2129<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002130
Misha Brukman76307852003-11-08 01:05:38 +00002131<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002132
Chris Lattner48b383b02003-11-25 01:02:51 +00002133<p>The LLVM instruction set consists of several different
2134classifications of instructions: <a href="#terminators">terminator
John Criswell4a3327e2005-05-13 22:25:59 +00002135instructions</a>, <a href="#binaryops">binary instructions</a>,
2136<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002137 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2138instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002139
Misha Brukman76307852003-11-08 01:05:38 +00002140</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002141
Chris Lattner2f7c9632001-06-06 20:29:01 +00002142<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002143<div class="doc_subsection"> <a name="terminators">Terminator
2144Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002145
Misha Brukman76307852003-11-08 01:05:38 +00002146<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002147
Chris Lattner48b383b02003-11-25 01:02:51 +00002148<p>As mentioned <a href="#functionstructure">previously</a>, every
2149basic block in a program ends with a "Terminator" instruction, which
2150indicates which block should be executed after the current block is
2151finished. These terminator instructions typically yield a '<tt>void</tt>'
2152value: they produce control flow, not values (the one exception being
2153the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswelldfe6a862004-12-10 15:51:16 +00002154<p>There are six different terminator instructions: the '<a
Chris Lattner48b383b02003-11-25 01:02:51 +00002155 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2156instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002157the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2158 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2159 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002160
Misha Brukman76307852003-11-08 01:05:38 +00002161</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002162
Chris Lattner2f7c9632001-06-06 20:29:01 +00002163<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002164<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2165Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002166<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002167<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002168<pre>
2169 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002170 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002171</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002172
Chris Lattner2f7c9632001-06-06 20:29:01 +00002173<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002174
Dan Gohmancc3132e2008-10-04 19:00:07 +00002175<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2176optionally a value) from a function back to the caller.</p>
John Criswell417228d2004-04-09 16:48:45 +00002177<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmancc3132e2008-10-04 19:00:07 +00002178returns a value and then causes control flow, and one that just causes
Chris Lattner48b383b02003-11-25 01:02:51 +00002179control flow to occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002180
Chris Lattner2f7c9632001-06-06 20:29:01 +00002181<h5>Arguments:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002182
Dan Gohmancc3132e2008-10-04 19:00:07 +00002183<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2184the return value. The type of the return value must be a
2185'<a href="#t_firstclass">first class</a>' type.</p>
2186
2187<p>A function is not <a href="#wellformed">well formed</a> if
2188it it has a non-void return type and contains a '<tt>ret</tt>'
2189instruction with no return value or a return value with a type that
2190does not match its type, or if it has a void return type and contains
2191a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002192
Chris Lattner2f7c9632001-06-06 20:29:01 +00002193<h5>Semantics:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002194
Chris Lattner48b383b02003-11-25 01:02:51 +00002195<p>When the '<tt>ret</tt>' instruction is executed, control flow
2196returns back to the calling function's context. If the caller is a "<a
John Criswell40db33f2004-06-25 15:16:57 +00002197 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner48b383b02003-11-25 01:02:51 +00002198the instruction after the call. If the caller was an "<a
2199 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswell02fdc6f2005-05-12 16:52:32 +00002200at the beginning of the "normal" destination block. If the instruction
Chris Lattner48b383b02003-11-25 01:02:51 +00002201returns a value, that value shall set the call or invoke instruction's
Dan Gohmanef9462f2008-10-14 16:51:45 +00002202return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002203
Chris Lattner2f7c9632001-06-06 20:29:01 +00002204<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002205
2206<pre>
2207 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002208 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002209 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002210</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002211
Dan Gohman142ccc02009-01-24 15:58:40 +00002212<p>Note that the code generator does not yet fully support large
2213 return values. The specific sizes that are currently supported are
2214 dependent on the target. For integers, on 32-bit targets the limit
2215 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2216 For aggregate types, the current limits are dependent on the element
2217 types; for example targets are often limited to 2 total integer
2218 elements and 2 total floating-point elements.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00002219
Misha Brukman76307852003-11-08 01:05:38 +00002220</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002221<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002222<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002223<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002224<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002225<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002226</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002227<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002228<p>The '<tt>br</tt>' instruction is used to cause control flow to
2229transfer to a different basic block in the current function. There are
2230two forms of this instruction, corresponding to a conditional branch
2231and an unconditional branch.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002232<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002233<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencer36a15422007-01-12 03:35:51 +00002234single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencer50c723a2007-02-19 23:54:10 +00002235unconditional form of the '<tt>br</tt>' instruction takes a single
2236'<tt>label</tt>' value as a target.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002237<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002238<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002239argument is evaluated. If the value is <tt>true</tt>, control flows
2240to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2241control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002242<h5>Example:</h5>
Chris Lattnere648c282009-05-09 18:11:50 +00002243<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002244 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman76307852003-11-08 01:05:38 +00002245</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002246<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002247<div class="doc_subsubsection">
2248 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2249</div>
2250
Misha Brukman76307852003-11-08 01:05:38 +00002251<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002252<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002253
2254<pre>
2255 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2256</pre>
2257
Chris Lattner2f7c9632001-06-06 20:29:01 +00002258<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002259
2260<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2261several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman76307852003-11-08 01:05:38 +00002262instruction, allowing a branch to occur to one of many possible
2263destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002264
2265
Chris Lattner2f7c9632001-06-06 20:29:01 +00002266<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002267
2268<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2269comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2270an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2271table is not allowed to contain duplicate constant entries.</p>
2272
Chris Lattner2f7c9632001-06-06 20:29:01 +00002273<h5>Semantics:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002274
Chris Lattner48b383b02003-11-25 01:02:51 +00002275<p>The <tt>switch</tt> instruction specifies a table of values and
2276destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswellbcbb18c2004-06-25 16:05:06 +00002277table is searched for the given value. If the value is found, control flow is
2278transfered to the corresponding destination; otherwise, control flow is
2279transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002280
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002281<h5>Implementation:</h5>
2282
2283<p>Depending on properties of the target machine and the particular
2284<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswellbcbb18c2004-06-25 16:05:06 +00002285ways. For example, it could be generated as a series of chained conditional
2286branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002287
2288<h5>Example:</h5>
2289
2290<pre>
2291 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002292 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002293 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002294
2295 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002296 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002297
2298 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002299 switch i32 %val, label %otherwise [ i32 0, label %onzero
2300 i32 1, label %onone
2301 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002302</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002303</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002304
Chris Lattner2f7c9632001-06-06 20:29:01 +00002305<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002306<div class="doc_subsubsection">
2307 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2308</div>
2309
Misha Brukman76307852003-11-08 01:05:38 +00002310<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002311
Chris Lattner2f7c9632001-06-06 20:29:01 +00002312<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002313
2314<pre>
Devang Patel02256232008-10-07 17:48:33 +00002315 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002316 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002317</pre>
2318
Chris Lattnera8292f32002-05-06 22:08:29 +00002319<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002320
2321<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2322function, with the possibility of control flow transfer to either the
John Criswell02fdc6f2005-05-12 16:52:32 +00002323'<tt>normal</tt>' label or the
2324'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattner0132aff2005-05-06 22:57:40 +00002325"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2326"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswell02fdc6f2005-05-12 16:52:32 +00002327href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmanef9462f2008-10-14 16:51:45 +00002328continued at the dynamically nearest "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002329
Chris Lattner2f7c9632001-06-06 20:29:01 +00002330<h5>Arguments:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002331
Misha Brukman76307852003-11-08 01:05:38 +00002332<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002333
Chris Lattner2f7c9632001-06-06 20:29:01 +00002334<ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002335 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00002336 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00002337 convention</a> the call should use. If none is specified, the call defaults
2338 to using C calling conventions.
2339 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002340
2341 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2342 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2343 and '<tt>inreg</tt>' attributes are valid here.</li>
2344
Chris Lattner0132aff2005-05-06 22:57:40 +00002345 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2346 function value being invoked. In most cases, this is a direct function
2347 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2348 an arbitrary pointer to function value.
2349 </li>
2350
2351 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2352 function to be invoked. </li>
2353
2354 <li>'<tt>function args</tt>': argument list whose types match the function
2355 signature argument types. If the function signature indicates the function
2356 accepts a variable number of arguments, the extra arguments can be
2357 specified. </li>
2358
2359 <li>'<tt>normal label</tt>': the label reached when the called function
2360 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2361
2362 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2363 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2364
Devang Patel02256232008-10-07 17:48:33 +00002365 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00002366 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2367 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002368</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002369
Chris Lattner2f7c9632001-06-06 20:29:01 +00002370<h5>Semantics:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002371
Misha Brukman76307852003-11-08 01:05:38 +00002372<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattner0132aff2005-05-06 22:57:40 +00002373href="#i_call">call</a></tt>' instruction in most regards. The primary
2374difference is that it establishes an association with a label, which is used by
2375the runtime library to unwind the stack.</p>
2376
2377<p>This instruction is used in languages with destructors to ensure that proper
2378cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2379exception. Additionally, this is important for implementation of
2380'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2381
Chris Lattner2f7c9632001-06-06 20:29:01 +00002382<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002383<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002384 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002385 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002386 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002387 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002388</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002389</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002390
2391
Chris Lattner5ed60612003-09-03 00:41:47 +00002392<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002393
Chris Lattner48b383b02003-11-25 01:02:51 +00002394<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2395Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002396
Misha Brukman76307852003-11-08 01:05:38 +00002397<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002398
Chris Lattner5ed60612003-09-03 00:41:47 +00002399<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002400<pre>
2401 unwind
2402</pre>
2403
Chris Lattner5ed60612003-09-03 00:41:47 +00002404<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002405
2406<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2407at the first callee in the dynamic call stack which used an <a
2408href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2409primarily used to implement exception handling.</p>
2410
Chris Lattner5ed60612003-09-03 00:41:47 +00002411<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002412
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002413<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002414immediately halt. The dynamic call stack is then searched for the first <a
2415href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2416execution continues at the "exceptional" destination block specified by the
2417<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2418dynamic call chain, undefined behavior results.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002419</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002420
2421<!-- _______________________________________________________________________ -->
2422
2423<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2424Instruction</a> </div>
2425
2426<div class="doc_text">
2427
2428<h5>Syntax:</h5>
2429<pre>
2430 unreachable
2431</pre>
2432
2433<h5>Overview:</h5>
2434
2435<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2436instruction is used to inform the optimizer that a particular portion of the
2437code is not reachable. This can be used to indicate that the code after a
2438no-return function cannot be reached, and other facts.</p>
2439
2440<h5>Semantics:</h5>
2441
2442<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2443</div>
2444
2445
2446
Chris Lattner2f7c9632001-06-06 20:29:01 +00002447<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002448<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002449<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00002450<p>Binary operators are used to do most of the computation in a
Chris Lattner81f92972008-04-01 18:47:32 +00002451program. They require two operands of the same type, execute an operation on them, and
John Criswelldfe6a862004-12-10 15:51:16 +00002452produce a single value. The operands might represent
Reid Spencer404a3252007-02-15 03:07:05 +00002453multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner81f92972008-04-01 18:47:32 +00002454The result value has the same type as its operands.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002455<p>There are several different binary operators:</p>
Misha Brukman76307852003-11-08 01:05:38 +00002456</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002457<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002458<div class="doc_subsubsection">
2459 <a name="i_add">'<tt>add</tt>' Instruction</a>
2460</div>
2461
Misha Brukman76307852003-11-08 01:05:38 +00002462<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002463
Chris Lattner2f7c9632001-06-06 20:29:01 +00002464<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002465
2466<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002467 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002468</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002469
Chris Lattner2f7c9632001-06-06 20:29:01 +00002470<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002471
Misha Brukman76307852003-11-08 01:05:38 +00002472<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002473
Chris Lattner2f7c9632001-06-06 20:29:01 +00002474<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002475
2476<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2477 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2478 <a href="#t_vector">vector</a> values. Both arguments must have identical
2479 types.</p>
2480
Chris Lattner2f7c9632001-06-06 20:29:01 +00002481<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002482
Misha Brukman76307852003-11-08 01:05:38 +00002483<p>The value produced is the integer or floating point sum of the two
2484operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002485
Chris Lattner2f2427e2008-01-28 00:36:27 +00002486<p>If an integer sum has unsigned overflow, the result returned is the
2487mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2488the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002489
Chris Lattner2f2427e2008-01-28 00:36:27 +00002490<p>Because LLVM integers use a two's complement representation, this
2491instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002492
Chris Lattner2f7c9632001-06-06 20:29:01 +00002493<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002494
2495<pre>
2496 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002497</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002498</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002499<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002500<div class="doc_subsubsection">
2501 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2502</div>
2503
Misha Brukman76307852003-11-08 01:05:38 +00002504<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002505
Chris Lattner2f7c9632001-06-06 20:29:01 +00002506<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002507
2508<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002509 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002510</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002511
Chris Lattner2f7c9632001-06-06 20:29:01 +00002512<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002513
Misha Brukman76307852003-11-08 01:05:38 +00002514<p>The '<tt>sub</tt>' instruction returns the difference of its two
2515operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002516
2517<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2518'<tt>neg</tt>' instruction present in most other intermediate
2519representations.</p>
2520
Chris Lattner2f7c9632001-06-06 20:29:01 +00002521<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002522
2523<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2524 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2525 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2526 types.</p>
2527
Chris Lattner2f7c9632001-06-06 20:29:01 +00002528<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002529
Chris Lattner48b383b02003-11-25 01:02:51 +00002530<p>The value produced is the integer or floating point difference of
2531the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002532
Chris Lattner2f2427e2008-01-28 00:36:27 +00002533<p>If an integer difference has unsigned overflow, the result returned is the
2534mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2535the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002536
Chris Lattner2f2427e2008-01-28 00:36:27 +00002537<p>Because LLVM integers use a two's complement representation, this
2538instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002539
Chris Lattner2f7c9632001-06-06 20:29:01 +00002540<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002541<pre>
2542 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002543 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002544</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002545</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002546
Chris Lattner2f7c9632001-06-06 20:29:01 +00002547<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002548<div class="doc_subsubsection">
2549 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2550</div>
2551
Misha Brukman76307852003-11-08 01:05:38 +00002552<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002553
Chris Lattner2f7c9632001-06-06 20:29:01 +00002554<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002555<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002556</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002557<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002558<p>The '<tt>mul</tt>' instruction returns the product of its two
2559operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002560
Chris Lattner2f7c9632001-06-06 20:29:01 +00002561<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002562
2563<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2564href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2565or <a href="#t_vector">vector</a> values. Both arguments must have identical
2566types.</p>
2567
Chris Lattner2f7c9632001-06-06 20:29:01 +00002568<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002569
Chris Lattner48b383b02003-11-25 01:02:51 +00002570<p>The value produced is the integer or floating point product of the
Misha Brukman76307852003-11-08 01:05:38 +00002571two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002572
Chris Lattner2f2427e2008-01-28 00:36:27 +00002573<p>If the result of an integer multiplication has unsigned overflow,
2574the result returned is the mathematical result modulo
25752<sup>n</sup>, where n is the bit width of the result.</p>
2576<p>Because LLVM integers use a two's complement representation, and the
2577result is the same width as the operands, this instruction returns the
2578correct result for both signed and unsigned integers. If a full product
2579(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2580should be sign-extended or zero-extended as appropriate to the
2581width of the full product.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002582<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002583<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002584</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002585</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002586
Chris Lattner2f7c9632001-06-06 20:29:01 +00002587<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002588<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2589</a></div>
2590<div class="doc_text">
2591<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002592<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002593</pre>
2594<h5>Overview:</h5>
2595<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2596operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002597
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002598<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002599
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002600<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002601<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2602values. Both arguments must have identical types.</p>
2603
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002604<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002605
Chris Lattner2f2427e2008-01-28 00:36:27 +00002606<p>The value produced is the unsigned integer quotient of the two operands.</p>
2607<p>Note that unsigned integer division and signed integer division are distinct
2608operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2609<p>Division by zero leads to undefined behavior.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002610<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002611<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002612</pre>
2613</div>
2614<!-- _______________________________________________________________________ -->
2615<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2616</a> </div>
2617<div class="doc_text">
2618<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002619<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002620 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002621</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002622
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002623<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002624
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002625<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2626operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002627
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002628<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002629
2630<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2631<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2632values. Both arguments must have identical types.</p>
2633
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002634<h5>Semantics:</h5>
Chris Lattner1429e6f2008-04-01 18:45:27 +00002635<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002636<p>Note that signed integer division and unsigned integer division are distinct
2637operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2638<p>Division by zero leads to undefined behavior. Overflow also leads to
2639undefined behavior; this is a rare case, but can occur, for example,
2640by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002641<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002642<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002643</pre>
2644</div>
2645<!-- _______________________________________________________________________ -->
2646<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002647Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002648<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002649<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002650<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002651 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002652</pre>
2653<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002654
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002655<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner48b383b02003-11-25 01:02:51 +00002656operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002657
Chris Lattner48b383b02003-11-25 01:02:51 +00002658<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002659
Jeff Cohen5819f182007-04-22 01:17:39 +00002660<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002661<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2662of floating point values. Both arguments must have identical types.</p>
2663
Chris Lattner48b383b02003-11-25 01:02:51 +00002664<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002665
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002666<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002667
Chris Lattner48b383b02003-11-25 01:02:51 +00002668<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002669
2670<pre>
2671 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002672</pre>
2673</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002674
Chris Lattner48b383b02003-11-25 01:02:51 +00002675<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00002676<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2677</div>
2678<div class="doc_text">
2679<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002680<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002681</pre>
2682<h5>Overview:</h5>
2683<p>The '<tt>urem</tt>' instruction returns the remainder from the
2684unsigned division of its two arguments.</p>
2685<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002686<p>The two arguments to the '<tt>urem</tt>' instruction must be
2687<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2688values. Both arguments must have identical types.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002689<h5>Semantics:</h5>
2690<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattner1429e6f2008-04-01 18:45:27 +00002691This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002692<p>Note that unsigned integer remainder and signed integer remainder are
2693distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2694<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002695<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002696<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002697</pre>
2698
2699</div>
2700<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002701<div class="doc_subsubsection">
2702 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2703</div>
2704
Chris Lattner48b383b02003-11-25 01:02:51 +00002705<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002706
Chris Lattner48b383b02003-11-25 01:02:51 +00002707<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002708
2709<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002710 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002711</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002712
Chris Lattner48b383b02003-11-25 01:02:51 +00002713<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002714
Reid Spencer7eb55b32006-11-02 01:53:59 +00002715<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman08143e32007-11-05 23:35:22 +00002716signed division of its two operands. This instruction can also take
2717<a href="#t_vector">vector</a> versions of the values in which case
2718the elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00002719
Chris Lattner48b383b02003-11-25 01:02:51 +00002720<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002721
Reid Spencer7eb55b32006-11-02 01:53:59 +00002722<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002723<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2724values. Both arguments must have identical types.</p>
2725
Chris Lattner48b383b02003-11-25 01:02:51 +00002726<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002727
Reid Spencer7eb55b32006-11-02 01:53:59 +00002728<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greif0f75ad02008-08-07 21:46:00 +00002729has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2730operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencer806ad6a2007-03-24 22:23:39 +00002731a value. For more information about the difference, see <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002732 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencer806ad6a2007-03-24 22:23:39 +00002733Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencerdb3b93b2007-03-24 22:40:44 +00002734please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencer806ad6a2007-03-24 22:23:39 +00002735Wikipedia: modulo operation</a>.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002736<p>Note that signed integer remainder and unsigned integer remainder are
2737distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2738<p>Taking the remainder of a division by zero leads to undefined behavior.
2739Overflow also leads to undefined behavior; this is a rare case, but can occur,
2740for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2741(The remainder doesn't actually overflow, but this rule lets srem be
2742implemented using instructions that return both the result of the division
2743and the remainder.)</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002744<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002745<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002746</pre>
2747
2748</div>
2749<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002750<div class="doc_subsubsection">
2751 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2752
Reid Spencer7eb55b32006-11-02 01:53:59 +00002753<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002754
Reid Spencer7eb55b32006-11-02 01:53:59 +00002755<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002756<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002757</pre>
2758<h5>Overview:</h5>
2759<p>The '<tt>frem</tt>' instruction returns the remainder from the
2760division of its two operands.</p>
2761<h5>Arguments:</h5>
2762<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002763<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2764of floating point values. Both arguments must have identical types.</p>
2765
Reid Spencer7eb55b32006-11-02 01:53:59 +00002766<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002767
Chris Lattner1429e6f2008-04-01 18:45:27 +00002768<p>This instruction returns the <i>remainder</i> of a division.
2769The remainder has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002770
Reid Spencer7eb55b32006-11-02 01:53:59 +00002771<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002772
2773<pre>
2774 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002775</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002776</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00002777
Reid Spencer2ab01932007-02-02 13:57:07 +00002778<!-- ======================================================================= -->
2779<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2780Operations</a> </div>
2781<div class="doc_text">
2782<p>Bitwise binary operators are used to do various forms of
2783bit-twiddling in a program. They are generally very efficient
2784instructions and can commonly be strength reduced from other
Chris Lattner1429e6f2008-04-01 18:45:27 +00002785instructions. They require two operands of the same type, execute an operation on them,
2786and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer2ab01932007-02-02 13:57:07 +00002787</div>
2788
Reid Spencer04e259b2007-01-31 21:39:12 +00002789<!-- _______________________________________________________________________ -->
2790<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2791Instruction</a> </div>
2792<div class="doc_text">
2793<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002794<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002795</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002796
Reid Spencer04e259b2007-01-31 21:39:12 +00002797<h5>Overview:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002798
Reid Spencer04e259b2007-01-31 21:39:12 +00002799<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2800the left a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002801
Reid Spencer04e259b2007-01-31 21:39:12 +00002802<h5>Arguments:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002803
Reid Spencer04e259b2007-01-31 21:39:12 +00002804<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002805 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002806type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002807
Reid Spencer04e259b2007-01-31 21:39:12 +00002808<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002809
Gabor Greif0f75ad02008-08-07 21:46:00 +00002810<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2811where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang68d4eee2008-12-10 08:55:09 +00002812equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2813If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2814corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002815
Reid Spencer04e259b2007-01-31 21:39:12 +00002816<h5>Example:</h5><pre>
2817 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2818 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2819 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002820 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002821 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002822</pre>
2823</div>
2824<!-- _______________________________________________________________________ -->
2825<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2826Instruction</a> </div>
2827<div class="doc_text">
2828<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002829<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002830</pre>
2831
2832<h5>Overview:</h5>
2833<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002834operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002835
2836<h5>Arguments:</h5>
2837<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002838<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002839type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002840
2841<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002842
Reid Spencer04e259b2007-01-31 21:39:12 +00002843<p>This instruction always performs a logical shift right operation. The most
2844significant bits of the result will be filled with zero bits after the
Gabor Greif0f75ad02008-08-07 21:46:00 +00002845shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang68d4eee2008-12-10 08:55:09 +00002846the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2847vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2848amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002849
2850<h5>Example:</h5>
2851<pre>
2852 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2853 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2854 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2855 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002856 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002857 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002858</pre>
2859</div>
2860
Reid Spencer2ab01932007-02-02 13:57:07 +00002861<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00002862<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2863Instruction</a> </div>
2864<div class="doc_text">
2865
2866<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002867<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002868</pre>
2869
2870<h5>Overview:</h5>
2871<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002872operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002873
2874<h5>Arguments:</h5>
2875<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002876<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002877type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002878
2879<h5>Semantics:</h5>
2880<p>This instruction always performs an arithmetic shift right operation,
2881The most significant bits of the result will be filled with the sign bit
Gabor Greif0f75ad02008-08-07 21:46:00 +00002882of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang68d4eee2008-12-10 08:55:09 +00002883larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2884arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2885corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002886
2887<h5>Example:</h5>
2888<pre>
2889 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2890 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2891 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2892 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002893 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002894 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002895</pre>
2896</div>
2897
Chris Lattner2f7c9632001-06-06 20:29:01 +00002898<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002899<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2900Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002901
Misha Brukman76307852003-11-08 01:05:38 +00002902<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002903
Chris Lattner2f7c9632001-06-06 20:29:01 +00002904<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002905
2906<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002907 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002908</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002909
Chris Lattner2f7c9632001-06-06 20:29:01 +00002910<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002911
Chris Lattner48b383b02003-11-25 01:02:51 +00002912<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2913its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002914
Chris Lattner2f7c9632001-06-06 20:29:01 +00002915<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002916
2917<p>The two arguments to the '<tt>and</tt>' instruction must be
2918<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2919values. Both arguments must have identical types.</p>
2920
Chris Lattner2f7c9632001-06-06 20:29:01 +00002921<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002922<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002923<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002924<div>
Misha Brukman76307852003-11-08 01:05:38 +00002925<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00002926 <tbody>
2927 <tr>
2928 <td>In0</td>
2929 <td>In1</td>
2930 <td>Out</td>
2931 </tr>
2932 <tr>
2933 <td>0</td>
2934 <td>0</td>
2935 <td>0</td>
2936 </tr>
2937 <tr>
2938 <td>0</td>
2939 <td>1</td>
2940 <td>0</td>
2941 </tr>
2942 <tr>
2943 <td>1</td>
2944 <td>0</td>
2945 <td>0</td>
2946 </tr>
2947 <tr>
2948 <td>1</td>
2949 <td>1</td>
2950 <td>1</td>
2951 </tr>
2952 </tbody>
2953</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002954</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002955<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002956<pre>
2957 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002958 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2959 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002960</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002961</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002962<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002963<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002964<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002965<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002966<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002967</pre>
Chris Lattner48b383b02003-11-25 01:02:51 +00002968<h5>Overview:</h5>
2969<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2970or of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002971<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002972
2973<p>The two arguments to the '<tt>or</tt>' instruction must be
2974<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2975values. Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002976<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002977<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002978<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002979<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002980<table border="1" cellspacing="0" cellpadding="4">
2981 <tbody>
2982 <tr>
2983 <td>In0</td>
2984 <td>In1</td>
2985 <td>Out</td>
2986 </tr>
2987 <tr>
2988 <td>0</td>
2989 <td>0</td>
2990 <td>0</td>
2991 </tr>
2992 <tr>
2993 <td>0</td>
2994 <td>1</td>
2995 <td>1</td>
2996 </tr>
2997 <tr>
2998 <td>1</td>
2999 <td>0</td>
3000 <td>1</td>
3001 </tr>
3002 <tr>
3003 <td>1</td>
3004 <td>1</td>
3005 <td>1</td>
3006 </tr>
3007 </tbody>
3008</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003009</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003010<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003011<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3012 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3013 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003014</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003015</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003016<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003017<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3018Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003019<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00003020<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003021<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003022</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003023<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003024<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3025or of its two operands. The <tt>xor</tt> is used to implement the
3026"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003027<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003028<p>The two arguments to the '<tt>xor</tt>' instruction must be
3029<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3030values. Both arguments must have identical types.</p>
3031
Chris Lattner2f7c9632001-06-06 20:29:01 +00003032<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003033
Misha Brukman76307852003-11-08 01:05:38 +00003034<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003035<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003036<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003037<table border="1" cellspacing="0" cellpadding="4">
3038 <tbody>
3039 <tr>
3040 <td>In0</td>
3041 <td>In1</td>
3042 <td>Out</td>
3043 </tr>
3044 <tr>
3045 <td>0</td>
3046 <td>0</td>
3047 <td>0</td>
3048 </tr>
3049 <tr>
3050 <td>0</td>
3051 <td>1</td>
3052 <td>1</td>
3053 </tr>
3054 <tr>
3055 <td>1</td>
3056 <td>0</td>
3057 <td>1</td>
3058 </tr>
3059 <tr>
3060 <td>1</td>
3061 <td>1</td>
3062 <td>0</td>
3063 </tr>
3064 </tbody>
3065</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003066</div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003067<p> </p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003068<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003069<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3070 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3071 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3072 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003073</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003074</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003075
Chris Lattner2f7c9632001-06-06 20:29:01 +00003076<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00003077<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003078 <a name="vectorops">Vector Operations</a>
3079</div>
3080
3081<div class="doc_text">
3082
3083<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen5819f182007-04-22 01:17:39 +00003084target-independent manner. These instructions cover the element-access and
Chris Lattnerce83bff2006-04-08 23:07:04 +00003085vector-specific operations needed to process vectors effectively. While LLVM
3086does directly support these vector operations, many sophisticated algorithms
3087will want to use target-specific intrinsics to take full advantage of a specific
3088target.</p>
3089
3090</div>
3091
3092<!-- _______________________________________________________________________ -->
3093<div class="doc_subsubsection">
3094 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3095</div>
3096
3097<div class="doc_text">
3098
3099<h5>Syntax:</h5>
3100
3101<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003102 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003103</pre>
3104
3105<h5>Overview:</h5>
3106
3107<p>
3108The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003109element from a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003110</p>
3111
3112
3113<h5>Arguments:</h5>
3114
3115<p>
3116The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003117value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattnerce83bff2006-04-08 23:07:04 +00003118an index indicating the position from which to extract the element.
3119The index may be a variable.</p>
3120
3121<h5>Semantics:</h5>
3122
3123<p>
3124The result is a scalar of the same type as the element type of
3125<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3126<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3127results are undefined.
3128</p>
3129
3130<h5>Example:</h5>
3131
3132<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003133 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003134</pre>
3135</div>
3136
3137
3138<!-- _______________________________________________________________________ -->
3139<div class="doc_subsubsection">
3140 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3141</div>
3142
3143<div class="doc_text">
3144
3145<h5>Syntax:</h5>
3146
3147<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003148 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003149</pre>
3150
3151<h5>Overview:</h5>
3152
3153<p>
3154The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003155element into a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003156</p>
3157
3158
3159<h5>Arguments:</h5>
3160
3161<p>
3162The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003163value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattnerce83bff2006-04-08 23:07:04 +00003164scalar value whose type must equal the element type of the first
3165operand. The third operand is an index indicating the position at
3166which to insert the value. The index may be a variable.</p>
3167
3168<h5>Semantics:</h5>
3169
3170<p>
Reid Spencer404a3252007-02-15 03:07:05 +00003171The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattnerce83bff2006-04-08 23:07:04 +00003172element values are those of <tt>val</tt> except at position
3173<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3174exceeds the length of <tt>val</tt>, the results are undefined.
3175</p>
3176
3177<h5>Example:</h5>
3178
3179<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003180 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003181</pre>
3182</div>
3183
3184<!-- _______________________________________________________________________ -->
3185<div class="doc_subsubsection">
3186 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3187</div>
3188
3189<div class="doc_text">
3190
3191<h5>Syntax:</h5>
3192
3193<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003194 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003195</pre>
3196
3197<h5>Overview:</h5>
3198
3199<p>
3200The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wang25f01062008-11-10 04:46:22 +00003201from two input vectors, returning a vector with the same element type as
3202the input and length that is the same as the shuffle mask.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003203</p>
3204
3205<h5>Arguments:</h5>
3206
3207<p>
Mon P Wang25f01062008-11-10 04:46:22 +00003208The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3209with types that match each other. The third argument is a shuffle mask whose
3210element type is always 'i32'. The result of the instruction is a vector whose
3211length is the same as the shuffle mask and whose element type is the same as
3212the element type of the first two operands.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003213</p>
3214
3215<p>
3216The shuffle mask operand is required to be a constant vector with either
3217constant integer or undef values.
3218</p>
3219
3220<h5>Semantics:</h5>
3221
3222<p>
3223The elements of the two input vectors are numbered from left to right across
3224both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wang25f01062008-11-10 04:46:22 +00003225the result vector, which element of the two input vectors the result element
Chris Lattnerce83bff2006-04-08 23:07:04 +00003226gets. The element selector may be undef (meaning "don't care") and the second
3227operand may be undef if performing a shuffle from only one vector.
3228</p>
3229
3230<h5>Example:</h5>
3231
3232<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003233 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003234 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003235 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3236 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wang25f01062008-11-10 04:46:22 +00003237 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3238 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3239 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3240 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003241</pre>
3242</div>
3243
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003244
Chris Lattnerce83bff2006-04-08 23:07:04 +00003245<!-- ======================================================================= -->
3246<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003247 <a name="aggregateops">Aggregate Operations</a>
3248</div>
3249
3250<div class="doc_text">
3251
3252<p>LLVM supports several instructions for working with aggregate values.
3253</p>
3254
3255</div>
3256
3257<!-- _______________________________________________________________________ -->
3258<div class="doc_subsubsection">
3259 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3260</div>
3261
3262<div class="doc_text">
3263
3264<h5>Syntax:</h5>
3265
3266<pre>
3267 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3268</pre>
3269
3270<h5>Overview:</h5>
3271
3272<p>
Dan Gohman35a835c2008-05-13 18:16:06 +00003273The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3274or array element from an aggregate value.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003275</p>
3276
3277
3278<h5>Arguments:</h5>
3279
3280<p>
3281The first operand of an '<tt>extractvalue</tt>' instruction is a
3282value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman35a835c2008-05-13 18:16:06 +00003283type. The operands are constant indices to specify which value to extract
Dan Gohman1ecaf452008-05-31 00:58:22 +00003284in a similar manner as indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003285'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3286</p>
3287
3288<h5>Semantics:</h5>
3289
3290<p>
3291The result is the value at the position in the aggregate specified by
3292the index operands.
3293</p>
3294
3295<h5>Example:</h5>
3296
3297<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003298 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003299</pre>
3300</div>
3301
3302
3303<!-- _______________________________________________________________________ -->
3304<div class="doc_subsubsection">
3305 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3306</div>
3307
3308<div class="doc_text">
3309
3310<h5>Syntax:</h5>
3311
3312<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003313 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003314</pre>
3315
3316<h5>Overview:</h5>
3317
3318<p>
3319The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman35a835c2008-05-13 18:16:06 +00003320into a struct field or array element in an aggregate.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003321</p>
3322
3323
3324<h5>Arguments:</h5>
3325
3326<p>
3327The first operand of an '<tt>insertvalue</tt>' instruction is a
3328value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3329The second operand is a first-class value to insert.
Dan Gohman34d1c0d2008-05-23 21:53:15 +00003330The following operands are constant indices
Dan Gohman1ecaf452008-05-31 00:58:22 +00003331indicating the position at which to insert the value in a similar manner as
Dan Gohman35a835c2008-05-13 18:16:06 +00003332indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003333'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3334The value to insert must have the same type as the value identified
Dan Gohman35a835c2008-05-13 18:16:06 +00003335by the indices.
Dan Gohmanef9462f2008-10-14 16:51:45 +00003336</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003337
3338<h5>Semantics:</h5>
3339
3340<p>
3341The result is an aggregate of the same type as <tt>val</tt>. Its
3342value is that of <tt>val</tt> except that the value at the position
Dan Gohman35a835c2008-05-13 18:16:06 +00003343specified by the indices is that of <tt>elt</tt>.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003344</p>
3345
3346<h5>Example:</h5>
3347
3348<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003349 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003350</pre>
3351</div>
3352
3353
3354<!-- ======================================================================= -->
3355<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003356 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003357</div>
3358
Misha Brukman76307852003-11-08 01:05:38 +00003359<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003360
Chris Lattner48b383b02003-11-25 01:02:51 +00003361<p>A key design point of an SSA-based representation is how it
3362represents memory. In LLVM, no memory locations are in SSA form, which
3363makes things very simple. This section describes how to read, write,
John Criswelldfe6a862004-12-10 15:51:16 +00003364allocate, and free memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003365
Misha Brukman76307852003-11-08 01:05:38 +00003366</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003367
Chris Lattner2f7c9632001-06-06 20:29:01 +00003368<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003369<div class="doc_subsubsection">
3370 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3371</div>
3372
Misha Brukman76307852003-11-08 01:05:38 +00003373<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003374
Chris Lattner2f7c9632001-06-06 20:29:01 +00003375<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003376
3377<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003378 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003379</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003380
Chris Lattner2f7c9632001-06-06 20:29:01 +00003381<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003382
Chris Lattner48b383b02003-11-25 01:02:51 +00003383<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003384heap and returns a pointer to it. The object is always allocated in the generic
3385address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003386
Chris Lattner2f7c9632001-06-06 20:29:01 +00003387<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003388
3389<p>The '<tt>malloc</tt>' instruction allocates
3390<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswella92e5862004-02-24 16:13:56 +00003391bytes of memory from the operating system and returns a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00003392appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003393number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003394If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greifdd1fc982008-02-09 22:24:34 +00003395be aligned to at least that boundary. If not specified, or if zero, the target can
3396choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003397
Misha Brukman76307852003-11-08 01:05:38 +00003398<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003399
Chris Lattner2f7c9632001-06-06 20:29:01 +00003400<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003401
Chris Lattner48b383b02003-11-25 01:02:51 +00003402<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +00003403a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003404result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003405
Chris Lattner54611b42005-11-06 08:02:57 +00003406<h5>Example:</h5>
3407
3408<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003409 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003410
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003411 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3412 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3413 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3414 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3415 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003416</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003417
3418<p>Note that the code generator does not yet respect the
3419 alignment value.</p>
3420
Misha Brukman76307852003-11-08 01:05:38 +00003421</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003422
Chris Lattner2f7c9632001-06-06 20:29:01 +00003423<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003424<div class="doc_subsubsection">
3425 <a name="i_free">'<tt>free</tt>' Instruction</a>
3426</div>
3427
Misha Brukman76307852003-11-08 01:05:38 +00003428<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003429
Chris Lattner2f7c9632001-06-06 20:29:01 +00003430<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003431
3432<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003433 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003434</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003435
Chris Lattner2f7c9632001-06-06 20:29:01 +00003436<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003437
Chris Lattner48b383b02003-11-25 01:02:51 +00003438<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswell4a3327e2005-05-13 22:25:59 +00003439memory heap to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003440
Chris Lattner2f7c9632001-06-06 20:29:01 +00003441<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003442
Chris Lattner48b383b02003-11-25 01:02:51 +00003443<p>'<tt>value</tt>' shall be a pointer value that points to a value
3444that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3445instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003446
Chris Lattner2f7c9632001-06-06 20:29:01 +00003447<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003448
John Criswelldfe6a862004-12-10 15:51:16 +00003449<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner0f103e12008-04-19 22:41:32 +00003450after this instruction executes. If the pointer is null, the operation
3451is a noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003452
Chris Lattner2f7c9632001-06-06 20:29:01 +00003453<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003454
3455<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003456 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003457 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003458</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003459</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003460
Chris Lattner2f7c9632001-06-06 20:29:01 +00003461<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003462<div class="doc_subsubsection">
3463 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3464</div>
3465
Misha Brukman76307852003-11-08 01:05:38 +00003466<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003467
Chris Lattner2f7c9632001-06-06 20:29:01 +00003468<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003469
3470<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003471 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003472</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003473
Chris Lattner2f7c9632001-06-06 20:29:01 +00003474<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003475
Jeff Cohen5819f182007-04-22 01:17:39 +00003476<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3477currently executing function, to be automatically released when this function
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003478returns to its caller. The object is always allocated in the generic address
3479space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003480
Chris Lattner2f7c9632001-06-06 20:29:01 +00003481<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003482
John Criswelldfe6a862004-12-10 15:51:16 +00003483<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00003484bytes of memory on the runtime stack, returning a pointer of the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003485appropriate type to the program. If "NumElements" is specified, it is the
3486number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003487If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greifdd1fc982008-02-09 22:24:34 +00003488to be aligned to at least that boundary. If not specified, or if zero, the target
3489can choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003490
Misha Brukman76307852003-11-08 01:05:38 +00003491<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003492
Chris Lattner2f7c9632001-06-06 20:29:01 +00003493<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003494
Bill Wendling9ee6a312009-05-08 20:49:29 +00003495<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003496there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner48b383b02003-11-25 01:02:51 +00003497memory is automatically released when the function returns. The '<tt>alloca</tt>'
3498instruction is commonly used to represent automatic variables that must
3499have an address available. When the function returns (either with the <tt><a
John Criswellc932bef2005-05-12 16:55:34 +00003500 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003501instructions), the memory is reclaimed. Allocating zero bytes
3502is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003503
Chris Lattner2f7c9632001-06-06 20:29:01 +00003504<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003505
3506<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003507 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3508 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3509 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3510 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003511</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003512</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003513
Chris Lattner2f7c9632001-06-06 20:29:01 +00003514<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003515<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3516Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003517<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003518<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003519<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003520<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003521<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003522<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003523<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell4c0cf7f2005-10-24 16:17:18 +00003524address from which to load. The pointer must point to a <a
Chris Lattner10ee9652004-06-03 22:57:15 +00003525 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell4c0cf7f2005-10-24 16:17:18 +00003526marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner48b383b02003-11-25 01:02:51 +00003527the number or order of execution of this <tt>load</tt> with other
3528volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3529instructions. </p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003530<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003531The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003532(that is, the alignment of the memory address). A value of 0 or an
3533omitted "align" argument means that the operation has the preferential
3534alignment for the target. It is the responsibility of the code emitter
3535to ensure that the alignment information is correct. Overestimating
3536the alignment results in an undefined behavior. Underestimating the
3537alignment may produce less efficient code. An alignment of 1 is always
3538safe.
3539</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003540<h5>Semantics:</h5>
Duncan Sandsb1656c12009-03-22 11:33:16 +00003541<p>The location of memory pointed to is loaded. If the value being loaded
3542is of scalar type then the number of bytes read does not exceed the minimum
3543number of bytes needed to hold all bits of the type. For example, loading an
3544<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3545<tt>i20</tt> with a size that is not an integral number of bytes, the result
3546is undefined if the value was not originally written using a store of the
3547same type.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003548<h5>Examples:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003549<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003550 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003551 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3552 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003553</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003554</div>
Chris Lattner095735d2002-05-06 03:03:22 +00003555<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003556<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3557Instruction</a> </div>
Reid Spencera89fb182006-11-09 21:18:01 +00003558<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003559<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003560<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3561 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003562</pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003563<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003564<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003565<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003566<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen5819f182007-04-22 01:17:39 +00003567to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner1f17cce2008-04-02 00:38:26 +00003568operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3569of the '<tt>&lt;value&gt;</tt>'
John Criswell4a3327e2005-05-13 22:25:59 +00003570operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner48b383b02003-11-25 01:02:51 +00003571optimizer is not allowed to modify the number or order of execution of
3572this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3573 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003574<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003575The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003576(that is, the alignment of the memory address). A value of 0 or an
3577omitted "align" argument means that the operation has the preferential
3578alignment for the target. It is the responsibility of the code emitter
3579to ensure that the alignment information is correct. Overestimating
3580the alignment results in an undefined behavior. Underestimating the
3581alignment may produce less efficient code. An alignment of 1 is always
3582safe.
3583</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003584<h5>Semantics:</h5>
3585<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sandsb1656c12009-03-22 11:33:16 +00003586at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3587If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3588written does not exceed the minimum number of bytes needed to hold all
3589bits of the type. For example, storing an <tt>i24</tt> writes at most
3590three bytes. When writing a value of a type like <tt>i20</tt> with a
3591size that is not an integral number of bytes, it is unspecified what
3592happens to the extra bits that do not belong to the type, but they will
3593typically be overwritten.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003594<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003595<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00003596 store i32 3, i32* %ptr <i>; yields {void}</i>
3597 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003598</pre>
Reid Spencer443460a2006-11-09 21:15:49 +00003599</div>
3600
Chris Lattner095735d2002-05-06 03:03:22 +00003601<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00003602<div class="doc_subsubsection">
3603 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3604</div>
3605
Misha Brukman76307852003-11-08 01:05:38 +00003606<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00003607<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003608<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003609 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00003610</pre>
3611
Chris Lattner590645f2002-04-14 06:13:44 +00003612<h5>Overview:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003613
3614<p>
3615The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003616subelement of an aggregate data structure. It performs address calculation only
3617and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003618
Chris Lattner590645f2002-04-14 06:13:44 +00003619<h5>Arguments:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003620
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003621<p>The first argument is always a pointer, and forms the basis of the
3622calculation. The remaining arguments are indices, that indicate which of the
3623elements of the aggregate object are indexed. The interpretation of each index
3624is dependent on the type being indexed into. The first index always indexes the
3625pointer value given as the first argument, the second index indexes a value of
3626the type pointed to (not necessarily the value directly pointed to, since the
3627first index can be non-zero), etc. The first type indexed into must be a pointer
3628value, subsequent types can be arrays, vectors and structs. Note that subsequent
3629types being indexed into can never be pointers, since that would require loading
3630the pointer before continuing calculation.</p>
3631
3632<p>The type of each index argument depends on the type it is indexing into.
3633When indexing into a (packed) structure, only <tt>i32</tt> integer
3634<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta1f8555a2009-04-27 03:21:00 +00003635integers of any width are allowed (also non-constants).</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003636
Chris Lattner48b383b02003-11-25 01:02:51 +00003637<p>For example, let's consider a C code fragment and how it gets
3638compiled to LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003639
Bill Wendling3716c5d2007-05-29 09:04:49 +00003640<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003641<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003642struct RT {
3643 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00003644 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00003645 char C;
3646};
3647struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00003648 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00003649 double Y;
3650 struct RT Z;
3651};
Chris Lattner33fd7022004-04-05 01:30:49 +00003652
Chris Lattnera446f1b2007-05-29 15:43:56 +00003653int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003654 return &amp;s[1].Z.B[5][13];
3655}
Chris Lattner33fd7022004-04-05 01:30:49 +00003656</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003657</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003658
Misha Brukman76307852003-11-08 01:05:38 +00003659<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003660
Bill Wendling3716c5d2007-05-29 09:04:49 +00003661<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003662<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00003663%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3664%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00003665
Bill Wendling3716c5d2007-05-29 09:04:49 +00003666define i32* %foo(%ST* %s) {
3667entry:
3668 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3669 ret i32* %reg
3670}
Chris Lattner33fd7022004-04-05 01:30:49 +00003671</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003672</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003673
Chris Lattner590645f2002-04-14 06:13:44 +00003674<h5>Semantics:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003675
Misha Brukman76307852003-11-08 01:05:38 +00003676<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003677type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattner33fd7022004-04-05 01:30:49 +00003678}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003679the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3680i8 }</tt>' type, another structure. The third index indexes into the second
3681element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattner33fd7022004-04-05 01:30:49 +00003682array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003683'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3684to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003685
Chris Lattner48b383b02003-11-25 01:02:51 +00003686<p>Note that it is perfectly legal to index partially through a
3687structure, returning a pointer to an inner element. Because of this,
3688the LLVM code for the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003689
3690<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003691 define i32* %foo(%ST* %s) {
3692 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00003693 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3694 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003695 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3696 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3697 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00003698 }
Chris Lattnera8292f32002-05-06 22:08:29 +00003699</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003700
Chris Lattnerdd282822009-03-09 20:55:18 +00003701<p>Note that it is undefined to access an array out of bounds: array
3702and pointer indexes must always be within the defined bounds of the
3703array type when accessed with an instruction that dereferences the
3704pointer (e.g. a load or store instruction). The one exception for
3705this rule is zero length arrays. These arrays are defined to be
3706accessible as variable length arrays, which requires access beyond the
3707zero'th element.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003708
Chris Lattner6ab66722006-08-15 00:45:58 +00003709<p>The getelementptr instruction is often confusing. For some more insight
3710into how it works, see <a href="GetElementPtr.html">the getelementptr
3711FAQ</a>.</p>
3712
Chris Lattner590645f2002-04-14 06:13:44 +00003713<h5>Example:</h5>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003714
Chris Lattner33fd7022004-04-05 01:30:49 +00003715<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003716 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003717 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3718 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00003719 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003720 <i>; yields i8*:eptr</i>
3721 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00003722 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00003723 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00003724</pre>
Chris Lattner33fd7022004-04-05 01:30:49 +00003725</div>
Reid Spencer443460a2006-11-09 21:15:49 +00003726
Chris Lattner2f7c9632001-06-06 20:29:01 +00003727<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00003728<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00003729</div>
Misha Brukman76307852003-11-08 01:05:38 +00003730<div class="doc_text">
Reid Spencer97c5fa42006-11-08 01:18:52 +00003731<p>The instructions in this category are the conversion instructions (casting)
3732which all take a single operand and a type. They perform various bit conversions
3733on the operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003734</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003735
Chris Lattnera8292f32002-05-06 22:08:29 +00003736<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003737<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003738 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3739</div>
3740<div class="doc_text">
3741
3742<h5>Syntax:</h5>
3743<pre>
3744 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3745</pre>
3746
3747<h5>Overview:</h5>
3748<p>
3749The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3750</p>
3751
3752<h5>Arguments:</h5>
3753<p>
3754The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3755be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003756and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencer51b07252006-11-09 23:03:26 +00003757type. The bit size of <tt>value</tt> must be larger than the bit size of
3758<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003759
3760<h5>Semantics:</h5>
3761<p>
3762The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencer51b07252006-11-09 23:03:26 +00003763and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3764larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3765It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003766
3767<h5>Example:</h5>
3768<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003769 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003770 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3771 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003772</pre>
3773</div>
3774
3775<!-- _______________________________________________________________________ -->
3776<div class="doc_subsubsection">
3777 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3778</div>
3779<div class="doc_text">
3780
3781<h5>Syntax:</h5>
3782<pre>
3783 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3784</pre>
3785
3786<h5>Overview:</h5>
3787<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3788<tt>ty2</tt>.</p>
3789
3790
3791<h5>Arguments:</h5>
3792<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003793<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3794also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003795<tt>value</tt> must be smaller than the bit size of the destination type,
3796<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003797
3798<h5>Semantics:</h5>
3799<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003800bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003801
Reid Spencer07c9c682007-01-12 15:46:11 +00003802<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003803
3804<h5>Example:</h5>
3805<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003806 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003807 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003808</pre>
3809</div>
3810
3811<!-- _______________________________________________________________________ -->
3812<div class="doc_subsubsection">
3813 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3814</div>
3815<div class="doc_text">
3816
3817<h5>Syntax:</h5>
3818<pre>
3819 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3820</pre>
3821
3822<h5>Overview:</h5>
3823<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3824
3825<h5>Arguments:</h5>
3826<p>
3827The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003828<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3829also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003830<tt>value</tt> must be smaller than the bit size of the destination type,
3831<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003832
3833<h5>Semantics:</h5>
3834<p>
3835The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3836bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003837the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003838
Reid Spencer36a15422007-01-12 03:35:51 +00003839<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003840
3841<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003842<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003843 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003844 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003845</pre>
3846</div>
3847
3848<!-- _______________________________________________________________________ -->
3849<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00003850 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3851</div>
3852
3853<div class="doc_text">
3854
3855<h5>Syntax:</h5>
3856
3857<pre>
3858 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3859</pre>
3860
3861<h5>Overview:</h5>
3862<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3863<tt>ty2</tt>.</p>
3864
3865
3866<h5>Arguments:</h5>
3867<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3868 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3869cast it to. The size of <tt>value</tt> must be larger than the size of
3870<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3871<i>no-op cast</i>.</p>
3872
3873<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003874<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3875<a href="#t_floating">floating point</a> type to a smaller
3876<a href="#t_floating">floating point</a> type. If the value cannot fit within
3877the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00003878
3879<h5>Example:</h5>
3880<pre>
3881 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3882 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3883</pre>
3884</div>
3885
3886<!-- _______________________________________________________________________ -->
3887<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003888 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3889</div>
3890<div class="doc_text">
3891
3892<h5>Syntax:</h5>
3893<pre>
3894 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3895</pre>
3896
3897<h5>Overview:</h5>
3898<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3899floating point value.</p>
3900
3901<h5>Arguments:</h5>
3902<p>The '<tt>fpext</tt>' instruction takes a
3903<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencer51b07252006-11-09 23:03:26 +00003904and a <a href="#t_floating">floating point</a> type to cast it to. The source
3905type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003906
3907<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003908<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands16f122e2007-03-30 12:22:09 +00003909<a href="#t_floating">floating point</a> type to a larger
3910<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencer51b07252006-11-09 23:03:26 +00003911used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5b950642006-11-11 23:08:07 +00003912<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003913
3914<h5>Example:</h5>
3915<pre>
3916 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3917 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3918</pre>
3919</div>
3920
3921<!-- _______________________________________________________________________ -->
3922<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00003923 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003924</div>
3925<div class="doc_text">
3926
3927<h5>Syntax:</h5>
3928<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003929 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003930</pre>
3931
3932<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003933<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003934unsigned integer equivalent of type <tt>ty2</tt>.
3935</p>
3936
3937<h5>Arguments:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003938<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003939scalar or vector <a href="#t_floating">floating point</a> value, and a type
3940to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3941type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3942vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003943
3944<h5>Semantics:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003945<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003946<a href="#t_floating">floating point</a> operand into the nearest (rounding
3947towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3948the results are undefined.</p>
3949
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003950<h5>Example:</h5>
3951<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003952 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003953 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00003954 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003955</pre>
3956</div>
3957
3958<!-- _______________________________________________________________________ -->
3959<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003960 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003961</div>
3962<div class="doc_text">
3963
3964<h5>Syntax:</h5>
3965<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003966 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003967</pre>
3968
3969<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003970<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003971<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003972</p>
3973
Chris Lattnera8292f32002-05-06 22:08:29 +00003974<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003975<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003976scalar or vector <a href="#t_floating">floating point</a> value, and a type
3977to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3978type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3979vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003980
Chris Lattnera8292f32002-05-06 22:08:29 +00003981<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003982<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003983<a href="#t_floating">floating point</a> operand into the nearest (rounding
3984towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3985the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003986
Chris Lattner70de6632001-07-09 00:26:23 +00003987<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003988<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00003989 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003990 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003991 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003992</pre>
3993</div>
3994
3995<!-- _______________________________________________________________________ -->
3996<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003997 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003998</div>
3999<div class="doc_text">
4000
4001<h5>Syntax:</h5>
4002<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004003 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004004</pre>
4005
4006<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004007<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004008integer and converts that value to the <tt>ty2</tt> type.</p>
4009
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004010<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004011<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4012scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4013to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4014type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4015floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004016
4017<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004018<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004019integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004020the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004021
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004022<h5>Example:</h5>
4023<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004024 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004025 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004026</pre>
4027</div>
4028
4029<!-- _______________________________________________________________________ -->
4030<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004031 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004032</div>
4033<div class="doc_text">
4034
4035<h5>Syntax:</h5>
4036<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004037 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004038</pre>
4039
4040<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004041<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004042integer and converts that value to the <tt>ty2</tt> type.</p>
4043
4044<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004045<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4046scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4047to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4048type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4049floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004050
4051<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004052<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004053integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004054the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004055
4056<h5>Example:</h5>
4057<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004058 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004059 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004060</pre>
4061</div>
4062
4063<!-- _______________________________________________________________________ -->
4064<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004065 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4066</div>
4067<div class="doc_text">
4068
4069<h5>Syntax:</h5>
4070<pre>
4071 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4072</pre>
4073
4074<h5>Overview:</h5>
4075<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4076the integer type <tt>ty2</tt>.</p>
4077
4078<h5>Arguments:</h5>
4079<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands16f122e2007-03-30 12:22:09 +00004080must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohmanef9462f2008-10-14 16:51:45 +00004081<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004082
4083<h5>Semantics:</h5>
4084<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4085<tt>ty2</tt> by interpreting the pointer value as an integer and either
4086truncating or zero extending that value to the size of the integer type. If
4087<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4088<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohen222a8a42007-04-29 01:07:00 +00004089are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4090change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004091
4092<h5>Example:</h5>
4093<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004094 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4095 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004096</pre>
4097</div>
4098
4099<!-- _______________________________________________________________________ -->
4100<div class="doc_subsubsection">
4101 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4102</div>
4103<div class="doc_text">
4104
4105<h5>Syntax:</h5>
4106<pre>
4107 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4108</pre>
4109
4110<h5>Overview:</h5>
4111<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4112a pointer type, <tt>ty2</tt>.</p>
4113
4114<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004115<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004116value to cast, and a type to cast it to, which must be a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004117<a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004118
4119<h5>Semantics:</h5>
4120<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4121<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4122the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4123size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4124the size of a pointer then a zero extension is done. If they are the same size,
4125nothing is done (<i>no-op cast</i>).</p>
4126
4127<h5>Example:</h5>
4128<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004129 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4130 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4131 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004132</pre>
4133</div>
4134
4135<!-- _______________________________________________________________________ -->
4136<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004137 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004138</div>
4139<div class="doc_text">
4140
4141<h5>Syntax:</h5>
4142<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004143 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004144</pre>
4145
4146<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004147
Reid Spencer5b950642006-11-11 23:08:07 +00004148<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004149<tt>ty2</tt> without changing any bits.</p>
4150
4151<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004152
Reid Spencer5b950642006-11-11 23:08:07 +00004153<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohmanc05dca92008-09-08 16:45:59 +00004154a non-aggregate first class value, and a type to cast it to, which must also be
4155a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4156<tt>value</tt>
Reid Spencere3db84c2007-01-09 20:08:58 +00004157and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004158type is a pointer, the destination type must also be a pointer. This
4159instruction supports bitwise conversion of vectors to integers and to vectors
4160of other types (as long as they have the same size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004161
4162<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004163<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencerb7344ff2006-11-11 21:00:47 +00004164<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4165this conversion. The conversion is done as if the <tt>value</tt> had been
4166stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4167converted to other pointer types with this instruction. To convert pointers to
4168other types, use the <a href="#i_inttoptr">inttoptr</a> or
4169<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004170
4171<h5>Example:</h5>
4172<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004173 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004174 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004175 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004176</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004177</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004178
Reid Spencer97c5fa42006-11-08 01:18:52 +00004179<!-- ======================================================================= -->
4180<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4181<div class="doc_text">
4182<p>The instructions in this category are the "miscellaneous"
4183instructions, which defy better classification.</p>
4184</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004185
4186<!-- _______________________________________________________________________ -->
4187<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4188</div>
4189<div class="doc_text">
4190<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004191<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004192</pre>
4193<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004194<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4195a vector of boolean values based on comparison
4196of its two integer, integer vector, or pointer operands.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004197<h5>Arguments:</h5>
4198<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004199the condition code indicating the kind of comparison to perform. It is not
4200a value, just a keyword. The possible condition code are:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004201</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004202<ol>
4203 <li><tt>eq</tt>: equal</li>
4204 <li><tt>ne</tt>: not equal </li>
4205 <li><tt>ugt</tt>: unsigned greater than</li>
4206 <li><tt>uge</tt>: unsigned greater or equal</li>
4207 <li><tt>ult</tt>: unsigned less than</li>
4208 <li><tt>ule</tt>: unsigned less or equal</li>
4209 <li><tt>sgt</tt>: signed greater than</li>
4210 <li><tt>sge</tt>: signed greater or equal</li>
4211 <li><tt>slt</tt>: signed less than</li>
4212 <li><tt>sle</tt>: signed less or equal</li>
4213</ol>
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004214<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanc579d972008-09-09 01:02:47 +00004215<a href="#t_pointer">pointer</a>
4216or integer <a href="#t_vector">vector</a> typed.
4217They must also be identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004218<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004219<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerc828a0e2006-11-18 21:50:54 +00004220the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanc579d972008-09-09 01:02:47 +00004221yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004222</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004223<ol>
4224 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4225 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4226 </li>
4227 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohmanef9462f2008-10-14 16:51:45 +00004228 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004229 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004230 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004231 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004232 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004233 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004234 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004235 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004236 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004237 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004238 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004239 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004240 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004241 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004242 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004243 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004244 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004245</ol>
4246<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohen222a8a42007-04-29 01:07:00 +00004247values are compared as if they were integers.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004248<p>If the operands are integer vectors, then they are compared
4249element by element. The result is an <tt>i1</tt> vector with
4250the same number of elements as the values being compared.
4251Otherwise, the result is an <tt>i1</tt>.
4252</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004253
4254<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004255<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4256 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4257 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4258 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4259 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4260 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004261</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004262
4263<p>Note that the code generator does not yet support vector types with
4264 the <tt>icmp</tt> instruction.</p>
4265
Reid Spencerc828a0e2006-11-18 21:50:54 +00004266</div>
4267
4268<!-- _______________________________________________________________________ -->
4269<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4270</div>
4271<div class="doc_text">
4272<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004273<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004274</pre>
4275<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004276<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4277or vector of boolean values based on comparison
Dan Gohmanef9462f2008-10-14 16:51:45 +00004278of its operands.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004279<p>
4280If the operands are floating point scalars, then the result
4281type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4282</p>
4283<p>If the operands are floating point vectors, then the result type
4284is a vector of boolean with the same number of elements as the
4285operands being compared.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004286<h5>Arguments:</h5>
4287<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004288the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004289a value, just a keyword. The possible condition code are:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004290<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004291 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004292 <li><tt>oeq</tt>: ordered and equal</li>
4293 <li><tt>ogt</tt>: ordered and greater than </li>
4294 <li><tt>oge</tt>: ordered and greater than or equal</li>
4295 <li><tt>olt</tt>: ordered and less than </li>
4296 <li><tt>ole</tt>: ordered and less than or equal</li>
4297 <li><tt>one</tt>: ordered and not equal</li>
4298 <li><tt>ord</tt>: ordered (no nans)</li>
4299 <li><tt>ueq</tt>: unordered or equal</li>
4300 <li><tt>ugt</tt>: unordered or greater than </li>
4301 <li><tt>uge</tt>: unordered or greater than or equal</li>
4302 <li><tt>ult</tt>: unordered or less than </li>
4303 <li><tt>ule</tt>: unordered or less than or equal</li>
4304 <li><tt>une</tt>: unordered or not equal</li>
4305 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004306 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004307</ol>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004308<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer02e0d1d2006-12-06 07:08:07 +00004309<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004310<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4311either a <a href="#t_floating">floating point</a> type
4312or a <a href="#t_vector">vector</a> of floating point type.
4313They must have identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004314<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004315<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanc579d972008-09-09 01:02:47 +00004316according to the condition code given as <tt>cond</tt>.
4317If the operands are vectors, then the vectors are compared
4318element by element.
4319Each comparison performed
Dan Gohmanef9462f2008-10-14 16:51:45 +00004320always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004321<ol>
4322 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004323 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004324 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004325 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004326 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004327 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004328 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004329 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004330 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004331 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004332 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004333 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004334 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004335 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4336 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004337 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004338 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004339 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004340 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004341 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004342 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004343 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004344 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004345 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004346 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004347 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004348 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004349 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4350</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004351
4352<h5>Example:</h5>
4353<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004354 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4355 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4356 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004357</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004358
4359<p>Note that the code generator does not yet support vector types with
4360 the <tt>fcmp</tt> instruction.</p>
4361
Reid Spencerc828a0e2006-11-18 21:50:54 +00004362</div>
4363
Reid Spencer97c5fa42006-11-08 01:18:52 +00004364<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004365<div class="doc_subsubsection">
4366 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4367</div>
4368<div class="doc_text">
4369<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004370<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemand2195702008-05-12 19:01:56 +00004371</pre>
4372<h5>Overview:</h5>
4373<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4374element-wise comparison of its two integer vector operands.</p>
4375<h5>Arguments:</h5>
4376<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4377the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004378a value, just a keyword. The possible condition code are:</p>
Nate Begemand2195702008-05-12 19:01:56 +00004379<ol>
4380 <li><tt>eq</tt>: equal</li>
4381 <li><tt>ne</tt>: not equal </li>
4382 <li><tt>ugt</tt>: unsigned greater than</li>
4383 <li><tt>uge</tt>: unsigned greater or equal</li>
4384 <li><tt>ult</tt>: unsigned less than</li>
4385 <li><tt>ule</tt>: unsigned less or equal</li>
4386 <li><tt>sgt</tt>: signed greater than</li>
4387 <li><tt>sge</tt>: signed greater or equal</li>
4388 <li><tt>slt</tt>: signed less than</li>
4389 <li><tt>sle</tt>: signed less or equal</li>
4390</ol>
Dan Gohmanc579d972008-09-09 01:02:47 +00004391<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemand2195702008-05-12 19:01:56 +00004392<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4393<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004394<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004395according to the condition code given as <tt>cond</tt>. The comparison yields a
4396<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4397identical type as the values being compared. The most significant bit in each
4398element is 1 if the element-wise comparison evaluates to true, and is 0
4399otherwise. All other bits of the result are undefined. The condition codes
4400are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohmanef9462f2008-10-14 16:51:45 +00004401instruction</a>.</p>
Nate Begemand2195702008-05-12 19:01:56 +00004402
4403<h5>Example:</h5>
4404<pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004405 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4406 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemand2195702008-05-12 19:01:56 +00004407</pre>
4408</div>
4409
4410<!-- _______________________________________________________________________ -->
4411<div class="doc_subsubsection">
4412 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4413</div>
4414<div class="doc_text">
4415<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004416<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemand2195702008-05-12 19:01:56 +00004417<h5>Overview:</h5>
4418<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4419element-wise comparison of its two floating point vector operands. The output
4420elements have the same width as the input elements.</p>
4421<h5>Arguments:</h5>
4422<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4423the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004424a value, just a keyword. The possible condition code are:</p>
Nate Begemand2195702008-05-12 19:01:56 +00004425<ol>
4426 <li><tt>false</tt>: no comparison, always returns false</li>
4427 <li><tt>oeq</tt>: ordered and equal</li>
4428 <li><tt>ogt</tt>: ordered and greater than </li>
4429 <li><tt>oge</tt>: ordered and greater than or equal</li>
4430 <li><tt>olt</tt>: ordered and less than </li>
4431 <li><tt>ole</tt>: ordered and less than or equal</li>
4432 <li><tt>one</tt>: ordered and not equal</li>
4433 <li><tt>ord</tt>: ordered (no nans)</li>
4434 <li><tt>ueq</tt>: unordered or equal</li>
4435 <li><tt>ugt</tt>: unordered or greater than </li>
4436 <li><tt>uge</tt>: unordered or greater than or equal</li>
4437 <li><tt>ult</tt>: unordered or less than </li>
4438 <li><tt>ule</tt>: unordered or less than or equal</li>
4439 <li><tt>une</tt>: unordered or not equal</li>
4440 <li><tt>uno</tt>: unordered (either nans)</li>
4441 <li><tt>true</tt>: no comparison, always returns true</li>
4442</ol>
4443<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4444<a href="#t_floating">floating point</a> typed. They must also be identical
4445types.</p>
4446<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004447<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004448according to the condition code given as <tt>cond</tt>. The comparison yields a
4449<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4450an identical number of elements as the values being compared, and each element
4451having identical with to the width of the floating point elements. The most
4452significant bit in each element is 1 if the element-wise comparison evaluates to
4453true, and is 0 otherwise. All other bits of the result are undefined. The
4454condition codes are evaluated identically to the
Dan Gohmanef9462f2008-10-14 16:51:45 +00004455<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemand2195702008-05-12 19:01:56 +00004456
4457<h5>Example:</h5>
4458<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +00004459 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4460 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4461
4462 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4463 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemand2195702008-05-12 19:01:56 +00004464</pre>
4465</div>
4466
4467<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004468<div class="doc_subsubsection">
4469 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4470</div>
4471
Reid Spencer97c5fa42006-11-08 01:18:52 +00004472<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004473
Reid Spencer97c5fa42006-11-08 01:18:52 +00004474<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004475
Reid Spencer97c5fa42006-11-08 01:18:52 +00004476<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4477<h5>Overview:</h5>
4478<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4479the SSA graph representing the function.</p>
4480<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004481
Jeff Cohen222a8a42007-04-29 01:07:00 +00004482<p>The type of the incoming values is specified with the first type
Reid Spencer97c5fa42006-11-08 01:18:52 +00004483field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4484as arguments, with one pair for each predecessor basic block of the
4485current block. Only values of <a href="#t_firstclass">first class</a>
4486type may be used as the value arguments to the PHI node. Only labels
4487may be used as the label arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004488
Reid Spencer97c5fa42006-11-08 01:18:52 +00004489<p>There must be no non-phi instructions between the start of a basic
4490block and the PHI instructions: i.e. PHI instructions must be first in
4491a basic block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004492
Reid Spencer97c5fa42006-11-08 01:18:52 +00004493<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004494
Jeff Cohen222a8a42007-04-29 01:07:00 +00004495<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4496specified by the pair corresponding to the predecessor basic block that executed
4497just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004498
Reid Spencer97c5fa42006-11-08 01:18:52 +00004499<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004500<pre>
4501Loop: ; Infinite loop that counts from 0 on up...
4502 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4503 %nextindvar = add i32 %indvar, 1
4504 br label %Loop
4505</pre>
Reid Spencer97c5fa42006-11-08 01:18:52 +00004506</div>
4507
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004508<!-- _______________________________________________________________________ -->
4509<div class="doc_subsubsection">
4510 <a name="i_select">'<tt>select</tt>' Instruction</a>
4511</div>
4512
4513<div class="doc_text">
4514
4515<h5>Syntax:</h5>
4516
4517<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004518 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4519
Dan Gohmanef9462f2008-10-14 16:51:45 +00004520 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004521</pre>
4522
4523<h5>Overview:</h5>
4524
4525<p>
4526The '<tt>select</tt>' instruction is used to choose one value based on a
4527condition, without branching.
4528</p>
4529
4530
4531<h5>Arguments:</h5>
4532
4533<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004534The '<tt>select</tt>' instruction requires an 'i1' value or
4535a vector of 'i1' values indicating the
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004536condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanc579d972008-09-09 01:02:47 +00004537type. If the val1/val2 are vectors and
4538the condition is a scalar, then entire vectors are selected, not
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004539individual elements.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004540</p>
4541
4542<h5>Semantics:</h5>
4543
4544<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004545If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswell88190562005-05-16 16:17:45 +00004546value argument; otherwise, it returns the second value argument.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004547</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004548<p>
4549If the condition is a vector of i1, then the value arguments must
4550be vectors of the same size, and the selection is done element
4551by element.
4552</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004553
4554<h5>Example:</h5>
4555
4556<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004557 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004558</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004559
4560<p>Note that the code generator does not yet support conditions
4561 with vector type.</p>
4562
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004563</div>
4564
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004565
4566<!-- _______________________________________________________________________ -->
4567<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004568 <a name="i_call">'<tt>call</tt>' Instruction</a>
4569</div>
4570
Misha Brukman76307852003-11-08 01:05:38 +00004571<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004572
Chris Lattner2f7c9632001-06-06 20:29:01 +00004573<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004574<pre>
Devang Patel02256232008-10-07 17:48:33 +00004575 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004576</pre>
4577
Chris Lattner2f7c9632001-06-06 20:29:01 +00004578<h5>Overview:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004579
Misha Brukman76307852003-11-08 01:05:38 +00004580<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004581
Chris Lattner2f7c9632001-06-06 20:29:01 +00004582<h5>Arguments:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004583
Misha Brukman76307852003-11-08 01:05:38 +00004584<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004585
Chris Lattnera8292f32002-05-06 22:08:29 +00004586<ol>
Chris Lattner48b383b02003-11-25 01:02:51 +00004587 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00004588 <p>The optional "tail" marker indicates whether the callee function accesses
4589 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattnere23c1392005-05-06 05:47:36 +00004590 function call is eligible for tail call optimization. Note that calls may
4591 be marked "tail" even if they do not occur before a <a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004592 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004593 </li>
4594 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00004595 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00004596 convention</a> the call should use. If none is specified, the call defaults
Dan Gohmanef9462f2008-10-14 16:51:45 +00004597 to using C calling conventions.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00004598 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004599
4600 <li>
4601 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4602 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4603 and '<tt>inreg</tt>' attributes are valid here.</p>
4604 </li>
4605
Chris Lattner0132aff2005-05-06 22:57:40 +00004606 <li>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004607 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4608 the type of the return value. Functions that return no value are marked
4609 <tt><a href="#t_void">void</a></tt>.</p>
4610 </li>
4611 <li>
4612 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4613 value being invoked. The argument types must match the types implied by
4614 this signature. This type can be omitted if the function is not varargs
4615 and if the function type does not return a pointer to a function.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004616 </li>
4617 <li>
4618 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4619 be invoked. In most cases, this is a direct function invocation, but
4620 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswell88190562005-05-16 16:17:45 +00004621 to function value.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004622 </li>
4623 <li>
4624 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencerd845d162005-05-01 22:22:57 +00004625 function signature argument types. All arguments must be of
4626 <a href="#t_firstclass">first class</a> type. If the function signature
4627 indicates the function accepts a variable number of arguments, the extra
4628 arguments can be specified.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004629 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004630 <li>
Devang Patel02256232008-10-07 17:48:33 +00004631 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00004632 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4633 '<tt>readnone</tt>' attributes are valid here.</p>
4634 </li>
Chris Lattnera8292f32002-05-06 22:08:29 +00004635</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00004636
Chris Lattner2f7c9632001-06-06 20:29:01 +00004637<h5>Semantics:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004638
Chris Lattner48b383b02003-11-25 01:02:51 +00004639<p>The '<tt>call</tt>' instruction is used to cause control flow to
4640transfer to a specified function, with its incoming arguments bound to
4641the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4642instruction in the called function, control flow continues with the
4643instruction after the function call, and the return value of the
Dan Gohmanef9462f2008-10-14 16:51:45 +00004644function is bound to the result argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004645
Chris Lattner2f7c9632001-06-06 20:29:01 +00004646<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004647
4648<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004649 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00004650 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4651 %X = tail call i32 @foo() <i>; yields i32</i>
4652 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4653 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00004654
4655 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00004656 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00004657 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4658 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00004659 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00004660 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00004661</pre>
4662
Misha Brukman76307852003-11-08 01:05:38 +00004663</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004664
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004665<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00004666<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00004667 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004668</div>
4669
Misha Brukman76307852003-11-08 01:05:38 +00004670<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00004671
Chris Lattner26ca62e2003-10-18 05:51:36 +00004672<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004673
4674<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004675 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00004676</pre>
4677
Chris Lattner26ca62e2003-10-18 05:51:36 +00004678<h5>Overview:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004679
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004680<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattner6a4a0492004-09-27 21:51:25 +00004681the "variable argument" area of a function call. It is used to implement the
4682<tt>va_arg</tt> macro in C.</p>
4683
Chris Lattner26ca62e2003-10-18 05:51:36 +00004684<h5>Arguments:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004685
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004686<p>This instruction takes a <tt>va_list*</tt> value and the type of
4687the argument. It returns a value of the specified argument type and
Jeff Cohen222a8a42007-04-29 01:07:00 +00004688increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004689actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004690
Chris Lattner26ca62e2003-10-18 05:51:36 +00004691<h5>Semantics:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004692
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004693<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4694type from the specified <tt>va_list</tt> and causes the
4695<tt>va_list</tt> to point to the next argument. For more information,
4696see the variable argument handling <a href="#int_varargs">Intrinsic
4697Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004698
4699<p>It is legal for this instruction to be called in a function which does not
4700take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman76307852003-11-08 01:05:38 +00004701function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004702
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004703<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswell88190562005-05-16 16:17:45 +00004704href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattner6a4a0492004-09-27 21:51:25 +00004705argument.</p>
4706
Chris Lattner26ca62e2003-10-18 05:51:36 +00004707<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004708
4709<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4710
Dan Gohman3065b612009-01-12 23:12:39 +00004711<p>Note that the code generator does not yet fully support va_arg
4712 on many targets. Also, it does not currently support va_arg with
4713 aggregate types on any target.</p>
4714
Misha Brukman76307852003-11-08 01:05:38 +00004715</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004716
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004717<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004718<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4719<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00004720
Misha Brukman76307852003-11-08 01:05:38 +00004721<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00004722
4723<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer4eefaab2007-04-01 08:04:23 +00004724well known names and semantics and are required to follow certain restrictions.
4725Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohen222a8a42007-04-29 01:07:00 +00004726language that does not require changing all of the transformations in LLVM when
Gabor Greifa54634a2007-07-06 22:07:22 +00004727adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004728
John Criswell88190562005-05-16 16:17:45 +00004729<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohen222a8a42007-04-29 01:07:00 +00004730prefix is reserved in LLVM for intrinsic names; thus, function names may not
4731begin with this prefix. Intrinsic functions must always be external functions:
4732you cannot define the body of intrinsic functions. Intrinsic functions may
4733only be used in call or invoke instructions: it is illegal to take the address
4734of an intrinsic function. Additionally, because intrinsic functions are part
4735of the LLVM language, it is required if any are added that they be documented
4736here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004737
Chandler Carruth7132e002007-08-04 01:51:18 +00004738<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4739a family of functions that perform the same operation but on different data
4740types. Because LLVM can represent over 8 million different integer types,
4741overloading is used commonly to allow an intrinsic function to operate on any
4742integer type. One or more of the argument types or the result type can be
4743overloaded to accept any integer type. Argument types may also be defined as
4744exactly matching a previous argument's type or the result type. This allows an
4745intrinsic function which accepts multiple arguments, but needs all of them to
4746be of the same type, to only be overloaded with respect to a single argument or
4747the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004748
Chandler Carruth7132e002007-08-04 01:51:18 +00004749<p>Overloaded intrinsics will have the names of its overloaded argument types
4750encoded into its function name, each preceded by a period. Only those types
4751which are overloaded result in a name suffix. Arguments whose type is matched
4752against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4753take an integer of any width and returns an integer of exactly the same integer
4754width. This leads to a family of functions such as
4755<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4756Only one type, the return type, is overloaded, and only one type suffix is
4757required. Because the argument's type is matched against the return type, it
4758does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00004759
4760<p>To learn how to add an intrinsic function, please see the
4761<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattnerfee11462004-02-12 17:01:32 +00004762</p>
4763
Misha Brukman76307852003-11-08 01:05:38 +00004764</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004765
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004766<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00004767<div class="doc_subsection">
4768 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4769</div>
4770
Misha Brukman76307852003-11-08 01:05:38 +00004771<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004772
Misha Brukman76307852003-11-08 01:05:38 +00004773<p>Variable argument support is defined in LLVM with the <a
Chris Lattner33337472006-01-13 23:26:01 +00004774 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner48b383b02003-11-25 01:02:51 +00004775intrinsic functions. These functions are related to the similarly
4776named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004777
Chris Lattner48b383b02003-11-25 01:02:51 +00004778<p>All of these functions operate on arguments that use a
4779target-specific value type "<tt>va_list</tt>". The LLVM assembly
4780language reference manual does not define what this type is, so all
Jeff Cohen222a8a42007-04-29 01:07:00 +00004781transformations should be prepared to handle these functions regardless of
4782the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004783
Chris Lattner30b868d2006-05-15 17:26:46 +00004784<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner48b383b02003-11-25 01:02:51 +00004785instruction and the variable argument handling intrinsic functions are
4786used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004787
Bill Wendling3716c5d2007-05-29 09:04:49 +00004788<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00004789<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004790define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00004791 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00004792 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004793 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004794 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004795
4796 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00004797 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00004798
4799 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00004800 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004801 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00004802 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004803 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004804
4805 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004806 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004807 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00004808}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004809
4810declare void @llvm.va_start(i8*)
4811declare void @llvm.va_copy(i8*, i8*)
4812declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00004813</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004814</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004815
Bill Wendling3716c5d2007-05-29 09:04:49 +00004816</div>
4817
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004818<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004819<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004820 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004821</div>
4822
4823
Misha Brukman76307852003-11-08 01:05:38 +00004824<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004825<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004826<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004827<h5>Overview:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004828<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004829<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4830href="#i_va_arg">va_arg</a></tt>.</p>
4831
4832<h5>Arguments:</h5>
4833
Dan Gohmanef9462f2008-10-14 16:51:45 +00004834<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004835
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004836<h5>Semantics:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004837
Dan Gohmanef9462f2008-10-14 16:51:45 +00004838<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004839macro available in C. In a target-dependent way, it initializes the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004840<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004841<tt>va_arg</tt> will produce the first variable argument passed to the function.
4842Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004843last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004844
Misha Brukman76307852003-11-08 01:05:38 +00004845</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004846
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004847<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004848<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004849 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004850</div>
4851
Misha Brukman76307852003-11-08 01:05:38 +00004852<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004853<h5>Syntax:</h5>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004854<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004855<h5>Overview:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004856
Jeff Cohen222a8a42007-04-29 01:07:00 +00004857<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencer96a5f022007-04-04 02:42:35 +00004858which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00004859or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004860
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004861<h5>Arguments:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004862
Jeff Cohen222a8a42007-04-29 01:07:00 +00004863<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004864
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004865<h5>Semantics:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004866
Misha Brukman76307852003-11-08 01:05:38 +00004867<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004868macro available in C. In a target-dependent way, it destroys the
4869<tt>va_list</tt> element to which the argument points. Calls to <a
4870href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4871<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4872<tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004873
Misha Brukman76307852003-11-08 01:05:38 +00004874</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004875
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004876<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004877<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004878 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004879</div>
4880
Misha Brukman76307852003-11-08 01:05:38 +00004881<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004882
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004883<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004884
4885<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004886 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004887</pre>
4888
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004889<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004890
Jeff Cohen222a8a42007-04-29 01:07:00 +00004891<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4892from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004893
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004894<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004895
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004896<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharth5305ea52005-06-22 20:38:11 +00004897The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004898
Chris Lattner757528b0b2004-05-23 21:06:01 +00004899
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004900<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004901
Jeff Cohen222a8a42007-04-29 01:07:00 +00004902<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4903macro available in C. In a target-dependent way, it copies the source
4904<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4905intrinsic is necessary because the <tt><a href="#int_va_start">
4906llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4907example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004908
Misha Brukman76307852003-11-08 01:05:38 +00004909</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004910
Chris Lattnerfee11462004-02-12 17:01:32 +00004911<!-- ======================================================================= -->
4912<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004913 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4914</div>
4915
4916<div class="doc_text">
4917
4918<p>
4919LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00004920Collection</a> (GC) requires the implementation and generation of these
4921intrinsics.
Reid Spencer96a5f022007-04-04 02:42:35 +00004922These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattner757528b0b2004-05-23 21:06:01 +00004923stack</a>, as well as garbage collector implementations that require <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004924href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattner757528b0b2004-05-23 21:06:01 +00004925Front-ends for type-safe garbage collected languages should generate these
4926intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4927href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4928</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00004929
4930<p>The garbage collection intrinsics only operate on objects in the generic
4931 address space (address space zero).</p>
4932
Chris Lattner757528b0b2004-05-23 21:06:01 +00004933</div>
4934
4935<!-- _______________________________________________________________________ -->
4936<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004937 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004938</div>
4939
4940<div class="doc_text">
4941
4942<h5>Syntax:</h5>
4943
4944<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004945 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004946</pre>
4947
4948<h5>Overview:</h5>
4949
John Criswelldfe6a862004-12-10 15:51:16 +00004950<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattner757528b0b2004-05-23 21:06:01 +00004951the code generator, and allows some metadata to be associated with it.</p>
4952
4953<h5>Arguments:</h5>
4954
4955<p>The first argument specifies the address of a stack object that contains the
4956root pointer. The second pointer (which must be either a constant or a global
4957value address) contains the meta-data to be associated with the root.</p>
4958
4959<h5>Semantics:</h5>
4960
Chris Lattner851b7712008-04-24 05:59:56 +00004961<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattner757528b0b2004-05-23 21:06:01 +00004962location. At compile-time, the code generator generates information to allow
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004963the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4964intrinsic may only be used in a function which <a href="#gc">specifies a GC
4965algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004966
4967</div>
4968
4969
4970<!-- _______________________________________________________________________ -->
4971<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004972 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004973</div>
4974
4975<div class="doc_text">
4976
4977<h5>Syntax:</h5>
4978
4979<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004980 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004981</pre>
4982
4983<h5>Overview:</h5>
4984
4985<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4986locations, allowing garbage collector implementations that require read
4987barriers.</p>
4988
4989<h5>Arguments:</h5>
4990
Chris Lattnerf9228072006-03-14 20:02:51 +00004991<p>The second argument is the address to read from, which should be an address
4992allocated from the garbage collector. The first object is a pointer to the
4993start of the referenced object, if needed by the language runtime (otherwise
4994null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004995
4996<h5>Semantics:</h5>
4997
4998<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4999instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005000garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5001may only be used in a function which <a href="#gc">specifies a GC
5002algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005003
5004</div>
5005
5006
5007<!-- _______________________________________________________________________ -->
5008<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005009 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005010</div>
5011
5012<div class="doc_text">
5013
5014<h5>Syntax:</h5>
5015
5016<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005017 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005018</pre>
5019
5020<h5>Overview:</h5>
5021
5022<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5023locations, allowing garbage collector implementations that require write
5024barriers (such as generational or reference counting collectors).</p>
5025
5026<h5>Arguments:</h5>
5027
Chris Lattnerf9228072006-03-14 20:02:51 +00005028<p>The first argument is the reference to store, the second is the start of the
5029object to store it to, and the third is the address of the field of Obj to
5030store to. If the runtime does not require a pointer to the object, Obj may be
5031null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005032
5033<h5>Semantics:</h5>
5034
5035<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5036instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005037garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5038may only be used in a function which <a href="#gc">specifies a GC
5039algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005040
5041</div>
5042
5043
5044
5045<!-- ======================================================================= -->
5046<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005047 <a name="int_codegen">Code Generator Intrinsics</a>
5048</div>
5049
5050<div class="doc_text">
5051<p>
5052These intrinsics are provided by LLVM to expose special features that may only
5053be implemented with code generator support.
5054</p>
5055
5056</div>
5057
5058<!-- _______________________________________________________________________ -->
5059<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005060 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005061</div>
5062
5063<div class="doc_text">
5064
5065<h5>Syntax:</h5>
5066<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005067 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005068</pre>
5069
5070<h5>Overview:</h5>
5071
5072<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005073The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5074target-specific value indicating the return address of the current function
5075or one of its callers.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005076</p>
5077
5078<h5>Arguments:</h5>
5079
5080<p>
5081The argument to this intrinsic indicates which function to return the address
5082for. Zero indicates the calling function, one indicates its caller, etc. The
5083argument is <b>required</b> to be a constant integer value.
5084</p>
5085
5086<h5>Semantics:</h5>
5087
5088<p>
5089The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5090the return address of the specified call frame, or zero if it cannot be
5091identified. The value returned by this intrinsic is likely to be incorrect or 0
5092for arguments other than zero, so it should only be used for debugging purposes.
5093</p>
5094
5095<p>
5096Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005097aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005098source-language caller.
5099</p>
5100</div>
5101
5102
5103<!-- _______________________________________________________________________ -->
5104<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005105 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005106</div>
5107
5108<div class="doc_text">
5109
5110<h5>Syntax:</h5>
5111<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005112 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005113</pre>
5114
5115<h5>Overview:</h5>
5116
5117<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005118The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5119target-specific frame pointer value for the specified stack frame.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005120</p>
5121
5122<h5>Arguments:</h5>
5123
5124<p>
5125The argument to this intrinsic indicates which function to return the frame
5126pointer for. Zero indicates the calling function, one indicates its caller,
5127etc. The argument is <b>required</b> to be a constant integer value.
5128</p>
5129
5130<h5>Semantics:</h5>
5131
5132<p>
5133The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5134the frame address of the specified call frame, or zero if it cannot be
5135identified. The value returned by this intrinsic is likely to be incorrect or 0
5136for arguments other than zero, so it should only be used for debugging purposes.
5137</p>
5138
5139<p>
5140Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005141aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005142source-language caller.
5143</p>
5144</div>
5145
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005146<!-- _______________________________________________________________________ -->
5147<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005148 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005149</div>
5150
5151<div class="doc_text">
5152
5153<h5>Syntax:</h5>
5154<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005155 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005156</pre>
5157
5158<h5>Overview:</h5>
5159
5160<p>
5161The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencer96a5f022007-04-04 02:42:35 +00005162the function stack, for use with <a href="#int_stackrestore">
Chris Lattner2f0f0012006-01-13 02:03:13 +00005163<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5164features like scoped automatic variable sized arrays in C99.
5165</p>
5166
5167<h5>Semantics:</h5>
5168
5169<p>
5170This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005171href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner2f0f0012006-01-13 02:03:13 +00005172<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5173<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5174state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5175practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5176that were allocated after the <tt>llvm.stacksave</tt> was executed.
5177</p>
5178
5179</div>
5180
5181<!-- _______________________________________________________________________ -->
5182<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005183 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005184</div>
5185
5186<div class="doc_text">
5187
5188<h5>Syntax:</h5>
5189<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005190 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005191</pre>
5192
5193<h5>Overview:</h5>
5194
5195<p>
5196The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5197the function stack to the state it was in when the corresponding <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005198href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner2f0f0012006-01-13 02:03:13 +00005199useful for implementing language features like scoped automatic variable sized
5200arrays in C99.
5201</p>
5202
5203<h5>Semantics:</h5>
5204
5205<p>
Reid Spencer96a5f022007-04-04 02:42:35 +00005206See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner2f0f0012006-01-13 02:03:13 +00005207</p>
5208
5209</div>
5210
5211
5212<!-- _______________________________________________________________________ -->
5213<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005214 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005215</div>
5216
5217<div class="doc_text">
5218
5219<h5>Syntax:</h5>
5220<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005221 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005222</pre>
5223
5224<h5>Overview:</h5>
5225
5226
5227<p>
5228The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswell88190562005-05-16 16:17:45 +00005229a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5230no
5231effect on the behavior of the program but can change its performance
Chris Lattnerff851072005-02-28 19:47:14 +00005232characteristics.
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005233</p>
5234
5235<h5>Arguments:</h5>
5236
5237<p>
5238<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5239determining if the fetch should be for a read (0) or write (1), and
5240<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattnerd3e641c2005-03-07 20:31:38 +00005241locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005242<tt>locality</tt> arguments must be constant integers.
5243</p>
5244
5245<h5>Semantics:</h5>
5246
5247<p>
5248This intrinsic does not modify the behavior of the program. In particular,
5249prefetches cannot trap and do not produce a value. On targets that support this
5250intrinsic, the prefetch can provide hints to the processor cache for better
5251performance.
5252</p>
5253
5254</div>
5255
Andrew Lenharthb4427912005-03-28 20:05:49 +00005256<!-- _______________________________________________________________________ -->
5257<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005258 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005259</div>
5260
5261<div class="doc_text">
5262
5263<h5>Syntax:</h5>
5264<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005265 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005266</pre>
5267
5268<h5>Overview:</h5>
5269
5270
5271<p>
John Criswell88190562005-05-16 16:17:45 +00005272The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner67c37d12008-08-05 18:29:16 +00005273(PC) in a region of
5274code to simulators and other tools. The method is target specific, but it is
5275expected that the marker will use exported symbols to transmit the PC of the
5276marker.
5277The marker makes no guarantees that it will remain with any specific instruction
5278after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb40261e2006-03-24 07:16:10 +00005279optimizations. The intended use is to be inserted after optimizations to allow
John Criswell88190562005-05-16 16:17:45 +00005280correlations of simulation runs.
Andrew Lenharthb4427912005-03-28 20:05:49 +00005281</p>
5282
5283<h5>Arguments:</h5>
5284
5285<p>
5286<tt>id</tt> is a numerical id identifying the marker.
5287</p>
5288
5289<h5>Semantics:</h5>
5290
5291<p>
5292This intrinsic does not modify the behavior of the program. Backends that do not
5293support this intrinisic may ignore it.
5294</p>
5295
5296</div>
5297
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005298<!-- _______________________________________________________________________ -->
5299<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005300 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005301</div>
5302
5303<div class="doc_text">
5304
5305<h5>Syntax:</h5>
5306<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005307 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005308</pre>
5309
5310<h5>Overview:</h5>
5311
5312
5313<p>
5314The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5315counter register (or similar low latency, high accuracy clocks) on those targets
5316that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5317As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5318should only be used for small timings.
5319</p>
5320
5321<h5>Semantics:</h5>
5322
5323<p>
5324When directly supported, reading the cycle counter should not modify any memory.
5325Implementations are allowed to either return a application specific value or a
5326system wide value. On backends without support, this is lowered to a constant 0.
5327</p>
5328
5329</div>
5330
Chris Lattner3649c3a2004-02-14 04:08:35 +00005331<!-- ======================================================================= -->
5332<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005333 <a name="int_libc">Standard C Library Intrinsics</a>
5334</div>
5335
5336<div class="doc_text">
5337<p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005338LLVM provides intrinsics for a few important standard C library functions.
5339These intrinsics allow source-language front-ends to pass information about the
5340alignment of the pointer arguments to the code generator, providing opportunity
5341for more efficient code generation.
Chris Lattnerfee11462004-02-12 17:01:32 +00005342</p>
5343
5344</div>
5345
5346<!-- _______________________________________________________________________ -->
5347<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005348 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005349</div>
5350
5351<div class="doc_text">
5352
5353<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005354<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5355width. Not all targets support all bit widths however.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005356<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005357 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5358 i8 &lt;len&gt;, i32 &lt;align&gt;)
5359 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5360 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005361 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005362 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005363 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005364 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005365</pre>
5366
5367<h5>Overview:</h5>
5368
5369<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005370The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005371location to the destination location.
5372</p>
5373
5374<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005375Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5376intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerfee11462004-02-12 17:01:32 +00005377</p>
5378
5379<h5>Arguments:</h5>
5380
5381<p>
5382The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005383the source. The third argument is an integer argument
Chris Lattnerfee11462004-02-12 17:01:32 +00005384specifying the number of bytes to copy, and the fourth argument is the alignment
5385of the source and destination locations.
5386</p>
5387
Chris Lattner4c67c482004-02-12 21:18:15 +00005388<p>
5389If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005390the caller guarantees that both the source and destination pointers are aligned
5391to that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005392</p>
5393
Chris Lattnerfee11462004-02-12 17:01:32 +00005394<h5>Semantics:</h5>
5395
5396<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005397The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005398location to the destination location, which are not allowed to overlap. It
5399copies "len" bytes of memory over. If the argument is known to be aligned to
5400some boundary, this can be specified as the fourth argument, otherwise it should
5401be set to 0 or 1.
5402</p>
5403</div>
5404
5405
Chris Lattnerf30152e2004-02-12 18:10:10 +00005406<!-- _______________________________________________________________________ -->
5407<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005408 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005409</div>
5410
5411<div class="doc_text">
5412
5413<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005414<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5415width. Not all targets support all bit widths however.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005416<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005417 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5418 i8 &lt;len&gt;, i32 &lt;align&gt;)
5419 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5420 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005421 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005422 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005423 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005424 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005425</pre>
5426
5427<h5>Overview:</h5>
5428
5429<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005430The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5431location to the destination location. It is similar to the
Chris Lattnerec564022008-01-06 19:51:52 +00005432'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005433</p>
5434
5435<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005436Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5437intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005438</p>
5439
5440<h5>Arguments:</h5>
5441
5442<p>
5443The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005444the source. The third argument is an integer argument
Chris Lattnerf30152e2004-02-12 18:10:10 +00005445specifying the number of bytes to copy, and the fourth argument is the alignment
5446of the source and destination locations.
5447</p>
5448
Chris Lattner4c67c482004-02-12 21:18:15 +00005449<p>
5450If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005451the caller guarantees that the source and destination pointers are aligned to
5452that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005453</p>
5454
Chris Lattnerf30152e2004-02-12 18:10:10 +00005455<h5>Semantics:</h5>
5456
5457<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005458The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerf30152e2004-02-12 18:10:10 +00005459location to the destination location, which may overlap. It
5460copies "len" bytes of memory over. If the argument is known to be aligned to
5461some boundary, this can be specified as the fourth argument, otherwise it should
5462be set to 0 or 1.
5463</p>
5464</div>
5465
Chris Lattner941515c2004-01-06 05:31:32 +00005466
Chris Lattner3649c3a2004-02-14 04:08:35 +00005467<!-- _______________________________________________________________________ -->
5468<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005469 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005470</div>
5471
5472<div class="doc_text">
5473
5474<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005475<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5476width. Not all targets support all bit widths however.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005477<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005478 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5479 i8 &lt;len&gt;, i32 &lt;align&gt;)
5480 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5481 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005482 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005483 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005484 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005485 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005486</pre>
5487
5488<h5>Overview:</h5>
5489
5490<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005491The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner3649c3a2004-02-14 04:08:35 +00005492byte value.
5493</p>
5494
5495<p>
5496Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5497does not return a value, and takes an extra alignment argument.
5498</p>
5499
5500<h5>Arguments:</h5>
5501
5502<p>
5503The first argument is a pointer to the destination to fill, the second is the
Chris Lattner0c8b2592006-03-03 00:07:20 +00005504byte value to fill it with, the third argument is an integer
Chris Lattner3649c3a2004-02-14 04:08:35 +00005505argument specifying the number of bytes to fill, and the fourth argument is the
5506known alignment of destination location.
5507</p>
5508
5509<p>
5510If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005511the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005512</p>
5513
5514<h5>Semantics:</h5>
5515
5516<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005517The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5518the
Chris Lattner3649c3a2004-02-14 04:08:35 +00005519destination location. If the argument is known to be aligned to some boundary,
5520this can be specified as the fourth argument, otherwise it should be set to 0 or
55211.
5522</p>
5523</div>
5524
5525
Chris Lattner3b4f4372004-06-11 02:28:03 +00005526<!-- _______________________________________________________________________ -->
5527<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005528 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005529</div>
5530
5531<div class="doc_text">
5532
5533<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005534<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005535floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005536types however.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005537<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005538 declare float @llvm.sqrt.f32(float %Val)
5539 declare double @llvm.sqrt.f64(double %Val)
5540 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5541 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5542 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005543</pre>
5544
5545<h5>Overview:</h5>
5546
5547<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005548The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohmanb6324c12007-10-15 20:30:11 +00005549returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005550<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner00d7cb92008-01-29 07:00:44 +00005551negative numbers other than -0.0 (which allows for better optimization, because
5552there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5553defined to return -0.0 like IEEE sqrt.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005554</p>
5555
5556<h5>Arguments:</h5>
5557
5558<p>
5559The argument and return value are floating point numbers of the same type.
5560</p>
5561
5562<h5>Semantics:</h5>
5563
5564<p>
Dan Gohman33988db2007-07-16 14:37:41 +00005565This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005566floating point number.
5567</p>
5568</div>
5569
Chris Lattner33b73f92006-09-08 06:34:02 +00005570<!-- _______________________________________________________________________ -->
5571<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005572 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005573</div>
5574
5575<div class="doc_text">
5576
5577<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005578<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005579floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005580types however.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005581<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005582 declare float @llvm.powi.f32(float %Val, i32 %power)
5583 declare double @llvm.powi.f64(double %Val, i32 %power)
5584 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5585 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5586 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005587</pre>
5588
5589<h5>Overview:</h5>
5590
5591<p>
5592The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5593specified (positive or negative) power. The order of evaluation of
Dan Gohmanb6324c12007-10-15 20:30:11 +00005594multiplications is not defined. When a vector of floating point type is
5595used, the second argument remains a scalar integer value.
Chris Lattner33b73f92006-09-08 06:34:02 +00005596</p>
5597
5598<h5>Arguments:</h5>
5599
5600<p>
5601The second argument is an integer power, and the first is a value to raise to
5602that power.
5603</p>
5604
5605<h5>Semantics:</h5>
5606
5607<p>
5608This function returns the first value raised to the second power with an
5609unspecified sequence of rounding operations.</p>
5610</div>
5611
Dan Gohmanb6324c12007-10-15 20:30:11 +00005612<!-- _______________________________________________________________________ -->
5613<div class="doc_subsubsection">
5614 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5615</div>
5616
5617<div class="doc_text">
5618
5619<h5>Syntax:</h5>
5620<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5621floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005622types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005623<pre>
5624 declare float @llvm.sin.f32(float %Val)
5625 declare double @llvm.sin.f64(double %Val)
5626 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5627 declare fp128 @llvm.sin.f128(fp128 %Val)
5628 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5629</pre>
5630
5631<h5>Overview:</h5>
5632
5633<p>
5634The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5635</p>
5636
5637<h5>Arguments:</h5>
5638
5639<p>
5640The argument and return value are floating point numbers of the same type.
5641</p>
5642
5643<h5>Semantics:</h5>
5644
5645<p>
5646This function returns the sine of the specified operand, returning the
5647same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005648conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005649</div>
5650
5651<!-- _______________________________________________________________________ -->
5652<div class="doc_subsubsection">
5653 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5654</div>
5655
5656<div class="doc_text">
5657
5658<h5>Syntax:</h5>
5659<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5660floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005661types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005662<pre>
5663 declare float @llvm.cos.f32(float %Val)
5664 declare double @llvm.cos.f64(double %Val)
5665 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5666 declare fp128 @llvm.cos.f128(fp128 %Val)
5667 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5668</pre>
5669
5670<h5>Overview:</h5>
5671
5672<p>
5673The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5674</p>
5675
5676<h5>Arguments:</h5>
5677
5678<p>
5679The argument and return value are floating point numbers of the same type.
5680</p>
5681
5682<h5>Semantics:</h5>
5683
5684<p>
5685This function returns the cosine of the specified operand, returning the
5686same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005687conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005688</div>
5689
5690<!-- _______________________________________________________________________ -->
5691<div class="doc_subsubsection">
5692 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5693</div>
5694
5695<div class="doc_text">
5696
5697<h5>Syntax:</h5>
5698<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5699floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005700types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005701<pre>
5702 declare float @llvm.pow.f32(float %Val, float %Power)
5703 declare double @llvm.pow.f64(double %Val, double %Power)
5704 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5705 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5706 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5707</pre>
5708
5709<h5>Overview:</h5>
5710
5711<p>
5712The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5713specified (positive or negative) power.
5714</p>
5715
5716<h5>Arguments:</h5>
5717
5718<p>
5719The second argument is a floating point power, and the first is a value to
5720raise to that power.
5721</p>
5722
5723<h5>Semantics:</h5>
5724
5725<p>
5726This function returns the first value raised to the second power,
5727returning the
5728same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005729conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005730</div>
5731
Chris Lattner33b73f92006-09-08 06:34:02 +00005732
Andrew Lenharth1d463522005-05-03 18:01:48 +00005733<!-- ======================================================================= -->
5734<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005735 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005736</div>
5737
5738<div class="doc_text">
5739<p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005740LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005741These allow efficient code generation for some algorithms.
5742</p>
5743
5744</div>
5745
5746<!-- _______________________________________________________________________ -->
5747<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005748 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005749</div>
5750
5751<div class="doc_text">
5752
5753<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005754<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohmanef9462f2008-10-14 16:51:45 +00005755type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005756<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005757 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5758 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5759 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00005760</pre>
5761
5762<h5>Overview:</h5>
5763
5764<p>
Reid Spencerf361c4f2007-04-02 02:25:19 +00005765The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer4eefaab2007-04-01 08:04:23 +00005766values with an even number of bytes (positive multiple of 16 bits). These are
5767useful for performing operations on data that is not in the target's native
5768byte order.
Nate Begeman0f223bb2006-01-13 23:26:38 +00005769</p>
5770
5771<h5>Semantics:</h5>
5772
5773<p>
Chandler Carruth7132e002007-08-04 01:51:18 +00005774The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005775and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5776intrinsic returns an i32 value that has the four bytes of the input i32
5777swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth7132e002007-08-04 01:51:18 +00005778i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5779<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer4eefaab2007-04-01 08:04:23 +00005780additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005781</p>
5782
5783</div>
5784
5785<!-- _______________________________________________________________________ -->
5786<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005787 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005788</div>
5789
5790<div class="doc_text">
5791
5792<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005793<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohmanef9462f2008-10-14 16:51:45 +00005794width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005795<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005796 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005797 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005798 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005799 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5800 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005801</pre>
5802
5803<h5>Overview:</h5>
5804
5805<p>
Chris Lattner069b5bd2006-01-16 22:38:59 +00005806The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5807value.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005808</p>
5809
5810<h5>Arguments:</h5>
5811
5812<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005813The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005814integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005815</p>
5816
5817<h5>Semantics:</h5>
5818
5819<p>
5820The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5821</p>
5822</div>
5823
5824<!-- _______________________________________________________________________ -->
5825<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005826 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005827</div>
5828
5829<div class="doc_text">
5830
5831<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005832<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00005833integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005834<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005835 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5836 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005837 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005838 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5839 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005840</pre>
5841
5842<h5>Overview:</h5>
5843
5844<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005845The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5846leading zeros in a variable.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005847</p>
5848
5849<h5>Arguments:</h5>
5850
5851<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005852The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005853integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005854</p>
5855
5856<h5>Semantics:</h5>
5857
5858<p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005859The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5860in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005861of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005862</p>
5863</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00005864
5865
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005866
5867<!-- _______________________________________________________________________ -->
5868<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005869 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005870</div>
5871
5872<div class="doc_text">
5873
5874<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005875<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00005876integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005877<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005878 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5879 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005880 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005881 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5882 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005883</pre>
5884
5885<h5>Overview:</h5>
5886
5887<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005888The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5889trailing zeros.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005890</p>
5891
5892<h5>Arguments:</h5>
5893
5894<p>
5895The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005896integer type. The return type must match the argument type.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005897</p>
5898
5899<h5>Semantics:</h5>
5900
5901<p>
5902The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5903in a variable. If the src == 0 then the result is the size in bits of the type
5904of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5905</p>
5906</div>
5907
Reid Spencer8a5799f2007-04-01 08:27:01 +00005908<!-- _______________________________________________________________________ -->
5909<div class="doc_subsubsection">
Reid Spencerea2945e2007-04-10 02:51:31 +00005910 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005911</div>
5912
5913<div class="doc_text">
5914
5915<h5>Syntax:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005916<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005917on any integer bit width.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005918<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005919 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5920 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencer8bc7d952007-04-01 19:00:37 +00005921</pre>
5922
5923<h5>Overview:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005924<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencer8bc7d952007-04-01 19:00:37 +00005925range of bits from an integer value and returns them in the same bit width as
5926the original value.</p>
5927
5928<h5>Arguments:</h5>
5929<p>The first argument, <tt>%val</tt> and the result may be integer types of
5930any bit width but they must have the same bit width. The second and third
Reid Spencer96a5f022007-04-04 02:42:35 +00005931arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005932
5933<h5>Semantics:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005934<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencer96a5f022007-04-04 02:42:35 +00005935of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5936<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5937operates in forward mode.</p>
5938<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5939right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencer8bc7d952007-04-01 19:00:37 +00005940only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5941<ol>
5942 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5943 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5944 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5945 to determine the number of bits to retain.</li>
5946 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005947 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005948</ol>
Reid Spencer70845c02007-05-14 16:14:57 +00005949<p>In reverse mode, a similar computation is made except that the bits are
5950returned in the reverse order. So, for example, if <tt>X</tt> has the value
5951<tt>i16 0x0ACF (101011001111)</tt> and we apply
5952<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5953<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005954</div>
5955
Reid Spencer5bf54c82007-04-11 23:23:49 +00005956<div class="doc_subsubsection">
5957 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5958</div>
5959
5960<div class="doc_text">
5961
5962<h5>Syntax:</h5>
5963<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005964on any integer bit width.</p>
Reid Spencer5bf54c82007-04-11 23:23:49 +00005965<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005966 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5967 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencer5bf54c82007-04-11 23:23:49 +00005968</pre>
5969
5970<h5>Overview:</h5>
5971<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5972of bits in an integer value with another integer value. It returns the integer
5973with the replaced bits.</p>
5974
5975<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005976<p>The first argument, <tt>%val</tt>, and the result may be integer types of
5977any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencer5bf54c82007-04-11 23:23:49 +00005978whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5979integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5980type since they specify only a bit index.</p>
5981
5982<h5>Semantics:</h5>
5983<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5984of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5985<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5986operates in forward mode.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005987
Reid Spencer5bf54c82007-04-11 23:23:49 +00005988<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5989truncating it down to the size of the replacement area or zero extending it
5990up to that size.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005991
Reid Spencer5bf54c82007-04-11 23:23:49 +00005992<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5993are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5994in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohmanef9462f2008-10-14 16:51:45 +00005995to the <tt>%hi</tt>th bit.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005996
Reid Spencer146281c2007-05-14 16:50:20 +00005997<p>In reverse mode, a similar computation is made except that the bits are
5998reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohmanef9462f2008-10-14 16:51:45 +00005999<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006000
Reid Spencer5bf54c82007-04-11 23:23:49 +00006001<h5>Examples:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006002
Reid Spencer5bf54c82007-04-11 23:23:49 +00006003<pre>
Reid Spencerc70afc32007-04-12 01:03:03 +00006004 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencer146281c2007-05-14 16:50:20 +00006005 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6006 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6007 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerc70afc32007-04-12 01:03:03 +00006008 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencer7972c472007-04-11 23:49:50 +00006009</pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006010
6011</div>
6012
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006013<!-- ======================================================================= -->
6014<div class="doc_subsection">
6015 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6016</div>
6017
6018<div class="doc_text">
6019<p>
6020LLVM provides intrinsics for some arithmetic with overflow operations.
6021</p>
6022
6023</div>
6024
Bill Wendlingf4d70622009-02-08 01:40:31 +00006025<!-- _______________________________________________________________________ -->
6026<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006027 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006028</div>
6029
6030<div class="doc_text">
6031
6032<h5>Syntax:</h5>
6033
6034<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006035on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006036
6037<pre>
6038 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6039 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6040 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6041</pre>
6042
6043<h5>Overview:</h5>
6044
6045<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6046a signed addition of the two arguments, and indicate whether an overflow
6047occurred during the signed summation.</p>
6048
6049<h5>Arguments:</h5>
6050
6051<p>The arguments (%a and %b) and the first element of the result structure may
6052be of integer types of any bit width, but they must have the same bit width. The
6053second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6054and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6055
6056<h5>Semantics:</h5>
6057
6058<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6059a signed addition of the two variables. They return a structure &mdash; the
6060first element of which is the signed summation, and the second element of which
6061is a bit specifying if the signed summation resulted in an overflow.</p>
6062
6063<h5>Examples:</h5>
6064<pre>
6065 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6066 %sum = extractvalue {i32, i1} %res, 0
6067 %obit = extractvalue {i32, i1} %res, 1
6068 br i1 %obit, label %overflow, label %normal
6069</pre>
6070
6071</div>
6072
6073<!-- _______________________________________________________________________ -->
6074<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006075 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006076</div>
6077
6078<div class="doc_text">
6079
6080<h5>Syntax:</h5>
6081
6082<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006083on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006084
6085<pre>
6086 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6087 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6088 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6089</pre>
6090
6091<h5>Overview:</h5>
6092
6093<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6094an unsigned addition of the two arguments, and indicate whether a carry occurred
6095during the unsigned summation.</p>
6096
6097<h5>Arguments:</h5>
6098
6099<p>The arguments (%a and %b) and the first element of the result structure may
6100be of integer types of any bit width, but they must have the same bit width. The
6101second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6102and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6103
6104<h5>Semantics:</h5>
6105
6106<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6107an unsigned addition of the two arguments. They return a structure &mdash; the
6108first element of which is the sum, and the second element of which is a bit
6109specifying if the unsigned summation resulted in a carry.</p>
6110
6111<h5>Examples:</h5>
6112<pre>
6113 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6114 %sum = extractvalue {i32, i1} %res, 0
6115 %obit = extractvalue {i32, i1} %res, 1
6116 br i1 %obit, label %carry, label %normal
6117</pre>
6118
6119</div>
6120
6121<!-- _______________________________________________________________________ -->
6122<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006123 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006124</div>
6125
6126<div class="doc_text">
6127
6128<h5>Syntax:</h5>
6129
6130<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006131on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006132
6133<pre>
6134 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6135 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6136 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6137</pre>
6138
6139<h5>Overview:</h5>
6140
6141<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6142a signed subtraction of the two arguments, and indicate whether an overflow
6143occurred during the signed subtraction.</p>
6144
6145<h5>Arguments:</h5>
6146
6147<p>The arguments (%a and %b) and the first element of the result structure may
6148be of integer types of any bit width, but they must have the same bit width. The
6149second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6150and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6151
6152<h5>Semantics:</h5>
6153
6154<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6155a signed subtraction of the two arguments. They return a structure &mdash; the
6156first element of which is the subtraction, and the second element of which is a bit
6157specifying if the signed subtraction resulted in an overflow.</p>
6158
6159<h5>Examples:</h5>
6160<pre>
6161 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6162 %sum = extractvalue {i32, i1} %res, 0
6163 %obit = extractvalue {i32, i1} %res, 1
6164 br i1 %obit, label %overflow, label %normal
6165</pre>
6166
6167</div>
6168
6169<!-- _______________________________________________________________________ -->
6170<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006171 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006172</div>
6173
6174<div class="doc_text">
6175
6176<h5>Syntax:</h5>
6177
6178<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006179on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006180
6181<pre>
6182 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6183 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6184 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6185</pre>
6186
6187<h5>Overview:</h5>
6188
6189<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6190an unsigned subtraction of the two arguments, and indicate whether an overflow
6191occurred during the unsigned subtraction.</p>
6192
6193<h5>Arguments:</h5>
6194
6195<p>The arguments (%a and %b) and the first element of the result structure may
6196be of integer types of any bit width, but they must have the same bit width. The
6197second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6198and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6199
6200<h5>Semantics:</h5>
6201
6202<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6203an unsigned subtraction of the two arguments. They return a structure &mdash; the
6204first element of which is the subtraction, and the second element of which is a bit
6205specifying if the unsigned subtraction resulted in an overflow.</p>
6206
6207<h5>Examples:</h5>
6208<pre>
6209 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6210 %sum = extractvalue {i32, i1} %res, 0
6211 %obit = extractvalue {i32, i1} %res, 1
6212 br i1 %obit, label %overflow, label %normal
6213</pre>
6214
6215</div>
6216
6217<!-- _______________________________________________________________________ -->
6218<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006219 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006220</div>
6221
6222<div class="doc_text">
6223
6224<h5>Syntax:</h5>
6225
6226<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006227on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006228
6229<pre>
6230 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6231 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6232 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6233</pre>
6234
6235<h5>Overview:</h5>
6236
6237<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6238a signed multiplication of the two arguments, and indicate whether an overflow
6239occurred during the signed multiplication.</p>
6240
6241<h5>Arguments:</h5>
6242
6243<p>The arguments (%a and %b) and the first element of the result structure may
6244be of integer types of any bit width, but they must have the same bit width. The
6245second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6246and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6247
6248<h5>Semantics:</h5>
6249
6250<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6251a signed multiplication of the two arguments. They return a structure &mdash;
6252the first element of which is the multiplication, and the second element of
6253which is a bit specifying if the signed multiplication resulted in an
6254overflow.</p>
6255
6256<h5>Examples:</h5>
6257<pre>
6258 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6259 %sum = extractvalue {i32, i1} %res, 0
6260 %obit = extractvalue {i32, i1} %res, 1
6261 br i1 %obit, label %overflow, label %normal
6262</pre>
6263
Reid Spencer5bf54c82007-04-11 23:23:49 +00006264</div>
6265
Bill Wendlingb9a73272009-02-08 23:00:09 +00006266<!-- _______________________________________________________________________ -->
6267<div class="doc_subsubsection">
6268 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6269</div>
6270
6271<div class="doc_text">
6272
6273<h5>Syntax:</h5>
6274
6275<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6276on any integer bit width.</p>
6277
6278<pre>
6279 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6280 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6281 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6282</pre>
6283
6284<h5>Overview:</h5>
6285
6286<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6287actively being fixed, but it should not currently be used!</i></p>
6288
6289<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6290a unsigned multiplication of the two arguments, and indicate whether an overflow
6291occurred during the unsigned multiplication.</p>
6292
6293<h5>Arguments:</h5>
6294
6295<p>The arguments (%a and %b) and the first element of the result structure may
6296be of integer types of any bit width, but they must have the same bit width. The
6297second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6298and <tt>%b</tt> are the two values that will undergo unsigned
6299multiplication.</p>
6300
6301<h5>Semantics:</h5>
6302
6303<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6304an unsigned multiplication of the two arguments. They return a structure &mdash;
6305the first element of which is the multiplication, and the second element of
6306which is a bit specifying if the unsigned multiplication resulted in an
6307overflow.</p>
6308
6309<h5>Examples:</h5>
6310<pre>
6311 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6312 %sum = extractvalue {i32, i1} %res, 0
6313 %obit = extractvalue {i32, i1} %res, 1
6314 br i1 %obit, label %overflow, label %normal
6315</pre>
6316
6317</div>
6318
Chris Lattner941515c2004-01-06 05:31:32 +00006319<!-- ======================================================================= -->
6320<div class="doc_subsection">
6321 <a name="int_debugger">Debugger Intrinsics</a>
6322</div>
6323
6324<div class="doc_text">
6325<p>
6326The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6327are described in the <a
6328href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6329Debugging</a> document.
6330</p>
6331</div>
6332
6333
Jim Laskey2211f492007-03-14 19:31:19 +00006334<!-- ======================================================================= -->
6335<div class="doc_subsection">
6336 <a name="int_eh">Exception Handling Intrinsics</a>
6337</div>
6338
6339<div class="doc_text">
6340<p> The LLVM exception handling intrinsics (which all start with
6341<tt>llvm.eh.</tt> prefix), are described in the <a
6342href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6343Handling</a> document. </p>
6344</div>
6345
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006346<!-- ======================================================================= -->
6347<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006348 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006349</div>
6350
6351<div class="doc_text">
6352<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006353 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands644f9172007-07-27 12:58:54 +00006354 the <tt>nest</tt> attribute, from a function. The result is a callable
6355 function pointer lacking the nest parameter - the caller does not need
6356 to provide a value for it. Instead, the value to use is stored in
6357 advance in a "trampoline", a block of memory usually allocated
6358 on the stack, which also contains code to splice the nest value into the
6359 argument list. This is used to implement the GCC nested function address
6360 extension.
6361</p>
6362<p>
6363 For example, if the function is
6364 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling252570f2007-09-22 09:23:55 +00006365 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006366<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006367 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6368 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6369 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6370 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006371</pre>
Bill Wendling252570f2007-09-22 09:23:55 +00006372 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6373 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006374</div>
6375
6376<!-- _______________________________________________________________________ -->
6377<div class="doc_subsubsection">
6378 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6379</div>
6380<div class="doc_text">
6381<h5>Syntax:</h5>
6382<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006383declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006384</pre>
6385<h5>Overview:</h5>
6386<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006387 This fills the memory pointed to by <tt>tramp</tt> with code
6388 and returns a function pointer suitable for executing it.
Duncan Sands644f9172007-07-27 12:58:54 +00006389</p>
6390<h5>Arguments:</h5>
6391<p>
6392 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6393 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6394 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsf2bcd372007-08-22 23:39:54 +00006395 intrinsic. Note that the size and the alignment are target-specific - LLVM
6396 currently provides no portable way of determining them, so a front-end that
6397 generates this intrinsic needs to have some target-specific knowledge.
6398 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands644f9172007-07-27 12:58:54 +00006399</p>
6400<h5>Semantics:</h5>
6401<p>
6402 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands86e01192007-09-11 14:10:23 +00006403 dependent code, turning it into a function. A pointer to this function is
6404 returned, but needs to be bitcast to an
Duncan Sands644f9172007-07-27 12:58:54 +00006405 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands86e01192007-09-11 14:10:23 +00006406 before being called. The new function's signature is the same as that of
6407 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6408 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6409 of pointer type. Calling the new function is equivalent to calling
6410 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6411 missing <tt>nest</tt> argument. If, after calling
6412 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6413 modified, then the effect of any later call to the returned function pointer is
6414 undefined.
Duncan Sands644f9172007-07-27 12:58:54 +00006415</p>
6416</div>
6417
6418<!-- ======================================================================= -->
6419<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006420 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6421</div>
6422
6423<div class="doc_text">
6424<p>
6425 These intrinsic functions expand the "universal IR" of LLVM to represent
6426 hardware constructs for atomic operations and memory synchronization. This
6427 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner67c37d12008-08-05 18:29:16 +00006428 is aimed at a low enough level to allow any programming models or APIs
6429 (Application Programming Interfaces) which
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006430 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6431 hardware behavior. Just as hardware provides a "universal IR" for source
6432 languages, it also provides a starting point for developing a "universal"
6433 atomic operation and synchronization IR.
6434</p>
6435<p>
6436 These do <em>not</em> form an API such as high-level threading libraries,
6437 software transaction memory systems, atomic primitives, and intrinsic
6438 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6439 application libraries. The hardware interface provided by LLVM should allow
6440 a clean implementation of all of these APIs and parallel programming models.
6441 No one model or paradigm should be selected above others unless the hardware
6442 itself ubiquitously does so.
6443
6444</p>
6445</div>
6446
6447<!-- _______________________________________________________________________ -->
6448<div class="doc_subsubsection">
6449 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6450</div>
6451<div class="doc_text">
6452<h5>Syntax:</h5>
6453<pre>
6454declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6455i1 &lt;device&gt; )
6456
6457</pre>
6458<h5>Overview:</h5>
6459<p>
6460 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6461 specific pairs of memory access types.
6462</p>
6463<h5>Arguments:</h5>
6464<p>
6465 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6466 The first four arguments enables a specific barrier as listed below. The fith
6467 argument specifies that the barrier applies to io or device or uncached memory.
6468
6469</p>
6470 <ul>
6471 <li><tt>ll</tt>: load-load barrier</li>
6472 <li><tt>ls</tt>: load-store barrier</li>
6473 <li><tt>sl</tt>: store-load barrier</li>
6474 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006475 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006476 </ul>
6477<h5>Semantics:</h5>
6478<p>
6479 This intrinsic causes the system to enforce some ordering constraints upon
6480 the loads and stores of the program. This barrier does not indicate
6481 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6482 which they occur. For any of the specified pairs of load and store operations
6483 (f.ex. load-load, or store-load), all of the first operations preceding the
6484 barrier will complete before any of the second operations succeeding the
6485 barrier begin. Specifically the semantics for each pairing is as follows:
6486</p>
6487 <ul>
6488 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6489 after the barrier begins.</li>
6490
6491 <li><tt>ls</tt>: All loads before the barrier must complete before any
6492 store after the barrier begins.</li>
6493 <li><tt>ss</tt>: All stores before the barrier must complete before any
6494 store after the barrier begins.</li>
6495 <li><tt>sl</tt>: All stores before the barrier must complete before any
6496 load after the barrier begins.</li>
6497 </ul>
6498<p>
6499 These semantics are applied with a logical "and" behavior when more than one
6500 is enabled in a single memory barrier intrinsic.
6501</p>
6502<p>
6503 Backends may implement stronger barriers than those requested when they do not
6504 support as fine grained a barrier as requested. Some architectures do not
6505 need all types of barriers and on such architectures, these become noops.
6506</p>
6507<h5>Example:</h5>
6508<pre>
6509%ptr = malloc i32
6510 store i32 4, %ptr
6511
6512%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6513 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6514 <i>; guarantee the above finishes</i>
6515 store i32 8, %ptr <i>; before this begins</i>
6516</pre>
6517</div>
6518
Andrew Lenharth95528942008-02-21 06:45:13 +00006519<!-- _______________________________________________________________________ -->
6520<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006521 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006522</div>
6523<div class="doc_text">
6524<h5>Syntax:</h5>
6525<p>
Mon P Wang2c839d42008-07-30 04:36:53 +00006526 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6527 any integer bit width and for different address spaces. Not all targets
6528 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006529
6530<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006531declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6532declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6533declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6534declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006535
6536</pre>
6537<h5>Overview:</h5>
6538<p>
6539 This loads a value in memory and compares it to a given value. If they are
6540 equal, it stores a new value into the memory.
6541</p>
6542<h5>Arguments:</h5>
6543<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006544 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharth95528942008-02-21 06:45:13 +00006545 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6546 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6547 this integer type. While any bit width integer may be used, targets may only
6548 lower representations they support in hardware.
6549
6550</p>
6551<h5>Semantics:</h5>
6552<p>
6553 This entire intrinsic must be executed atomically. It first loads the value
6554 in memory pointed to by <tt>ptr</tt> and compares it with the value
6555 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6556 loaded value is yielded in all cases. This provides the equivalent of an
6557 atomic compare-and-swap operation within the SSA framework.
6558</p>
6559<h5>Examples:</h5>
6560
6561<pre>
6562%ptr = malloc i32
6563 store i32 4, %ptr
6564
6565%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006566%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006567 <i>; yields {i32}:result1 = 4</i>
6568%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6569%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6570
6571%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006572%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006573 <i>; yields {i32}:result2 = 8</i>
6574%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6575
6576%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6577</pre>
6578</div>
6579
6580<!-- _______________________________________________________________________ -->
6581<div class="doc_subsubsection">
6582 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6583</div>
6584<div class="doc_text">
6585<h5>Syntax:</h5>
6586
6587<p>
6588 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6589 integer bit width. Not all targets support all bit widths however.</p>
6590<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006591declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6592declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6593declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6594declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006595
6596</pre>
6597<h5>Overview:</h5>
6598<p>
6599 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6600 the value from memory. It then stores the value in <tt>val</tt> in the memory
6601 at <tt>ptr</tt>.
6602</p>
6603<h5>Arguments:</h5>
6604
6605<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006606 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharth95528942008-02-21 06:45:13 +00006607 <tt>val</tt> argument and the result must be integers of the same bit width.
6608 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6609 integer type. The targets may only lower integer representations they
6610 support.
6611</p>
6612<h5>Semantics:</h5>
6613<p>
6614 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6615 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6616 equivalent of an atomic swap operation within the SSA framework.
6617
6618</p>
6619<h5>Examples:</h5>
6620<pre>
6621%ptr = malloc i32
6622 store i32 4, %ptr
6623
6624%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006625%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006626 <i>; yields {i32}:result1 = 4</i>
6627%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6628%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6629
6630%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006631%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006632 <i>; yields {i32}:result2 = 8</i>
6633
6634%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6635%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6636</pre>
6637</div>
6638
6639<!-- _______________________________________________________________________ -->
6640<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006641 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006642
6643</div>
6644<div class="doc_text">
6645<h5>Syntax:</h5>
6646<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006647 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharth95528942008-02-21 06:45:13 +00006648 integer bit width. Not all targets support all bit widths however.</p>
6649<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006650declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6651declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6652declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6653declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006654
6655</pre>
6656<h5>Overview:</h5>
6657<p>
6658 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6659 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6660</p>
6661<h5>Arguments:</h5>
6662<p>
6663
6664 The intrinsic takes two arguments, the first a pointer to an integer value
6665 and the second an integer value. The result is also an integer value. These
6666 integer types can have any bit width, but they must all have the same bit
6667 width. The targets may only lower integer representations they support.
6668</p>
6669<h5>Semantics:</h5>
6670<p>
6671 This intrinsic does a series of operations atomically. It first loads the
6672 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6673 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6674</p>
6675
6676<h5>Examples:</h5>
6677<pre>
6678%ptr = malloc i32
6679 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006680%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006681 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006682%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006683 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006684%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006685 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006686%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006687</pre>
6688</div>
6689
Mon P Wang6a490372008-06-25 08:15:39 +00006690<!-- _______________________________________________________________________ -->
6691<div class="doc_subsubsection">
6692 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6693
6694</div>
6695<div class="doc_text">
6696<h5>Syntax:</h5>
6697<p>
6698 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wang2c839d42008-07-30 04:36:53 +00006699 any integer bit width and for different address spaces. Not all targets
6700 support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006701<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006702declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6703declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6704declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6705declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006706
6707</pre>
6708<h5>Overview:</h5>
6709<p>
6710 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6711 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6712</p>
6713<h5>Arguments:</h5>
6714<p>
6715
6716 The intrinsic takes two arguments, the first a pointer to an integer value
6717 and the second an integer value. The result is also an integer value. These
6718 integer types can have any bit width, but they must all have the same bit
6719 width. The targets may only lower integer representations they support.
6720</p>
6721<h5>Semantics:</h5>
6722<p>
6723 This intrinsic does a series of operations atomically. It first loads the
6724 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6725 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6726</p>
6727
6728<h5>Examples:</h5>
6729<pre>
6730%ptr = malloc i32
6731 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006732%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006733 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006734%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006735 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006736%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006737 <i>; yields {i32}:result3 = 2</i>
6738%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6739</pre>
6740</div>
6741
6742<!-- _______________________________________________________________________ -->
6743<div class="doc_subsubsection">
6744 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6745 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6746 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6747 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6748
6749</div>
6750<div class="doc_text">
6751<h5>Syntax:</h5>
6752<p>
6753 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6754 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006755 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6756 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006757<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006758declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6759declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6760declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6761declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006762
6763</pre>
6764
6765<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006766declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6767declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6768declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6769declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006770
6771</pre>
6772
6773<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006774declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6775declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6776declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6777declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006778
6779</pre>
6780
6781<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006782declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6783declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6784declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6785declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006786
6787</pre>
6788<h5>Overview:</h5>
6789<p>
6790 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6791 the value stored in memory at <tt>ptr</tt>. It yields the original value
6792 at <tt>ptr</tt>.
6793</p>
6794<h5>Arguments:</h5>
6795<p>
6796
6797 These intrinsics take two arguments, the first a pointer to an integer value
6798 and the second an integer value. The result is also an integer value. These
6799 integer types can have any bit width, but they must all have the same bit
6800 width. The targets may only lower integer representations they support.
6801</p>
6802<h5>Semantics:</h5>
6803<p>
6804 These intrinsics does a series of operations atomically. They first load the
6805 value stored at <tt>ptr</tt>. They then do the bitwise operation
6806 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6807 value stored at <tt>ptr</tt>.
6808</p>
6809
6810<h5>Examples:</h5>
6811<pre>
6812%ptr = malloc i32
6813 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006814%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006815 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006816%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006817 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006818%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006819 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006820%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006821 <i>; yields {i32}:result3 = FF</i>
6822%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6823</pre>
6824</div>
6825
6826
6827<!-- _______________________________________________________________________ -->
6828<div class="doc_subsubsection">
6829 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6830 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6831 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6832 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6833
6834</div>
6835<div class="doc_text">
6836<h5>Syntax:</h5>
6837<p>
6838 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6839 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006840 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6841 address spaces. Not all targets
Mon P Wang6a490372008-06-25 08:15:39 +00006842 support all bit widths however.</p>
6843<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006844declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6845declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6846declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6847declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006848
6849</pre>
6850
6851<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006852declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6853declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6854declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6855declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006856
6857</pre>
6858
6859<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006860declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6861declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6862declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6863declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006864
6865</pre>
6866
6867<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006868declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6869declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6870declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6871declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006872
6873</pre>
6874<h5>Overview:</h5>
6875<p>
6876 These intrinsics takes the signed or unsigned minimum or maximum of
6877 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6878 original value at <tt>ptr</tt>.
6879</p>
6880<h5>Arguments:</h5>
6881<p>
6882
6883 These intrinsics take two arguments, the first a pointer to an integer value
6884 and the second an integer value. The result is also an integer value. These
6885 integer types can have any bit width, but they must all have the same bit
6886 width. The targets may only lower integer representations they support.
6887</p>
6888<h5>Semantics:</h5>
6889<p>
6890 These intrinsics does a series of operations atomically. They first load the
6891 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6892 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6893 the original value stored at <tt>ptr</tt>.
6894</p>
6895
6896<h5>Examples:</h5>
6897<pre>
6898%ptr = malloc i32
6899 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006900%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006901 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006902%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006903 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006904%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006905 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006906%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006907 <i>; yields {i32}:result3 = 8</i>
6908%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6909</pre>
6910</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006911
6912<!-- ======================================================================= -->
6913<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006914 <a name="int_general">General Intrinsics</a>
6915</div>
6916
6917<div class="doc_text">
6918<p> This class of intrinsics is designed to be generic and has
6919no specific purpose. </p>
6920</div>
6921
6922<!-- _______________________________________________________________________ -->
6923<div class="doc_subsubsection">
6924 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6925</div>
6926
6927<div class="doc_text">
6928
6929<h5>Syntax:</h5>
6930<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006931 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006932</pre>
6933
6934<h5>Overview:</h5>
6935
6936<p>
6937The '<tt>llvm.var.annotation</tt>' intrinsic
6938</p>
6939
6940<h5>Arguments:</h5>
6941
6942<p>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006943The first argument is a pointer to a value, the second is a pointer to a
6944global string, the third is a pointer to a global string which is the source
6945file name, and the last argument is the line number.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006946</p>
6947
6948<h5>Semantics:</h5>
6949
6950<p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006951This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006952This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006953annotations. These have no other defined use, they are ignored by code
6954generation and optimization.
6955</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006956</div>
6957
Tanya Lattner293c0372007-09-21 22:59:12 +00006958<!-- _______________________________________________________________________ -->
6959<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00006960 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00006961</div>
6962
6963<div class="doc_text">
6964
6965<h5>Syntax:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006966<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6967any integer bit width.
6968</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006969<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00006970 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6971 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6972 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6973 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6974 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00006975</pre>
6976
6977<h5>Overview:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006978
6979<p>
6980The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattner293c0372007-09-21 22:59:12 +00006981</p>
6982
6983<h5>Arguments:</h5>
6984
6985<p>
6986The first argument is an integer value (result of some expression),
6987the second is a pointer to a global string, the third is a pointer to a global
6988string which is the source file name, and the last argument is the line number.
Tanya Lattner23dbd572007-09-21 23:56:27 +00006989It returns the value of the first argument.
Tanya Lattner293c0372007-09-21 22:59:12 +00006990</p>
6991
6992<h5>Semantics:</h5>
6993
6994<p>
6995This intrinsic allows annotations to be put on arbitrary expressions
6996with arbitrary strings. This can be useful for special purpose optimizations
6997that want to look for these annotations. These have no other defined use, they
6998are ignored by code generation and optimization.
Dan Gohmanef9462f2008-10-14 16:51:45 +00006999</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007000</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007001
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007002<!-- _______________________________________________________________________ -->
7003<div class="doc_subsubsection">
7004 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7005</div>
7006
7007<div class="doc_text">
7008
7009<h5>Syntax:</h5>
7010<pre>
7011 declare void @llvm.trap()
7012</pre>
7013
7014<h5>Overview:</h5>
7015
7016<p>
7017The '<tt>llvm.trap</tt>' intrinsic
7018</p>
7019
7020<h5>Arguments:</h5>
7021
7022<p>
7023None
7024</p>
7025
7026<h5>Semantics:</h5>
7027
7028<p>
7029This intrinsics is lowered to the target dependent trap instruction. If the
7030target does not have a trap instruction, this intrinsic will be lowered to the
7031call of the abort() function.
7032</p>
7033</div>
7034
Bill Wendling14313312008-11-19 05:56:17 +00007035<!-- _______________________________________________________________________ -->
7036<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007037 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007038</div>
7039<div class="doc_text">
7040<h5>Syntax:</h5>
7041<pre>
7042declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7043
7044</pre>
7045<h5>Overview:</h5>
7046<p>
7047 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7048 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7049 it is placed on the stack before local variables.
7050</p>
7051<h5>Arguments:</h5>
7052<p>
7053 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7054 first argument is the value loaded from the stack guard
7055 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7056 has enough space to hold the value of the guard.
7057</p>
7058<h5>Semantics:</h5>
7059<p>
7060 This intrinsic causes the prologue/epilogue inserter to force the position of
7061 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7062 stack. This is to ensure that if a local variable on the stack is overwritten,
7063 it will destroy the value of the guard. When the function exits, the guard on
7064 the stack is checked against the original guard. If they're different, then
7065 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7066</p>
7067</div>
7068
Chris Lattner2f7c9632001-06-06 20:29:01 +00007069<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007070<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007071<address>
7072 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007073 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007074 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007075 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007076
7077 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007078 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007079 Last modified: $Date$
7080</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007081
Misha Brukman76307852003-11-08 01:05:38 +00007082</body>
7083</html>