blob: 7d66c0f73821678e7c8825862b5b46d2f4dd021a [file] [log] [blame]
Eugene Zelenko57bd5a02017-10-27 01:09:08 +00001//===- InferAddressSpace.cpp - --------------------------------------------===//
Jingyue Wu13755602016-03-20 20:59:20 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// CUDA C/C++ includes memory space designation as variable type qualifers (such
11// as __global__ and __shared__). Knowing the space of a memory access allows
12// CUDA compilers to emit faster PTX loads and stores. For example, a load from
13// shared memory can be translated to `ld.shared` which is roughly 10% faster
14// than a generic `ld` on an NVIDIA Tesla K40c.
15//
16// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17// compilers must infer the memory space of an address expression from
18// type-qualified variables.
19//
20// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22// places only type-qualified variables in specific address spaces, and then
23// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24// (so-called the generic address space) for other instructions to use.
25//
26// For example, the Clang translates the following CUDA code
27// __shared__ float a[10];
28// float v = a[i];
29// to
30// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32// %v = load float, float* %1 ; emits ld.f32
33// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34// redirected to %0 (the generic version of @a).
35//
36// The optimization implemented in this file propagates specific address spaces
37// from type-qualified variable declarations to its users. For example, it
38// optimizes the above IR to
39// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42// codegen is able to emit ld.shared.f32 for %v.
43//
44// Address space inference works in two steps. First, it uses a data-flow
45// analysis to infer as many generic pointers as possible to point to only one
46// specific address space. In the above example, it can prove that %1 only
47// points to addrspace(3). This algorithm was published in
48// CUDA: Compiling and optimizing for a GPU platform
49// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50// ICCS 2012
51//
52// Then, address space inference replaces all refinable generic pointers with
53// equivalent specific pointers.
54//
55// The major challenge of implementing this optimization is handling PHINodes,
56// which may create loops in the data flow graph. This brings two complications.
57//
58// First, the data flow analysis in Step 1 needs to be circular. For example,
59// %generic.input = addrspacecast float addrspace(3)* %input to float*
60// loop:
61// %y = phi [ %generic.input, %y2 ]
62// %y2 = getelementptr %y, 1
63// %v = load %y2
64// br ..., label %loop, ...
65// proving %y specific requires proving both %generic.input and %y2 specific,
66// but proving %y2 specific circles back to %y. To address this complication,
67// the data flow analysis operates on a lattice:
68// uninitialized > specific address spaces > generic.
69// All address expressions (our implementation only considers phi, bitcast,
70// addrspacecast, and getelementptr) start with the uninitialized address space.
71// The monotone transfer function moves the address space of a pointer down a
72// lattice path from uninitialized to specific and then to generic. A join
73// operation of two different specific address spaces pushes the expression down
74// to the generic address space. The analysis completes once it reaches a fixed
75// point.
76//
77// Second, IR rewriting in Step 2 also needs to be circular. For example,
78// converting %y to addrspace(3) requires the compiler to know the converted
79// %y2, but converting %y2 needs the converted %y. To address this complication,
80// we break these cycles using "undef" placeholders. When converting an
81// instruction `I` to a new address space, if its operand `Op` is not converted
82// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83// For instance, our algorithm first converts %y to
84// %y' = phi float addrspace(3)* [ %input, undef ]
85// Then, it converts %y2 to
86// %y2' = getelementptr %y', 1
87// Finally, it fixes the undef in %y' so that
88// %y' = phi float addrspace(3)* [ %input, %y2' ]
89//
Jingyue Wu13755602016-03-20 20:59:20 +000090//===----------------------------------------------------------------------===//
91
Eugene Zelenko57bd5a02017-10-27 01:09:08 +000092#include "llvm/ADT/ArrayRef.h"
93#include "llvm/ADT/DenseMap.h"
Jingyue Wu13755602016-03-20 20:59:20 +000094#include "llvm/ADT/DenseSet.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +000095#include "llvm/ADT/None.h"
Jingyue Wu13755602016-03-20 20:59:20 +000096#include "llvm/ADT/Optional.h"
97#include "llvm/ADT/SetVector.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +000098#include "llvm/ADT/SmallVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000099#include "llvm/Analysis/TargetTransformInfo.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000100#include "llvm/IR/BasicBlock.h"
101#include "llvm/IR/Constant.h"
102#include "llvm/IR/Constants.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000103#include "llvm/IR/Function.h"
Reid Kleckner0e8c4bb2017-09-07 23:27:44 +0000104#include "llvm/IR/IRBuilder.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000105#include "llvm/IR/InstIterator.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000106#include "llvm/IR/Instruction.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000107#include "llvm/IR/Instructions.h"
Reid Kleckner0e8c4bb2017-09-07 23:27:44 +0000108#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000109#include "llvm/IR/Intrinsics.h"
110#include "llvm/IR/LLVMContext.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000111#include "llvm/IR/Operator.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000112#include "llvm/IR/Type.h"
113#include "llvm/IR/Use.h"
114#include "llvm/IR/User.h"
115#include "llvm/IR/Value.h"
116#include "llvm/IR/ValueHandle.h"
117#include "llvm/Pass.h"
118#include "llvm/Support/Casting.h"
119#include "llvm/Support/Compiler.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000120#include "llvm/Support/Debug.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000121#include "llvm/Support/ErrorHandling.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000122#include "llvm/Support/raw_ostream.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000123#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000124#include "llvm/Transforms/Utils/Local.h"
125#include "llvm/Transforms/Utils/ValueMapper.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000126#include <cassert>
127#include <iterator>
128#include <limits>
129#include <utility>
130#include <vector>
Jingyue Wu13755602016-03-20 20:59:20 +0000131
Matt Arsenault850657a2017-01-31 01:10:58 +0000132#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000133
Jingyue Wu13755602016-03-20 20:59:20 +0000134using namespace llvm;
135
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000136static const unsigned UninitializedAddressSpace =
137 std::numeric_limits<unsigned>::max();
138
Jingyue Wu13755602016-03-20 20:59:20 +0000139namespace {
Jingyue Wu13755602016-03-20 20:59:20 +0000140
141using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
142
Matt Arsenault850657a2017-01-31 01:10:58 +0000143/// \brief InferAddressSpaces
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000144class InferAddressSpaces : public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000145 /// Target specific address space which uses of should be replaced if
146 /// possible.
147 unsigned FlatAddrSpace;
148
Jingyue Wu13755602016-03-20 20:59:20 +0000149public:
150 static char ID;
151
Matt Arsenault850657a2017-01-31 01:10:58 +0000152 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000153
Matt Arsenault32b96002017-01-27 17:30:39 +0000154 void getAnalysisUsage(AnalysisUsage &AU) const override {
155 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000156 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000157 }
158
Jingyue Wu13755602016-03-20 20:59:20 +0000159 bool runOnFunction(Function &F) override;
160
161private:
162 // Returns the new address space of V if updated; otherwise, returns None.
163 Optional<unsigned>
164 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000165 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000166
167 // Tries to infer the specific address space of each address expression in
168 // Postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000169 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000170 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000171
Matt Arsenault72f259b2017-01-31 02:17:32 +0000172 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
173
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000174 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000175 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000176 // all flat expressions in the use-def graph of function F.
Artem Belevichcb8f6322017-10-24 20:31:44 +0000177 bool rewriteWithNewAddressSpaces(
178 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
179 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
Matt Arsenault42b64782017-01-30 23:02:12 +0000180
181 void appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000182 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
183 DenseSet<Value *> &Visited) const;
Matt Arsenault42b64782017-01-30 23:02:12 +0000184
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000185 bool rewriteIntrinsicOperands(IntrinsicInst *II,
186 Value *OldV, Value *NewV) const;
187 void collectRewritableIntrinsicOperands(
188 IntrinsicInst *II,
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000189 std::vector<std::pair<Value *, bool>> &PostorderStack,
190 DenseSet<Value *> &Visited) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000191
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000192 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000193
Matt Arsenault42b64782017-01-30 23:02:12 +0000194 Value *cloneValueWithNewAddressSpace(
195 Value *V, unsigned NewAddrSpace,
196 const ValueToValueMapTy &ValueWithNewAddrSpace,
197 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
198 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000199};
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000200
Jingyue Wu13755602016-03-20 20:59:20 +0000201} // end anonymous namespace
202
Matt Arsenault850657a2017-01-31 01:10:58 +0000203char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000204
205namespace llvm {
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000206
Matt Arsenault850657a2017-01-31 01:10:58 +0000207void initializeInferAddressSpacesPass(PassRegistry &);
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000208
209} // end namespace llvm
Matt Arsenault850657a2017-01-31 01:10:58 +0000210
211INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000212 false, false)
213
214// Returns true if V is an address expression.
215// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
216// getelementptr operators.
217static bool isAddressExpression(const Value &V) {
218 if (!isa<Operator>(V))
219 return false;
220
221 switch (cast<Operator>(V).getOpcode()) {
222 case Instruction::PHI:
223 case Instruction::BitCast:
224 case Instruction::AddrSpaceCast:
225 case Instruction::GetElementPtr:
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000226 case Instruction::Select:
Jingyue Wu13755602016-03-20 20:59:20 +0000227 return true;
228 default:
229 return false;
230 }
231}
232
233// Returns the pointer operands of V.
234//
235// Precondition: V is an address expression.
236static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000237 const Operator &Op = cast<Operator>(V);
Jingyue Wu13755602016-03-20 20:59:20 +0000238 switch (Op.getOpcode()) {
239 case Instruction::PHI: {
240 auto IncomingValues = cast<PHINode>(Op).incoming_values();
241 return SmallVector<Value *, 2>(IncomingValues.begin(),
242 IncomingValues.end());
243 }
244 case Instruction::BitCast:
245 case Instruction::AddrSpaceCast:
246 case Instruction::GetElementPtr:
247 return {Op.getOperand(0)};
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000248 case Instruction::Select:
249 return {Op.getOperand(1), Op.getOperand(2)};
Jingyue Wu13755602016-03-20 20:59:20 +0000250 default:
251 llvm_unreachable("Unexpected instruction type.");
252 }
253}
254
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000255// TODO: Move logic to TTI?
256bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
257 Value *OldV,
258 Value *NewV) const {
259 Module *M = II->getParent()->getParent()->getParent();
260
261 switch (II->getIntrinsicID()) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000262 case Intrinsic::amdgcn_atomic_inc:
Matt Arsenault79f837c2017-03-30 22:21:40 +0000263 case Intrinsic::amdgcn_atomic_dec:{
264 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
Craig Topper79ab6432017-07-06 18:39:47 +0000265 if (!IsVolatile || !IsVolatile->isZero())
Matt Arsenault79f837c2017-03-30 22:21:40 +0000266 return false;
267
268 LLVM_FALLTHROUGH;
269 }
270 case Intrinsic::objectsize: {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000271 Type *DestTy = II->getType();
272 Type *SrcTy = NewV->getType();
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000273 Function *NewDecl =
274 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000275 II->setArgOperand(0, NewV);
276 II->setCalledFunction(NewDecl);
277 return true;
278 }
279 default:
280 return false;
281 }
282}
283
284// TODO: Move logic to TTI?
285void InferAddressSpaces::collectRewritableIntrinsicOperands(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000286 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
287 DenseSet<Value *> &Visited) const {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000288 switch (II->getIntrinsicID()) {
289 case Intrinsic::objectsize:
290 case Intrinsic::amdgcn_atomic_inc:
291 case Intrinsic::amdgcn_atomic_dec:
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000292 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
293 PostorderStack, Visited);
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000294 break;
295 default:
296 break;
297 }
298}
299
300// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000301// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000302// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000303void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000304 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
305 DenseSet<Value *> &Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000306 assert(V->getType()->isPointerTy());
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000307
308 // Generic addressing expressions may be hidden in nested constant
309 // expressions.
310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
311 // TODO: Look in non-address parts, like icmp operands.
312 if (isAddressExpression(*CE) && Visited.insert(CE).second)
313 PostorderStack.push_back(std::make_pair(CE, false));
314
315 return;
316 }
317
Jingyue Wu13755602016-03-20 20:59:20 +0000318 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000319 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000320 if (Visited.insert(V).second) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000321 PostorderStack.push_back(std::make_pair(V, false));
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000322
323 Operator *Op = cast<Operator>(V);
324 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
325 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
326 if (isAddressExpression(*CE) && Visited.insert(CE).second)
327 PostorderStack.emplace_back(CE, false);
328 }
329 }
330 }
Jingyue Wu13755602016-03-20 20:59:20 +0000331 }
332}
333
Matt Arsenault42b64782017-01-30 23:02:12 +0000334// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000335// ordered in postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000336std::vector<WeakTrackingVH>
Matt Arsenault850657a2017-01-31 01:10:58 +0000337InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000338 // This function implements a non-recursive postorder traversal of a partial
339 // use-def graph of function F.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000340 std::vector<std::pair<Value *, bool>> PostorderStack;
Jingyue Wu13755602016-03-20 20:59:20 +0000341 // The set of visited expressions.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000342 DenseSet<Value *> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000343
344 auto PushPtrOperand = [&](Value *Ptr) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000345 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
346 Visited);
Matt Arsenault6c907a92017-01-31 01:40:38 +0000347 };
348
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000349 // Look at operations that may be interesting accelerate by moving to a known
350 // address space. We aim at generating after loads and stores, but pure
351 // addressing calculations may also be faster.
Jingyue Wu13755602016-03-20 20:59:20 +0000352 for (Instruction &I : instructions(F)) {
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000353 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
354 if (!GEP->getType()->isVectorTy())
355 PushPtrOperand(GEP->getPointerOperand());
356 } else if (auto *LI = dyn_cast<LoadInst>(&I))
Matt Arsenault6c907a92017-01-31 01:40:38 +0000357 PushPtrOperand(LI->getPointerOperand());
358 else if (auto *SI = dyn_cast<StoreInst>(&I))
359 PushPtrOperand(SI->getPointerOperand());
360 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
361 PushPtrOperand(RMW->getPointerOperand());
362 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
363 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000364 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
365 // For memset/memcpy/memmove, any pointer operand can be replaced.
366 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000367
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000368 // Handle 2nd operand for memcpy/memmove.
369 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000370 PushPtrOperand(MTI->getRawSource());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000371 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000372 collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000373 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
374 // FIXME: Handle vectors of pointers
375 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
376 PushPtrOperand(Cmp->getOperand(0));
377 PushPtrOperand(Cmp->getOperand(1));
378 }
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000379 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
380 if (!ASC->getType()->isVectorTy())
381 PushPtrOperand(ASC->getPointerOperand());
Matt Arsenault72f259b2017-01-31 02:17:32 +0000382 }
Jingyue Wu13755602016-03-20 20:59:20 +0000383 }
384
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000385 std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
Jingyue Wu13755602016-03-20 20:59:20 +0000386 while (!PostorderStack.empty()) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000387 Value *TopVal = PostorderStack.back().first;
Jingyue Wu13755602016-03-20 20:59:20 +0000388 // If the operands of the expression on the top are already explored,
389 // adds that expression to the resultant postorder.
390 if (PostorderStack.back().second) {
Yaxun Liub909f112017-07-07 02:40:13 +0000391 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
392 Postorder.push_back(TopVal);
Jingyue Wu13755602016-03-20 20:59:20 +0000393 PostorderStack.pop_back();
394 continue;
395 }
396 // Otherwise, adds its operands to the stack and explores them.
397 PostorderStack.back().second = true;
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000398 for (Value *PtrOperand : getPointerOperands(*TopVal)) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000399 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
400 Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000401 }
402 }
403 return Postorder;
404}
405
406// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
407// of OperandUse.get() in the new address space. If the clone is not ready yet,
408// returns an undef in the new address space as a placeholder.
409static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000410 const Use &OperandUse, unsigned NewAddrSpace,
411 const ValueToValueMapTy &ValueWithNewAddrSpace,
412 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000413 Value *Operand = OperandUse.get();
Matt Arsenault30083602017-02-02 03:37:22 +0000414
415 Type *NewPtrTy =
416 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
417
418 if (Constant *C = dyn_cast<Constant>(Operand))
419 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
420
Jingyue Wu13755602016-03-20 20:59:20 +0000421 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
422 return NewOperand;
423
424 UndefUsesToFix->push_back(&OperandUse);
Matt Arsenault30083602017-02-02 03:37:22 +0000425 return UndefValue::get(NewPtrTy);
Jingyue Wu13755602016-03-20 20:59:20 +0000426}
427
428// Returns a clone of `I` with its operands converted to those specified in
429// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
430// operand whose address space needs to be modified might not exist in
431// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
432// adds that operand use to UndefUsesToFix so that caller can fix them later.
433//
434// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
435// from a pointer whose type already matches. Therefore, this function returns a
436// Value* instead of an Instruction*.
437static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000438 Instruction *I, unsigned NewAddrSpace,
439 const ValueToValueMapTy &ValueWithNewAddrSpace,
440 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000441 Type *NewPtrType =
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000442 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000443
444 if (I->getOpcode() == Instruction::AddrSpaceCast) {
445 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000446 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000447 // Therefore, the inferred address space must be the source space, according
448 // to our algorithm.
449 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
450 if (Src->getType() != NewPtrType)
451 return new BitCastInst(Src, NewPtrType);
452 return Src;
453 }
454
455 // Computes the converted pointer operands.
456 SmallVector<Value *, 4> NewPointerOperands;
457 for (const Use &OperandUse : I->operands()) {
458 if (!OperandUse.get()->getType()->isPointerTy())
459 NewPointerOperands.push_back(nullptr);
460 else
461 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000462 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000463 }
464
465 switch (I->getOpcode()) {
466 case Instruction::BitCast:
467 return new BitCastInst(NewPointerOperands[0], NewPtrType);
468 case Instruction::PHI: {
469 assert(I->getType()->isPointerTy());
470 PHINode *PHI = cast<PHINode>(I);
471 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
472 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
473 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
474 NewPHI->addIncoming(NewPointerOperands[OperandNo],
475 PHI->getIncomingBlock(Index));
476 }
477 return NewPHI;
478 }
479 case Instruction::GetElementPtr: {
480 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
481 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000482 GEP->getSourceElementType(), NewPointerOperands[0],
483 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000484 NewGEP->setIsInBounds(GEP->isInBounds());
485 return NewGEP;
486 }
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000487 case Instruction::Select:
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000488 assert(I->getType()->isPointerTy());
489 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
490 NewPointerOperands[2], "", nullptr, I);
Jingyue Wu13755602016-03-20 20:59:20 +0000491 default:
492 llvm_unreachable("Unexpected opcode");
493 }
494}
495
496// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
497// constant expression `CE` with its operands replaced as specified in
498// ValueWithNewAddrSpace.
499static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000500 ConstantExpr *CE, unsigned NewAddrSpace,
501 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000502 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000503 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000504
505 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000506 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000507 // Therefore, the inferred address space must be the source space according
508 // to our algorithm.
509 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
510 NewAddrSpace);
511 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
512 }
513
Matt Arsenaultc18b6772017-02-17 00:32:19 +0000514 if (CE->getOpcode() == Instruction::BitCast) {
515 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
516 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
517 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
518 }
519
Matt Arsenault30083602017-02-02 03:37:22 +0000520 if (CE->getOpcode() == Instruction::Select) {
521 Constant *Src0 = CE->getOperand(1);
522 Constant *Src1 = CE->getOperand(2);
523 if (Src0->getType()->getPointerAddressSpace() ==
524 Src1->getType()->getPointerAddressSpace()) {
525
526 return ConstantExpr::getSelect(
527 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
528 ConstantExpr::getAddrSpaceCast(Src1, TargetType));
529 }
530 }
531
Jingyue Wu13755602016-03-20 20:59:20 +0000532 // Computes the operands of the new constant expression.
Nirav Dave62fb8492017-06-08 13:20:55 +0000533 bool IsNew = false;
Jingyue Wu13755602016-03-20 20:59:20 +0000534 SmallVector<Constant *, 4> NewOperands;
535 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
536 Constant *Operand = CE->getOperand(Index);
537 // If the address space of `Operand` needs to be modified, the new operand
538 // with the new address space should already be in ValueWithNewAddrSpace
539 // because (1) the constant expressions we consider (i.e. addrspacecast,
540 // bitcast, and getelementptr) do not incur cycles in the data flow graph
541 // and (2) this function is called on constant expressions in postorder.
542 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
Nirav Dave62fb8492017-06-08 13:20:55 +0000543 IsNew = true;
Jingyue Wu13755602016-03-20 20:59:20 +0000544 NewOperands.push_back(cast<Constant>(NewOperand));
545 } else {
546 // Otherwise, reuses the old operand.
547 NewOperands.push_back(Operand);
548 }
549 }
550
Nirav Dave62fb8492017-06-08 13:20:55 +0000551 // If !IsNew, we will replace the Value with itself. However, replaced values
552 // are assumed to wrapped in a addrspace cast later so drop it now.
553 if (!IsNew)
554 return nullptr;
555
Jingyue Wu13755602016-03-20 20:59:20 +0000556 if (CE->getOpcode() == Instruction::GetElementPtr) {
557 // Needs to specify the source type while constructing a getelementptr
558 // constant expression.
559 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000560 NewOperands, TargetType, /*OnlyIfReduced=*/false,
561 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000562 }
563
564 return CE->getWithOperands(NewOperands, TargetType);
565}
566
567// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000568// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000569// expression whose address space needs to be modified, in postorder.
570//
571// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000572Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000573 Value *V, unsigned NewAddrSpace,
574 const ValueToValueMapTy &ValueWithNewAddrSpace,
575 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000576 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000577 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000578 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000579
580 if (Instruction *I = dyn_cast<Instruction>(V)) {
581 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000582 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000583 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
584 if (NewI->getParent() == nullptr) {
585 NewI->insertBefore(I);
586 NewI->takeName(I);
587 }
588 }
589 return NewV;
590 }
591
592 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000593 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000594}
595
596// Defines the join operation on the address space lattice (see the file header
597// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000598unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
599 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000600 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
601 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000602
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000603 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000604 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000605 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000606 return AS1;
607
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000608 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000609 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000610}
611
Matt Arsenault850657a2017-01-31 01:10:58 +0000612bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000613 if (skipFunction(F))
614 return false;
615
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000616 const TargetTransformInfo &TTI =
617 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Matt Arsenault42b64782017-01-30 23:02:12 +0000618 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000619 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000620 return false;
621
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000622 // Collects all flat address expressions in postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000623 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000624
625 // Runs a data-flow analysis to refine the address spaces of every expression
626 // in Postorder.
627 ValueToAddrSpaceMapTy InferredAddrSpace;
628 inferAddressSpaces(Postorder, &InferredAddrSpace);
629
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000630 // Changes the address spaces of the flat address expressions who are inferred
631 // to point to a specific address space.
Artem Belevichcb8f6322017-10-24 20:31:44 +0000632 return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
Jingyue Wu13755602016-03-20 20:59:20 +0000633}
634
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000635// Constants need to be tracked through RAUW to handle cases with nested
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000636// constant expressions, so wrap values in WeakTrackingVH.
Matt Arsenault850657a2017-01-31 01:10:58 +0000637void InferAddressSpaces::inferAddressSpaces(
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000638 ArrayRef<WeakTrackingVH> Postorder,
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000639 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000640 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
641 // Initially, all expressions are in the uninitialized address space.
642 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000643 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000644
645 while (!Worklist.empty()) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000646 Value *V = Worklist.pop_back_val();
Jingyue Wu13755602016-03-20 20:59:20 +0000647
648 // Tries to update the address space of the stack top according to the
649 // address spaces of its operands.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000650 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000651 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
652 if (!NewAS.hasValue())
653 continue;
654 // If any updates are made, grabs its users to the worklist because
655 // their address spaces can also be possibly updated.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000656 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000657 (*InferredAddrSpace)[V] = NewAS.getValue();
658
659 for (Value *User : V->users()) {
660 // Skip if User is already in the worklist.
661 if (Worklist.count(User))
662 continue;
663
664 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000665 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000666 // expressions, which are those in InferredAddrSpace.
667 if (Pos == InferredAddrSpace->end())
668 continue;
669
670 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000671 // path. Therefore, nothing to do if User is already inferred as flat (the
672 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000673 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000674 continue;
675
676 Worklist.insert(User);
677 }
678 }
679}
680
Matt Arsenault850657a2017-01-31 01:10:58 +0000681Optional<unsigned> InferAddressSpaces::updateAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000682 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000683 assert(InferredAddrSpace.count(&V));
684
685 // The new inferred address space equals the join of the address spaces
686 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000687 unsigned NewAS = UninitializedAddressSpace;
Matt Arsenault850657a2017-01-31 01:10:58 +0000688
Matt Arsenault30083602017-02-02 03:37:22 +0000689 const Operator &Op = cast<Operator>(V);
690 if (Op.getOpcode() == Instruction::Select) {
691 Value *Src0 = Op.getOperand(1);
692 Value *Src1 = Op.getOperand(2);
693
694 auto I = InferredAddrSpace.find(Src0);
695 unsigned Src0AS = (I != InferredAddrSpace.end()) ?
696 I->second : Src0->getType()->getPointerAddressSpace();
697
698 auto J = InferredAddrSpace.find(Src1);
699 unsigned Src1AS = (J != InferredAddrSpace.end()) ?
700 J->second : Src1->getType()->getPointerAddressSpace();
701
702 auto *C0 = dyn_cast<Constant>(Src0);
703 auto *C1 = dyn_cast<Constant>(Src1);
704
705 // If one of the inputs is a constant, we may be able to do a constant
706 // addrspacecast of it. Defer inferring the address space until the input
707 // address space is known.
708 if ((C1 && Src0AS == UninitializedAddressSpace) ||
709 (C0 && Src1AS == UninitializedAddressSpace))
710 return None;
711
712 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
713 NewAS = Src1AS;
714 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
715 NewAS = Src0AS;
716 else
717 NewAS = joinAddressSpaces(Src0AS, Src1AS);
718 } else {
719 for (Value *PtrOperand : getPointerOperands(V)) {
720 auto I = InferredAddrSpace.find(PtrOperand);
721 unsigned OperandAS = I != InferredAddrSpace.end() ?
722 I->second : PtrOperand->getType()->getPointerAddressSpace();
723
724 // join(flat, *) = flat. So we can break if NewAS is already flat.
725 NewAS = joinAddressSpaces(NewAS, OperandAS);
726 if (NewAS == FlatAddrSpace)
727 break;
728 }
Jingyue Wu13755602016-03-20 20:59:20 +0000729 }
730
731 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000732 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000733 if (OldAS == NewAS)
734 return None;
735 return NewAS;
736}
737
Matt Arsenault6c907a92017-01-31 01:40:38 +0000738/// \p returns true if \p U is the pointer operand of a memory instruction with
739/// a single pointer operand that can have its address space changed by simply
Artem Belevichcb8f6322017-10-24 20:31:44 +0000740/// mutating the use to a new value. If the memory instruction is volatile,
741/// return true only if the target allows the memory instruction to be volatile
742/// in the new address space.
743static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
744 Use &U, unsigned AddrSpace) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000745 User *Inst = U.getUser();
746 unsigned OpNo = U.getOperandNo();
Artem Belevichcb8f6322017-10-24 20:31:44 +0000747 bool VolatileIsAllowed = false;
748 if (auto *I = dyn_cast<Instruction>(Inst))
749 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
Matt Arsenault6c907a92017-01-31 01:40:38 +0000750
751 if (auto *LI = dyn_cast<LoadInst>(Inst))
Artem Belevichcb8f6322017-10-24 20:31:44 +0000752 return OpNo == LoadInst::getPointerOperandIndex() &&
753 (VolatileIsAllowed || !LI->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000754
755 if (auto *SI = dyn_cast<StoreInst>(Inst))
Artem Belevichcb8f6322017-10-24 20:31:44 +0000756 return OpNo == StoreInst::getPointerOperandIndex() &&
757 (VolatileIsAllowed || !SI->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000758
759 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
Artem Belevichcb8f6322017-10-24 20:31:44 +0000760 return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
761 (VolatileIsAllowed || !RMW->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000762
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000763 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
Matt Arsenault6c907a92017-01-31 01:40:38 +0000764 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
Artem Belevichcb8f6322017-10-24 20:31:44 +0000765 (VolatileIsAllowed || !CmpX->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000766
767 return false;
768}
769
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000770/// Update memory intrinsic uses that require more complex processing than
771/// simple memory instructions. Thse require re-mangling and may have multiple
772/// pointer operands.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000773static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
774 Value *NewV) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000775 IRBuilder<> B(MI);
776 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
777 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
778 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
779
780 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
781 B.CreateMemSet(NewV, MSI->getValue(),
782 MSI->getLength(), MSI->getAlignment(),
783 false, // isVolatile
784 TBAA, ScopeMD, NoAliasMD);
785 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
786 Value *Src = MTI->getRawSource();
787 Value *Dest = MTI->getRawDest();
788
789 // Be careful in case this is a self-to-self copy.
790 if (Src == OldV)
791 Src = NewV;
792
793 if (Dest == OldV)
794 Dest = NewV;
795
796 if (isa<MemCpyInst>(MTI)) {
797 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
798 B.CreateMemCpy(Dest, Src, MTI->getLength(),
799 MTI->getAlignment(),
800 false, // isVolatile
801 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
802 } else {
803 assert(isa<MemMoveInst>(MTI));
804 B.CreateMemMove(Dest, Src, MTI->getLength(),
805 MTI->getAlignment(),
806 false, // isVolatile
807 TBAA, ScopeMD, NoAliasMD);
808 }
809 } else
810 llvm_unreachable("unhandled MemIntrinsic");
811
812 MI->eraseFromParent();
813 return true;
814}
815
Matt Arsenault72f259b2017-01-31 02:17:32 +0000816// \p returns true if it is OK to change the address space of constant \p C with
817// a ConstantExpr addrspacecast.
818bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
Matt Arsenault30083602017-02-02 03:37:22 +0000819 assert(NewAS != UninitializedAddressSpace);
820
Matt Arsenault2a46d812017-01-31 23:48:40 +0000821 unsigned SrcAS = C->getType()->getPointerAddressSpace();
822 if (SrcAS == NewAS || isa<UndefValue>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000823 return true;
824
Matt Arsenault2a46d812017-01-31 23:48:40 +0000825 // Prevent illegal casts between different non-flat address spaces.
826 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
827 return false;
828
829 if (isa<ConstantPointerNull>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000830 return true;
831
832 if (auto *Op = dyn_cast<Operator>(C)) {
833 // If we already have a constant addrspacecast, it should be safe to cast it
834 // off.
835 if (Op->getOpcode() == Instruction::AddrSpaceCast)
836 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
837
838 if (Op->getOpcode() == Instruction::IntToPtr &&
839 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
840 return true;
841 }
842
843 return false;
844}
845
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000846static Value::use_iterator skipToNextUser(Value::use_iterator I,
847 Value::use_iterator End) {
848 User *CurUser = I->getUser();
849 ++I;
850
851 while (I != End && I->getUser() == CurUser)
852 ++I;
853
854 return I;
855}
856
Matt Arsenault850657a2017-01-31 01:10:58 +0000857bool InferAddressSpaces::rewriteWithNewAddressSpaces(
Artem Belevichcb8f6322017-10-24 20:31:44 +0000858 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000859 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000860 // For each address expression to be modified, creates a clone of it with its
861 // pointer operands converted to the new address space. Since the pointer
862 // operands are converted, the clone is naturally in the new address space by
863 // construction.
864 ValueToValueMapTy ValueWithNewAddrSpace;
865 SmallVector<const Use *, 32> UndefUsesToFix;
866 for (Value* V : Postorder) {
867 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
868 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
869 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000870 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000871 }
872 }
873
874 if (ValueWithNewAddrSpace.empty())
875 return false;
876
877 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000878 for (const Use *UndefUse : UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000879 User *V = UndefUse->getUser();
880 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
881 unsigned OperandNo = UndefUse->getOperandNo();
882 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
883 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
884 }
885
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000886 SmallVector<Instruction *, 16> DeadInstructions;
887
Jingyue Wu13755602016-03-20 20:59:20 +0000888 // Replaces the uses of the old address expressions with the new ones.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000889 for (const WeakTrackingVH &WVH : Postorder) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000890 assert(WVH && "value was unexpectedly deleted");
891 Value *V = WVH;
Jingyue Wu13755602016-03-20 20:59:20 +0000892 Value *NewV = ValueWithNewAddrSpace.lookup(V);
893 if (NewV == nullptr)
894 continue;
895
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000896 DEBUG(dbgs() << "Replacing the uses of " << *V
897 << "\n with\n " << *NewV << '\n');
898
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000899 if (Constant *C = dyn_cast<Constant>(V)) {
900 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
901 C->getType());
902 if (C != Replace) {
903 DEBUG(dbgs() << "Inserting replacement const cast: "
904 << Replace << ": " << *Replace << '\n');
905 C->replaceAllUsesWith(Replace);
906 V = Replace;
907 }
908 }
909
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000910 Value::use_iterator I, E, Next;
911 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
912 Use &U = *I;
913
914 // Some users may see the same pointer operand in multiple operands. Skip
915 // to the next instruction.
916 I = skipToNextUser(I, E);
917
Artem Belevichcb8f6322017-10-24 20:31:44 +0000918 if (isSimplePointerUseValidToReplace(
919 TTI, U, V->getType()->getPointerAddressSpace())) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000920 // If V is used as the pointer operand of a compatible memory operation,
921 // sets the pointer operand to NewV. This replacement does not change
922 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000923 U.set(NewV);
924 continue;
925 }
926
927 User *CurUser = U.getUser();
928 // Handle more complex cases like intrinsic that need to be remangled.
929 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
930 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
931 continue;
932 }
933
934 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
935 if (rewriteIntrinsicOperands(II, V, NewV))
936 continue;
937 }
938
939 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000940 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
941 // If we can infer that both pointers are in the same addrspace,
942 // transform e.g.
943 // %cmp = icmp eq float* %p, %q
944 // into
945 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
946
947 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
948 int SrcIdx = U.getOperandNo();
949 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
950 Value *OtherSrc = Cmp->getOperand(OtherIdx);
951
952 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
953 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
954 Cmp->setOperand(OtherIdx, OtherNewV);
955 Cmp->setOperand(SrcIdx, NewV);
956 continue;
957 }
958 }
959
960 // Even if the type mismatches, we can cast the constant.
961 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
962 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
963 Cmp->setOperand(SrcIdx, NewV);
964 Cmp->setOperand(OtherIdx,
965 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
966 continue;
967 }
968 }
969 }
970
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000971 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
972 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
973 if (ASC->getDestAddressSpace() == NewAS) {
Yaxun Liud23f23d2017-10-30 21:19:41 +0000974 if (ASC->getType()->getPointerElementType() !=
975 NewV->getType()->getPointerElementType()) {
976 NewV = CastInst::Create(Instruction::BitCast, NewV,
977 ASC->getType(), "", ASC);
978 }
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000979 ASC->replaceAllUsesWith(NewV);
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000980 DeadInstructions.push_back(ASC);
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000981 continue;
982 }
983 }
984
Matt Arsenault850657a2017-01-31 01:10:58 +0000985 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000986 if (Instruction *I = dyn_cast<Instruction>(V)) {
987 BasicBlock::iterator InsertPos = std::next(I->getIterator());
988 while (isa<PHINode>(InsertPos))
989 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000990 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +0000991 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000992 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
993 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +0000994 }
995 }
996 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000997
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000998 if (V->use_empty()) {
999 if (Instruction *I = dyn_cast<Instruction>(V))
1000 DeadInstructions.push_back(I);
1001 }
Jingyue Wu13755602016-03-20 20:59:20 +00001002 }
1003
Matt Arsenaultc20ccd22017-04-28 22:18:19 +00001004 for (Instruction *I : DeadInstructions)
1005 RecursivelyDeleteTriviallyDeadInstructions(I);
1006
Jingyue Wu13755602016-03-20 20:59:20 +00001007 return true;
1008}
1009
Matt Arsenault850657a2017-01-31 01:10:58 +00001010FunctionPass *llvm::createInferAddressSpacesPass() {
1011 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +00001012}