blob: 581daca13d691a7565eda3ec70ba212a19e2d78f [file] [log] [blame]
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001//===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexagon-lir"
11
Eugene Zelenko4d060b72017-07-29 00:56:56 +000012#include "llvm/ADT/APInt.h"
13#include "llvm/ADT/DenseMap.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000014#include "llvm/ADT/SetVector.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000015#include "llvm/ADT/SmallPtrSet.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000016#include "llvm/ADT/SmallSet.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000017#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Triple.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000020#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/InstructionSimplify.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000022#include "llvm/Analysis/LoopInfo.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000023#include "llvm/Analysis/LoopPass.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000024#include "llvm/Analysis/MemoryLocation.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000025#include "llvm/Analysis/ScalarEvolution.h"
26#include "llvm/Analysis/ScalarEvolutionExpander.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000030#include "llvm/IR/Attributes.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000034#include "llvm/IR/DataLayout.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000035#include "llvm/IR/DebugLoc.h"
36#include "llvm/IR/DerivedTypes.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000037#include "llvm/IR/Dominators.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000038#include "llvm/IR/Function.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000039#include "llvm/IR/IRBuilder.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000040#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/Module.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000046#include "llvm/IR/PatternMatch.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000047#include "llvm/IR/Type.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/Casting.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Compiler.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000054#include "llvm/Support/Debug.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000055#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000056#include "llvm/Support/KnownBits.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000057#include "llvm/Support/raw_ostream.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000058#include "llvm/Transforms/Scalar.h"
59#include "llvm/Transforms/Utils/Local.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000060#include <algorithm>
61#include <array>
Eugene Zelenko4d060b72017-07-29 00:56:56 +000062#include <cassert>
63#include <cstdint>
64#include <cstdlib>
65#include <deque>
66#include <functional>
67#include <iterator>
68#include <map>
69#include <set>
70#include <utility>
71#include <vector>
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000072
73using namespace llvm;
74
75static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
76 cl::Hidden, cl::init(false),
77 cl::desc("Disable generation of memcpy in loop idiom recognition"));
78
79static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
80 cl::Hidden, cl::init(false),
81 cl::desc("Disable generation of memmove in loop idiom recognition"));
82
83static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
84 cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
85 "check guarding the memmove."));
86
87static cl::opt<unsigned> CompileTimeMemSizeThreshold(
88 "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
89 cl::desc("Threshold (in bytes) to perform the transformation, if the "
90 "runtime loop count (mem transfer size) is known at compile-time."));
91
92static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
93 cl::Hidden, cl::init(true),
94 cl::desc("Only enable generating memmove in non-nested loops"));
95
96cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
97 cl::Hidden, cl::init(false),
98 cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
99
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000100static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
101 cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
102
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000103static const char *HexagonVolatileMemcpyName
104 = "hexagon_memcpy_forward_vp4cp4n2";
105
106
107namespace llvm {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000108
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000109 void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
110 Pass *createHexagonLoopIdiomPass();
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000111
112} // end namespace llvm
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000113
114namespace {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000115
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000116 class HexagonLoopIdiomRecognize : public LoopPass {
117 public:
118 static char ID;
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000119
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000120 explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
121 initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
122 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000123
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000124 StringRef getPassName() const override {
125 return "Recognize Hexagon-specific loop idioms";
126 }
127
128 void getAnalysisUsage(AnalysisUsage &AU) const override {
129 AU.addRequired<LoopInfoWrapperPass>();
130 AU.addRequiredID(LoopSimplifyID);
131 AU.addRequiredID(LCSSAID);
132 AU.addRequired<AAResultsWrapperPass>();
133 AU.addPreserved<AAResultsWrapperPass>();
134 AU.addRequired<ScalarEvolutionWrapperPass>();
135 AU.addRequired<DominatorTreeWrapperPass>();
136 AU.addRequired<TargetLibraryInfoWrapperPass>();
137 AU.addPreserved<TargetLibraryInfoWrapperPass>();
138 }
139
140 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
141
142 private:
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000143 int getSCEVStride(const SCEVAddRecExpr *StoreEv);
144 bool isLegalStore(Loop *CurLoop, StoreInst *SI);
145 void collectStores(Loop *CurLoop, BasicBlock *BB,
146 SmallVectorImpl<StoreInst*> &Stores);
147 bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
148 bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
149 bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
150 SmallVectorImpl<BasicBlock*> &ExitBlocks);
151 bool runOnCountableLoop(Loop *L);
152
153 AliasAnalysis *AA;
154 const DataLayout *DL;
155 DominatorTree *DT;
156 LoopInfo *LF;
157 const TargetLibraryInfo *TLI;
158 ScalarEvolution *SE;
159 bool HasMemcpy, HasMemmove;
160 };
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000161
162 struct Simplifier {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000163 struct Rule {
164 using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
165 Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
166 StringRef Name; // For debugging.
167 FuncType Fn;
168 };
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000169
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000170 void addRule(StringRef N, const Rule::FuncType &F) {
171 Rules.push_back(Rule(N, F));
172 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000173
174 private:
175 struct WorkListType {
176 WorkListType() = default;
177
178 void push_back(Value* V) {
179 // Do not push back duplicates.
180 if (!S.count(V)) { Q.push_back(V); S.insert(V); }
181 }
182
183 Value *pop_front_val() {
184 Value *V = Q.front(); Q.pop_front(); S.erase(V);
185 return V;
186 }
187
188 bool empty() const { return Q.empty(); }
189
190 private:
191 std::deque<Value*> Q;
192 std::set<Value*> S;
193 };
194
195 using ValueSetType = std::set<Value *>;
196
197 std::vector<Rule> Rules;
198
199 public:
200 struct Context {
201 using ValueMapType = DenseMap<Value *, Value *>;
202
203 Value *Root;
204 ValueSetType Used; // The set of all cloned values used by Root.
205 ValueSetType Clones; // The set of all cloned values.
206 LLVMContext &Ctx;
207
208 Context(Instruction *Exp)
209 : Ctx(Exp->getParent()->getParent()->getContext()) {
210 initialize(Exp);
211 }
212
213 ~Context() { cleanup(); }
214
215 void print(raw_ostream &OS, const Value *V) const;
216 Value *materialize(BasicBlock *B, BasicBlock::iterator At);
217
218 private:
219 friend struct Simplifier;
220
221 void initialize(Instruction *Exp);
222 void cleanup();
223
224 template <typename FuncT> void traverse(Value *V, FuncT F);
225 void record(Value *V);
226 void use(Value *V);
227 void unuse(Value *V);
228
229 bool equal(const Instruction *I, const Instruction *J) const;
230 Value *find(Value *Tree, Value *Sub) const;
231 Value *subst(Value *Tree, Value *OldV, Value *NewV);
232 void replace(Value *OldV, Value *NewV);
233 void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
234 };
235
236 Value *simplify(Context &C);
237 };
238
239 struct PE {
240 PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
241
242 const Simplifier::Context &C;
243 const Value *V;
244 };
245
246 raw_ostream &operator<< (raw_ostream &OS, const PE &P) LLVM_ATTRIBUTE_USED;
247 raw_ostream &operator<< (raw_ostream &OS, const PE &P) {
248 P.C.print(OS, P.V ? P.V : P.C.Root);
249 return OS;
250 }
251
252} // end anonymous namespace
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000253
254char HexagonLoopIdiomRecognize::ID = 0;
255
256INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
257 "Recognize Hexagon-specific loop idioms", false, false)
258INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
259INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
260INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
261INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
262INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
263INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
264INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
265INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
266 "Recognize Hexagon-specific loop idioms", false, false)
267
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000268template <typename FuncT>
269void Simplifier::Context::traverse(Value *V, FuncT F) {
270 WorkListType Q;
271 Q.push_back(V);
272
273 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000274 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000275 if (!U || U->getParent())
276 continue;
277 if (!F(U))
278 continue;
279 for (Value *Op : U->operands())
280 Q.push_back(Op);
281 }
282}
283
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000284void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
285 const auto *U = dyn_cast<const Instruction>(V);
286 if (!U) {
287 OS << V << '(' << *V << ')';
288 return;
289 }
290
291 if (U->getParent()) {
292 OS << U << '(';
293 U->printAsOperand(OS, true);
294 OS << ')';
295 return;
296 }
297
298 unsigned N = U->getNumOperands();
299 if (N != 0)
300 OS << U << '(';
301 OS << U->getOpcodeName();
302 for (const Value *Op : U->operands()) {
303 OS << ' ';
304 print(OS, Op);
305 }
306 if (N != 0)
307 OS << ')';
308}
309
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000310void Simplifier::Context::initialize(Instruction *Exp) {
311 // Perform a deep clone of the expression, set Root to the root
312 // of the clone, and build a map from the cloned values to the
313 // original ones.
314 ValueMapType M;
315 BasicBlock *Block = Exp->getParent();
316 WorkListType Q;
317 Q.push_back(Exp);
318
319 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000320 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000321 if (M.find(V) != M.end())
322 continue;
323 if (Instruction *U = dyn_cast<Instruction>(V)) {
324 if (isa<PHINode>(U) || U->getParent() != Block)
325 continue;
326 for (Value *Op : U->operands())
327 Q.push_back(Op);
328 M.insert({U, U->clone()});
329 }
330 }
331
332 for (std::pair<Value*,Value*> P : M) {
333 Instruction *U = cast<Instruction>(P.second);
334 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
335 auto F = M.find(U->getOperand(i));
336 if (F != M.end())
337 U->setOperand(i, F->second);
338 }
339 }
340
341 auto R = M.find(Exp);
342 assert(R != M.end());
343 Root = R->second;
344
345 record(Root);
346 use(Root);
347}
348
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000349void Simplifier::Context::record(Value *V) {
350 auto Record = [this](Instruction *U) -> bool {
351 Clones.insert(U);
352 return true;
353 };
354 traverse(V, Record);
355}
356
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000357void Simplifier::Context::use(Value *V) {
358 auto Use = [this](Instruction *U) -> bool {
359 Used.insert(U);
360 return true;
361 };
362 traverse(V, Use);
363}
364
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000365void Simplifier::Context::unuse(Value *V) {
366 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
367 return;
368
369 auto Unuse = [this](Instruction *U) -> bool {
370 if (!U->use_empty())
371 return false;
372 Used.erase(U);
373 return true;
374 };
375 traverse(V, Unuse);
376}
377
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000378Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
379 if (Tree == OldV)
380 return NewV;
381 if (OldV == NewV)
382 return Tree;
383
384 WorkListType Q;
385 Q.push_back(Tree);
386 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000387 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000388 // If U is not an instruction, or it's not a clone, skip it.
389 if (!U || U->getParent())
390 continue;
391 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
392 Value *Op = U->getOperand(i);
393 if (Op == OldV) {
394 U->setOperand(i, NewV);
395 unuse(OldV);
396 } else {
397 Q.push_back(Op);
398 }
399 }
400 }
401 return Tree;
402}
403
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000404void Simplifier::Context::replace(Value *OldV, Value *NewV) {
405 if (Root == OldV) {
406 Root = NewV;
407 use(Root);
408 return;
409 }
410
411 // NewV may be a complex tree that has just been created by one of the
412 // transformation rules. We need to make sure that it is commoned with
413 // the existing Root to the maximum extent possible.
414 // Identify all subtrees of NewV (including NewV itself) that have
415 // equivalent counterparts in Root, and replace those subtrees with
416 // these counterparts.
417 WorkListType Q;
418 Q.push_back(NewV);
419 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000420 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000421 Instruction *U = dyn_cast<Instruction>(V);
422 if (!U || U->getParent())
423 continue;
424 if (Value *DupV = find(Root, V)) {
425 if (DupV != V)
426 NewV = subst(NewV, V, DupV);
427 } else {
428 for (Value *Op : U->operands())
429 Q.push_back(Op);
430 }
431 }
432
433 // Now, simply replace OldV with NewV in Root.
434 Root = subst(Root, OldV, NewV);
435 use(Root);
436}
437
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000438void Simplifier::Context::cleanup() {
439 for (Value *V : Clones) {
440 Instruction *U = cast<Instruction>(V);
441 if (!U->getParent())
442 U->dropAllReferences();
443 }
444
445 for (Value *V : Clones) {
446 Instruction *U = cast<Instruction>(V);
447 if (!U->getParent())
Reid Kleckner96ab8722017-05-18 17:24:10 +0000448 U->deleteValue();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000449 }
450}
451
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000452bool Simplifier::Context::equal(const Instruction *I,
453 const Instruction *J) const {
454 if (I == J)
455 return true;
456 if (!I->isSameOperationAs(J))
457 return false;
458 if (isa<PHINode>(I))
459 return I->isIdenticalTo(J);
460
461 for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
462 Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
463 if (OpI == OpJ)
464 continue;
465 auto *InI = dyn_cast<const Instruction>(OpI);
466 auto *InJ = dyn_cast<const Instruction>(OpJ);
467 if (InI && InJ) {
468 if (!equal(InI, InJ))
469 return false;
470 } else if (InI != InJ || !InI)
471 return false;
472 }
473 return true;
474}
475
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000476Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
477 Instruction *SubI = dyn_cast<Instruction>(Sub);
478 WorkListType Q;
479 Q.push_back(Tree);
480
481 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000482 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000483 if (V == Sub)
484 return V;
485 Instruction *U = dyn_cast<Instruction>(V);
486 if (!U || U->getParent())
487 continue;
488 if (SubI && equal(SubI, U))
489 return U;
490 assert(!isa<PHINode>(U));
491 for (Value *Op : U->operands())
492 Q.push_back(Op);
493 }
494 return nullptr;
495}
496
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000497void Simplifier::Context::link(Instruction *I, BasicBlock *B,
498 BasicBlock::iterator At) {
499 if (I->getParent())
500 return;
501
502 for (Value *Op : I->operands()) {
503 if (Instruction *OpI = dyn_cast<Instruction>(Op))
504 link(OpI, B, At);
505 }
506
507 B->getInstList().insert(At, I);
508}
509
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000510Value *Simplifier::Context::materialize(BasicBlock *B,
511 BasicBlock::iterator At) {
512 if (Instruction *RootI = dyn_cast<Instruction>(Root))
513 link(RootI, B, At);
514 return Root;
515}
516
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000517Value *Simplifier::simplify(Context &C) {
518 WorkListType Q;
519 Q.push_back(C.Root);
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000520 unsigned Count = 0;
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000521 const unsigned Limit = SimplifyLimit;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000522
523 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000524 if (Count++ >= Limit)
525 break;
526 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000527 if (!U || U->getParent() || !C.Used.count(U))
528 continue;
529 bool Changed = false;
530 for (Rule &R : Rules) {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000531 Value *W = R.Fn(U, C.Ctx);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000532 if (!W)
533 continue;
534 Changed = true;
535 C.record(W);
536 C.replace(U, W);
537 Q.push_back(C.Root);
538 break;
539 }
540 if (!Changed) {
541 for (Value *Op : U->operands())
542 Q.push_back(Op);
543 }
544 }
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000545 return Count < Limit ? C.Root : nullptr;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000546}
547
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000548//===----------------------------------------------------------------------===//
549//
550// Implementation of PolynomialMultiplyRecognize
551//
552//===----------------------------------------------------------------------===//
553
554namespace {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000555
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000556 class PolynomialMultiplyRecognize {
557 public:
558 explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
559 const DominatorTree &dt, const TargetLibraryInfo &tli,
560 ScalarEvolution &se)
561 : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
562
563 bool recognize();
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000564
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000565 private:
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000566 using ValueSeq = SetVector<Value *>;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000567
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000568 IntegerType *getPmpyType() const {
569 LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
570 return IntegerType::get(Ctx, 32);
571 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000572
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000573 bool isPromotableTo(Value *V, IntegerType *Ty);
574 void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
575 bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
576
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000577 Value *getCountIV(BasicBlock *BB);
578 bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
579 void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
580 ValueSeq &Late);
581 bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
582 bool commutesWithShift(Instruction *I);
583 bool highBitsAreZero(Value *V, unsigned IterCount);
584 bool keepsHighBitsZero(Value *V, unsigned IterCount);
585 bool isOperandShifted(Instruction *I, Value *Op);
586 bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
587 unsigned IterCount);
588 void cleanupLoopBody(BasicBlock *LoopB);
589
590 struct ParsedValues {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000591 ParsedValues() = default;
592
593 Value *M = nullptr;
594 Value *P = nullptr;
595 Value *Q = nullptr;
596 Value *R = nullptr;
597 Value *X = nullptr;
598 Instruction *Res = nullptr;
599 unsigned IterCount = 0;
600 bool Left = false;
601 bool Inv = false;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000602 };
603
604 bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
605 bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
606 bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
607 Value *CIV, ParsedValues &PV, bool PreScan);
608 unsigned getInverseMxN(unsigned QP);
609 Value *generate(BasicBlock::iterator At, ParsedValues &PV);
610
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +0000611 void setupPreSimplifier(Simplifier &S);
612 void setupPostSimplifier(Simplifier &S);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000613
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000614 Loop *CurLoop;
615 const DataLayout &DL;
616 const DominatorTree &DT;
617 const TargetLibraryInfo &TLI;
618 ScalarEvolution &SE;
619 };
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000620
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000621} // end anonymous namespace
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000622
623Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
624 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
625 if (std::distance(PI, PE) != 2)
626 return nullptr;
627 BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
628
629 for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
630 auto *PN = cast<PHINode>(I);
631 Value *InitV = PN->getIncomingValueForBlock(PB);
632 if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
633 continue;
634 Value *IterV = PN->getIncomingValueForBlock(BB);
635 if (!isa<BinaryOperator>(IterV))
636 continue;
637 auto *BO = dyn_cast<BinaryOperator>(IterV);
638 if (BO->getOpcode() != Instruction::Add)
639 continue;
640 Value *IncV = nullptr;
641 if (BO->getOperand(0) == PN)
642 IncV = BO->getOperand(1);
643 else if (BO->getOperand(1) == PN)
644 IncV = BO->getOperand(0);
645 if (IncV == nullptr)
646 continue;
647
648 if (auto *T = dyn_cast<ConstantInt>(IncV))
649 if (T->getZExtValue() == 1)
650 return PN;
651 }
652 return nullptr;
653}
654
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000655static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
656 for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
657 Use &TheUse = UI.getUse();
658 ++UI;
659 if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
660 if (BB == II->getParent())
661 II->replaceUsesOfWith(I, J);
662 }
663}
664
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000665bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
666 Value *CIV, ParsedValues &PV) {
667 // Match the following:
668 // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
669 // select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
670 // The condition may also check for equality with the masked value, i.e
671 // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
672 // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
673
674 Value *CondV = SelI->getCondition();
675 Value *TrueV = SelI->getTrueValue();
676 Value *FalseV = SelI->getFalseValue();
677
678 using namespace PatternMatch;
679
680 CmpInst::Predicate P;
681 Value *A = nullptr, *B = nullptr, *C = nullptr;
682
683 if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
684 !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
685 return false;
686 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
687 return false;
688 // Matched: select (A & B) == C ? ... : ...
689 // select (A & B) != C ? ... : ...
690
691 Value *X = nullptr, *Sh1 = nullptr;
692 // Check (A & B) for (X & (1 << i)):
693 if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
694 Sh1 = A;
695 X = B;
696 } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
697 Sh1 = B;
698 X = A;
699 } else {
700 // TODO: Could also check for an induction variable containing single
701 // bit shifted left by 1 in each iteration.
702 return false;
703 }
704
705 bool TrueIfZero;
706
707 // Check C against the possible values for comparison: 0 and (1 << i):
708 if (match(C, m_Zero()))
709 TrueIfZero = (P == CmpInst::ICMP_EQ);
710 else if (C == Sh1)
711 TrueIfZero = (P == CmpInst::ICMP_NE);
712 else
713 return false;
714
715 // So far, matched:
716 // select (X & (1 << i)) ? ... : ...
717 // including variations of the check against zero/non-zero value.
718
719 Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
720 if (TrueIfZero) {
721 ShouldSameV = TrueV;
722 ShouldXoredV = FalseV;
723 } else {
724 ShouldSameV = FalseV;
725 ShouldXoredV = TrueV;
726 }
727
728 Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
729 Value *T = nullptr;
730 if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
731 // Matched: select +++ ? ... : Y ^ Z
732 // select +++ ? Y ^ Z : ...
733 // where +++ denotes previously checked matches.
734 if (ShouldSameV == Y)
735 T = Z;
736 else if (ShouldSameV == Z)
737 T = Y;
738 else
739 return false;
740 R = ShouldSameV;
741 // Matched: select +++ ? R : R ^ T
742 // select +++ ? R ^ T : R
743 // depending on TrueIfZero.
744
745 } else if (match(ShouldSameV, m_Zero())) {
746 // Matched: select +++ ? 0 : ...
747 // select +++ ? ... : 0
748 if (!SelI->hasOneUse())
749 return false;
750 T = ShouldXoredV;
751 // Matched: select +++ ? 0 : T
752 // select +++ ? T : 0
753
754 Value *U = *SelI->user_begin();
755 if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
756 !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
757 return false;
758 // Matched: xor (select +++ ? 0 : T), R
759 // xor (select +++ ? T : 0), R
760 } else
761 return false;
762
763 // The xor input value T is isolated into its own match so that it could
764 // be checked against an induction variable containing a shifted bit
765 // (todo).
766 // For now, check against (Q << i).
767 if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
768 !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
769 return false;
770 // Matched: select +++ ? R : R ^ (Q << i)
771 // select +++ ? R ^ (Q << i) : R
772
773 PV.X = X;
774 PV.Q = Q;
775 PV.R = R;
776 PV.Left = true;
777 return true;
778}
779
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000780bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
781 ParsedValues &PV) {
782 // Match the following:
783 // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
784 // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
785 // The condition may also check for equality with the masked value, i.e
786 // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
787 // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
788
789 Value *CondV = SelI->getCondition();
790 Value *TrueV = SelI->getTrueValue();
791 Value *FalseV = SelI->getFalseValue();
792
793 using namespace PatternMatch;
794
795 Value *C = nullptr;
796 CmpInst::Predicate P;
797 bool TrueIfZero;
798
799 if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
800 match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
801 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
802 return false;
803 // Matched: select C == 0 ? ... : ...
804 // select C != 0 ? ... : ...
805 TrueIfZero = (P == CmpInst::ICMP_EQ);
806 } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
807 match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
808 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
809 return false;
810 // Matched: select C == 1 ? ... : ...
811 // select C != 1 ? ... : ...
812 TrueIfZero = (P == CmpInst::ICMP_NE);
813 } else
814 return false;
815
816 Value *X = nullptr;
817 if (!match(C, m_And(m_Value(X), m_One())) &&
818 !match(C, m_And(m_One(), m_Value(X))))
819 return false;
820 // Matched: select (X & 1) == +++ ? ... : ...
821 // select (X & 1) != +++ ? ... : ...
822
823 Value *R = nullptr, *Q = nullptr;
824 if (TrueIfZero) {
825 // The select's condition is true if the tested bit is 0.
826 // TrueV must be the shift, FalseV must be the xor.
827 if (!match(TrueV, m_LShr(m_Value(R), m_One())))
828 return false;
829 // Matched: select +++ ? (R >> 1) : ...
830 if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
831 !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
832 return false;
833 // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
834 // with commuting ^.
835 } else {
836 // The select's condition is true if the tested bit is 1.
837 // TrueV must be the xor, FalseV must be the shift.
838 if (!match(FalseV, m_LShr(m_Value(R), m_One())))
839 return false;
840 // Matched: select +++ ? ... : (R >> 1)
841 if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
842 !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
843 return false;
844 // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
845 // with commuting ^.
846 }
847
848 PV.X = X;
849 PV.Q = Q;
850 PV.R = R;
851 PV.Left = false;
852 return true;
853}
854
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000855bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
856 BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
857 bool PreScan) {
858 using namespace PatternMatch;
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000859
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000860 // The basic pattern for R = P.Q is:
861 // for i = 0..31
862 // R = phi (0, R')
863 // if (P & (1 << i)) ; test-bit(P, i)
864 // R' = R ^ (Q << i)
865 //
866 // Similarly, the basic pattern for R = (P/Q).Q - P
867 // for i = 0..31
868 // R = phi(P, R')
869 // if (R & (1 << i))
870 // R' = R ^ (Q << i)
871
872 // There exist idioms, where instead of Q being shifted left, P is shifted
873 // right. This produces a result that is shifted right by 32 bits (the
874 // non-shifted result is 64-bit).
875 //
876 // For R = P.Q, this would be:
877 // for i = 0..31
878 // R = phi (0, R')
879 // if ((P >> i) & 1)
880 // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must
881 // else ; be shifted by 1, not i.
882 // R' = R >> 1
883 //
884 // And for the inverse:
885 // for i = 0..31
886 // R = phi (P, R')
887 // if (R & 1)
888 // R' = (R >> 1) ^ Q
889 // else
890 // R' = R >> 1
891
892 // The left-shifting idioms share the same pattern:
893 // select (X & (1 << i)) ? R ^ (Q << i) : R
894 // Similarly for right-shifting idioms:
895 // select (X & 1) ? (R >> 1) ^ Q
896
897 if (matchLeftShift(SelI, CIV, PV)) {
898 // If this is a pre-scan, getting this far is sufficient.
899 if (PreScan)
900 return true;
901
902 // Need to make sure that the SelI goes back into R.
903 auto *RPhi = dyn_cast<PHINode>(PV.R);
904 if (!RPhi)
905 return false;
906 if (SelI != RPhi->getIncomingValueForBlock(LoopB))
907 return false;
908 PV.Res = SelI;
909
910 // If X is loop invariant, it must be the input polynomial, and the
911 // idiom is the basic polynomial multiply.
912 if (CurLoop->isLoopInvariant(PV.X)) {
913 PV.P = PV.X;
914 PV.Inv = false;
915 } else {
916 // X is not loop invariant. If X == R, this is the inverse pmpy.
917 // Otherwise, check for an xor with an invariant value. If the
918 // variable argument to the xor is R, then this is still a valid
919 // inverse pmpy.
920 PV.Inv = true;
921 if (PV.X != PV.R) {
922 Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
923 if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
924 return false;
925 auto *I1 = dyn_cast<Instruction>(X1);
926 auto *I2 = dyn_cast<Instruction>(X2);
927 if (!I1 || I1->getParent() != LoopB) {
928 Var = X2;
929 Inv = X1;
930 } else if (!I2 || I2->getParent() != LoopB) {
931 Var = X1;
932 Inv = X2;
933 } else
934 return false;
935 if (Var != PV.R)
936 return false;
937 PV.M = Inv;
938 }
939 // The input polynomial P still needs to be determined. It will be
940 // the entry value of R.
941 Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
942 PV.P = EntryP;
943 }
944
945 return true;
946 }
947
948 if (matchRightShift(SelI, PV)) {
949 // If this is an inverse pattern, the Q polynomial must be known at
950 // compile time.
951 if (PV.Inv && !isa<ConstantInt>(PV.Q))
952 return false;
953 if (PreScan)
954 return true;
955 // There is no exact matching of right-shift pmpy.
956 return false;
957 }
958
959 return false;
960}
961
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000962bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
963 IntegerType *DestTy) {
964 IntegerType *T = dyn_cast<IntegerType>(Val->getType());
965 if (!T || T->getBitWidth() > DestTy->getBitWidth())
966 return false;
967 if (T->getBitWidth() == DestTy->getBitWidth())
968 return true;
969 // Non-instructions are promotable. The reason why an instruction may not
970 // be promotable is that it may produce a different result if its operands
971 // and the result are promoted, for example, it may produce more non-zero
972 // bits. While it would still be possible to represent the proper result
973 // in a wider type, it may require adding additional instructions (which
974 // we don't want to do).
975 Instruction *In = dyn_cast<Instruction>(Val);
976 if (!In)
977 return true;
978 // The bitwidth of the source type is smaller than the destination.
979 // Check if the individual operation can be promoted.
980 switch (In->getOpcode()) {
981 case Instruction::PHI:
982 case Instruction::ZExt:
983 case Instruction::And:
984 case Instruction::Or:
985 case Instruction::Xor:
986 case Instruction::LShr: // Shift right is ok.
987 case Instruction::Select:
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +0000988 case Instruction::Trunc:
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000989 return true;
990 case Instruction::ICmp:
991 if (CmpInst *CI = cast<CmpInst>(In))
992 return CI->isEquality() || CI->isUnsigned();
993 llvm_unreachable("Cast failed unexpectedly");
994 case Instruction::Add:
995 return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
996 }
997 return false;
998}
999
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001000void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1001 IntegerType *DestTy, BasicBlock *LoopB) {
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001002 Type *OrigTy = In->getType();
1003
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001004 // Leave boolean values alone.
1005 if (!In->getType()->isIntegerTy(1))
1006 In->mutateType(DestTy);
1007 unsigned DestBW = DestTy->getBitWidth();
1008
1009 // Handle PHIs.
1010 if (PHINode *P = dyn_cast<PHINode>(In)) {
1011 unsigned N = P->getNumIncomingValues();
1012 for (unsigned i = 0; i != N; ++i) {
1013 BasicBlock *InB = P->getIncomingBlock(i);
1014 if (InB == LoopB)
1015 continue;
1016 Value *InV = P->getIncomingValue(i);
1017 IntegerType *Ty = cast<IntegerType>(InV->getType());
1018 // Do not promote values in PHI nodes of type i1.
1019 if (Ty != P->getType()) {
1020 // If the value type does not match the PHI type, the PHI type
1021 // must have been promoted.
1022 assert(Ty->getBitWidth() < DestBW);
1023 InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1024 P->setIncomingValue(i, InV);
1025 }
1026 }
1027 } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1028 Value *Op = Z->getOperand(0);
1029 if (Op->getType() == Z->getType())
1030 Z->replaceAllUsesWith(Op);
1031 Z->eraseFromParent();
1032 return;
1033 }
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001034 if (TruncInst *T = dyn_cast<TruncInst>(In)) {
1035 IntegerType *TruncTy = cast<IntegerType>(OrigTy);
1036 Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
1037 Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
1038 T->replaceAllUsesWith(And);
1039 T->eraseFromParent();
1040 return;
1041 }
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001042
1043 // Promote immediates.
1044 for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1045 if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1046 if (CI->getType()->getBitWidth() < DestBW)
1047 In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1048 }
1049}
1050
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001051bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1052 BasicBlock *ExitB) {
1053 assert(LoopB);
1054 // Skip loops where the exit block has more than one predecessor. The values
1055 // coming from the loop block will be promoted to another type, and so the
1056 // values coming into the exit block from other predecessors would also have
1057 // to be promoted.
1058 if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1059 return false;
1060 IntegerType *DestTy = getPmpyType();
1061 // Check if the exit values have types that are no wider than the type
1062 // that we want to promote to.
1063 unsigned DestBW = DestTy->getBitWidth();
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001064 for (PHINode &P : ExitB->phis()) {
1065 if (P.getNumIncomingValues() != 1)
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001066 return false;
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001067 assert(P.getIncomingBlock(0) == LoopB);
1068 IntegerType *T = dyn_cast<IntegerType>(P.getType());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001069 if (!T || T->getBitWidth() > DestBW)
1070 return false;
1071 }
1072
1073 // Check all instructions in the loop.
1074 for (Instruction &In : *LoopB)
1075 if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1076 return false;
1077
1078 // Perform the promotion.
1079 std::vector<Instruction*> LoopIns;
1080 std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1081 [](Instruction &In) { return &In; });
1082 for (Instruction *In : LoopIns)
1083 promoteTo(In, DestTy, LoopB);
1084
1085 // Fix up the PHI nodes in the exit block.
1086 Instruction *EndI = ExitB->getFirstNonPHI();
1087 BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1088 for (auto I = ExitB->begin(); I != End; ++I) {
1089 PHINode *P = dyn_cast<PHINode>(I);
1090 if (!P)
1091 break;
1092 Type *Ty0 = P->getIncomingValue(0)->getType();
1093 Type *PTy = P->getType();
1094 if (PTy != Ty0) {
1095 assert(Ty0 == DestTy);
1096 // In order to create the trunc, P must have the promoted type.
1097 P->mutateType(Ty0);
1098 Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1099 // In order for the RAUW to work, the types of P and T must match.
1100 P->mutateType(PTy);
1101 P->replaceAllUsesWith(T);
1102 // Final update of the P's type.
1103 P->mutateType(Ty0);
1104 cast<Instruction>(T)->setOperand(0, P);
1105 }
1106 }
1107
1108 return true;
1109}
1110
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001111bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1112 ValueSeq &Cycle) {
1113 // Out = ..., In, ...
1114 if (Out == In)
1115 return true;
1116
1117 auto *BB = cast<Instruction>(Out)->getParent();
1118 bool HadPhi = false;
1119
1120 for (auto U : Out->users()) {
1121 auto *I = dyn_cast<Instruction>(&*U);
1122 if (I == nullptr || I->getParent() != BB)
1123 continue;
1124 // Make sure that there are no multi-iteration cycles, e.g.
1125 // p1 = phi(p2)
1126 // p2 = phi(p1)
1127 // The cycle p1->p2->p1 would span two loop iterations.
1128 // Check that there is only one phi in the cycle.
1129 bool IsPhi = isa<PHINode>(I);
1130 if (IsPhi && HadPhi)
1131 return false;
1132 HadPhi |= IsPhi;
1133 if (Cycle.count(I))
1134 return false;
1135 Cycle.insert(I);
1136 if (findCycle(I, In, Cycle))
1137 break;
1138 Cycle.remove(I);
1139 }
1140 return !Cycle.empty();
1141}
1142
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001143void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1144 ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1145 // All the values in the cycle that are between the phi node and the
1146 // divider instruction will be classified as "early", all other values
1147 // will be "late".
1148
1149 bool IsE = true;
1150 unsigned I, N = Cycle.size();
1151 for (I = 0; I < N; ++I) {
1152 Value *V = Cycle[I];
1153 if (DivI == V)
1154 IsE = false;
1155 else if (!isa<PHINode>(V))
1156 continue;
1157 // Stop if found either.
1158 break;
1159 }
1160 // "I" is the index of either DivI or the phi node, whichever was first.
1161 // "E" is "false" or "true" respectively.
1162 ValueSeq &First = !IsE ? Early : Late;
1163 for (unsigned J = 0; J < I; ++J)
1164 First.insert(Cycle[J]);
1165
1166 ValueSeq &Second = IsE ? Early : Late;
1167 Second.insert(Cycle[I]);
1168 for (++I; I < N; ++I) {
1169 Value *V = Cycle[I];
1170 if (DivI == V || isa<PHINode>(V))
1171 break;
1172 Second.insert(V);
1173 }
1174
1175 for (; I < N; ++I)
1176 First.insert(Cycle[I]);
1177}
1178
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001179bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1180 ValueSeq &Early, ValueSeq &Late) {
1181 // Select is an exception, since the condition value does not have to be
1182 // classified in the same way as the true/false values. The true/false
1183 // values do have to be both early or both late.
1184 if (UseI->getOpcode() == Instruction::Select) {
1185 Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1186 if (Early.count(TV) || Early.count(FV)) {
1187 if (Late.count(TV) || Late.count(FV))
1188 return false;
1189 Early.insert(UseI);
1190 } else if (Late.count(TV) || Late.count(FV)) {
1191 if (Early.count(TV) || Early.count(FV))
1192 return false;
1193 Late.insert(UseI);
1194 }
1195 return true;
1196 }
1197
1198 // Not sure what would be the example of this, but the code below relies
1199 // on having at least one operand.
1200 if (UseI->getNumOperands() == 0)
1201 return true;
1202
1203 bool AE = true, AL = true;
1204 for (auto &I : UseI->operands()) {
1205 if (Early.count(&*I))
1206 AL = false;
1207 else if (Late.count(&*I))
1208 AE = false;
1209 }
1210 // If the operands appear "all early" and "all late" at the same time,
1211 // then it means that none of them are actually classified as either.
1212 // This is harmless.
1213 if (AE && AL)
1214 return true;
1215 // Conversely, if they are neither "all early" nor "all late", then
1216 // we have a mixture of early and late operands that is not a known
1217 // exception.
1218 if (!AE && !AL)
1219 return false;
1220
1221 // Check that we have covered the two special cases.
1222 assert(AE != AL);
1223
1224 if (AE)
1225 Early.insert(UseI);
1226 else
1227 Late.insert(UseI);
1228 return true;
1229}
1230
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001231bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1232 switch (I->getOpcode()) {
1233 case Instruction::And:
1234 case Instruction::Or:
1235 case Instruction::Xor:
1236 case Instruction::LShr:
1237 case Instruction::Shl:
1238 case Instruction::Select:
1239 case Instruction::ICmp:
1240 case Instruction::PHI:
1241 break;
1242 default:
1243 return false;
1244 }
1245 return true;
1246}
1247
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001248bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1249 unsigned IterCount) {
1250 auto *T = dyn_cast<IntegerType>(V->getType());
1251 if (!T)
1252 return false;
1253
Craig Topperb45eabc2017-04-26 16:39:58 +00001254 KnownBits Known(T->getBitWidth());
1255 computeKnownBits(V, Known, DL);
Craig Topper8df66c62017-05-12 17:20:30 +00001256 return Known.countMinLeadingZeros() >= IterCount;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001257}
1258
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001259bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1260 unsigned IterCount) {
1261 // Assume that all inputs to the value have the high bits zero.
1262 // Check if the value itself preserves the zeros in the high bits.
1263 if (auto *C = dyn_cast<ConstantInt>(V))
1264 return C->getValue().countLeadingZeros() >= IterCount;
1265
1266 if (auto *I = dyn_cast<Instruction>(V)) {
1267 switch (I->getOpcode()) {
1268 case Instruction::And:
1269 case Instruction::Or:
1270 case Instruction::Xor:
1271 case Instruction::LShr:
1272 case Instruction::Select:
1273 case Instruction::ICmp:
1274 case Instruction::PHI:
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001275 case Instruction::ZExt:
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001276 return true;
1277 }
1278 }
1279
1280 return false;
1281}
1282
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001283bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1284 unsigned Opc = I->getOpcode();
1285 if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1286 return Op != I->getOperand(1);
1287 return true;
1288}
1289
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001290bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1291 BasicBlock *ExitB, unsigned IterCount) {
1292 Value *CIV = getCountIV(LoopB);
1293 if (CIV == nullptr)
1294 return false;
1295 auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1296 if (CIVTy == nullptr)
1297 return false;
1298
1299 ValueSeq RShifts;
1300 ValueSeq Early, Late, Cycled;
1301
1302 // Find all value cycles that contain logical right shifts by 1.
1303 for (Instruction &I : *LoopB) {
1304 using namespace PatternMatch;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001305
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001306 Value *V = nullptr;
1307 if (!match(&I, m_LShr(m_Value(V), m_One())))
1308 continue;
1309 ValueSeq C;
1310 if (!findCycle(&I, V, C))
1311 continue;
1312
1313 // Found a cycle.
1314 C.insert(&I);
1315 classifyCycle(&I, C, Early, Late);
1316 Cycled.insert(C.begin(), C.end());
1317 RShifts.insert(&I);
1318 }
1319
1320 // Find the set of all values affected by the shift cycles, i.e. all
1321 // cycled values, and (recursively) all their users.
1322 ValueSeq Users(Cycled.begin(), Cycled.end());
1323 for (unsigned i = 0; i < Users.size(); ++i) {
1324 Value *V = Users[i];
1325 if (!isa<IntegerType>(V->getType()))
1326 return false;
1327 auto *R = cast<Instruction>(V);
1328 // If the instruction does not commute with shifts, the loop cannot
1329 // be unshifted.
1330 if (!commutesWithShift(R))
1331 return false;
1332 for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1333 auto *T = cast<Instruction>(*I);
1334 // Skip users from outside of the loop. They will be handled later.
1335 // Also, skip the right-shifts and phi nodes, since they mix early
1336 // and late values.
1337 if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1338 continue;
1339
1340 Users.insert(T);
1341 if (!classifyInst(T, Early, Late))
1342 return false;
1343 }
1344 }
1345
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001346 if (Users.empty())
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001347 return false;
1348
1349 // Verify that high bits remain zero.
1350 ValueSeq Internal(Users.begin(), Users.end());
1351 ValueSeq Inputs;
1352 for (unsigned i = 0; i < Internal.size(); ++i) {
1353 auto *R = dyn_cast<Instruction>(Internal[i]);
1354 if (!R)
1355 continue;
1356 for (Value *Op : R->operands()) {
1357 auto *T = dyn_cast<Instruction>(Op);
1358 if (T && T->getParent() != LoopB)
1359 Inputs.insert(Op);
1360 else
1361 Internal.insert(Op);
1362 }
1363 }
1364 for (Value *V : Inputs)
1365 if (!highBitsAreZero(V, IterCount))
1366 return false;
1367 for (Value *V : Internal)
1368 if (!keepsHighBitsZero(V, IterCount))
1369 return false;
1370
1371 // Finally, the work can be done. Unshift each user.
1372 IRBuilder<> IRB(LoopB);
1373 std::map<Value*,Value*> ShiftMap;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001374
1375 using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1376
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001377 CastMapType CastMap;
1378
1379 auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1380 IntegerType *Ty) -> Value* {
1381 auto H = CM.find(std::make_pair(V, Ty));
1382 if (H != CM.end())
1383 return H->second;
1384 Value *CV = IRB.CreateIntCast(V, Ty, false);
1385 CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1386 return CV;
1387 };
1388
1389 for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001390 using namespace PatternMatch;
1391
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001392 if (isa<PHINode>(I) || !Users.count(&*I))
1393 continue;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001394
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001395 // Match lshr x, 1.
1396 Value *V = nullptr;
1397 if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1398 replaceAllUsesOfWithIn(&*I, V, LoopB);
1399 continue;
1400 }
1401 // For each non-cycled operand, replace it with the corresponding
1402 // value shifted left.
1403 for (auto &J : I->operands()) {
1404 Value *Op = J.get();
1405 if (!isOperandShifted(&*I, Op))
1406 continue;
1407 if (Users.count(Op))
1408 continue;
1409 // Skip shifting zeros.
1410 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1411 continue;
1412 // Check if we have already generated a shift for this value.
1413 auto F = ShiftMap.find(Op);
1414 Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1415 if (W == nullptr) {
1416 IRB.SetInsertPoint(&*I);
1417 // First, the shift amount will be CIV or CIV+1, depending on
1418 // whether the value is early or late. Instead of creating CIV+1,
1419 // do a single shift of the value.
1420 Value *ShAmt = CIV, *ShVal = Op;
1421 auto *VTy = cast<IntegerType>(ShVal->getType());
1422 auto *ATy = cast<IntegerType>(ShAmt->getType());
1423 if (Late.count(&*I))
1424 ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1425 // Second, the types of the shifted value and the shift amount
1426 // must match.
1427 if (VTy != ATy) {
1428 if (VTy->getBitWidth() < ATy->getBitWidth())
1429 ShVal = upcast(CastMap, IRB, ShVal, ATy);
1430 else
1431 ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1432 }
1433 // Ready to generate the shift and memoize it.
1434 W = IRB.CreateShl(ShVal, ShAmt);
1435 ShiftMap.insert(std::make_pair(Op, W));
1436 }
1437 I->replaceUsesOfWith(Op, W);
1438 }
1439 }
1440
1441 // Update the users outside of the loop to account for having left
1442 // shifts. They would normally be shifted right in the loop, so shift
1443 // them right after the loop exit.
1444 // Take advantage of the loop-closed SSA form, which has all the post-
1445 // loop values in phi nodes.
1446 IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1447 for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1448 if (!isa<PHINode>(P))
1449 break;
1450 auto *PN = cast<PHINode>(P);
1451 Value *U = PN->getIncomingValueForBlock(LoopB);
1452 if (!Users.count(U))
1453 continue;
1454 Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1455 PN->replaceAllUsesWith(S);
1456 // The above RAUW will create
1457 // S = lshr S, IterCount
1458 // so we need to fix it back into
1459 // S = lshr PN, IterCount
1460 cast<User>(S)->replaceUsesOfWith(S, PN);
1461 }
1462
1463 return true;
1464}
1465
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001466void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1467 for (auto &I : *LoopB)
Daniel Berlin4d0fe642017-04-28 19:55:38 +00001468 if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001469 I.replaceAllUsesWith(SV);
1470
1471 for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1472 N = std::next(I);
1473 RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1474 }
1475}
1476
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001477unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1478 // Arrays of coefficients of Q and the inverse, C.
1479 // Q[i] = coefficient at x^i.
1480 std::array<char,32> Q, C;
1481
1482 for (unsigned i = 0; i < 32; ++i) {
1483 Q[i] = QP & 1;
1484 QP >>= 1;
1485 }
1486 assert(Q[0] == 1);
1487
1488 // Find C, such that
1489 // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1490 //
1491 // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1492 // operations * and + are & and ^ respectively.
1493 //
1494 // Find C[i] recursively, by comparing i-th coefficient in the product
1495 // with 0 (or 1 for i=0).
1496 //
1497 // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1498 C[0] = 1;
1499 for (unsigned i = 1; i < 32; ++i) {
1500 // Solve for C[i] in:
1501 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1502 // This is equivalent to
1503 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1504 // which is
1505 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1506 unsigned T = 0;
1507 for (unsigned j = 0; j < i; ++j)
1508 T = T ^ (C[j] & Q[i-j]);
1509 C[i] = T;
1510 }
1511
1512 unsigned QV = 0;
1513 for (unsigned i = 0; i < 32; ++i)
1514 if (C[i])
1515 QV |= (1 << i);
1516
1517 return QV;
1518}
1519
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001520Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1521 ParsedValues &PV) {
1522 IRBuilder<> B(&*At);
1523 Module *M = At->getParent()->getParent()->getParent();
1524 Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1525
1526 Value *P = PV.P, *Q = PV.Q, *P0 = P;
1527 unsigned IC = PV.IterCount;
1528
1529 if (PV.M != nullptr)
1530 P0 = P = B.CreateXor(P, PV.M);
1531
1532 // Create a bit mask to clear the high bits beyond IterCount.
1533 auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1534
1535 if (PV.IterCount != 32)
1536 P = B.CreateAnd(P, BMI);
1537
1538 if (PV.Inv) {
1539 auto *QI = dyn_cast<ConstantInt>(PV.Q);
1540 assert(QI && QI->getBitWidth() <= 32);
1541
1542 // Again, clearing bits beyond IterCount.
1543 unsigned M = (1 << PV.IterCount) - 1;
1544 unsigned Tmp = (QI->getZExtValue() | 1) & M;
1545 unsigned QV = getInverseMxN(Tmp) & M;
1546 auto *QVI = ConstantInt::get(QI->getType(), QV);
1547 P = B.CreateCall(PMF, {P, QVI});
1548 P = B.CreateTrunc(P, QI->getType());
1549 if (IC != 32)
1550 P = B.CreateAnd(P, BMI);
1551 }
1552
1553 Value *R = B.CreateCall(PMF, {P, Q});
1554
1555 if (PV.M != nullptr)
1556 R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1557
1558 return R;
1559}
1560
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001561static bool hasZeroSignBit(const Value *V) {
1562 if (const auto *CI = dyn_cast<const ConstantInt>(V))
1563 return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1564 const Instruction *I = dyn_cast<const Instruction>(V);
1565 if (!I)
1566 return false;
1567 switch (I->getOpcode()) {
1568 case Instruction::LShr:
1569 if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1570 return SI->getZExtValue() > 0;
1571 return false;
1572 case Instruction::Or:
1573 case Instruction::Xor:
1574 return hasZeroSignBit(I->getOperand(0)) &&
1575 hasZeroSignBit(I->getOperand(1));
1576 case Instruction::And:
1577 return hasZeroSignBit(I->getOperand(0)) ||
1578 hasZeroSignBit(I->getOperand(1));
1579 }
1580 return false;
1581}
1582
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001583void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
1584 S.addRule("sink-zext",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001585 // Sink zext past bitwise operations.
1586 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1587 if (I->getOpcode() != Instruction::ZExt)
1588 return nullptr;
1589 Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1590 if (!T)
1591 return nullptr;
1592 switch (T->getOpcode()) {
1593 case Instruction::And:
1594 case Instruction::Or:
1595 case Instruction::Xor:
1596 break;
1597 default:
1598 return nullptr;
1599 }
1600 IRBuilder<> B(Ctx);
1601 return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1602 B.CreateZExt(T->getOperand(0), I->getType()),
1603 B.CreateZExt(T->getOperand(1), I->getType()));
1604 });
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001605 S.addRule("xor/and -> and/xor",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001606 // (xor (and x a) (and y a)) -> (and (xor x y) a)
1607 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1608 if (I->getOpcode() != Instruction::Xor)
1609 return nullptr;
1610 Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1611 Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1612 if (!And0 || !And1)
1613 return nullptr;
1614 if (And0->getOpcode() != Instruction::And ||
1615 And1->getOpcode() != Instruction::And)
1616 return nullptr;
1617 if (And0->getOperand(1) != And1->getOperand(1))
1618 return nullptr;
1619 IRBuilder<> B(Ctx);
1620 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1621 And0->getOperand(1));
1622 });
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001623 S.addRule("sink binop into select",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001624 // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1625 // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1626 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1627 BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1628 if (!BO)
1629 return nullptr;
1630 Instruction::BinaryOps Op = BO->getOpcode();
1631 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1632 IRBuilder<> B(Ctx);
1633 Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1634 Value *Z = BO->getOperand(1);
1635 return B.CreateSelect(Sel->getCondition(),
1636 B.CreateBinOp(Op, X, Z),
1637 B.CreateBinOp(Op, Y, Z));
1638 }
1639 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1640 IRBuilder<> B(Ctx);
1641 Value *X = BO->getOperand(0);
1642 Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1643 return B.CreateSelect(Sel->getCondition(),
1644 B.CreateBinOp(Op, X, Y),
1645 B.CreateBinOp(Op, X, Z));
1646 }
1647 return nullptr;
1648 });
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001649 S.addRule("fold select-select",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001650 // (select c (select c x y) z) -> (select c x z)
1651 // (select c x (select c y z)) -> (select c x z)
1652 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1653 SelectInst *Sel = dyn_cast<SelectInst>(I);
1654 if (!Sel)
1655 return nullptr;
1656 IRBuilder<> B(Ctx);
1657 Value *C = Sel->getCondition();
1658 if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1659 if (Sel0->getCondition() == C)
1660 return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1661 }
1662 if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1663 if (Sel1->getCondition() == C)
1664 return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1665 }
1666 return nullptr;
1667 });
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001668 S.addRule("or-signbit -> xor-signbit",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001669 // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1670 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1671 if (I->getOpcode() != Instruction::Or)
1672 return nullptr;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001673 ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1674 if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1675 return nullptr;
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001676 if (!hasZeroSignBit(I->getOperand(0)))
1677 return nullptr;
1678 return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001679 });
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001680 S.addRule("sink lshr into binop",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001681 // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1682 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1683 if (I->getOpcode() != Instruction::LShr)
1684 return nullptr;
1685 BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1686 if (!BitOp)
1687 return nullptr;
1688 switch (BitOp->getOpcode()) {
1689 case Instruction::And:
1690 case Instruction::Or:
1691 case Instruction::Xor:
1692 break;
1693 default:
1694 return nullptr;
1695 }
1696 IRBuilder<> B(Ctx);
1697 Value *S = I->getOperand(1);
1698 return B.CreateBinOp(BitOp->getOpcode(),
1699 B.CreateLShr(BitOp->getOperand(0), S),
1700 B.CreateLShr(BitOp->getOperand(1), S));
1701 });
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001702 S.addRule("expose bitop-const",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001703 // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1704 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1705 auto IsBitOp = [](unsigned Op) -> bool {
1706 switch (Op) {
1707 case Instruction::And:
1708 case Instruction::Or:
1709 case Instruction::Xor:
1710 return true;
1711 }
1712 return false;
1713 };
1714 BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1715 if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1716 return nullptr;
1717 BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1718 if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1719 return nullptr;
1720 ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1721 ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1722 if (!CA || !CB)
1723 return nullptr;
1724 IRBuilder<> B(Ctx);
1725 Value *X = BitOp2->getOperand(0);
1726 return B.CreateBinOp(BitOp2->getOpcode(), X,
1727 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1728 });
1729}
1730
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001731void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
1732 S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
1733 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1734 if (I->getOpcode() != Instruction::And)
1735 return nullptr;
1736 Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
1737 ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
1738 if (!Xor || !C0)
1739 return nullptr;
1740 if (Xor->getOpcode() != Instruction::Xor)
1741 return nullptr;
1742 Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
1743 Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
1744 // Pick the first non-null and.
1745 if (!And0 || And0->getOpcode() != Instruction::And)
1746 std::swap(And0, And1);
1747 ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
1748 if (!C1)
1749 return nullptr;
1750 uint32_t V0 = C0->getZExtValue();
1751 uint32_t V1 = C1->getZExtValue();
1752 if (V0 != (V0 & V1))
1753 return nullptr;
1754 IRBuilder<> B(Ctx);
1755 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
1756 });
1757}
1758
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001759bool PolynomialMultiplyRecognize::recognize() {
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001760 DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1761 << *CurLoop << '\n');
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001762 // Restrictions:
1763 // - The loop must consist of a single block.
1764 // - The iteration count must be known at compile-time.
1765 // - The loop must have an induction variable starting from 0, and
1766 // incremented in each iteration of the loop.
1767 BasicBlock *LoopB = CurLoop->getHeader();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001768 DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1769
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001770 if (LoopB != CurLoop->getLoopLatch())
1771 return false;
1772 BasicBlock *ExitB = CurLoop->getExitBlock();
1773 if (ExitB == nullptr)
1774 return false;
1775 BasicBlock *EntryB = CurLoop->getLoopPreheader();
1776 if (EntryB == nullptr)
1777 return false;
1778
1779 unsigned IterCount = 0;
1780 const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1781 if (isa<SCEVCouldNotCompute>(CT))
1782 return false;
1783 if (auto *CV = dyn_cast<SCEVConstant>(CT))
1784 IterCount = CV->getValue()->getZExtValue() + 1;
1785
1786 Value *CIV = getCountIV(LoopB);
1787 ParsedValues PV;
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001788 Simplifier PreSimp;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001789 PV.IterCount = IterCount;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001790 DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n');
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001791
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001792 setupPreSimplifier(PreSimp);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001793
1794 // Perform a preliminary scan of select instructions to see if any of them
1795 // looks like a generator of the polynomial multiply steps. Assume that a
1796 // loop can only contain a single transformable operation, so stop the
1797 // traversal after the first reasonable candidate was found.
1798 // XXX: Currently this approach can modify the loop before being 100% sure
1799 // that the transformation can be carried out.
1800 bool FoundPreScan = false;
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001801 auto FeedsPHI = [LoopB](const Value *V) -> bool {
1802 for (const Value *U : V->users()) {
1803 if (const auto *P = dyn_cast<const PHINode>(U))
1804 if (P->getParent() == LoopB)
1805 return true;
1806 }
1807 return false;
1808 };
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001809 for (Instruction &In : *LoopB) {
1810 SelectInst *SI = dyn_cast<SelectInst>(&In);
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001811 if (!SI || !FeedsPHI(SI))
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001812 continue;
1813
1814 Simplifier::Context C(SI);
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001815 Value *T = PreSimp.simplify(C);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001816 SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1817 DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1818 if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1819 FoundPreScan = true;
1820 if (SelI != SI) {
1821 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1822 SI->replaceAllUsesWith(NewSel);
1823 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1824 }
1825 break;
1826 }
1827 }
1828
1829 if (!FoundPreScan) {
1830 DEBUG(dbgs() << "Have not found candidates for pmpy\n");
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001831 return false;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001832 }
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001833
1834 if (!PV.Left) {
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001835 // The right shift version actually only returns the higher bits of
1836 // the result (each iteration discards the LSB). If we want to convert it
1837 // to a left-shifting loop, the working data type must be at least as
1838 // wide as the target's pmpy instruction.
1839 if (!promoteTypes(LoopB, ExitB))
1840 return false;
Krzysztof Parzyszek5d9844f2018-01-30 22:03:59 +00001841 // Run post-promotion simplifications.
1842 Simplifier PostSimp;
1843 setupPostSimplifier(PostSimp);
1844 for (Instruction &In : *LoopB) {
1845 SelectInst *SI = dyn_cast<SelectInst>(&In);
1846 if (!SI || !FeedsPHI(SI))
1847 continue;
1848 Simplifier::Context C(SI);
1849 Value *T = PostSimp.simplify(C);
1850 SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
1851 if (SelI != SI) {
1852 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1853 SI->replaceAllUsesWith(NewSel);
1854 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1855 }
1856 break;
1857 }
1858
Krzysztof Parzyszek9bd4d912017-06-13 13:51:49 +00001859 if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1860 return false;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001861 cleanupLoopBody(LoopB);
1862 }
1863
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001864 // Scan the loop again, find the generating select instruction.
1865 bool FoundScan = false;
1866 for (Instruction &In : *LoopB) {
1867 SelectInst *SelI = dyn_cast<SelectInst>(&In);
1868 if (!SelI)
1869 continue;
1870 DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1871 FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1872 if (FoundScan)
1873 break;
1874 }
1875 assert(FoundScan);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001876
1877 DEBUG({
1878 StringRef PP = (PV.M ? "(P+M)" : "P");
1879 if (!PV.Inv)
1880 dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1881 else
1882 dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1883 << PP << "\n";
1884 dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n";
1885 if (PV.M)
1886 dbgs() << " M:" << *PV.M << "\n";
1887 dbgs() << " Q:" << *PV.Q << "\n";
1888 dbgs() << " Iteration count:" << PV.IterCount << "\n";
1889 });
1890
1891 BasicBlock::iterator At(EntryB->getTerminator());
1892 Value *PM = generate(At, PV);
1893 if (PM == nullptr)
1894 return false;
1895
1896 if (PM->getType() != PV.Res->getType())
1897 PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1898
1899 PV.Res->replaceAllUsesWith(PM);
1900 PV.Res->eraseFromParent();
1901 return true;
1902}
1903
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001904int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1905 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1906 return SC->getAPInt().getSExtValue();
1907 return 0;
1908}
1909
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001910bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
Krzysztof Parzyszek35ce5da2017-01-27 20:40:14 +00001911 // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1912 if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001913 return false;
1914
1915 Value *StoredVal = SI->getValueOperand();
1916 Value *StorePtr = SI->getPointerOperand();
1917
1918 // Reject stores that are so large that they overflow an unsigned.
1919 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1920 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1921 return false;
1922
1923 // See if the pointer expression is an AddRec like {base,+,1} on the current
1924 // loop, which indicates a strided store. If we have something else, it's a
1925 // random store we can't handle.
1926 auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1927 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1928 return false;
1929
1930 // Check to see if the stride matches the size of the store. If so, then we
1931 // know that every byte is touched in the loop.
1932 int Stride = getSCEVStride(StoreEv);
1933 if (Stride == 0)
1934 return false;
Jonas Paulssonf0ff20f2017-11-28 14:44:32 +00001935 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001936 if (StoreSize != unsigned(std::abs(Stride)))
1937 return false;
1938
1939 // The store must be feeding a non-volatile load.
1940 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1941 if (!LI || !LI->isSimple())
1942 return false;
1943
1944 // See if the pointer expression is an AddRec like {base,+,1} on the current
1945 // loop, which indicates a strided load. If we have something else, it's a
1946 // random load we can't handle.
1947 Value *LoadPtr = LI->getPointerOperand();
1948 auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1949 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1950 return false;
1951
1952 // The store and load must share the same stride.
1953 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1954 return false;
1955
1956 // Success. This store can be converted into a memcpy.
1957 return true;
1958}
1959
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001960/// mayLoopAccessLocation - Return true if the specified loop might access the
1961/// specified pointer location, which is a loop-strided access. The 'Access'
1962/// argument specifies what the verboten forms of access are (read or write).
1963static bool
1964mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1965 const SCEV *BECount, unsigned StoreSize,
1966 AliasAnalysis &AA,
1967 SmallPtrSetImpl<Instruction *> &Ignored) {
1968 // Get the location that may be stored across the loop. Since the access
1969 // is strided positively through memory, we say that the modified location
1970 // starts at the pointer and has infinite size.
1971 uint64_t AccessSize = MemoryLocation::UnknownSize;
1972
1973 // If the loop iterates a fixed number of times, we can refine the access
1974 // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1975 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1976 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
1977
1978 // TODO: For this to be really effective, we have to dive into the pointer
1979 // operand in the store. Store to &A[i] of 100 will always return may alias
1980 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1981 // which will then no-alias a store to &A[100].
1982 MemoryLocation StoreLoc(Ptr, AccessSize);
1983
1984 for (auto *B : L->blocks())
1985 for (auto &I : *B)
Alina Sbirlea63d22502017-12-05 20:12:23 +00001986 if (Ignored.count(&I) == 0 &&
Alina Sbirlea18fea012017-12-06 19:56:37 +00001987 isModOrRefSet(
1988 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001989 return true;
1990
1991 return false;
1992}
1993
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001994void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
1995 SmallVectorImpl<StoreInst*> &Stores) {
1996 Stores.clear();
1997 for (Instruction &I : *BB)
1998 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
1999 if (isLegalStore(CurLoop, SI))
2000 Stores.push_back(SI);
2001}
2002
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002003bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
2004 StoreInst *SI, const SCEV *BECount) {
Michael Kupersteine18aad32017-01-31 22:48:45 +00002005 assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
2006 "Expected only non-volatile stores, or Hexagon-specific memcpy"
2007 "to volatile destination.");
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002008
2009 Value *StorePtr = SI->getPointerOperand();
2010 auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
2011 unsigned Stride = getSCEVStride(StoreEv);
Jonas Paulssonf0ff20f2017-11-28 14:44:32 +00002012 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002013 if (Stride != StoreSize)
2014 return false;
2015
2016 // See if the pointer expression is an AddRec like {base,+,1} on the current
2017 // loop, which indicates a strided load. If we have something else, it's a
2018 // random load we can't handle.
2019 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
2020 auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
2021
2022 // The trip count of the loop and the base pointer of the addrec SCEV is
2023 // guaranteed to be loop invariant, which means that it should dominate the
2024 // header. This allows us to insert code for it in the preheader.
2025 BasicBlock *Preheader = CurLoop->getLoopPreheader();
2026 Instruction *ExpPt = Preheader->getTerminator();
2027 IRBuilder<> Builder(ExpPt);
2028 SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
2029
2030 Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
2031
2032 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
2033 // this into a memcpy/memmove in the loop preheader now if we want. However,
2034 // this would be unsafe to do if there is anything else in the loop that may
2035 // read or write the memory region we're storing to. For memcpy, this
2036 // includes the load that feeds the stores. Check for an alias by generating
2037 // the base address and checking everything.
2038 Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
2039 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
2040 Value *LoadBasePtr = nullptr;
2041
2042 bool Overlap = false;
2043 bool DestVolatile = SI->isVolatile();
2044 Type *BECountTy = BECount->getType();
2045
2046 if (DestVolatile) {
2047 // The trip count must fit in i32, since it is the type of the "num_words"
2048 // argument to hexagon_memcpy_forward_vp4cp4n2.
2049 if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2050CleanupAndExit:
2051 // If we generated new code for the base pointer, clean up.
2052 Expander.clear();
2053 if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2054 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2055 StoreBasePtr = nullptr;
2056 }
2057 if (LoadBasePtr) {
2058 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2059 LoadBasePtr = nullptr;
2060 }
2061 return false;
2062 }
2063 }
2064
2065 SmallPtrSet<Instruction*, 2> Ignore1;
2066 Ignore1.insert(SI);
Alina Sbirlea193429f2017-12-07 22:41:34 +00002067 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002068 StoreSize, *AA, Ignore1)) {
2069 // Check if the load is the offending instruction.
2070 Ignore1.insert(LI);
Alina Sbirlea193429f2017-12-07 22:41:34 +00002071 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
2072 BECount, StoreSize, *AA, Ignore1)) {
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002073 // Still bad. Nothing we can do.
2074 goto CleanupAndExit;
2075 }
2076 // It worked with the load ignored.
2077 Overlap = true;
2078 }
2079
2080 if (!Overlap) {
2081 if (DisableMemcpyIdiom || !HasMemcpy)
2082 goto CleanupAndExit;
2083 } else {
2084 // Don't generate memmove if this function will be inlined. This is
2085 // because the caller will undergo this transformation after inlining.
2086 Function *Func = CurLoop->getHeader()->getParent();
2087 if (Func->hasFnAttribute(Attribute::AlwaysInline))
2088 goto CleanupAndExit;
2089
2090 // In case of a memmove, the call to memmove will be executed instead
2091 // of the loop, so we need to make sure that there is nothing else in
2092 // the loop than the load, store and instructions that these two depend
2093 // on.
2094 SmallVector<Instruction*,2> Insts;
2095 Insts.push_back(SI);
2096 Insts.push_back(LI);
2097 if (!coverLoop(CurLoop, Insts))
2098 goto CleanupAndExit;
2099
2100 if (DisableMemmoveIdiom || !HasMemmove)
2101 goto CleanupAndExit;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00002102 bool IsNested = CurLoop->getParentLoop() != nullptr;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002103 if (IsNested && OnlyNonNestedMemmove)
2104 goto CleanupAndExit;
2105 }
2106
2107 // For a memcpy, we have to make sure that the input array is not being
2108 // mutated by the loop.
2109 LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2110 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2111
2112 SmallPtrSet<Instruction*, 2> Ignore2;
2113 Ignore2.insert(SI);
Alina Sbirlea193429f2017-12-07 22:41:34 +00002114 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
2115 StoreSize, *AA, Ignore2))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002116 goto CleanupAndExit;
2117
2118 // Check the stride.
2119 bool StridePos = getSCEVStride(LoadEv) >= 0;
2120
2121 // Currently, the volatile memcpy only emulates traversing memory forward.
2122 if (!StridePos && DestVolatile)
2123 goto CleanupAndExit;
2124
2125 bool RuntimeCheck = (Overlap || DestVolatile);
2126
2127 BasicBlock *ExitB;
2128 if (RuntimeCheck) {
2129 // The runtime check needs a single exit block.
2130 SmallVector<BasicBlock*, 8> ExitBlocks;
2131 CurLoop->getUniqueExitBlocks(ExitBlocks);
2132 if (ExitBlocks.size() != 1)
2133 goto CleanupAndExit;
2134 ExitB = ExitBlocks[0];
2135 }
2136
2137 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
2138 // pointer size if it isn't already.
2139 LLVMContext &Ctx = SI->getContext();
2140 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002141 DebugLoc DLoc = SI->getDebugLoc();
2142
2143 const SCEV *NumBytesS =
2144 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2145 if (StoreSize != 1)
2146 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2147 SCEV::FlagNUW);
2148 Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2149 if (Instruction *In = dyn_cast<Instruction>(NumBytes))
Daniel Berlin4d0fe642017-04-28 19:55:38 +00002150 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002151 NumBytes = Simp;
2152
2153 CallInst *NewCall;
2154
2155 if (RuntimeCheck) {
2156 unsigned Threshold = RuntimeMemSizeThreshold;
2157 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2158 uint64_t C = CI->getZExtValue();
2159 if (Threshold != 0 && C < Threshold)
2160 goto CleanupAndExit;
2161 if (C < CompileTimeMemSizeThreshold)
2162 goto CleanupAndExit;
2163 }
2164
2165 BasicBlock *Header = CurLoop->getHeader();
2166 Function *Func = Header->getParent();
2167 Loop *ParentL = LF->getLoopFor(Preheader);
2168 StringRef HeaderName = Header->getName();
2169
2170 // Create a new (empty) preheader, and update the PHI nodes in the
2171 // header to use the new preheader.
2172 BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2173 Func, Header);
2174 if (ParentL)
2175 ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2176 IRBuilder<>(NewPreheader).CreateBr(Header);
2177 for (auto &In : *Header) {
2178 PHINode *PN = dyn_cast<PHINode>(&In);
2179 if (!PN)
2180 break;
2181 int bx = PN->getBasicBlockIndex(Preheader);
2182 if (bx >= 0)
2183 PN->setIncomingBlock(bx, NewPreheader);
2184 }
2185 DT->addNewBlock(NewPreheader, Preheader);
2186 DT->changeImmediateDominator(Header, NewPreheader);
2187
2188 // Check for safe conditions to execute memmove.
2189 // If stride is positive, copying things from higher to lower addresses
2190 // is equivalent to memmove. For negative stride, it's the other way
2191 // around. Copying forward in memory with positive stride may not be
2192 // same as memmove since we may be copying values that we just stored
2193 // in some previous iteration.
2194 Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2195 Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2196 Value *LowA = StridePos ? SA : LA;
2197 Value *HighA = StridePos ? LA : SA;
2198 Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2199 Value *Cond = CmpA;
2200
Krzysztof Parzyszekc09a14e2017-08-24 11:59:53 +00002201 // Check for distance between pointers. Since the case LowA < HighA
2202 // is checked for above, assume LowA >= HighA.
2203 Value *Dist = Builder.CreateSub(LowA, HighA);
2204 Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002205 Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2206 Cond = CmpEither;
2207
2208 if (Threshold != 0) {
2209 Type *Ty = NumBytes->getType();
2210 Value *Thr = ConstantInt::get(Ty, Threshold);
2211 Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2212 Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2213 Cond = CmpBoth;
2214 }
2215 BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2216 Func, NewPreheader);
2217 if (ParentL)
2218 ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2219 Instruction *OldT = Preheader->getTerminator();
2220 Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2221 OldT->eraseFromParent();
2222 Preheader->setName(Preheader->getName()+".old");
2223 DT->addNewBlock(MemmoveB, Preheader);
2224 // Find the new immediate dominator of the exit block.
2225 BasicBlock *ExitD = Preheader;
2226 for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2227 BasicBlock *PB = *PI;
2228 ExitD = DT->findNearestCommonDominator(ExitD, PB);
2229 if (!ExitD)
2230 break;
2231 }
2232 // If the prior immediate dominator of ExitB was dominated by the
2233 // old preheader, then the old preheader becomes the new immediate
2234 // dominator. Otherwise don't change anything (because the newly
2235 // added blocks are dominated by the old preheader).
2236 if (ExitD && DT->dominates(Preheader, ExitD)) {
2237 DomTreeNode *BN = DT->getNode(ExitB);
2238 DomTreeNode *DN = DT->getNode(ExitD);
2239 BN->setIDom(DN);
2240 }
2241
2242 // Add a call to memmove to the conditional block.
2243 IRBuilder<> CondBuilder(MemmoveB);
2244 CondBuilder.CreateBr(ExitB);
2245 CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2246
2247 if (DestVolatile) {
2248 Type *Int32Ty = Type::getInt32Ty(Ctx);
2249 Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2250 Type *VoidTy = Type::getVoidTy(Ctx);
2251 Module *M = Func->getParent();
2252 Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy,
Serge Guelton59a2d7b2017-04-11 15:01:18 +00002253 Int32PtrTy, Int32PtrTy, Int32Ty);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002254 Function *Fn = cast<Function>(CF);
2255 Fn->setLinkage(Function::ExternalLinkage);
2256
2257 const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2258 const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2259 const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2260 Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2261 MemmoveB->getTerminator());
2262 if (Instruction *In = dyn_cast<Instruction>(NumWords))
Daniel Berlin4d0fe642017-04-28 19:55:38 +00002263 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002264 NumWords = Simp;
2265
2266 Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2267 ? StoreBasePtr
2268 : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2269 Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2270 ? LoadBasePtr
2271 : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2272 NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2273 } else {
Daniel Neilsonf4fa26f2018-02-09 23:33:35 +00002274 NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(),
2275 LoadBasePtr, LI->getAlignment(),
2276 NumBytes);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002277 }
2278 } else {
Daniel Neilsonf4fa26f2018-02-09 23:33:35 +00002279 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
2280 LoadBasePtr, LI->getAlignment(),
2281 NumBytes);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002282 // Okay, the memcpy has been formed. Zap the original store and
2283 // anything that feeds into it.
2284 RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2285 }
2286
2287 NewCall->setDebugLoc(DLoc);
2288
2289 DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ")
2290 << *NewCall << "\n"
2291 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2292 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
2293
2294 return true;
2295}
2296
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002297// \brief Check if the instructions in Insts, together with their dependencies
2298// cover the loop in the sense that the loop could be safely eliminated once
2299// the instructions in Insts are removed.
2300bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2301 SmallVectorImpl<Instruction*> &Insts) const {
2302 SmallSet<BasicBlock*,8> LoopBlocks;
2303 for (auto *B : L->blocks())
2304 LoopBlocks.insert(B);
2305
2306 SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2307
2308 // Collect all instructions from the loop that the instructions in Insts
2309 // depend on (plus their dependencies, etc.). These instructions will
2310 // constitute the expression trees that feed those in Insts, but the trees
2311 // will be limited only to instructions contained in the loop.
2312 for (unsigned i = 0; i < Worklist.size(); ++i) {
2313 Instruction *In = Worklist[i];
2314 for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2315 Instruction *OpI = dyn_cast<Instruction>(I);
2316 if (!OpI)
2317 continue;
2318 BasicBlock *PB = OpI->getParent();
2319 if (!LoopBlocks.count(PB))
2320 continue;
2321 Worklist.insert(OpI);
2322 }
2323 }
2324
2325 // Scan all instructions in the loop, if any of them have a user outside
2326 // of the loop, or outside of the expressions collected above, then either
2327 // the loop has a side-effect visible outside of it, or there are
2328 // instructions in it that are not involved in the original set Insts.
2329 for (auto *B : L->blocks()) {
2330 for (auto &In : *B) {
2331 if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2332 continue;
2333 if (!Worklist.count(&In) && In.mayHaveSideEffects())
2334 return false;
2335 for (const auto &K : In.users()) {
2336 Instruction *UseI = dyn_cast<Instruction>(K);
2337 if (!UseI)
2338 continue;
2339 BasicBlock *UseB = UseI->getParent();
2340 if (LF->getLoopFor(UseB) != L)
2341 return false;
2342 }
2343 }
2344 }
2345
2346 return true;
2347}
2348
2349/// runOnLoopBlock - Process the specified block, which lives in a counted loop
2350/// with the specified backedge count. This block is known to be in the current
2351/// loop and not in any subloops.
2352bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2353 const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2354 // We can only promote stores in this block if they are unconditionally
2355 // executed in the loop. For a block to be unconditionally executed, it has
2356 // to dominate all the exit blocks of the loop. Verify this now.
2357 auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2358 return DT->dominates(BB, EB);
2359 };
2360 if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB))
2361 return false;
2362
2363 bool MadeChange = false;
2364 // Look for store instructions, which may be optimized to memset/memcpy.
2365 SmallVector<StoreInst*,8> Stores;
2366 collectStores(CurLoop, BB, Stores);
2367
2368 // Optimize the store into a memcpy, if it feeds an similarly strided load.
2369 for (auto &SI : Stores)
2370 MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2371
2372 return MadeChange;
2373}
2374
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002375bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2376 PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2377 if (PMR.recognize())
2378 return true;
2379
2380 if (!HasMemcpy && !HasMemmove)
2381 return false;
2382
2383 const SCEV *BECount = SE->getBackedgeTakenCount(L);
2384 assert(!isa<SCEVCouldNotCompute>(BECount) &&
2385 "runOnCountableLoop() called on a loop without a predictable"
2386 "backedge-taken count");
2387
2388 SmallVector<BasicBlock *, 8> ExitBlocks;
2389 L->getUniqueExitBlocks(ExitBlocks);
2390
2391 bool Changed = false;
2392
2393 // Scan all the blocks in the loop that are not in subloops.
2394 for (auto *BB : L->getBlocks()) {
2395 // Ignore blocks in subloops.
2396 if (LF->getLoopFor(BB) != L)
2397 continue;
2398 Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2399 }
2400
2401 return Changed;
2402}
2403
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002404bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
2405 const Module &M = *L->getHeader()->getParent()->getParent();
2406 if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2407 return false;
2408
2409 if (skipLoop(L))
2410 return false;
2411
2412 // If the loop could not be converted to canonical form, it must have an
2413 // indirectbr in it, just give up.
2414 if (!L->getLoopPreheader())
2415 return false;
2416
2417 // Disable loop idiom recognition if the function's name is a common idiom.
2418 StringRef Name = L->getHeader()->getParent()->getName();
2419 if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2420 return false;
2421
2422 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2423 DL = &L->getHeader()->getModule()->getDataLayout();
2424 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2425 LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2426 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2427 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2428
2429 HasMemcpy = TLI->has(LibFunc_memcpy);
2430 HasMemmove = TLI->has(LibFunc_memmove);
2431
2432 if (SE->hasLoopInvariantBackedgeTakenCount(L))
2433 return runOnCountableLoop(L);
2434 return false;
2435}
2436
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002437Pass *llvm::createHexagonLoopIdiomPass() {
2438 return new HexagonLoopIdiomRecognize();
2439}