blob: 1501b4888b111120da9d6a78e83398831b8597f9 [file] [log] [blame]
Eugene Zelenko57bd5a02017-10-27 01:09:08 +00001//===- InferAddressSpace.cpp - --------------------------------------------===//
Jingyue Wu13755602016-03-20 20:59:20 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Jingyue Wu13755602016-03-20 20:59:20 +00006//
7//===----------------------------------------------------------------------===//
8//
9// CUDA C/C++ includes memory space designation as variable type qualifers (such
10// as __global__ and __shared__). Knowing the space of a memory access allows
11// CUDA compilers to emit faster PTX loads and stores. For example, a load from
12// shared memory can be translated to `ld.shared` which is roughly 10% faster
13// than a generic `ld` on an NVIDIA Tesla K40c.
14//
15// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16// compilers must infer the memory space of an address expression from
17// type-qualified variables.
18//
19// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21// places only type-qualified variables in specific address spaces, and then
22// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23// (so-called the generic address space) for other instructions to use.
24//
25// For example, the Clang translates the following CUDA code
26// __shared__ float a[10];
27// float v = a[i];
28// to
29// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31// %v = load float, float* %1 ; emits ld.f32
32// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33// redirected to %0 (the generic version of @a).
34//
35// The optimization implemented in this file propagates specific address spaces
36// from type-qualified variable declarations to its users. For example, it
37// optimizes the above IR to
38// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41// codegen is able to emit ld.shared.f32 for %v.
42//
43// Address space inference works in two steps. First, it uses a data-flow
44// analysis to infer as many generic pointers as possible to point to only one
45// specific address space. In the above example, it can prove that %1 only
46// points to addrspace(3). This algorithm was published in
47// CUDA: Compiling and optimizing for a GPU platform
48// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49// ICCS 2012
50//
51// Then, address space inference replaces all refinable generic pointers with
52// equivalent specific pointers.
53//
54// The major challenge of implementing this optimization is handling PHINodes,
55// which may create loops in the data flow graph. This brings two complications.
56//
57// First, the data flow analysis in Step 1 needs to be circular. For example,
58// %generic.input = addrspacecast float addrspace(3)* %input to float*
59// loop:
60// %y = phi [ %generic.input, %y2 ]
61// %y2 = getelementptr %y, 1
62// %v = load %y2
63// br ..., label %loop, ...
64// proving %y specific requires proving both %generic.input and %y2 specific,
65// but proving %y2 specific circles back to %y. To address this complication,
66// the data flow analysis operates on a lattice:
67// uninitialized > specific address spaces > generic.
68// All address expressions (our implementation only considers phi, bitcast,
69// addrspacecast, and getelementptr) start with the uninitialized address space.
70// The monotone transfer function moves the address space of a pointer down a
71// lattice path from uninitialized to specific and then to generic. A join
72// operation of two different specific address spaces pushes the expression down
73// to the generic address space. The analysis completes once it reaches a fixed
74// point.
75//
76// Second, IR rewriting in Step 2 also needs to be circular. For example,
77// converting %y to addrspace(3) requires the compiler to know the converted
78// %y2, but converting %y2 needs the converted %y. To address this complication,
79// we break these cycles using "undef" placeholders. When converting an
80// instruction `I` to a new address space, if its operand `Op` is not converted
81// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82// For instance, our algorithm first converts %y to
83// %y' = phi float addrspace(3)* [ %input, undef ]
84// Then, it converts %y2 to
85// %y2' = getelementptr %y', 1
86// Finally, it fixes the undef in %y' so that
87// %y' = phi float addrspace(3)* [ %input, %y2' ]
88//
Jingyue Wu13755602016-03-20 20:59:20 +000089//===----------------------------------------------------------------------===//
90
Eugene Zelenko57bd5a02017-10-27 01:09:08 +000091#include "llvm/ADT/ArrayRef.h"
92#include "llvm/ADT/DenseMap.h"
Jingyue Wu13755602016-03-20 20:59:20 +000093#include "llvm/ADT/DenseSet.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +000094#include "llvm/ADT/None.h"
Jingyue Wu13755602016-03-20 20:59:20 +000095#include "llvm/ADT/Optional.h"
96#include "llvm/ADT/SetVector.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +000097#include "llvm/ADT/SmallVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000098#include "llvm/Analysis/TargetTransformInfo.h"
David Blaikie31b98d22018-06-04 21:23:21 +000099#include "llvm/Transforms/Utils/Local.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000100#include "llvm/IR/BasicBlock.h"
101#include "llvm/IR/Constant.h"
102#include "llvm/IR/Constants.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000103#include "llvm/IR/Function.h"
Reid Kleckner0e8c4bb2017-09-07 23:27:44 +0000104#include "llvm/IR/IRBuilder.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000105#include "llvm/IR/InstIterator.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000106#include "llvm/IR/Instruction.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000107#include "llvm/IR/Instructions.h"
Reid Kleckner0e8c4bb2017-09-07 23:27:44 +0000108#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000109#include "llvm/IR/Intrinsics.h"
110#include "llvm/IR/LLVMContext.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000111#include "llvm/IR/Operator.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000112#include "llvm/IR/Type.h"
113#include "llvm/IR/Use.h"
114#include "llvm/IR/User.h"
115#include "llvm/IR/Value.h"
116#include "llvm/IR/ValueHandle.h"
117#include "llvm/Pass.h"
118#include "llvm/Support/Casting.h"
119#include "llvm/Support/Compiler.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000120#include "llvm/Support/Debug.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000121#include "llvm/Support/ErrorHandling.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000122#include "llvm/Support/raw_ostream.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000123#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000124#include "llvm/Transforms/Utils/ValueMapper.h"
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000125#include <cassert>
126#include <iterator>
127#include <limits>
128#include <utility>
129#include <vector>
Jingyue Wu13755602016-03-20 20:59:20 +0000130
Matt Arsenault850657a2017-01-31 01:10:58 +0000131#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000132
Jingyue Wu13755602016-03-20 20:59:20 +0000133using namespace llvm;
134
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000135static const unsigned UninitializedAddressSpace =
136 std::numeric_limits<unsigned>::max();
137
Jingyue Wu13755602016-03-20 20:59:20 +0000138namespace {
Jingyue Wu13755602016-03-20 20:59:20 +0000139
140using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
141
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000142/// InferAddressSpaces
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000143class InferAddressSpaces : public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000144 /// Target specific address space which uses of should be replaced if
145 /// possible.
146 unsigned FlatAddrSpace;
147
Jingyue Wu13755602016-03-20 20:59:20 +0000148public:
149 static char ID;
150
Matt Arsenault850657a2017-01-31 01:10:58 +0000151 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000152
Matt Arsenault32b96002017-01-27 17:30:39 +0000153 void getAnalysisUsage(AnalysisUsage &AU) const override {
154 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000155 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000156 }
157
Jingyue Wu13755602016-03-20 20:59:20 +0000158 bool runOnFunction(Function &F) override;
159
160private:
161 // Returns the new address space of V if updated; otherwise, returns None.
162 Optional<unsigned>
163 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000164 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000165
166 // Tries to infer the specific address space of each address expression in
167 // Postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000168 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000169 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000170
Matt Arsenault72f259b2017-01-31 02:17:32 +0000171 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
172
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000173 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000174 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000175 // all flat expressions in the use-def graph of function F.
Artem Belevichcb8f6322017-10-24 20:31:44 +0000176 bool rewriteWithNewAddressSpaces(
177 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
178 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
Matt Arsenault42b64782017-01-30 23:02:12 +0000179
180 void appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000181 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
182 DenseSet<Value *> &Visited) const;
Matt Arsenault42b64782017-01-30 23:02:12 +0000183
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000184 bool rewriteIntrinsicOperands(IntrinsicInst *II,
185 Value *OldV, Value *NewV) const;
186 void collectRewritableIntrinsicOperands(
187 IntrinsicInst *II,
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000188 std::vector<std::pair<Value *, bool>> &PostorderStack,
189 DenseSet<Value *> &Visited) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000190
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000191 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000192
Matt Arsenault42b64782017-01-30 23:02:12 +0000193 Value *cloneValueWithNewAddressSpace(
194 Value *V, unsigned NewAddrSpace,
195 const ValueToValueMapTy &ValueWithNewAddrSpace,
196 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
197 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000198};
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000199
Jingyue Wu13755602016-03-20 20:59:20 +0000200} // end anonymous namespace
201
Matt Arsenault850657a2017-01-31 01:10:58 +0000202char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000203
204namespace llvm {
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000205
Matt Arsenault850657a2017-01-31 01:10:58 +0000206void initializeInferAddressSpacesPass(PassRegistry &);
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000207
208} // end namespace llvm
Matt Arsenault850657a2017-01-31 01:10:58 +0000209
210INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000211 false, false)
212
213// Returns true if V is an address expression.
214// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
215// getelementptr operators.
216static bool isAddressExpression(const Value &V) {
217 if (!isa<Operator>(V))
218 return false;
219
Joey Gouly92af1362019-02-21 12:31:36 +0000220 const Operator &Op = cast<Operator>(V);
221 switch (Op.getOpcode()) {
Jingyue Wu13755602016-03-20 20:59:20 +0000222 case Instruction::PHI:
Joey Gouly92af1362019-02-21 12:31:36 +0000223 assert(Op.getType()->isPointerTy());
Joey Goulyfdf651e2019-02-21 13:10:37 +0000224 return true;
Jingyue Wu13755602016-03-20 20:59:20 +0000225 case Instruction::BitCast:
226 case Instruction::AddrSpaceCast:
227 case Instruction::GetElementPtr:
228 return true;
Joey Gouly92af1362019-02-21 12:31:36 +0000229 case Instruction::Select:
230 return Op.getType()->isPointerTy();
Jingyue Wu13755602016-03-20 20:59:20 +0000231 default:
232 return false;
233 }
234}
235
236// Returns the pointer operands of V.
237//
238// Precondition: V is an address expression.
239static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000240 const Operator &Op = cast<Operator>(V);
Jingyue Wu13755602016-03-20 20:59:20 +0000241 switch (Op.getOpcode()) {
242 case Instruction::PHI: {
243 auto IncomingValues = cast<PHINode>(Op).incoming_values();
244 return SmallVector<Value *, 2>(IncomingValues.begin(),
245 IncomingValues.end());
246 }
247 case Instruction::BitCast:
248 case Instruction::AddrSpaceCast:
249 case Instruction::GetElementPtr:
250 return {Op.getOperand(0)};
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000251 case Instruction::Select:
252 return {Op.getOperand(1), Op.getOperand(2)};
Jingyue Wu13755602016-03-20 20:59:20 +0000253 default:
254 llvm_unreachable("Unexpected instruction type.");
255 }
256}
257
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000258// TODO: Move logic to TTI?
259bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
260 Value *OldV,
261 Value *NewV) const {
262 Module *M = II->getParent()->getParent()->getParent();
263
264 switch (II->getIntrinsicID()) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000265 case Intrinsic::amdgcn_atomic_inc:
Daniil Fukalovd5fca552018-01-17 14:05:05 +0000266 case Intrinsic::amdgcn_atomic_dec:
Daniil Fukalov6e1dc682018-01-26 11:09:38 +0000267 case Intrinsic::amdgcn_ds_fadd:
268 case Intrinsic::amdgcn_ds_fmin:
269 case Intrinsic::amdgcn_ds_fmax: {
Matt Arsenault79f837c2017-03-30 22:21:40 +0000270 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
Craig Topper79ab6432017-07-06 18:39:47 +0000271 if (!IsVolatile || !IsVolatile->isZero())
Matt Arsenault79f837c2017-03-30 22:21:40 +0000272 return false;
273
274 LLVM_FALLTHROUGH;
275 }
276 case Intrinsic::objectsize: {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000277 Type *DestTy = II->getType();
278 Type *SrcTy = NewV->getType();
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000279 Function *NewDecl =
280 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000281 II->setArgOperand(0, NewV);
282 II->setCalledFunction(NewDecl);
283 return true;
284 }
285 default:
286 return false;
287 }
288}
289
290// TODO: Move logic to TTI?
291void InferAddressSpaces::collectRewritableIntrinsicOperands(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000292 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
293 DenseSet<Value *> &Visited) const {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000294 switch (II->getIntrinsicID()) {
295 case Intrinsic::objectsize:
296 case Intrinsic::amdgcn_atomic_inc:
297 case Intrinsic::amdgcn_atomic_dec:
Daniil Fukalov6e1dc682018-01-26 11:09:38 +0000298 case Intrinsic::amdgcn_ds_fadd:
299 case Intrinsic::amdgcn_ds_fmin:
300 case Intrinsic::amdgcn_ds_fmax:
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000301 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
302 PostorderStack, Visited);
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000303 break;
304 default:
305 break;
306 }
307}
308
309// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000310// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000311// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000312void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000313 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
314 DenseSet<Value *> &Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000315 assert(V->getType()->isPointerTy());
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000316
317 // Generic addressing expressions may be hidden in nested constant
318 // expressions.
319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
320 // TODO: Look in non-address parts, like icmp operands.
321 if (isAddressExpression(*CE) && Visited.insert(CE).second)
322 PostorderStack.push_back(std::make_pair(CE, false));
323
324 return;
325 }
326
Jingyue Wu13755602016-03-20 20:59:20 +0000327 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000328 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000329 if (Visited.insert(V).second) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000330 PostorderStack.push_back(std::make_pair(V, false));
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000331
332 Operator *Op = cast<Operator>(V);
333 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
334 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
335 if (isAddressExpression(*CE) && Visited.insert(CE).second)
336 PostorderStack.emplace_back(CE, false);
337 }
338 }
339 }
Jingyue Wu13755602016-03-20 20:59:20 +0000340 }
341}
342
Matt Arsenault42b64782017-01-30 23:02:12 +0000343// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000344// ordered in postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000345std::vector<WeakTrackingVH>
Matt Arsenault850657a2017-01-31 01:10:58 +0000346InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000347 // This function implements a non-recursive postorder traversal of a partial
348 // use-def graph of function F.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000349 std::vector<std::pair<Value *, bool>> PostorderStack;
Jingyue Wu13755602016-03-20 20:59:20 +0000350 // The set of visited expressions.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000351 DenseSet<Value *> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000352
353 auto PushPtrOperand = [&](Value *Ptr) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000354 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
355 Visited);
Matt Arsenault6c907a92017-01-31 01:40:38 +0000356 };
357
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000358 // Look at operations that may be interesting accelerate by moving to a known
359 // address space. We aim at generating after loads and stores, but pure
360 // addressing calculations may also be faster.
Jingyue Wu13755602016-03-20 20:59:20 +0000361 for (Instruction &I : instructions(F)) {
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000362 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
363 if (!GEP->getType()->isVectorTy())
364 PushPtrOperand(GEP->getPointerOperand());
365 } else if (auto *LI = dyn_cast<LoadInst>(&I))
Matt Arsenault6c907a92017-01-31 01:40:38 +0000366 PushPtrOperand(LI->getPointerOperand());
367 else if (auto *SI = dyn_cast<StoreInst>(&I))
368 PushPtrOperand(SI->getPointerOperand());
369 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
370 PushPtrOperand(RMW->getPointerOperand());
371 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
372 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000373 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
374 // For memset/memcpy/memmove, any pointer operand can be replaced.
375 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000376
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000377 // Handle 2nd operand for memcpy/memmove.
378 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000379 PushPtrOperand(MTI->getRawSource());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000380 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000381 collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000382 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
383 // FIXME: Handle vectors of pointers
384 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
385 PushPtrOperand(Cmp->getOperand(0));
386 PushPtrOperand(Cmp->getOperand(1));
387 }
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000388 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
389 if (!ASC->getType()->isVectorTy())
390 PushPtrOperand(ASC->getPointerOperand());
Matt Arsenault72f259b2017-01-31 02:17:32 +0000391 }
Jingyue Wu13755602016-03-20 20:59:20 +0000392 }
393
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000394 std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
Jingyue Wu13755602016-03-20 20:59:20 +0000395 while (!PostorderStack.empty()) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000396 Value *TopVal = PostorderStack.back().first;
Jingyue Wu13755602016-03-20 20:59:20 +0000397 // If the operands of the expression on the top are already explored,
398 // adds that expression to the resultant postorder.
399 if (PostorderStack.back().second) {
Yaxun Liub909f112017-07-07 02:40:13 +0000400 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
401 Postorder.push_back(TopVal);
Jingyue Wu13755602016-03-20 20:59:20 +0000402 PostorderStack.pop_back();
403 continue;
404 }
405 // Otherwise, adds its operands to the stack and explores them.
406 PostorderStack.back().second = true;
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000407 for (Value *PtrOperand : getPointerOperands(*TopVal)) {
Matt Arsenault6d7f01e2017-04-24 23:42:41 +0000408 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
409 Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000410 }
411 }
412 return Postorder;
413}
414
415// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
416// of OperandUse.get() in the new address space. If the clone is not ready yet,
417// returns an undef in the new address space as a placeholder.
418static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000419 const Use &OperandUse, unsigned NewAddrSpace,
420 const ValueToValueMapTy &ValueWithNewAddrSpace,
421 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000422 Value *Operand = OperandUse.get();
Matt Arsenault30083602017-02-02 03:37:22 +0000423
424 Type *NewPtrTy =
425 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
426
427 if (Constant *C = dyn_cast<Constant>(Operand))
428 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
429
Jingyue Wu13755602016-03-20 20:59:20 +0000430 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
431 return NewOperand;
432
433 UndefUsesToFix->push_back(&OperandUse);
Matt Arsenault30083602017-02-02 03:37:22 +0000434 return UndefValue::get(NewPtrTy);
Jingyue Wu13755602016-03-20 20:59:20 +0000435}
436
437// Returns a clone of `I` with its operands converted to those specified in
438// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
439// operand whose address space needs to be modified might not exist in
440// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
441// adds that operand use to UndefUsesToFix so that caller can fix them later.
442//
443// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
444// from a pointer whose type already matches. Therefore, this function returns a
445// Value* instead of an Instruction*.
446static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000447 Instruction *I, unsigned NewAddrSpace,
448 const ValueToValueMapTy &ValueWithNewAddrSpace,
449 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000450 Type *NewPtrType =
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000451 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000452
453 if (I->getOpcode() == Instruction::AddrSpaceCast) {
454 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000455 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000456 // Therefore, the inferred address space must be the source space, according
457 // to our algorithm.
458 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
459 if (Src->getType() != NewPtrType)
460 return new BitCastInst(Src, NewPtrType);
461 return Src;
462 }
463
464 // Computes the converted pointer operands.
465 SmallVector<Value *, 4> NewPointerOperands;
466 for (const Use &OperandUse : I->operands()) {
467 if (!OperandUse.get()->getType()->isPointerTy())
468 NewPointerOperands.push_back(nullptr);
469 else
470 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000471 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000472 }
473
474 switch (I->getOpcode()) {
475 case Instruction::BitCast:
476 return new BitCastInst(NewPointerOperands[0], NewPtrType);
477 case Instruction::PHI: {
478 assert(I->getType()->isPointerTy());
479 PHINode *PHI = cast<PHINode>(I);
480 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
481 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
482 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
483 NewPHI->addIncoming(NewPointerOperands[OperandNo],
484 PHI->getIncomingBlock(Index));
485 }
486 return NewPHI;
487 }
488 case Instruction::GetElementPtr: {
489 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
490 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000491 GEP->getSourceElementType(), NewPointerOperands[0],
492 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000493 NewGEP->setIsInBounds(GEP->isInBounds());
494 return NewGEP;
495 }
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000496 case Instruction::Select:
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000497 assert(I->getType()->isPointerTy());
498 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
499 NewPointerOperands[2], "", nullptr, I);
Jingyue Wu13755602016-03-20 20:59:20 +0000500 default:
501 llvm_unreachable("Unexpected opcode");
502 }
503}
504
505// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
506// constant expression `CE` with its operands replaced as specified in
507// ValueWithNewAddrSpace.
508static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000509 ConstantExpr *CE, unsigned NewAddrSpace,
510 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000511 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000512 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000513
514 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000515 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000516 // Therefore, the inferred address space must be the source space according
517 // to our algorithm.
518 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
519 NewAddrSpace);
520 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
521 }
522
Matt Arsenaultc18b6772017-02-17 00:32:19 +0000523 if (CE->getOpcode() == Instruction::BitCast) {
524 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
525 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
526 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
527 }
528
Matt Arsenault30083602017-02-02 03:37:22 +0000529 if (CE->getOpcode() == Instruction::Select) {
530 Constant *Src0 = CE->getOperand(1);
531 Constant *Src1 = CE->getOperand(2);
532 if (Src0->getType()->getPointerAddressSpace() ==
533 Src1->getType()->getPointerAddressSpace()) {
534
535 return ConstantExpr::getSelect(
536 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
537 ConstantExpr::getAddrSpaceCast(Src1, TargetType));
538 }
539 }
540
Jingyue Wu13755602016-03-20 20:59:20 +0000541 // Computes the operands of the new constant expression.
Nirav Dave62fb8492017-06-08 13:20:55 +0000542 bool IsNew = false;
Jingyue Wu13755602016-03-20 20:59:20 +0000543 SmallVector<Constant *, 4> NewOperands;
544 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
545 Constant *Operand = CE->getOperand(Index);
546 // If the address space of `Operand` needs to be modified, the new operand
547 // with the new address space should already be in ValueWithNewAddrSpace
548 // because (1) the constant expressions we consider (i.e. addrspacecast,
549 // bitcast, and getelementptr) do not incur cycles in the data flow graph
550 // and (2) this function is called on constant expressions in postorder.
551 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
Nirav Dave62fb8492017-06-08 13:20:55 +0000552 IsNew = true;
Jingyue Wu13755602016-03-20 20:59:20 +0000553 NewOperands.push_back(cast<Constant>(NewOperand));
554 } else {
555 // Otherwise, reuses the old operand.
556 NewOperands.push_back(Operand);
557 }
558 }
559
Nirav Dave62fb8492017-06-08 13:20:55 +0000560 // If !IsNew, we will replace the Value with itself. However, replaced values
561 // are assumed to wrapped in a addrspace cast later so drop it now.
562 if (!IsNew)
563 return nullptr;
564
Jingyue Wu13755602016-03-20 20:59:20 +0000565 if (CE->getOpcode() == Instruction::GetElementPtr) {
566 // Needs to specify the source type while constructing a getelementptr
567 // constant expression.
568 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000569 NewOperands, TargetType, /*OnlyIfReduced=*/false,
570 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000571 }
572
573 return CE->getWithOperands(NewOperands, TargetType);
574}
575
576// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000577// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000578// expression whose address space needs to be modified, in postorder.
579//
580// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000581Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000582 Value *V, unsigned NewAddrSpace,
583 const ValueToValueMapTy &ValueWithNewAddrSpace,
584 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000585 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000586 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000587 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000588
589 if (Instruction *I = dyn_cast<Instruction>(V)) {
590 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000591 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000592 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
593 if (NewI->getParent() == nullptr) {
594 NewI->insertBefore(I);
595 NewI->takeName(I);
596 }
597 }
598 return NewV;
599 }
600
601 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000602 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000603}
604
605// Defines the join operation on the address space lattice (see the file header
606// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000607unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
608 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000609 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
610 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000611
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000612 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000613 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000614 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000615 return AS1;
616
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000617 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000618 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000619}
620
Matt Arsenault850657a2017-01-31 01:10:58 +0000621bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000622 if (skipFunction(F))
623 return false;
624
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000625 const TargetTransformInfo &TTI =
626 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Matt Arsenault42b64782017-01-30 23:02:12 +0000627 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000628 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000629 return false;
630
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000631 // Collects all flat address expressions in postorder.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000632 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000633
634 // Runs a data-flow analysis to refine the address spaces of every expression
635 // in Postorder.
636 ValueToAddrSpaceMapTy InferredAddrSpace;
637 inferAddressSpaces(Postorder, &InferredAddrSpace);
638
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000639 // Changes the address spaces of the flat address expressions who are inferred
640 // to point to a specific address space.
Artem Belevichcb8f6322017-10-24 20:31:44 +0000641 return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
Jingyue Wu13755602016-03-20 20:59:20 +0000642}
643
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000644// Constants need to be tracked through RAUW to handle cases with nested
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000645// constant expressions, so wrap values in WeakTrackingVH.
Matt Arsenault850657a2017-01-31 01:10:58 +0000646void InferAddressSpaces::inferAddressSpaces(
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000647 ArrayRef<WeakTrackingVH> Postorder,
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000648 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000649 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
650 // Initially, all expressions are in the uninitialized address space.
651 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000652 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000653
654 while (!Worklist.empty()) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000655 Value *V = Worklist.pop_back_val();
Jingyue Wu13755602016-03-20 20:59:20 +0000656
657 // Tries to update the address space of the stack top according to the
658 // address spaces of its operands.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000659 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000660 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
661 if (!NewAS.hasValue())
662 continue;
663 // If any updates are made, grabs its users to the worklist because
664 // their address spaces can also be possibly updated.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000665 LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000666 (*InferredAddrSpace)[V] = NewAS.getValue();
667
668 for (Value *User : V->users()) {
669 // Skip if User is already in the worklist.
670 if (Worklist.count(User))
671 continue;
672
673 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000674 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000675 // expressions, which are those in InferredAddrSpace.
676 if (Pos == InferredAddrSpace->end())
677 continue;
678
679 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000680 // path. Therefore, nothing to do if User is already inferred as flat (the
681 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000682 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000683 continue;
684
685 Worklist.insert(User);
686 }
687 }
688}
689
Matt Arsenault850657a2017-01-31 01:10:58 +0000690Optional<unsigned> InferAddressSpaces::updateAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000691 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000692 assert(InferredAddrSpace.count(&V));
693
694 // The new inferred address space equals the join of the address spaces
695 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000696 unsigned NewAS = UninitializedAddressSpace;
Matt Arsenault850657a2017-01-31 01:10:58 +0000697
Matt Arsenault30083602017-02-02 03:37:22 +0000698 const Operator &Op = cast<Operator>(V);
699 if (Op.getOpcode() == Instruction::Select) {
700 Value *Src0 = Op.getOperand(1);
701 Value *Src1 = Op.getOperand(2);
702
703 auto I = InferredAddrSpace.find(Src0);
704 unsigned Src0AS = (I != InferredAddrSpace.end()) ?
705 I->second : Src0->getType()->getPointerAddressSpace();
706
707 auto J = InferredAddrSpace.find(Src1);
708 unsigned Src1AS = (J != InferredAddrSpace.end()) ?
709 J->second : Src1->getType()->getPointerAddressSpace();
710
711 auto *C0 = dyn_cast<Constant>(Src0);
712 auto *C1 = dyn_cast<Constant>(Src1);
713
714 // If one of the inputs is a constant, we may be able to do a constant
715 // addrspacecast of it. Defer inferring the address space until the input
716 // address space is known.
717 if ((C1 && Src0AS == UninitializedAddressSpace) ||
718 (C0 && Src1AS == UninitializedAddressSpace))
719 return None;
720
721 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
722 NewAS = Src1AS;
723 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
724 NewAS = Src0AS;
725 else
726 NewAS = joinAddressSpaces(Src0AS, Src1AS);
727 } else {
728 for (Value *PtrOperand : getPointerOperands(V)) {
729 auto I = InferredAddrSpace.find(PtrOperand);
730 unsigned OperandAS = I != InferredAddrSpace.end() ?
731 I->second : PtrOperand->getType()->getPointerAddressSpace();
732
733 // join(flat, *) = flat. So we can break if NewAS is already flat.
734 NewAS = joinAddressSpaces(NewAS, OperandAS);
735 if (NewAS == FlatAddrSpace)
736 break;
737 }
Jingyue Wu13755602016-03-20 20:59:20 +0000738 }
739
740 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000741 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000742 if (OldAS == NewAS)
743 return None;
744 return NewAS;
745}
746
Matt Arsenault6c907a92017-01-31 01:40:38 +0000747/// \p returns true if \p U is the pointer operand of a memory instruction with
748/// a single pointer operand that can have its address space changed by simply
Artem Belevichcb8f6322017-10-24 20:31:44 +0000749/// mutating the use to a new value. If the memory instruction is volatile,
750/// return true only if the target allows the memory instruction to be volatile
751/// in the new address space.
752static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
753 Use &U, unsigned AddrSpace) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000754 User *Inst = U.getUser();
755 unsigned OpNo = U.getOperandNo();
Artem Belevichcb8f6322017-10-24 20:31:44 +0000756 bool VolatileIsAllowed = false;
757 if (auto *I = dyn_cast<Instruction>(Inst))
758 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
Matt Arsenault6c907a92017-01-31 01:40:38 +0000759
760 if (auto *LI = dyn_cast<LoadInst>(Inst))
Artem Belevichcb8f6322017-10-24 20:31:44 +0000761 return OpNo == LoadInst::getPointerOperandIndex() &&
762 (VolatileIsAllowed || !LI->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000763
764 if (auto *SI = dyn_cast<StoreInst>(Inst))
Artem Belevichcb8f6322017-10-24 20:31:44 +0000765 return OpNo == StoreInst::getPointerOperandIndex() &&
766 (VolatileIsAllowed || !SI->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000767
768 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
Artem Belevichcb8f6322017-10-24 20:31:44 +0000769 return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
770 (VolatileIsAllowed || !RMW->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000771
Eugene Zelenko57bd5a02017-10-27 01:09:08 +0000772 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
Matt Arsenault6c907a92017-01-31 01:40:38 +0000773 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
Artem Belevichcb8f6322017-10-24 20:31:44 +0000774 (VolatileIsAllowed || !CmpX->isVolatile());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000775
776 return false;
777}
778
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000779/// Update memory intrinsic uses that require more complex processing than
780/// simple memory instructions. Thse require re-mangling and may have multiple
781/// pointer operands.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000782static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
783 Value *NewV) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000784 IRBuilder<> B(MI);
785 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
786 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
787 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
788
789 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
790 B.CreateMemSet(NewV, MSI->getValue(),
Daniel Neilson5fdf08f2018-02-06 20:33:36 +0000791 MSI->getLength(), MSI->getDestAlignment(),
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000792 false, // isVolatile
793 TBAA, ScopeMD, NoAliasMD);
794 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
795 Value *Src = MTI->getRawSource();
796 Value *Dest = MTI->getRawDest();
797
798 // Be careful in case this is a self-to-self copy.
799 if (Src == OldV)
800 Src = NewV;
801
802 if (Dest == OldV)
803 Dest = NewV;
804
805 if (isa<MemCpyInst>(MTI)) {
806 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
Daniel Neilson5fdf08f2018-02-06 20:33:36 +0000807 B.CreateMemCpy(Dest, MTI->getDestAlignment(),
808 Src, MTI->getSourceAlignment(),
809 MTI->getLength(),
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000810 false, // isVolatile
811 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
812 } else {
813 assert(isa<MemMoveInst>(MTI));
Daniel Neilson5fdf08f2018-02-06 20:33:36 +0000814 B.CreateMemMove(Dest, MTI->getDestAlignment(),
815 Src, MTI->getSourceAlignment(),
816 MTI->getLength(),
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000817 false, // isVolatile
818 TBAA, ScopeMD, NoAliasMD);
819 }
820 } else
821 llvm_unreachable("unhandled MemIntrinsic");
822
823 MI->eraseFromParent();
824 return true;
825}
826
Matt Arsenault72f259b2017-01-31 02:17:32 +0000827// \p returns true if it is OK to change the address space of constant \p C with
828// a ConstantExpr addrspacecast.
829bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
Matt Arsenault30083602017-02-02 03:37:22 +0000830 assert(NewAS != UninitializedAddressSpace);
831
Matt Arsenault2a46d812017-01-31 23:48:40 +0000832 unsigned SrcAS = C->getType()->getPointerAddressSpace();
833 if (SrcAS == NewAS || isa<UndefValue>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000834 return true;
835
Matt Arsenault2a46d812017-01-31 23:48:40 +0000836 // Prevent illegal casts between different non-flat address spaces.
837 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
838 return false;
839
840 if (isa<ConstantPointerNull>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000841 return true;
842
843 if (auto *Op = dyn_cast<Operator>(C)) {
844 // If we already have a constant addrspacecast, it should be safe to cast it
845 // off.
846 if (Op->getOpcode() == Instruction::AddrSpaceCast)
847 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
848
849 if (Op->getOpcode() == Instruction::IntToPtr &&
850 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
851 return true;
852 }
853
854 return false;
855}
856
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000857static Value::use_iterator skipToNextUser(Value::use_iterator I,
858 Value::use_iterator End) {
859 User *CurUser = I->getUser();
860 ++I;
861
862 while (I != End && I->getUser() == CurUser)
863 ++I;
864
865 return I;
866}
867
Matt Arsenault850657a2017-01-31 01:10:58 +0000868bool InferAddressSpaces::rewriteWithNewAddressSpaces(
Artem Belevichcb8f6322017-10-24 20:31:44 +0000869 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000870 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000871 // For each address expression to be modified, creates a clone of it with its
872 // pointer operands converted to the new address space. Since the pointer
873 // operands are converted, the clone is naturally in the new address space by
874 // construction.
875 ValueToValueMapTy ValueWithNewAddrSpace;
876 SmallVector<const Use *, 32> UndefUsesToFix;
877 for (Value* V : Postorder) {
878 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
879 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
880 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000881 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000882 }
883 }
884
885 if (ValueWithNewAddrSpace.empty())
886 return false;
887
888 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000889 for (const Use *UndefUse : UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000890 User *V = UndefUse->getUser();
891 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
892 unsigned OperandNo = UndefUse->getOperandNo();
893 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
894 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
895 }
896
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000897 SmallVector<Instruction *, 16> DeadInstructions;
898
Jingyue Wu13755602016-03-20 20:59:20 +0000899 // Replaces the uses of the old address expressions with the new ones.
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000900 for (const WeakTrackingVH &WVH : Postorder) {
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000901 assert(WVH && "value was unexpectedly deleted");
902 Value *V = WVH;
Jingyue Wu13755602016-03-20 20:59:20 +0000903 Value *NewV = ValueWithNewAddrSpace.lookup(V);
904 if (NewV == nullptr)
905 continue;
906
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000907 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
908 << *NewV << '\n');
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000909
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000910 if (Constant *C = dyn_cast<Constant>(V)) {
911 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
912 C->getType());
913 if (C != Replace) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000914 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
915 << ": " << *Replace << '\n');
Matt Arsenaulte0f9e982017-04-28 22:52:41 +0000916 C->replaceAllUsesWith(Replace);
917 V = Replace;
918 }
919 }
920
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000921 Value::use_iterator I, E, Next;
922 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
923 Use &U = *I;
924
925 // Some users may see the same pointer operand in multiple operands. Skip
926 // to the next instruction.
927 I = skipToNextUser(I, E);
928
Artem Belevichcb8f6322017-10-24 20:31:44 +0000929 if (isSimplePointerUseValidToReplace(
930 TTI, U, V->getType()->getPointerAddressSpace())) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000931 // If V is used as the pointer operand of a compatible memory operation,
932 // sets the pointer operand to NewV. This replacement does not change
933 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000934 U.set(NewV);
935 continue;
936 }
937
938 User *CurUser = U.getUser();
939 // Handle more complex cases like intrinsic that need to be remangled.
940 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
941 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
942 continue;
943 }
944
945 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
946 if (rewriteIntrinsicOperands(II, V, NewV))
947 continue;
948 }
949
950 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000951 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
952 // If we can infer that both pointers are in the same addrspace,
953 // transform e.g.
954 // %cmp = icmp eq float* %p, %q
955 // into
956 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
957
958 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
959 int SrcIdx = U.getOperandNo();
960 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
961 Value *OtherSrc = Cmp->getOperand(OtherIdx);
962
963 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
964 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
965 Cmp->setOperand(OtherIdx, OtherNewV);
966 Cmp->setOperand(SrcIdx, NewV);
967 continue;
968 }
969 }
970
971 // Even if the type mismatches, we can cast the constant.
972 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
973 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
974 Cmp->setOperand(SrcIdx, NewV);
975 Cmp->setOperand(OtherIdx,
976 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
977 continue;
978 }
979 }
980 }
981
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000982 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
983 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
984 if (ASC->getDestAddressSpace() == NewAS) {
Yaxun Liud23f23d2017-10-30 21:19:41 +0000985 if (ASC->getType()->getPointerElementType() !=
986 NewV->getType()->getPointerElementType()) {
987 NewV = CastInst::Create(Instruction::BitCast, NewV,
988 ASC->getType(), "", ASC);
989 }
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000990 ASC->replaceAllUsesWith(NewV);
Matt Arsenaultc20ccd22017-04-28 22:18:19 +0000991 DeadInstructions.push_back(ASC);
Matt Arsenaulta1e73402017-04-28 22:18:08 +0000992 continue;
993 }
994 }
995
Matt Arsenault850657a2017-01-31 01:10:58 +0000996 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000997 if (Instruction *I = dyn_cast<Instruction>(V)) {
998 BasicBlock::iterator InsertPos = std::next(I->getIterator());
999 while (isa<PHINode>(InsertPos))
1000 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +00001001 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +00001002 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +00001003 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1004 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +00001005 }
1006 }
1007 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +00001008
Matt Arsenaultc20ccd22017-04-28 22:18:19 +00001009 if (V->use_empty()) {
1010 if (Instruction *I = dyn_cast<Instruction>(V))
1011 DeadInstructions.push_back(I);
1012 }
Jingyue Wu13755602016-03-20 20:59:20 +00001013 }
1014
Matt Arsenaultc20ccd22017-04-28 22:18:19 +00001015 for (Instruction *I : DeadInstructions)
1016 RecursivelyDeleteTriviallyDeadInstructions(I);
1017
Jingyue Wu13755602016-03-20 20:59:20 +00001018 return true;
1019}
1020
Matt Arsenault850657a2017-01-31 01:10:58 +00001021FunctionPass *llvm::createInferAddressSpacesPass() {
1022 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +00001023}