blob: eef048ec36b9e6ff2b606f7a6b0a84a7c9f95a66 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The LoopPredication pass tries to convert loop variant range checks to loop
10// invariant by widening checks across loop iterations. For example, it will
11// convert
12//
13// for (i = 0; i < n; i++) {
14// guard(i < len);
15// ...
16// }
17//
18// to
19//
20// for (i = 0; i < n; i++) {
21// guard(n - 1 < len);
22// ...
23// }
24//
25// After this transformation the condition of the guard is loop invariant, so
26// loop-unswitch can later unswitch the loop by this condition which basically
27// predicates the loop by the widened condition:
28//
29// if (n - 1 < len)
30// for (i = 0; i < n; i++) {
31// ...
32// }
33// else
34// deoptimize
35//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000036// It's tempting to rely on SCEV here, but it has proven to be problematic.
37// Generally the facts SCEV provides about the increment step of add
38// recurrences are true if the backedge of the loop is taken, which implicitly
39// assumes that the guard doesn't fail. Using these facts to optimize the
40// guard results in a circular logic where the guard is optimized under the
41// assumption that it never fails.
42//
43// For example, in the loop below the induction variable will be marked as nuw
44// basing on the guard. Basing on nuw the guard predicate will be considered
45// monotonic. Given a monotonic condition it's tempting to replace the induction
46// variable in the condition with its value on the last iteration. But this
47// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48//
49// for (int i = b; i != e; i++)
50// guard(i u< len)
51//
52// One of the ways to reason about this problem is to use an inductive proof
53// approach. Given the loop:
54//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000055// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000056// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000057// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000058// I.INC = I + Step
59// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000060// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000061// }
62//
63// where B(x) and G(x) are predicates that map integers to booleans, we want a
64// loop invariant expression M such the following program has the same semantics
65// as the above:
66//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000067// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000068// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000069// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000070// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000071// guard(G(0) && M);
72// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000073// }
74//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000075// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000076//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077// Informal proof that the transformation above is correct:
78//
79// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000080// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000081//
82// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000083// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000084// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000085//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000086// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000087// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000088//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000089// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000090// iteration:
91//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000092// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000093// G(I) is true because the backedge is guarded by this condition.
94//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000095// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000096//
97// Note that we can use anything stronger than M, i.e. any condition which
98// implies M.
99//
Anna Thomas7b360432017-12-04 15:11:48 +0000100// When S = 1 (i.e. forward iterating loop), the transformation is supported
101// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000102// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000103// B(X) = latchStart + X <pred> latchLimit,
104// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000105// * The guard condition is of the form
106// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000107//
Anna Thomas7b360432017-12-04 15:11:48 +0000108// For the ult latch comparison case M is:
109// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000111//
Anna Thomas7b360432017-12-04 15:11:48 +0000112// The only way the antecedent can be true and the consequent can be false is
113// if
114// X == guardLimit - 1 - guardStart
115// (and guardLimit is non-zero, but we won't use this latter fact).
116// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117// latchStart + guardLimit - 1 - guardStart u< latchLimit
118// and its negation is
119// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000120//
Anna Thomas7b360432017-12-04 15:11:48 +0000121// In other words, if
122// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123// then:
124// (the ranges below are written in ConstantRange notation, where [A, B) is the
125// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000126//
Anna Thomas7b360432017-12-04 15:11:48 +0000127// forall X . guardStart + X u< guardLimit &&
128// latchStart + X u< latchLimit =>
129// guardStart + X + 1 u< guardLimit
130// == forall X . guardStart + X u< guardLimit &&
131// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132// guardStart + X + 1 u< guardLimit
133// == forall X . (guardStart + X) in [0, guardLimit) &&
134// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135// (guardStart + X + 1) in [0, guardLimit)
136// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137// X in [-latchStart, guardLimit - 1 - guardStart) =>
138// X in [-guardStart - 1, guardLimit - guardStart - 1)
139// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000140//
Anna Thomas7b360432017-12-04 15:11:48 +0000141// So the widened condition is:
142// guardStart u< guardLimit &&
143// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144// Similarly for ule condition the widened condition is:
145// guardStart u< guardLimit &&
146// latchStart + guardLimit - 1 - guardStart u> latchLimit
147// For slt condition the widened condition is:
148// guardStart u< guardLimit &&
149// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150// For sle condition the widened condition is:
151// guardStart u< guardLimit &&
152// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000153//
Anna Thomas7b360432017-12-04 15:11:48 +0000154// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155// when:
156// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000157// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000158// * The guard condition is of the form
159// G(X) = X - 1 u< guardLimit
160//
161// For the ugt latch comparison case M is:
162// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163//
164// The only way the antecedent can be true and the consequent can be false is if
165// X == 1.
166// If X == 1 then the second half of the antecedent is
167// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168//
169// So the widened condition is:
170// guardStart u< guardLimit && latchLimit u>= 1.
171// Similarly for sgt condition the widened condition is:
172// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000173// For uge condition the widened condition is:
174// guardStart u< guardLimit && latchLimit u> 1.
175// For sge condition the widened condition is:
176// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177//===----------------------------------------------------------------------===//
178
179#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000180#include "llvm/ADT/Statistic.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000181#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000182#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000183#include "llvm/Analysis/LoopInfo.h"
184#include "llvm/Analysis/LoopPass.h"
185#include "llvm/Analysis/ScalarEvolution.h"
186#include "llvm/Analysis/ScalarEvolutionExpander.h"
187#include "llvm/Analysis/ScalarEvolutionExpressions.h"
188#include "llvm/IR/Function.h"
189#include "llvm/IR/GlobalValue.h"
190#include "llvm/IR/IntrinsicInst.h"
191#include "llvm/IR/Module.h"
192#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000193#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000194#include "llvm/Support/Debug.h"
195#include "llvm/Transforms/Scalar.h"
196#include "llvm/Transforms/Utils/LoopUtils.h"
197
198#define DEBUG_TYPE "loop-predication"
199
Fedor Sergeevc297e842018-10-17 09:02:54 +0000200STATISTIC(TotalConsidered, "Number of guards considered");
201STATISTIC(TotalWidened, "Number of checks widened");
202
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000203using namespace llvm;
204
Anna Thomas1d02b132017-11-02 21:21:02 +0000205static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
206 cl::Hidden, cl::init(true));
207
Anna Thomas7b360432017-12-04 15:11:48 +0000208static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
209 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000210
211static cl::opt<bool>
212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
213 cl::Hidden, cl::init(false));
214
215// This is the scale factor for the latch probability. We use this during
216// profitability analysis to find other exiting blocks that have a much higher
217// probability of exiting the loop instead of loop exiting via latch.
218// This value should be greater than 1 for a sane profitability check.
219static cl::opt<float> LatchExitProbabilityScale(
220 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
221 cl::desc("scale factor for the latch probability. Value should be greater "
222 "than 1. Lower values are ignored"));
223
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000224static cl::opt<bool> PredicateWidenableBranchGuards(
225 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
226 cl::desc("Whether or not we should predicate guards "
227 "expressed as widenable branches to deoptimize blocks"),
228 cl::init(true));
229
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000230namespace {
231class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000232 /// Represents an induction variable check:
233 /// icmp Pred, <induction variable>, <loop invariant limit>
234 struct LoopICmp {
235 ICmpInst::Predicate Pred;
236 const SCEVAddRecExpr *IV;
237 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000238 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
239 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000240 : Pred(Pred), IV(IV), Limit(Limit) {}
241 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000242 void dump() {
243 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
244 << ", Limit = " << *Limit << "\n";
245 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000246 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000247
248 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000249 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000250
251 Loop *L;
252 const DataLayout *DL;
253 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000254 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000255
Anna Thomas68797212017-11-03 14:25:39 +0000256 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000257 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
258 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
259 ICI->getOperand(1));
260 }
261 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
262 Value *RHS);
263
264 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000265
Anna Thomas68797212017-11-03 14:25:39 +0000266 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000267 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
268 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
269 Instruction *InsertAt);
270
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000271 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
272 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000273 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
274 LoopICmp RangeCheck,
275 SCEVExpander &Expander,
276 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000277 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
278 LoopICmp RangeCheck,
279 SCEVExpander &Expander,
280 IRBuilder<> &Builder);
Max Kazantsevca450872019-01-22 10:13:36 +0000281 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
282 SCEVExpander &Expander, IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000283 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000284 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
Anna Thomas9b1176b2018-03-22 16:03:59 +0000285 // If the loop always exits through another block in the loop, we should not
286 // predicate based on the latch check. For example, the latch check can be a
287 // very coarse grained check and there can be more fine grained exit checks
288 // within the loop. We identify such unprofitable loops through BPI.
289 bool isLoopProfitableToPredicate();
290
Anna Thomas1d02b132017-11-02 21:21:02 +0000291 // When the IV type is wider than the range operand type, we can still do loop
292 // predication, by generating SCEVs for the range and latch that are of the
293 // same type. We achieve this by generating a SCEV truncate expression for the
294 // latch IV. This is done iff truncation of the IV is a safe operation,
295 // without loss of information.
296 // Another way to achieve this is by generating a wider type SCEV for the
297 // range check operand, however, this needs a more involved check that
298 // operands do not overflow. This can lead to loss of information when the
299 // range operand is of the form: add i32 %offset, %iv. We need to prove that
300 // sext(x + y) is same as sext(x) + sext(y).
301 // This function returns true if we can safely represent the IV type in
302 // the RangeCheckType without loss of information.
303 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
304 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
305 // so.
306 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000307
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000308public:
Anna Thomas9b1176b2018-03-22 16:03:59 +0000309 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
310 : SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000311 bool runOnLoop(Loop *L);
312};
313
314class LoopPredicationLegacyPass : public LoopPass {
315public:
316 static char ID;
317 LoopPredicationLegacyPass() : LoopPass(ID) {
318 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
319 }
320
321 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000322 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000323 getLoopAnalysisUsage(AU);
324 }
325
326 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
327 if (skipLoop(L))
328 return false;
329 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000330 BranchProbabilityInfo &BPI =
331 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
332 LoopPredication LP(SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000333 return LP.runOnLoop(L);
334 }
335};
336
337char LoopPredicationLegacyPass::ID = 0;
338} // end namespace llvm
339
340INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
341 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000342INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000343INITIALIZE_PASS_DEPENDENCY(LoopPass)
344INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
345 "Loop predication", false, false)
346
347Pass *llvm::createLoopPredicationPass() {
348 return new LoopPredicationLegacyPass();
349}
350
351PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
352 LoopStandardAnalysisResults &AR,
353 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000354 const auto &FAM =
355 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
356 Function *F = L.getHeader()->getParent();
357 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
358 LoopPredication LP(&AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000359 if (!LP.runOnLoop(&L))
360 return PreservedAnalyses::all();
361
362 return getLoopPassPreservedAnalyses();
363}
364
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000365Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000366LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
367 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000368 const SCEV *LHSS = SE->getSCEV(LHS);
369 if (isa<SCEVCouldNotCompute>(LHSS))
370 return None;
371 const SCEV *RHSS = SE->getSCEV(RHS);
372 if (isa<SCEVCouldNotCompute>(RHSS))
373 return None;
374
375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376 if (SE->isLoopInvariant(LHSS, L)) {
377 std::swap(LHS, RHS);
378 std::swap(LHSS, RHSS);
379 Pred = ICmpInst::getSwappedPredicate(Pred);
380 }
381
382 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
383 if (!AR || AR->getLoop() != L)
384 return None;
385
386 return LoopICmp(Pred, AR, RHSS);
387}
388
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000389Value *LoopPredication::expandCheck(SCEVExpander &Expander,
390 IRBuilder<> &Builder,
391 ICmpInst::Predicate Pred, const SCEV *LHS,
392 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000393 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
Fangrui Songf78650a2018-07-30 19:41:25 +0000394
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000395 Type *Ty = LHS->getType();
396 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000397
398 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
399 return Builder.getTrue();
400
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000401 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
402 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
403 return Builder.CreateICmp(Pred, LHSV, RHSV);
404}
405
Anna Thomas1d02b132017-11-02 21:21:02 +0000406Optional<LoopPredication::LoopICmp>
407LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
408
409 auto *LatchType = LatchCheck.IV->getType();
410 if (RangeCheckType == LatchType)
411 return LatchCheck;
412 // For now, bail out if latch type is narrower than range type.
413 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
414 return None;
415 if (!isSafeToTruncateWideIVType(RangeCheckType))
416 return None;
417 // We can now safely identify the truncated version of the IV and limit for
418 // RangeCheckType.
419 LoopICmp NewLatchCheck;
420 NewLatchCheck.Pred = LatchCheck.Pred;
421 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
422 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
423 if (!NewLatchCheck.IV)
424 return None;
425 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000426 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
427 << "can be represented as range check type:"
428 << *RangeCheckType << "\n");
429 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
430 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000431 return NewLatchCheck;
432}
433
Anna Thomas68797212017-11-03 14:25:39 +0000434bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000435 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000436}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000437
Anna Thomas68797212017-11-03 14:25:39 +0000438bool LoopPredication::CanExpand(const SCEV* S) {
439 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
440}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000441
Anna Thomas68797212017-11-03 14:25:39 +0000442Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
443 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
444 SCEVExpander &Expander, IRBuilder<> &Builder) {
445 auto *Ty = RangeCheck.IV->getType();
446 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000447 // guardStart u< guardLimit &&
448 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000449 // where <pred> depends on the latch condition predicate. See the file
450 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000451 // guardLimit - guardStart + latchStart - 1
452 const SCEV *GuardStart = RangeCheck.IV->getStart();
453 const SCEV *GuardLimit = RangeCheck.Limit;
454 const SCEV *LatchStart = LatchCheck.IV->getStart();
455 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000456
457 // guardLimit - guardStart + latchStart - 1
458 const SCEV *RHS =
459 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
460 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000461 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
462 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000463 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000464 return None;
465 }
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000466 auto LimitCheckPred =
467 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000468
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000469 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
470 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
471 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000472
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000473 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000474 auto *LimitCheck =
475 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
Anna Thomas68797212017-11-03 14:25:39 +0000476 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000477 GuardStart, GuardLimit, InsertAt);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000478 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000479}
Anna Thomas7b360432017-12-04 15:11:48 +0000480
481Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
482 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
483 SCEVExpander &Expander, IRBuilder<> &Builder) {
484 auto *Ty = RangeCheck.IV->getType();
485 const SCEV *GuardStart = RangeCheck.IV->getStart();
486 const SCEV *GuardLimit = RangeCheck.Limit;
487 const SCEV *LatchLimit = LatchCheck.Limit;
488 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
489 !CanExpand(LatchLimit)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000490 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000491 return None;
492 }
493 // The decrement of the latch check IV should be the same as the
494 // rangeCheckIV.
495 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
496 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000497 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
498 << *PostDecLatchCheckIV
499 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000500 return None;
501 }
502
503 // Generate the widened condition for CountDownLoop:
504 // guardStart u< guardLimit &&
505 // latchLimit <pred> 1.
506 // See the header comment for reasoning of the checks.
507 Instruction *InsertAt = Preheader->getTerminator();
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000508 auto LimitCheckPred =
509 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Anna Thomas7b360432017-12-04 15:11:48 +0000510 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
511 GuardStart, GuardLimit, InsertAt);
512 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
513 SE->getOne(Ty), InsertAt);
514 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
515}
516
Anna Thomas68797212017-11-03 14:25:39 +0000517/// If ICI can be widened to a loop invariant condition emits the loop
518/// invariant condition in the loop preheader and return it, otherwise
519/// returns None.
520Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
521 SCEVExpander &Expander,
522 IRBuilder<> &Builder) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000523 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
524 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000525
526 // parseLoopStructure guarantees that the latch condition is:
527 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
528 // We are looking for the range checks of the form:
529 // i u< guardLimit
530 auto RangeCheck = parseLoopICmp(ICI);
531 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000532 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000533 return None;
534 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000535 LLVM_DEBUG(dbgs() << "Guard check:\n");
536 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000537 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000538 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
539 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000540 return None;
541 }
542 auto *RangeCheckIV = RangeCheck->IV;
543 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000544 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000545 return None;
546 }
547 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
548 // We cannot just compare with latch IV step because the latch and range IVs
549 // may have different types.
550 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000551 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000552 return None;
553 }
554 auto *Ty = RangeCheckIV->getType();
555 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
556 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000557 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
558 "corresponding to range type: "
559 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000560 return None;
561 }
562
563 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000564 // At this point, the range and latch step should have the same type, but need
565 // not have the same value (we support both 1 and -1 steps).
566 assert(Step->getType() ==
567 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
568 "Range and latch steps should be of same type!");
569 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000570 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000571 return None;
572 }
Anna Thomas68797212017-11-03 14:25:39 +0000573
Anna Thomas7b360432017-12-04 15:11:48 +0000574 if (Step->isOne())
575 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
576 Expander, Builder);
577 else {
578 assert(Step->isAllOnesValue() && "Step should be -1!");
579 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
580 Expander, Builder);
581 }
Anna Thomas68797212017-11-03 14:25:39 +0000582}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000583
Max Kazantsevca450872019-01-22 10:13:36 +0000584unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
585 Value *Condition,
586 SCEVExpander &Expander,
587 IRBuilder<> &Builder) {
588 unsigned NumWidened = 0;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000589 // The guard condition is expected to be in form of:
590 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000591 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000592 // widened across loop iterations. Widening these conditions remember the
593 // resulting list of subconditions in Checks vector.
Max Kazantsevca450872019-01-22 10:13:36 +0000594 SmallVector<Value *, 4> Worklist(1, Condition);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000595 SmallPtrSet<Value *, 4> Visited;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000596 do {
597 Value *Condition = Worklist.pop_back_val();
598 if (!Visited.insert(Condition).second)
599 continue;
600
601 Value *LHS, *RHS;
602 using namespace llvm::PatternMatch;
603 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
604 Worklist.push_back(LHS);
605 Worklist.push_back(RHS);
606 continue;
607 }
608
609 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
610 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
611 Checks.push_back(NewRangeCheck.getValue());
612 NumWidened++;
613 continue;
614 }
615 }
616
617 // Save the condition as is if we can't widen it
618 Checks.push_back(Condition);
Max Kazantsevca450872019-01-22 10:13:36 +0000619 } while (!Worklist.empty());
620 return NumWidened;
621}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000622
Max Kazantsevca450872019-01-22 10:13:36 +0000623bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
624 SCEVExpander &Expander) {
625 LLVM_DEBUG(dbgs() << "Processing guard:\n");
626 LLVM_DEBUG(Guard->dump());
627
628 TotalConsidered++;
629 SmallVector<Value *, 4> Checks;
630 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
631 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
632 Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000633 if (NumWidened == 0)
634 return false;
635
Fedor Sergeevc297e842018-10-17 09:02:54 +0000636 TotalWidened += NumWidened;
637
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000638 // Emit the new guard condition
639 Builder.SetInsertPoint(Guard);
640 Value *LastCheck = nullptr;
641 for (auto *Check : Checks)
642 if (!LastCheck)
643 LastCheck = Check;
644 else
645 LastCheck = Builder.CreateAnd(LastCheck, Check);
646 Guard->setOperand(0, LastCheck);
647
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000648 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000649 return true;
650}
651
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000652bool LoopPredication::widenWidenableBranchGuardConditions(
653 BranchInst *Guard, SCEVExpander &Expander) {
654 assert(isGuardAsWidenableBranch(Guard) && "Must be!");
655 LLVM_DEBUG(dbgs() << "Processing guard:\n");
656 LLVM_DEBUG(Guard->dump());
657
658 TotalConsidered++;
659 SmallVector<Value *, 4> Checks;
660 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
661 Value *Condition = nullptr, *WidenableCondition = nullptr;
662 BasicBlock *GBB = nullptr, *DBB = nullptr;
663 parseWidenableBranch(Guard, Condition, WidenableCondition, GBB, DBB);
664 unsigned NumWidened = collectChecks(Checks, Condition, Expander, Builder);
665 if (NumWidened == 0)
666 return false;
667
668 TotalWidened += NumWidened;
669
670 // Emit the new guard condition
671 Builder.SetInsertPoint(Guard);
672 Value *LastCheck = nullptr;
673 for (auto *Check : Checks)
674 if (!LastCheck)
675 LastCheck = Check;
676 else
677 LastCheck = Builder.CreateAnd(LastCheck, Check);
678 // Make sure that the check contains widenable condition and therefore can be
679 // further widened.
680 LastCheck = Builder.CreateAnd(LastCheck, WidenableCondition);
681 Guard->setOperand(0, LastCheck);
682 assert(isGuardAsWidenableBranch(Guard) &&
683 "Stopped being a guard after transform?");
684
685 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
686 return true;
687}
688
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000689Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
690 using namespace PatternMatch;
691
692 BasicBlock *LoopLatch = L->getLoopLatch();
693 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000694 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000695 return None;
696 }
697
698 ICmpInst::Predicate Pred;
699 Value *LHS, *RHS;
700 BasicBlock *TrueDest, *FalseDest;
701
702 if (!match(LoopLatch->getTerminator(),
703 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
704 FalseDest))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000705 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000706 return None;
707 }
708 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
709 "One of the latch's destinations must be the header");
710 if (TrueDest != L->getHeader())
711 Pred = ICmpInst::getInversePredicate(Pred);
712
713 auto Result = parseLoopICmp(Pred, LHS, RHS);
714 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000715 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000716 return None;
717 }
718
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000719 // Check affine first, so if it's not we don't try to compute the step
720 // recurrence.
721 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000722 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000723 return None;
724 }
725
726 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000727 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000728 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000729 return None;
730 }
731
Anna Thomas68797212017-11-03 14:25:39 +0000732 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000733 if (Step->isOne()) {
734 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
735 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
736 } else {
737 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000738 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
739 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000740 }
Anna Thomas68797212017-11-03 14:25:39 +0000741 };
742
743 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000744 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
745 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000746 return None;
747 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000748 return Result;
749}
750
Anna Thomas1d02b132017-11-02 21:21:02 +0000751// Returns true if its safe to truncate the IV to RangeCheckType.
752bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
753 if (!EnableIVTruncation)
754 return false;
755 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
756 DL->getTypeSizeInBits(RangeCheckType) &&
757 "Expected latch check IV type to be larger than range check operand "
758 "type!");
759 // The start and end values of the IV should be known. This is to guarantee
760 // that truncating the wide type will not lose information.
761 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
762 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
763 if (!Limit || !Start)
764 return false;
765 // This check makes sure that the IV does not change sign during loop
766 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
767 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
768 // IV wraps around, and the truncation of the IV would lose the range of
769 // iterations between 2^32 and 2^64.
770 bool Increasing;
771 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
772 return false;
773 // The active bits should be less than the bits in the RangeCheckType. This
774 // guarantees that truncating the latch check to RangeCheckType is a safe
775 // operation.
776 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
777 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
778 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
779}
780
Anna Thomas9b1176b2018-03-22 16:03:59 +0000781bool LoopPredication::isLoopProfitableToPredicate() {
782 if (SkipProfitabilityChecks || !BPI)
783 return true;
784
785 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
786 L->getExitEdges(ExitEdges);
787 // If there is only one exiting edge in the loop, it is always profitable to
788 // predicate the loop.
789 if (ExitEdges.size() == 1)
790 return true;
791
792 // Calculate the exiting probabilities of all exiting edges from the loop,
793 // starting with the LatchExitProbability.
794 // Heuristic for profitability: If any of the exiting blocks' probability of
795 // exiting the loop is larger than exiting through the latch block, it's not
796 // profitable to predicate the loop.
797 auto *LatchBlock = L->getLoopLatch();
798 assert(LatchBlock && "Should have a single latch at this point!");
799 auto *LatchTerm = LatchBlock->getTerminator();
800 assert(LatchTerm->getNumSuccessors() == 2 &&
801 "expected to be an exiting block with 2 succs!");
802 unsigned LatchBrExitIdx =
803 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
804 BranchProbability LatchExitProbability =
805 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
806
807 // Protect against degenerate inputs provided by the user. Providing a value
808 // less than one, can invert the definition of profitable loop predication.
809 float ScaleFactor = LatchExitProbabilityScale;
810 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000811 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000812 dbgs()
813 << "Ignored user setting for loop-predication-latch-probability-scale: "
814 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000815 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000816 ScaleFactor = 1.0;
817 }
818 const auto LatchProbabilityThreshold =
819 LatchExitProbability * ScaleFactor;
820
821 for (const auto &ExitEdge : ExitEdges) {
822 BranchProbability ExitingBlockProbability =
823 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
824 // Some exiting edge has higher probability than the latch exiting edge.
825 // No longer profitable to predicate.
826 if (ExitingBlockProbability > LatchProbabilityThreshold)
827 return false;
828 }
829 // Using BPI, we have concluded that the most probable way to exit from the
830 // loop is through the latch (or there's no profile information and all
831 // exits are equally likely).
832 return true;
833}
834
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000835bool LoopPredication::runOnLoop(Loop *Loop) {
836 L = Loop;
837
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000838 LLVM_DEBUG(dbgs() << "Analyzing ");
839 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000840
841 Module *M = L->getHeader()->getModule();
842
843 // There is nothing to do if the module doesn't use guards
844 auto *GuardDecl =
845 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000846 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
847 auto *WCDecl = M->getFunction(
848 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
849 bool HasWidenableConditions =
850 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
851 if (!HasIntrinsicGuards && !HasWidenableConditions)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000852 return false;
853
854 DL = &M->getDataLayout();
855
856 Preheader = L->getLoopPreheader();
857 if (!Preheader)
858 return false;
859
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000860 auto LatchCheckOpt = parseLoopLatchICmp();
861 if (!LatchCheckOpt)
862 return false;
863 LatchCheck = *LatchCheckOpt;
864
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000865 LLVM_DEBUG(dbgs() << "Latch check:\n");
866 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000867
Anna Thomas9b1176b2018-03-22 16:03:59 +0000868 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000869 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000870 return false;
871 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000872 // Collect all the guards into a vector and process later, so as not
873 // to invalidate the instruction iterator.
874 SmallVector<IntrinsicInst *, 4> Guards;
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000875 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
876 for (const auto BB : L->blocks()) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000877 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +0000878 if (isGuard(&I))
879 Guards.push_back(cast<IntrinsicInst>(&I));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000880 if (PredicateWidenableBranchGuards &&
881 isGuardAsWidenableBranch(BB->getTerminator()))
882 GuardsAsWidenableBranches.push_back(
883 cast<BranchInst>(BB->getTerminator()));
884 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000885
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000886 if (Guards.empty() && GuardsAsWidenableBranches.empty())
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000887 return false;
888
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000889 SCEVExpander Expander(*SE, *DL, "loop-predication");
890
891 bool Changed = false;
892 for (auto *Guard : Guards)
893 Changed |= widenGuardConditions(Guard, Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000894 for (auto *Guard : GuardsAsWidenableBranches)
895 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000896
897 return Changed;
898}