blob: 5d9767b526a07f08647c95580f35cf7a7e241087 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
Roorda, Jan-Willem20a0e552018-03-06 16:26:01 +000013// that overlap loop iterations and exploits ILP via a compiler transformation.
Brendon Cahoon254f8892016-07-29 16:44:44 +000014//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000069#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000070#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000071#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000072#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
Matthias Braunf8422972017-12-13 02:51:04 +000076#include "llvm/CodeGen/LiveIntervals.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000077#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000089#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000090#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000091#include "llvm/CodeGen/ScheduleDAGMutation.h"
David Blaikie3f833ed2017-11-08 01:01:31 +000092#include "llvm/CodeGen/TargetInstrInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000093#include "llvm/CodeGen/TargetOpcodes.h"
94#include "llvm/CodeGen/TargetRegisterInfo.h"
95#include "llvm/CodeGen/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000096#include "llvm/IR/Attributes.h"
97#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000098#include "llvm/IR/Function.h"
99#include "llvm/MC/LaneBitmask.h"
100#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000101#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000102#include "llvm/MC/MCRegisterInfo.h"
103#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000105#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000106#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000107#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000108#include "llvm/Support/raw_ostream.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000109#include <algorithm>
110#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000111#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000112#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000114#include <functional>
115#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000116#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +0000117#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000118#include <tuple>
119#include <utility>
120#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000121
122using namespace llvm;
123
124#define DEBUG_TYPE "pipeliner"
125
126STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
127STATISTIC(NumPipelined, "Number of loops software pipelined");
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000128STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000129
130/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000131static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
132 cl::ZeroOrMore,
133 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000134
135/// A command line option to enable SWP at -Os.
136static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
137 cl::desc("Enable SWP at Os."), cl::Hidden,
138 cl::init(false));
139
140/// A command line argument to limit minimum initial interval for pipelining.
141static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000142 cl::desc("Size limit for the MII."),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000143 cl::Hidden, cl::init(27));
144
145/// A command line argument to limit the number of stages in the pipeline.
146static cl::opt<int>
147 SwpMaxStages("pipeliner-max-stages",
148 cl::desc("Maximum stages allowed in the generated scheduled."),
149 cl::Hidden, cl::init(3));
150
151/// A command line option to disable the pruning of chain dependences due to
152/// an unrelated Phi.
153static cl::opt<bool>
154 SwpPruneDeps("pipeliner-prune-deps",
155 cl::desc("Prune dependences between unrelated Phi nodes."),
156 cl::Hidden, cl::init(true));
157
158/// A command line option to disable the pruning of loop carried order
159/// dependences.
160static cl::opt<bool>
161 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
162 cl::desc("Prune loop carried order dependences."),
163 cl::Hidden, cl::init(true));
164
165#ifndef NDEBUG
166static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
167#endif
168
169static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
170 cl::ReallyHidden, cl::init(false),
171 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
172
173namespace {
174
175class NodeSet;
176class SMSchedule;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000177
178/// The main class in the implementation of the target independent
179/// software pipeliner pass.
180class MachinePipeliner : public MachineFunctionPass {
181public:
182 MachineFunction *MF = nullptr;
183 const MachineLoopInfo *MLI = nullptr;
184 const MachineDominatorTree *MDT = nullptr;
185 const InstrItineraryData *InstrItins;
186 const TargetInstrInfo *TII = nullptr;
187 RegisterClassInfo RegClassInfo;
188
189#ifndef NDEBUG
190 static int NumTries;
191#endif
Eugene Zelenko32a40562017-09-11 23:00:48 +0000192
Brendon Cahoon254f8892016-07-29 16:44:44 +0000193 /// Cache the target analysis information about the loop.
194 struct LoopInfo {
195 MachineBasicBlock *TBB = nullptr;
196 MachineBasicBlock *FBB = nullptr;
197 SmallVector<MachineOperand, 4> BrCond;
198 MachineInstr *LoopInductionVar = nullptr;
199 MachineInstr *LoopCompare = nullptr;
200 };
201 LoopInfo LI;
202
203 static char ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000204
Brendon Cahoon254f8892016-07-29 16:44:44 +0000205 MachinePipeliner() : MachineFunctionPass(ID) {
206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
207 }
208
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000209 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000210
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000211 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000212 AU.addRequired<AAResultsWrapperPass>();
213 AU.addPreserved<AAResultsWrapperPass>();
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<MachineDominatorTree>();
216 AU.addRequired<LiveIntervals>();
217 MachineFunctionPass::getAnalysisUsage(AU);
218 }
219
220private:
221 bool canPipelineLoop(MachineLoop &L);
222 bool scheduleLoop(MachineLoop &L);
223 bool swingModuloScheduler(MachineLoop &L);
224};
225
226/// This class builds the dependence graph for the instructions in a loop,
227/// and attempts to schedule the instructions using the SMS algorithm.
228class SwingSchedulerDAG : public ScheduleDAGInstrs {
229 MachinePipeliner &Pass;
230 /// The minimum initiation interval between iterations for this schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000231 unsigned MII = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000232 /// Set to true if a valid pipelined schedule is found for the loop.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000233 bool Scheduled = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000234 MachineLoop &Loop;
235 LiveIntervals &LIS;
236 const RegisterClassInfo &RegClassInfo;
237
238 /// A toplogical ordering of the SUnits, which is needed for changing
239 /// dependences and iterating over the SUnits.
240 ScheduleDAGTopologicalSort Topo;
241
242 struct NodeInfo {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000243 int ASAP = 0;
244 int ALAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000245 int ZeroLatencyDepth = 0;
246 int ZeroLatencyHeight = 0;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000247
248 NodeInfo() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000249 };
250 /// Computed properties for each node in the graph.
251 std::vector<NodeInfo> ScheduleInfo;
252
253 enum OrderKind { BottomUp = 0, TopDown = 1 };
254 /// Computed node ordering for scheduling.
255 SetVector<SUnit *> NodeOrder;
256
Eugene Zelenko32a40562017-09-11 23:00:48 +0000257 using NodeSetType = SmallVector<NodeSet, 8>;
258 using ValueMapTy = DenseMap<unsigned, unsigned>;
259 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
260 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000261
262 /// Instructions to change when emitting the final schedule.
263 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
264
265 /// We may create a new instruction, so remember it because it
266 /// must be deleted when the pass is finished.
267 SmallPtrSet<MachineInstr *, 4> NewMIs;
268
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000269 /// Ordered list of DAG postprocessing steps.
270 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
271
Brendon Cahoon254f8892016-07-29 16:44:44 +0000272 /// Helper class to implement Johnson's circuit finding algorithm.
273 class Circuits {
274 std::vector<SUnit> &SUnits;
275 SetVector<SUnit *> Stack;
276 BitVector Blocked;
277 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
278 SmallVector<SmallVector<int, 4>, 16> AdjK;
279 unsigned NumPaths;
280 static unsigned MaxPaths;
281
282 public:
283 Circuits(std::vector<SUnit> &SUs)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000284 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
285
Brendon Cahoon254f8892016-07-29 16:44:44 +0000286 /// Reset the data structures used in the circuit algorithm.
287 void reset() {
288 Stack.clear();
289 Blocked.reset();
290 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
291 NumPaths = 0;
292 }
Eugene Zelenko32a40562017-09-11 23:00:48 +0000293
Brendon Cahoon254f8892016-07-29 16:44:44 +0000294 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
295 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
296 void unblock(int U);
297 };
298
299public:
300 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
301 const RegisterClassInfo &rci)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000302 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
303 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000304 P.MF->getSubtarget().getSMSMutations(Mutations);
305 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000306
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000307 void schedule() override;
308 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000309
310 /// Return true if the loop kernel has been scheduled.
311 bool hasNewSchedule() { return Scheduled; }
312
313 /// Return the earliest time an instruction may be scheduled.
314 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
315
316 /// Return the latest time an instruction my be scheduled.
317 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
318
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000319 /// The mobility function, which the number of slots in which
Brendon Cahoon254f8892016-07-29 16:44:44 +0000320 /// an instruction may be scheduled.
321 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
322
323 /// The depth, in the dependence graph, for a node.
324 int getDepth(SUnit *Node) { return Node->getDepth(); }
325
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000326 /// The maximum unweighted length of a path from an arbitrary node to the
327 /// given node in which each edge has latency 0
328 int getZeroLatencyDepth(SUnit *Node) {
329 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
330 }
331
Brendon Cahoon254f8892016-07-29 16:44:44 +0000332 /// The height, in the dependence graph, for a node.
333 int getHeight(SUnit *Node) { return Node->getHeight(); }
334
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000335 /// The maximum unweighted length of a path from the given node to an
336 /// arbitrary node in which each edge has latency 0
337 int getZeroLatencyHeight(SUnit *Node) {
338 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
339 }
340
Brendon Cahoon254f8892016-07-29 16:44:44 +0000341 /// Return true if the dependence is a back-edge in the data dependence graph.
342 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
343 /// using an anti dependence from a Phi to an instruction.
344 bool isBackedge(SUnit *Source, const SDep &Dep) {
345 if (Dep.getKind() != SDep::Anti)
346 return false;
347 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
348 }
349
350 /// Return true if the dependence is an order dependence between non-Phis.
351 static bool isOrder(SUnit *Source, const SDep &Dep) {
352 if (Dep.getKind() != SDep::Order)
353 return false;
354 return (!Source->getInstr()->isPHI() &&
355 !Dep.getSUnit()->getInstr()->isPHI());
356 }
357
358 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
359
360 /// The latency of the dependence.
361 unsigned getLatency(SUnit *Source, const SDep &Dep) {
362 // Anti dependences represent recurrences, so use the latency of the
363 // instruction on the back-edge.
364 if (Dep.getKind() == SDep::Anti) {
365 if (Source->getInstr()->isPHI())
366 return Dep.getSUnit()->Latency;
367 if (Dep.getSUnit()->getInstr()->isPHI())
368 return Source->Latency;
369 return Dep.getLatency();
370 }
371 return Dep.getLatency();
372 }
373
374 /// The distance function, which indicates that operation V of iteration I
375 /// depends on operations U of iteration I-distance.
376 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
377 // Instructions that feed a Phi have a distance of 1. Computing larger
378 // values for arrays requires data dependence information.
379 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
380 return 1;
381 return 0;
382 }
383
384 /// Set the Minimum Initiation Interval for this schedule attempt.
385 void setMII(unsigned mii) { MII = mii; }
386
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +0000387 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
388
389 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000390
391 /// Return the new base register that was stored away for the changed
392 /// instruction.
393 unsigned getInstrBaseReg(SUnit *SU) {
394 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
395 InstrChanges.find(SU);
396 if (It != InstrChanges.end())
397 return It->second.first;
398 return 0;
399 }
400
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000401 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
402 Mutations.push_back(std::move(Mutation));
403 }
404
Brendon Cahoon254f8892016-07-29 16:44:44 +0000405private:
406 void addLoopCarriedDependences(AliasAnalysis *AA);
407 void updatePhiDependences();
408 void changeDependences();
409 unsigned calculateResMII();
410 unsigned calculateRecMII(NodeSetType &RecNodeSets);
411 void findCircuits(NodeSetType &NodeSets);
412 void fuseRecs(NodeSetType &NodeSets);
413 void removeDuplicateNodes(NodeSetType &NodeSets);
414 void computeNodeFunctions(NodeSetType &NodeSets);
415 void registerPressureFilter(NodeSetType &NodeSets);
416 void colocateNodeSets(NodeSetType &NodeSets);
417 void checkNodeSets(NodeSetType &NodeSets);
418 void groupRemainingNodes(NodeSetType &NodeSets);
419 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
420 SetVector<SUnit *> &NodesAdded);
421 void computeNodeOrder(NodeSetType &NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000422 void checkValidNodeOrder(const NodeSetType &Circuits) const;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000423 bool schedulePipeline(SMSchedule &Schedule);
424 void generatePipelinedLoop(SMSchedule &Schedule);
425 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
426 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
427 MBBVectorTy &PrologBBs);
428 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
429 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
430 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
431 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
432 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
433 SMSchedule &Schedule, ValueMapTy *VRMap,
434 InstrMapTy &InstrMap, unsigned LastStageNum,
435 unsigned CurStageNum, bool IsLast);
436 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
437 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
438 SMSchedule &Schedule, ValueMapTy *VRMap,
439 InstrMapTy &InstrMap, unsigned LastStageNum,
440 unsigned CurStageNum, bool IsLast);
441 void removeDeadInstructions(MachineBasicBlock *KernelBB,
442 MBBVectorTy &EpilogBBs);
443 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
444 SMSchedule &Schedule);
445 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
446 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
447 ValueMapTy *VRMap);
448 bool computeDelta(MachineInstr &MI, unsigned &Delta);
449 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
450 unsigned Num);
451 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
452 unsigned InstStageNum);
453 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
454 unsigned InstStageNum,
455 SMSchedule &Schedule);
456 void updateInstruction(MachineInstr *NewMI, bool LastDef,
457 unsigned CurStageNum, unsigned InstStageNum,
458 SMSchedule &Schedule, ValueMapTy *VRMap);
459 MachineInstr *findDefInLoop(unsigned Reg);
460 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
461 unsigned LoopStage, ValueMapTy *VRMap,
462 MachineBasicBlock *BB);
463 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
464 SMSchedule &Schedule, ValueMapTy *VRMap,
465 InstrMapTy &InstrMap);
466 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
467 InstrMapTy &InstrMap, unsigned CurStageNum,
468 unsigned PhiNum, MachineInstr *Phi,
469 unsigned OldReg, unsigned NewReg,
470 unsigned PrevReg = 0);
471 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
472 unsigned &OffsetPos, unsigned &NewBase,
473 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000474 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000475};
476
477/// A NodeSet contains a set of SUnit DAG nodes with additional information
478/// that assigns a priority to the set.
479class NodeSet {
480 SetVector<SUnit *> Nodes;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000481 bool HasRecurrence = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000482 unsigned RecMII = 0;
483 int MaxMOV = 0;
484 int MaxDepth = 0;
485 unsigned Colocate = 0;
486 SUnit *ExceedPressure = nullptr;
487
488public:
Eugene Zelenko32a40562017-09-11 23:00:48 +0000489 using iterator = SetVector<SUnit *>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000490
Eugene Zelenko32a40562017-09-11 23:00:48 +0000491 NodeSet() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000492 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
493
494 bool insert(SUnit *SU) { return Nodes.insert(SU); }
495
496 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
497
498 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
499 return Nodes.remove_if(P);
500 }
501
502 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
503
504 bool hasRecurrence() { return HasRecurrence; };
505
506 unsigned size() const { return Nodes.size(); }
507
508 bool empty() const { return Nodes.empty(); }
509
510 SUnit *getNode(unsigned i) const { return Nodes[i]; };
511
512 void setRecMII(unsigned mii) { RecMII = mii; };
513
514 void setColocate(unsigned c) { Colocate = c; };
515
516 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
517
518 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
519
520 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
521
522 int getRecMII() { return RecMII; }
523
524 /// Summarize node functions for the entire node set.
525 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
526 for (SUnit *SU : *this) {
527 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
528 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
529 }
530 }
531
532 void clear() {
533 Nodes.clear();
534 RecMII = 0;
535 HasRecurrence = false;
536 MaxMOV = 0;
537 MaxDepth = 0;
538 Colocate = 0;
539 ExceedPressure = nullptr;
540 }
541
542 operator SetVector<SUnit *> &() { return Nodes; }
543
544 /// Sort the node sets by importance. First, rank them by recurrence MII,
545 /// then by mobility (least mobile done first), and finally by depth.
546 /// Each node set may contain a colocate value which is used as the first
547 /// tie breaker, if it's set.
548 bool operator>(const NodeSet &RHS) const {
549 if (RecMII == RHS.RecMII) {
550 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
551 return Colocate < RHS.Colocate;
552 if (MaxMOV == RHS.MaxMOV)
553 return MaxDepth > RHS.MaxDepth;
554 return MaxMOV < RHS.MaxMOV;
555 }
556 return RecMII > RHS.RecMII;
557 }
558
559 bool operator==(const NodeSet &RHS) const {
560 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
561 MaxDepth == RHS.MaxDepth;
562 }
563
564 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
565
566 iterator begin() { return Nodes.begin(); }
567 iterator end() { return Nodes.end(); }
568
569 void print(raw_ostream &os) const {
570 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
571 << " depth " << MaxDepth << " col " << Colocate << "\n";
572 for (const auto &I : Nodes)
573 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
574 os << "\n";
575 }
576
Aaron Ballman615eb472017-10-15 14:32:27 +0000577#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +0000578 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
579#endif
Brendon Cahoon254f8892016-07-29 16:44:44 +0000580};
581
582/// This class repesents the scheduled code. The main data structure is a
583/// map from scheduled cycle to instructions. During scheduling, the
584/// data structure explicitly represents all stages/iterations. When
585/// the algorithm finshes, the schedule is collapsed into a single stage,
586/// which represents instructions from different loop iterations.
587///
588/// The SMS algorithm allows negative values for cycles, so the first cycle
589/// in the schedule is the smallest cycle value.
590class SMSchedule {
591private:
592 /// Map from execution cycle to instructions.
593 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
594
595 /// Map from instruction to execution cycle.
596 std::map<SUnit *, int> InstrToCycle;
597
598 /// Map for each register and the max difference between its uses and def.
599 /// The first element in the pair is the max difference in stages. The
600 /// second is true if the register defines a Phi value and loop value is
601 /// scheduled before the Phi.
602 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
603
604 /// Keep track of the first cycle value in the schedule. It starts
605 /// as zero, but the algorithm allows negative values.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000606 int FirstCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000607
608 /// Keep track of the last cycle value in the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000609 int LastCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000610
611 /// The initiation interval (II) for the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000612 int InitiationInterval = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000613
614 /// Target machine information.
615 const TargetSubtargetInfo &ST;
616
617 /// Virtual register information.
618 MachineRegisterInfo &MRI;
619
Benjamin Kramer3f6260c2017-02-16 20:26:51 +0000620 std::unique_ptr<DFAPacketizer> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000621
622public:
623 SMSchedule(MachineFunction *mf)
624 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Eugene Zelenko32a40562017-09-11 23:00:48 +0000625 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
Brendon Cahoon254f8892016-07-29 16:44:44 +0000626
Brendon Cahoon254f8892016-07-29 16:44:44 +0000627 void reset() {
628 ScheduledInstrs.clear();
629 InstrToCycle.clear();
630 RegToStageDiff.clear();
631 FirstCycle = 0;
632 LastCycle = 0;
633 InitiationInterval = 0;
634 }
635
636 /// Set the initiation interval for this schedule.
637 void setInitiationInterval(int ii) { InitiationInterval = ii; }
638
639 /// Return the first cycle in the completed schedule. This
640 /// can be a negative value.
641 int getFirstCycle() const { return FirstCycle; }
642
643 /// Return the last cycle in the finalized schedule.
644 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
645
646 /// Return the cycle of the earliest scheduled instruction in the dependence
647 /// chain.
648 int earliestCycleInChain(const SDep &Dep);
649
650 /// Return the cycle of the latest scheduled instruction in the dependence
651 /// chain.
652 int latestCycleInChain(const SDep &Dep);
653
654 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
655 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
656 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
657
658 /// Iterators for the cycle to instruction map.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000659 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
660 using const_sched_iterator =
661 DenseMap<int, std::deque<SUnit *>>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000662
663 /// Return true if the instruction is scheduled at the specified stage.
664 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
665 return (stageScheduled(SU) == (int)StageNum);
666 }
667
668 /// Return the stage for a scheduled instruction. Return -1 if
669 /// the instruction has not been scheduled.
670 int stageScheduled(SUnit *SU) const {
671 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
672 if (it == InstrToCycle.end())
673 return -1;
674 return (it->second - FirstCycle) / InitiationInterval;
675 }
676
677 /// Return the cycle for a scheduled instruction. This function normalizes
678 /// the first cycle to be 0.
679 unsigned cycleScheduled(SUnit *SU) const {
680 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
681 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
682 return (it->second - FirstCycle) % InitiationInterval;
683 }
684
685 /// Return the maximum stage count needed for this schedule.
686 unsigned getMaxStageCount() {
687 return (LastCycle - FirstCycle) / InitiationInterval;
688 }
689
690 /// Return the max. number of stages/iterations that can occur between a
691 /// register definition and its uses.
692 unsigned getStagesForReg(int Reg, unsigned CurStage) {
693 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
694 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
695 return 1;
696 return Stages.first;
697 }
698
699 /// The number of stages for a Phi is a little different than other
700 /// instructions. The minimum value computed in RegToStageDiff is 1
701 /// because we assume the Phi is needed for at least 1 iteration.
702 /// This is not the case if the loop value is scheduled prior to the
703 /// Phi in the same stage. This function returns the number of stages
704 /// or iterations needed between the Phi definition and any uses.
705 unsigned getStagesForPhi(int Reg) {
706 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
707 if (Stages.second)
708 return Stages.first;
709 return Stages.first - 1;
710 }
711
712 /// Return the instructions that are scheduled at the specified cycle.
713 std::deque<SUnit *> &getInstructions(int cycle) {
714 return ScheduledInstrs[cycle];
715 }
716
717 bool isValidSchedule(SwingSchedulerDAG *SSD);
718 void finalizeSchedule(SwingSchedulerDAG *SSD);
719 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
720 std::deque<SUnit *> &Insts);
721 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
722 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
723 MachineOperand &MO);
724 void print(raw_ostream &os) const;
725 void dump() const;
726};
727
728} // end anonymous namespace
729
730unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
731char MachinePipeliner::ID = 0;
732#ifndef NDEBUG
733int MachinePipeliner::NumTries = 0;
734#endif
735char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000736
Matthias Braun1527baa2017-05-25 21:26:32 +0000737INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000738 "Modulo Software Pipelining", false, false)
739INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
740INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
741INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
742INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000743INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000744 "Modulo Software Pipelining", false, false)
745
746/// The "main" function for implementing Swing Modulo Scheduling.
747bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
Matthias Braunf1caa282017-12-15 22:22:58 +0000748 if (skipFunction(mf.getFunction()))
Brendon Cahoon254f8892016-07-29 16:44:44 +0000749 return false;
750
751 if (!EnableSWP)
752 return false;
753
Matthias Braunf1caa282017-12-15 22:22:58 +0000754 if (mf.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000755 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000756 !EnableSWPOptSize.getPosition())
757 return false;
758
759 MF = &mf;
760 MLI = &getAnalysis<MachineLoopInfo>();
761 MDT = &getAnalysis<MachineDominatorTree>();
762 TII = MF->getSubtarget().getInstrInfo();
763 RegClassInfo.runOnMachineFunction(*MF);
764
765 for (auto &L : *MLI)
766 scheduleLoop(*L);
767
768 return false;
769}
770
771/// Attempt to perform the SMS algorithm on the specified loop. This function is
772/// the main entry point for the algorithm. The function identifies candidate
773/// loops, calculates the minimum initiation interval, and attempts to schedule
774/// the loop.
775bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
776 bool Changed = false;
777 for (auto &InnerLoop : L)
778 Changed |= scheduleLoop(*InnerLoop);
779
780#ifndef NDEBUG
781 // Stop trying after reaching the limit (if any).
782 int Limit = SwpLoopLimit;
783 if (Limit >= 0) {
784 if (NumTries >= SwpLoopLimit)
785 return Changed;
786 NumTries++;
787 }
788#endif
789
790 if (!canPipelineLoop(L))
791 return Changed;
792
793 ++NumTrytoPipeline;
794
795 Changed = swingModuloScheduler(L);
796
797 return Changed;
798}
799
800/// Return true if the loop can be software pipelined. The algorithm is
801/// restricted to loops with a single basic block. Make sure that the
802/// branch in the loop can be analyzed.
803bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
804 if (L.getNumBlocks() != 1)
805 return false;
806
807 // Check if the branch can't be understood because we can't do pipelining
808 // if that's the case.
809 LI.TBB = nullptr;
810 LI.FBB = nullptr;
811 LI.BrCond.clear();
812 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
813 return false;
814
815 LI.LoopInductionVar = nullptr;
816 LI.LoopCompare = nullptr;
817 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
818 return false;
819
820 if (!L.getLoopPreheader())
821 return false;
822
823 // If any of the Phis contain subregs, then we can't pipeline
824 // because we don't know how to maintain subreg information in the
825 // VMap structure.
826 MachineBasicBlock *MBB = L.getHeader();
Bob Wilson90ecac02018-01-04 02:58:15 +0000827 for (auto &PHI : MBB->phis())
828 for (unsigned i = 1; i != PHI.getNumOperands(); i += 2)
829 if (PHI.getOperand(i).getSubReg() != 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +0000830 return false;
831
832 return true;
833}
834
835/// The SMS algorithm consists of the following main steps:
836/// 1. Computation and analysis of the dependence graph.
837/// 2. Ordering of the nodes (instructions).
838/// 3. Attempt to Schedule the loop.
839bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
840 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
841
842 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
843
844 MachineBasicBlock *MBB = L.getHeader();
845 // The kernel should not include any terminator instructions. These
846 // will be added back later.
847 SMS.startBlock(MBB);
848
849 // Compute the number of 'real' instructions in the basic block by
850 // ignoring terminators.
851 unsigned size = MBB->size();
852 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
853 E = MBB->instr_end();
854 I != E; ++I, --size)
855 ;
856
857 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
858 SMS.schedule();
859 SMS.exitRegion();
860
861 SMS.finishBlock();
862 return SMS.hasNewSchedule();
863}
864
865/// We override the schedule function in ScheduleDAGInstrs to implement the
866/// scheduling part of the Swing Modulo Scheduling algorithm.
867void SwingSchedulerDAG::schedule() {
868 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
869 buildSchedGraph(AA);
870 addLoopCarriedDependences(AA);
871 updatePhiDependences();
872 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000873 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000874 changeDependences();
875 DEBUG({
876 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
877 SUnits[su].dumpAll(this);
878 });
879
880 NodeSetType NodeSets;
881 findCircuits(NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000882 NodeSetType Circuits = NodeSets;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000883
884 // Calculate the MII.
885 unsigned ResMII = calculateResMII();
886 unsigned RecMII = calculateRecMII(NodeSets);
887
888 fuseRecs(NodeSets);
889
890 // This flag is used for testing and can cause correctness problems.
891 if (SwpIgnoreRecMII)
892 RecMII = 0;
893
894 MII = std::max(ResMII, RecMII);
895 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
896 << ")\n");
897
898 // Can't schedule a loop without a valid MII.
899 if (MII == 0)
900 return;
901
902 // Don't pipeline large loops.
903 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
904 return;
905
906 computeNodeFunctions(NodeSets);
907
908 registerPressureFilter(NodeSets);
909
910 colocateNodeSets(NodeSets);
911
912 checkNodeSets(NodeSets);
913
914 DEBUG({
915 for (auto &I : NodeSets) {
916 dbgs() << " Rec NodeSet ";
917 I.dump();
918 }
919 });
920
921 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
922
923 groupRemainingNodes(NodeSets);
924
925 removeDuplicateNodes(NodeSets);
926
927 DEBUG({
928 for (auto &I : NodeSets) {
929 dbgs() << " NodeSet ";
930 I.dump();
931 }
932 });
933
934 computeNodeOrder(NodeSets);
935
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000936 // check for node order issues
937 checkValidNodeOrder(Circuits);
938
Brendon Cahoon254f8892016-07-29 16:44:44 +0000939 SMSchedule Schedule(Pass.MF);
940 Scheduled = schedulePipeline(Schedule);
941
942 if (!Scheduled)
943 return;
944
945 unsigned numStages = Schedule.getMaxStageCount();
946 // No need to generate pipeline if there are no overlapped iterations.
947 if (numStages == 0)
948 return;
949
950 // Check that the maximum stage count is less than user-defined limit.
951 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
952 return;
953
954 generatePipelinedLoop(Schedule);
955 ++NumPipelined;
956}
957
958/// Clean up after the software pipeliner runs.
959void SwingSchedulerDAG::finishBlock() {
960 for (MachineInstr *I : NewMIs)
961 MF.DeleteMachineInstr(I);
962 NewMIs.clear();
963
964 // Call the superclass.
965 ScheduleDAGInstrs::finishBlock();
966}
967
968/// Return the register values for the operands of a Phi instruction.
969/// This function assume the instruction is a Phi.
970static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
971 unsigned &InitVal, unsigned &LoopVal) {
972 assert(Phi.isPHI() && "Expecting a Phi.");
973
974 InitVal = 0;
975 LoopVal = 0;
976 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
977 if (Phi.getOperand(i + 1).getMBB() != Loop)
978 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000979 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000980 LoopVal = Phi.getOperand(i).getReg();
981
982 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
983}
984
985/// Return the Phi register value that comes from the incoming block.
986static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
987 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
988 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
989 return Phi.getOperand(i).getReg();
990 return 0;
991}
992
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000993/// Return the Phi register value that comes the loop block.
Brendon Cahoon254f8892016-07-29 16:44:44 +0000994static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
995 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
996 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
997 return Phi.getOperand(i).getReg();
998 return 0;
999}
1000
1001/// Return true if SUb can be reached from SUa following the chain edges.
1002static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1003 SmallPtrSet<SUnit *, 8> Visited;
1004 SmallVector<SUnit *, 8> Worklist;
1005 Worklist.push_back(SUa);
1006 while (!Worklist.empty()) {
1007 const SUnit *SU = Worklist.pop_back_val();
1008 for (auto &SI : SU->Succs) {
1009 SUnit *SuccSU = SI.getSUnit();
1010 if (SI.getKind() == SDep::Order) {
1011 if (Visited.count(SuccSU))
1012 continue;
1013 if (SuccSU == SUb)
1014 return true;
1015 Worklist.push_back(SuccSU);
1016 Visited.insert(SuccSU);
1017 }
1018 }
1019 }
1020 return false;
1021}
1022
1023/// Return true if the instruction causes a chain between memory
1024/// references before and after it.
1025static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1026 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1027 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001028 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001029}
1030
1031/// Return the underlying objects for the memory references of an instruction.
1032/// This function calls the code in ValueTracking, but first checks that the
1033/// instruction has a memory operand.
1034static void getUnderlyingObjects(MachineInstr *MI,
1035 SmallVectorImpl<Value *> &Objs,
1036 const DataLayout &DL) {
1037 if (!MI->hasOneMemOperand())
1038 return;
1039 MachineMemOperand *MM = *MI->memoperands_begin();
1040 if (!MM->getValue())
1041 return;
1042 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1043}
1044
1045/// Add a chain edge between a load and store if the store can be an
1046/// alias of the load on a subsequent iteration, i.e., a loop carried
1047/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1048/// but that code doesn't create loop carried dependences.
1049void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1050 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1051 for (auto &SU : SUnits) {
1052 MachineInstr &MI = *SU.getInstr();
1053 if (isDependenceBarrier(MI, AA))
1054 PendingLoads.clear();
1055 else if (MI.mayLoad()) {
1056 SmallVector<Value *, 4> Objs;
1057 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1058 for (auto V : Objs) {
1059 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1060 SUs.push_back(&SU);
1061 }
1062 } else if (MI.mayStore()) {
1063 SmallVector<Value *, 4> Objs;
1064 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1065 for (auto V : Objs) {
1066 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1067 PendingLoads.find(V);
1068 if (I == PendingLoads.end())
1069 continue;
1070 for (auto Load : I->second) {
1071 if (isSuccOrder(Load, &SU))
1072 continue;
1073 MachineInstr &LdMI = *Load->getInstr();
1074 // First, perform the cheaper check that compares the base register.
1075 // If they are the same and the load offset is less than the store
1076 // offset, then mark the dependence as loop carried potentially.
1077 unsigned BaseReg1, BaseReg2;
1078 int64_t Offset1, Offset2;
1079 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1080 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1081 SU.addPred(SDep(Load, SDep::Barrier));
1082 continue;
1083 }
1084 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1085 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1086 "What happened to the chain edge?");
1087 SU.addPred(SDep(Load, SDep::Barrier));
1088 continue;
1089 }
1090 // Second, the more expensive check that uses alias analysis on the
1091 // base registers. If they alias, and the load offset is less than
1092 // the store offset, the mark the dependence as loop carried.
1093 if (!AA) {
1094 SU.addPred(SDep(Load, SDep::Barrier));
1095 continue;
1096 }
1097 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1098 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1099 if (!MMO1->getValue() || !MMO2->getValue()) {
1100 SU.addPred(SDep(Load, SDep::Barrier));
1101 continue;
1102 }
1103 if (MMO1->getValue() == MMO2->getValue() &&
1104 MMO1->getOffset() <= MMO2->getOffset()) {
1105 SU.addPred(SDep(Load, SDep::Barrier));
1106 continue;
1107 }
1108 AliasResult AAResult = AA->alias(
1109 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1110 MMO1->getAAInfo()),
1111 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1112 MMO2->getAAInfo()));
1113
1114 if (AAResult != NoAlias)
1115 SU.addPred(SDep(Load, SDep::Barrier));
1116 }
1117 }
1118 }
1119 }
1120}
1121
1122/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1123/// processes dependences for PHIs. This function adds true dependences
1124/// from a PHI to a use, and a loop carried dependence from the use to the
1125/// PHI. The loop carried dependence is represented as an anti dependence
1126/// edge. This function also removes chain dependences between unrelated
1127/// PHIs.
1128void SwingSchedulerDAG::updatePhiDependences() {
1129 SmallVector<SDep, 4> RemoveDeps;
1130 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1131
1132 // Iterate over each DAG node.
1133 for (SUnit &I : SUnits) {
1134 RemoveDeps.clear();
1135 // Set to true if the instruction has an operand defined by a Phi.
1136 unsigned HasPhiUse = 0;
1137 unsigned HasPhiDef = 0;
1138 MachineInstr *MI = I.getInstr();
1139 // Iterate over each operand, and we process the definitions.
1140 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1141 MOE = MI->operands_end();
1142 MOI != MOE; ++MOI) {
1143 if (!MOI->isReg())
1144 continue;
1145 unsigned Reg = MOI->getReg();
1146 if (MOI->isDef()) {
1147 // If the register is used by a Phi, then create an anti dependence.
1148 for (MachineRegisterInfo::use_instr_iterator
1149 UI = MRI.use_instr_begin(Reg),
1150 UE = MRI.use_instr_end();
1151 UI != UE; ++UI) {
1152 MachineInstr *UseMI = &*UI;
1153 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001154 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001155 if (!MI->isPHI()) {
1156 SDep Dep(SU, SDep::Anti, Reg);
1157 I.addPred(Dep);
1158 } else {
1159 HasPhiDef = Reg;
1160 // Add a chain edge to a dependent Phi that isn't an existing
1161 // predecessor.
1162 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1163 I.addPred(SDep(SU, SDep::Barrier));
1164 }
1165 }
1166 }
1167 } else if (MOI->isUse()) {
1168 // If the register is defined by a Phi, then create a true dependence.
1169 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001170 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001171 continue;
1172 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001173 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001174 if (!MI->isPHI()) {
1175 SDep Dep(SU, SDep::Data, Reg);
1176 Dep.setLatency(0);
1177 ST.adjustSchedDependency(SU, &I, Dep);
1178 I.addPred(Dep);
1179 } else {
1180 HasPhiUse = Reg;
1181 // Add a chain edge to a dependent Phi that isn't an existing
1182 // predecessor.
1183 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1184 I.addPred(SDep(SU, SDep::Barrier));
1185 }
1186 }
1187 }
1188 }
1189 // Remove order dependences from an unrelated Phi.
1190 if (!SwpPruneDeps)
1191 continue;
1192 for (auto &PI : I.Preds) {
1193 MachineInstr *PMI = PI.getSUnit()->getInstr();
1194 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1195 if (I.getInstr()->isPHI()) {
1196 if (PMI->getOperand(0).getReg() == HasPhiUse)
1197 continue;
1198 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1199 continue;
1200 }
1201 RemoveDeps.push_back(PI);
1202 }
1203 }
1204 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1205 I.removePred(RemoveDeps[i]);
1206 }
1207}
1208
1209/// Iterate over each DAG node and see if we can change any dependences
1210/// in order to reduce the recurrence MII.
1211void SwingSchedulerDAG::changeDependences() {
1212 // See if an instruction can use a value from the previous iteration.
1213 // If so, we update the base and offset of the instruction and change
1214 // the dependences.
1215 for (SUnit &I : SUnits) {
1216 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1217 int64_t NewOffset = 0;
1218 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1219 NewOffset))
1220 continue;
1221
1222 // Get the MI and SUnit for the instruction that defines the original base.
1223 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1224 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1225 if (!DefMI)
1226 continue;
1227 SUnit *DefSU = getSUnit(DefMI);
1228 if (!DefSU)
1229 continue;
1230 // Get the MI and SUnit for the instruction that defins the new base.
1231 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1232 if (!LastMI)
1233 continue;
1234 SUnit *LastSU = getSUnit(LastMI);
1235 if (!LastSU)
1236 continue;
1237
1238 if (Topo.IsReachable(&I, LastSU))
1239 continue;
1240
1241 // Remove the dependence. The value now depends on a prior iteration.
1242 SmallVector<SDep, 4> Deps;
1243 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1244 ++P)
1245 if (P->getSUnit() == DefSU)
1246 Deps.push_back(*P);
1247 for (int i = 0, e = Deps.size(); i != e; i++) {
1248 Topo.RemovePred(&I, Deps[i].getSUnit());
1249 I.removePred(Deps[i]);
1250 }
1251 // Remove the chain dependence between the instructions.
1252 Deps.clear();
1253 for (auto &P : LastSU->Preds)
1254 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1255 Deps.push_back(P);
1256 for (int i = 0, e = Deps.size(); i != e; i++) {
1257 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1258 LastSU->removePred(Deps[i]);
1259 }
1260
1261 // Add a dependence between the new instruction and the instruction
1262 // that defines the new base.
1263 SDep Dep(&I, SDep::Anti, NewBase);
1264 LastSU->addPred(Dep);
1265
1266 // Remember the base and offset information so that we can update the
1267 // instruction during code generation.
1268 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1269 }
1270}
1271
1272namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001273
Brendon Cahoon254f8892016-07-29 16:44:44 +00001274// FuncUnitSorter - Comparison operator used to sort instructions by
1275// the number of functional unit choices.
1276struct FuncUnitSorter {
1277 const InstrItineraryData *InstrItins;
1278 DenseMap<unsigned, unsigned> Resources;
1279
Eugene Zelenko32a40562017-09-11 23:00:48 +00001280 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1281
Brendon Cahoon254f8892016-07-29 16:44:44 +00001282 // Compute the number of functional unit alternatives needed
1283 // at each stage, and take the minimum value. We prioritize the
1284 // instructions by the least number of choices first.
1285 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1286 unsigned schedClass = Inst->getDesc().getSchedClass();
1287 unsigned min = UINT_MAX;
1288 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1289 *IE = InstrItins->endStage(schedClass);
1290 IS != IE; ++IS) {
1291 unsigned funcUnits = IS->getUnits();
1292 unsigned numAlternatives = countPopulation(funcUnits);
1293 if (numAlternatives < min) {
1294 min = numAlternatives;
1295 F = funcUnits;
1296 }
1297 }
1298 return min;
1299 }
1300
1301 // Compute the critical resources needed by the instruction. This
1302 // function records the functional units needed by instructions that
1303 // must use only one functional unit. We use this as a tie breaker
1304 // for computing the resource MII. The instrutions that require
1305 // the same, highly used, functional unit have high priority.
1306 void calcCriticalResources(MachineInstr &MI) {
1307 unsigned SchedClass = MI.getDesc().getSchedClass();
1308 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1309 *IE = InstrItins->endStage(SchedClass);
1310 IS != IE; ++IS) {
1311 unsigned FuncUnits = IS->getUnits();
1312 if (countPopulation(FuncUnits) == 1)
1313 Resources[FuncUnits]++;
1314 }
1315 }
1316
Brendon Cahoon254f8892016-07-29 16:44:44 +00001317 /// Return true if IS1 has less priority than IS2.
1318 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1319 unsigned F1 = 0, F2 = 0;
1320 unsigned MFUs1 = minFuncUnits(IS1, F1);
1321 unsigned MFUs2 = minFuncUnits(IS2, F2);
1322 if (MFUs1 == 1 && MFUs2 == 1)
1323 return Resources.lookup(F1) < Resources.lookup(F2);
1324 return MFUs1 > MFUs2;
1325 }
1326};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001327
1328} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001329
1330/// Calculate the resource constrained minimum initiation interval for the
1331/// specified loop. We use the DFA to model the resources needed for
1332/// each instruction, and we ignore dependences. A different DFA is created
1333/// for each cycle that is required. When adding a new instruction, we attempt
1334/// to add it to each existing DFA, until a legal space is found. If the
1335/// instruction cannot be reserved in an existing DFA, we create a new one.
1336unsigned SwingSchedulerDAG::calculateResMII() {
1337 SmallVector<DFAPacketizer *, 8> Resources;
1338 MachineBasicBlock *MBB = Loop.getHeader();
1339 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1340
1341 // Sort the instructions by the number of available choices for scheduling,
1342 // least to most. Use the number of critical resources as the tie breaker.
1343 FuncUnitSorter FUS =
1344 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1345 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1346 E = MBB->getFirstTerminator();
1347 I != E; ++I)
1348 FUS.calcCriticalResources(*I);
1349 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1350 FuncUnitOrder(FUS);
1351
1352 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1353 E = MBB->getFirstTerminator();
1354 I != E; ++I)
1355 FuncUnitOrder.push(&*I);
1356
1357 while (!FuncUnitOrder.empty()) {
1358 MachineInstr *MI = FuncUnitOrder.top();
1359 FuncUnitOrder.pop();
1360 if (TII->isZeroCost(MI->getOpcode()))
1361 continue;
1362 // Attempt to reserve the instruction in an existing DFA. At least one
1363 // DFA is needed for each cycle.
1364 unsigned NumCycles = getSUnit(MI)->Latency;
1365 unsigned ReservedCycles = 0;
1366 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1367 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1368 for (unsigned C = 0; C < NumCycles; ++C)
1369 while (RI != RE) {
1370 if ((*RI++)->canReserveResources(*MI)) {
1371 ++ReservedCycles;
1372 break;
1373 }
1374 }
1375 // Start reserving resources using existing DFAs.
1376 for (unsigned C = 0; C < ReservedCycles; ++C) {
1377 --RI;
1378 (*RI)->reserveResources(*MI);
1379 }
1380 // Add new DFAs, if needed, to reserve resources.
1381 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1382 DFAPacketizer *NewResource =
1383 TII->CreateTargetScheduleState(MF.getSubtarget());
1384 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1385 NewResource->reserveResources(*MI);
1386 Resources.push_back(NewResource);
1387 }
1388 }
1389 int Resmii = Resources.size();
1390 // Delete the memory for each of the DFAs that were created earlier.
1391 for (DFAPacketizer *RI : Resources) {
1392 DFAPacketizer *D = RI;
1393 delete D;
1394 }
1395 Resources.clear();
1396 return Resmii;
1397}
1398
1399/// Calculate the recurrence-constrainted minimum initiation interval.
1400/// Iterate over each circuit. Compute the delay(c) and distance(c)
1401/// for each circuit. The II needs to satisfy the inequality
1402/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1403/// II that satistifies the inequality, and the RecMII is the maximum
1404/// of those values.
1405unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1406 unsigned RecMII = 0;
1407
1408 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001409 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001410 continue;
1411
1412 unsigned Delay = Nodes.size() - 1;
1413 unsigned Distance = 1;
1414
1415 // ii = ceil(delay / distance)
1416 unsigned CurMII = (Delay + Distance - 1) / Distance;
1417 Nodes.setRecMII(CurMII);
1418 if (CurMII > RecMII)
1419 RecMII = CurMII;
1420 }
1421
1422 return RecMII;
1423}
1424
1425/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1426/// but we do this to find the circuits, and then change them back.
1427static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1428 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1429 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1430 SUnit *SU = &SUnits[i];
1431 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1432 IP != EP; ++IP) {
1433 if (IP->getKind() != SDep::Anti)
1434 continue;
1435 DepsAdded.push_back(std::make_pair(SU, *IP));
1436 }
1437 }
1438 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1439 E = DepsAdded.end();
1440 I != E; ++I) {
1441 // Remove this anti dependency and add one in the reverse direction.
1442 SUnit *SU = I->first;
1443 SDep &D = I->second;
1444 SUnit *TargetSU = D.getSUnit();
1445 unsigned Reg = D.getReg();
1446 unsigned Lat = D.getLatency();
1447 SU->removePred(D);
1448 SDep Dep(SU, SDep::Anti, Reg);
1449 Dep.setLatency(Lat);
1450 TargetSU->addPred(Dep);
1451 }
1452}
1453
1454/// Create the adjacency structure of the nodes in the graph.
1455void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1456 SwingSchedulerDAG *DAG) {
1457 BitVector Added(SUnits.size());
1458 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1459 Added.reset();
1460 // Add any successor to the adjacency matrix and exclude duplicates.
1461 for (auto &SI : SUnits[i].Succs) {
1462 // Do not process a boundary node and a back-edge is processed only
1463 // if it goes to a Phi.
1464 if (SI.getSUnit()->isBoundaryNode() ||
1465 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1466 continue;
1467 int N = SI.getSUnit()->NodeNum;
1468 if (!Added.test(N)) {
1469 AdjK[i].push_back(N);
1470 Added.set(N);
1471 }
1472 }
1473 // A chain edge between a store and a load is treated as a back-edge in the
1474 // adjacency matrix.
1475 for (auto &PI : SUnits[i].Preds) {
1476 if (!SUnits[i].getInstr()->mayStore() ||
1477 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
1478 continue;
1479 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1480 int N = PI.getSUnit()->NodeNum;
1481 if (!Added.test(N)) {
1482 AdjK[i].push_back(N);
1483 Added.set(N);
1484 }
1485 }
1486 }
1487 }
1488}
1489
1490/// Identify an elementary circuit in the dependence graph starting at the
1491/// specified node.
1492bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1493 bool HasBackedge) {
1494 SUnit *SV = &SUnits[V];
1495 bool F = false;
1496 Stack.insert(SV);
1497 Blocked.set(V);
1498
1499 for (auto W : AdjK[V]) {
1500 if (NumPaths > MaxPaths)
1501 break;
1502 if (W < S)
1503 continue;
1504 if (W == S) {
1505 if (!HasBackedge)
1506 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1507 F = true;
1508 ++NumPaths;
1509 break;
1510 } else if (!Blocked.test(W)) {
1511 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1512 F = true;
1513 }
1514 }
1515
1516 if (F)
1517 unblock(V);
1518 else {
1519 for (auto W : AdjK[V]) {
1520 if (W < S)
1521 continue;
1522 if (B[W].count(SV) == 0)
1523 B[W].insert(SV);
1524 }
1525 }
1526 Stack.pop_back();
1527 return F;
1528}
1529
1530/// Unblock a node in the circuit finding algorithm.
1531void SwingSchedulerDAG::Circuits::unblock(int U) {
1532 Blocked.reset(U);
1533 SmallPtrSet<SUnit *, 4> &BU = B[U];
1534 while (!BU.empty()) {
1535 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1536 assert(SI != BU.end() && "Invalid B set.");
1537 SUnit *W = *SI;
1538 BU.erase(W);
1539 if (Blocked.test(W->NodeNum))
1540 unblock(W->NodeNum);
1541 }
1542}
1543
1544/// Identify all the elementary circuits in the dependence graph using
1545/// Johnson's circuit algorithm.
1546void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1547 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1548 // but we do this to find the circuits, and then change them back.
1549 swapAntiDependences(SUnits);
1550
1551 Circuits Cir(SUnits);
1552 // Create the adjacency structure.
1553 Cir.createAdjacencyStructure(this);
1554 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1555 Cir.reset();
1556 Cir.circuit(i, i, NodeSets);
1557 }
1558
1559 // Change the dependences back so that we've created a DAG again.
1560 swapAntiDependences(SUnits);
1561}
1562
1563/// Return true for DAG nodes that we ignore when computing the cost functions.
1564/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1565/// in the calculation of the ASAP, ALAP, etc functions.
1566static bool ignoreDependence(const SDep &D, bool isPred) {
1567 if (D.isArtificial())
1568 return true;
1569 return D.getKind() == SDep::Anti && isPred;
1570}
1571
1572/// Compute several functions need to order the nodes for scheduling.
1573/// ASAP - Earliest time to schedule a node.
1574/// ALAP - Latest time to schedule a node.
1575/// MOV - Mobility function, difference between ALAP and ASAP.
1576/// D - Depth of each node.
1577/// H - Height of each node.
1578void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001579 ScheduleInfo.resize(SUnits.size());
1580
1581 DEBUG({
1582 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1583 E = Topo.end();
1584 I != E; ++I) {
1585 SUnit *SU = &SUnits[*I];
1586 SU->dump(this);
1587 }
1588 });
1589
1590 int maxASAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001591 // Compute ASAP and ZeroLatencyDepth.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001592 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1593 E = Topo.end();
1594 I != E; ++I) {
1595 int asap = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001596 int zeroLatencyDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001597 SUnit *SU = &SUnits[*I];
1598 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1599 EP = SU->Preds.end();
1600 IP != EP; ++IP) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001601 SUnit *pred = IP->getSUnit();
1602 if (getLatency(SU, *IP) == 0)
1603 zeroLatencyDepth =
1604 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001605 if (ignoreDependence(*IP, true))
1606 continue;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001607 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
1608 getDistance(pred, SU, *IP) * MII));
1609 }
1610 maxASAP = std::max(maxASAP, asap);
1611 ScheduleInfo[*I].ASAP = asap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001612 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001613 }
1614
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001615 // Compute ALAP, ZeroLatencyHeight, and MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001616 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1617 E = Topo.rend();
1618 I != E; ++I) {
1619 int alap = maxASAP;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001620 int zeroLatencyHeight = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001621 SUnit *SU = &SUnits[*I];
1622 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1623 ES = SU->Succs.end();
1624 IS != ES; ++IS) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001625 SUnit *succ = IS->getSUnit();
1626 if (getLatency(SU, *IS) == 0)
1627 zeroLatencyHeight =
1628 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001629 if (ignoreDependence(*IS, true))
1630 continue;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001631 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
1632 getDistance(SU, succ, *IS) * MII));
1633 }
1634
1635 ScheduleInfo[*I].ALAP = alap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001636 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001637 }
1638
1639 // After computing the node functions, compute the summary for each node set.
1640 for (NodeSet &I : NodeSets)
1641 I.computeNodeSetInfo(this);
1642
1643 DEBUG({
1644 for (unsigned i = 0; i < SUnits.size(); i++) {
1645 dbgs() << "\tNode " << i << ":\n";
1646 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1647 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1648 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1649 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1650 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001651 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1652 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
Brendon Cahoon254f8892016-07-29 16:44:44 +00001653 }
1654 });
1655}
1656
1657/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1658/// as the predecessors of the elements of NodeOrder that are not also in
1659/// NodeOrder.
1660static bool pred_L(SetVector<SUnit *> &NodeOrder,
1661 SmallSetVector<SUnit *, 8> &Preds,
1662 const NodeSet *S = nullptr) {
1663 Preds.clear();
1664 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1665 I != E; ++I) {
1666 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1667 PI != PE; ++PI) {
1668 if (S && S->count(PI->getSUnit()) == 0)
1669 continue;
1670 if (ignoreDependence(*PI, true))
1671 continue;
1672 if (NodeOrder.count(PI->getSUnit()) == 0)
1673 Preds.insert(PI->getSUnit());
1674 }
1675 // Back-edges are predecessors with an anti-dependence.
1676 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1677 ES = (*I)->Succs.end();
1678 IS != ES; ++IS) {
1679 if (IS->getKind() != SDep::Anti)
1680 continue;
1681 if (S && S->count(IS->getSUnit()) == 0)
1682 continue;
1683 if (NodeOrder.count(IS->getSUnit()) == 0)
1684 Preds.insert(IS->getSUnit());
1685 }
1686 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001687 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001688}
1689
1690/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1691/// as the successors of the elements of NodeOrder that are not also in
1692/// NodeOrder.
1693static bool succ_L(SetVector<SUnit *> &NodeOrder,
1694 SmallSetVector<SUnit *, 8> &Succs,
1695 const NodeSet *S = nullptr) {
1696 Succs.clear();
1697 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1698 I != E; ++I) {
1699 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1700 SI != SE; ++SI) {
1701 if (S && S->count(SI->getSUnit()) == 0)
1702 continue;
1703 if (ignoreDependence(*SI, false))
1704 continue;
1705 if (NodeOrder.count(SI->getSUnit()) == 0)
1706 Succs.insert(SI->getSUnit());
1707 }
1708 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1709 PE = (*I)->Preds.end();
1710 PI != PE; ++PI) {
1711 if (PI->getKind() != SDep::Anti)
1712 continue;
1713 if (S && S->count(PI->getSUnit()) == 0)
1714 continue;
1715 if (NodeOrder.count(PI->getSUnit()) == 0)
1716 Succs.insert(PI->getSUnit());
1717 }
1718 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001719 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001720}
1721
1722/// Return true if there is a path from the specified node to any of the nodes
1723/// in DestNodes. Keep track and return the nodes in any path.
1724static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1725 SetVector<SUnit *> &DestNodes,
1726 SetVector<SUnit *> &Exclude,
1727 SmallPtrSet<SUnit *, 8> &Visited) {
1728 if (Cur->isBoundaryNode())
1729 return false;
1730 if (Exclude.count(Cur) != 0)
1731 return false;
1732 if (DestNodes.count(Cur) != 0)
1733 return true;
1734 if (!Visited.insert(Cur).second)
1735 return Path.count(Cur) != 0;
1736 bool FoundPath = false;
1737 for (auto &SI : Cur->Succs)
1738 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1739 for (auto &PI : Cur->Preds)
1740 if (PI.getKind() == SDep::Anti)
1741 FoundPath |=
1742 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1743 if (FoundPath)
1744 Path.insert(Cur);
1745 return FoundPath;
1746}
1747
1748/// Return true if Set1 is a subset of Set2.
1749template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1750 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1751 if (Set2.count(*I) == 0)
1752 return false;
1753 return true;
1754}
1755
1756/// Compute the live-out registers for the instructions in a node-set.
1757/// The live-out registers are those that are defined in the node-set,
1758/// but not used. Except for use operands of Phis.
1759static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1760 NodeSet &NS) {
1761 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1762 MachineRegisterInfo &MRI = MF.getRegInfo();
1763 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1764 SmallSet<unsigned, 4> Uses;
1765 for (SUnit *SU : NS) {
1766 const MachineInstr *MI = SU->getInstr();
1767 if (MI->isPHI())
1768 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001769 for (const MachineOperand &MO : MI->operands())
1770 if (MO.isReg() && MO.isUse()) {
1771 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001772 if (TargetRegisterInfo::isVirtualRegister(Reg))
1773 Uses.insert(Reg);
1774 else if (MRI.isAllocatable(Reg))
1775 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1776 Uses.insert(*Units);
1777 }
1778 }
1779 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001780 for (const MachineOperand &MO : SU->getInstr()->operands())
1781 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1782 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001783 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1784 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001785 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1786 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001787 } else if (MRI.isAllocatable(Reg)) {
1788 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1789 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001790 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1791 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001792 }
1793 }
1794 RPTracker.addLiveRegs(LiveOutRegs);
1795}
1796
1797/// A heuristic to filter nodes in recurrent node-sets if the register
1798/// pressure of a set is too high.
1799void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1800 for (auto &NS : NodeSets) {
1801 // Skip small node-sets since they won't cause register pressure problems.
1802 if (NS.size() <= 2)
1803 continue;
1804 IntervalPressure RecRegPressure;
1805 RegPressureTracker RecRPTracker(RecRegPressure);
1806 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1807 computeLiveOuts(MF, RecRPTracker, NS);
1808 RecRPTracker.closeBottom();
1809
1810 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1811 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1812 return A->NodeNum > B->NodeNum;
1813 });
1814
1815 for (auto &SU : SUnits) {
1816 // Since we're computing the register pressure for a subset of the
1817 // instructions in a block, we need to set the tracker for each
1818 // instruction in the node-set. The tracker is set to the instruction
1819 // just after the one we're interested in.
1820 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1821 RecRPTracker.setPos(std::next(CurInstI));
1822
1823 RegPressureDelta RPDelta;
1824 ArrayRef<PressureChange> CriticalPSets;
1825 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1826 CriticalPSets,
1827 RecRegPressure.MaxSetPressure);
1828 if (RPDelta.Excess.isValid()) {
1829 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1830 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1831 << ":" << RPDelta.Excess.getUnitInc());
1832 NS.setExceedPressure(SU);
1833 break;
1834 }
1835 RecRPTracker.recede();
1836 }
1837 }
1838}
1839
1840/// A heuristic to colocate node sets that have the same set of
1841/// successors.
1842void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1843 unsigned Colocate = 0;
1844 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1845 NodeSet &N1 = NodeSets[i];
1846 SmallSetVector<SUnit *, 8> S1;
1847 if (N1.empty() || !succ_L(N1, S1))
1848 continue;
1849 for (int j = i + 1; j < e; ++j) {
1850 NodeSet &N2 = NodeSets[j];
1851 if (N1.compareRecMII(N2) != 0)
1852 continue;
1853 SmallSetVector<SUnit *, 8> S2;
1854 if (N2.empty() || !succ_L(N2, S2))
1855 continue;
1856 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1857 N1.setColocate(++Colocate);
1858 N2.setColocate(Colocate);
1859 break;
1860 }
1861 }
1862 }
1863}
1864
1865/// Check if the existing node-sets are profitable. If not, then ignore the
1866/// recurrent node-sets, and attempt to schedule all nodes together. This is
1867/// a heuristic. If the MII is large and there is a non-recurrent node with
1868/// a large depth compared to the MII, then it's best to try and schedule
1869/// all instruction together instead of starting with the recurrent node-sets.
1870void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1871 // Look for loops with a large MII.
1872 if (MII <= 20)
1873 return;
1874 // Check if the node-set contains only a simple add recurrence.
1875 for (auto &NS : NodeSets)
1876 if (NS.size() > 2)
1877 return;
1878 // If the depth of any instruction is significantly larger than the MII, then
1879 // ignore the recurrent node-sets and treat all instructions equally.
1880 for (auto &SU : SUnits)
1881 if (SU.getDepth() > MII * 1.5) {
1882 NodeSets.clear();
1883 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1884 return;
1885 }
1886}
1887
1888/// Add the nodes that do not belong to a recurrence set into groups
1889/// based upon connected componenets.
1890void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1891 SetVector<SUnit *> NodesAdded;
1892 SmallPtrSet<SUnit *, 8> Visited;
1893 // Add the nodes that are on a path between the previous node sets and
1894 // the current node set.
1895 for (NodeSet &I : NodeSets) {
1896 SmallSetVector<SUnit *, 8> N;
1897 // Add the nodes from the current node set to the previous node set.
1898 if (succ_L(I, N)) {
1899 SetVector<SUnit *> Path;
1900 for (SUnit *NI : N) {
1901 Visited.clear();
1902 computePath(NI, Path, NodesAdded, I, Visited);
1903 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001904 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001905 I.insert(Path.begin(), Path.end());
1906 }
1907 // Add the nodes from the previous node set to the current node set.
1908 N.clear();
1909 if (succ_L(NodesAdded, N)) {
1910 SetVector<SUnit *> Path;
1911 for (SUnit *NI : N) {
1912 Visited.clear();
1913 computePath(NI, Path, I, NodesAdded, Visited);
1914 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001915 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001916 I.insert(Path.begin(), Path.end());
1917 }
1918 NodesAdded.insert(I.begin(), I.end());
1919 }
1920
1921 // Create a new node set with the connected nodes of any successor of a node
1922 // in a recurrent set.
1923 NodeSet NewSet;
1924 SmallSetVector<SUnit *, 8> N;
1925 if (succ_L(NodesAdded, N))
1926 for (SUnit *I : N)
1927 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001928 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001929 NodeSets.push_back(NewSet);
1930
1931 // Create a new node set with the connected nodes of any predecessor of a node
1932 // in a recurrent set.
1933 NewSet.clear();
1934 if (pred_L(NodesAdded, N))
1935 for (SUnit *I : N)
1936 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001937 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001938 NodeSets.push_back(NewSet);
1939
1940 // Create new nodes sets with the connected nodes any any remaining node that
1941 // has no predecessor.
1942 for (unsigned i = 0; i < SUnits.size(); ++i) {
1943 SUnit *SU = &SUnits[i];
1944 if (NodesAdded.count(SU) == 0) {
1945 NewSet.clear();
1946 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001947 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001948 NodeSets.push_back(NewSet);
1949 }
1950 }
1951}
1952
1953/// Add the node to the set, and add all is its connected nodes to the set.
1954void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1955 SetVector<SUnit *> &NodesAdded) {
1956 NewSet.insert(SU);
1957 NodesAdded.insert(SU);
1958 for (auto &SI : SU->Succs) {
1959 SUnit *Successor = SI.getSUnit();
1960 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1961 addConnectedNodes(Successor, NewSet, NodesAdded);
1962 }
1963 for (auto &PI : SU->Preds) {
1964 SUnit *Predecessor = PI.getSUnit();
1965 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1966 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1967 }
1968}
1969
1970/// Return true if Set1 contains elements in Set2. The elements in common
1971/// are returned in a different container.
1972static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1973 SmallSetVector<SUnit *, 8> &Result) {
1974 Result.clear();
1975 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1976 SUnit *SU = Set1[i];
1977 if (Set2.count(SU) != 0)
1978 Result.insert(SU);
1979 }
1980 return !Result.empty();
1981}
1982
1983/// Merge the recurrence node sets that have the same initial node.
1984void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1985 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1986 ++I) {
1987 NodeSet &NI = *I;
1988 for (NodeSetType::iterator J = I + 1; J != E;) {
1989 NodeSet &NJ = *J;
1990 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1991 if (NJ.compareRecMII(NI) > 0)
1992 NI.setRecMII(NJ.getRecMII());
1993 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1994 ++NII)
1995 I->insert(*NII);
1996 NodeSets.erase(J);
1997 E = NodeSets.end();
1998 } else {
1999 ++J;
2000 }
2001 }
2002 }
2003}
2004
2005/// Remove nodes that have been scheduled in previous NodeSets.
2006void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2007 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2008 ++I)
2009 for (NodeSetType::iterator J = I + 1; J != E;) {
2010 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2011
Eugene Zelenko32a40562017-09-11 23:00:48 +00002012 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002013 NodeSets.erase(J);
2014 E = NodeSets.end();
2015 } else {
2016 ++J;
2017 }
2018 }
2019}
2020
Brendon Cahoon254f8892016-07-29 16:44:44 +00002021/// Compute an ordered list of the dependence graph nodes, which
2022/// indicates the order that the nodes will be scheduled. This is a
2023/// two-level algorithm. First, a partial order is created, which
2024/// consists of a list of sets ordered from highest to lowest priority.
2025void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2026 SmallSetVector<SUnit *, 8> R;
2027 NodeOrder.clear();
2028
2029 for (auto &Nodes : NodeSets) {
2030 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2031 OrderKind Order;
2032 SmallSetVector<SUnit *, 8> N;
2033 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2034 R.insert(N.begin(), N.end());
2035 Order = BottomUp;
2036 DEBUG(dbgs() << " Bottom up (preds) ");
2037 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2038 R.insert(N.begin(), N.end());
2039 Order = TopDown;
2040 DEBUG(dbgs() << " Top down (succs) ");
2041 } else if (isIntersect(N, Nodes, R)) {
2042 // If some of the successors are in the existing node-set, then use the
2043 // top-down ordering.
2044 Order = TopDown;
2045 DEBUG(dbgs() << " Top down (intersect) ");
2046 } else if (NodeSets.size() == 1) {
2047 for (auto &N : Nodes)
2048 if (N->Succs.size() == 0)
2049 R.insert(N);
2050 Order = BottomUp;
2051 DEBUG(dbgs() << " Bottom up (all) ");
2052 } else {
2053 // Find the node with the highest ASAP.
2054 SUnit *maxASAP = nullptr;
2055 for (SUnit *SU : Nodes) {
2056 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
2057 maxASAP = SU;
2058 }
2059 R.insert(maxASAP);
2060 Order = BottomUp;
2061 DEBUG(dbgs() << " Bottom up (default) ");
2062 }
2063
2064 while (!R.empty()) {
2065 if (Order == TopDown) {
2066 // Choose the node with the maximum height. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002067 // the node with the maximum ZeroLatencyHeight. If still more than one,
2068 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002069 while (!R.empty()) {
2070 SUnit *maxHeight = nullptr;
2071 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002072 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002073 maxHeight = I;
2074 else if (getHeight(I) == getHeight(maxHeight) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002075 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002076 maxHeight = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002077 else if (getHeight(I) == getHeight(maxHeight) &&
2078 getZeroLatencyHeight(I) ==
2079 getZeroLatencyHeight(maxHeight) &&
2080 getMOV(I) < getMOV(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002081 maxHeight = I;
2082 }
2083 NodeOrder.insert(maxHeight);
2084 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2085 R.remove(maxHeight);
2086 for (const auto &I : maxHeight->Succs) {
2087 if (Nodes.count(I.getSUnit()) == 0)
2088 continue;
2089 if (NodeOrder.count(I.getSUnit()) != 0)
2090 continue;
2091 if (ignoreDependence(I, false))
2092 continue;
2093 R.insert(I.getSUnit());
2094 }
2095 // Back-edges are predecessors with an anti-dependence.
2096 for (const auto &I : maxHeight->Preds) {
2097 if (I.getKind() != SDep::Anti)
2098 continue;
2099 if (Nodes.count(I.getSUnit()) == 0)
2100 continue;
2101 if (NodeOrder.count(I.getSUnit()) != 0)
2102 continue;
2103 R.insert(I.getSUnit());
2104 }
2105 }
2106 Order = BottomUp;
2107 DEBUG(dbgs() << "\n Switching order to bottom up ");
2108 SmallSetVector<SUnit *, 8> N;
2109 if (pred_L(NodeOrder, N, &Nodes))
2110 R.insert(N.begin(), N.end());
2111 } else {
2112 // Choose the node with the maximum depth. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002113 // the node with the maximum ZeroLatencyDepth. If still more than one,
2114 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002115 while (!R.empty()) {
2116 SUnit *maxDepth = nullptr;
2117 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002118 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002119 maxDepth = I;
2120 else if (getDepth(I) == getDepth(maxDepth) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002121 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002122 maxDepth = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002123 else if (getDepth(I) == getDepth(maxDepth) &&
2124 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2125 getMOV(I) < getMOV(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002126 maxDepth = I;
2127 }
2128 NodeOrder.insert(maxDepth);
2129 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2130 R.remove(maxDepth);
2131 if (Nodes.isExceedSU(maxDepth)) {
2132 Order = TopDown;
2133 R.clear();
2134 R.insert(Nodes.getNode(0));
2135 break;
2136 }
2137 for (const auto &I : maxDepth->Preds) {
2138 if (Nodes.count(I.getSUnit()) == 0)
2139 continue;
2140 if (NodeOrder.count(I.getSUnit()) != 0)
2141 continue;
2142 if (I.getKind() == SDep::Anti)
2143 continue;
2144 R.insert(I.getSUnit());
2145 }
2146 // Back-edges are predecessors with an anti-dependence.
2147 for (const auto &I : maxDepth->Succs) {
2148 if (I.getKind() != SDep::Anti)
2149 continue;
2150 if (Nodes.count(I.getSUnit()) == 0)
2151 continue;
2152 if (NodeOrder.count(I.getSUnit()) != 0)
2153 continue;
2154 R.insert(I.getSUnit());
2155 }
2156 }
2157 Order = TopDown;
2158 DEBUG(dbgs() << "\n Switching order to top down ");
2159 SmallSetVector<SUnit *, 8> N;
2160 if (succ_L(NodeOrder, N, &Nodes))
2161 R.insert(N.begin(), N.end());
2162 }
2163 }
2164 DEBUG(dbgs() << "\nDone with Nodeset\n");
2165 }
2166
2167 DEBUG({
2168 dbgs() << "Node order: ";
2169 for (SUnit *I : NodeOrder)
2170 dbgs() << " " << I->NodeNum << " ";
2171 dbgs() << "\n";
2172 });
2173}
2174
2175/// Process the nodes in the computed order and create the pipelined schedule
2176/// of the instructions, if possible. Return true if a schedule is found.
2177bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00002178 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002179 return false;
2180
2181 bool scheduleFound = false;
2182 // Keep increasing II until a valid schedule is found.
2183 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2184 Schedule.reset();
2185 Schedule.setInitiationInterval(II);
2186 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2187
2188 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2189 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2190 do {
2191 SUnit *SU = *NI;
2192
2193 // Compute the schedule time for the instruction, which is based
2194 // upon the scheduled time for any predecessors/successors.
2195 int EarlyStart = INT_MIN;
2196 int LateStart = INT_MAX;
2197 // These values are set when the size of the schedule window is limited
2198 // due to chain dependences.
2199 int SchedEnd = INT_MAX;
2200 int SchedStart = INT_MIN;
2201 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2202 II, this);
2203 DEBUG({
2204 dbgs() << "Inst (" << SU->NodeNum << ") ";
2205 SU->getInstr()->dump();
2206 dbgs() << "\n";
2207 });
2208 DEBUG({
2209 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2210 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2211 });
2212
2213 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2214 SchedStart > LateStart)
2215 scheduleFound = false;
2216 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2217 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2218 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2219 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2220 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2221 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2222 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2223 SchedEnd =
2224 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2225 // When scheduling a Phi it is better to start at the late cycle and go
2226 // backwards. The default order may insert the Phi too far away from
2227 // its first dependence.
2228 if (SU->getInstr()->isPHI())
2229 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2230 else
2231 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2232 } else {
2233 int FirstCycle = Schedule.getFirstCycle();
2234 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2235 FirstCycle + getASAP(SU) + II - 1, II);
2236 }
2237 // Even if we find a schedule, make sure the schedule doesn't exceed the
2238 // allowable number of stages. We keep trying if this happens.
2239 if (scheduleFound)
2240 if (SwpMaxStages > -1 &&
2241 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2242 scheduleFound = false;
2243
2244 DEBUG({
2245 if (!scheduleFound)
2246 dbgs() << "\tCan't schedule\n";
2247 });
2248 } while (++NI != NE && scheduleFound);
2249
2250 // If a schedule is found, check if it is a valid schedule too.
2251 if (scheduleFound)
2252 scheduleFound = Schedule.isValidSchedule(this);
2253 }
2254
2255 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2256
2257 if (scheduleFound)
2258 Schedule.finalizeSchedule(this);
2259 else
2260 Schedule.reset();
2261
2262 return scheduleFound && Schedule.getMaxStageCount() > 0;
2263}
2264
2265/// Given a schedule for the loop, generate a new version of the loop,
2266/// and replace the old version. This function generates a prolog
2267/// that contains the initial iterations in the pipeline, and kernel
2268/// loop, and the epilogue that contains the code for the final
2269/// iterations.
2270void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2271 // Create a new basic block for the kernel and add it to the CFG.
2272 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2273
2274 unsigned MaxStageCount = Schedule.getMaxStageCount();
2275
2276 // Remember the registers that are used in different stages. The index is
2277 // the iteration, or stage, that the instruction is scheduled in. This is
2278 // a map between register names in the orignal block and the names created
2279 // in each stage of the pipelined loop.
2280 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2281 InstrMapTy InstrMap;
2282
2283 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2284 // Generate the prolog instructions that set up the pipeline.
2285 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2286 MF.insert(BB->getIterator(), KernelBB);
2287
2288 // Rearrange the instructions to generate the new, pipelined loop,
2289 // and update register names as needed.
2290 for (int Cycle = Schedule.getFirstCycle(),
2291 LastCycle = Schedule.getFinalCycle();
2292 Cycle <= LastCycle; ++Cycle) {
2293 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2294 // This inner loop schedules each instruction in the cycle.
2295 for (SUnit *CI : CycleInstrs) {
2296 if (CI->getInstr()->isPHI())
2297 continue;
2298 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2299 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2300 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2301 KernelBB->push_back(NewMI);
2302 InstrMap[NewMI] = CI->getInstr();
2303 }
2304 }
2305
2306 // Copy any terminator instructions to the new kernel, and update
2307 // names as needed.
2308 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2309 E = BB->instr_end();
2310 I != E; ++I) {
2311 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2312 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2313 KernelBB->push_back(NewMI);
2314 InstrMap[NewMI] = &*I;
2315 }
2316
2317 KernelBB->transferSuccessors(BB);
2318 KernelBB->replaceSuccessor(BB, KernelBB);
2319
2320 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2321 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2322 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2323 InstrMap, MaxStageCount, MaxStageCount, false);
2324
2325 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2326
2327 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2328 // Generate the epilog instructions to complete the pipeline.
2329 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2330 PrologBBs);
2331
2332 // We need this step because the register allocation doesn't handle some
2333 // situations well, so we insert copies to help out.
2334 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2335
2336 // Remove dead instructions due to loop induction variables.
2337 removeDeadInstructions(KernelBB, EpilogBBs);
2338
2339 // Add branches between prolog and epilog blocks.
2340 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2341
2342 // Remove the original loop since it's no longer referenced.
2343 BB->clear();
2344 BB->eraseFromParent();
2345
2346 delete[] VRMap;
2347}
2348
2349/// Generate the pipeline prolog code.
2350void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2351 MachineBasicBlock *KernelBB,
2352 ValueMapTy *VRMap,
2353 MBBVectorTy &PrologBBs) {
2354 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002355 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002356 "Need to add code to handle loops w/o preheader");
2357 MachineBasicBlock *PredBB = PreheaderBB;
2358 InstrMapTy InstrMap;
2359
2360 // Generate a basic block for each stage, not including the last stage,
2361 // which will be generated in the kernel. Each basic block may contain
2362 // instructions from multiple stages/iterations.
2363 for (unsigned i = 0; i < LastStage; ++i) {
2364 // Create and insert the prolog basic block prior to the original loop
2365 // basic block. The original loop is removed later.
2366 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2367 PrologBBs.push_back(NewBB);
2368 MF.insert(BB->getIterator(), NewBB);
2369 NewBB->transferSuccessors(PredBB);
2370 PredBB->addSuccessor(NewBB);
2371 PredBB = NewBB;
2372
2373 // Generate instructions for each appropriate stage. Process instructions
2374 // in original program order.
2375 for (int StageNum = i; StageNum >= 0; --StageNum) {
2376 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2377 BBE = BB->getFirstTerminator();
2378 BBI != BBE; ++BBI) {
2379 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2380 if (BBI->isPHI())
2381 continue;
2382 MachineInstr *NewMI =
2383 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2384 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2385 VRMap);
2386 NewBB->push_back(NewMI);
2387 InstrMap[NewMI] = &*BBI;
2388 }
2389 }
2390 }
2391 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2392 DEBUG({
2393 dbgs() << "prolog:\n";
2394 NewBB->dump();
2395 });
2396 }
2397
2398 PredBB->replaceSuccessor(BB, KernelBB);
2399
2400 // Check if we need to remove the branch from the preheader to the original
2401 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002402 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002403 if (numBranches) {
2404 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002405 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002406 }
2407}
2408
2409/// Generate the pipeline epilog code. The epilog code finishes the iterations
2410/// that were started in either the prolog or the kernel. We create a basic
2411/// block for each stage that needs to complete.
2412void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2413 MachineBasicBlock *KernelBB,
2414 ValueMapTy *VRMap,
2415 MBBVectorTy &EpilogBBs,
2416 MBBVectorTy &PrologBBs) {
2417 // We need to change the branch from the kernel to the first epilog block, so
2418 // this call to analyze branch uses the kernel rather than the original BB.
2419 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2420 SmallVector<MachineOperand, 4> Cond;
2421 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2422 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2423 if (checkBranch)
2424 return;
2425
2426 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2427 if (*LoopExitI == KernelBB)
2428 ++LoopExitI;
2429 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2430 MachineBasicBlock *LoopExitBB = *LoopExitI;
2431
2432 MachineBasicBlock *PredBB = KernelBB;
2433 MachineBasicBlock *EpilogStart = LoopExitBB;
2434 InstrMapTy InstrMap;
2435
2436 // Generate a basic block for each stage, not including the last stage,
2437 // which was generated for the kernel. Each basic block may contain
2438 // instructions from multiple stages/iterations.
2439 int EpilogStage = LastStage + 1;
2440 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2441 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2442 EpilogBBs.push_back(NewBB);
2443 MF.insert(BB->getIterator(), NewBB);
2444
2445 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2446 NewBB->addSuccessor(LoopExitBB);
2447
2448 if (EpilogStart == LoopExitBB)
2449 EpilogStart = NewBB;
2450
2451 // Add instructions to the epilog depending on the current block.
2452 // Process instructions in original program order.
2453 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2454 for (auto &BBI : *BB) {
2455 if (BBI.isPHI())
2456 continue;
2457 MachineInstr *In = &BBI;
2458 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2459 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
2460 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2461 NewBB->push_back(NewMI);
2462 InstrMap[NewMI] = In;
2463 }
2464 }
2465 }
2466 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2467 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2468 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2469 InstrMap, LastStage, EpilogStage, i == 1);
2470 PredBB = NewBB;
2471
2472 DEBUG({
2473 dbgs() << "epilog:\n";
2474 NewBB->dump();
2475 });
2476 }
2477
2478 // Fix any Phi nodes in the loop exit block.
2479 for (MachineInstr &MI : *LoopExitBB) {
2480 if (!MI.isPHI())
2481 break;
2482 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2483 MachineOperand &MO = MI.getOperand(i);
2484 if (MO.getMBB() == BB)
2485 MO.setMBB(PredBB);
2486 }
2487 }
2488
2489 // Create a branch to the new epilog from the kernel.
2490 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002491 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002492 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002493 // Add a branch to the loop exit.
2494 if (EpilogBBs.size() > 0) {
2495 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2496 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002497 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002498 }
2499}
2500
2501/// Replace all uses of FromReg that appear outside the specified
2502/// basic block with ToReg.
2503static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2504 MachineBasicBlock *MBB,
2505 MachineRegisterInfo &MRI,
2506 LiveIntervals &LIS) {
2507 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2508 E = MRI.use_end();
2509 I != E;) {
2510 MachineOperand &O = *I;
2511 ++I;
2512 if (O.getParent()->getParent() != MBB)
2513 O.setReg(ToReg);
2514 }
2515 if (!LIS.hasInterval(ToReg))
2516 LIS.createEmptyInterval(ToReg);
2517}
2518
2519/// Return true if the register has a use that occurs outside the
2520/// specified loop.
2521static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2522 MachineRegisterInfo &MRI) {
2523 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2524 E = MRI.use_end();
2525 I != E; ++I)
2526 if (I->getParent()->getParent() != BB)
2527 return true;
2528 return false;
2529}
2530
2531/// Generate Phis for the specific block in the generated pipelined code.
2532/// This function looks at the Phis from the original code to guide the
2533/// creation of new Phis.
2534void SwingSchedulerDAG::generateExistingPhis(
2535 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2536 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2537 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2538 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002539 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002540 // comes from the prolog. The prolog to use depends on to which kernel/
2541 // epilog that we're adding the Phi.
2542 unsigned PrologStage = 0;
2543 unsigned PrevStage = 0;
2544 bool InKernel = (LastStageNum == CurStageNum);
2545 if (InKernel) {
2546 PrologStage = LastStageNum - 1;
2547 PrevStage = CurStageNum;
2548 } else {
2549 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2550 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2551 }
2552
2553 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2554 BBE = BB->getFirstNonPHI();
2555 BBI != BBE; ++BBI) {
2556 unsigned Def = BBI->getOperand(0).getReg();
2557
2558 unsigned InitVal = 0;
2559 unsigned LoopVal = 0;
2560 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2561
2562 unsigned PhiOp1 = 0;
2563 // The Phi value from the loop body typically is defined in the loop, but
2564 // not always. So, we need to check if the value is defined in the loop.
2565 unsigned PhiOp2 = LoopVal;
2566 if (VRMap[LastStageNum].count(LoopVal))
2567 PhiOp2 = VRMap[LastStageNum][LoopVal];
2568
2569 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2570 int LoopValStage =
2571 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2572 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2573 if (NumStages == 0) {
2574 // We don't need to generate a Phi anymore, but we need to rename any uses
2575 // of the Phi value.
2576 unsigned NewReg = VRMap[PrevStage][LoopVal];
2577 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2578 Def, NewReg);
2579 if (VRMap[CurStageNum].count(LoopVal))
2580 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2581 }
2582 // Adjust the number of Phis needed depending on the number of prologs left,
2583 // and the distance from where the Phi is first scheduled.
2584 unsigned NumPhis = NumStages;
2585 if (!InKernel && (int)PrologStage < LoopValStage)
2586 // The NumPhis is the maximum number of new Phis needed during the steady
2587 // state. If the Phi has not been scheduled in current prolog, then we
2588 // need to generate less Phis.
2589 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2590 // The number of Phis cannot exceed the number of prolog stages. Each
2591 // stage can potentially define two values.
2592 NumPhis = std::min(NumPhis, PrologStage + 2);
2593
2594 unsigned NewReg = 0;
2595
2596 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2597 // In the epilog, we may need to look back one stage to get the correct
2598 // Phi name because the epilog and prolog blocks execute the same stage.
2599 // The correct name is from the previous block only when the Phi has
2600 // been completely scheduled prior to the epilog, and Phi value is not
2601 // needed in multiple stages.
2602 int StageDiff = 0;
2603 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2604 NumPhis == 1)
2605 StageDiff = 1;
2606 // Adjust the computations below when the phi and the loop definition
2607 // are scheduled in different stages.
2608 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2609 StageDiff = StageScheduled - LoopValStage;
2610 for (unsigned np = 0; np < NumPhis; ++np) {
2611 // If the Phi hasn't been scheduled, then use the initial Phi operand
2612 // value. Otherwise, use the scheduled version of the instruction. This
2613 // is a little complicated when a Phi references another Phi.
2614 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2615 PhiOp1 = InitVal;
2616 // Check if the Phi has already been scheduled in a prolog stage.
2617 else if (PrologStage >= AccessStage + StageDiff + np &&
2618 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2619 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2620 // Check if the Phi has already been scheduled, but the loop intruction
2621 // is either another Phi, or doesn't occur in the loop.
2622 else if (PrologStage >= AccessStage + StageDiff + np) {
2623 // If the Phi references another Phi, we need to examine the other
2624 // Phi to get the correct value.
2625 PhiOp1 = LoopVal;
2626 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2627 int Indirects = 1;
2628 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2629 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2630 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2631 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2632 else
2633 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2634 InstOp1 = MRI.getVRegDef(PhiOp1);
2635 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2636 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2637 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2638 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2639 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2640 break;
2641 }
2642 ++Indirects;
2643 }
2644 } else
2645 PhiOp1 = InitVal;
2646 // If this references a generated Phi in the kernel, get the Phi operand
2647 // from the incoming block.
2648 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2649 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2650 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2651
2652 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2653 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2654 // In the epilog, a map lookup is needed to get the value from the kernel,
2655 // or previous epilog block. How is does this depends on if the
2656 // instruction is scheduled in the previous block.
2657 if (!InKernel) {
2658 int StageDiffAdj = 0;
2659 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2660 StageDiffAdj = StageScheduled - LoopValStage;
2661 // Use the loop value defined in the kernel, unless the kernel
2662 // contains the last definition of the Phi.
2663 if (np == 0 && PrevStage == LastStageNum &&
2664 (StageScheduled != 0 || LoopValStage != 0) &&
2665 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2666 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2667 // Use the value defined by the Phi. We add one because we switch
2668 // from looking at the loop value to the Phi definition.
2669 else if (np > 0 && PrevStage == LastStageNum &&
2670 VRMap[PrevStage - np + 1].count(Def))
2671 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2672 // Use the loop value defined in the kernel.
2673 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2674 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2675 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2676 // Use the value defined by the Phi, unless we're generating the first
2677 // epilog and the Phi refers to a Phi in a different stage.
2678 else if (VRMap[PrevStage - np].count(Def) &&
2679 (!LoopDefIsPhi || PrevStage != LastStageNum))
2680 PhiOp2 = VRMap[PrevStage - np][Def];
2681 }
2682
2683 // Check if we can reuse an existing Phi. This occurs when a Phi
2684 // references another Phi, and the other Phi is scheduled in an
2685 // earlier stage. We can try to reuse an existing Phi up until the last
2686 // stage of the current Phi.
Brendon Cahoon65b6ebc2016-08-16 14:29:24 +00002687 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002688 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2689 int StageDiff = (StageScheduled - LoopValStage);
2690 LVNumStages -= StageDiff;
2691 if (LVNumStages > (int)np) {
2692 NewReg = PhiOp2;
2693 unsigned ReuseStage = CurStageNum;
2694 if (Schedule.isLoopCarried(this, *PhiInst))
2695 ReuseStage -= LVNumStages;
2696 // Check if the Phi to reuse has been generated yet. If not, then
2697 // there is nothing to reuse.
2698 if (VRMap[ReuseStage].count(LoopVal)) {
2699 NewReg = VRMap[ReuseStage][LoopVal];
2700
2701 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2702 &*BBI, Def, NewReg);
2703 // Update the map with the new Phi name.
2704 VRMap[CurStageNum - np][Def] = NewReg;
2705 PhiOp2 = NewReg;
2706 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2707 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2708
2709 if (IsLast && np == NumPhis - 1)
2710 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2711 continue;
2712 }
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002713 } else if (InKernel && StageDiff > 0 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002714 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2715 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2716 }
2717
2718 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2719 NewReg = MRI.createVirtualRegister(RC);
2720
2721 MachineInstrBuilder NewPhi =
2722 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2723 TII->get(TargetOpcode::PHI), NewReg);
2724 NewPhi.addReg(PhiOp1).addMBB(BB1);
2725 NewPhi.addReg(PhiOp2).addMBB(BB2);
2726 if (np == 0)
2727 InstrMap[NewPhi] = &*BBI;
2728
2729 // We define the Phis after creating the new pipelined code, so
2730 // we need to rename the Phi values in scheduled instructions.
2731
2732 unsigned PrevReg = 0;
2733 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2734 PrevReg = VRMap[PrevStage - np][LoopVal];
2735 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2736 Def, NewReg, PrevReg);
2737 // If the Phi has been scheduled, use the new name for rewriting.
2738 if (VRMap[CurStageNum - np].count(Def)) {
2739 unsigned R = VRMap[CurStageNum - np][Def];
2740 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2741 R, NewReg);
2742 }
2743
2744 // Check if we need to rename any uses that occurs after the loop. The
2745 // register to replace depends on whether the Phi is scheduled in the
2746 // epilog.
2747 if (IsLast && np == NumPhis - 1)
2748 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2749
2750 // In the kernel, a dependent Phi uses the value from this Phi.
2751 if (InKernel)
2752 PhiOp2 = NewReg;
2753
2754 // Update the map with the new Phi name.
2755 VRMap[CurStageNum - np][Def] = NewReg;
2756 }
2757
2758 while (NumPhis++ < NumStages) {
2759 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2760 &*BBI, Def, NewReg, 0);
2761 }
2762
2763 // Check if we need to rename a Phi that has been eliminated due to
2764 // scheduling.
2765 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2766 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2767 }
2768}
2769
2770/// Generate Phis for the specified block in the generated pipelined code.
2771/// These are new Phis needed because the definition is scheduled after the
2772/// use in the pipelened sequence.
2773void SwingSchedulerDAG::generatePhis(
2774 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2775 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2776 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2777 bool IsLast) {
2778 // Compute the stage number that contains the initial Phi value, and
2779 // the Phi from the previous stage.
2780 unsigned PrologStage = 0;
2781 unsigned PrevStage = 0;
2782 unsigned StageDiff = CurStageNum - LastStageNum;
2783 bool InKernel = (StageDiff == 0);
2784 if (InKernel) {
2785 PrologStage = LastStageNum - 1;
2786 PrevStage = CurStageNum;
2787 } else {
2788 PrologStage = LastStageNum - StageDiff;
2789 PrevStage = LastStageNum + StageDiff - 1;
2790 }
2791
2792 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2793 BBE = BB->instr_end();
2794 BBI != BBE; ++BBI) {
2795 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2796 MachineOperand &MO = BBI->getOperand(i);
2797 if (!MO.isReg() || !MO.isDef() ||
2798 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2799 continue;
2800
2801 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2802 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2803 unsigned Def = MO.getReg();
2804 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2805 // An instruction scheduled in stage 0 and is used after the loop
2806 // requires a phi in the epilog for the last definition from either
2807 // the kernel or prolog.
2808 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2809 hasUseAfterLoop(Def, BB, MRI))
2810 NumPhis = 1;
2811 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2812 continue;
2813
2814 unsigned PhiOp2 = VRMap[PrevStage][Def];
2815 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2816 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2817 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2818 // The number of Phis can't exceed the number of prolog stages. The
2819 // prolog stage number is zero based.
2820 if (NumPhis > PrologStage + 1 - StageScheduled)
2821 NumPhis = PrologStage + 1 - StageScheduled;
2822 for (unsigned np = 0; np < NumPhis; ++np) {
2823 unsigned PhiOp1 = VRMap[PrologStage][Def];
2824 if (np <= PrologStage)
2825 PhiOp1 = VRMap[PrologStage - np][Def];
2826 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2827 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2828 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2829 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2830 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2831 }
2832 if (!InKernel)
2833 PhiOp2 = VRMap[PrevStage - np][Def];
2834
2835 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2836 unsigned NewReg = MRI.createVirtualRegister(RC);
2837
2838 MachineInstrBuilder NewPhi =
2839 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2840 TII->get(TargetOpcode::PHI), NewReg);
2841 NewPhi.addReg(PhiOp1).addMBB(BB1);
2842 NewPhi.addReg(PhiOp2).addMBB(BB2);
2843 if (np == 0)
2844 InstrMap[NewPhi] = &*BBI;
2845
2846 // Rewrite uses and update the map. The actions depend upon whether
2847 // we generating code for the kernel or epilog blocks.
2848 if (InKernel) {
2849 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2850 &*BBI, PhiOp1, NewReg);
2851 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2852 &*BBI, PhiOp2, NewReg);
2853
2854 PhiOp2 = NewReg;
2855 VRMap[PrevStage - np - 1][Def] = NewReg;
2856 } else {
2857 VRMap[CurStageNum - np][Def] = NewReg;
2858 if (np == NumPhis - 1)
2859 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2860 &*BBI, Def, NewReg);
2861 }
2862 if (IsLast && np == NumPhis - 1)
2863 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2864 }
2865 }
2866 }
2867}
2868
2869/// Remove instructions that generate values with no uses.
2870/// Typically, these are induction variable operations that generate values
2871/// used in the loop itself. A dead instruction has a definition with
2872/// no uses, or uses that occur in the original loop only.
2873void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2874 MBBVectorTy &EpilogBBs) {
2875 // For each epilog block, check that the value defined by each instruction
2876 // is used. If not, delete it.
2877 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2878 MBE = EpilogBBs.rend();
2879 MBB != MBE; ++MBB)
2880 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2881 ME = (*MBB)->instr_rend();
2882 MI != ME;) {
2883 // From DeadMachineInstructionElem. Don't delete inline assembly.
2884 if (MI->isInlineAsm()) {
2885 ++MI;
2886 continue;
2887 }
2888 bool SawStore = false;
2889 // Check if it's safe to remove the instruction due to side effects.
2890 // We can, and want to, remove Phis here.
2891 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2892 ++MI;
2893 continue;
2894 }
2895 bool used = true;
2896 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2897 MOE = MI->operands_end();
2898 MOI != MOE; ++MOI) {
2899 if (!MOI->isReg() || !MOI->isDef())
2900 continue;
2901 unsigned reg = MOI->getReg();
2902 unsigned realUses = 0;
2903 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2904 EI = MRI.use_end();
2905 UI != EI; ++UI) {
2906 // Check if there are any uses that occur only in the original
2907 // loop. If so, that's not a real use.
2908 if (UI->getParent()->getParent() != BB) {
2909 realUses++;
2910 used = true;
2911 break;
2912 }
2913 }
2914 if (realUses > 0)
2915 break;
2916 used = false;
2917 }
2918 if (!used) {
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002919 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002920 continue;
2921 }
2922 ++MI;
2923 }
2924 // In the kernel block, check if we can remove a Phi that generates a value
2925 // used in an instruction removed in the epilog block.
2926 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2927 BBE = KernelBB->getFirstNonPHI();
2928 BBI != BBE;) {
2929 MachineInstr *MI = &*BBI;
2930 ++BBI;
2931 unsigned reg = MI->getOperand(0).getReg();
2932 if (MRI.use_begin(reg) == MRI.use_end()) {
2933 MI->eraseFromParent();
2934 }
2935 }
2936}
2937
2938/// For loop carried definitions, we split the lifetime of a virtual register
2939/// that has uses past the definition in the next iteration. A copy with a new
2940/// virtual register is inserted before the definition, which helps with
2941/// generating a better register assignment.
2942///
2943/// v1 = phi(a, v2) v1 = phi(a, v2)
2944/// v2 = phi(b, v3) v2 = phi(b, v3)
2945/// v3 = .. v4 = copy v1
2946/// .. = V1 v3 = ..
2947/// .. = v4
2948void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2949 MBBVectorTy &EpilogBBs,
2950 SMSchedule &Schedule) {
2951 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bob Wilson90ecac02018-01-04 02:58:15 +00002952 for (auto &PHI : KernelBB->phis()) {
2953 unsigned Def = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002954 // Check for any Phi definition that used as an operand of another Phi
2955 // in the same block.
2956 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2957 E = MRI.use_instr_end();
2958 I != E; ++I) {
2959 if (I->isPHI() && I->getParent() == KernelBB) {
2960 // Get the loop carried definition.
Bob Wilson90ecac02018-01-04 02:58:15 +00002961 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002962 if (!LCDef)
2963 continue;
2964 MachineInstr *MI = MRI.getVRegDef(LCDef);
2965 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2966 continue;
2967 // Search through the rest of the block looking for uses of the Phi
2968 // definition. If one occurs, then split the lifetime.
2969 unsigned SplitReg = 0;
2970 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2971 KernelBB->instr_end()))
2972 if (BBJ.readsRegister(Def)) {
2973 // We split the lifetime when we find the first use.
2974 if (SplitReg == 0) {
2975 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2976 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2977 TII->get(TargetOpcode::COPY), SplitReg)
2978 .addReg(Def);
2979 }
2980 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2981 }
2982 if (!SplitReg)
2983 continue;
2984 // Search through each of the epilog blocks for any uses to be renamed.
2985 for (auto &Epilog : EpilogBBs)
2986 for (auto &I : *Epilog)
2987 if (I.readsRegister(Def))
2988 I.substituteRegister(Def, SplitReg, 0, *TRI);
2989 break;
2990 }
2991 }
2992 }
2993}
2994
2995/// Remove the incoming block from the Phis in a basic block.
2996static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2997 for (MachineInstr &MI : *BB) {
2998 if (!MI.isPHI())
2999 break;
3000 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3001 if (MI.getOperand(i + 1).getMBB() == Incoming) {
3002 MI.RemoveOperand(i + 1);
3003 MI.RemoveOperand(i);
3004 break;
3005 }
3006 }
3007}
3008
3009/// Create branches from each prolog basic block to the appropriate epilog
3010/// block. These edges are needed if the loop ends before reaching the
3011/// kernel.
3012void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3013 MachineBasicBlock *KernelBB,
3014 MBBVectorTy &EpilogBBs,
3015 SMSchedule &Schedule, ValueMapTy *VRMap) {
3016 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3017 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3018 MachineInstr *Cmp = Pass.LI.LoopCompare;
3019 MachineBasicBlock *LastPro = KernelBB;
3020 MachineBasicBlock *LastEpi = KernelBB;
3021
3022 // Start from the blocks connected to the kernel and work "out"
3023 // to the first prolog and the last epilog blocks.
3024 SmallVector<MachineInstr *, 4> PrevInsts;
3025 unsigned MaxIter = PrologBBs.size() - 1;
3026 unsigned LC = UINT_MAX;
3027 unsigned LCMin = UINT_MAX;
3028 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3029 // Add branches to the prolog that go to the corresponding
3030 // epilog, and the fall-thru prolog/kernel block.
3031 MachineBasicBlock *Prolog = PrologBBs[j];
3032 MachineBasicBlock *Epilog = EpilogBBs[i];
3033 // We've executed one iteration, so decrement the loop count and check for
3034 // the loop end.
3035 SmallVector<MachineOperand, 4> Cond;
3036 // Check if the LOOP0 has already been removed. If so, then there is no need
3037 // to reduce the trip count.
3038 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003039 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003040 MaxIter);
3041
3042 // Record the value of the first trip count, which is used to determine if
3043 // branches and blocks can be removed for constant trip counts.
3044 if (LCMin == UINT_MAX)
3045 LCMin = LC;
3046
3047 unsigned numAdded = 0;
3048 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3049 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003050 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003051 } else if (j >= LCMin) {
3052 Prolog->addSuccessor(Epilog);
3053 Prolog->removeSuccessor(LastPro);
3054 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003055 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003056 removePhis(Epilog, LastEpi);
3057 // Remove the blocks that are no longer referenced.
3058 if (LastPro != LastEpi) {
3059 LastEpi->clear();
3060 LastEpi->eraseFromParent();
3061 }
3062 LastPro->clear();
3063 LastPro->eraseFromParent();
3064 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003065 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003066 removePhis(Epilog, Prolog);
3067 }
3068 LastPro = Prolog;
3069 LastEpi = Epilog;
3070 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3071 E = Prolog->instr_rend();
3072 I != E && numAdded > 0; ++I, --numAdded)
3073 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3074 }
3075}
3076
3077/// Return true if we can compute the amount the instruction changes
3078/// during each iteration. Set Delta to the amount of the change.
3079bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3080 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3081 unsigned BaseReg;
3082 int64_t Offset;
3083 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3084 return false;
3085
3086 MachineRegisterInfo &MRI = MF.getRegInfo();
3087 // Check if there is a Phi. If so, get the definition in the loop.
3088 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3089 if (BaseDef && BaseDef->isPHI()) {
3090 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3091 BaseDef = MRI.getVRegDef(BaseReg);
3092 }
3093 if (!BaseDef)
3094 return false;
3095
3096 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003097 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003098 return false;
3099
3100 Delta = D;
3101 return true;
3102}
3103
3104/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003105/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003106/// different memory location.
3107void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3108 MachineInstr &OldMI, unsigned Num) {
3109 if (Num == 0)
3110 return;
3111 // If the instruction has memory operands, then adjust the offset
3112 // when the instruction appears in different stages.
3113 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3114 if (NumRefs == 0)
3115 return;
3116 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3117 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003118 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003119 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3120 (!MMO->getValue())) {
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003121 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003122 continue;
3123 }
3124 unsigned Delta;
3125 if (computeDelta(OldMI, Delta)) {
3126 int64_t AdjOffset = Delta * Num;
3127 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003128 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00003129 } else {
3130 NewMI.dropMemRefs();
3131 return;
3132 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003133 }
3134 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3135}
3136
3137/// Clone the instruction for the new pipelined loop and update the
3138/// memory operands, if needed.
3139MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3140 unsigned CurStageNum,
3141 unsigned InstStageNum) {
3142 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3143 // Check for tied operands in inline asm instructions. This should be handled
3144 // elsewhere, but I'm not sure of the best solution.
3145 if (OldMI->isInlineAsm())
3146 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3147 const auto &MO = OldMI->getOperand(i);
3148 if (MO.isReg() && MO.isUse())
3149 break;
3150 unsigned UseIdx;
3151 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3152 NewMI->tieOperands(i, UseIdx);
3153 }
3154 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3155 return NewMI;
3156}
3157
3158/// Clone the instruction for the new pipelined loop. If needed, this
3159/// function updates the instruction using the values saved in the
3160/// InstrChanges structure.
3161MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3162 unsigned CurStageNum,
3163 unsigned InstStageNum,
3164 SMSchedule &Schedule) {
3165 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3166 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3167 InstrChanges.find(getSUnit(OldMI));
3168 if (It != InstrChanges.end()) {
3169 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3170 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003171 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003172 return nullptr;
3173 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3174 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3175 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3176 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3177 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3178 }
3179 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3180 return NewMI;
3181}
3182
3183/// Update the machine instruction with new virtual registers. This
3184/// function may change the defintions and/or uses.
3185void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3186 unsigned CurStageNum,
3187 unsigned InstrStageNum,
3188 SMSchedule &Schedule,
3189 ValueMapTy *VRMap) {
3190 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3191 MachineOperand &MO = NewMI->getOperand(i);
3192 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3193 continue;
3194 unsigned reg = MO.getReg();
3195 if (MO.isDef()) {
3196 // Create a new virtual register for the definition.
3197 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3198 unsigned NewReg = MRI.createVirtualRegister(RC);
3199 MO.setReg(NewReg);
3200 VRMap[CurStageNum][reg] = NewReg;
3201 if (LastDef)
3202 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3203 } else if (MO.isUse()) {
3204 MachineInstr *Def = MRI.getVRegDef(reg);
3205 // Compute the stage that contains the last definition for instruction.
3206 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3207 unsigned StageNum = CurStageNum;
3208 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3209 // Compute the difference in stages between the defintion and the use.
3210 unsigned StageDiff = (InstrStageNum - DefStageNum);
3211 // Make an adjustment to get the last definition.
3212 StageNum -= StageDiff;
3213 }
3214 if (VRMap[StageNum].count(reg))
3215 MO.setReg(VRMap[StageNum][reg]);
3216 }
3217 }
3218}
3219
3220/// Return the instruction in the loop that defines the register.
3221/// If the definition is a Phi, then follow the Phi operand to
3222/// the instruction in the loop.
3223MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3224 SmallPtrSet<MachineInstr *, 8> Visited;
3225 MachineInstr *Def = MRI.getVRegDef(Reg);
3226 while (Def->isPHI()) {
3227 if (!Visited.insert(Def).second)
3228 break;
3229 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3230 if (Def->getOperand(i + 1).getMBB() == BB) {
3231 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3232 break;
3233 }
3234 }
3235 return Def;
3236}
3237
3238/// Return the new name for the value from the previous stage.
3239unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3240 unsigned LoopVal, unsigned LoopStage,
3241 ValueMapTy *VRMap,
3242 MachineBasicBlock *BB) {
3243 unsigned PrevVal = 0;
3244 if (StageNum > PhiStage) {
3245 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3246 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3247 // The name is defined in the previous stage.
3248 PrevVal = VRMap[StageNum - 1][LoopVal];
3249 else if (VRMap[StageNum].count(LoopVal))
3250 // The previous name is defined in the current stage when the instruction
3251 // order is swapped.
3252 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003253 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003254 // The loop value hasn't yet been scheduled.
3255 PrevVal = LoopVal;
3256 else if (StageNum == PhiStage + 1)
3257 // The loop value is another phi, which has not been scheduled.
3258 PrevVal = getInitPhiReg(*LoopInst, BB);
3259 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3260 // The loop value is another phi, which has been scheduled.
3261 PrevVal =
3262 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3263 LoopStage, VRMap, BB);
3264 }
3265 return PrevVal;
3266}
3267
3268/// Rewrite the Phi values in the specified block to use the mappings
3269/// from the initial operand. Once the Phi is scheduled, we switch
3270/// to using the loop value instead of the Phi value, so those names
3271/// do not need to be rewritten.
3272void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3273 unsigned StageNum,
3274 SMSchedule &Schedule,
3275 ValueMapTy *VRMap,
3276 InstrMapTy &InstrMap) {
Bob Wilson90ecac02018-01-04 02:58:15 +00003277 for (auto &PHI : BB->phis()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003278 unsigned InitVal = 0;
3279 unsigned LoopVal = 0;
Bob Wilson90ecac02018-01-04 02:58:15 +00003280 getPhiRegs(PHI, BB, InitVal, LoopVal);
3281 unsigned PhiDef = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003282
3283 unsigned PhiStage =
3284 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3285 unsigned LoopStage =
3286 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3287 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3288 if (NumPhis > StageNum)
3289 NumPhis = StageNum;
3290 for (unsigned np = 0; np <= NumPhis; ++np) {
3291 unsigned NewVal =
3292 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3293 if (!NewVal)
3294 NewVal = InitVal;
Bob Wilson90ecac02018-01-04 02:58:15 +00003295 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003296 PhiDef, NewVal);
3297 }
3298 }
3299}
3300
3301/// Rewrite a previously scheduled instruction to use the register value
3302/// from the new instruction. Make sure the instruction occurs in the
3303/// basic block, and we don't change the uses in the new instruction.
3304void SwingSchedulerDAG::rewriteScheduledInstr(
3305 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3306 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3307 unsigned NewReg, unsigned PrevReg) {
3308 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3309 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3310 // Rewrite uses that have been scheduled already to use the new
3311 // Phi register.
3312 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3313 EI = MRI.use_end();
3314 UI != EI;) {
3315 MachineOperand &UseOp = *UI;
3316 MachineInstr *UseMI = UseOp.getParent();
3317 ++UI;
3318 if (UseMI->getParent() != BB)
3319 continue;
3320 if (UseMI->isPHI()) {
3321 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3322 continue;
3323 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3324 continue;
3325 }
3326 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3327 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3328 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3329 int StageSched = Schedule.stageScheduled(OrigMISU);
3330 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3331 unsigned ReplaceReg = 0;
3332 // This is the stage for the scheduled instruction.
3333 if (StagePhi == StageSched && Phi->isPHI()) {
3334 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3335 if (PrevReg && InProlog)
3336 ReplaceReg = PrevReg;
3337 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3338 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3339 ReplaceReg = PrevReg;
3340 else
3341 ReplaceReg = NewReg;
3342 }
3343 // The scheduled instruction occurs before the scheduled Phi, and the
3344 // Phi is not loop carried.
3345 if (!InProlog && StagePhi + 1 == StageSched &&
3346 !Schedule.isLoopCarried(this, *Phi))
3347 ReplaceReg = NewReg;
3348 if (StagePhi > StageSched && Phi->isPHI())
3349 ReplaceReg = NewReg;
3350 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3351 ReplaceReg = NewReg;
3352 if (ReplaceReg) {
3353 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3354 UseOp.setReg(ReplaceReg);
3355 }
3356 }
3357}
3358
3359/// Check if we can change the instruction to use an offset value from the
3360/// previous iteration. If so, return true and set the base and offset values
3361/// so that we can rewrite the load, if necessary.
3362/// v1 = Phi(v0, v3)
3363/// v2 = load v1, 0
3364/// v3 = post_store v1, 4, x
3365/// This function enables the load to be rewritten as v2 = load v3, 4.
3366bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3367 unsigned &BasePos,
3368 unsigned &OffsetPos,
3369 unsigned &NewBase,
3370 int64_t &Offset) {
3371 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003372 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003373 return false;
3374 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003375 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003376 return false;
3377 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3378
3379 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003380 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003381 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3382 if (!Phi || !Phi->isPHI())
3383 return false;
3384 // Get the register defined in the loop block.
3385 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3386 if (!PrevReg)
3387 return false;
3388
3389 // Check for the post-increment load/store instruction.
3390 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3391 if (!PrevDef || PrevDef == MI)
3392 return false;
3393
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003394 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003395 return false;
3396
3397 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003398 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003399 return false;
3400
3401 // Make sure offset values are both positive or both negative.
3402 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3403 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3404 if ((LoadOffset >= 0) != (StoreOffset >= 0))
3405 return false;
3406
3407 // Set the return value once we determine that we return true.
3408 BasePos = BasePosLd;
3409 OffsetPos = OffsetPosLd;
3410 NewBase = PrevReg;
3411 Offset = StoreOffset;
3412 return true;
3413}
3414
3415/// Apply changes to the instruction if needed. The changes are need
3416/// to improve the scheduling and depend up on the final schedule.
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003417void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3418 SMSchedule &Schedule) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003419 SUnit *SU = getSUnit(MI);
3420 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3421 InstrChanges.find(SU);
3422 if (It != InstrChanges.end()) {
3423 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3424 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003425 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003426 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003427 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3428 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3429 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3430 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3431 int BaseStageNum = Schedule.stageScheduled(SU);
3432 int BaseCycleNum = Schedule.cycleScheduled(SU);
3433 if (BaseStageNum < DefStageNum) {
3434 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3435 int OffsetDiff = DefStageNum - BaseStageNum;
3436 if (DefCycleNum < BaseCycleNum) {
3437 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3438 if (OffsetDiff > 0)
3439 --OffsetDiff;
3440 }
3441 int64_t NewOffset =
3442 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3443 NewMI->getOperand(OffsetPos).setImm(NewOffset);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003444 SU->setInstr(NewMI);
3445 MISUnitMap[NewMI] = SU;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003446 NewMIs.insert(NewMI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003447 }
3448 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003449}
3450
3451/// Return true for an order dependence that is loop carried potentially.
3452/// An order dependence is loop carried if the destination defines a value
3453/// that may be used by the source in a subsequent iteration.
3454bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
3455 bool isSucc) {
3456 if (!isOrder(Source, Dep) || Dep.isArtificial())
3457 return false;
3458
3459 if (!SwpPruneLoopCarried)
3460 return true;
3461
3462 MachineInstr *SI = Source->getInstr();
3463 MachineInstr *DI = Dep.getSUnit()->getInstr();
3464 if (!isSucc)
3465 std::swap(SI, DI);
3466 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3467
3468 // Assume ordered loads and stores may have a loop carried dependence.
3469 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3470 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3471 return true;
3472
3473 // Only chain dependences between a load and store can be loop carried.
3474 if (!DI->mayStore() || !SI->mayLoad())
3475 return false;
3476
3477 unsigned DeltaS, DeltaD;
3478 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3479 return true;
3480
3481 unsigned BaseRegS, BaseRegD;
3482 int64_t OffsetS, OffsetD;
3483 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3484 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3485 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3486 return true;
3487
3488 if (BaseRegS != BaseRegD)
3489 return true;
3490
3491 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3492 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3493
3494 // This is the main test, which checks the offset values and the loop
3495 // increment value to determine if the accesses may be loop carried.
3496 if (OffsetS >= OffsetD)
3497 return OffsetS + AccessSizeS > DeltaS;
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +00003498 else
Brendon Cahoon254f8892016-07-29 16:44:44 +00003499 return OffsetD + AccessSizeD > DeltaD;
3500
3501 return true;
3502}
3503
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003504void SwingSchedulerDAG::postprocessDAG() {
3505 for (auto &M : Mutations)
3506 M->apply(this);
3507}
3508
Brendon Cahoon254f8892016-07-29 16:44:44 +00003509/// Try to schedule the node at the specified StartCycle and continue
3510/// until the node is schedule or the EndCycle is reached. This function
3511/// returns true if the node is scheduled. This routine may search either
3512/// forward or backward for a place to insert the instruction based upon
3513/// the relative values of StartCycle and EndCycle.
3514bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3515 bool forward = true;
3516 if (StartCycle > EndCycle)
3517 forward = false;
3518
3519 // The terminating condition depends on the direction.
3520 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3521 for (int curCycle = StartCycle; curCycle != termCycle;
3522 forward ? ++curCycle : --curCycle) {
3523
3524 // Add the already scheduled instructions at the specified cycle to the DFA.
3525 Resources->clearResources();
3526 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3527 checkCycle <= LastCycle; checkCycle += II) {
3528 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3529
3530 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3531 E = cycleInstrs.end();
3532 I != E; ++I) {
3533 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3534 continue;
3535 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3536 "These instructions have already been scheduled.");
3537 Resources->reserveResources(*(*I)->getInstr());
3538 }
3539 }
3540 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3541 Resources->canReserveResources(*SU->getInstr())) {
3542 DEBUG({
3543 dbgs() << "\tinsert at cycle " << curCycle << " ";
3544 SU->getInstr()->dump();
3545 });
3546
3547 ScheduledInstrs[curCycle].push_back(SU);
3548 InstrToCycle.insert(std::make_pair(SU, curCycle));
3549 if (curCycle > LastCycle)
3550 LastCycle = curCycle;
3551 if (curCycle < FirstCycle)
3552 FirstCycle = curCycle;
3553 return true;
3554 }
3555 DEBUG({
3556 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3557 SU->getInstr()->dump();
3558 });
3559 }
3560 return false;
3561}
3562
3563// Return the cycle of the earliest scheduled instruction in the chain.
3564int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3565 SmallPtrSet<SUnit *, 8> Visited;
3566 SmallVector<SDep, 8> Worklist;
3567 Worklist.push_back(Dep);
3568 int EarlyCycle = INT_MAX;
3569 while (!Worklist.empty()) {
3570 const SDep &Cur = Worklist.pop_back_val();
3571 SUnit *PrevSU = Cur.getSUnit();
3572 if (Visited.count(PrevSU))
3573 continue;
3574 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3575 if (it == InstrToCycle.end())
3576 continue;
3577 EarlyCycle = std::min(EarlyCycle, it->second);
3578 for (const auto &PI : PrevSU->Preds)
3579 if (SwingSchedulerDAG::isOrder(PrevSU, PI))
3580 Worklist.push_back(PI);
3581 Visited.insert(PrevSU);
3582 }
3583 return EarlyCycle;
3584}
3585
3586// Return the cycle of the latest scheduled instruction in the chain.
3587int SMSchedule::latestCycleInChain(const SDep &Dep) {
3588 SmallPtrSet<SUnit *, 8> Visited;
3589 SmallVector<SDep, 8> Worklist;
3590 Worklist.push_back(Dep);
3591 int LateCycle = INT_MIN;
3592 while (!Worklist.empty()) {
3593 const SDep &Cur = Worklist.pop_back_val();
3594 SUnit *SuccSU = Cur.getSUnit();
3595 if (Visited.count(SuccSU))
3596 continue;
3597 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3598 if (it == InstrToCycle.end())
3599 continue;
3600 LateCycle = std::max(LateCycle, it->second);
3601 for (const auto &SI : SuccSU->Succs)
3602 if (SwingSchedulerDAG::isOrder(SuccSU, SI))
3603 Worklist.push_back(SI);
3604 Visited.insert(SuccSU);
3605 }
3606 return LateCycle;
3607}
3608
3609/// If an instruction has a use that spans multiple iterations, then
3610/// return true. These instructions are characterized by having a back-ege
3611/// to a Phi, which contains a reference to another Phi.
3612static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3613 for (auto &P : SU->Preds)
3614 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3615 for (auto &S : P.getSUnit()->Succs)
3616 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
3617 return P.getSUnit();
3618 return nullptr;
3619}
3620
3621/// Compute the scheduling start slot for the instruction. The start slot
3622/// depends on any predecessor or successor nodes scheduled already.
3623void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3624 int *MinEnd, int *MaxStart, int II,
3625 SwingSchedulerDAG *DAG) {
3626 // Iterate over each instruction that has been scheduled already. The start
3627 // slot computuation depends on whether the previously scheduled instruction
3628 // is a predecessor or successor of the specified instruction.
3629 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3630
3631 // Iterate over each instruction in the current cycle.
3632 for (SUnit *I : getInstructions(cycle)) {
3633 // Because we're processing a DAG for the dependences, we recognize
3634 // the back-edge in recurrences by anti dependences.
3635 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3636 const SDep &Dep = SU->Preds[i];
3637 if (Dep.getSUnit() == I) {
3638 if (!DAG->isBackedge(SU, Dep)) {
3639 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3640 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3641 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3642 if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
3643 int End = earliestCycleInChain(Dep) + (II - 1);
3644 *MinEnd = std::min(*MinEnd, End);
3645 }
3646 } else {
3647 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3648 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3649 *MinLateStart = std::min(*MinLateStart, LateStart);
3650 }
3651 }
3652 // For instruction that requires multiple iterations, make sure that
3653 // the dependent instruction is not scheduled past the definition.
3654 SUnit *BE = multipleIterations(I, DAG);
3655 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3656 !SU->isPred(I))
3657 *MinLateStart = std::min(*MinLateStart, cycle);
3658 }
3659 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3660 if (SU->Succs[i].getSUnit() == I) {
3661 const SDep &Dep = SU->Succs[i];
3662 if (!DAG->isBackedge(SU, Dep)) {
3663 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3664 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3665 *MinLateStart = std::min(*MinLateStart, LateStart);
3666 if (DAG->isLoopCarriedOrder(SU, Dep)) {
3667 int Start = latestCycleInChain(Dep) + 1 - II;
3668 *MaxStart = std::max(*MaxStart, Start);
3669 }
3670 } else {
3671 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3672 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3673 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3674 }
3675 }
3676 }
3677 }
3678}
3679
3680/// Order the instructions within a cycle so that the definitions occur
3681/// before the uses. Returns true if the instruction is added to the start
3682/// of the list, or false if added to the end.
3683bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3684 std::deque<SUnit *> &Insts) {
3685 MachineInstr *MI = SU->getInstr();
3686 bool OrderBeforeUse = false;
3687 bool OrderAfterDef = false;
3688 bool OrderBeforeDef = false;
3689 unsigned MoveDef = 0;
3690 unsigned MoveUse = 0;
3691 int StageInst1 = stageScheduled(SU);
3692
3693 unsigned Pos = 0;
3694 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3695 ++I, ++Pos) {
3696 // Relative order of Phis does not matter.
3697 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3698 continue;
3699 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3700 MachineOperand &MO = MI->getOperand(i);
3701 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3702 continue;
3703 unsigned Reg = MO.getReg();
3704 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003705 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003706 if (MI->getOperand(BasePos).getReg() == Reg)
3707 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3708 Reg = NewReg;
3709 bool Reads, Writes;
3710 std::tie(Reads, Writes) =
3711 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3712 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3713 OrderBeforeUse = true;
3714 MoveUse = Pos;
3715 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3716 // Add the instruction after the scheduled instruction.
3717 OrderAfterDef = true;
3718 MoveDef = Pos;
3719 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3720 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3721 OrderBeforeUse = true;
3722 MoveUse = Pos;
3723 } else {
3724 OrderAfterDef = true;
3725 MoveDef = Pos;
3726 }
3727 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3728 OrderBeforeUse = true;
3729 MoveUse = Pos;
3730 if (MoveUse != 0) {
3731 OrderAfterDef = true;
3732 MoveDef = Pos - 1;
3733 }
3734 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3735 // Add the instruction before the scheduled instruction.
3736 OrderBeforeUse = true;
3737 MoveUse = Pos;
3738 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3739 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3740 OrderBeforeDef = true;
3741 MoveUse = Pos;
3742 }
3743 }
3744 // Check for order dependences between instructions. Make sure the source
3745 // is ordered before the destination.
3746 for (auto &S : SU->Succs)
3747 if (S.getKind() == SDep::Order) {
3748 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3749 OrderBeforeUse = true;
3750 MoveUse = Pos;
3751 }
3752 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
3753 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
3754 if (S.isAssignedRegDep()) {
3755 OrderAfterDef = true;
3756 MoveDef = Pos;
3757 }
3758 } else {
3759 OrderBeforeUse = true;
3760 MoveUse = Pos;
3761 }
3762 }
3763 for (auto &P : SU->Preds)
3764 if (P.getKind() == SDep::Order) {
3765 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3766 OrderAfterDef = true;
3767 MoveDef = Pos;
3768 }
3769 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
3770 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
3771 if (P.isAssignedRegDep()) {
3772 OrderBeforeUse = true;
3773 MoveUse = Pos;
3774 }
3775 } else {
3776 OrderAfterDef = true;
3777 MoveDef = Pos;
3778 }
3779 }
3780 }
3781
3782 // A circular dependence.
3783 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3784 OrderBeforeUse = false;
3785
3786 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3787 // to a loop-carried dependence.
3788 if (OrderBeforeDef)
3789 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3790
3791 // The uncommon case when the instruction order needs to be updated because
3792 // there is both a use and def.
3793 if (OrderBeforeUse && OrderAfterDef) {
3794 SUnit *UseSU = Insts.at(MoveUse);
3795 SUnit *DefSU = Insts.at(MoveDef);
3796 if (MoveUse > MoveDef) {
3797 Insts.erase(Insts.begin() + MoveUse);
3798 Insts.erase(Insts.begin() + MoveDef);
3799 } else {
3800 Insts.erase(Insts.begin() + MoveDef);
3801 Insts.erase(Insts.begin() + MoveUse);
3802 }
3803 if (orderDependence(SSD, UseSU, Insts)) {
3804 Insts.push_front(SU);
3805 orderDependence(SSD, DefSU, Insts);
3806 return true;
3807 }
3808 Insts.pop_back();
3809 Insts.push_back(SU);
3810 Insts.push_back(UseSU);
3811 orderDependence(SSD, DefSU, Insts);
3812 return false;
3813 }
3814 // Put the new instruction first if there is a use in the list. Otherwise,
3815 // put it at the end of the list.
3816 if (OrderBeforeUse)
3817 Insts.push_front(SU);
3818 else
3819 Insts.push_back(SU);
3820 return OrderBeforeUse;
3821}
3822
3823/// Return true if the scheduled Phi has a loop carried operand.
3824bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3825 if (!Phi.isPHI())
3826 return false;
3827 assert(Phi.isPHI() && "Expecing a Phi.");
3828 SUnit *DefSU = SSD->getSUnit(&Phi);
3829 unsigned DefCycle = cycleScheduled(DefSU);
3830 int DefStage = stageScheduled(DefSU);
3831
3832 unsigned InitVal = 0;
3833 unsigned LoopVal = 0;
3834 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3835 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3836 if (!UseSU)
3837 return true;
3838 if (UseSU->getInstr()->isPHI())
3839 return true;
3840 unsigned LoopCycle = cycleScheduled(UseSU);
3841 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003842 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003843}
3844
3845/// Return true if the instruction is a definition that is loop carried
3846/// and defines the use on the next iteration.
3847/// v1 = phi(v2, v3)
3848/// (Def) v3 = op v1
3849/// (MO) = v1
3850/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3851/// register.
3852bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3853 MachineInstr *Def, MachineOperand &MO) {
3854 if (!MO.isReg())
3855 return false;
3856 if (Def->isPHI())
3857 return false;
3858 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3859 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3860 return false;
3861 if (!isLoopCarried(SSD, *Phi))
3862 return false;
3863 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3864 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3865 MachineOperand &DMO = Def->getOperand(i);
3866 if (!DMO.isReg() || !DMO.isDef())
3867 continue;
3868 if (DMO.getReg() == LoopReg)
3869 return true;
3870 }
3871 return false;
3872}
3873
3874// Check if the generated schedule is valid. This function checks if
3875// an instruction that uses a physical register is scheduled in a
3876// different stage than the definition. The pipeliner does not handle
3877// physical register values that may cross a basic block boundary.
3878bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003879 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3880 SUnit &SU = SSD->SUnits[i];
3881 if (!SU.hasPhysRegDefs)
3882 continue;
3883 int StageDef = stageScheduled(&SU);
3884 assert(StageDef != -1 && "Instruction should have been scheduled.");
3885 for (auto &SI : SU.Succs)
3886 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003887 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003888 if (stageScheduled(SI.getSUnit()) != StageDef)
3889 return false;
3890 }
3891 return true;
3892}
3893
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003894/// A property of the node order in swing-modulo-scheduling is
3895/// that for nodes outside circuits the following holds:
3896/// none of them is scheduled after both a successor and a
3897/// predecessor.
3898/// The method below checks whether the property is met.
3899/// If not, debug information is printed and statistics information updated.
3900/// Note that we do not use an assert statement.
3901/// The reason is that although an invalid node oder may prevent
3902/// the pipeliner from finding a pipelined schedule for arbitrary II,
3903/// it does not lead to the generation of incorrect code.
3904void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3905
3906 // a sorted vector that maps each SUnit to its index in the NodeOrder
3907 typedef std::pair<SUnit *, unsigned> UnitIndex;
3908 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3909
3910 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3911 Indices.push_back(std::make_pair(NodeOrder[i], i));
3912
3913 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3914 return std::get<0>(i1) < std::get<0>(i2);
3915 };
3916
3917 // sort, so that we can perform a binary search
3918 std::sort(Indices.begin(), Indices.end(), CompareKey);
3919
3920 bool Valid = true;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003921 (void)Valid;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003922 // for each SUnit in the NodeOrder, check whether
3923 // it appears after both a successor and a predecessor
3924 // of the SUnit. If this is the case, and the SUnit
3925 // is not part of circuit, then the NodeOrder is not
3926 // valid.
3927 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3928 SUnit *SU = NodeOrder[i];
3929 unsigned Index = i;
3930
3931 bool PredBefore = false;
3932 bool SuccBefore = false;
3933
3934 SUnit *Succ;
3935 SUnit *Pred;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003936 (void)Succ;
3937 (void)Pred;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003938
3939 for (SDep &PredEdge : SU->Preds) {
3940 SUnit *PredSU = PredEdge.getSUnit();
3941 unsigned PredIndex =
3942 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3943 std::make_pair(PredSU, 0), CompareKey));
3944 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3945 PredBefore = true;
3946 Pred = PredSU;
3947 break;
3948 }
3949 }
3950
3951 for (SDep &SuccEdge : SU->Succs) {
3952 SUnit *SuccSU = SuccEdge.getSUnit();
3953 unsigned SuccIndex =
3954 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3955 std::make_pair(SuccSU, 0), CompareKey));
3956 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3957 SuccBefore = true;
3958 Succ = SuccSU;
3959 break;
3960 }
3961 }
3962
3963 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3964 // instructions in circuits are allowed to be scheduled
3965 // after both a successor and predecessor.
3966 bool InCircuit = std::any_of(
3967 Circuits.begin(), Circuits.end(),
3968 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3969 if (InCircuit)
3970 DEBUG(dbgs() << "In a circuit, predecessor ";);
3971 else {
3972 Valid = false;
3973 NumNodeOrderIssues++;
3974 DEBUG(dbgs() << "Predecessor ";);
3975 }
3976 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
3977 << " are scheduled before node " << SU->NodeNum << "\n";);
3978 }
3979 }
3980
3981 DEBUG({
3982 if (!Valid)
3983 dbgs() << "Invalid node order found!\n";
3984 });
3985}
3986
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003987/// Attempt to fix the degenerate cases when the instruction serialization
3988/// causes the register lifetimes to overlap. For example,
3989/// p' = store_pi(p, b)
3990/// = load p, offset
3991/// In this case p and p' overlap, which means that two registers are needed.
3992/// Instead, this function changes the load to use p' and updates the offset.
3993void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3994 unsigned OverlapReg = 0;
3995 unsigned NewBaseReg = 0;
3996 for (SUnit *SU : Instrs) {
3997 MachineInstr *MI = SU->getInstr();
3998 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3999 const MachineOperand &MO = MI->getOperand(i);
4000 // Look for an instruction that uses p. The instruction occurs in the
4001 // same cycle but occurs later in the serialized order.
4002 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4003 // Check that the instruction appears in the InstrChanges structure,
4004 // which contains instructions that can have the offset updated.
4005 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4006 InstrChanges.find(SU);
4007 if (It != InstrChanges.end()) {
4008 unsigned BasePos, OffsetPos;
4009 // Update the base register and adjust the offset.
4010 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
Krzysztof Parzyszek12bdcab2017-10-11 15:59:51 +00004011 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4012 NewMI->getOperand(BasePos).setReg(NewBaseReg);
4013 int64_t NewOffset =
4014 MI->getOperand(OffsetPos).getImm() - It->second.second;
4015 NewMI->getOperand(OffsetPos).setImm(NewOffset);
4016 SU->setInstr(NewMI);
4017 MISUnitMap[NewMI] = SU;
4018 NewMIs.insert(NewMI);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004019 }
4020 }
4021 OverlapReg = 0;
4022 NewBaseReg = 0;
4023 break;
4024 }
4025 // Look for an instruction of the form p' = op(p), which uses and defines
4026 // two virtual registers that get allocated to the same physical register.
4027 unsigned TiedUseIdx = 0;
4028 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4029 // OverlapReg is p in the example above.
4030 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4031 // NewBaseReg is p' in the example above.
4032 NewBaseReg = MI->getOperand(i).getReg();
4033 break;
4034 }
4035 }
4036 }
4037}
4038
Brendon Cahoon254f8892016-07-29 16:44:44 +00004039/// After the schedule has been formed, call this function to combine
4040/// the instructions from the different stages/cycles. That is, this
4041/// function creates a schedule that represents a single iteration.
4042void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4043 // Move all instructions to the first stage from later stages.
4044 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4045 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4046 ++stage) {
4047 std::deque<SUnit *> &cycleInstrs =
4048 ScheduledInstrs[cycle + (stage * InitiationInterval)];
4049 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4050 E = cycleInstrs.rend();
4051 I != E; ++I)
4052 ScheduledInstrs[cycle].push_front(*I);
4053 }
4054 }
4055 // Iterate over the definitions in each instruction, and compute the
4056 // stage difference for each use. Keep the maximum value.
4057 for (auto &I : InstrToCycle) {
4058 int DefStage = stageScheduled(I.first);
4059 MachineInstr *MI = I.first->getInstr();
4060 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4061 MachineOperand &Op = MI->getOperand(i);
4062 if (!Op.isReg() || !Op.isDef())
4063 continue;
4064
4065 unsigned Reg = Op.getReg();
4066 unsigned MaxDiff = 0;
4067 bool PhiIsSwapped = false;
4068 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4069 EI = MRI.use_end();
4070 UI != EI; ++UI) {
4071 MachineOperand &UseOp = *UI;
4072 MachineInstr *UseMI = UseOp.getParent();
4073 SUnit *SUnitUse = SSD->getSUnit(UseMI);
4074 int UseStage = stageScheduled(SUnitUse);
4075 unsigned Diff = 0;
4076 if (UseStage != -1 && UseStage >= DefStage)
4077 Diff = UseStage - DefStage;
4078 if (MI->isPHI()) {
4079 if (isLoopCarried(SSD, *MI))
4080 ++Diff;
4081 else
4082 PhiIsSwapped = true;
4083 }
4084 MaxDiff = std::max(Diff, MaxDiff);
4085 }
4086 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4087 }
4088 }
4089
4090 // Erase all the elements in the later stages. Only one iteration should
4091 // remain in the scheduled list, and it contains all the instructions.
4092 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4093 ScheduledInstrs.erase(cycle);
4094
4095 // Change the registers in instruction as specified in the InstrChanges
4096 // map. We need to use the new registers to create the correct order.
4097 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4098 SUnit *SU = &SSD->SUnits[i];
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004099 SSD->applyInstrChange(SU->getInstr(), *this);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004100 }
4101
4102 // Reorder the instructions in each cycle to fix and improve the
4103 // generated code.
4104 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4105 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
4106 std::deque<SUnit *> newOrderZC;
4107 // Put the zero-cost, pseudo instructions at the start of the cycle.
4108 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4109 SUnit *SU = cycleInstrs[i];
4110 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
4111 orderDependence(SSD, SU, newOrderZC);
4112 }
4113 std::deque<SUnit *> newOrderI;
4114 // Then, add the regular instructions back.
4115 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4116 SUnit *SU = cycleInstrs[i];
4117 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
4118 orderDependence(SSD, SU, newOrderI);
4119 }
4120 // Replace the old order with the new order.
4121 cycleInstrs.swap(newOrderZC);
4122 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004123 SSD->fixupRegisterOverlaps(cycleInstrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004124 }
4125
4126 DEBUG(dump(););
4127}
4128
Aaron Ballman615eb472017-10-15 14:32:27 +00004129#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00004130/// Print the schedule information to the given output.
4131void SMSchedule::print(raw_ostream &os) const {
4132 // Iterate over each cycle.
4133 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4134 // Iterate over each instruction in the cycle.
4135 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4136 for (SUnit *CI : cycleInstrs->second) {
4137 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4138 os << "(" << CI->NodeNum << ") ";
4139 CI->getInstr()->print(os);
4140 os << "\n";
4141 }
4142 }
4143}
4144
4145/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00004146LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4147#endif