blob: b2ae90b4b875001f70842b43f4680cdb47cfaa5c [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
46 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000047 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000048 ICC_Conversion
49 };
50 return Category[(int)Kind];
51}
52
53/// GetConversionRank - Retrieve the implicit conversion rank
54/// corresponding to the given implicit conversion kind.
55ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
56 static const ImplicitConversionRank
57 Rank[(int)ICK_Num_Conversion_Kinds] = {
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Exact_Match,
63 ICR_Promotion,
64 ICR_Promotion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
69 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000070 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000071 ICR_Conversion
72 };
73 return Rank[(int)Kind];
74}
75
76/// GetImplicitConversionName - Return the name of this kind of
77/// implicit conversion.
78const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
79 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
80 "No conversion",
81 "Lvalue-to-rvalue",
82 "Array-to-pointer",
83 "Function-to-pointer",
84 "Qualification",
85 "Integral promotion",
86 "Floating point promotion",
87 "Integral conversion",
88 "Floating conversion",
89 "Floating-integral conversion",
90 "Pointer conversion",
91 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000092 "Boolean conversion",
93 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000094 };
95 return Name[Kind];
96}
97
Douglas Gregor60d62c22008-10-31 16:23:19 +000098/// StandardConversionSequence - Set the standard conversion
99/// sequence to the identity conversion.
100void StandardConversionSequence::setAsIdentityConversion() {
101 First = ICK_Identity;
102 Second = ICK_Identity;
103 Third = ICK_Identity;
104 Deprecated = false;
105 ReferenceBinding = false;
106 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000107 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000108}
109
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000110/// getRank - Retrieve the rank of this standard conversion sequence
111/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
112/// implicit conversions.
113ImplicitConversionRank StandardConversionSequence::getRank() const {
114 ImplicitConversionRank Rank = ICR_Exact_Match;
115 if (GetConversionRank(First) > Rank)
116 Rank = GetConversionRank(First);
117 if (GetConversionRank(Second) > Rank)
118 Rank = GetConversionRank(Second);
119 if (GetConversionRank(Third) > Rank)
120 Rank = GetConversionRank(Third);
121 return Rank;
122}
123
124/// isPointerConversionToBool - Determines whether this conversion is
125/// a conversion of a pointer or pointer-to-member to bool. This is
126/// used as part of the ranking of standard conversion sequences
127/// (C++ 13.3.3.2p4).
128bool StandardConversionSequence::isPointerConversionToBool() const
129{
130 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
131 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
132
133 // Note that FromType has not necessarily been transformed by the
134 // array-to-pointer or function-to-pointer implicit conversions, so
135 // check for their presence as well as checking whether FromType is
136 // a pointer.
137 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000138 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000139 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
140 return true;
141
142 return false;
143}
144
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000145/// isPointerConversionToVoidPointer - Determines whether this
146/// conversion is a conversion of a pointer to a void pointer. This is
147/// used as part of the ranking of standard conversion sequences (C++
148/// 13.3.3.2p4).
149bool
150StandardConversionSequence::
151isPointerConversionToVoidPointer(ASTContext& Context) const
152{
153 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
154 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
155
156 // Note that FromType has not necessarily been transformed by the
157 // array-to-pointer implicit conversion, so check for its presence
158 // and redo the conversion to get a pointer.
159 if (First == ICK_Array_To_Pointer)
160 FromType = Context.getArrayDecayedType(FromType);
161
162 if (Second == ICK_Pointer_Conversion)
163 if (const PointerType* ToPtrType = ToType->getAsPointerType())
164 return ToPtrType->getPointeeType()->isVoidType();
165
166 return false;
167}
168
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000169/// DebugPrint - Print this standard conversion sequence to standard
170/// error. Useful for debugging overloading issues.
171void StandardConversionSequence::DebugPrint() const {
172 bool PrintedSomething = false;
173 if (First != ICK_Identity) {
174 fprintf(stderr, "%s", GetImplicitConversionName(First));
175 PrintedSomething = true;
176 }
177
178 if (Second != ICK_Identity) {
179 if (PrintedSomething) {
180 fprintf(stderr, " -> ");
181 }
182 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000183
184 if (CopyConstructor) {
185 fprintf(stderr, " (by copy constructor)");
186 } else if (DirectBinding) {
187 fprintf(stderr, " (direct reference binding)");
188 } else if (ReferenceBinding) {
189 fprintf(stderr, " (reference binding)");
190 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000191 PrintedSomething = true;
192 }
193
194 if (Third != ICK_Identity) {
195 if (PrintedSomething) {
196 fprintf(stderr, " -> ");
197 }
198 fprintf(stderr, "%s", GetImplicitConversionName(Third));
199 PrintedSomething = true;
200 }
201
202 if (!PrintedSomething) {
203 fprintf(stderr, "No conversions required");
204 }
205}
206
207/// DebugPrint - Print this user-defined conversion sequence to standard
208/// error. Useful for debugging overloading issues.
209void UserDefinedConversionSequence::DebugPrint() const {
210 if (Before.First || Before.Second || Before.Third) {
211 Before.DebugPrint();
212 fprintf(stderr, " -> ");
213 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000214 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000215 if (After.First || After.Second || After.Third) {
216 fprintf(stderr, " -> ");
217 After.DebugPrint();
218 }
219}
220
221/// DebugPrint - Print this implicit conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void ImplicitConversionSequence::DebugPrint() const {
224 switch (ConversionKind) {
225 case StandardConversion:
226 fprintf(stderr, "Standard conversion: ");
227 Standard.DebugPrint();
228 break;
229 case UserDefinedConversion:
230 fprintf(stderr, "User-defined conversion: ");
231 UserDefined.DebugPrint();
232 break;
233 case EllipsisConversion:
234 fprintf(stderr, "Ellipsis conversion");
235 break;
236 case BadConversion:
237 fprintf(stderr, "Bad conversion");
238 break;
239 }
240
241 fprintf(stderr, "\n");
242}
243
244// IsOverload - Determine whether the given New declaration is an
245// overload of the Old declaration. This routine returns false if New
246// and Old cannot be overloaded, e.g., if they are functions with the
247// same signature (C++ 1.3.10) or if the Old declaration isn't a
248// function (or overload set). When it does return false and Old is an
249// OverloadedFunctionDecl, MatchedDecl will be set to point to the
250// FunctionDecl that New cannot be overloaded with.
251//
252// Example: Given the following input:
253//
254// void f(int, float); // #1
255// void f(int, int); // #2
256// int f(int, int); // #3
257//
258// When we process #1, there is no previous declaration of "f",
259// so IsOverload will not be used.
260//
261// When we process #2, Old is a FunctionDecl for #1. By comparing the
262// parameter types, we see that #1 and #2 are overloaded (since they
263// have different signatures), so this routine returns false;
264// MatchedDecl is unchanged.
265//
266// When we process #3, Old is an OverloadedFunctionDecl containing #1
267// and #2. We compare the signatures of #3 to #1 (they're overloaded,
268// so we do nothing) and then #3 to #2. Since the signatures of #3 and
269// #2 are identical (return types of functions are not part of the
270// signature), IsOverload returns false and MatchedDecl will be set to
271// point to the FunctionDecl for #2.
272bool
273Sema::IsOverload(FunctionDecl *New, Decl* OldD,
274 OverloadedFunctionDecl::function_iterator& MatchedDecl)
275{
276 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
277 // Is this new function an overload of every function in the
278 // overload set?
279 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
280 FuncEnd = Ovl->function_end();
281 for (; Func != FuncEnd; ++Func) {
282 if (!IsOverload(New, *Func, MatchedDecl)) {
283 MatchedDecl = Func;
284 return false;
285 }
286 }
287
288 // This function overloads every function in the overload set.
289 return true;
290 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
291 // Is the function New an overload of the function Old?
292 QualType OldQType = Context.getCanonicalType(Old->getType());
293 QualType NewQType = Context.getCanonicalType(New->getType());
294
295 // Compare the signatures (C++ 1.3.10) of the two functions to
296 // determine whether they are overloads. If we find any mismatch
297 // in the signature, they are overloads.
298
299 // If either of these functions is a K&R-style function (no
300 // prototype), then we consider them to have matching signatures.
301 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
302 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
303 return false;
304
305 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
306 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
307
308 // The signature of a function includes the types of its
309 // parameters (C++ 1.3.10), which includes the presence or absence
310 // of the ellipsis; see C++ DR 357).
311 if (OldQType != NewQType &&
312 (OldType->getNumArgs() != NewType->getNumArgs() ||
313 OldType->isVariadic() != NewType->isVariadic() ||
314 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
315 NewType->arg_type_begin())))
316 return true;
317
318 // If the function is a class member, its signature includes the
319 // cv-qualifiers (if any) on the function itself.
320 //
321 // As part of this, also check whether one of the member functions
322 // is static, in which case they are not overloads (C++
323 // 13.1p2). While not part of the definition of the signature,
324 // this check is important to determine whether these functions
325 // can be overloaded.
326 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
327 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
328 if (OldMethod && NewMethod &&
329 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000330 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000331 return true;
332
333 // The signatures match; this is not an overload.
334 return false;
335 } else {
336 // (C++ 13p1):
337 // Only function declarations can be overloaded; object and type
338 // declarations cannot be overloaded.
339 return false;
340 }
341}
342
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000343/// TryImplicitConversion - Attempt to perform an implicit conversion
344/// from the given expression (Expr) to the given type (ToType). This
345/// function returns an implicit conversion sequence that can be used
346/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000347///
348/// void f(float f);
349/// void g(int i) { f(i); }
350///
351/// this routine would produce an implicit conversion sequence to
352/// describe the initialization of f from i, which will be a standard
353/// conversion sequence containing an lvalue-to-rvalue conversion (C++
354/// 4.1) followed by a floating-integral conversion (C++ 4.9).
355//
356/// Note that this routine only determines how the conversion can be
357/// performed; it does not actually perform the conversion. As such,
358/// it will not produce any diagnostics if no conversion is available,
359/// but will instead return an implicit conversion sequence of kind
360/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000361///
362/// If @p SuppressUserConversions, then user-defined conversions are
363/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000364/// If @p AllowExplicit, then explicit user-defined conversions are
365/// permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000367Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000368 bool SuppressUserConversions,
369 bool AllowExplict)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000370{
371 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 if (IsStandardConversion(From, ToType, ICS.Standard))
373 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000374 else if (!SuppressUserConversions &&
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000375 IsUserDefinedConversion(From, ToType, ICS.UserDefined, AllowExplict)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000376 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000377 // C++ [over.ics.user]p4:
378 // A conversion of an expression of class type to the same class
379 // type is given Exact Match rank, and a conversion of an
380 // expression of class type to a base class of that type is
381 // given Conversion rank, in spite of the fact that a copy
382 // constructor (i.e., a user-defined conversion function) is
383 // called for those cases.
384 if (CXXConstructorDecl *Constructor
385 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
386 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000387 // Turn this into a "standard" conversion sequence, so that it
388 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000389 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
390 ICS.Standard.setAsIdentityConversion();
391 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
392 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000393 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000394 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
395 ToType.getUnqualifiedType()))
396 ICS.Standard.Second = ICK_Derived_To_Base;
397 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000398 }
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000399 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000400 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000401
402 return ICS;
403}
404
405/// IsStandardConversion - Determines whether there is a standard
406/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
407/// expression From to the type ToType. Standard conversion sequences
408/// only consider non-class types; for conversions that involve class
409/// types, use TryImplicitConversion. If a conversion exists, SCS will
410/// contain the standard conversion sequence required to perform this
411/// conversion and this routine will return true. Otherwise, this
412/// routine will return false and the value of SCS is unspecified.
413bool
414Sema::IsStandardConversion(Expr* From, QualType ToType,
415 StandardConversionSequence &SCS)
416{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000417 QualType FromType = From->getType();
418
Douglas Gregor60d62c22008-10-31 16:23:19 +0000419 // There are no standard conversions for class types, so abort early.
420 if (FromType->isRecordType() || ToType->isRecordType())
421 return false;
422
423 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000424 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000425 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000426 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000427 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000428 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000429
430 // The first conversion can be an lvalue-to-rvalue conversion,
431 // array-to-pointer conversion, or function-to-pointer conversion
432 // (C++ 4p1).
433
434 // Lvalue-to-rvalue conversion (C++ 4.1):
435 // An lvalue (3.10) of a non-function, non-array type T can be
436 // converted to an rvalue.
437 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
438 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000439 !FromType->isFunctionType() && !FromType->isArrayType() &&
440 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000441 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000442
443 // If T is a non-class type, the type of the rvalue is the
444 // cv-unqualified version of T. Otherwise, the type of the rvalue
445 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000446 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000447 }
448 // Array-to-pointer conversion (C++ 4.2)
449 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000450 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000451
452 // An lvalue or rvalue of type "array of N T" or "array of unknown
453 // bound of T" can be converted to an rvalue of type "pointer to
454 // T" (C++ 4.2p1).
455 FromType = Context.getArrayDecayedType(FromType);
456
457 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
458 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000459 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000460
461 // For the purpose of ranking in overload resolution
462 // (13.3.3.1.1), this conversion is considered an
463 // array-to-pointer conversion followed by a qualification
464 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000465 SCS.Second = ICK_Identity;
466 SCS.Third = ICK_Qualification;
467 SCS.ToTypePtr = ToType.getAsOpaquePtr();
468 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000469 }
470 }
471 // Function-to-pointer conversion (C++ 4.3).
472 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000473 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000474
475 // An lvalue of function type T can be converted to an rvalue of
476 // type "pointer to T." The result is a pointer to the
477 // function. (C++ 4.3p1).
478 FromType = Context.getPointerType(FromType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000479 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000480 // Address of overloaded function (C++ [over.over]).
481 else if (FunctionDecl *Fn
482 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
483 SCS.First = ICK_Function_To_Pointer;
484
485 // We were able to resolve the address of the overloaded function,
486 // so we can convert to the type of that function.
487 FromType = Fn->getType();
488 if (ToType->isReferenceType())
489 FromType = Context.getReferenceType(FromType);
490 else
491 FromType = Context.getPointerType(FromType);
492 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000493 // We don't require any conversions for the first step.
494 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000495 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000496 }
497
498 // The second conversion can be an integral promotion, floating
499 // point promotion, integral conversion, floating point conversion,
500 // floating-integral conversion, pointer conversion,
501 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregor45920e82008-12-19 17:40:08 +0000502 bool IncompatibleObjC = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000503 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
504 Context.getCanonicalType(ToType).getUnqualifiedType()) {
505 // The unqualified versions of the types are the same: there's no
506 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000507 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000508 }
509 // Integral promotion (C++ 4.5).
510 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000511 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000512 FromType = ToType.getUnqualifiedType();
513 }
514 // Floating point promotion (C++ 4.6).
515 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000516 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000517 FromType = ToType.getUnqualifiedType();
518 }
519 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000520 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000521 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000522 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000523 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000524 FromType = ToType.getUnqualifiedType();
525 }
526 // Floating point conversions (C++ 4.8).
527 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000528 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000529 FromType = ToType.getUnqualifiedType();
530 }
531 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000532 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000533 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000534 ToType->isIntegralType() && !ToType->isBooleanType() &&
535 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000536 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
537 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000538 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000539 FromType = ToType.getUnqualifiedType();
540 }
541 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000542 else if (IsPointerConversion(From, FromType, ToType, FromType,
543 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000544 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000545 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000546 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000547 // Pointer to member conversions (4.11).
548 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
549 SCS.Second = ICK_Pointer_Member;
550 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000551 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000552 else if (ToType->isBooleanType() &&
553 (FromType->isArithmeticType() ||
554 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000555 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000556 FromType->isBlockPointerType() ||
557 FromType->isMemberPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000558 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000559 FromType = Context.BoolTy;
560 } else {
561 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000562 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000563 }
564
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000565 QualType CanonFrom;
566 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000567 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000568 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000569 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000570 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000571 CanonFrom = Context.getCanonicalType(FromType);
572 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000573 } else {
574 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000575 SCS.Third = ICK_Identity;
576
577 // C++ [over.best.ics]p6:
578 // [...] Any difference in top-level cv-qualification is
579 // subsumed by the initialization itself and does not constitute
580 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000581 CanonFrom = Context.getCanonicalType(FromType);
582 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000583 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000584 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
585 FromType = ToType;
586 CanonFrom = CanonTo;
587 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000588 }
589
590 // If we have not converted the argument type to the parameter type,
591 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000592 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000593 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000594
Douglas Gregor60d62c22008-10-31 16:23:19 +0000595 SCS.ToTypePtr = FromType.getAsOpaquePtr();
596 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000597}
598
599/// IsIntegralPromotion - Determines whether the conversion from the
600/// expression From (whose potentially-adjusted type is FromType) to
601/// ToType is an integral promotion (C++ 4.5). If so, returns true and
602/// sets PromotedType to the promoted type.
603bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
604{
605 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000606 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000607 if (!To) {
608 return false;
609 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000610
611 // An rvalue of type char, signed char, unsigned char, short int, or
612 // unsigned short int can be converted to an rvalue of type int if
613 // int can represent all the values of the source type; otherwise,
614 // the source rvalue can be converted to an rvalue of type unsigned
615 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000616 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000617 if (// We can promote any signed, promotable integer type to an int
618 (FromType->isSignedIntegerType() ||
619 // We can promote any unsigned integer type whose size is
620 // less than int to an int.
621 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000622 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000623 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000624 }
625
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000626 return To->getKind() == BuiltinType::UInt;
627 }
628
629 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
630 // can be converted to an rvalue of the first of the following types
631 // that can represent all the values of its underlying type: int,
632 // unsigned int, long, or unsigned long (C++ 4.5p2).
633 if ((FromType->isEnumeralType() || FromType->isWideCharType())
634 && ToType->isIntegerType()) {
635 // Determine whether the type we're converting from is signed or
636 // unsigned.
637 bool FromIsSigned;
638 uint64_t FromSize = Context.getTypeSize(FromType);
639 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
640 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
641 FromIsSigned = UnderlyingType->isSignedIntegerType();
642 } else {
643 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
644 FromIsSigned = true;
645 }
646
647 // The types we'll try to promote to, in the appropriate
648 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000649 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000650 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000651 Context.LongTy, Context.UnsignedLongTy ,
652 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000653 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000654 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000655 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
656 if (FromSize < ToSize ||
657 (FromSize == ToSize &&
658 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
659 // We found the type that we can promote to. If this is the
660 // type we wanted, we have a promotion. Otherwise, no
661 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000662 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000663 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
664 }
665 }
666 }
667
668 // An rvalue for an integral bit-field (9.6) can be converted to an
669 // rvalue of type int if int can represent all the values of the
670 // bit-field; otherwise, it can be converted to unsigned int if
671 // unsigned int can represent all the values of the bit-field. If
672 // the bit-field is larger yet, no integral promotion applies to
673 // it. If the bit-field has an enumerated type, it is treated as any
674 // other value of that type for promotion purposes (C++ 4.5p3).
675 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
676 using llvm::APSInt;
Douglas Gregor86f19402008-12-20 23:49:58 +0000677 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
678 APSInt BitWidth;
679 if (MemberDecl->isBitField() &&
680 FromType->isIntegralType() && !FromType->isEnumeralType() &&
681 From->isIntegerConstantExpr(BitWidth, Context)) {
682 APSInt ToSize(Context.getTypeSize(ToType));
683
684 // Are we promoting to an int from a bitfield that fits in an int?
685 if (BitWidth < ToSize ||
686 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
687 return To->getKind() == BuiltinType::Int;
688 }
689
690 // Are we promoting to an unsigned int from an unsigned bitfield
691 // that fits into an unsigned int?
692 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
693 return To->getKind() == BuiltinType::UInt;
694 }
695
696 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000697 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000698 }
699 }
700
701 // An rvalue of type bool can be converted to an rvalue of type int,
702 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000703 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000704 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000705 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000706
707 return false;
708}
709
710/// IsFloatingPointPromotion - Determines whether the conversion from
711/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
712/// returns true and sets PromotedType to the promoted type.
713bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
714{
715 /// An rvalue of type float can be converted to an rvalue of type
716 /// double. (C++ 4.6p1).
717 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
718 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
719 if (FromBuiltin->getKind() == BuiltinType::Float &&
720 ToBuiltin->getKind() == BuiltinType::Double)
721 return true;
722
723 return false;
724}
725
Douglas Gregorcb7de522008-11-26 23:31:11 +0000726/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
727/// the pointer type FromPtr to a pointer to type ToPointee, with the
728/// same type qualifiers as FromPtr has on its pointee type. ToType,
729/// if non-empty, will be a pointer to ToType that may or may not have
730/// the right set of qualifiers on its pointee.
731static QualType
732BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
733 QualType ToPointee, QualType ToType,
734 ASTContext &Context) {
735 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
736 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
737 unsigned Quals = CanonFromPointee.getCVRQualifiers();
738
739 // Exact qualifier match -> return the pointer type we're converting to.
740 if (CanonToPointee.getCVRQualifiers() == Quals) {
741 // ToType is exactly what we need. Return it.
742 if (ToType.getTypePtr())
743 return ToType;
744
745 // Build a pointer to ToPointee. It has the right qualifiers
746 // already.
747 return Context.getPointerType(ToPointee);
748 }
749
750 // Just build a canonical type that has the right qualifiers.
751 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
752}
753
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000754/// IsPointerConversion - Determines whether the conversion of the
755/// expression From, which has the (possibly adjusted) type FromType,
756/// can be converted to the type ToType via a pointer conversion (C++
757/// 4.10). If so, returns true and places the converted type (that
758/// might differ from ToType in its cv-qualifiers at some level) into
759/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000760///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000761/// This routine also supports conversions to and from block pointers
762/// and conversions with Objective-C's 'id', 'id<protocols...>', and
763/// pointers to interfaces. FIXME: Once we've determined the
764/// appropriate overloading rules for Objective-C, we may want to
765/// split the Objective-C checks into a different routine; however,
766/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000767/// conversions, so for now they live here. IncompatibleObjC will be
768/// set if the conversion is an allowed Objective-C conversion that
769/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000770bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000771 QualType& ConvertedType,
772 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000773{
Douglas Gregor45920e82008-12-19 17:40:08 +0000774 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000775 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
776 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000777
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000778 // Conversion from a null pointer constant to any Objective-C pointer type.
779 if (Context.isObjCObjectPointerType(ToType) &&
780 From->isNullPointerConstant(Context)) {
781 ConvertedType = ToType;
782 return true;
783 }
784
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000785 // Blocks: Block pointers can be converted to void*.
786 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
787 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
788 ConvertedType = ToType;
789 return true;
790 }
791 // Blocks: A null pointer constant can be converted to a block
792 // pointer type.
793 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
794 ConvertedType = ToType;
795 return true;
796 }
797
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000798 const PointerType* ToTypePtr = ToType->getAsPointerType();
799 if (!ToTypePtr)
800 return false;
801
802 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
803 if (From->isNullPointerConstant(Context)) {
804 ConvertedType = ToType;
805 return true;
806 }
Sebastian Redl07779722008-10-31 14:43:28 +0000807
Douglas Gregorcb7de522008-11-26 23:31:11 +0000808 // Beyond this point, both types need to be pointers.
809 const PointerType *FromTypePtr = FromType->getAsPointerType();
810 if (!FromTypePtr)
811 return false;
812
813 QualType FromPointeeType = FromTypePtr->getPointeeType();
814 QualType ToPointeeType = ToTypePtr->getPointeeType();
815
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000816 // An rvalue of type "pointer to cv T," where T is an object type,
817 // can be converted to an rvalue of type "pointer to cv void" (C++
818 // 4.10p2).
Douglas Gregorc7887512008-12-19 19:13:09 +0000819 if (FromPointeeType->isIncompleteOrObjectType() &&
820 ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000821 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
822 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000823 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000824 return true;
825 }
826
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000827 // C++ [conv.ptr]p3:
828 //
829 // An rvalue of type "pointer to cv D," where D is a class type,
830 // can be converted to an rvalue of type "pointer to cv B," where
831 // B is a base class (clause 10) of D. If B is an inaccessible
832 // (clause 11) or ambiguous (10.2) base class of D, a program that
833 // necessitates this conversion is ill-formed. The result of the
834 // conversion is a pointer to the base class sub-object of the
835 // derived class object. The null pointer value is converted to
836 // the null pointer value of the destination type.
837 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000838 // Note that we do not check for ambiguity or inaccessibility
839 // here. That is handled by CheckPointerConversion.
Douglas Gregorcb7de522008-11-26 23:31:11 +0000840 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
841 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000842 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
843 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000844 ToType, Context);
845 return true;
846 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000847
Douglas Gregorc7887512008-12-19 19:13:09 +0000848 return false;
849}
850
851/// isObjCPointerConversion - Determines whether this is an
852/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
853/// with the same arguments and return values.
854bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
855 QualType& ConvertedType,
856 bool &IncompatibleObjC) {
857 if (!getLangOptions().ObjC1)
858 return false;
859
860 // Conversions with Objective-C's id<...>.
861 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
862 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
863 ConvertedType = ToType;
864 return true;
865 }
866
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000867 // Beyond this point, both types need to be pointers or block pointers.
868 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000869 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000870 if (ToTypePtr)
871 ToPointeeType = ToTypePtr->getPointeeType();
872 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
873 ToPointeeType = ToBlockPtr->getPointeeType();
874 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000875 return false;
876
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000877 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000878 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000879 if (FromTypePtr)
880 FromPointeeType = FromTypePtr->getPointeeType();
881 else if (const BlockPointerType *FromBlockPtr
882 = FromType->getAsBlockPointerType())
883 FromPointeeType = FromBlockPtr->getPointeeType();
884 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000885 return false;
886
Douglas Gregorcb7de522008-11-26 23:31:11 +0000887 // Objective C++: We're able to convert from a pointer to an
888 // interface to a pointer to a different interface.
889 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
890 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
891 if (FromIface && ToIface &&
892 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000893 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +0000894 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000895 ToType, Context);
896 return true;
897 }
898
Douglas Gregor45920e82008-12-19 17:40:08 +0000899 if (FromIface && ToIface &&
900 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
901 // Okay: this is some kind of implicit downcast of Objective-C
902 // interfaces, which is permitted. However, we're going to
903 // complain about it.
904 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000905 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +0000906 ToPointeeType,
907 ToType, Context);
908 return true;
909 }
910
Douglas Gregorcb7de522008-11-26 23:31:11 +0000911 // Objective C++: We're able to convert between "id" and a pointer
912 // to any interface (in both directions).
913 if ((FromIface && Context.isObjCIdType(ToPointeeType))
914 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000915 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
916 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000917 ToType, Context);
918 return true;
919 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000920
Douglas Gregordda78892008-12-18 23:43:31 +0000921 // Objective C++: Allow conversions between the Objective-C "id" and
922 // "Class", in either direction.
923 if ((Context.isObjCIdType(FromPointeeType) &&
924 Context.isObjCClassType(ToPointeeType)) ||
925 (Context.isObjCClassType(FromPointeeType) &&
926 Context.isObjCIdType(ToPointeeType))) {
927 ConvertedType = ToType;
928 return true;
929 }
930
Douglas Gregorc7887512008-12-19 19:13:09 +0000931 // If we have pointers to pointers, recursively check whether this
932 // is an Objective-C conversion.
933 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
934 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
935 IncompatibleObjC)) {
936 // We always complain about this conversion.
937 IncompatibleObjC = true;
938 ConvertedType = ToType;
939 return true;
940 }
941
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000942 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +0000943 // differences in the argument and result types are in Objective-C
944 // pointer conversions. If so, we permit the conversion (but
945 // complain about it).
946 const FunctionTypeProto *FromFunctionType
947 = FromPointeeType->getAsFunctionTypeProto();
948 const FunctionTypeProto *ToFunctionType
949 = ToPointeeType->getAsFunctionTypeProto();
950 if (FromFunctionType && ToFunctionType) {
951 // If the function types are exactly the same, this isn't an
952 // Objective-C pointer conversion.
953 if (Context.getCanonicalType(FromPointeeType)
954 == Context.getCanonicalType(ToPointeeType))
955 return false;
956
957 // Perform the quick checks that will tell us whether these
958 // function types are obviously different.
959 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
960 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
961 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
962 return false;
963
964 bool HasObjCConversion = false;
965 if (Context.getCanonicalType(FromFunctionType->getResultType())
966 == Context.getCanonicalType(ToFunctionType->getResultType())) {
967 // Okay, the types match exactly. Nothing to do.
968 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
969 ToFunctionType->getResultType(),
970 ConvertedType, IncompatibleObjC)) {
971 // Okay, we have an Objective-C pointer conversion.
972 HasObjCConversion = true;
973 } else {
974 // Function types are too different. Abort.
975 return false;
976 }
977
978 // Check argument types.
979 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
980 ArgIdx != NumArgs; ++ArgIdx) {
981 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
982 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
983 if (Context.getCanonicalType(FromArgType)
984 == Context.getCanonicalType(ToArgType)) {
985 // Okay, the types match exactly. Nothing to do.
986 } else if (isObjCPointerConversion(FromArgType, ToArgType,
987 ConvertedType, IncompatibleObjC)) {
988 // Okay, we have an Objective-C pointer conversion.
989 HasObjCConversion = true;
990 } else {
991 // Argument types are too different. Abort.
992 return false;
993 }
994 }
995
996 if (HasObjCConversion) {
997 // We had an Objective-C conversion. Allow this pointer
998 // conversion, but complain about it.
999 ConvertedType = ToType;
1000 IncompatibleObjC = true;
1001 return true;
1002 }
1003 }
1004
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001005 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001006}
1007
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001008/// CheckPointerConversion - Check the pointer conversion from the
1009/// expression From to the type ToType. This routine checks for
1010/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1011/// conversions for which IsPointerConversion has already returned
1012/// true. It returns true and produces a diagnostic if there was an
1013/// error, or returns false otherwise.
1014bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1015 QualType FromType = From->getType();
1016
1017 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1018 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001019 QualType FromPointeeType = FromPtrType->getPointeeType(),
1020 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001021
1022 // Objective-C++ conversions are always okay.
1023 // FIXME: We should have a different class of conversions for
1024 // the Objective-C++ implicit conversions.
1025 if (Context.isObjCIdType(FromPointeeType) ||
1026 Context.isObjCIdType(ToPointeeType) ||
1027 Context.isObjCClassType(FromPointeeType) ||
1028 Context.isObjCClassType(ToPointeeType))
1029 return false;
1030
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001031 if (FromPointeeType->isRecordType() &&
1032 ToPointeeType->isRecordType()) {
1033 // We must have a derived-to-base conversion. Check an
1034 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001035 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1036 From->getExprLoc(),
1037 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001038 }
1039 }
1040
1041 return false;
1042}
1043
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001044/// IsMemberPointerConversion - Determines whether the conversion of the
1045/// expression From, which has the (possibly adjusted) type FromType, can be
1046/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1047/// If so, returns true and places the converted type (that might differ from
1048/// ToType in its cv-qualifiers at some level) into ConvertedType.
1049bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1050 QualType ToType, QualType &ConvertedType)
1051{
1052 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1053 if (!ToTypePtr)
1054 return false;
1055
1056 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1057 if (From->isNullPointerConstant(Context)) {
1058 ConvertedType = ToType;
1059 return true;
1060 }
1061
1062 // Otherwise, both types have to be member pointers.
1063 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1064 if (!FromTypePtr)
1065 return false;
1066
1067 // A pointer to member of B can be converted to a pointer to member of D,
1068 // where D is derived from B (C++ 4.11p2).
1069 QualType FromClass(FromTypePtr->getClass(), 0);
1070 QualType ToClass(ToTypePtr->getClass(), 0);
1071 // FIXME: What happens when these are dependent? Is this function even called?
1072
1073 if (IsDerivedFrom(ToClass, FromClass)) {
1074 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1075 ToClass.getTypePtr());
1076 return true;
1077 }
1078
1079 return false;
1080}
1081
1082/// CheckMemberPointerConversion - Check the member pointer conversion from the
1083/// expression From to the type ToType. This routine checks for ambiguous or
1084/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1085/// for which IsMemberPointerConversion has already returned true. It returns
1086/// true and produces a diagnostic if there was an error, or returns false
1087/// otherwise.
1088bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1089 QualType FromType = From->getType();
1090
1091 if (const MemberPointerType *FromPtrType =
1092 FromType->getAsMemberPointerType()) {
1093 if (const MemberPointerType *ToPtrType =
1094 ToType->getAsMemberPointerType()) {
1095 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1096 QualType ToClass = QualType(ToPtrType->getClass(), 0);
1097
1098 // FIXME: What about dependent types?
1099 assert(FromClass->isRecordType() && "Pointer into non-class.");
1100 assert(ToClass->isRecordType() && "Pointer into non-class.");
1101
1102 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1103 /*DetectVirtual=*/true);
1104 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1105 assert(DerivationOkay &&
1106 "Should not have been called if derivation isn't OK.");
1107 if (!DerivationOkay)
1108 return true;
1109
1110 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1111 getUnqualifiedType())) {
1112 // Derivation is ambiguous. Redo the check to find the exact paths.
1113 Paths.clear();
1114 Paths.setRecordingPaths(true);
1115 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1116 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1117 if (!StillOkay)
1118 return true;
1119
1120 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1121 Diag(From->getExprLoc(),
1122 diag::err_ambiguous_base_to_derived_memptr_conv)
1123 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1124 return true;
1125 }
1126
1127 if (const CXXRecordType *VBase = Paths.getDetectedVirtual()) {
1128 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1129 << FromClass << ToClass << QualType(VBase, 0)
1130 << From->getSourceRange();
1131 return true;
1132 }
1133 }
1134 }
1135 return false;
1136}
1137
Douglas Gregor98cd5992008-10-21 23:43:52 +00001138/// IsQualificationConversion - Determines whether the conversion from
1139/// an rvalue of type FromType to ToType is a qualification conversion
1140/// (C++ 4.4).
1141bool
1142Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1143{
1144 FromType = Context.getCanonicalType(FromType);
1145 ToType = Context.getCanonicalType(ToType);
1146
1147 // If FromType and ToType are the same type, this is not a
1148 // qualification conversion.
1149 if (FromType == ToType)
1150 return false;
1151
1152 // (C++ 4.4p4):
1153 // A conversion can add cv-qualifiers at levels other than the first
1154 // in multi-level pointers, subject to the following rules: [...]
1155 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001156 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001157 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001158 // Within each iteration of the loop, we check the qualifiers to
1159 // determine if this still looks like a qualification
1160 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001161 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001162 // until there are no more pointers or pointers-to-members left to
1163 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001164 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001165
1166 // -- for every j > 0, if const is in cv 1,j then const is in cv
1167 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001168 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001169 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001170
Douglas Gregor98cd5992008-10-21 23:43:52 +00001171 // -- if the cv 1,j and cv 2,j are different, then const is in
1172 // every cv for 0 < k < j.
1173 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001174 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001175 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001176
Douglas Gregor98cd5992008-10-21 23:43:52 +00001177 // Keep track of whether all prior cv-qualifiers in the "to" type
1178 // include const.
1179 PreviousToQualsIncludeConst
1180 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001181 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001182
1183 // We are left with FromType and ToType being the pointee types
1184 // after unwrapping the original FromType and ToType the same number
1185 // of types. If we unwrapped any pointers, and if FromType and
1186 // ToType have the same unqualified type (since we checked
1187 // qualifiers above), then this is a qualification conversion.
1188 return UnwrappedAnyPointer &&
1189 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1190}
1191
Douglas Gregor60d62c22008-10-31 16:23:19 +00001192/// IsUserDefinedConversion - Determines whether there is a
1193/// user-defined conversion sequence (C++ [over.ics.user]) that
1194/// converts expression From to the type ToType. If such a conversion
1195/// exists, User will contain the user-defined conversion sequence
1196/// that performs such a conversion and this routine will return
1197/// true. Otherwise, this routine returns false and User is
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001198/// unspecified. AllowExplicit is true if the conversion should
1199/// consider C++0x "explicit" conversion functions as well as
1200/// non-explicit conversion functions (C++0x [class.conv.fct]p2).
Douglas Gregor60d62c22008-10-31 16:23:19 +00001201bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001202 UserDefinedConversionSequence& User,
1203 bool AllowExplicit)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001204{
1205 OverloadCandidateSet CandidateSet;
1206 if (const CXXRecordType *ToRecordType
1207 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
1208 // C++ [over.match.ctor]p1:
1209 // When objects of class type are direct-initialized (8.5), or
1210 // copy-initialized from an expression of the same or a
1211 // derived class type (8.5), overload resolution selects the
1212 // constructor. [...] For copy-initialization, the candidate
1213 // functions are all the converting constructors (12.3.1) of
1214 // that class. The argument list is the expression-list within
1215 // the parentheses of the initializer.
1216 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
Douglas Gregor9e7d9de2008-12-15 21:24:18 +00001217 DeclarationName ConstructorName
1218 = Context.DeclarationNames.getCXXConstructorName(
Douglas Gregore63ef482009-01-13 00:11:19 +00001219 Context.getCanonicalType(ToType).getUnqualifiedType());
Douglas Gregor3fc749d2008-12-23 00:26:44 +00001220 DeclContext::lookup_iterator Con, ConEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00001221 for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00001222 Con != ConEnd; ++Con) {
1223 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001224 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +00001225 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1226 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001227 }
1228 }
1229
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001230 if (const CXXRecordType *FromRecordType
1231 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
1232 // Add all of the conversion functions as candidates.
1233 // FIXME: Look for conversions in base classes!
1234 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1235 OverloadedFunctionDecl *Conversions
1236 = FromRecordDecl->getConversionFunctions();
1237 for (OverloadedFunctionDecl::function_iterator Func
1238 = Conversions->function_begin();
1239 Func != Conversions->function_end(); ++Func) {
1240 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001241 if (AllowExplicit || !Conv->isExplicit())
1242 AddConversionCandidate(Conv, From, ToType, CandidateSet);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001243 }
1244 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001245
1246 OverloadCandidateSet::iterator Best;
1247 switch (BestViableFunction(CandidateSet, Best)) {
1248 case OR_Success:
1249 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001250 if (CXXConstructorDecl *Constructor
1251 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1252 // C++ [over.ics.user]p1:
1253 // If the user-defined conversion is specified by a
1254 // constructor (12.3.1), the initial standard conversion
1255 // sequence converts the source type to the type required by
1256 // the argument of the constructor.
1257 //
1258 // FIXME: What about ellipsis conversions?
1259 QualType ThisType = Constructor->getThisType(Context);
1260 User.Before = Best->Conversions[0].Standard;
1261 User.ConversionFunction = Constructor;
1262 User.After.setAsIdentityConversion();
1263 User.After.FromTypePtr
1264 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1265 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1266 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001267 } else if (CXXConversionDecl *Conversion
1268 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1269 // C++ [over.ics.user]p1:
1270 //
1271 // [...] If the user-defined conversion is specified by a
1272 // conversion function (12.3.2), the initial standard
1273 // conversion sequence converts the source type to the
1274 // implicit object parameter of the conversion function.
1275 User.Before = Best->Conversions[0].Standard;
1276 User.ConversionFunction = Conversion;
1277
1278 // C++ [over.ics.user]p2:
1279 // The second standard conversion sequence converts the
1280 // result of the user-defined conversion to the target type
1281 // for the sequence. Since an implicit conversion sequence
1282 // is an initialization, the special rules for
1283 // initialization by user-defined conversion apply when
1284 // selecting the best user-defined conversion for a
1285 // user-defined conversion sequence (see 13.3.3 and
1286 // 13.3.3.1).
1287 User.After = Best->FinalConversion;
1288 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001289 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001290 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001291 return false;
1292 }
1293
1294 case OR_No_Viable_Function:
1295 // No conversion here! We're done.
1296 return false;
1297
1298 case OR_Ambiguous:
1299 // FIXME: See C++ [over.best.ics]p10 for the handling of
1300 // ambiguous conversion sequences.
1301 return false;
1302 }
1303
1304 return false;
1305}
1306
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001307/// CompareImplicitConversionSequences - Compare two implicit
1308/// conversion sequences to determine whether one is better than the
1309/// other or if they are indistinguishable (C++ 13.3.3.2).
1310ImplicitConversionSequence::CompareKind
1311Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1312 const ImplicitConversionSequence& ICS2)
1313{
1314 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1315 // conversion sequences (as defined in 13.3.3.1)
1316 // -- a standard conversion sequence (13.3.3.1.1) is a better
1317 // conversion sequence than a user-defined conversion sequence or
1318 // an ellipsis conversion sequence, and
1319 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1320 // conversion sequence than an ellipsis conversion sequence
1321 // (13.3.3.1.3).
1322 //
1323 if (ICS1.ConversionKind < ICS2.ConversionKind)
1324 return ImplicitConversionSequence::Better;
1325 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1326 return ImplicitConversionSequence::Worse;
1327
1328 // Two implicit conversion sequences of the same form are
1329 // indistinguishable conversion sequences unless one of the
1330 // following rules apply: (C++ 13.3.3.2p3):
1331 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1332 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1333 else if (ICS1.ConversionKind ==
1334 ImplicitConversionSequence::UserDefinedConversion) {
1335 // User-defined conversion sequence U1 is a better conversion
1336 // sequence than another user-defined conversion sequence U2 if
1337 // they contain the same user-defined conversion function or
1338 // constructor and if the second standard conversion sequence of
1339 // U1 is better than the second standard conversion sequence of
1340 // U2 (C++ 13.3.3.2p3).
1341 if (ICS1.UserDefined.ConversionFunction ==
1342 ICS2.UserDefined.ConversionFunction)
1343 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1344 ICS2.UserDefined.After);
1345 }
1346
1347 return ImplicitConversionSequence::Indistinguishable;
1348}
1349
1350/// CompareStandardConversionSequences - Compare two standard
1351/// conversion sequences to determine whether one is better than the
1352/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1353ImplicitConversionSequence::CompareKind
1354Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1355 const StandardConversionSequence& SCS2)
1356{
1357 // Standard conversion sequence S1 is a better conversion sequence
1358 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1359
1360 // -- S1 is a proper subsequence of S2 (comparing the conversion
1361 // sequences in the canonical form defined by 13.3.3.1.1,
1362 // excluding any Lvalue Transformation; the identity conversion
1363 // sequence is considered to be a subsequence of any
1364 // non-identity conversion sequence) or, if not that,
1365 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1366 // Neither is a proper subsequence of the other. Do nothing.
1367 ;
1368 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1369 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1370 (SCS1.Second == ICK_Identity &&
1371 SCS1.Third == ICK_Identity))
1372 // SCS1 is a proper subsequence of SCS2.
1373 return ImplicitConversionSequence::Better;
1374 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1375 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1376 (SCS2.Second == ICK_Identity &&
1377 SCS2.Third == ICK_Identity))
1378 // SCS2 is a proper subsequence of SCS1.
1379 return ImplicitConversionSequence::Worse;
1380
1381 // -- the rank of S1 is better than the rank of S2 (by the rules
1382 // defined below), or, if not that,
1383 ImplicitConversionRank Rank1 = SCS1.getRank();
1384 ImplicitConversionRank Rank2 = SCS2.getRank();
1385 if (Rank1 < Rank2)
1386 return ImplicitConversionSequence::Better;
1387 else if (Rank2 < Rank1)
1388 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001389
Douglas Gregor57373262008-10-22 14:17:15 +00001390 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1391 // are indistinguishable unless one of the following rules
1392 // applies:
1393
1394 // A conversion that is not a conversion of a pointer, or
1395 // pointer to member, to bool is better than another conversion
1396 // that is such a conversion.
1397 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1398 return SCS2.isPointerConversionToBool()
1399 ? ImplicitConversionSequence::Better
1400 : ImplicitConversionSequence::Worse;
1401
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001402 // C++ [over.ics.rank]p4b2:
1403 //
1404 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001405 // conversion of B* to A* is better than conversion of B* to
1406 // void*, and conversion of A* to void* is better than conversion
1407 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001408 bool SCS1ConvertsToVoid
1409 = SCS1.isPointerConversionToVoidPointer(Context);
1410 bool SCS2ConvertsToVoid
1411 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001412 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1413 // Exactly one of the conversion sequences is a conversion to
1414 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001415 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1416 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001417 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1418 // Neither conversion sequence converts to a void pointer; compare
1419 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001420 if (ImplicitConversionSequence::CompareKind DerivedCK
1421 = CompareDerivedToBaseConversions(SCS1, SCS2))
1422 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001423 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1424 // Both conversion sequences are conversions to void
1425 // pointers. Compare the source types to determine if there's an
1426 // inheritance relationship in their sources.
1427 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1428 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1429
1430 // Adjust the types we're converting from via the array-to-pointer
1431 // conversion, if we need to.
1432 if (SCS1.First == ICK_Array_To_Pointer)
1433 FromType1 = Context.getArrayDecayedType(FromType1);
1434 if (SCS2.First == ICK_Array_To_Pointer)
1435 FromType2 = Context.getArrayDecayedType(FromType2);
1436
1437 QualType FromPointee1
1438 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1439 QualType FromPointee2
1440 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1441
1442 if (IsDerivedFrom(FromPointee2, FromPointee1))
1443 return ImplicitConversionSequence::Better;
1444 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1445 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001446
1447 // Objective-C++: If one interface is more specific than the
1448 // other, it is the better one.
1449 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1450 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1451 if (FromIface1 && FromIface1) {
1452 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1453 return ImplicitConversionSequence::Better;
1454 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1455 return ImplicitConversionSequence::Worse;
1456 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001457 }
Douglas Gregor57373262008-10-22 14:17:15 +00001458
1459 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1460 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001461 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001462 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001463 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001464
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001465 // C++ [over.ics.rank]p3b4:
1466 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1467 // which the references refer are the same type except for
1468 // top-level cv-qualifiers, and the type to which the reference
1469 // initialized by S2 refers is more cv-qualified than the type
1470 // to which the reference initialized by S1 refers.
1471 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1472 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1473 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1474 T1 = Context.getCanonicalType(T1);
1475 T2 = Context.getCanonicalType(T2);
1476 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1477 if (T2.isMoreQualifiedThan(T1))
1478 return ImplicitConversionSequence::Better;
1479 else if (T1.isMoreQualifiedThan(T2))
1480 return ImplicitConversionSequence::Worse;
1481 }
1482 }
Douglas Gregor57373262008-10-22 14:17:15 +00001483
1484 return ImplicitConversionSequence::Indistinguishable;
1485}
1486
1487/// CompareQualificationConversions - Compares two standard conversion
1488/// sequences to determine whether they can be ranked based on their
1489/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1490ImplicitConversionSequence::CompareKind
1491Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1492 const StandardConversionSequence& SCS2)
1493{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001494 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001495 // -- S1 and S2 differ only in their qualification conversion and
1496 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1497 // cv-qualification signature of type T1 is a proper subset of
1498 // the cv-qualification signature of type T2, and S1 is not the
1499 // deprecated string literal array-to-pointer conversion (4.2).
1500 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1501 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1502 return ImplicitConversionSequence::Indistinguishable;
1503
1504 // FIXME: the example in the standard doesn't use a qualification
1505 // conversion (!)
1506 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1507 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1508 T1 = Context.getCanonicalType(T1);
1509 T2 = Context.getCanonicalType(T2);
1510
1511 // If the types are the same, we won't learn anything by unwrapped
1512 // them.
1513 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1514 return ImplicitConversionSequence::Indistinguishable;
1515
1516 ImplicitConversionSequence::CompareKind Result
1517 = ImplicitConversionSequence::Indistinguishable;
1518 while (UnwrapSimilarPointerTypes(T1, T2)) {
1519 // Within each iteration of the loop, we check the qualifiers to
1520 // determine if this still looks like a qualification
1521 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001522 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001523 // until there are no more pointers or pointers-to-members left
1524 // to unwrap. This essentially mimics what
1525 // IsQualificationConversion does, but here we're checking for a
1526 // strict subset of qualifiers.
1527 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1528 // The qualifiers are the same, so this doesn't tell us anything
1529 // about how the sequences rank.
1530 ;
1531 else if (T2.isMoreQualifiedThan(T1)) {
1532 // T1 has fewer qualifiers, so it could be the better sequence.
1533 if (Result == ImplicitConversionSequence::Worse)
1534 // Neither has qualifiers that are a subset of the other's
1535 // qualifiers.
1536 return ImplicitConversionSequence::Indistinguishable;
1537
1538 Result = ImplicitConversionSequence::Better;
1539 } else if (T1.isMoreQualifiedThan(T2)) {
1540 // T2 has fewer qualifiers, so it could be the better sequence.
1541 if (Result == ImplicitConversionSequence::Better)
1542 // Neither has qualifiers that are a subset of the other's
1543 // qualifiers.
1544 return ImplicitConversionSequence::Indistinguishable;
1545
1546 Result = ImplicitConversionSequence::Worse;
1547 } else {
1548 // Qualifiers are disjoint.
1549 return ImplicitConversionSequence::Indistinguishable;
1550 }
1551
1552 // If the types after this point are equivalent, we're done.
1553 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1554 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001555 }
1556
Douglas Gregor57373262008-10-22 14:17:15 +00001557 // Check that the winning standard conversion sequence isn't using
1558 // the deprecated string literal array to pointer conversion.
1559 switch (Result) {
1560 case ImplicitConversionSequence::Better:
1561 if (SCS1.Deprecated)
1562 Result = ImplicitConversionSequence::Indistinguishable;
1563 break;
1564
1565 case ImplicitConversionSequence::Indistinguishable:
1566 break;
1567
1568 case ImplicitConversionSequence::Worse:
1569 if (SCS2.Deprecated)
1570 Result = ImplicitConversionSequence::Indistinguishable;
1571 break;
1572 }
1573
1574 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001575}
1576
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001577/// CompareDerivedToBaseConversions - Compares two standard conversion
1578/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001579/// various kinds of derived-to-base conversions (C++
1580/// [over.ics.rank]p4b3). As part of these checks, we also look at
1581/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001582ImplicitConversionSequence::CompareKind
1583Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1584 const StandardConversionSequence& SCS2) {
1585 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1586 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1587 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1588 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1589
1590 // Adjust the types we're converting from via the array-to-pointer
1591 // conversion, if we need to.
1592 if (SCS1.First == ICK_Array_To_Pointer)
1593 FromType1 = Context.getArrayDecayedType(FromType1);
1594 if (SCS2.First == ICK_Array_To_Pointer)
1595 FromType2 = Context.getArrayDecayedType(FromType2);
1596
1597 // Canonicalize all of the types.
1598 FromType1 = Context.getCanonicalType(FromType1);
1599 ToType1 = Context.getCanonicalType(ToType1);
1600 FromType2 = Context.getCanonicalType(FromType2);
1601 ToType2 = Context.getCanonicalType(ToType2);
1602
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001603 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001604 //
1605 // If class B is derived directly or indirectly from class A and
1606 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001607 //
1608 // For Objective-C, we let A, B, and C also be Objective-C
1609 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001610
1611 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001612 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001613 SCS2.Second == ICK_Pointer_Conversion &&
1614 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1615 FromType1->isPointerType() && FromType2->isPointerType() &&
1616 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001617 QualType FromPointee1
1618 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1619 QualType ToPointee1
1620 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1621 QualType FromPointee2
1622 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1623 QualType ToPointee2
1624 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001625
1626 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1627 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1628 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1629 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1630
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001631 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001632 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1633 if (IsDerivedFrom(ToPointee1, ToPointee2))
1634 return ImplicitConversionSequence::Better;
1635 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1636 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001637
1638 if (ToIface1 && ToIface2) {
1639 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1640 return ImplicitConversionSequence::Better;
1641 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1642 return ImplicitConversionSequence::Worse;
1643 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001644 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001645
1646 // -- conversion of B* to A* is better than conversion of C* to A*,
1647 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1648 if (IsDerivedFrom(FromPointee2, FromPointee1))
1649 return ImplicitConversionSequence::Better;
1650 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1651 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001652
1653 if (FromIface1 && FromIface2) {
1654 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1655 return ImplicitConversionSequence::Better;
1656 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1657 return ImplicitConversionSequence::Worse;
1658 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001659 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001660 }
1661
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001662 // Compare based on reference bindings.
1663 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1664 SCS1.Second == ICK_Derived_To_Base) {
1665 // -- binding of an expression of type C to a reference of type
1666 // B& is better than binding an expression of type C to a
1667 // reference of type A&,
1668 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1669 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1670 if (IsDerivedFrom(ToType1, ToType2))
1671 return ImplicitConversionSequence::Better;
1672 else if (IsDerivedFrom(ToType2, ToType1))
1673 return ImplicitConversionSequence::Worse;
1674 }
1675
Douglas Gregor225c41e2008-11-03 19:09:14 +00001676 // -- binding of an expression of type B to a reference of type
1677 // A& is better than binding an expression of type C to a
1678 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001679 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1680 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1681 if (IsDerivedFrom(FromType2, FromType1))
1682 return ImplicitConversionSequence::Better;
1683 else if (IsDerivedFrom(FromType1, FromType2))
1684 return ImplicitConversionSequence::Worse;
1685 }
1686 }
1687
1688
1689 // FIXME: conversion of A::* to B::* is better than conversion of
1690 // A::* to C::*,
1691
1692 // FIXME: conversion of B::* to C::* is better than conversion of
1693 // A::* to C::*, and
1694
Douglas Gregor225c41e2008-11-03 19:09:14 +00001695 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1696 SCS1.Second == ICK_Derived_To_Base) {
1697 // -- conversion of C to B is better than conversion of C to A,
1698 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1699 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1700 if (IsDerivedFrom(ToType1, ToType2))
1701 return ImplicitConversionSequence::Better;
1702 else if (IsDerivedFrom(ToType2, ToType1))
1703 return ImplicitConversionSequence::Worse;
1704 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001705
Douglas Gregor225c41e2008-11-03 19:09:14 +00001706 // -- conversion of B to A is better than conversion of C to A.
1707 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1708 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1709 if (IsDerivedFrom(FromType2, FromType1))
1710 return ImplicitConversionSequence::Better;
1711 else if (IsDerivedFrom(FromType1, FromType2))
1712 return ImplicitConversionSequence::Worse;
1713 }
1714 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001715
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001716 return ImplicitConversionSequence::Indistinguishable;
1717}
1718
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001719/// TryCopyInitialization - Try to copy-initialize a value of type
1720/// ToType from the expression From. Return the implicit conversion
1721/// sequence required to pass this argument, which may be a bad
1722/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001723/// a parameter of this type). If @p SuppressUserConversions, then we
1724/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001725ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001726Sema::TryCopyInitialization(Expr *From, QualType ToType,
1727 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001728 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001729 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001730 AssignConvertType ConvTy =
1731 CheckSingleAssignmentConstraints(ToType, From);
1732 ImplicitConversionSequence ICS;
1733 if (getLangOptions().NoExtensions? ConvTy != Compatible
1734 : ConvTy == Incompatible)
1735 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1736 else
1737 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1738 return ICS;
1739 } else if (ToType->isReferenceType()) {
1740 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001741 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001742 return ICS;
1743 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001744 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001745 }
1746}
1747
1748/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1749/// type ToType. Returns true (and emits a diagnostic) if there was
1750/// an error, returns false if the initialization succeeded.
1751bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1752 const char* Flavor) {
1753 if (!getLangOptions().CPlusPlus) {
1754 // In C, argument passing is the same as performing an assignment.
1755 QualType FromType = From->getType();
1756 AssignConvertType ConvTy =
1757 CheckSingleAssignmentConstraints(ToType, From);
1758
1759 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1760 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001761 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001762
1763 if (ToType->isReferenceType())
1764 return CheckReferenceInit(From, ToType);
1765
Douglas Gregor45920e82008-12-19 17:40:08 +00001766 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001767 return false;
1768
1769 return Diag(From->getSourceRange().getBegin(),
1770 diag::err_typecheck_convert_incompatible)
1771 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001772}
1773
Douglas Gregor96176b32008-11-18 23:14:02 +00001774/// TryObjectArgumentInitialization - Try to initialize the object
1775/// parameter of the given member function (@c Method) from the
1776/// expression @p From.
1777ImplicitConversionSequence
1778Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1779 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1780 unsigned MethodQuals = Method->getTypeQualifiers();
1781 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1782
1783 // Set up the conversion sequence as a "bad" conversion, to allow us
1784 // to exit early.
1785 ImplicitConversionSequence ICS;
1786 ICS.Standard.setAsIdentityConversion();
1787 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1788
1789 // We need to have an object of class type.
1790 QualType FromType = From->getType();
1791 if (!FromType->isRecordType())
1792 return ICS;
1793
1794 // The implicit object parmeter is has the type "reference to cv X",
1795 // where X is the class of which the function is a member
1796 // (C++ [over.match.funcs]p4). However, when finding an implicit
1797 // conversion sequence for the argument, we are not allowed to
1798 // create temporaries or perform user-defined conversions
1799 // (C++ [over.match.funcs]p5). We perform a simplified version of
1800 // reference binding here, that allows class rvalues to bind to
1801 // non-constant references.
1802
1803 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1804 // with the implicit object parameter (C++ [over.match.funcs]p5).
1805 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1806 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1807 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1808 return ICS;
1809
1810 // Check that we have either the same type or a derived type. It
1811 // affects the conversion rank.
1812 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1813 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1814 ICS.Standard.Second = ICK_Identity;
1815 else if (IsDerivedFrom(FromType, ClassType))
1816 ICS.Standard.Second = ICK_Derived_To_Base;
1817 else
1818 return ICS;
1819
1820 // Success. Mark this as a reference binding.
1821 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1822 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1823 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1824 ICS.Standard.ReferenceBinding = true;
1825 ICS.Standard.DirectBinding = true;
1826 return ICS;
1827}
1828
1829/// PerformObjectArgumentInitialization - Perform initialization of
1830/// the implicit object parameter for the given Method with the given
1831/// expression.
1832bool
1833Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1834 QualType ImplicitParamType
1835 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1836 ImplicitConversionSequence ICS
1837 = TryObjectArgumentInitialization(From, Method);
1838 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1839 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001840 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001841 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001842
1843 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1844 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1845 From->getSourceRange().getBegin(),
1846 From->getSourceRange()))
1847 return true;
1848
1849 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1850 return false;
1851}
1852
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001853/// TryContextuallyConvertToBool - Attempt to contextually convert the
1854/// expression From to bool (C++0x [conv]p3).
1855ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1856 return TryImplicitConversion(From, Context.BoolTy, false, true);
1857}
1858
1859/// PerformContextuallyConvertToBool - Perform a contextual conversion
1860/// of the expression From to bool (C++0x [conv]p3).
1861bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1862 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1863 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1864 return false;
1865
1866 return Diag(From->getSourceRange().getBegin(),
1867 diag::err_typecheck_bool_condition)
1868 << From->getType() << From->getSourceRange();
1869}
1870
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001871/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001872/// candidate functions, using the given function call arguments. If
1873/// @p SuppressUserConversions, then don't allow user-defined
1874/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001875void
1876Sema::AddOverloadCandidate(FunctionDecl *Function,
1877 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001878 OverloadCandidateSet& CandidateSet,
1879 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001880{
1881 const FunctionTypeProto* Proto
1882 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1883 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001884 assert(!isa<CXXConversionDecl>(Function) &&
1885 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001886
Douglas Gregor88a35142008-12-22 05:46:06 +00001887 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
1888 // If we get here, it's because we're calling a member function
1889 // that is named without a member access expression (e.g.,
1890 // "this->f") that was either written explicitly or created
1891 // implicitly. This can happen with a qualified call to a member
1892 // function, e.g., X::f(). We use a NULL object as the implied
1893 // object argument (C++ [over.call.func]p3).
1894 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
1895 SuppressUserConversions);
1896 return;
1897 }
1898
1899
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001900 // Add this candidate
1901 CandidateSet.push_back(OverloadCandidate());
1902 OverloadCandidate& Candidate = CandidateSet.back();
1903 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00001904 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001905 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00001906 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001907
1908 unsigned NumArgsInProto = Proto->getNumArgs();
1909
1910 // (C++ 13.3.2p2): A candidate function having fewer than m
1911 // parameters is viable only if it has an ellipsis in its parameter
1912 // list (8.3.5).
1913 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1914 Candidate.Viable = false;
1915 return;
1916 }
1917
1918 // (C++ 13.3.2p2): A candidate function having more than m parameters
1919 // is viable only if the (m+1)st parameter has a default argument
1920 // (8.3.6). For the purposes of overload resolution, the
1921 // parameter list is truncated on the right, so that there are
1922 // exactly m parameters.
1923 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1924 if (NumArgs < MinRequiredArgs) {
1925 // Not enough arguments.
1926 Candidate.Viable = false;
1927 return;
1928 }
1929
1930 // Determine the implicit conversion sequences for each of the
1931 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001932 Candidate.Conversions.resize(NumArgs);
1933 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1934 if (ArgIdx < NumArgsInProto) {
1935 // (C++ 13.3.2p3): for F to be a viable function, there shall
1936 // exist for each argument an implicit conversion sequence
1937 // (13.3.3.1) that converts that argument to the corresponding
1938 // parameter of F.
1939 QualType ParamType = Proto->getArgType(ArgIdx);
1940 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001941 = TryCopyInitialization(Args[ArgIdx], ParamType,
1942 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001943 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001944 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001945 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001946 break;
1947 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001948 } else {
1949 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1950 // argument for which there is no corresponding parameter is
1951 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1952 Candidate.Conversions[ArgIdx].ConversionKind
1953 = ImplicitConversionSequence::EllipsisConversion;
1954 }
1955 }
1956}
1957
Douglas Gregor96176b32008-11-18 23:14:02 +00001958/// AddMethodCandidate - Adds the given C++ member function to the set
1959/// of candidate functions, using the given function call arguments
1960/// and the object argument (@c Object). For example, in a call
1961/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1962/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1963/// allow user-defined conversions via constructors or conversion
1964/// operators.
1965void
1966Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1967 Expr **Args, unsigned NumArgs,
1968 OverloadCandidateSet& CandidateSet,
1969 bool SuppressUserConversions)
1970{
1971 const FunctionTypeProto* Proto
1972 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1973 assert(Proto && "Methods without a prototype cannot be overloaded");
1974 assert(!isa<CXXConversionDecl>(Method) &&
1975 "Use AddConversionCandidate for conversion functions");
1976
1977 // Add this candidate
1978 CandidateSet.push_back(OverloadCandidate());
1979 OverloadCandidate& Candidate = CandidateSet.back();
1980 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001981 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00001982 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001983
1984 unsigned NumArgsInProto = Proto->getNumArgs();
1985
1986 // (C++ 13.3.2p2): A candidate function having fewer than m
1987 // parameters is viable only if it has an ellipsis in its parameter
1988 // list (8.3.5).
1989 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1990 Candidate.Viable = false;
1991 return;
1992 }
1993
1994 // (C++ 13.3.2p2): A candidate function having more than m parameters
1995 // is viable only if the (m+1)st parameter has a default argument
1996 // (8.3.6). For the purposes of overload resolution, the
1997 // parameter list is truncated on the right, so that there are
1998 // exactly m parameters.
1999 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2000 if (NumArgs < MinRequiredArgs) {
2001 // Not enough arguments.
2002 Candidate.Viable = false;
2003 return;
2004 }
2005
2006 Candidate.Viable = true;
2007 Candidate.Conversions.resize(NumArgs + 1);
2008
Douglas Gregor88a35142008-12-22 05:46:06 +00002009 if (Method->isStatic() || !Object)
2010 // The implicit object argument is ignored.
2011 Candidate.IgnoreObjectArgument = true;
2012 else {
2013 // Determine the implicit conversion sequence for the object
2014 // parameter.
2015 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2016 if (Candidate.Conversions[0].ConversionKind
2017 == ImplicitConversionSequence::BadConversion) {
2018 Candidate.Viable = false;
2019 return;
2020 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002021 }
2022
2023 // Determine the implicit conversion sequences for each of the
2024 // arguments.
2025 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2026 if (ArgIdx < NumArgsInProto) {
2027 // (C++ 13.3.2p3): for F to be a viable function, there shall
2028 // exist for each argument an implicit conversion sequence
2029 // (13.3.3.1) that converts that argument to the corresponding
2030 // parameter of F.
2031 QualType ParamType = Proto->getArgType(ArgIdx);
2032 Candidate.Conversions[ArgIdx + 1]
2033 = TryCopyInitialization(Args[ArgIdx], ParamType,
2034 SuppressUserConversions);
2035 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2036 == ImplicitConversionSequence::BadConversion) {
2037 Candidate.Viable = false;
2038 break;
2039 }
2040 } else {
2041 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2042 // argument for which there is no corresponding parameter is
2043 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2044 Candidate.Conversions[ArgIdx + 1].ConversionKind
2045 = ImplicitConversionSequence::EllipsisConversion;
2046 }
2047 }
2048}
2049
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002050/// AddConversionCandidate - Add a C++ conversion function as a
2051/// candidate in the candidate set (C++ [over.match.conv],
2052/// C++ [over.match.copy]). From is the expression we're converting from,
2053/// and ToType is the type that we're eventually trying to convert to
2054/// (which may or may not be the same type as the type that the
2055/// conversion function produces).
2056void
2057Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2058 Expr *From, QualType ToType,
2059 OverloadCandidateSet& CandidateSet) {
2060 // Add this candidate
2061 CandidateSet.push_back(OverloadCandidate());
2062 OverloadCandidate& Candidate = CandidateSet.back();
2063 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002064 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002065 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002066 Candidate.FinalConversion.setAsIdentityConversion();
2067 Candidate.FinalConversion.FromTypePtr
2068 = Conversion->getConversionType().getAsOpaquePtr();
2069 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2070
Douglas Gregor96176b32008-11-18 23:14:02 +00002071 // Determine the implicit conversion sequence for the implicit
2072 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002073 Candidate.Viable = true;
2074 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002075 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002076
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002077 if (Candidate.Conversions[0].ConversionKind
2078 == ImplicitConversionSequence::BadConversion) {
2079 Candidate.Viable = false;
2080 return;
2081 }
2082
2083 // To determine what the conversion from the result of calling the
2084 // conversion function to the type we're eventually trying to
2085 // convert to (ToType), we need to synthesize a call to the
2086 // conversion function and attempt copy initialization from it. This
2087 // makes sure that we get the right semantics with respect to
2088 // lvalues/rvalues and the type. Fortunately, we can allocate this
2089 // call on the stack and we don't need its arguments to be
2090 // well-formed.
2091 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2092 SourceLocation());
2093 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002094 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002095 CallExpr Call(&ConversionFn, 0, 0,
2096 Conversion->getConversionType().getNonReferenceType(),
2097 SourceLocation());
2098 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2099 switch (ICS.ConversionKind) {
2100 case ImplicitConversionSequence::StandardConversion:
2101 Candidate.FinalConversion = ICS.Standard;
2102 break;
2103
2104 case ImplicitConversionSequence::BadConversion:
2105 Candidate.Viable = false;
2106 break;
2107
2108 default:
2109 assert(false &&
2110 "Can only end up with a standard conversion sequence or failure");
2111 }
2112}
2113
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002114/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2115/// converts the given @c Object to a function pointer via the
2116/// conversion function @c Conversion, and then attempts to call it
2117/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2118/// the type of function that we'll eventually be calling.
2119void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2120 const FunctionTypeProto *Proto,
2121 Expr *Object, Expr **Args, unsigned NumArgs,
2122 OverloadCandidateSet& CandidateSet) {
2123 CandidateSet.push_back(OverloadCandidate());
2124 OverloadCandidate& Candidate = CandidateSet.back();
2125 Candidate.Function = 0;
2126 Candidate.Surrogate = Conversion;
2127 Candidate.Viable = true;
2128 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002129 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002130 Candidate.Conversions.resize(NumArgs + 1);
2131
2132 // Determine the implicit conversion sequence for the implicit
2133 // object parameter.
2134 ImplicitConversionSequence ObjectInit
2135 = TryObjectArgumentInitialization(Object, Conversion);
2136 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2137 Candidate.Viable = false;
2138 return;
2139 }
2140
2141 // The first conversion is actually a user-defined conversion whose
2142 // first conversion is ObjectInit's standard conversion (which is
2143 // effectively a reference binding). Record it as such.
2144 Candidate.Conversions[0].ConversionKind
2145 = ImplicitConversionSequence::UserDefinedConversion;
2146 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2147 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2148 Candidate.Conversions[0].UserDefined.After
2149 = Candidate.Conversions[0].UserDefined.Before;
2150 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2151
2152 // Find the
2153 unsigned NumArgsInProto = Proto->getNumArgs();
2154
2155 // (C++ 13.3.2p2): A candidate function having fewer than m
2156 // parameters is viable only if it has an ellipsis in its parameter
2157 // list (8.3.5).
2158 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2159 Candidate.Viable = false;
2160 return;
2161 }
2162
2163 // Function types don't have any default arguments, so just check if
2164 // we have enough arguments.
2165 if (NumArgs < NumArgsInProto) {
2166 // Not enough arguments.
2167 Candidate.Viable = false;
2168 return;
2169 }
2170
2171 // Determine the implicit conversion sequences for each of the
2172 // arguments.
2173 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2174 if (ArgIdx < NumArgsInProto) {
2175 // (C++ 13.3.2p3): for F to be a viable function, there shall
2176 // exist for each argument an implicit conversion sequence
2177 // (13.3.3.1) that converts that argument to the corresponding
2178 // parameter of F.
2179 QualType ParamType = Proto->getArgType(ArgIdx);
2180 Candidate.Conversions[ArgIdx + 1]
2181 = TryCopyInitialization(Args[ArgIdx], ParamType,
2182 /*SuppressUserConversions=*/false);
2183 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2184 == ImplicitConversionSequence::BadConversion) {
2185 Candidate.Viable = false;
2186 break;
2187 }
2188 } else {
2189 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2190 // argument for which there is no corresponding parameter is
2191 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2192 Candidate.Conversions[ArgIdx + 1].ConversionKind
2193 = ImplicitConversionSequence::EllipsisConversion;
2194 }
2195 }
2196}
2197
Douglas Gregor447b69e2008-11-19 03:25:36 +00002198/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2199/// an acceptable non-member overloaded operator for a call whose
2200/// arguments have types T1 (and, if non-empty, T2). This routine
2201/// implements the check in C++ [over.match.oper]p3b2 concerning
2202/// enumeration types.
2203static bool
2204IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2205 QualType T1, QualType T2,
2206 ASTContext &Context) {
2207 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2208 return true;
2209
2210 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
2211 if (Proto->getNumArgs() < 1)
2212 return false;
2213
2214 if (T1->isEnumeralType()) {
2215 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2216 if (Context.getCanonicalType(T1).getUnqualifiedType()
2217 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2218 return true;
2219 }
2220
2221 if (Proto->getNumArgs() < 2)
2222 return false;
2223
2224 if (!T2.isNull() && T2->isEnumeralType()) {
2225 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2226 if (Context.getCanonicalType(T2).getUnqualifiedType()
2227 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2228 return true;
2229 }
2230
2231 return false;
2232}
2233
Douglas Gregor96176b32008-11-18 23:14:02 +00002234/// AddOperatorCandidates - Add the overloaded operator candidates for
2235/// the operator Op that was used in an operator expression such as "x
2236/// Op y". S is the scope in which the expression occurred (used for
2237/// name lookup of the operator), Args/NumArgs provides the operator
2238/// arguments, and CandidateSet will store the added overload
2239/// candidates. (C++ [over.match.oper]).
2240void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2241 Expr **Args, unsigned NumArgs,
2242 OverloadCandidateSet& CandidateSet) {
2243 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2244
2245 // C++ [over.match.oper]p3:
2246 // For a unary operator @ with an operand of a type whose
2247 // cv-unqualified version is T1, and for a binary operator @ with
2248 // a left operand of a type whose cv-unqualified version is T1 and
2249 // a right operand of a type whose cv-unqualified version is T2,
2250 // three sets of candidate functions, designated member
2251 // candidates, non-member candidates and built-in candidates, are
2252 // constructed as follows:
2253 QualType T1 = Args[0]->getType();
2254 QualType T2;
2255 if (NumArgs > 1)
2256 T2 = Args[1]->getType();
2257
2258 // -- If T1 is a class type, the set of member candidates is the
2259 // result of the qualified lookup of T1::operator@
2260 // (13.3.1.1.1); otherwise, the set of member candidates is
2261 // empty.
2262 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002263 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00002264 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002265 Oper != OperEnd; ++Oper)
2266 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2267 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002268 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002269 }
2270
2271 // -- The set of non-member candidates is the result of the
2272 // unqualified lookup of operator@ in the context of the
2273 // expression according to the usual rules for name lookup in
2274 // unqualified function calls (3.4.2) except that all member
2275 // functions are ignored. However, if no operand has a class
2276 // type, only those non-member functions in the lookup set
2277 // that have a first parameter of type T1 or “reference to
2278 // (possibly cv-qualified) T1”, when T1 is an enumeration
2279 // type, or (if there is a right operand) a second parameter
2280 // of type T2 or “reference to (possibly cv-qualified) T2”,
2281 // when T2 is an enumeration type, are candidate functions.
2282 {
Douglas Gregor6ed40e32008-12-23 21:05:05 +00002283 IdentifierResolver::iterator
2284 I = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/),
2285 IEnd = IdResolver.end();
2286 for (; I != IEnd; ++I) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002287 // We don't need to check the identifier namespace, because
2288 // operator names can only be ordinary identifiers.
2289
2290 // Ignore member functions.
Douglas Gregor4afa39d2009-01-20 01:17:11 +00002291 if ((*I)->getDeclContext()->isRecord())
2292 continue;
Douglas Gregor96176b32008-11-18 23:14:02 +00002293
2294 // We found something with this name. We're done.
Douglas Gregor96176b32008-11-18 23:14:02 +00002295 break;
2296 }
2297
Douglas Gregor4afa39d2009-01-20 01:17:11 +00002298 if (I != IEnd) {
2299 Decl *FirstDecl = *I;
Douglas Gregor6ed40e32008-12-23 21:05:05 +00002300 for (; I != IEnd; ++I) {
Douglas Gregor4afa39d2009-01-20 01:17:11 +00002301 if (FirstDecl->getDeclContext() != (*I)->getDeclContext())
Douglas Gregor6ed40e32008-12-23 21:05:05 +00002302 break;
2303
2304 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
2305 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2306 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2307 /*SuppressUserConversions=*/false);
Douglas Gregor447b69e2008-11-19 03:25:36 +00002308 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002309 }
2310 }
2311
2312 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002313 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor96176b32008-11-18 23:14:02 +00002314}
2315
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002316/// AddBuiltinCandidate - Add a candidate for a built-in
2317/// operator. ResultTy and ParamTys are the result and parameter types
2318/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002319/// arguments being passed to the candidate. IsAssignmentOperator
2320/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002321/// operator. NumContextualBoolArguments is the number of arguments
2322/// (at the beginning of the argument list) that will be contextually
2323/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002324void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2325 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002326 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002327 bool IsAssignmentOperator,
2328 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002329 // Add this candidate
2330 CandidateSet.push_back(OverloadCandidate());
2331 OverloadCandidate& Candidate = CandidateSet.back();
2332 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002333 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002334 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002335 Candidate.BuiltinTypes.ResultTy = ResultTy;
2336 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2337 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2338
2339 // Determine the implicit conversion sequences for each of the
2340 // arguments.
2341 Candidate.Viable = true;
2342 Candidate.Conversions.resize(NumArgs);
2343 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002344 // C++ [over.match.oper]p4:
2345 // For the built-in assignment operators, conversions of the
2346 // left operand are restricted as follows:
2347 // -- no temporaries are introduced to hold the left operand, and
2348 // -- no user-defined conversions are applied to the left
2349 // operand to achieve a type match with the left-most
2350 // parameter of a built-in candidate.
2351 //
2352 // We block these conversions by turning off user-defined
2353 // conversions, since that is the only way that initialization of
2354 // a reference to a non-class type can occur from something that
2355 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002356 if (ArgIdx < NumContextualBoolArguments) {
2357 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2358 "Contextual conversion to bool requires bool type");
2359 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2360 } else {
2361 Candidate.Conversions[ArgIdx]
2362 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2363 ArgIdx == 0 && IsAssignmentOperator);
2364 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002365 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002366 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002367 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002368 break;
2369 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002370 }
2371}
2372
2373/// BuiltinCandidateTypeSet - A set of types that will be used for the
2374/// candidate operator functions for built-in operators (C++
2375/// [over.built]). The types are separated into pointer types and
2376/// enumeration types.
2377class BuiltinCandidateTypeSet {
2378 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002379 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002380
2381 /// PointerTypes - The set of pointer types that will be used in the
2382 /// built-in candidates.
2383 TypeSet PointerTypes;
2384
2385 /// EnumerationTypes - The set of enumeration types that will be
2386 /// used in the built-in candidates.
2387 TypeSet EnumerationTypes;
2388
2389 /// Context - The AST context in which we will build the type sets.
2390 ASTContext &Context;
2391
2392 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2393
2394public:
2395 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002396 class iterator {
2397 TypeSet::iterator Base;
2398
2399 public:
2400 typedef QualType value_type;
2401 typedef QualType reference;
2402 typedef QualType pointer;
2403 typedef std::ptrdiff_t difference_type;
2404 typedef std::input_iterator_tag iterator_category;
2405
2406 iterator(TypeSet::iterator B) : Base(B) { }
2407
2408 iterator& operator++() {
2409 ++Base;
2410 return *this;
2411 }
2412
2413 iterator operator++(int) {
2414 iterator tmp(*this);
2415 ++(*this);
2416 return tmp;
2417 }
2418
2419 reference operator*() const {
2420 return QualType::getFromOpaquePtr(*Base);
2421 }
2422
2423 pointer operator->() const {
2424 return **this;
2425 }
2426
2427 friend bool operator==(iterator LHS, iterator RHS) {
2428 return LHS.Base == RHS.Base;
2429 }
2430
2431 friend bool operator!=(iterator LHS, iterator RHS) {
2432 return LHS.Base != RHS.Base;
2433 }
2434 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002435
2436 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2437
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002438 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2439 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002440
2441 /// pointer_begin - First pointer type found;
2442 iterator pointer_begin() { return PointerTypes.begin(); }
2443
2444 /// pointer_end - Last pointer type found;
2445 iterator pointer_end() { return PointerTypes.end(); }
2446
2447 /// enumeration_begin - First enumeration type found;
2448 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2449
2450 /// enumeration_end - Last enumeration type found;
2451 iterator enumeration_end() { return EnumerationTypes.end(); }
2452};
2453
2454/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2455/// the set of pointer types along with any more-qualified variants of
2456/// that type. For example, if @p Ty is "int const *", this routine
2457/// will add "int const *", "int const volatile *", "int const
2458/// restrict *", and "int const volatile restrict *" to the set of
2459/// pointer types. Returns true if the add of @p Ty itself succeeded,
2460/// false otherwise.
2461bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2462 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002463 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002464 return false;
2465
2466 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2467 QualType PointeeTy = PointerTy->getPointeeType();
2468 // FIXME: Optimize this so that we don't keep trying to add the same types.
2469
2470 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2471 // with all pointer conversions that don't cast away constness?
2472 if (!PointeeTy.isConstQualified())
2473 AddWithMoreQualifiedTypeVariants
2474 (Context.getPointerType(PointeeTy.withConst()));
2475 if (!PointeeTy.isVolatileQualified())
2476 AddWithMoreQualifiedTypeVariants
2477 (Context.getPointerType(PointeeTy.withVolatile()));
2478 if (!PointeeTy.isRestrictQualified())
2479 AddWithMoreQualifiedTypeVariants
2480 (Context.getPointerType(PointeeTy.withRestrict()));
2481 }
2482
2483 return true;
2484}
2485
2486/// AddTypesConvertedFrom - Add each of the types to which the type @p
2487/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002488/// primarily interested in pointer types and enumeration types.
2489/// AllowUserConversions is true if we should look at the conversion
2490/// functions of a class type, and AllowExplicitConversions if we
2491/// should also include the explicit conversion functions of a class
2492/// type.
2493void
2494BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2495 bool AllowUserConversions,
2496 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002497 // Only deal with canonical types.
2498 Ty = Context.getCanonicalType(Ty);
2499
2500 // Look through reference types; they aren't part of the type of an
2501 // expression for the purposes of conversions.
2502 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2503 Ty = RefTy->getPointeeType();
2504
2505 // We don't care about qualifiers on the type.
2506 Ty = Ty.getUnqualifiedType();
2507
2508 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2509 QualType PointeeTy = PointerTy->getPointeeType();
2510
2511 // Insert our type, and its more-qualified variants, into the set
2512 // of types.
2513 if (!AddWithMoreQualifiedTypeVariants(Ty))
2514 return;
2515
2516 // Add 'cv void*' to our set of types.
2517 if (!Ty->isVoidType()) {
2518 QualType QualVoid
2519 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2520 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2521 }
2522
2523 // If this is a pointer to a class type, add pointers to its bases
2524 // (with the same level of cv-qualification as the original
2525 // derived class, of course).
2526 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2527 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2528 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2529 Base != ClassDecl->bases_end(); ++Base) {
2530 QualType BaseTy = Context.getCanonicalType(Base->getType());
2531 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2532
2533 // Add the pointer type, recursively, so that we get all of
2534 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002535 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002536 }
2537 }
2538 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002539 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002540 } else if (AllowUserConversions) {
2541 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2542 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2543 // FIXME: Visit conversion functions in the base classes, too.
2544 OverloadedFunctionDecl *Conversions
2545 = ClassDecl->getConversionFunctions();
2546 for (OverloadedFunctionDecl::function_iterator Func
2547 = Conversions->function_begin();
2548 Func != Conversions->function_end(); ++Func) {
2549 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002550 if (AllowExplicitConversions || !Conv->isExplicit())
2551 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002552 }
2553 }
2554 }
2555}
2556
Douglas Gregor74253732008-11-19 15:42:04 +00002557/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2558/// operator overloads to the candidate set (C++ [over.built]), based
2559/// on the operator @p Op and the arguments given. For example, if the
2560/// operator is a binary '+', this routine might add "int
2561/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002562void
Douglas Gregor74253732008-11-19 15:42:04 +00002563Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2564 Expr **Args, unsigned NumArgs,
2565 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002566 // The set of "promoted arithmetic types", which are the arithmetic
2567 // types are that preserved by promotion (C++ [over.built]p2). Note
2568 // that the first few of these types are the promoted integral
2569 // types; these types need to be first.
2570 // FIXME: What about complex?
2571 const unsigned FirstIntegralType = 0;
2572 const unsigned LastIntegralType = 13;
2573 const unsigned FirstPromotedIntegralType = 7,
2574 LastPromotedIntegralType = 13;
2575 const unsigned FirstPromotedArithmeticType = 7,
2576 LastPromotedArithmeticType = 16;
2577 const unsigned NumArithmeticTypes = 16;
2578 QualType ArithmeticTypes[NumArithmeticTypes] = {
2579 Context.BoolTy, Context.CharTy, Context.WCharTy,
2580 Context.SignedCharTy, Context.ShortTy,
2581 Context.UnsignedCharTy, Context.UnsignedShortTy,
2582 Context.IntTy, Context.LongTy, Context.LongLongTy,
2583 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2584 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2585 };
2586
2587 // Find all of the types that the arguments can convert to, but only
2588 // if the operator we're looking at has built-in operator candidates
2589 // that make use of these types.
2590 BuiltinCandidateTypeSet CandidateTypes(Context);
2591 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2592 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002593 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002594 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002595 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2596 (Op == OO_Star && NumArgs == 1)) {
2597 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002598 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2599 true,
2600 (Op == OO_Exclaim ||
2601 Op == OO_AmpAmp ||
2602 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002603 }
2604
2605 bool isComparison = false;
2606 switch (Op) {
2607 case OO_None:
2608 case NUM_OVERLOADED_OPERATORS:
2609 assert(false && "Expected an overloaded operator");
2610 break;
2611
Douglas Gregor74253732008-11-19 15:42:04 +00002612 case OO_Star: // '*' is either unary or binary
2613 if (NumArgs == 1)
2614 goto UnaryStar;
2615 else
2616 goto BinaryStar;
2617 break;
2618
2619 case OO_Plus: // '+' is either unary or binary
2620 if (NumArgs == 1)
2621 goto UnaryPlus;
2622 else
2623 goto BinaryPlus;
2624 break;
2625
2626 case OO_Minus: // '-' is either unary or binary
2627 if (NumArgs == 1)
2628 goto UnaryMinus;
2629 else
2630 goto BinaryMinus;
2631 break;
2632
2633 case OO_Amp: // '&' is either unary or binary
2634 if (NumArgs == 1)
2635 goto UnaryAmp;
2636 else
2637 goto BinaryAmp;
2638
2639 case OO_PlusPlus:
2640 case OO_MinusMinus:
2641 // C++ [over.built]p3:
2642 //
2643 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2644 // is either volatile or empty, there exist candidate operator
2645 // functions of the form
2646 //
2647 // VQ T& operator++(VQ T&);
2648 // T operator++(VQ T&, int);
2649 //
2650 // C++ [over.built]p4:
2651 //
2652 // For every pair (T, VQ), where T is an arithmetic type other
2653 // than bool, and VQ is either volatile or empty, there exist
2654 // candidate operator functions of the form
2655 //
2656 // VQ T& operator--(VQ T&);
2657 // T operator--(VQ T&, int);
2658 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2659 Arith < NumArithmeticTypes; ++Arith) {
2660 QualType ArithTy = ArithmeticTypes[Arith];
2661 QualType ParamTypes[2]
2662 = { Context.getReferenceType(ArithTy), Context.IntTy };
2663
2664 // Non-volatile version.
2665 if (NumArgs == 1)
2666 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2667 else
2668 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2669
2670 // Volatile version
2671 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2672 if (NumArgs == 1)
2673 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2674 else
2675 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2676 }
2677
2678 // C++ [over.built]p5:
2679 //
2680 // For every pair (T, VQ), where T is a cv-qualified or
2681 // cv-unqualified object type, and VQ is either volatile or
2682 // empty, there exist candidate operator functions of the form
2683 //
2684 // T*VQ& operator++(T*VQ&);
2685 // T*VQ& operator--(T*VQ&);
2686 // T* operator++(T*VQ&, int);
2687 // T* operator--(T*VQ&, int);
2688 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2689 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2690 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002691 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002692 continue;
2693
2694 QualType ParamTypes[2] = {
2695 Context.getReferenceType(*Ptr), Context.IntTy
2696 };
2697
2698 // Without volatile
2699 if (NumArgs == 1)
2700 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2701 else
2702 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2703
2704 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2705 // With volatile
2706 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2707 if (NumArgs == 1)
2708 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2709 else
2710 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2711 }
2712 }
2713 break;
2714
2715 UnaryStar:
2716 // C++ [over.built]p6:
2717 // For every cv-qualified or cv-unqualified object type T, there
2718 // exist candidate operator functions of the form
2719 //
2720 // T& operator*(T*);
2721 //
2722 // C++ [over.built]p7:
2723 // For every function type T, there exist candidate operator
2724 // functions of the form
2725 // T& operator*(T*);
2726 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2727 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2728 QualType ParamTy = *Ptr;
2729 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2730 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2731 &ParamTy, Args, 1, CandidateSet);
2732 }
2733 break;
2734
2735 UnaryPlus:
2736 // C++ [over.built]p8:
2737 // For every type T, there exist candidate operator functions of
2738 // the form
2739 //
2740 // T* operator+(T*);
2741 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2742 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2743 QualType ParamTy = *Ptr;
2744 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2745 }
2746
2747 // Fall through
2748
2749 UnaryMinus:
2750 // C++ [over.built]p9:
2751 // For every promoted arithmetic type T, there exist candidate
2752 // operator functions of the form
2753 //
2754 // T operator+(T);
2755 // T operator-(T);
2756 for (unsigned Arith = FirstPromotedArithmeticType;
2757 Arith < LastPromotedArithmeticType; ++Arith) {
2758 QualType ArithTy = ArithmeticTypes[Arith];
2759 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2760 }
2761 break;
2762
2763 case OO_Tilde:
2764 // C++ [over.built]p10:
2765 // For every promoted integral type T, there exist candidate
2766 // operator functions of the form
2767 //
2768 // T operator~(T);
2769 for (unsigned Int = FirstPromotedIntegralType;
2770 Int < LastPromotedIntegralType; ++Int) {
2771 QualType IntTy = ArithmeticTypes[Int];
2772 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2773 }
2774 break;
2775
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002776 case OO_New:
2777 case OO_Delete:
2778 case OO_Array_New:
2779 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002780 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002781 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002782 break;
2783
2784 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002785 UnaryAmp:
2786 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002787 // C++ [over.match.oper]p3:
2788 // -- For the operator ',', the unary operator '&', or the
2789 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002790 break;
2791
2792 case OO_Less:
2793 case OO_Greater:
2794 case OO_LessEqual:
2795 case OO_GreaterEqual:
2796 case OO_EqualEqual:
2797 case OO_ExclaimEqual:
2798 // C++ [over.built]p15:
2799 //
2800 // For every pointer or enumeration type T, there exist
2801 // candidate operator functions of the form
2802 //
2803 // bool operator<(T, T);
2804 // bool operator>(T, T);
2805 // bool operator<=(T, T);
2806 // bool operator>=(T, T);
2807 // bool operator==(T, T);
2808 // bool operator!=(T, T);
2809 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2810 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2811 QualType ParamTypes[2] = { *Ptr, *Ptr };
2812 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2813 }
2814 for (BuiltinCandidateTypeSet::iterator Enum
2815 = CandidateTypes.enumeration_begin();
2816 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2817 QualType ParamTypes[2] = { *Enum, *Enum };
2818 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2819 }
2820
2821 // Fall through.
2822 isComparison = true;
2823
Douglas Gregor74253732008-11-19 15:42:04 +00002824 BinaryPlus:
2825 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002826 if (!isComparison) {
2827 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2828
2829 // C++ [over.built]p13:
2830 //
2831 // For every cv-qualified or cv-unqualified object type T
2832 // there exist candidate operator functions of the form
2833 //
2834 // T* operator+(T*, ptrdiff_t);
2835 // T& operator[](T*, ptrdiff_t); [BELOW]
2836 // T* operator-(T*, ptrdiff_t);
2837 // T* operator+(ptrdiff_t, T*);
2838 // T& operator[](ptrdiff_t, T*); [BELOW]
2839 //
2840 // C++ [over.built]p14:
2841 //
2842 // For every T, where T is a pointer to object type, there
2843 // exist candidate operator functions of the form
2844 //
2845 // ptrdiff_t operator-(T, T);
2846 for (BuiltinCandidateTypeSet::iterator Ptr
2847 = CandidateTypes.pointer_begin();
2848 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2849 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2850
2851 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2852 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2853
2854 if (Op == OO_Plus) {
2855 // T* operator+(ptrdiff_t, T*);
2856 ParamTypes[0] = ParamTypes[1];
2857 ParamTypes[1] = *Ptr;
2858 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2859 } else {
2860 // ptrdiff_t operator-(T, T);
2861 ParamTypes[1] = *Ptr;
2862 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2863 Args, 2, CandidateSet);
2864 }
2865 }
2866 }
2867 // Fall through
2868
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002869 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002870 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002871 // C++ [over.built]p12:
2872 //
2873 // For every pair of promoted arithmetic types L and R, there
2874 // exist candidate operator functions of the form
2875 //
2876 // LR operator*(L, R);
2877 // LR operator/(L, R);
2878 // LR operator+(L, R);
2879 // LR operator-(L, R);
2880 // bool operator<(L, R);
2881 // bool operator>(L, R);
2882 // bool operator<=(L, R);
2883 // bool operator>=(L, R);
2884 // bool operator==(L, R);
2885 // bool operator!=(L, R);
2886 //
2887 // where LR is the result of the usual arithmetic conversions
2888 // between types L and R.
2889 for (unsigned Left = FirstPromotedArithmeticType;
2890 Left < LastPromotedArithmeticType; ++Left) {
2891 for (unsigned Right = FirstPromotedArithmeticType;
2892 Right < LastPromotedArithmeticType; ++Right) {
2893 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2894 QualType Result
2895 = isComparison? Context.BoolTy
2896 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2897 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2898 }
2899 }
2900 break;
2901
2902 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002903 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002904 case OO_Caret:
2905 case OO_Pipe:
2906 case OO_LessLess:
2907 case OO_GreaterGreater:
2908 // C++ [over.built]p17:
2909 //
2910 // For every pair of promoted integral types L and R, there
2911 // exist candidate operator functions of the form
2912 //
2913 // LR operator%(L, R);
2914 // LR operator&(L, R);
2915 // LR operator^(L, R);
2916 // LR operator|(L, R);
2917 // L operator<<(L, R);
2918 // L operator>>(L, R);
2919 //
2920 // where LR is the result of the usual arithmetic conversions
2921 // between types L and R.
2922 for (unsigned Left = FirstPromotedIntegralType;
2923 Left < LastPromotedIntegralType; ++Left) {
2924 for (unsigned Right = FirstPromotedIntegralType;
2925 Right < LastPromotedIntegralType; ++Right) {
2926 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2927 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2928 ? LandR[0]
2929 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2930 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2931 }
2932 }
2933 break;
2934
2935 case OO_Equal:
2936 // C++ [over.built]p20:
2937 //
2938 // For every pair (T, VQ), where T is an enumeration or
2939 // (FIXME:) pointer to member type and VQ is either volatile or
2940 // empty, there exist candidate operator functions of the form
2941 //
2942 // VQ T& operator=(VQ T&, T);
2943 for (BuiltinCandidateTypeSet::iterator Enum
2944 = CandidateTypes.enumeration_begin();
2945 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2946 QualType ParamTypes[2];
2947
2948 // T& operator=(T&, T)
2949 ParamTypes[0] = Context.getReferenceType(*Enum);
2950 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002951 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002952 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002953
Douglas Gregor74253732008-11-19 15:42:04 +00002954 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2955 // volatile T& operator=(volatile T&, T)
2956 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2957 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002958 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002959 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00002960 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002961 }
2962 // Fall through.
2963
2964 case OO_PlusEqual:
2965 case OO_MinusEqual:
2966 // C++ [over.built]p19:
2967 //
2968 // For every pair (T, VQ), where T is any type and VQ is either
2969 // volatile or empty, there exist candidate operator functions
2970 // of the form
2971 //
2972 // T*VQ& operator=(T*VQ&, T*);
2973 //
2974 // C++ [over.built]p21:
2975 //
2976 // For every pair (T, VQ), where T is a cv-qualified or
2977 // cv-unqualified object type and VQ is either volatile or
2978 // empty, there exist candidate operator functions of the form
2979 //
2980 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2981 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2982 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2983 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2984 QualType ParamTypes[2];
2985 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2986
2987 // non-volatile version
2988 ParamTypes[0] = Context.getReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002989 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2990 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002991
Douglas Gregor74253732008-11-19 15:42:04 +00002992 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2993 // volatile version
2994 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002995 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2996 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00002997 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002998 }
2999 // Fall through.
3000
3001 case OO_StarEqual:
3002 case OO_SlashEqual:
3003 // C++ [over.built]p18:
3004 //
3005 // For every triple (L, VQ, R), where L is an arithmetic type,
3006 // VQ is either volatile or empty, and R is a promoted
3007 // arithmetic type, there exist candidate operator functions of
3008 // the form
3009 //
3010 // VQ L& operator=(VQ L&, R);
3011 // VQ L& operator*=(VQ L&, R);
3012 // VQ L& operator/=(VQ L&, R);
3013 // VQ L& operator+=(VQ L&, R);
3014 // VQ L& operator-=(VQ L&, R);
3015 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3016 for (unsigned Right = FirstPromotedArithmeticType;
3017 Right < LastPromotedArithmeticType; ++Right) {
3018 QualType ParamTypes[2];
3019 ParamTypes[1] = ArithmeticTypes[Right];
3020
3021 // Add this built-in operator as a candidate (VQ is empty).
3022 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003023 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3024 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003025
3026 // Add this built-in operator as a candidate (VQ is 'volatile').
3027 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3028 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003029 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3030 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003031 }
3032 }
3033 break;
3034
3035 case OO_PercentEqual:
3036 case OO_LessLessEqual:
3037 case OO_GreaterGreaterEqual:
3038 case OO_AmpEqual:
3039 case OO_CaretEqual:
3040 case OO_PipeEqual:
3041 // C++ [over.built]p22:
3042 //
3043 // For every triple (L, VQ, R), where L is an integral type, VQ
3044 // is either volatile or empty, and R is a promoted integral
3045 // type, there exist candidate operator functions of the form
3046 //
3047 // VQ L& operator%=(VQ L&, R);
3048 // VQ L& operator<<=(VQ L&, R);
3049 // VQ L& operator>>=(VQ L&, R);
3050 // VQ L& operator&=(VQ L&, R);
3051 // VQ L& operator^=(VQ L&, R);
3052 // VQ L& operator|=(VQ L&, R);
3053 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3054 for (unsigned Right = FirstPromotedIntegralType;
3055 Right < LastPromotedIntegralType; ++Right) {
3056 QualType ParamTypes[2];
3057 ParamTypes[1] = ArithmeticTypes[Right];
3058
3059 // Add this built-in operator as a candidate (VQ is empty).
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003060 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3061 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3062
3063 // Add this built-in operator as a candidate (VQ is 'volatile').
3064 ParamTypes[0] = ArithmeticTypes[Left];
3065 ParamTypes[0].addVolatile();
3066 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3067 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3068 }
3069 }
3070 break;
3071
Douglas Gregor74253732008-11-19 15:42:04 +00003072 case OO_Exclaim: {
3073 // C++ [over.operator]p23:
3074 //
3075 // There also exist candidate operator functions of the form
3076 //
3077 // bool operator!(bool);
3078 // bool operator&&(bool, bool); [BELOW]
3079 // bool operator||(bool, bool); [BELOW]
3080 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003081 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3082 /*IsAssignmentOperator=*/false,
3083 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003084 break;
3085 }
3086
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003087 case OO_AmpAmp:
3088 case OO_PipePipe: {
3089 // C++ [over.operator]p23:
3090 //
3091 // There also exist candidate operator functions of the form
3092 //
Douglas Gregor74253732008-11-19 15:42:04 +00003093 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003094 // bool operator&&(bool, bool);
3095 // bool operator||(bool, bool);
3096 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003097 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3098 /*IsAssignmentOperator=*/false,
3099 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003100 break;
3101 }
3102
3103 case OO_Subscript:
3104 // C++ [over.built]p13:
3105 //
3106 // For every cv-qualified or cv-unqualified object type T there
3107 // exist candidate operator functions of the form
3108 //
3109 // T* operator+(T*, ptrdiff_t); [ABOVE]
3110 // T& operator[](T*, ptrdiff_t);
3111 // T* operator-(T*, ptrdiff_t); [ABOVE]
3112 // T* operator+(ptrdiff_t, T*); [ABOVE]
3113 // T& operator[](ptrdiff_t, T*);
3114 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3115 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3116 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3117 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3118 QualType ResultTy = Context.getReferenceType(PointeeType);
3119
3120 // T& operator[](T*, ptrdiff_t)
3121 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3122
3123 // T& operator[](ptrdiff_t, T*);
3124 ParamTypes[0] = ParamTypes[1];
3125 ParamTypes[1] = *Ptr;
3126 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3127 }
3128 break;
3129
3130 case OO_ArrowStar:
3131 // FIXME: No support for pointer-to-members yet.
3132 break;
3133 }
3134}
3135
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003136/// AddOverloadCandidates - Add all of the function overloads in Ovl
3137/// to the candidate set.
3138void
Douglas Gregor18fe5682008-11-03 20:45:27 +00003139Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003140 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00003141 OverloadCandidateSet& CandidateSet,
3142 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003143{
Douglas Gregor18fe5682008-11-03 20:45:27 +00003144 for (OverloadedFunctionDecl::function_const_iterator Func
3145 = Ovl->function_begin();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003146 Func != Ovl->function_end(); ++Func)
Douglas Gregor225c41e2008-11-03 19:09:14 +00003147 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
3148 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003149}
3150
3151/// isBetterOverloadCandidate - Determines whether the first overload
3152/// candidate is a better candidate than the second (C++ 13.3.3p1).
3153bool
3154Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3155 const OverloadCandidate& Cand2)
3156{
3157 // Define viable functions to be better candidates than non-viable
3158 // functions.
3159 if (!Cand2.Viable)
3160 return Cand1.Viable;
3161 else if (!Cand1.Viable)
3162 return false;
3163
Douglas Gregor88a35142008-12-22 05:46:06 +00003164 // C++ [over.match.best]p1:
3165 //
3166 // -- if F is a static member function, ICS1(F) is defined such
3167 // that ICS1(F) is neither better nor worse than ICS1(G) for
3168 // any function G, and, symmetrically, ICS1(G) is neither
3169 // better nor worse than ICS1(F).
3170 unsigned StartArg = 0;
3171 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3172 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003173
3174 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3175 // function than another viable function F2 if for all arguments i,
3176 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3177 // then...
3178 unsigned NumArgs = Cand1.Conversions.size();
3179 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3180 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003181 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003182 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3183 Cand2.Conversions[ArgIdx])) {
3184 case ImplicitConversionSequence::Better:
3185 // Cand1 has a better conversion sequence.
3186 HasBetterConversion = true;
3187 break;
3188
3189 case ImplicitConversionSequence::Worse:
3190 // Cand1 can't be better than Cand2.
3191 return false;
3192
3193 case ImplicitConversionSequence::Indistinguishable:
3194 // Do nothing.
3195 break;
3196 }
3197 }
3198
3199 if (HasBetterConversion)
3200 return true;
3201
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003202 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3203 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003204
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003205 // C++ [over.match.best]p1b4:
3206 //
3207 // -- the context is an initialization by user-defined conversion
3208 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3209 // from the return type of F1 to the destination type (i.e.,
3210 // the type of the entity being initialized) is a better
3211 // conversion sequence than the standard conversion sequence
3212 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003213 if (Cand1.Function && Cand2.Function &&
3214 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003215 isa<CXXConversionDecl>(Cand2.Function)) {
3216 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3217 Cand2.FinalConversion)) {
3218 case ImplicitConversionSequence::Better:
3219 // Cand1 has a better conversion sequence.
3220 return true;
3221
3222 case ImplicitConversionSequence::Worse:
3223 // Cand1 can't be better than Cand2.
3224 return false;
3225
3226 case ImplicitConversionSequence::Indistinguishable:
3227 // Do nothing
3228 break;
3229 }
3230 }
3231
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003232 return false;
3233}
3234
3235/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3236/// within an overload candidate set. If overloading is successful,
3237/// the result will be OR_Success and Best will be set to point to the
3238/// best viable function within the candidate set. Otherwise, one of
3239/// several kinds of errors will be returned; see
3240/// Sema::OverloadingResult.
3241Sema::OverloadingResult
3242Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3243 OverloadCandidateSet::iterator& Best)
3244{
3245 // Find the best viable function.
3246 Best = CandidateSet.end();
3247 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3248 Cand != CandidateSet.end(); ++Cand) {
3249 if (Cand->Viable) {
3250 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3251 Best = Cand;
3252 }
3253 }
3254
3255 // If we didn't find any viable functions, abort.
3256 if (Best == CandidateSet.end())
3257 return OR_No_Viable_Function;
3258
3259 // Make sure that this function is better than every other viable
3260 // function. If not, we have an ambiguity.
3261 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3262 Cand != CandidateSet.end(); ++Cand) {
3263 if (Cand->Viable &&
3264 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003265 !isBetterOverloadCandidate(*Best, *Cand)) {
3266 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003267 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003268 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003269 }
3270
3271 // Best is the best viable function.
3272 return OR_Success;
3273}
3274
3275/// PrintOverloadCandidates - When overload resolution fails, prints
3276/// diagnostic messages containing the candidates in the candidate
3277/// set. If OnlyViable is true, only viable candidates will be printed.
3278void
3279Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3280 bool OnlyViable)
3281{
3282 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3283 LastCand = CandidateSet.end();
3284 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003285 if (Cand->Viable || !OnlyViable) {
3286 if (Cand->Function) {
3287 // Normal function
3288 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003289 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003290 // Desugar the type of the surrogate down to a function type,
3291 // retaining as many typedefs as possible while still showing
3292 // the function type (and, therefore, its parameter types).
3293 QualType FnType = Cand->Surrogate->getConversionType();
3294 bool isReference = false;
3295 bool isPointer = false;
3296 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3297 FnType = FnTypeRef->getPointeeType();
3298 isReference = true;
3299 }
3300 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3301 FnType = FnTypePtr->getPointeeType();
3302 isPointer = true;
3303 }
3304 // Desugar down to a function type.
3305 FnType = QualType(FnType->getAsFunctionType(), 0);
3306 // Reconstruct the pointer/reference as appropriate.
3307 if (isPointer) FnType = Context.getPointerType(FnType);
3308 if (isReference) FnType = Context.getReferenceType(FnType);
3309
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003310 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003311 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003312 } else {
3313 // FIXME: We need to get the identifier in here
3314 // FIXME: Do we want the error message to point at the
3315 // operator? (built-ins won't have a location)
3316 QualType FnType
3317 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3318 Cand->BuiltinTypes.ParamTypes,
3319 Cand->Conversions.size(),
3320 false, 0);
3321
Chris Lattnerd1625842008-11-24 06:25:27 +00003322 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003323 }
3324 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003325 }
3326}
3327
Douglas Gregor904eed32008-11-10 20:40:00 +00003328/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3329/// an overloaded function (C++ [over.over]), where @p From is an
3330/// expression with overloaded function type and @p ToType is the type
3331/// we're trying to resolve to. For example:
3332///
3333/// @code
3334/// int f(double);
3335/// int f(int);
3336///
3337/// int (*pfd)(double) = f; // selects f(double)
3338/// @endcode
3339///
3340/// This routine returns the resulting FunctionDecl if it could be
3341/// resolved, and NULL otherwise. When @p Complain is true, this
3342/// routine will emit diagnostics if there is an error.
3343FunctionDecl *
3344Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3345 bool Complain) {
3346 QualType FunctionType = ToType;
3347 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3348 FunctionType = ToTypePtr->getPointeeType();
3349
3350 // We only look at pointers or references to functions.
3351 if (!FunctionType->isFunctionType())
3352 return 0;
3353
3354 // Find the actual overloaded function declaration.
3355 OverloadedFunctionDecl *Ovl = 0;
3356
3357 // C++ [over.over]p1:
3358 // [...] [Note: any redundant set of parentheses surrounding the
3359 // overloaded function name is ignored (5.1). ]
3360 Expr *OvlExpr = From->IgnoreParens();
3361
3362 // C++ [over.over]p1:
3363 // [...] The overloaded function name can be preceded by the &
3364 // operator.
3365 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3366 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3367 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3368 }
3369
3370 // Try to dig out the overloaded function.
3371 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3372 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3373
3374 // If there's no overloaded function declaration, we're done.
3375 if (!Ovl)
3376 return 0;
3377
3378 // Look through all of the overloaded functions, searching for one
3379 // whose type matches exactly.
3380 // FIXME: When templates or using declarations come along, we'll actually
3381 // have to deal with duplicates, partial ordering, etc. For now, we
3382 // can just do a simple search.
3383 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3384 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3385 Fun != Ovl->function_end(); ++Fun) {
3386 // C++ [over.over]p3:
3387 // Non-member functions and static member functions match
3388 // targets of type “pointer-to-function”or
3389 // “reference-to-function.”
3390 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3391 if (!Method->isStatic())
3392 continue;
3393
3394 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3395 return *Fun;
3396 }
3397
3398 return 0;
3399}
3400
Douglas Gregorf6b89692008-11-26 05:54:23 +00003401/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3402/// (which eventually refers to the set of overloaded functions in
3403/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3404/// function call down to a specific function. If overload resolution
Douglas Gregor0a396682008-11-26 06:01:48 +00003405/// succeeds, returns the function declaration produced by overload
3406/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003407/// arguments and Fn, and returns NULL.
Douglas Gregor0a396682008-11-26 06:01:48 +00003408FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3409 SourceLocation LParenLoc,
3410 Expr **Args, unsigned NumArgs,
3411 SourceLocation *CommaLocs,
3412 SourceLocation RParenLoc) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003413 OverloadCandidateSet CandidateSet;
3414 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3415 OverloadCandidateSet::iterator Best;
3416 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003417 case OR_Success:
3418 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003419
3420 case OR_No_Viable_Function:
3421 Diag(Fn->getSourceRange().getBegin(),
3422 diag::err_ovl_no_viable_function_in_call)
3423 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3424 << Fn->getSourceRange();
3425 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3426 break;
3427
3428 case OR_Ambiguous:
3429 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3430 << Ovl->getDeclName() << Fn->getSourceRange();
3431 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3432 break;
3433 }
3434
3435 // Overload resolution failed. Destroy all of the subexpressions and
3436 // return NULL.
3437 Fn->Destroy(Context);
3438 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3439 Args[Arg]->Destroy(Context);
3440 return 0;
3441}
3442
Douglas Gregor88a35142008-12-22 05:46:06 +00003443/// BuildCallToMemberFunction - Build a call to a member
3444/// function. MemExpr is the expression that refers to the member
3445/// function (and includes the object parameter), Args/NumArgs are the
3446/// arguments to the function call (not including the object
3447/// parameter). The caller needs to validate that the member
3448/// expression refers to a member function or an overloaded member
3449/// function.
3450Sema::ExprResult
3451Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3452 SourceLocation LParenLoc, Expr **Args,
3453 unsigned NumArgs, SourceLocation *CommaLocs,
3454 SourceLocation RParenLoc) {
3455 // Dig out the member expression. This holds both the object
3456 // argument and the member function we're referring to.
3457 MemberExpr *MemExpr = 0;
3458 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3459 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3460 else
3461 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3462 assert(MemExpr && "Building member call without member expression");
3463
3464 // Extract the object argument.
3465 Expr *ObjectArg = MemExpr->getBase();
3466 if (MemExpr->isArrow())
3467 ObjectArg = new UnaryOperator(ObjectArg, UnaryOperator::Deref,
3468 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
3469 SourceLocation());
3470 CXXMethodDecl *Method = 0;
3471 if (OverloadedFunctionDecl *Ovl
3472 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3473 // Add overload candidates
3474 OverloadCandidateSet CandidateSet;
3475 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3476 FuncEnd = Ovl->function_end();
3477 Func != FuncEnd; ++Func) {
3478 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3479 Method = cast<CXXMethodDecl>(*Func);
3480 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3481 /*SuppressUserConversions=*/false);
3482 }
3483
3484 OverloadCandidateSet::iterator Best;
3485 switch (BestViableFunction(CandidateSet, Best)) {
3486 case OR_Success:
3487 Method = cast<CXXMethodDecl>(Best->Function);
3488 break;
3489
3490 case OR_No_Viable_Function:
3491 Diag(MemExpr->getSourceRange().getBegin(),
3492 diag::err_ovl_no_viable_member_function_in_call)
3493 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3494 << MemExprE->getSourceRange();
3495 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3496 // FIXME: Leaking incoming expressions!
3497 return true;
3498
3499 case OR_Ambiguous:
3500 Diag(MemExpr->getSourceRange().getBegin(),
3501 diag::err_ovl_ambiguous_member_call)
3502 << Ovl->getDeclName() << MemExprE->getSourceRange();
3503 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3504 // FIXME: Leaking incoming expressions!
3505 return true;
3506 }
3507
3508 FixOverloadedFunctionReference(MemExpr, Method);
3509 } else {
3510 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3511 }
3512
3513 assert(Method && "Member call to something that isn't a method?");
3514 llvm::OwningPtr<CXXMemberCallExpr>
3515 TheCall(new CXXMemberCallExpr(MemExpr, Args, NumArgs,
3516 Method->getResultType().getNonReferenceType(),
3517 RParenLoc));
3518
3519 // Convert the object argument (for a non-static member function call).
3520 if (!Method->isStatic() &&
3521 PerformObjectArgumentInitialization(ObjectArg, Method))
3522 return true;
3523 MemExpr->setBase(ObjectArg);
3524
3525 // Convert the rest of the arguments
3526 const FunctionTypeProto *Proto = cast<FunctionTypeProto>(Method->getType());
3527 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
3528 RParenLoc))
3529 return true;
3530
Sebastian Redl0eb23302009-01-19 00:08:26 +00003531 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00003532}
3533
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003534/// BuildCallToObjectOfClassType - Build a call to an object of class
3535/// type (C++ [over.call.object]), which can end up invoking an
3536/// overloaded function call operator (@c operator()) or performing a
3537/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00003538Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003539Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3540 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003541 Expr **Args, unsigned NumArgs,
3542 SourceLocation *CommaLocs,
3543 SourceLocation RParenLoc) {
3544 assert(Object->getType()->isRecordType() && "Requires object type argument");
3545 const RecordType *Record = Object->getType()->getAsRecordType();
3546
3547 // C++ [over.call.object]p1:
3548 // If the primary-expression E in the function call syntax
3549 // evaluates to a class object of type “cv T”, then the set of
3550 // candidate functions includes at least the function call
3551 // operators of T. The function call operators of T are obtained by
3552 // ordinary lookup of the name operator() in the context of
3553 // (E).operator().
3554 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003555 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003556 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003557 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003558 Oper != OperEnd; ++Oper)
3559 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
3560 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003561
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003562 // C++ [over.call.object]p2:
3563 // In addition, for each conversion function declared in T of the
3564 // form
3565 //
3566 // operator conversion-type-id () cv-qualifier;
3567 //
3568 // where cv-qualifier is the same cv-qualification as, or a
3569 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003570 // denotes the type "pointer to function of (P1,...,Pn) returning
3571 // R", or the type "reference to pointer to function of
3572 // (P1,...,Pn) returning R", or the type "reference to function
3573 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003574 // is also considered as a candidate function. Similarly,
3575 // surrogate call functions are added to the set of candidate
3576 // functions for each conversion function declared in an
3577 // accessible base class provided the function is not hidden
3578 // within T by another intervening declaration.
3579 //
3580 // FIXME: Look in base classes for more conversion operators!
3581 OverloadedFunctionDecl *Conversions
3582 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003583 for (OverloadedFunctionDecl::function_iterator
3584 Func = Conversions->function_begin(),
3585 FuncEnd = Conversions->function_end();
3586 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003587 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3588
3589 // Strip the reference type (if any) and then the pointer type (if
3590 // any) to get down to what might be a function type.
3591 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3592 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3593 ConvType = ConvPtrType->getPointeeType();
3594
3595 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3596 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3597 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003598
3599 // Perform overload resolution.
3600 OverloadCandidateSet::iterator Best;
3601 switch (BestViableFunction(CandidateSet, Best)) {
3602 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003603 // Overload resolution succeeded; we'll build the appropriate call
3604 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003605 break;
3606
3607 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003608 Diag(Object->getSourceRange().getBegin(),
3609 diag::err_ovl_no_viable_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003610 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redle4c452c2008-11-22 13:44:36 +00003611 << Object->getSourceRange();
3612 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003613 break;
3614
3615 case OR_Ambiguous:
3616 Diag(Object->getSourceRange().getBegin(),
3617 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003618 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003619 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3620 break;
3621 }
3622
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003623 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003624 // We had an error; delete all of the subexpressions and return
3625 // the error.
3626 delete Object;
3627 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3628 delete Args[ArgIdx];
3629 return true;
3630 }
3631
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003632 if (Best->Function == 0) {
3633 // Since there is no function declaration, this is one of the
3634 // surrogate candidates. Dig out the conversion function.
3635 CXXConversionDecl *Conv
3636 = cast<CXXConversionDecl>(
3637 Best->Conversions[0].UserDefined.ConversionFunction);
3638
3639 // We selected one of the surrogate functions that converts the
3640 // object parameter to a function pointer. Perform the conversion
3641 // on the object argument, then let ActOnCallExpr finish the job.
3642 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00003643 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003644 Conv->getConversionType().getNonReferenceType(),
3645 Conv->getConversionType()->isReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00003646 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
3647 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
3648 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003649 }
3650
3651 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3652 // that calls this method, using Object for the implicit object
3653 // parameter and passing along the remaining arguments.
3654 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003655 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3656
3657 unsigned NumArgsInProto = Proto->getNumArgs();
3658 unsigned NumArgsToCheck = NumArgs;
3659
3660 // Build the full argument list for the method call (the
3661 // implicit object parameter is placed at the beginning of the
3662 // list).
3663 Expr **MethodArgs;
3664 if (NumArgs < NumArgsInProto) {
3665 NumArgsToCheck = NumArgsInProto;
3666 MethodArgs = new Expr*[NumArgsInProto + 1];
3667 } else {
3668 MethodArgs = new Expr*[NumArgs + 1];
3669 }
3670 MethodArgs[0] = Object;
3671 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3672 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3673
3674 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3675 SourceLocation());
3676 UsualUnaryConversions(NewFn);
3677
3678 // Once we've built TheCall, all of the expressions are properly
3679 // owned.
3680 QualType ResultTy = Method->getResultType().getNonReferenceType();
3681 llvm::OwningPtr<CXXOperatorCallExpr>
3682 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3683 ResultTy, RParenLoc));
3684 delete [] MethodArgs;
3685
Douglas Gregor518fda12009-01-13 05:10:00 +00003686 // We may have default arguments. If so, we need to allocate more
3687 // slots in the call for them.
3688 if (NumArgs < NumArgsInProto)
3689 TheCall->setNumArgs(NumArgsInProto + 1);
3690 else if (NumArgs > NumArgsInProto)
3691 NumArgsToCheck = NumArgsInProto;
3692
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003693 // Initialize the implicit object parameter.
Douglas Gregor518fda12009-01-13 05:10:00 +00003694 if (PerformObjectArgumentInitialization(Object, Method))
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003695 return true;
3696 TheCall->setArg(0, Object);
3697
3698 // Check the argument types.
3699 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003700 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00003701 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003702 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00003703
3704 // Pass the argument.
3705 QualType ProtoArgType = Proto->getArgType(i);
3706 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3707 return true;
3708 } else {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003709 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00003710 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003711
3712 TheCall->setArg(i + 1, Arg);
3713 }
3714
3715 // If this is a variadic call, handle args passed through "...".
3716 if (Proto->isVariadic()) {
3717 // Promote the arguments (C99 6.5.2.2p7).
3718 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3719 Expr *Arg = Args[i];
Anders Carlsson906fed02009-01-13 05:48:52 +00003720
Anders Carlssondce5e2c2009-01-16 16:48:51 +00003721 DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003722 TheCall->setArg(i + 1, Arg);
3723 }
3724 }
3725
Sebastian Redl0eb23302009-01-19 00:08:26 +00003726 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003727}
3728
Douglas Gregor8ba10742008-11-20 16:27:02 +00003729/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3730/// (if one exists), where @c Base is an expression of class type and
3731/// @c Member is the name of the member we're trying to find.
3732Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003733Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003734 SourceLocation MemberLoc,
3735 IdentifierInfo &Member) {
3736 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3737
3738 // C++ [over.ref]p1:
3739 //
3740 // [...] An expression x->m is interpreted as (x.operator->())->m
3741 // for a class object x of type T if T::operator->() exists and if
3742 // the operator is selected as the best match function by the
3743 // overload resolution mechanism (13.3).
3744 // FIXME: look in base classes.
3745 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3746 OverloadCandidateSet CandidateSet;
3747 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003748
3749 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003750 for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003751 Oper != OperEnd; ++Oper)
3752 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003753 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003754
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003755 llvm::OwningPtr<Expr> BasePtr(Base);
3756
Douglas Gregor8ba10742008-11-20 16:27:02 +00003757 // Perform overload resolution.
3758 OverloadCandidateSet::iterator Best;
3759 switch (BestViableFunction(CandidateSet, Best)) {
3760 case OR_Success:
3761 // Overload resolution succeeded; we'll build the call below.
3762 break;
3763
3764 case OR_No_Viable_Function:
3765 if (CandidateSet.empty())
3766 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003767 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003768 else
3769 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redle4c452c2008-11-22 13:44:36 +00003770 << "operator->" << (unsigned)CandidateSet.size()
3771 << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003772 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003773 return true;
3774
3775 case OR_Ambiguous:
3776 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003777 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003778 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003779 return true;
3780 }
3781
3782 // Convert the object parameter.
3783 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003784 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003785 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003786
3787 // No concerns about early exits now.
3788 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003789
3790 // Build the operator call.
3791 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3792 UsualUnaryConversions(FnExpr);
3793 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3794 Method->getResultType().getNonReferenceType(),
3795 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00003796 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
3797 MemberLoc, Member).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003798}
3799
Douglas Gregor904eed32008-11-10 20:40:00 +00003800/// FixOverloadedFunctionReference - E is an expression that refers to
3801/// a C++ overloaded function (possibly with some parentheses and
3802/// perhaps a '&' around it). We have resolved the overloaded function
3803/// to the function declaration Fn, so patch up the expression E to
3804/// refer (possibly indirectly) to Fn.
3805void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3806 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3807 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3808 E->setType(PE->getSubExpr()->getType());
3809 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3810 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3811 "Can only take the address of an overloaded function");
3812 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3813 E->setType(Context.getPointerType(E->getType()));
3814 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3815 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3816 "Expected overloaded function");
3817 DR->setDecl(Fn);
3818 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00003819 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
3820 MemExpr->setMemberDecl(Fn);
3821 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00003822 } else {
3823 assert(false && "Invalid reference to overloaded function");
3824 }
3825}
3826
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003827} // end namespace clang