blob: 87450909b6c68a387f9254331beab2fa200c2dce [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattner986618e2004-02-22 19:47:26 +000031#include "Support/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
50 switch (Ty->getPrimitiveID()) {
51 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000077 struct ISel : public FunctionPass, InstVisitor<ISel> {
78 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnercb2fd552004-05-13 07:40:27 +000089 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
Chris Lattnerf70e0c22003-12-28 21:23:38 +000093 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000094
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
97 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000099 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
102
Chris Lattner36b36032002-10-29 23:40:58 +0000103 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
108
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000109 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000110
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
114
Chris Lattnerdbd73722003-05-06 21:32:22 +0000115 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000116 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000117
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000119 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000120
121 // Select the PHI nodes
122 SelectPHINodes();
123
Chris Lattner986618e2004-02-22 19:47:26 +0000124 // Insert the FP_REG_KILL instructions into blocks that need them.
125 InsertFPRegKills();
126
Chris Lattner72614082002-10-25 22:55:53 +0000127 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000128 MBBMap.clear();
Chris Lattnercb2fd552004-05-13 07:40:27 +0000129 AllocaMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000130 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000131 // We always build a machine code representation for the function
132 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000133 }
134
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
137 }
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000143 ///
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000145 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000146 }
147
Chris Lattner44827152003-12-28 09:47:19 +0000148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000151 ///
Chris Lattner44827152003-12-28 09:47:19 +0000152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
153
Chris Lattner065faeb2002-12-28 20:24:02 +0000154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
156 ///
157 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000158
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
162 ///
163 void SelectPHINodes();
164
Chris Lattner986618e2004-02-22 19:47:26 +0000165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
168 ///
169 void InsertFPRegKills();
170
Chris Lattner72614082002-10-25 22:55:53 +0000171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
173 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000174
175 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000176 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000177 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000178
179 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000180 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000181 unsigned Reg;
182 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000183 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
184 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000185 };
186 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000187 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000188 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000189 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000190
191 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000192 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000193 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
194 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000195 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000196
Chris Lattnerf01729e2002-11-02 20:54:46 +0000197 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
198 void visitRem(BinaryOperator &B) { visitDivRem(B); }
199 void visitDivRem(BinaryOperator &B);
200
Chris Lattnere2954c82002-11-02 20:04:26 +0000201 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000202 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
203 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
204 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000205
Chris Lattner6d40c192003-01-16 16:43:00 +0000206 // Comparison operators...
207 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000208 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
209 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000210 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000211 void visitSelectInst(SelectInst &SI);
212
Chris Lattnerb2acc512003-10-19 21:09:10 +0000213
Chris Lattner6fc3c522002-11-17 21:11:55 +0000214 // Memory Instructions
215 void visitLoadInst(LoadInst &I);
216 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000217 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000218 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000219 void visitMallocInst(MallocInst &I);
220 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000221
Chris Lattnere2954c82002-11-02 20:04:26 +0000222 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000223 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000224 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000225 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000226 void visitVANextInst(VANextInst &I);
227 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000228
229 void visitInstruction(Instruction &I) {
230 std::cerr << "Cannot instruction select: " << I;
231 abort();
232 }
233
Brian Gaeke95780cc2002-12-13 07:56:18 +0000234 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000235 ///
236 void promote32(unsigned targetReg, const ValueRecord &VR);
237
Chris Lattner721d2d42004-03-08 01:18:36 +0000238 /// getAddressingMode - Get the addressing mode to use to address the
239 /// specified value. The returned value should be used with addFullAddress.
240 void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
241 unsigned &IndexReg, unsigned &Disp);
242
243
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
245 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
248 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
249 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
250
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
255 User::op_iterator IdxEnd, unsigned &BaseReg,
256 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
257
Chris Lattner3e130a22003-01-13 00:32:26 +0000258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000262 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000263 User::op_iterator IdxEnd, unsigned TargetReg);
264
Chris Lattner548f61d2003-04-23 17:22:12 +0000265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000267 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000273 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000275 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
Chris Lattner6621ed92004-04-11 21:23:56 +0000279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
Chris Lattner462fa822004-04-11 20:56:28 +0000286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
296
Chris Lattnercadff442003-10-23 17:21:43 +0000297 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000298 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000299 Value *Op0, Value *Op1, bool isDiv,
300 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000301
Chris Lattner58c41fe2003-08-24 19:19:47 +0000302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000304 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000305 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000306 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000307 Value *Op0, Value *Op1, unsigned Opcode,
308 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000309
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000312 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000313 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000314 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
317
Chris Lattner12d96a02004-03-30 21:22:00 +0000318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
323 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000324
Chris Lattnerc5291f52002-10-27 21:16:59 +0000325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
327 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000328 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000329 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000330 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000331
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000332 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
333 unsigned LHS, unsigned RHS);
334
Chris Lattner3e130a22003-01-13 00:32:26 +0000335 /// makeAnotherReg - This method returns the next register number we haven't
336 /// yet used.
337 ///
338 /// Long values are handled somewhat specially. They are always allocated
339 /// as pairs of 32 bit integer values. The register number returned is the
340 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
341 /// of the long value.
342 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000343 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000344 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
345 "Current target doesn't have X86 reg info??");
346 const X86RegisterInfo *MRI =
347 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000348 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000349 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
350 // Create the lower part
351 F->getSSARegMap()->createVirtualRegister(RC);
352 // Create the upper part.
353 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000354 }
355
Chris Lattnerc0812d82002-12-13 06:56:29 +0000356 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000357 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000358 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000359 }
360
Chris Lattnercb2fd552004-05-13 07:40:27 +0000361 /// getReg - This method turns an LLVM value into a register number.
Chris Lattner72614082002-10-25 22:55:53 +0000362 ///
363 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000364 unsigned getReg(Value *V) {
365 // Just append to the end of the current bb.
366 MachineBasicBlock::iterator It = BB->end();
367 return getReg(V, BB, It);
368 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000369 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnercb2fd552004-05-13 07:40:27 +0000370 MachineBasicBlock::iterator IPt);
Chris Lattner427aeb42004-04-11 19:21:59 +0000371
Chris Lattnercb2fd552004-05-13 07:40:27 +0000372 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
373 /// that is to be statically allocated with the initial stack frame
374 /// adjustment.
375 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
Chris Lattner72614082002-10-25 22:55:53 +0000376 };
377}
378
Chris Lattnercb2fd552004-05-13 07:40:27 +0000379/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
380/// instruction in the entry block, return it. Otherwise, return a null
381/// pointer.
382static AllocaInst *dyn_castFixedAlloca(Value *V) {
383 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
384 BasicBlock *BB = AI->getParent();
385 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
386 return AI;
387 }
388 return 0;
389}
390
391/// getReg - This method turns an LLVM value into a register number.
392///
393unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
394 MachineBasicBlock::iterator IPt) {
395 // If this operand is a constant, emit the code to copy the constant into
396 // the register here...
397 //
398 if (Constant *C = dyn_cast<Constant>(V)) {
399 unsigned Reg = makeAnotherReg(V->getType());
400 copyConstantToRegister(MBB, IPt, C, Reg);
401 return Reg;
402 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
403 unsigned Reg = makeAnotherReg(V->getType());
404 // Move the address of the global into the register
405 BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
406 return Reg;
407 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
408 // Do not emit noop casts at all.
409 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
410 return getReg(CI->getOperand(0), MBB, IPt);
411 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
412 // If the alloca address couldn't be folded into the instruction addressing,
413 // emit an explicit LEA as appropriate.
414 unsigned Reg = makeAnotherReg(V->getType());
415 unsigned FI = getFixedSizedAllocaFI(AI);
416 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
417 return Reg;
418 }
419
420 unsigned &Reg = RegMap[V];
421 if (Reg == 0) {
422 Reg = makeAnotherReg(V->getType());
423 RegMap[V] = Reg;
424 }
425
426 return Reg;
427}
428
429/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
430/// that is to be statically allocated with the initial stack frame
431/// adjustment.
432unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
433 // Already computed this?
434 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
435 if (I != AllocaMap.end() && I->first == AI) return I->second;
436
437 const Type *Ty = AI->getAllocatedType();
438 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
439 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
440 TySize *= CUI->getValue(); // Get total allocated size...
441 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
442
443 // Create a new stack object using the frame manager...
444 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
445 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
446 return FrameIdx;
447}
448
449
Chris Lattnerc5291f52002-10-27 21:16:59 +0000450/// copyConstantToRegister - Output the instructions required to put the
451/// specified constant into the specified register.
452///
Chris Lattner8a307e82002-12-16 19:32:50 +0000453void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000454 MachineBasicBlock::iterator IP,
Chris Lattner8a307e82002-12-16 19:32:50 +0000455 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000456 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000457 unsigned Class = 0;
458 switch (CE->getOpcode()) {
459 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000460 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000461 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000462 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000463 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000464 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000465 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000466
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000467 case Instruction::Xor: ++Class; // FALL THROUGH
468 case Instruction::Or: ++Class; // FALL THROUGH
469 case Instruction::And: ++Class; // FALL THROUGH
470 case Instruction::Sub: ++Class; // FALL THROUGH
471 case Instruction::Add:
472 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
473 Class, R);
474 return;
475
Chris Lattner462fa822004-04-11 20:56:28 +0000476 case Instruction::Mul:
477 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000478 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000479
Chris Lattnercadff442003-10-23 17:21:43 +0000480 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000481 case Instruction::Rem:
482 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
483 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000484 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000485
Chris Lattner58c41fe2003-08-24 19:19:47 +0000486 case Instruction::SetNE:
487 case Instruction::SetEQ:
488 case Instruction::SetLT:
489 case Instruction::SetGT:
490 case Instruction::SetLE:
491 case Instruction::SetGE:
492 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
493 CE->getOpcode(), R);
494 return;
495
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000496 case Instruction::Shl:
497 case Instruction::Shr:
498 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000499 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
500 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000501
Chris Lattner12d96a02004-03-30 21:22:00 +0000502 case Instruction::Select:
503 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
504 CE->getOperand(2), R);
505 return;
506
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000507 default:
508 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000509 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000510 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000511 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000512
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000513 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000514 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000515
516 if (Class == cLong) {
517 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000518 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000519 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
520 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000521 return;
522 }
523
Chris Lattner94af4142002-12-25 05:13:53 +0000524 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000525
526 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000527 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000528 };
529
Chris Lattner6b993cc2002-12-15 08:02:15 +0000530 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000531 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000532 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000533 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000534 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000535 }
Chris Lattner94af4142002-12-25 05:13:53 +0000536 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000537 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000538 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000539 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000540 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000541 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000542 // Otherwise we need to spill the constant to memory...
543 MachineConstantPool *CP = F->getConstantPool();
544 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000545 const Type *Ty = CFP->getType();
546
547 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000548 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000549 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000550 }
551
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000552 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000553 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000554 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000555 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000556 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000557 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000558 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000559 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000560 }
561}
562
Chris Lattner065faeb2002-12-28 20:24:02 +0000563/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
564/// the stack into virtual registers.
565///
566void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
567 // Emit instructions to load the arguments... On entry to a function on the
568 // X86, the stack frame looks like this:
569 //
570 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000571 // [ESP + 4] -- first argument (leftmost lexically)
572 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000573 // ...
574 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000575 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000576 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000577
578 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000579 bool ArgLive = !I->use_empty();
580 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000581 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000582
Chris Lattner065faeb2002-12-28 20:24:02 +0000583 switch (getClassB(I->getType())) {
584 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000585 if (ArgLive) {
586 FI = MFI->CreateFixedObject(1, ArgOffset);
587 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
588 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000589 break;
590 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000591 if (ArgLive) {
592 FI = MFI->CreateFixedObject(2, ArgOffset);
593 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
594 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000595 break;
596 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000597 if (ArgLive) {
598 FI = MFI->CreateFixedObject(4, ArgOffset);
599 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
600 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000601 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000602 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000603 if (ArgLive) {
604 FI = MFI->CreateFixedObject(8, ArgOffset);
605 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
606 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
607 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000608 ArgOffset += 4; // longs require 4 additional bytes
609 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000610 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000611 if (ArgLive) {
612 unsigned Opcode;
613 if (I->getType() == Type::FloatTy) {
614 Opcode = X86::FLD32m;
615 FI = MFI->CreateFixedObject(4, ArgOffset);
616 } else {
617 Opcode = X86::FLD64m;
618 FI = MFI->CreateFixedObject(8, ArgOffset);
619 }
620 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000621 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000622 if (I->getType() == Type::DoubleTy)
623 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000624 break;
625 default:
626 assert(0 && "Unhandled argument type!");
627 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000628 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000629 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000630
631 // If the function takes variable number of arguments, add a frame offset for
632 // the start of the first vararg value... this is used to expand
633 // llvm.va_start.
634 if (Fn.getFunctionType()->isVarArg())
635 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000636}
637
638
Chris Lattner333b2fa2002-12-13 10:09:43 +0000639/// SelectPHINodes - Insert machine code to generate phis. This is tricky
640/// because we have to generate our sources into the source basic blocks, not
641/// the current one.
642///
643void ISel::SelectPHINodes() {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000644 const TargetInstrInfo &TII = *TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000645 const Function &LF = *F->getFunction(); // The LLVM function...
646 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
647 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000648 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000649
650 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000651 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000652 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000653 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000654
Chris Lattner333b2fa2002-12-13 10:09:43 +0000655 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000656 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000657 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
658 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000659
660 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000661 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
662 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
663 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000664
Chris Lattnera6e73f12003-05-12 14:22:21 +0000665 // PHIValues - Map of blocks to incoming virtual registers. We use this
666 // so that we only initialize one incoming value for a particular block,
667 // even if the block has multiple entries in the PHI node.
668 //
669 std::map<MachineBasicBlock*, unsigned> PHIValues;
670
Chris Lattner333b2fa2002-12-13 10:09:43 +0000671 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
672 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000673 unsigned ValReg;
674 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
675 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000676
Chris Lattnera6e73f12003-05-12 14:22:21 +0000677 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
678 // We already inserted an initialization of the register for this
679 // predecessor. Recycle it.
680 ValReg = EntryIt->second;
681
682 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000683 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000684 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000685 Value *Val = PN->getIncomingValue(i);
686
687 // If this is a constant or GlobalValue, we may have to insert code
688 // into the basic block to compute it into a virtual register.
Chris Lattnercb2fd552004-05-13 07:40:27 +0000689 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
690 isa<GlobalValue>(Val)) {
691 // Simple constants get emitted at the end of the basic block,
692 // before any terminator instructions. We "know" that the code to
693 // move a constant into a register will never clobber any flags.
694 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
Chris Lattnera81fc682003-10-19 00:26:11 +0000695 } else {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000696 // Because we don't want to clobber any values which might be in
697 // physical registers with the computation of this constant (which
698 // might be arbitrarily complex if it is a constant expression),
699 // just insert the computation at the top of the basic block.
700 MachineBasicBlock::iterator PI = PredMBB->begin();
701
702 // Skip over any PHI nodes though!
703 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
704 ++PI;
705
706 ValReg = getReg(Val, PredMBB, PI);
Chris Lattnera81fc682003-10-19 00:26:11 +0000707 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000708
709 // Remember that we inserted a value for this PHI for this predecessor
710 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
711 }
712
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000713 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000714 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000715 if (LongPhiMI) {
716 LongPhiMI->addRegOperand(ValReg+1);
717 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
718 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000719 }
Chris Lattner168aa902004-02-29 07:10:16 +0000720
721 // Now that we emitted all of the incoming values for the PHI node, make
722 // sure to reposition the InsertPoint after the PHI that we just added.
723 // This is needed because we might have inserted a constant into this
724 // block, right after the PHI's which is before the old insert point!
725 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
726 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000727 }
728 }
729}
730
Chris Lattner986618e2004-02-22 19:47:26 +0000731/// RequiresFPRegKill - The floating point stackifier pass cannot insert
732/// compensation code on critical edges. As such, it requires that we kill all
733/// FP registers on the exit from any blocks that either ARE critical edges, or
734/// branch to a block that has incoming critical edges.
735///
736/// Note that this kill instruction will eventually be eliminated when
737/// restrictions in the stackifier are relaxed.
738///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000739static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000740#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000741 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000742 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
743 const BasicBlock *Succ = *SI;
744 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
745 ++PI; // Block have at least one predecessory
746 if (PI != PE) { // If it has exactly one, this isn't crit edge
747 // If this block has more than one predecessor, check all of the
748 // predecessors to see if they have multiple successors. If so, then the
749 // block we are analyzing needs an FPRegKill.
750 for (PI = pred_begin(Succ); PI != PE; ++PI) {
751 const BasicBlock *Pred = *PI;
752 succ_const_iterator SI2 = succ_begin(Pred);
753 ++SI2; // There must be at least one successor of this block.
754 if (SI2 != succ_end(Pred))
755 return true; // Yes, we must insert the kill on this edge.
756 }
757 }
758 }
759 // If we got this far, there is no need to insert the kill instruction.
760 return false;
761#else
762 return true;
763#endif
764}
765
766// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
767// need them. This only occurs due to the floating point stackifier not being
768// aggressive enough to handle arbitrary global stackification.
769//
770// Currently we insert an FP_REG_KILL instruction into each block that uses or
771// defines a floating point virtual register.
772//
773// When the global register allocators (like linear scan) finally update live
774// variable analysis, we can keep floating point values in registers across
775// portions of the CFG that do not involve critical edges. This will be a big
776// win, but we are waiting on the global allocators before we can do this.
777//
778// With a bit of work, the floating point stackifier pass can be enhanced to
779// break critical edges as needed (to make a place to put compensation code),
780// but this will require some infrastructure improvements as well.
781//
782void ISel::InsertFPRegKills() {
783 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000784
785 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000786 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000787 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
788 MachineOperand& MO = I->getOperand(i);
789 if (MO.isRegister() && MO.getReg()) {
790 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000791 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000792 if (RegMap.getRegClass(Reg)->getSize() == 10)
793 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000794 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000795 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000796 // If we haven't found an FP register use or def in this basic block, check
797 // to see if any of our successors has an FP PHI node, which will cause a
798 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000799 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
800 SE = BB->succ_end(); SI != SE; ++SI) {
801 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000802 for (MachineBasicBlock::iterator I = SBB->begin();
803 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
804 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
805 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000806 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000807 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000808 continue;
809 UsesFPReg:
810 // Okay, this block uses an FP register. If the block has successors (ie,
811 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Brian Gaeke1afe7732004-04-28 04:45:55 +0000812 if (BB->succ_size () && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000813 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000814 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000815 }
816 }
817}
818
819
Chris Lattner9f1b5312004-05-13 15:12:43 +0000820void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
821 unsigned &IndexReg, unsigned &Disp) {
822 BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
823 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
824 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
825 BaseReg, Scale, IndexReg, Disp))
826 return;
827 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
828 if (CE->getOpcode() == Instruction::GetElementPtr)
829 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
830 BaseReg, Scale, IndexReg, Disp))
831 return;
832 }
833
834 // If it's not foldable, reset addr mode.
835 BaseReg = getReg(Addr);
836 Scale = 1; IndexReg = 0; Disp = 0;
837}
838
Chris Lattner307ecba2004-03-30 22:39:09 +0000839// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
840// it into the conditional branch or select instruction which is the only user
841// of the cc instruction. This is the case if the conditional branch is the
842// only user of the setcc, and if the setcc is in the same basic block as the
843// conditional branch. We also don't handle long arguments below, so we reject
844// them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000845//
Chris Lattner307ecba2004-03-30 22:39:09 +0000846static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000847 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000848 if (SCI->hasOneUse()) {
849 Instruction *User = cast<Instruction>(SCI->use_back());
850 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
851 SCI->getParent() == User->getParent() &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000852 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
853 SCI->getOpcode() == Instruction::SetEQ ||
854 SCI->getOpcode() == Instruction::SetNE))
Chris Lattner6d40c192003-01-16 16:43:00 +0000855 return SCI;
856 }
857 return 0;
858}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000859
Chris Lattner6d40c192003-01-16 16:43:00 +0000860// Return a fixed numbering for setcc instructions which does not depend on the
861// order of the opcodes.
862//
863static unsigned getSetCCNumber(unsigned Opcode) {
864 switch(Opcode) {
865 default: assert(0 && "Unknown setcc instruction!");
866 case Instruction::SetEQ: return 0;
867 case Instruction::SetNE: return 1;
868 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000869 case Instruction::SetGE: return 3;
870 case Instruction::SetGT: return 4;
871 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000872 }
873}
Chris Lattner06925362002-11-17 21:56:38 +0000874
Chris Lattner6d40c192003-01-16 16:43:00 +0000875// LLVM -> X86 signed X86 unsigned
876// ----- ---------- ------------
877// seteq -> sete sete
878// setne -> setne setne
879// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000880// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000881// setgt -> setg seta
882// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000883// ----
884// sets // Used by comparison with 0 optimization
885// setns
886static const unsigned SetCCOpcodeTab[2][8] = {
887 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
888 0, 0 },
889 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
890 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000891};
892
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000893/// emitUCOMr - In the future when we support processors before the P6, this
894/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
895void ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
896 unsigned LHS, unsigned RHS) {
897 if (0) { // for processors prior to the P6
898 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
899 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
900 BuildMI(*MBB, IP, X86::SAHF, 1);
901 } else {
902 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
903 }
904}
905
Chris Lattnerb2acc512003-10-19 21:09:10 +0000906// EmitComparison - This function emits a comparison of the two operands,
907// returning the extended setcc code to use.
908unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
909 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000910 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000911 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000912 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000913 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000914 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000915
916 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000917 if (isa<ConstantPointerNull>(Op1)) {
918 if (OpNum < 2) // seteq/setne -> test
919 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
920 else
921 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
922 return OpNum;
923
924 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000925 if (Class == cByte || Class == cShort || Class == cInt) {
926 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000927
Chris Lattner333864d2003-06-05 19:30:30 +0000928 // Mask off any upper bits of the constant, if there are any...
929 Op1v &= (1ULL << (8 << Class)) - 1;
930
Chris Lattnerb2acc512003-10-19 21:09:10 +0000931 // If this is a comparison against zero, emit more efficient code. We
932 // can't handle unsigned comparisons against zero unless they are == or
933 // !=. These should have been strength reduced already anyway.
934 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
935 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000936 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000937 };
Chris Lattneree352852004-02-29 07:22:16 +0000938 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000939
940 if (OpNum == 2) return 6; // Map jl -> js
941 if (OpNum == 3) return 7; // Map jg -> jns
942 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000943 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000944
945 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000946 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000947 };
948
Chris Lattneree352852004-02-29 07:22:16 +0000949 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000950 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000951 } else {
952 assert(Class == cLong && "Unknown integer class!");
953 unsigned LowCst = CI->getRawValue();
954 unsigned HiCst = CI->getRawValue() >> 32;
955 if (OpNum < 2) { // seteq, setne
956 unsigned LoTmp = Op0r;
957 if (LowCst != 0) {
958 LoTmp = makeAnotherReg(Type::IntTy);
959 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
960 }
961 unsigned HiTmp = Op0r+1;
962 if (HiCst != 0) {
963 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +0000964 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +0000965 }
966 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
967 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
968 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +0000969 } else {
970 // Emit a sequence of code which compares the high and low parts once
971 // each, then uses a conditional move to handle the overflow case. For
972 // example, a setlt for long would generate code like this:
973 //
Chris Lattner9984fd02004-05-09 23:16:33 +0000974 // AL = lo(op1) < lo(op2) // Always unsigned comparison
975 // BL = hi(op1) < hi(op2) // Signedness depends on operands
976 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner48c937e2004-04-06 17:34:50 +0000977 //
978
979 // FIXME: This would be much better if we had hierarchical register
980 // classes! Until then, hardcode registers so that we can deal with
981 // their aliases (because we don't have conditional byte moves).
982 //
983 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
984 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
985 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
986 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
987 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
988 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
989 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
990 .addReg(X86::AX);
991 // NOTE: visitSetCondInst knows that the value is dumped into the BL
992 // register at this point for long values...
993 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000994 }
Chris Lattner333864d2003-06-05 19:30:30 +0000995 }
Chris Lattnere80e6372004-04-06 16:02:27 +0000996 }
Chris Lattner333864d2003-06-05 19:30:30 +0000997
Chris Lattner9f08a922004-02-03 18:54:04 +0000998 // Special case handling of comparison against +/- 0.0
999 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
1000 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +00001001 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001002 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00001003 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +00001004 return OpNum;
1005 }
1006
Chris Lattner58c41fe2003-08-24 19:19:47 +00001007 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001008 switch (Class) {
1009 default: assert(0 && "Unknown type class!");
1010 // Emit: cmp <var1>, <var2> (do the comparison). We can
1011 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1012 // 32-bit.
1013 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001014 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001015 break;
1016 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001017 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001018 break;
1019 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001020 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001021 break;
1022 case cFP:
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001023 emitUCOMr(MBB, IP, Op0r, Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001024 break;
1025
1026 case cLong:
1027 if (OpNum < 2) { // seteq, setne
1028 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1029 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1030 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001031 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1032 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1033 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001034 break; // Allow the sete or setne to be generated from flags set by OR
1035 } else {
1036 // Emit a sequence of code which compares the high and low parts once
1037 // each, then uses a conditional move to handle the overflow case. For
1038 // example, a setlt for long would generate code like this:
1039 //
1040 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1041 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +00001042 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +00001043 //
1044
Chris Lattner6d40c192003-01-16 16:43:00 +00001045 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +00001046 // classes! Until then, hardcode registers so that we can deal with their
1047 // aliases (because we don't have conditional byte moves).
1048 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001049 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +00001050 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001051 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +00001052 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1053 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1054 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001055 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +00001056 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +00001057 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1058 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +00001059 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +00001060 }
1061 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001062 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +00001063}
Chris Lattner3e130a22003-01-13 00:32:26 +00001064
Chris Lattner6d40c192003-01-16 16:43:00 +00001065/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1066/// register, then move it to wherever the result should be.
1067///
1068void ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +00001069 if (canFoldSetCCIntoBranchOrSelect(&I))
1070 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +00001071
Chris Lattner6d40c192003-01-16 16:43:00 +00001072 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001073 MachineBasicBlock::iterator MII = BB->end();
1074 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1075 DestReg);
1076}
Chris Lattner6d40c192003-01-16 16:43:00 +00001077
Chris Lattner58c41fe2003-08-24 19:19:47 +00001078/// emitSetCCOperation - Common code shared between visitSetCondInst and
1079/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001080///
Chris Lattner58c41fe2003-08-24 19:19:47 +00001081void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001082 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +00001083 Value *Op0, Value *Op1, unsigned Opcode,
1084 unsigned TargetReg) {
1085 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001086 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001087
Chris Lattnerb2acc512003-10-19 21:09:10 +00001088 const Type *CompTy = Op0->getType();
1089 unsigned CompClass = getClassB(CompTy);
1090 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1091
1092 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001093 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001094 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001095 } else {
1096 // Handle long comparisons by copying the value which is already in BL into
1097 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001098 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001099 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001100}
Chris Lattner51b49a92002-11-02 19:45:49 +00001101
Chris Lattner12d96a02004-03-30 21:22:00 +00001102void ISel::visitSelectInst(SelectInst &SI) {
1103 unsigned DestReg = getReg(SI);
1104 MachineBasicBlock::iterator MII = BB->end();
1105 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1106 SI.getFalseValue(), DestReg);
1107}
1108
1109/// emitSelect - Common code shared between visitSelectInst and the constant
1110/// expression support.
1111void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1112 MachineBasicBlock::iterator IP,
1113 Value *Cond, Value *TrueVal, Value *FalseVal,
1114 unsigned DestReg) {
1115 unsigned SelectClass = getClassB(TrueVal->getType());
1116
1117 // We don't support 8-bit conditional moves. If we have incoming constants,
1118 // transform them into 16-bit constants to avoid having a run-time conversion.
1119 if (SelectClass == cByte) {
1120 if (Constant *T = dyn_cast<Constant>(TrueVal))
1121 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1122 if (Constant *F = dyn_cast<Constant>(FalseVal))
1123 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1124 }
1125
Chris Lattner82c5a992004-04-13 21:56:09 +00001126 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1127 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1128 if (TrueReg == FalseReg) {
1129 static const unsigned Opcode[] = {
1130 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1131 };
1132 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1133 if (SelectClass == cLong)
1134 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1135 return;
1136 }
1137
Chris Lattner307ecba2004-03-30 22:39:09 +00001138 unsigned Opcode;
1139 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1140 // We successfully folded the setcc into the select instruction.
1141
1142 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1143 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1144 IP);
1145
1146 const Type *CompTy = SCI->getOperand(0)->getType();
1147 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1148
1149 // LLVM -> X86 signed X86 unsigned
1150 // ----- ---------- ------------
1151 // seteq -> cmovNE cmovNE
1152 // setne -> cmovE cmovE
1153 // setlt -> cmovGE cmovAE
1154 // setge -> cmovL cmovB
1155 // setgt -> cmovLE cmovBE
1156 // setle -> cmovG cmovA
1157 // ----
1158 // cmovNS // Used by comparison with 0 optimization
1159 // cmovS
1160
1161 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001162 default: assert(0 && "Unknown value class!");
1163 case cFP: {
1164 // Annoyingly, we don't have a full set of floating point conditional
1165 // moves. :(
1166 static const unsigned OpcodeTab[2][8] = {
1167 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1168 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1169 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1170 };
1171 Opcode = OpcodeTab[isSigned][OpNum];
1172
1173 // If opcode == 0, we hit a case that we don't support. Output a setcc
1174 // and compare the result against zero.
1175 if (Opcode == 0) {
1176 unsigned CompClass = getClassB(CompTy);
1177 unsigned CondReg;
1178 if (CompClass != cLong || OpNum < 2) {
1179 CondReg = makeAnotherReg(Type::BoolTy);
1180 // Handle normal comparisons with a setcc instruction...
1181 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1182 } else {
1183 // Long comparisons end up in the BL register.
1184 CondReg = X86::BL;
1185 }
1186
Chris Lattner68626c22004-03-31 22:22:36 +00001187 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001188 Opcode = X86::FCMOVE;
1189 }
1190 break;
1191 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001192 case cByte:
1193 case cShort: {
1194 static const unsigned OpcodeTab[2][8] = {
1195 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1196 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1197 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1198 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1199 };
1200 Opcode = OpcodeTab[isSigned][OpNum];
1201 break;
1202 }
1203 case cInt:
1204 case cLong: {
1205 static const unsigned OpcodeTab[2][8] = {
1206 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1207 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1208 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1209 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1210 };
1211 Opcode = OpcodeTab[isSigned][OpNum];
1212 break;
1213 }
1214 }
1215 } else {
1216 // Get the value being branched on, and use it to set the condition codes.
1217 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001218 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001219 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001220 default: assert(0 && "Unknown value class!");
1221 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001222 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001223 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001224 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001225 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001226 }
1227 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001228
Chris Lattner12d96a02004-03-30 21:22:00 +00001229 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001230
Chris Lattner12d96a02004-03-30 21:22:00 +00001231
1232 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1233 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1234 // cmove, then truncate the result.
1235 if (SelectClass == cByte) {
1236 DestReg = makeAnotherReg(Type::ShortTy);
1237 if (getClassB(TrueVal->getType()) == cByte) {
1238 // Promote the true value, by storing it into AL, and reading from AX.
1239 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1240 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1241 TrueReg = makeAnotherReg(Type::ShortTy);
1242 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1243 }
1244 if (getClassB(FalseVal->getType()) == cByte) {
1245 // Promote the true value, by storing it into CL, and reading from CX.
1246 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1247 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1248 FalseReg = makeAnotherReg(Type::ShortTy);
1249 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1250 }
1251 }
1252
1253 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1254
1255 switch (SelectClass) {
1256 case cByte:
1257 // We did the computation with 16-bit registers. Truncate back to our
1258 // result by copying into AX then copying out AL.
1259 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1260 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1261 break;
1262 case cLong:
1263 // Move the upper half of the value as well.
1264 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1265 break;
1266 }
1267}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001268
1269
1270
Brian Gaekec2505982002-11-30 11:57:28 +00001271/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1272/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001273///
Chris Lattner3e130a22003-01-13 00:32:26 +00001274void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001275 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001276
Chris Lattner29bf0622004-04-06 01:21:00 +00001277 Value *Val = VR.Val;
1278 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001279 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001280 if (Constant *C = dyn_cast<Constant>(Val)) {
1281 Val = ConstantExpr::getCast(C, Type::IntTy);
1282 Ty = Type::IntTy;
1283 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001284
Chris Lattner502e36c2004-04-06 01:25:33 +00001285 // If this is a simple constant, just emit a MOVri directly to avoid the
1286 // copy.
1287 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1288 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001289 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001290 return;
1291 }
1292 }
1293
Chris Lattner29bf0622004-04-06 01:21:00 +00001294 // Make sure we have the register number for this value...
1295 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1296
1297 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001298 case cByte:
1299 // Extend value into target register (8->32)
1300 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001301 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001302 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001303 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001304 break;
1305 case cShort:
1306 // Extend value into target register (16->32)
1307 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001308 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001309 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001310 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001311 break;
1312 case cInt:
1313 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001314 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001315 break;
1316 default:
1317 assert(0 && "Unpromotable operand class in promote32");
1318 }
Brian Gaekec2505982002-11-30 11:57:28 +00001319}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001320
Chris Lattner72614082002-10-25 22:55:53 +00001321/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1322/// we have the following possibilities:
1323///
1324/// ret void: No return value, simply emit a 'ret' instruction
1325/// ret sbyte, ubyte : Extend value into EAX and return
1326/// ret short, ushort: Extend value into EAX and return
1327/// ret int, uint : Move value into EAX and return
1328/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001329/// ret long, ulong : Move value into EAX/EDX and return
1330/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001331///
Chris Lattner3e130a22003-01-13 00:32:26 +00001332void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001333 if (I.getNumOperands() == 0) {
1334 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1335 return;
1336 }
1337
1338 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001339 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001340 case cByte: // integral return values: extend or move into EAX and return
1341 case cShort:
1342 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001343 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001344 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001345 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001346 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001347 case cFP: { // Floats & Doubles: Return in ST(0)
1348 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001349 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001350 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001351 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001352 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001353 }
1354 case cLong: {
1355 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001356 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1357 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001358 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001359 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1360 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001361 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001362 }
Chris Lattner94af4142002-12-25 05:13:53 +00001363 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001364 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001365 }
Chris Lattner43189d12002-11-17 20:07:45 +00001366 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001367 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001368}
1369
Chris Lattner55f6fab2003-01-16 18:07:23 +00001370// getBlockAfter - Return the basic block which occurs lexically after the
1371// specified one.
1372static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1373 Function::iterator I = BB; ++I; // Get iterator to next block
1374 return I != BB->getParent()->end() ? &*I : 0;
1375}
1376
Chris Lattner51b49a92002-11-02 19:45:49 +00001377/// visitBranchInst - Handle conditional and unconditional branches here. Note
1378/// that since code layout is frozen at this point, that if we are trying to
1379/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001380/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001381///
Chris Lattner94af4142002-12-25 05:13:53 +00001382void ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001383 // Update machine-CFG edges
1384 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1385 if (BI.isConditional())
1386 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1387
Chris Lattner55f6fab2003-01-16 18:07:23 +00001388 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1389
1390 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001391 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001392 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner6d40c192003-01-16 16:43:00 +00001393 return;
1394 }
1395
1396 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001397 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001398 if (SCI == 0) {
1399 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1400 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001401 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001402 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001403 if (BI.getSuccessor(1) == NextBB) {
1404 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001405 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001406 } else {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001407 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001408
1409 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001410 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001411 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001412 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001413 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001414
1415 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001416 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001417 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001418
1419 const Type *CompTy = SCI->getOperand(0)->getType();
1420 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001421
Chris Lattnerb2acc512003-10-19 21:09:10 +00001422
Chris Lattner6d40c192003-01-16 16:43:00 +00001423 // LLVM -> X86 signed X86 unsigned
1424 // ----- ---------- ------------
1425 // seteq -> je je
1426 // setne -> jne jne
1427 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001428 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001429 // setgt -> jg ja
1430 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001431 // ----
1432 // js // Used by comparison with 0 optimization
1433 // jns
1434
1435 static const unsigned OpcodeTab[2][8] = {
1436 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1437 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1438 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001439 };
1440
Chris Lattner55f6fab2003-01-16 18:07:23 +00001441 if (BI.getSuccessor(0) != NextBB) {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001442 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1443 .addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001444 if (BI.getSuccessor(1) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001445 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001446 } else {
1447 // Change to the inverse condition...
1448 if (BI.getSuccessor(1) != NextBB) {
1449 OpNum ^= 1;
Brian Gaeke9f088e42004-05-14 06:54:56 +00001450 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1451 .addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001452 }
1453 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001454}
1455
Chris Lattner3e130a22003-01-13 00:32:26 +00001456
1457/// doCall - This emits an abstract call instruction, setting up the arguments
1458/// and the return value as appropriate. For the actual function call itself,
1459/// it inserts the specified CallMI instruction into the stream.
1460///
1461void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001462 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001463
Chris Lattner065faeb2002-12-28 20:24:02 +00001464 // Count how many bytes are to be pushed on the stack...
1465 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001466
Chris Lattner3e130a22003-01-13 00:32:26 +00001467 if (!Args.empty()) {
1468 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1469 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001470 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001471 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001472 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001473 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001474 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001475 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1476 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001477 default: assert(0 && "Unknown class!");
1478 }
1479
1480 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001481 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001482
1483 // Arguments go on the stack in reverse order, as specified by the ABI.
1484 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001485 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001486 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001487 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001488 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001489 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1490 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1491 .addImm(Args[i].Val == ConstantBool::True);
1492 break;
1493 }
1494 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001495 case cShort:
1496 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1497 // Zero/Sign extend constant, then stuff into memory.
1498 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1499 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1500 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1501 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1502 } else {
1503 // Promote arg to 32 bits wide into a temporary register...
1504 ArgReg = makeAnotherReg(Type::UIntTy);
1505 promote32(ArgReg, Args[i]);
1506 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1507 X86::ESP, ArgOffset).addReg(ArgReg);
1508 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001509 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001510 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001511 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1512 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1513 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1514 X86::ESP, ArgOffset).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00001515 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1516 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1517 X86::ESP, ArgOffset).addImm(0);
Chris Lattner21585222004-03-01 02:42:43 +00001518 } else {
1519 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1520 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1521 X86::ESP, ArgOffset).addReg(ArgReg);
1522 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001523 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001524 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001525 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1526 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1527 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1528 X86::ESP, ArgOffset).addImm(Val & ~0U);
1529 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1530 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1531 } else {
1532 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1533 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1534 X86::ESP, ArgOffset).addReg(ArgReg);
1535 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1536 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1537 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001538 ArgOffset += 4; // 8 byte entry, not 4.
1539 break;
1540
Chris Lattner065faeb2002-12-28 20:24:02 +00001541 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001542 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001543 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001544 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001545 X86::ESP, ArgOffset).addReg(ArgReg);
1546 } else {
1547 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001548 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001549 X86::ESP, ArgOffset).addReg(ArgReg);
1550 ArgOffset += 4; // 8 byte entry, not 4.
1551 }
1552 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001553
Chris Lattner3e130a22003-01-13 00:32:26 +00001554 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001555 }
1556 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001557 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001558 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001559 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001560 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001561
Chris Lattner3e130a22003-01-13 00:32:26 +00001562 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001563
Chris Lattneree352852004-02-29 07:22:16 +00001564 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001565
1566 // If there is a return value, scavenge the result from the location the call
1567 // leaves it in...
1568 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001569 if (Ret.Ty != Type::VoidTy) {
1570 unsigned DestClass = getClassB(Ret.Ty);
1571 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001572 case cByte:
1573 case cShort:
1574 case cInt: {
1575 // Integral results are in %eax, or the appropriate portion
1576 // thereof.
1577 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001578 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001579 };
1580 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001581 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001582 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001583 }
Chris Lattner94af4142002-12-25 05:13:53 +00001584 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001585 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001586 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001587 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001588 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1589 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001590 break;
1591 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001592 }
Chris Lattnera3243642002-12-04 23:45:28 +00001593 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001594}
Chris Lattner2df035b2002-11-02 19:27:56 +00001595
Chris Lattner3e130a22003-01-13 00:32:26 +00001596
1597/// visitCallInst - Push args on stack and do a procedure call instruction.
1598void ISel::visitCallInst(CallInst &CI) {
1599 MachineInstr *TheCall;
1600 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001601 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001602 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001603 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1604 return;
1605 }
1606
Chris Lattner3e130a22003-01-13 00:32:26 +00001607 // Emit a CALL instruction with PC-relative displacement.
1608 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1609 } else { // Emit an indirect call...
1610 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001611 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001612 }
1613
1614 std::vector<ValueRecord> Args;
1615 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001616 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001617
1618 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1619 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001620}
Chris Lattner3e130a22003-01-13 00:32:26 +00001621
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001622/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1623///
1624static Value *dyncastIsNan(Value *V) {
1625 if (CallInst *CI = dyn_cast<CallInst>(V))
1626 if (Function *F = CI->getCalledFunction())
1627 if (F->getIntrinsicID() == Intrinsic::isnan)
1628 return CI->getOperand(1);
1629 return 0;
1630}
1631
1632/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1633/// or's whos operands are all calls to the isnan predicate.
1634static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1635 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1636
1637 // Check all uses, which will be or's of isnans if this predicate is true.
1638 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1639 Instruction *I = cast<Instruction>(*UI);
1640 if (I->getOpcode() != Instruction::Or) return false;
1641 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1642 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1643 }
1644
1645 return true;
1646}
Chris Lattneraeb54b82003-08-28 21:23:43 +00001647
Chris Lattner44827152003-12-28 09:47:19 +00001648/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1649/// function, lowering any calls to unknown intrinsic functions into the
1650/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001651///
Chris Lattner44827152003-12-28 09:47:19 +00001652void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1653 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1654 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1655 if (CallInst *CI = dyn_cast<CallInst>(I++))
1656 if (Function *F = CI->getCalledFunction())
1657 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001658 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001659 case Intrinsic::vastart:
1660 case Intrinsic::vacopy:
1661 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001662 case Intrinsic::returnaddress:
1663 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001664 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001665 case Intrinsic::memset:
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001666 case Intrinsic::isnan:
John Criswell4ffff9e2004-04-08 20:31:47 +00001667 case Intrinsic::readport:
1668 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001669 // We directly implement these intrinsics
1670 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001671 case Intrinsic::readio: {
1672 // On X86, memory operations are in-order. Lower this intrinsic
1673 // into a volatile load.
1674 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001675 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1676 CI->replaceAllUsesWith(LI);
1677 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001678 break;
1679 }
1680 case Intrinsic::writeio: {
1681 // On X86, memory operations are in-order. Lower this intrinsic
1682 // into a volatile store.
1683 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001684 StoreInst *LI = new StoreInst(CI->getOperand(1),
1685 CI->getOperand(2), true, CI);
1686 CI->replaceAllUsesWith(LI);
1687 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001688 break;
1689 }
Chris Lattner44827152003-12-28 09:47:19 +00001690 default:
1691 // All other intrinsic calls we must lower.
1692 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001693 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001694 if (Before) { // Move iterator to instruction after call
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001695 I = Before; ++I;
Chris Lattner44827152003-12-28 09:47:19 +00001696 } else {
1697 I = BB->begin();
1698 }
1699 }
Chris Lattner44827152003-12-28 09:47:19 +00001700}
1701
Brian Gaeked0fde302003-11-11 22:41:34 +00001702void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001703 unsigned TmpReg1, TmpReg2;
1704 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001705 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001706 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001707 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001708 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001709 return;
1710
Chris Lattner5634b9f2004-03-13 00:24:52 +00001711 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001712 TmpReg1 = getReg(CI);
1713 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001714 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001715 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001716 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001717
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001718 case Intrinsic::returnaddress:
1719 case Intrinsic::frameaddress:
1720 TmpReg1 = getReg(CI);
1721 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1722 if (ID == Intrinsic::returnaddress) {
1723 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001724 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001725 ReturnAddressIndex);
1726 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001727 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001728 ReturnAddressIndex, -4);
1729 }
1730 } else {
1731 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001732 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001733 }
1734 return;
1735
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001736 case Intrinsic::isnan:
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001737 // If this is only used by 'isunordered' style comparisons, don't emit it.
1738 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001739 TmpReg1 = getReg(CI.getOperand(1));
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001740 emitUCOMr(BB, BB->end(), TmpReg1, TmpReg1);
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001741 TmpReg2 = getReg(CI);
1742 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1743 return;
1744
Chris Lattner915e5e52004-02-12 17:53:22 +00001745 case Intrinsic::memcpy: {
1746 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1747 unsigned Align = 1;
1748 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1749 Align = AlignC->getRawValue();
1750 if (Align == 0) Align = 1;
1751 }
1752
1753 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001754 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001755 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001756 switch (Align & 3) {
1757 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001758 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1759 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1760 } else {
1761 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001762 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001763 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001764 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001765 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001766 break;
1767 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001768 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1769 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1770 } else {
1771 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001772 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001773 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001774 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001775 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001776 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001777 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001778 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001779 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001780 break;
1781 }
1782
1783 // No matter what the alignment is, we put the source in ESI, the
1784 // destination in EDI, and the count in ECX.
1785 TmpReg1 = getReg(CI.getOperand(1));
1786 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001787 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1788 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1789 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001790 BuildMI(BB, Opcode, 0);
1791 return;
1792 }
1793 case Intrinsic::memset: {
1794 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1795 unsigned Align = 1;
1796 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1797 Align = AlignC->getRawValue();
1798 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001799 }
1800
Chris Lattner2a0f2242004-02-14 04:46:05 +00001801 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001802 unsigned CountReg;
1803 unsigned Opcode;
1804 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1805 unsigned Val = ValC->getRawValue() & 255;
1806
1807 // If the value is a constant, then we can potentially use larger copies.
1808 switch (Align & 3) {
1809 case 2: // WORD aligned
1810 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001811 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001812 } else {
1813 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001814 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001815 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001816 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001817 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001818 Opcode = X86::REP_STOSW;
1819 break;
1820 case 0: // DWORD aligned
1821 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001822 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001823 } else {
1824 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001825 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001826 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001827 }
1828 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001829 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001830 Opcode = X86::REP_STOSD;
1831 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001832 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001833 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001834 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001835 Opcode = X86::REP_STOSB;
1836 break;
1837 }
1838 } else {
1839 // If it's not a constant value we are storing, just fall back. We could
1840 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1841 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001842 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001843 CountReg = getReg(CI.getOperand(3));
1844 Opcode = X86::REP_STOSB;
1845 }
1846
1847 // No matter what the alignment is, we put the source in ESI, the
1848 // destination in EDI, and the count in ECX.
1849 TmpReg1 = getReg(CI.getOperand(1));
1850 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001851 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1852 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001853 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001854 return;
1855 }
1856
Chris Lattner87e18de2004-04-13 17:20:37 +00001857 case Intrinsic::readport: {
1858 // First, determine that the size of the operand falls within the acceptable
1859 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001860 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001861 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001862 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001863 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001864 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001865
John Criswell4ffff9e2004-04-08 20:31:47 +00001866 // Now, move the I/O port address into the DX register and use the IN
1867 // instruction to get the input data.
1868 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001869 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1870 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001871
Chris Lattner87e18de2004-04-13 17:20:37 +00001872 // If the port is a single-byte constant, use the immediate form.
1873 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1874 if ((C->getRawValue() & 255) == C->getRawValue()) {
1875 switch (Class) {
1876 case cByte:
1877 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1878 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1879 return;
1880 case cShort:
1881 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1882 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1883 return;
1884 case cInt:
1885 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1886 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1887 return;
1888 }
1889 }
1890
1891 unsigned Reg = getReg(CI.getOperand(1));
1892 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1893 switch (Class) {
1894 case cByte:
1895 BuildMI(BB, X86::IN8rr, 0);
1896 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1897 break;
1898 case cShort:
1899 BuildMI(BB, X86::IN16rr, 0);
1900 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1901 break;
1902 case cInt:
1903 BuildMI(BB, X86::IN32rr, 0);
1904 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1905 break;
1906 default:
1907 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00001908 exit (1);
1909 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001910 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00001911 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001912
Chris Lattner87e18de2004-04-13 17:20:37 +00001913 case Intrinsic::writeport: {
1914 // First, determine that the size of the operand falls within the
1915 // acceptable range for this architecture.
1916 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1917 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1918 exit(1);
1919 }
1920
1921 unsigned Class = getClassB(CI.getOperand(1)->getType());
1922 unsigned ValReg = getReg(CI.getOperand(1));
1923 switch (Class) {
1924 case cByte:
1925 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1926 break;
1927 case cShort:
1928 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1929 break;
1930 case cInt:
1931 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1932 break;
1933 default:
1934 std::cerr << "llvm.writeport: invalid data type for X86 target";
1935 exit(1);
1936 }
1937
1938
1939 // If the port is a single-byte constant, use the immediate form.
1940 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1941 if ((C->getRawValue() & 255) == C->getRawValue()) {
1942 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1943 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1944 return;
1945 }
1946
1947 // Otherwise, move the I/O port address into the DX register and the value
1948 // to write into the AL/AX/EAX register.
1949 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1950 unsigned Reg = getReg(CI.getOperand(2));
1951 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1952 BuildMI(BB, Opc[Class], 0);
1953 return;
1954 }
1955
Chris Lattner44827152003-12-28 09:47:19 +00001956 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001957 }
1958}
1959
Chris Lattner7dee5da2004-03-08 01:58:35 +00001960static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1961 if (LI.getParent() != User.getParent())
1962 return false;
1963 BasicBlock::iterator It = &LI;
1964 // Check all of the instructions between the load and the user. We should
1965 // really use alias analysis here, but for now we just do something simple.
1966 for (++It; It != BasicBlock::iterator(&User); ++It) {
1967 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001968 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001969 case Instruction::Store:
1970 case Instruction::Call:
1971 case Instruction::Invoke:
1972 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00001973 case Instruction::Load:
1974 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1975 return false;
1976 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00001977 }
1978 }
1979 return true;
1980}
1981
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001982/// visitSimpleBinary - Implement simple binary operators for integral types...
1983/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1984/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00001985///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001986void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1987 unsigned DestReg = getReg(B);
1988 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00001989 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001990 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00001991
Chris Lattner7dee5da2004-03-08 01:58:35 +00001992 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001993 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
1994 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00001995 if (!B.swapOperands())
1996 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
1997
Chris Lattner95157f72004-04-11 22:05:45 +00001998 if (isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00001999 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
2000
Chris Lattner95157f72004-04-11 22:05:45 +00002001 unsigned Opcode;
2002 if (Class != cFP) {
2003 static const unsigned OpcodeTab[][3] = {
2004 // Arithmetic operators
2005 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
2006 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
2007
2008 // Bitwise operators
2009 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
2010 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
2011 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
2012 };
2013 Opcode = OpcodeTab[OperatorClass][Class];
2014 } else {
2015 static const unsigned OpcodeTab[][2] = {
2016 { X86::FADD32m, X86::FADD64m }, // ADD
2017 { X86::FSUB32m, X86::FSUB64m }, // SUB
2018 };
2019 const Type *Ty = Op0->getType();
2020 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2021 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
2022 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002023
Chris Lattner7dee5da2004-03-08 01:58:35 +00002024 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002025 if (AllocaInst *AI =
2026 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
2027 unsigned FI = getFixedSizedAllocaFI(AI);
2028 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2029
2030 } else {
2031 unsigned BaseReg, Scale, IndexReg, Disp;
2032 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
2033 Scale, IndexReg, Disp);
2034
2035 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r),
2036 BaseReg, Scale, IndexReg, Disp);
2037 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002038 return;
2039 }
2040
Chris Lattner95157f72004-04-11 22:05:45 +00002041 // If this is a floating point subtract, check to see if we can fold the first
2042 // operand in.
2043 if (Class == cFP && OperatorClass == 1 &&
2044 isa<LoadInst>(Op0) &&
2045 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2046 const Type *Ty = Op0->getType();
2047 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2048 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2049
Chris Lattner95157f72004-04-11 22:05:45 +00002050 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002051 if (AllocaInst *AI =
2052 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2053 unsigned FI = getFixedSizedAllocaFI(AI);
2054 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2055 } else {
2056 unsigned BaseReg, Scale, IndexReg, Disp;
2057 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg,
2058 Scale, IndexReg, Disp);
2059
2060 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r),
2061 BaseReg, Scale, IndexReg, Disp);
2062 }
Chris Lattner95157f72004-04-11 22:05:45 +00002063 return;
2064 }
2065
Chris Lattner721d2d42004-03-08 01:18:36 +00002066 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002067}
Chris Lattner3e130a22003-01-13 00:32:26 +00002068
Chris Lattner6621ed92004-04-11 21:23:56 +00002069
2070/// emitBinaryFPOperation - This method handles emission of floating point
2071/// Add (0), Sub (1), Mul (2), and Div (3) operations.
2072void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2073 MachineBasicBlock::iterator IP,
2074 Value *Op0, Value *Op1,
2075 unsigned OperatorClass, unsigned DestReg) {
2076
2077 // Special case: op Reg, <const fp>
2078 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2079 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2080 // Create a constant pool entry for this constant.
2081 MachineConstantPool *CP = F->getConstantPool();
2082 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2083 const Type *Ty = Op1->getType();
2084
2085 static const unsigned OpcodeTab[][4] = {
2086 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2087 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2088 };
2089
2090 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2091 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2092 unsigned Op0r = getReg(Op0, BB, IP);
2093 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2094 DestReg).addReg(Op0r), CPI);
2095 return;
2096 }
2097
Chris Lattner13c07fe2004-04-12 00:12:04 +00002098 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00002099 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2100 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2101 // -0.0 - X === -X
2102 unsigned op1Reg = getReg(Op1, BB, IP);
2103 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2104 return;
2105 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00002106 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00002107
2108 // Create a constant pool entry for this constant.
2109 MachineConstantPool *CP = F->getConstantPool();
2110 unsigned CPI = CP->getConstantPoolIndex(CFP);
2111 const Type *Ty = CFP->getType();
2112
2113 static const unsigned OpcodeTab[][4] = {
2114 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2115 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2116 };
2117
2118 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2119 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2120 unsigned Op1r = getReg(Op1, BB, IP);
2121 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2122 DestReg).addReg(Op1r), CPI);
2123 return;
2124 }
2125
2126 // General case.
2127 static const unsigned OpcodeTab[4] = {
2128 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2129 };
2130
2131 unsigned Opcode = OpcodeTab[OperatorClass];
2132 unsigned Op0r = getReg(Op0, BB, IP);
2133 unsigned Op1r = getReg(Op1, BB, IP);
2134 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2135}
2136
Chris Lattnerb2acc512003-10-19 21:09:10 +00002137/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2138/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2139/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002140///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002141/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2142/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002143///
2144void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002145 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002146 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002147 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002148 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002149
Chris Lattner6621ed92004-04-11 21:23:56 +00002150 if (Class == cFP) {
2151 assert(OperatorClass < 2 && "No logical ops for FP!");
2152 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2153 return;
2154 }
2155
Chris Lattner01cdb1b2004-06-11 05:33:49 +00002156 if (Op0->getType() == Type::BoolTy) {
2157 if (OperatorClass == 3)
2158 // If this is an or of two isnan's, emit an FP comparison directly instead
2159 // of or'ing two isnan's together.
2160 if (Value *LHS = dyncastIsNan(Op0))
2161 if (Value *RHS = dyncastIsNan(Op1)) {
2162 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
2163 emitUCOMr(MBB, IP, Op0Reg, Op1Reg);
2164 BuildMI(*MBB, IP, X86::SETPr, 0, DestReg);
2165 return;
2166 }
2167
2168 }
2169
Chris Lattnerb2acc512003-10-19 21:09:10 +00002170 // sub 0, X -> neg X
Chris Lattner48b0c972004-04-11 20:26:20 +00002171 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
2172 if (OperatorClass == 1 && CI->isNullValue()) {
2173 unsigned op1Reg = getReg(Op1, MBB, IP);
2174 static unsigned const NEGTab[] = {
2175 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2176 };
2177 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
2178
2179 if (Class == cLong) {
2180 // We just emitted: Dl = neg Sl
2181 // Now emit : T = addc Sh, 0
2182 // : Dh = neg T
2183 unsigned T = makeAnotherReg(Type::IntTy);
2184 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2185 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002186 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002187 return;
2188 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002189
Chris Lattner48b0c972004-04-11 20:26:20 +00002190 // Special case: op Reg, <const int>
2191 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002192 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002193
Chris Lattner721d2d42004-03-08 01:18:36 +00002194 // xor X, -1 -> not X
2195 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002196 static unsigned const NOTTab[] = {
2197 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2198 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002199 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002200 if (Class == cLong) // Invert the top part too
2201 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002202 return;
2203 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002204
Chris Lattner721d2d42004-03-08 01:18:36 +00002205 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002206 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2207 // Note that we can't use dec for 64-bit decrements, because it does not
2208 // set the carry flag!
2209 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002210 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2211 return;
2212 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002213
Chris Lattner721d2d42004-03-08 01:18:36 +00002214 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002215 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2216 // Note that we can't use inc for 64-bit increments, because it does not
2217 // set the carry flag!
2218 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002219 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002220 return;
2221 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002222
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002223 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002224 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002225 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2226 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002227
Chris Lattner721d2d42004-03-08 01:18:36 +00002228 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002229 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2230 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2231 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002232 };
2233
Chris Lattner721d2d42004-03-08 01:18:36 +00002234 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002235 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002236
Chris Lattner33f7fa32004-04-06 03:15:53 +00002237 if (Class != cLong) {
2238 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2239 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002240 }
2241
2242 // If this is a long value and the high or low bits have a special
2243 // property, emit some special cases.
2244 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2245
2246 // If the constant is zero in the low 32-bits, just copy the low part
2247 // across and apply the normal 32-bit operation to the high parts. There
2248 // will be no carry or borrow into the top.
2249 if (Op1l == 0) {
2250 if (OperatorClass != 2) // All but and...
2251 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2252 else
2253 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2254 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2255 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002256 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002257 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002258
2259 // If this is a logical operation and the top 32-bits are zero, just
2260 // operate on the lower 32.
2261 if (Op1h == 0 && OperatorClass > 1) {
2262 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2263 .addReg(Op0r).addImm(Op1l);
2264 if (OperatorClass != 2) // All but and
2265 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2266 else
2267 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2268 return;
2269 }
2270
2271 // TODO: We could handle lots of other special cases here, such as AND'ing
2272 // with 0xFFFFFFFF00000000 -> noop, etc.
2273
2274 // Otherwise, code generate the full operation with a constant.
2275 static const unsigned TopTab[] = {
2276 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2277 };
2278
2279 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2280 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2281 .addReg(Op0r+1).addImm(Op1h);
2282 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002283 }
2284
2285 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002286 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002287 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002288 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2289 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002290
Chris Lattnerb2acc512003-10-19 21:09:10 +00002291 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002292 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2293 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2294 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002295 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002296
Chris Lattnerb2acc512003-10-19 21:09:10 +00002297 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002298 unsigned Op0r = getReg(Op0, MBB, IP);
2299 unsigned Op1r = getReg(Op1, MBB, IP);
2300 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2301
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002302 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002303 static const unsigned TopTab[] = {
2304 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2305 };
2306 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2307 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2308 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002309}
2310
Chris Lattner3e130a22003-01-13 00:32:26 +00002311/// doMultiply - Emit appropriate instructions to multiply together the
2312/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2313/// result should be given as DestTy.
2314///
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002315void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00002316 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00002317 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002318 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002319 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002320 case cInt:
2321 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002322 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002323 .addReg(op0Reg).addReg(op1Reg);
2324 return;
2325 case cByte:
2326 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002327 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2328 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2329 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002330 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002331 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002332 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002333 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002334}
2335
Chris Lattnerb2acc512003-10-19 21:09:10 +00002336// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2337// returns zero when the input is not exactly a power of two.
2338static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002339 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002340 unsigned Count = 0;
2341 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002342 Val >>= 1;
2343 ++Count;
2344 }
2345 return Count+1;
2346}
2347
Chris Lattner462fa822004-04-11 20:56:28 +00002348
2349/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2350/// 16, or 32-bit integer multiply by a constant.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002351void ISel::doMultiplyConst(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002352 MachineBasicBlock::iterator IP,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002353 unsigned DestReg, const Type *DestTy,
2354 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002355 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2356 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002357 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner6ab06d52004-04-06 04:55:43 +00002358
Chris Lattnerb2acc512003-10-19 21:09:10 +00002359 unsigned Class = getClass(DestTy);
2360
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002361 // Handle special cases here.
2362 switch (ConstRHS) {
2363 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002364 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2365 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002366 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002367 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2368 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002369 case 2:
2370 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2371 return;
2372 case 3:
2373 case 5:
2374 case 9:
2375 if (Class == cInt) {
2376 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg),
2377 op0Reg, ConstRHS-1, op0Reg, 0);
2378 return;
2379 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002380 }
2381
Chris Lattnerb2acc512003-10-19 21:09:10 +00002382 // If the element size is exactly a power of 2, use a shift to get it.
2383 if (unsigned Shift = ExactLog2(ConstRHS)) {
2384 switch (Class) {
2385 default: assert(0 && "Unknown class for this function!");
2386 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002387 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002388 return;
2389 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002390 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002391 return;
2392 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002393 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002394 return;
2395 }
2396 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002397
2398 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002399 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002400 return;
2401 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002402 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002403 return;
2404 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002405
2406 // Most general case, emit a normal multiply...
Chris Lattnerb2acc512003-10-19 21:09:10 +00002407 unsigned TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002408 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002409
2410 // Emit a MUL to multiply the register holding the index by
2411 // elementSize, putting the result in OffsetReg.
2412 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2413}
2414
Chris Lattnerca9671d2002-11-02 20:28:58 +00002415/// visitMul - Multiplies are not simple binary operators because they must deal
2416/// with the EAX register explicitly.
2417///
2418void ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002419 unsigned ResultReg = getReg(I);
2420
Chris Lattner95157f72004-04-11 22:05:45 +00002421 Value *Op0 = I.getOperand(0);
2422 Value *Op1 = I.getOperand(1);
2423
2424 // Fold loads into floating point multiplies.
2425 if (getClass(Op0->getType()) == cFP) {
2426 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2427 if (!I.swapOperands())
2428 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2429 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2430 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2431 const Type *Ty = Op0->getType();
2432 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2433 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2434
Chris Lattner95157f72004-04-11 22:05:45 +00002435 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002436 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2437 unsigned FI = getFixedSizedAllocaFI(AI);
2438 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2439 } else {
2440 unsigned BaseReg, Scale, IndexReg, Disp;
2441 getAddressingMode(LI->getOperand(0), BaseReg,
2442 Scale, IndexReg, Disp);
2443
2444 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
2445 BaseReg, Scale, IndexReg, Disp);
2446 }
Chris Lattner95157f72004-04-11 22:05:45 +00002447 return;
2448 }
2449 }
2450
Chris Lattner462fa822004-04-11 20:56:28 +00002451 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002452 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002453}
2454
2455void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2456 Value *Op0, Value *Op1, unsigned DestReg) {
2457 MachineBasicBlock &BB = *MBB;
2458 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002459
2460 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002461 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002462 switch (Class) {
2463 case cByte:
2464 case cShort:
2465 case cInt:
2466 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002467 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2468 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002469 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002470 unsigned Op1Reg = getReg(Op1, &BB, IP);
2471 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002472 }
Chris Lattner462fa822004-04-11 20:56:28 +00002473 return;
2474 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002475 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2476 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002477 case cLong:
2478 break;
2479 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002480
Chris Lattner462fa822004-04-11 20:56:28 +00002481 // Long value. We have to do things the hard way...
2482 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2483 unsigned CLow = CI->getRawValue();
2484 unsigned CHi = CI->getRawValue() >> 32;
2485
2486 if (CLow == 0) {
2487 // If the low part of the constant is all zeros, things are simple.
2488 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2489 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2490 return;
2491 }
2492
2493 // Multiply the two low parts... capturing carry into EDX
2494 unsigned OverflowReg = 0;
2495 if (CLow == 1) {
2496 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002497 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002498 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2499 OverflowReg = makeAnotherReg(Type::UIntTy);
2500 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2501 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2502 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002503
Chris Lattner462fa822004-04-11 20:56:28 +00002504 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2505 BuildMI(BB, IP, X86::MOV32rr, 1,
2506 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2507 }
2508
2509 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2510 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2511
2512 unsigned AHBLplusOverflowReg;
2513 if (OverflowReg) {
2514 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2515 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002516 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002517 } else {
2518 AHBLplusOverflowReg = AHBLReg;
2519 }
2520
2521 if (CHi == 0) {
2522 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2523 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002524 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002525 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002526
Chris Lattner462fa822004-04-11 20:56:28 +00002527 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002528 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2529 }
Chris Lattner462fa822004-04-11 20:56:28 +00002530 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002531 }
Chris Lattner462fa822004-04-11 20:56:28 +00002532
2533 // General 64x64 multiply
2534
2535 unsigned Op1Reg = getReg(Op1, &BB, IP);
2536 // Multiply the two low parts... capturing carry into EDX
2537 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2538 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2539
2540 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2541 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2542 BuildMI(BB, IP, X86::MOV32rr, 1,
2543 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2544
2545 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2546 BuildMI(BB, IP, X86::IMUL32rr, 2,
2547 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2548
2549 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2550 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2551 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2552
2553 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2554 BuildMI(BB, IP, X86::IMUL32rr, 2,
2555 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2556
2557 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2558 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002559}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002560
Chris Lattner06925362002-11-17 21:56:38 +00002561
Chris Lattnerf01729e2002-11-02 20:54:46 +00002562/// visitDivRem - Handle division and remainder instructions... these
2563/// instruction both require the same instructions to be generated, they just
2564/// select the result from a different register. Note that both of these
2565/// instructions work differently for signed and unsigned operands.
2566///
2567void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002568 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002569 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2570
2571 // Fold loads into floating point divides.
2572 if (getClass(Op0->getType()) == cFP) {
2573 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2574 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2575 const Type *Ty = Op0->getType();
2576 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2577 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2578
Chris Lattner95157f72004-04-11 22:05:45 +00002579 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002580 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2581 unsigned FI = getFixedSizedAllocaFI(AI);
2582 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2583 } else {
2584 unsigned BaseReg, Scale, IndexReg, Disp;
2585 getAddressingMode(LI->getOperand(0), BaseReg,
2586 Scale, IndexReg, Disp);
2587
2588 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
2589 BaseReg, Scale, IndexReg, Disp);
2590 }
Chris Lattner95157f72004-04-11 22:05:45 +00002591 return;
2592 }
2593
2594 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2595 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2596 const Type *Ty = Op0->getType();
2597 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2598 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2599
Chris Lattner95157f72004-04-11 22:05:45 +00002600 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002601 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2602 unsigned FI = getFixedSizedAllocaFI(AI);
2603 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2604 } else {
2605 unsigned BaseReg, Scale, IndexReg, Disp;
2606 getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp);
2607 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r),
2608 BaseReg, Scale, IndexReg, Disp);
2609 }
Chris Lattner95157f72004-04-11 22:05:45 +00002610 return;
2611 }
2612 }
2613
Chris Lattner94af4142002-12-25 05:13:53 +00002614
Chris Lattnercadff442003-10-23 17:21:43 +00002615 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002616 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002617 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002618}
2619
2620void ISel::emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002621 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +00002622 Value *Op0, Value *Op1, bool isDiv,
2623 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002624 const Type *Ty = Op0->getType();
2625 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002626 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002627 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002628 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002629 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2630 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002631 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002632 unsigned Op0Reg = getReg(Op0, BB, IP);
2633 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002634 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002635 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002636 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002637 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2638 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002639 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2640 }
Chris Lattner94af4142002-12-25 05:13:53 +00002641 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002642 case cLong: {
2643 static const char *FnName[] =
2644 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002645 unsigned Op0Reg = getReg(Op0, BB, IP);
2646 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002647 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002648 MachineInstr *TheCall =
2649 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2650
2651 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002652 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2653 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002654 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2655 return;
2656 }
2657 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002658 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002659 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002660 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002661
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002662 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002663 static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
2664 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2665 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2666 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2667
2668 // Special case signed division by power of 2.
2669 if (isDiv)
2670 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2671 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2672 int V = CI->getValue();
2673
2674 if (V == 1) { // X /s 1 => X
2675 unsigned Op0Reg = getReg(Op0, BB, IP);
2676 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2677 return;
2678 }
2679
2680 if (V == -1) { // X /s -1 => -X
2681 unsigned Op0Reg = getReg(Op0, BB, IP);
2682 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2683 return;
2684 }
2685
2686 bool isNeg = false;
2687 if (V < 0) { // Not a positive power of 2?
2688 V = -V;
2689 isNeg = true; // Maybe it's a negative power of 2.
2690 }
2691 if (unsigned Log = ExactLog2(V)) {
2692 --Log;
2693 unsigned Op0Reg = getReg(Op0, BB, IP);
2694 unsigned TmpReg = makeAnotherReg(Op0->getType());
2695 if (Log != 1)
2696 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2697 .addReg(Op0Reg).addImm(Log-1);
2698 else
2699 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
2700 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2701 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2702 .addReg(TmpReg).addImm(32-Log);
2703 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2704 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2705 .addReg(Op0Reg).addReg(TmpReg2);
2706
2707 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2708 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
2709 .addReg(Op0Reg).addImm(Log);
2710 if (isNeg)
2711 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2712 return;
2713 }
2714 }
2715
2716 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002717 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002718 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2719
2720 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002721 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2722 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002723 };
2724
Chris Lattnerf01729e2002-11-02 20:54:46 +00002725 unsigned Reg = Regs[Class];
2726 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002727
2728 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002729 unsigned Op0Reg = getReg(Op0, BB, IP);
2730 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002731 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002732
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002733 if (Ty->isSigned()) {
Chris Lattnerf01729e2002-11-02 20:54:46 +00002734 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002735 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002736 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
Chris Lattneree352852004-02-29 07:22:16 +00002737 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002738
2739 // Emit the appropriate divide or remainder instruction...
2740 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002741 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002742 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002743 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002744
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002745 // Emit the appropriate divide or remainder instruction...
2746 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2747 }
Chris Lattner06925362002-11-17 21:56:38 +00002748
Chris Lattnerf01729e2002-11-02 20:54:46 +00002749 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002750 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002751
Chris Lattnerf01729e2002-11-02 20:54:46 +00002752 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002753 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002754}
Chris Lattnere2954c82002-11-02 20:04:26 +00002755
Chris Lattner06925362002-11-17 21:56:38 +00002756
Brian Gaekea1719c92002-10-31 23:03:59 +00002757/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2758/// for constant immediate shift values, and for constant immediate
2759/// shift values equal to 1. Even the general case is sort of special,
2760/// because the shift amount has to be in CL, not just any old register.
2761///
Chris Lattner3e130a22003-01-13 00:32:26 +00002762void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002763 MachineBasicBlock::iterator IP = BB->end ();
2764 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2765 I.getOpcode () == Instruction::Shl, I.getType (),
2766 getReg (I));
2767}
2768
2769/// emitShiftOperation - Common code shared between visitShiftInst and
2770/// constant expression support.
2771void ISel::emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002772 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002773 Value *Op, Value *ShiftAmount, bool isLeftShift,
2774 const Type *ResultTy, unsigned DestReg) {
2775 unsigned SrcReg = getReg (Op, MBB, IP);
2776 bool isSigned = ResultTy->isSigned ();
2777 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002778
2779 static const unsigned ConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002780 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2781 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2782 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2783 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002784 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002785
Chris Lattner3e130a22003-01-13 00:32:26 +00002786 static const unsigned NonConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002787 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2788 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2789 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2790 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002791 };
Chris Lattner796df732002-11-02 00:44:25 +00002792
Chris Lattner3e130a22003-01-13 00:32:26 +00002793 // Longs, as usual, are handled specially...
2794 if (Class == cLong) {
2795 // If we have a constant shift, we can generate much more efficient code
2796 // than otherwise...
2797 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002798 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002799 unsigned Amount = CUI->getValue();
2800 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002801 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2802 if (isLeftShift) {
Chris Lattneree352852004-02-29 07:22:16 +00002803 BuildMI(*MBB, IP, Opc[3], 3,
2804 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2805 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002806 } else {
Chris Lattneree352852004-02-29 07:22:16 +00002807 BuildMI(*MBB, IP, Opc[3], 3,
2808 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2809 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002810 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002811 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002812 Amount -= 32;
2813 if (isLeftShift) {
Chris Lattner722070e2004-04-06 03:42:38 +00002814 if (Amount != 0) {
2815 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2816 DestReg + 1).addReg(SrcReg).addImm(Amount);
2817 } else {
2818 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2819 }
2820 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002821 } else {
Chris Lattner722070e2004-04-06 03:42:38 +00002822 if (Amount != 0) {
2823 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2824 DestReg).addReg(SrcReg+1).addImm(Amount);
2825 } else {
2826 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2827 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002828 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002829 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002830 }
2831 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00002832 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2833
2834 if (!isLeftShift && isSigned) {
2835 // If this is a SHR of a Long, then we need to do funny sign extension
2836 // stuff. TmpReg gets the value to use as the high-part if we are
2837 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002838 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00002839 } else {
2840 // Other shifts use a fixed zero value if the shift is more than 32
2841 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002842 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00002843 }
2844
2845 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002846 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002847 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002848
2849 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2850 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2851 if (isLeftShift) {
2852 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002853 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00002854 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002855 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002856 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002857
2858 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002859 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002860
2861 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002862 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002863 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2864 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002865 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002866 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002867 } else {
2868 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002869 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00002870 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00002871 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002872 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00002873 .addReg(SrcReg+1);
2874
2875 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002876 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002877
2878 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002879 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002880 DestReg).addReg(TmpReg2).addReg(TmpReg3);
2881
2882 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002883 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002884 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
2885 }
Brian Gaekea1719c92002-10-31 23:03:59 +00002886 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002887 return;
2888 }
Chris Lattnere9913f22002-11-02 01:41:55 +00002889
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002890 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002891 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2892 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002893
Chris Lattner3e130a22003-01-13 00:32:26 +00002894 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002895 BuildMI(*MBB, IP, Opc[Class], 2,
2896 DestReg).addReg(SrcReg).addImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00002897 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002898 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002899 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002900
Chris Lattner3e130a22003-01-13 00:32:26 +00002901 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002902 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002903 }
2904}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002905
Chris Lattner3e130a22003-01-13 00:32:26 +00002906
Chris Lattner6fc3c522002-11-17 21:11:55 +00002907/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00002908/// instruction. The load and store instructions are the only place where we
2909/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00002910///
2911void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002912 // Check to see if this load instruction is going to be folded into a binary
2913 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
2914 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00002915 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002916 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002917 Instruction *User = cast<Instruction>(I.use_back());
2918 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002919 case Instruction::Cast:
2920 // If this is a cast from a signed-integer type to a floating point type,
2921 // fold the cast here.
John Criswell6b5bd582004-06-09 15:18:51 +00002922 if (getClassB(User->getType()) == cFP &&
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002923 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
2924 I.getType() == Type::LongTy)) {
2925 unsigned DestReg = getReg(User);
2926 static const unsigned Opcode[] = {
2927 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
2928 };
Chris Lattner9f1b5312004-05-13 15:12:43 +00002929
2930 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
2931 unsigned FI = getFixedSizedAllocaFI(AI);
2932 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
2933 } else {
2934 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2935 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2936 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg),
2937 BaseReg, Scale, IndexReg, Disp);
2938 }
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002939 return;
2940 } else {
2941 User = 0;
2942 }
2943 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00002944
Chris Lattner7dee5da2004-03-08 01:58:35 +00002945 case Instruction::Add:
2946 case Instruction::Sub:
2947 case Instruction::And:
2948 case Instruction::Or:
2949 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002950 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002951 break;
Chris Lattner95157f72004-04-11 22:05:45 +00002952 case Instruction::Mul:
2953 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00002954 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002955 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00002956 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002957 }
2958
2959 if (User) {
2960 // Okay, we found a user. If the load is the first operand and there is
2961 // no second operand load, reverse the operand ordering. Note that this
2962 // can fail for a subtract (ie, no change will be made).
2963 if (!isa<LoadInst>(User->getOperand(1)))
2964 cast<BinaryOperator>(User)->swapOperands();
2965
2966 // Okay, now that everything is set up, if this load is used by the second
2967 // operand, and if there are no instructions that invalidate the load
2968 // before the binary operator, eliminate the load.
2969 if (User->getOperand(1) == &I &&
2970 isSafeToFoldLoadIntoInstruction(I, *User))
2971 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00002972
2973 // If this is a floating point sub or div, we won't be able to swap the
2974 // operands, but we will still be able to eliminate the load.
2975 if (Class == cFP && User->getOperand(0) == &I &&
2976 !isa<LoadInst>(User->getOperand(1)) &&
2977 (User->getOpcode() == Instruction::Sub ||
2978 User->getOpcode() == Instruction::Div) &&
2979 isSafeToFoldLoadIntoInstruction(I, *User))
2980 return; // Eliminate the load!
Chris Lattner7dee5da2004-03-08 01:58:35 +00002981 }
2982 }
2983
Chris Lattner6ac1d712003-10-20 04:48:06 +00002984 static const unsigned Opcodes[] = {
Chris Lattner9f1b5312004-05-13 15:12:43 +00002985 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
Chris Lattner3e130a22003-01-13 00:32:26 +00002986 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00002987 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002988 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00002989
2990 unsigned DestReg = getReg(I);
2991
2992 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
2993 unsigned FI = getFixedSizedAllocaFI(AI);
2994 if (Class == cLong) {
2995 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
2996 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
2997 } else {
2998 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
2999 }
3000 } else {
3001 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
3002 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
3003
3004 if (Class == cLong) {
3005 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
3006 BaseReg, Scale, IndexReg, Disp);
3007 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
3008 BaseReg, Scale, IndexReg, Disp+4);
3009 } else {
3010 addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
3011 BaseReg, Scale, IndexReg, Disp);
3012 }
3013 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003014}
3015
Chris Lattner6fc3c522002-11-17 21:11:55 +00003016/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
3017/// instruction.
3018///
3019void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003020 unsigned BaseReg = ~0U, Scale = ~0U, IndexReg = ~0U, Disp = ~0U;
3021 unsigned AllocaFrameIdx = ~0U;
3022
3023 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(1)))
3024 AllocaFrameIdx = getFixedSizedAllocaFI(AI);
3025 else
3026 getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003027
Chris Lattner6c09db22003-10-20 04:11:23 +00003028 const Type *ValTy = I.getOperand(0)->getType();
3029 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00003030
Chris Lattner5a830962004-02-25 02:56:58 +00003031 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3032 uint64_t Val = CI->getRawValue();
3033 if (Class == cLong) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003034 if (AllocaFrameIdx != ~0U) {
3035 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3036 AllocaFrameIdx).addImm(Val & ~0U);
3037 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3038 AllocaFrameIdx, 4).addImm(Val>>32);
3039 } else {
3040 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3041 BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
3042 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3043 BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
3044 }
Chris Lattner5a830962004-02-25 02:56:58 +00003045 } else {
3046 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003047 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00003048 };
3049 unsigned Opcode = Opcodes[Class];
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003050 if (AllocaFrameIdx != ~0U)
Chris Lattner9f1b5312004-05-13 15:12:43 +00003051 addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003052 else
Chris Lattner9f1b5312004-05-13 15:12:43 +00003053 addFullAddress(BuildMI(BB, Opcode, 5),
3054 BaseReg, Scale, IndexReg, Disp).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00003055 }
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003056 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
3057 if (AllocaFrameIdx != ~0U)
3058 addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(0);
3059 else
3060 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3061 BaseReg, Scale, IndexReg, Disp).addImm(0);
3062
Chris Lattner5a830962004-02-25 02:56:58 +00003063 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003064 if (AllocaFrameIdx != ~0U)
3065 addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
3066 AllocaFrameIdx).addImm(CB->getValue());
3067 else
3068 addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
3069 BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00003070 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3071 // Store constant FP values with integer instructions to avoid having to
3072 // load the constants from the constant pool then do a store.
3073 if (CFP->getType() == Type::FloatTy) {
3074 union {
3075 unsigned I;
3076 float F;
3077 } V;
3078 V.F = CFP->getValue();
Chris Lattner9f1b5312004-05-13 15:12:43 +00003079 if (AllocaFrameIdx != ~0U)
3080 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3081 AllocaFrameIdx).addImm(V.I);
3082 else
3083 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3084 BaseReg, Scale, IndexReg, Disp).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00003085 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00003086 union {
3087 uint64_t I;
3088 double F;
3089 } V;
3090 V.F = CFP->getValue();
Chris Lattner9f1b5312004-05-13 15:12:43 +00003091 if (AllocaFrameIdx != ~0U) {
3092 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3093 AllocaFrameIdx).addImm((unsigned)V.I);
3094 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3095 AllocaFrameIdx, 4).addImm(unsigned(V.I >> 32));
3096 } else {
3097 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3098 BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I);
3099 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3100 BaseReg, Scale, IndexReg, Disp+4).addImm(
Chris Lattnere7a31c92004-05-07 21:18:15 +00003101 unsigned(V.I >> 32));
Chris Lattner9f1b5312004-05-13 15:12:43 +00003102 }
Chris Lattner5a830962004-02-25 02:56:58 +00003103 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003104
3105 } else if (Class == cLong) {
3106 unsigned ValReg = getReg(I.getOperand(0));
Chris Lattner9f1b5312004-05-13 15:12:43 +00003107 if (AllocaFrameIdx != ~0U) {
3108 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
3109 AllocaFrameIdx).addReg(ValReg);
3110 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
3111 AllocaFrameIdx, 4).addReg(ValReg+1);
3112 } else {
3113 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
3114 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
3115 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
3116 BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
3117 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003118 } else {
3119 unsigned ValReg = getReg(I.getOperand(0));
3120 static const unsigned Opcodes[] = {
3121 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3122 };
3123 unsigned Opcode = Opcodes[Class];
3124 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003125
3126 if (AllocaFrameIdx != ~0U)
3127 addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addReg(ValReg);
3128 else
3129 addFullAddress(BuildMI(BB, Opcode, 1+4),
3130 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003131 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00003132}
3133
3134
Misha Brukman538607f2004-03-01 23:53:11 +00003135/// visitCastInst - Here we have various kinds of copying with or without sign
3136/// extension going on.
3137///
Chris Lattner3e130a22003-01-13 00:32:26 +00003138void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003139 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00003140
Chris Lattner99382862004-04-12 00:23:04 +00003141 unsigned SrcClass = getClassB(Op->getType());
3142 unsigned DestClass = getClassB(CI.getType());
3143 // Noop casts are not emitted: getReg will return the source operand as the
3144 // register to use for any uses of the noop cast.
3145 if (DestClass == SrcClass)
Chris Lattner427aeb42004-04-11 19:21:59 +00003146 return;
3147
Chris Lattnerf5854472003-06-21 16:01:24 +00003148 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3149 // of the case are GEP instructions, then the cast does not need to be
3150 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00003151 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003152 bool AllUsesAreGEPs = true;
3153 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3154 if (!isa<GetElementPtrInst>(*I)) {
3155 AllUsesAreGEPs = false;
3156 break;
3157 }
3158
3159 // No need to codegen this cast if all users are getelementptr instrs...
3160 if (AllUsesAreGEPs) return;
3161 }
3162
Chris Lattner99382862004-04-12 00:23:04 +00003163 // If this cast converts a load from a short,int, or long integer to a FP
3164 // value, we will have folded this cast away.
3165 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3166 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3167 Op->getType() == Type::LongTy))
3168 return;
3169
3170
Chris Lattner548f61d2003-04-23 17:22:12 +00003171 unsigned DestReg = getReg(CI);
3172 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00003173 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00003174}
3175
Misha Brukman538607f2004-03-01 23:53:11 +00003176/// emitCastOperation - Common code shared between visitCastInst and constant
3177/// expression cast support.
3178///
Chris Lattner548f61d2003-04-23 17:22:12 +00003179void ISel::emitCastOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003180 MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +00003181 Value *Src, const Type *DestTy,
3182 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003183 const Type *SrcTy = Src->getType();
3184 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00003185 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003186 unsigned SrcReg = getReg(Src, BB, IP);
3187
Chris Lattner3e130a22003-01-13 00:32:26 +00003188 // Implement casts to bool by using compare on the operand followed by set if
3189 // not zero on the result.
3190 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00003191 switch (SrcClass) {
3192 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003193 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003194 break;
3195 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003196 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003197 break;
3198 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003199 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003200 break;
3201 case cLong: {
3202 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003203 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003204 break;
3205 }
3206 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003207 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003208 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003209 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003210 break;
Chris Lattner20772542003-06-01 03:38:24 +00003211 }
3212
3213 // If the zero flag is not set, then the value is true, set the byte to
3214 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003215 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003216 return;
3217 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003218
3219 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003220 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003221 };
3222
3223 // Implement casts between values of the same type class (as determined by
3224 // getClass) by using a register-to-register move.
3225 if (SrcClass == DestClass) {
3226 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003227 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003228 } else if (SrcClass == cFP) {
3229 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003230 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003231 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003232 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003233 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3234 "Unknown cFP member!");
3235 // Truncate from double to float by storing to memory as short, then
3236 // reading it back.
3237 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003238 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003239 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3240 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003241 }
3242 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003243 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3244 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003245 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003246 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003247 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003248 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003249 return;
3250 }
3251
3252 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3253 // or zero extension, depending on whether the source type was signed.
3254 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3255 SrcClass < DestClass) {
3256 bool isLong = DestClass == cLong;
3257 if (isLong) DestClass = cInt;
3258
3259 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003260 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3261 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003262 };
3263
Chris Lattner96e3b422004-05-09 22:28:45 +00003264 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003265 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003266 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003267
3268 if (isLong) { // Handle upper 32 bits as appropriate...
3269 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003270 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003271 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003272 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003273 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003274 return;
3275 }
3276
3277 // Special case long -> int ...
3278 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003279 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003280 return;
3281 }
3282
3283 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3284 // move out of AX or AL.
3285 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3286 && SrcClass > DestClass) {
3287 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003288 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3289 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003290 return;
3291 }
3292
3293 // Handle casts from integer to floating point now...
3294 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003295 // Promote the integer to a type supported by FLD. We do this because there
3296 // are no unsigned FLD instructions, so we must promote an unsigned value to
3297 // a larger signed value, then use FLD on the larger value.
3298 //
3299 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003300 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003301 unsigned RealDestReg = DestReg;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003302 switch (SrcTy->getPrimitiveID()) {
3303 case Type::BoolTyID:
3304 case Type::SByteTyID:
3305 // We don't have the facilities for directly loading byte sized data from
3306 // memory (even signed). Promote it to 16 bits.
3307 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003308 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003309 break;
3310 case Type::UByteTyID:
3311 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003312 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003313 break;
3314 case Type::UShortTyID:
3315 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003316 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003317 break;
3318 case Type::UIntTyID: {
3319 // Make a 64 bit temporary... and zero out the top of it...
3320 unsigned TmpReg = makeAnotherReg(Type::LongTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003321 BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
3322 BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003323 SrcTy = Type::LongTy;
3324 SrcClass = cLong;
3325 SrcReg = TmpReg;
3326 break;
3327 }
3328 case Type::ULongTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003329 // Don't fild into the read destination.
3330 DestReg = makeAnotherReg(Type::DoubleTy);
3331 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003332 default: // No promotion needed...
3333 break;
3334 }
3335
3336 if (PromoteType) {
3337 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003338 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003339 SrcTy = PromoteType;
3340 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003341 SrcReg = TmpReg;
3342 }
3343
3344 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003345 int FrameIdx =
3346 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003347
3348 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003349 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003350 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003351 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003352 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003353 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003354 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003355 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3356 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003357 }
3358
3359 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003360 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003361 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003362
3363 // We need special handling for unsigned 64-bit integer sources. If the
3364 // input number has the "sign bit" set, then we loaded it incorrectly as a
3365 // negative 64-bit number. In this case, add an offset value.
3366 if (SrcTy == Type::ULongTy) {
3367 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003368 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003369
Chris Lattnerb6bac512004-02-25 06:13:04 +00003370 // If the sign bit is set, get a pointer to an offset, otherwise get a
3371 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003372 MachineConstantPool *CP = F->getConstantPool();
3373 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003374 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003375 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003376 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003377 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003378 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3379
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003380 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003381 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003382 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003383 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003384
3385 // Load the constant for an add. FIXME: this could make an 'fadd' that
3386 // reads directly from memory, but we don't support these yet.
3387 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003388 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003389
Chris Lattneree352852004-02-29 07:22:16 +00003390 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3391 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003392 }
3393
Chris Lattner3e130a22003-01-13 00:32:26 +00003394 return;
3395 }
3396
3397 // Handle casts from floating point to integer now...
3398 if (SrcClass == cFP) {
3399 // Change the floating point control register to use "round towards zero"
3400 // mode when truncating to an integer value.
3401 //
3402 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003403 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003404
3405 // Load the old value of the high byte of the control word...
3406 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003407 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003408 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003409
3410 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003411 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003412 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003413
3414 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003415 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003416
3417 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003418 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003419 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003420
3421 // We don't have the facilities for directly storing byte sized data to
3422 // memory. Promote it to 16 bits. We also must promote unsigned values to
3423 // larger classes because we only have signed FP stores.
3424 unsigned StoreClass = DestClass;
3425 const Type *StoreTy = DestTy;
3426 if (StoreClass == cByte || DestTy->isUnsigned())
3427 switch (StoreClass) {
3428 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3429 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3430 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003431 // The following treatment of cLong may not be perfectly right,
3432 // but it survives chains of casts of the form
3433 // double->ulong->double.
3434 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003435 default: assert(0 && "Unknown store class!");
3436 }
3437
3438 // Spill the integer to memory and reload it from there...
3439 int FrameIdx =
3440 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3441
3442 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003443 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003444 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3445 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003446
3447 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003448 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3449 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003450 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003451 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003452 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003453 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003454 }
3455
3456 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003457 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003458 return;
3459 }
3460
Brian Gaeked474e9c2002-12-06 10:49:33 +00003461 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003462 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003463 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003464}
Brian Gaekea1719c92002-10-31 23:03:59 +00003465
Chris Lattner73815062003-10-18 05:56:40 +00003466/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003467///
Chris Lattner73815062003-10-18 05:56:40 +00003468void ISel::visitVANextInst(VANextInst &I) {
3469 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003470 unsigned DestReg = getReg(I);
3471
Chris Lattnereca195e2003-05-08 19:44:13 +00003472 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00003473 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003474 default:
3475 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003476 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003477 return;
3478 case Type::PointerTyID:
3479 case Type::UIntTyID:
3480 case Type::IntTyID:
3481 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003482 break;
3483 case Type::ULongTyID:
3484 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003485 case Type::DoubleTyID:
3486 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003487 break;
3488 }
3489
3490 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003491 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003492}
Chris Lattnereca195e2003-05-08 19:44:13 +00003493
Chris Lattner73815062003-10-18 05:56:40 +00003494void ISel::visitVAArgInst(VAArgInst &I) {
3495 unsigned VAList = getReg(I.getOperand(0));
3496 unsigned DestReg = getReg(I);
3497
3498 switch (I.getType()->getPrimitiveID()) {
3499 default:
3500 std::cerr << I;
3501 assert(0 && "Error: bad type for va_next instruction!");
3502 return;
3503 case Type::PointerTyID:
3504 case Type::UIntTyID:
3505 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003506 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003507 break;
3508 case Type::ULongTyID:
3509 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003510 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3511 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003512 break;
3513 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003514 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003515 break;
3516 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003517}
3518
Misha Brukman538607f2004-03-01 23:53:11 +00003519/// visitGetElementPtrInst - instruction-select GEP instructions
3520///
Chris Lattner3e130a22003-01-13 00:32:26 +00003521void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003522 // If this GEP instruction will be folded into all of its users, we don't need
3523 // to explicitly calculate it!
3524 unsigned A, B, C, D;
3525 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
3526 // Check all of the users of the instruction to see if they are loads and
3527 // stores.
3528 bool AllWillFold = true;
3529 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3530 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3531 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3532 cast<Instruction>(*UI)->getOperand(0) == &I) {
3533 AllWillFold = false;
3534 break;
3535 }
3536
3537 // If the instruction is foldable, and will be folded into all users, don't
3538 // emit it!
3539 if (AllWillFold) return;
3540 }
3541
Chris Lattner3e130a22003-01-13 00:32:26 +00003542 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003543 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003544 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003545}
3546
Chris Lattner985fe3d2004-02-25 03:45:50 +00003547/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3548/// GEPTypes (the derived types being stepped through at each level). On return
3549/// from this function, if some indexes of the instruction are representable as
3550/// an X86 lea instruction, the machine operands are put into the Ops
3551/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3552/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3553/// addressing mode that only partially consumes the input, the BaseReg input of
3554/// the addressing mode must be left free.
3555///
3556/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3557///
Chris Lattnerb6bac512004-02-25 06:13:04 +00003558void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
3559 std::vector<Value*> &GEPOps,
3560 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
3561 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
3562 const TargetData &TD = TM.getTargetData();
3563
Chris Lattner985fe3d2004-02-25 03:45:50 +00003564 // Clear out the state we are working with...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003565 BaseReg = 0; // No base register
3566 Scale = 1; // Unit scale
3567 IndexReg = 0; // No index register
3568 Disp = 0; // No displacement
3569
Chris Lattner985fe3d2004-02-25 03:45:50 +00003570 // While there are GEP indexes that can be folded into the current address,
3571 // keep processing them.
3572 while (!GEPTypes.empty()) {
3573 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3574 // It's a struct access. CUI is the index into the structure,
3575 // which names the field. This index must have unsigned type.
3576 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3577
3578 // Use the TargetData structure to pick out what the layout of the
3579 // structure is in memory. Since the structure index must be constant, we
3580 // can get its value and use it to find the right byte offset from the
3581 // StructLayout class's list of structure member offsets.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003582 Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003583 GEPOps.pop_back(); // Consume a GEP operand
3584 GEPTypes.pop_back();
3585 } else {
3586 // It's an array or pointer access: [ArraySize x ElementType].
3587 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3588 Value *idx = GEPOps.back();
3589
3590 // idx is the index into the array. Unlike with structure
3591 // indices, we may not know its actual value at code-generation
3592 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003593
3594 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003595 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003596 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003597 Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003598 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3599 Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003600 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003601 // If the index reg is already taken, we can't handle this index.
3602 if (IndexReg) return;
3603
3604 // If this is a size that we can handle, then add the index as
3605 switch (TypeSize) {
3606 case 1: case 2: case 4: case 8:
3607 // These are all acceptable scales on X86.
3608 Scale = TypeSize;
3609 break;
3610 default:
3611 // Otherwise, we can't handle this scale
3612 return;
3613 }
3614
3615 if (CastInst *CI = dyn_cast<CastInst>(idx))
3616 if (CI->getOperand(0)->getType() == Type::IntTy ||
3617 CI->getOperand(0)->getType() == Type::UIntTy)
3618 idx = CI->getOperand(0);
3619
3620 IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003621 }
3622
3623 GEPOps.pop_back(); // Consume a GEP operand
3624 GEPTypes.pop_back();
3625 }
3626 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003627
Chris Lattnerdf040972004-05-23 21:23:12 +00003628 // GEPTypes is empty, which means we have a single operand left. Set it as
3629 // the base register.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003630 //
Chris Lattnerb6bac512004-02-25 06:13:04 +00003631 assert(BaseReg == 0);
Chris Lattnerdf040972004-05-23 21:23:12 +00003632
3633#if 0 // FIXME: TODO!
3634 if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
3635 // FIXME: When we can add FrameIndex values as the first operand, we can
3636 // make GEP's of allocas MUCH more efficient!
3637 unsigned FI = getFixedSizedAllocaFI(AI);
3638 GEPOps.pop_back();
3639 return;
3640 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
3641 // FIXME: When addressing modes are more powerful/correct, we could load
3642 // global addresses directly as 32-bit immediates.
3643 }
3644#endif
3645
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003646 BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003647 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003648}
3649
3650
Chris Lattnerb6bac512004-02-25 06:13:04 +00003651/// isGEPFoldable - Return true if the specified GEP can be completely
3652/// folded into the addressing mode of a load/store or lea instruction.
3653bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
3654 Value *Src, User::op_iterator IdxBegin,
3655 User::op_iterator IdxEnd, unsigned &BaseReg,
3656 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003657 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3658 Src = CPR->getValue();
3659
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003660 std::vector<Value*> GEPOps;
3661 GEPOps.resize(IdxEnd-IdxBegin+1);
3662 GEPOps[0] = Src;
3663 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3664
Chris Lattnerdf040972004-05-23 21:23:12 +00003665 std::vector<const Type*>
3666 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3667 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003668
Chris Lattnerb6bac512004-02-25 06:13:04 +00003669 MachineBasicBlock::iterator IP;
3670 if (MBB) IP = MBB->end();
3671 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
3672
3673 // We can fold it away iff the getGEPIndex call eliminated all operands.
3674 return GEPOps.empty();
3675}
3676
3677void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3678 MachineBasicBlock::iterator IP,
3679 Value *Src, User::op_iterator IdxBegin,
3680 User::op_iterator IdxEnd, unsigned TargetReg) {
3681 const TargetData &TD = TM.getTargetData();
3682 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3683 Src = CPR->getValue();
3684
3685 std::vector<Value*> GEPOps;
3686 GEPOps.resize(IdxEnd-IdxBegin+1);
3687 GEPOps[0] = Src;
3688 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3689
3690 std::vector<const Type*> GEPTypes;
3691 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3692 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003693
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003694 // Keep emitting instructions until we consume the entire GEP instruction.
3695 while (!GEPOps.empty()) {
3696 unsigned OldSize = GEPOps.size();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003697 unsigned BaseReg, Scale, IndexReg, Disp;
3698 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003699
Chris Lattner985fe3d2004-02-25 03:45:50 +00003700 if (GEPOps.size() != OldSize) {
3701 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003702 unsigned NextTarget = 0;
3703 if (!GEPOps.empty()) {
3704 assert(BaseReg == 0 &&
3705 "getGEPIndex should have left the base register open for chaining!");
3706 NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003707 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003708
3709 if (IndexReg == 0 && Disp == 0)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003710 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003711 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003712 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003713 BaseReg, Scale, IndexReg, Disp);
3714 --IP;
3715 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003716 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003717 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3718 // all operands are consumed but the base pointer. If so, just load it
3719 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003720 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003721 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003722 } else {
3723 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003724 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003725 }
3726 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003727
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003728 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003729 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003730 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3731 Value *idx = GEPOps.back();
3732 GEPOps.pop_back(); // Consume a GEP operand
3733 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003734
Chris Lattner28977af2004-04-05 01:30:19 +00003735 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003736 // operand on X86. Handle this case directly now...
3737 if (CastInst *CI = dyn_cast<CastInst>(idx))
3738 if (CI->getOperand(0)->getType() == Type::IntTy ||
3739 CI->getOperand(0)->getType() == Type::UIntTy)
3740 idx = CI->getOperand(0);
3741
Chris Lattner3e130a22003-01-13 00:32:26 +00003742 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003743 // must find the size of the pointed-to type (Not coincidentally, the next
3744 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003745 const Type *ElTy = SqTy->getElementType();
3746 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003747
3748 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003749 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003750 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003751 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003752 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003753 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003754 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003755 --IP; // Insert the next instruction before this one.
3756 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003757 }
3758 } else if (elementSize == 1) {
3759 // If the element size is 1, we don't have to multiply, just add
3760 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003761 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003762 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003763 --IP; // Insert the next instruction before this one.
3764 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003765 } else {
3766 unsigned idxReg = getReg(idx, MBB, IP);
3767 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003768
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003769 // Make sure we can back the iterator up to point to the first
3770 // instruction emitted.
3771 MachineBasicBlock::iterator BeforeIt = IP;
3772 if (IP == MBB->begin())
3773 BeforeIt = MBB->end();
3774 else
3775 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003776 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3777
Chris Lattner8a307e82002-12-16 19:32:50 +00003778 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003779 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003780 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003781 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003782
3783 // Step to the first instruction of the multiply.
3784 if (BeforeIt == MBB->end())
3785 IP = MBB->begin();
3786 else
3787 IP = ++BeforeIt;
3788
3789 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003790 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003791 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003792 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003793}
3794
Chris Lattner065faeb2002-12-28 20:24:02 +00003795/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3796/// frame manager, otherwise do it the hard way.
3797///
3798void ISel::visitAllocaInst(AllocaInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003799 // If this is a fixed size alloca in the entry block for the function, we
3800 // statically stack allocate the space, so we don't need to do anything here.
3801 //
Chris Lattnercb2fd552004-05-13 07:40:27 +00003802 if (dyn_castFixedAlloca(&I)) return;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003803
Brian Gaekee48ec012002-12-13 06:46:31 +00003804 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003805 const Type *Ty = I.getAllocatedType();
3806 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3807
Chris Lattner065faeb2002-12-28 20:24:02 +00003808 // Create a register to hold the temporary result of multiplying the type size
3809 // constant by the variable amount.
3810 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3811 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003812
3813 // TotalSizeReg = mul <numelements>, <TypeSize>
3814 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003815 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003816
3817 // AddedSize = add <TotalSizeReg>, 15
3818 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003819 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003820
3821 // AlignedSize = and <AddedSize>, ~15
3822 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003823 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003824
Brian Gaekee48ec012002-12-13 06:46:31 +00003825 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003826 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003827
Brian Gaekee48ec012002-12-13 06:46:31 +00003828 // Put a pointer to the space into the result register, by copying
3829 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003830 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003831
Misha Brukman48196b32003-05-03 02:18:17 +00003832 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003833 // object.
3834 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00003835}
Chris Lattner3e130a22003-01-13 00:32:26 +00003836
3837/// visitMallocInst - Malloc instructions are code generated into direct calls
3838/// to the library malloc.
3839///
3840void ISel::visitMallocInst(MallocInst &I) {
3841 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3842 unsigned Arg;
3843
3844 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3845 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3846 } else {
3847 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003848 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00003849 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003850 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00003851 }
3852
3853 std::vector<ValueRecord> Args;
3854 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3855 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003856 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003857 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3858}
3859
3860
3861/// visitFreeInst - Free instructions are code gen'd to call the free libc
3862/// function.
3863///
3864void ISel::visitFreeInst(FreeInst &I) {
3865 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00003866 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00003867 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003868 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003869 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3870}
3871
Chris Lattnerd281de22003-07-26 23:49:58 +00003872/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00003873/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00003874/// generated code sucks but the implementation is nice and simple.
3875///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00003876FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
3877 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00003878}