Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 2 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 7 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the TargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Target/TargetLowering.h" |
Owen Anderson | 07000c6 | 2006-05-12 06:33:49 +0000 | [diff] [blame^] | 15 | #include "llvm/Target/TargetData.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 16 | #include "llvm/Target/TargetMachine.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 17 | #include "llvm/Target/MRegisterInfo.h" |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 18 | #include "llvm/DerivedTypes.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 19 | #include "llvm/CodeGen/SelectionDAG.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/StringExtras.h" |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 21 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 22 | using namespace llvm; |
| 23 | |
| 24 | TargetLowering::TargetLowering(TargetMachine &tm) |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 25 | : TM(tm), TD(TM.getTargetData()) { |
Evan Cheng | 33143dc | 2006-03-03 06:58:59 +0000 | [diff] [blame] | 26 | assert(ISD::BUILTIN_OP_END <= 156 && |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 27 | "Fixed size array in TargetLowering is not large enough!"); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 28 | // All operations default to being supported. |
| 29 | memset(OpActions, 0, sizeof(OpActions)); |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 30 | |
Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 31 | IsLittleEndian = TD->isLittleEndian(); |
| 32 | ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType()); |
Chris Lattner | d6e4967 | 2005-01-19 03:36:14 +0000 | [diff] [blame] | 33 | ShiftAmtHandling = Undefined; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 34 | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 35 | memset(TargetDAGCombineArray, 0, |
| 36 | sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0])); |
Evan Cheng | a03a5dc | 2006-02-14 08:38:30 +0000 | [diff] [blame] | 37 | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; |
Reid Spencer | 0f9beca | 2005-08-27 19:09:02 +0000 | [diff] [blame] | 38 | allowUnalignedMemoryAccesses = false; |
Chris Lattner | 8e6be8b | 2005-09-27 22:13:56 +0000 | [diff] [blame] | 39 | UseUnderscoreSetJmpLongJmp = false; |
Nate Begeman | 405e3ec | 2005-10-21 00:02:42 +0000 | [diff] [blame] | 40 | IntDivIsCheap = false; |
| 41 | Pow2DivIsCheap = false; |
Chris Lattner | ee4a765 | 2006-01-25 18:57:15 +0000 | [diff] [blame] | 42 | StackPointerRegisterToSaveRestore = 0; |
Evan Cheng | 0577a22 | 2006-01-25 18:52:42 +0000 | [diff] [blame] | 43 | SchedPreferenceInfo = SchedulingForLatency; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 44 | } |
| 45 | |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 46 | TargetLowering::~TargetLowering() {} |
| 47 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 48 | /// setValueTypeAction - Set the action for a particular value type. This |
| 49 | /// assumes an action has not already been set for this value type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 50 | static void SetValueTypeAction(MVT::ValueType VT, |
| 51 | TargetLowering::LegalizeAction Action, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 52 | TargetLowering &TLI, |
| 53 | MVT::ValueType *TransformToType, |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 54 | TargetLowering::ValueTypeActionImpl &ValueTypeActions) { |
| 55 | ValueTypeActions.setTypeAction(VT, Action); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 56 | if (Action == TargetLowering::Promote) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 57 | MVT::ValueType PromoteTo; |
| 58 | if (VT == MVT::f32) |
| 59 | PromoteTo = MVT::f64; |
| 60 | else { |
| 61 | unsigned LargerReg = VT+1; |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 62 | while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 63 | ++LargerReg; |
| 64 | assert(MVT::isInteger((MVT::ValueType)LargerReg) && |
| 65 | "Nothing to promote to??"); |
| 66 | } |
| 67 | PromoteTo = (MVT::ValueType)LargerReg; |
| 68 | } |
| 69 | |
| 70 | assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) && |
| 71 | MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) && |
| 72 | "Can only promote from int->int or fp->fp!"); |
| 73 | assert(VT < PromoteTo && "Must promote to a larger type!"); |
| 74 | TransformToType[VT] = PromoteTo; |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 75 | } else if (Action == TargetLowering::Expand) { |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 76 | assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 77 | "Cannot expand this type: target must support SOME integer reg!"); |
| 78 | // Expand to the next smaller integer type! |
| 79 | TransformToType[VT] = (MVT::ValueType)(VT-1); |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 84 | /// computeRegisterProperties - Once all of the register classes are added, |
| 85 | /// this allows us to compute derived properties we expose. |
| 86 | void TargetLowering::computeRegisterProperties() { |
Nate Begeman | 6a64861 | 2005-11-29 05:45:29 +0000 | [diff] [blame] | 87 | assert(MVT::LAST_VALUETYPE <= 32 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 88 | "Too many value types for ValueTypeActions to hold!"); |
| 89 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 90 | // Everything defaults to one. |
| 91 | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) |
| 92 | NumElementsForVT[i] = 1; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 93 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 94 | // Find the largest integer register class. |
| 95 | unsigned LargestIntReg = MVT::i128; |
| 96 | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) |
| 97 | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| 98 | |
| 99 | // Every integer value type larger than this largest register takes twice as |
| 100 | // many registers to represent as the previous ValueType. |
| 101 | unsigned ExpandedReg = LargestIntReg; ++LargestIntReg; |
| 102 | for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg) |
| 103 | NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1]; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 104 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 105 | // Inspect all of the ValueType's possible, deciding how to process them. |
| 106 | for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg) |
| 107 | // If we are expanding this type, expand it! |
| 108 | if (getNumElements((MVT::ValueType)IntReg) != 1) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 109 | SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 110 | ValueTypeActions); |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 111 | else if (!isTypeLegal((MVT::ValueType)IntReg)) |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 112 | // Otherwise, if we don't have native support, we must promote to a |
| 113 | // larger type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 114 | SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this, |
| 115 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 116 | else |
| 117 | TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 118 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 119 | // If the target does not have native support for F32, promote it to F64. |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 120 | if (!isTypeLegal(MVT::f32)) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 121 | SetValueTypeAction(MVT::f32, Promote, *this, |
| 122 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 123 | else |
| 124 | TransformToType[MVT::f32] = MVT::f32; |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 125 | |
| 126 | // Set MVT::Vector to always be Expanded |
| 127 | SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, |
| 128 | ValueTypeActions); |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 129 | |
| 130 | // Loop over all of the legal vector value types, specifying an identity type |
| 131 | // transformation. |
| 132 | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; |
Evan Cheng | 677274b | 2006-03-23 23:24:51 +0000 | [diff] [blame] | 133 | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 134 | if (isTypeLegal((MVT::ValueType)i)) |
| 135 | TransformToType[i] = (MVT::ValueType)i; |
| 136 | } |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 137 | |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 138 | assert(isTypeLegal(MVT::f64) && "Target does not support FP?"); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 139 | TransformToType[MVT::f64] = MVT::f64; |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 140 | } |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 141 | |
Evan Cheng | 7226158 | 2005-12-20 06:22:03 +0000 | [diff] [blame] | 142 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 143 | return NULL; |
| 144 | } |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 145 | |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 146 | /// getPackedTypeBreakdown - Packed types are broken down into some number of |
| 147 | /// legal scalar types. For example, <8 x float> maps to 2 MVT::v2f32 values |
| 148 | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| 149 | /// |
| 150 | /// This method returns the number and type of the resultant breakdown. |
| 151 | /// |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 152 | unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy, |
| 153 | MVT::ValueType &PTyElementVT, |
| 154 | MVT::ValueType &PTyLegalElementVT) const { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 155 | // Figure out the right, legal destination reg to copy into. |
| 156 | unsigned NumElts = PTy->getNumElements(); |
| 157 | MVT::ValueType EltTy = getValueType(PTy->getElementType()); |
| 158 | |
| 159 | unsigned NumVectorRegs = 1; |
| 160 | |
| 161 | // Divide the input until we get to a supported size. This will always |
| 162 | // end with a scalar if the target doesn't support vectors. |
| 163 | while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) { |
| 164 | NumElts >>= 1; |
| 165 | NumVectorRegs <<= 1; |
| 166 | } |
| 167 | |
| 168 | MVT::ValueType VT; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 169 | if (NumElts == 1) { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 170 | VT = EltTy; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 171 | } else { |
| 172 | VT = getVectorType(EltTy, NumElts); |
| 173 | } |
| 174 | PTyElementVT = VT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 175 | |
| 176 | MVT::ValueType DestVT = getTypeToTransformTo(VT); |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 177 | PTyLegalElementVT = DestVT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 178 | if (DestVT < VT) { |
| 179 | // Value is expanded, e.g. i64 -> i16. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 180 | return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT)); |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 181 | } else { |
| 182 | // Otherwise, promotion or legal types use the same number of registers as |
| 183 | // the vector decimated to the appropriate level. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 184 | return NumVectorRegs; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 185 | } |
| 186 | |
| 187 | return DestVT; |
| 188 | } |
| 189 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 190 | //===----------------------------------------------------------------------===// |
| 191 | // Optimization Methods |
| 192 | //===----------------------------------------------------------------------===// |
| 193 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 194 | /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| 195 | /// specified instruction is a constant integer. If so, check to see if there |
| 196 | /// are any bits set in the constant that are not demanded. If so, shrink the |
| 197 | /// constant and return true. |
| 198 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, |
| 199 | uint64_t Demanded) { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 200 | // FIXME: ISD::SELECT, ISD::SELECT_CC |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 201 | switch(Op.getOpcode()) { |
| 202 | default: break; |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 203 | case ISD::AND: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 204 | case ISD::OR: |
| 205 | case ISD::XOR: |
| 206 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| 207 | if ((~Demanded & C->getValue()) != 0) { |
| 208 | MVT::ValueType VT = Op.getValueType(); |
| 209 | SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), |
| 210 | DAG.getConstant(Demanded & C->getValue(), |
| 211 | VT)); |
| 212 | return CombineTo(Op, New); |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 213 | } |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 214 | break; |
| 215 | } |
| 216 | return false; |
| 217 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 218 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 219 | /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| 220 | /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| 221 | /// use this information to simplify Op, create a new simplified DAG node and |
| 222 | /// return true, returning the original and new nodes in Old and New. Otherwise, |
| 223 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for |
| 224 | /// the expression (used to simplify the caller). The KnownZero/One bits may |
| 225 | /// only be accurate for those bits in the DemandedMask. |
| 226 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, |
| 227 | uint64_t &KnownZero, |
| 228 | uint64_t &KnownOne, |
| 229 | TargetLoweringOpt &TLO, |
| 230 | unsigned Depth) const { |
| 231 | KnownZero = KnownOne = 0; // Don't know anything. |
| 232 | // Other users may use these bits. |
| 233 | if (!Op.Val->hasOneUse()) { |
| 234 | if (Depth != 0) { |
| 235 | // If not at the root, Just compute the KnownZero/KnownOne bits to |
| 236 | // simplify things downstream. |
| 237 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 238 | return false; |
| 239 | } |
| 240 | // If this is the root being simplified, allow it to have multiple uses, |
| 241 | // just set the DemandedMask to all bits. |
| 242 | DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 243 | } else if (DemandedMask == 0) { |
| 244 | // Not demanding any bits from Op. |
| 245 | if (Op.getOpcode() != ISD::UNDEF) |
| 246 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); |
| 247 | return false; |
| 248 | } else if (Depth == 6) { // Limit search depth. |
| 249 | return false; |
| 250 | } |
| 251 | |
| 252 | uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 253 | switch (Op.getOpcode()) { |
| 254 | case ISD::Constant: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 255 | // We know all of the bits for a constant! |
| 256 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; |
| 257 | KnownZero = ~KnownOne & DemandedMask; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 258 | return false; // Don't fall through, will infinitely loop. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 259 | case ISD::AND: |
Chris Lattner | 81cd355 | 2006-02-27 00:36:27 +0000 | [diff] [blame] | 260 | // If the RHS is a constant, check to see if the LHS would be zero without |
| 261 | // using the bits from the RHS. Below, we use knowledge about the RHS to |
| 262 | // simplify the LHS, here we're using information from the LHS to simplify |
| 263 | // the RHS. |
| 264 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 265 | uint64_t LHSZero, LHSOne; |
| 266 | ComputeMaskedBits(Op.getOperand(0), DemandedMask, |
| 267 | LHSZero, LHSOne, Depth+1); |
| 268 | // If the LHS already has zeros where RHSC does, this and is dead. |
| 269 | if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask)) |
| 270 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 271 | // If any of the set bits in the RHS are known zero on the LHS, shrink |
| 272 | // the constant. |
| 273 | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask)) |
| 274 | return true; |
| 275 | } |
| 276 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 277 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 278 | KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 279 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 280 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 281 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, |
| 282 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 283 | return true; |
| 284 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 285 | |
| 286 | // If all of the demanded bits are known one on one side, return the other. |
| 287 | // These bits cannot contribute to the result of the 'and'. |
| 288 | if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) |
| 289 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 290 | if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) |
| 291 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 292 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 293 | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) |
| 294 | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); |
| 295 | // If the RHS is a constant, see if we can simplify it. |
| 296 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) |
| 297 | return true; |
Chris Lattner | 5f0c658 | 2006-02-27 00:22:28 +0000 | [diff] [blame] | 298 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 299 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 300 | KnownOne &= KnownOne2; |
| 301 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 302 | KnownZero |= KnownZero2; |
| 303 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 304 | case ISD::OR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 305 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 306 | KnownOne, TLO, Depth+1)) |
| 307 | return true; |
| 308 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 309 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, |
| 310 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 311 | return true; |
| 312 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 313 | |
| 314 | // If all of the demanded bits are known zero on one side, return the other. |
| 315 | // These bits cannot contribute to the result of the 'or'. |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 316 | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 317 | return TLO.CombineTo(Op, Op.getOperand(0)); |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 318 | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 319 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 320 | // If all of the potentially set bits on one side are known to be set on |
| 321 | // the other side, just use the 'other' side. |
| 322 | if ((DemandedMask & (~KnownZero) & KnownOne2) == |
| 323 | (DemandedMask & (~KnownZero))) |
| 324 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 325 | if ((DemandedMask & (~KnownZero2) & KnownOne) == |
| 326 | (DemandedMask & (~KnownZero2))) |
| 327 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 328 | // If the RHS is a constant, see if we can simplify it. |
| 329 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 330 | return true; |
| 331 | |
| 332 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 333 | KnownZero &= KnownZero2; |
| 334 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 335 | KnownOne |= KnownOne2; |
| 336 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 337 | case ISD::XOR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 338 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 339 | KnownOne, TLO, Depth+1)) |
| 340 | return true; |
| 341 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 342 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, |
| 343 | KnownOne2, TLO, Depth+1)) |
| 344 | return true; |
| 345 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 346 | |
| 347 | // If all of the demanded bits are known zero on one side, return the other. |
| 348 | // These bits cannot contribute to the result of the 'xor'. |
| 349 | if ((DemandedMask & KnownZero) == DemandedMask) |
| 350 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 351 | if ((DemandedMask & KnownZero2) == DemandedMask) |
| 352 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 353 | |
| 354 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 355 | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 356 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 357 | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 358 | |
| 359 | // If all of the unknown bits are known to be zero on one side or the other |
| 360 | // (but not both) turn this into an *inclusive* or. |
| 361 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 362 | if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) |
| 363 | if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) |
| 364 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), |
| 365 | Op.getOperand(0), |
| 366 | Op.getOperand(1))); |
| 367 | // If all of the demanded bits on one side are known, and all of the set |
| 368 | // bits on that side are also known to be set on the other side, turn this |
| 369 | // into an AND, as we know the bits will be cleared. |
| 370 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 371 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known |
| 372 | if ((KnownOne & KnownOne2) == KnownOne) { |
| 373 | MVT::ValueType VT = Op.getValueType(); |
| 374 | SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); |
| 375 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), |
| 376 | ANDC)); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // If the RHS is a constant, see if we can simplify it. |
| 381 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| 382 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 383 | return true; |
| 384 | |
| 385 | KnownZero = KnownZeroOut; |
| 386 | KnownOne = KnownOneOut; |
| 387 | break; |
| 388 | case ISD::SETCC: |
| 389 | // If we know the result of a setcc has the top bits zero, use this info. |
| 390 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 391 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 392 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 393 | case ISD::SELECT: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 394 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, |
| 395 | KnownOne, TLO, Depth+1)) |
| 396 | return true; |
| 397 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, |
| 398 | KnownOne2, TLO, Depth+1)) |
| 399 | return true; |
| 400 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 401 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 402 | |
| 403 | // If the operands are constants, see if we can simplify them. |
| 404 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 405 | return true; |
| 406 | |
| 407 | // Only known if known in both the LHS and RHS. |
| 408 | KnownOne &= KnownOne2; |
| 409 | KnownZero &= KnownZero2; |
| 410 | break; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 411 | case ISD::SELECT_CC: |
| 412 | if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, |
| 413 | KnownOne, TLO, Depth+1)) |
| 414 | return true; |
| 415 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2, |
| 416 | KnownOne2, TLO, Depth+1)) |
| 417 | return true; |
| 418 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 419 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 420 | |
| 421 | // If the operands are constants, see if we can simplify them. |
| 422 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 423 | return true; |
| 424 | |
| 425 | // Only known if known in both the LHS and RHS. |
| 426 | KnownOne &= KnownOne2; |
| 427 | KnownZero &= KnownZero2; |
| 428 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 429 | case ISD::SHL: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 430 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 431 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(), |
| 432 | KnownZero, KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 433 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 434 | KnownZero <<= SA->getValue(); |
| 435 | KnownOne <<= SA->getValue(); |
| 436 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 437 | } |
| 438 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 439 | case ISD::SRL: |
| 440 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 441 | MVT::ValueType VT = Op.getValueType(); |
| 442 | unsigned ShAmt = SA->getValue(); |
| 443 | |
| 444 | // Compute the new bits that are at the top now. |
| 445 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 446 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 447 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 448 | |
| 449 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 450 | (DemandedMask << ShAmt) & TypeMask, |
| 451 | KnownZero, KnownOne, TLO, Depth+1)) |
| 452 | return true; |
| 453 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 454 | KnownZero &= TypeMask; |
| 455 | KnownOne &= TypeMask; |
| 456 | KnownZero >>= ShAmt; |
| 457 | KnownOne >>= ShAmt; |
| 458 | KnownZero |= HighBits; // high bits known zero. |
| 459 | } |
| 460 | break; |
| 461 | case ISD::SRA: |
| 462 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 463 | MVT::ValueType VT = Op.getValueType(); |
| 464 | unsigned ShAmt = SA->getValue(); |
| 465 | |
| 466 | // Compute the new bits that are at the top now. |
| 467 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 468 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 469 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 470 | |
Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 471 | uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask; |
| 472 | |
| 473 | // If any of the demanded bits are produced by the sign extension, we also |
| 474 | // demand the input sign bit. |
| 475 | if (HighBits & DemandedMask) |
| 476 | InDemandedMask |= MVT::getIntVTSignBit(VT); |
| 477 | |
| 478 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 479 | KnownZero, KnownOne, TLO, Depth+1)) |
| 480 | return true; |
| 481 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 482 | KnownZero &= TypeMask; |
| 483 | KnownOne &= TypeMask; |
| 484 | KnownZero >>= SA->getValue(); |
| 485 | KnownOne >>= SA->getValue(); |
| 486 | |
| 487 | // Handle the sign bits. |
| 488 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 489 | SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. |
| 490 | |
| 491 | // If the input sign bit is known to be zero, or if none of the top bits |
| 492 | // are demanded, turn this into an unsigned shift right. |
| 493 | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { |
| 494 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), |
| 495 | Op.getOperand(1))); |
| 496 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 497 | KnownOne |= HighBits; |
| 498 | } |
| 499 | } |
| 500 | break; |
| 501 | case ISD::SIGN_EXTEND_INREG: { |
| 502 | MVT::ValueType VT = Op.getValueType(); |
| 503 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 504 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 505 | // Sign extension. Compute the demanded bits in the result that are not |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 506 | // present in the input. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 507 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 508 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 509 | // If none of the extended bits are demanded, eliminate the sextinreg. |
| 510 | if (NewBits == 0) |
| 511 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 512 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 513 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 514 | int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); |
| 515 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 516 | // Since the sign extended bits are demanded, we know that the sign |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 517 | // bit is demanded. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 518 | InputDemandedBits |= InSignBit; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 519 | |
| 520 | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| 521 | KnownZero, KnownOne, TLO, Depth+1)) |
| 522 | return true; |
| 523 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 524 | |
| 525 | // If the sign bit of the input is known set or clear, then we know the |
| 526 | // top bits of the result. |
| 527 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 528 | // If the input sign bit is known zero, convert this into a zero extension. |
| 529 | if (KnownZero & InSignBit) |
| 530 | return TLO.CombineTo(Op, |
| 531 | TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT)); |
| 532 | |
| 533 | if (KnownOne & InSignBit) { // Input sign bit known set |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 534 | KnownOne |= NewBits; |
| 535 | KnownZero &= ~NewBits; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 536 | } else { // Input sign bit unknown |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 537 | KnownZero &= ~NewBits; |
| 538 | KnownOne &= ~NewBits; |
| 539 | } |
| 540 | break; |
| 541 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 542 | case ISD::CTTZ: |
| 543 | case ISD::CTLZ: |
| 544 | case ISD::CTPOP: { |
| 545 | MVT::ValueType VT = Op.getValueType(); |
| 546 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 547 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 548 | KnownOne = 0; |
| 549 | break; |
| 550 | } |
| 551 | case ISD::ZEXTLOAD: { |
| 552 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT(); |
| 553 | KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask; |
| 554 | break; |
| 555 | } |
| 556 | case ISD::ZERO_EXTEND: { |
| 557 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 558 | |
| 559 | // If none of the top bits are demanded, convert this into an any_extend. |
| 560 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 561 | if (NewBits == 0) |
| 562 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, |
| 563 | Op.getValueType(), |
| 564 | Op.getOperand(0))); |
| 565 | |
| 566 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 567 | KnownZero, KnownOne, TLO, Depth+1)) |
| 568 | return true; |
| 569 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 570 | KnownZero |= NewBits; |
| 571 | break; |
| 572 | } |
| 573 | case ISD::SIGN_EXTEND: { |
| 574 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 575 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 576 | uint64_t InSignBit = MVT::getIntVTSignBit(InVT); |
| 577 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 578 | |
| 579 | // If none of the top bits are demanded, convert this into an any_extend. |
| 580 | if (NewBits == 0) |
| 581 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(), |
| 582 | Op.getOperand(0))); |
| 583 | |
| 584 | // Since some of the sign extended bits are demanded, we know that the sign |
| 585 | // bit is demanded. |
| 586 | uint64_t InDemandedBits = DemandedMask & InMask; |
| 587 | InDemandedBits |= InSignBit; |
| 588 | |
| 589 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 590 | KnownOne, TLO, Depth+1)) |
| 591 | return true; |
| 592 | |
| 593 | // If the sign bit is known zero, convert this to a zero extend. |
| 594 | if (KnownZero & InSignBit) |
| 595 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, |
| 596 | Op.getValueType(), |
| 597 | Op.getOperand(0))); |
| 598 | |
| 599 | // If the sign bit is known one, the top bits match. |
| 600 | if (KnownOne & InSignBit) { |
| 601 | KnownOne |= NewBits; |
| 602 | KnownZero &= ~NewBits; |
| 603 | } else { // Otherwise, top bits aren't known. |
| 604 | KnownOne &= ~NewBits; |
| 605 | KnownZero &= ~NewBits; |
| 606 | } |
| 607 | break; |
| 608 | } |
| 609 | case ISD::ANY_EXTEND: { |
| 610 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 611 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 612 | KnownZero, KnownOne, TLO, Depth+1)) |
| 613 | return true; |
| 614 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 615 | break; |
| 616 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 617 | case ISD::TRUNCATE: { |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 618 | // Simplify the input, using demanded bit information, and compute the known |
| 619 | // zero/one bits live out. |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 620 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, |
| 621 | KnownZero, KnownOne, TLO, Depth+1)) |
| 622 | return true; |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 623 | |
| 624 | // If the input is only used by this truncate, see if we can shrink it based |
| 625 | // on the known demanded bits. |
| 626 | if (Op.getOperand(0).Val->hasOneUse()) { |
| 627 | SDOperand In = Op.getOperand(0); |
| 628 | switch (In.getOpcode()) { |
| 629 | default: break; |
| 630 | case ISD::SRL: |
| 631 | // Shrink SRL by a constant if none of the high bits shifted in are |
| 632 | // demanded. |
| 633 | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){ |
| 634 | uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType()); |
| 635 | HighBits &= ~MVT::getIntVTBitMask(Op.getValueType()); |
| 636 | HighBits >>= ShAmt->getValue(); |
| 637 | |
| 638 | if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) && |
| 639 | (DemandedMask & HighBits) == 0) { |
| 640 | // None of the shifted in bits are needed. Add a truncate of the |
| 641 | // shift input, then shift it. |
| 642 | SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, |
| 643 | Op.getValueType(), |
| 644 | In.getOperand(0)); |
| 645 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(), |
| 646 | NewTrunc, In.getOperand(1))); |
| 647 | } |
| 648 | } |
| 649 | break; |
| 650 | } |
| 651 | } |
| 652 | |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 653 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 654 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 655 | KnownZero &= OutMask; |
| 656 | KnownOne &= OutMask; |
| 657 | break; |
| 658 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 659 | case ISD::AssertZext: { |
| 660 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 661 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 662 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 663 | KnownZero, KnownOne, TLO, Depth+1)) |
| 664 | return true; |
| 665 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 666 | KnownZero |= ~InMask & DemandedMask; |
| 667 | break; |
| 668 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 669 | case ISD::ADD: |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 670 | case ISD::SUB: |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 671 | case ISD::INTRINSIC_WO_CHAIN: |
| 672 | case ISD::INTRINSIC_W_CHAIN: |
| 673 | case ISD::INTRINSIC_VOID: |
| 674 | // Just use ComputeMaskedBits to compute output bits. |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 675 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 676 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 677 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 678 | |
| 679 | // If we know the value of all of the demanded bits, return this as a |
| 680 | // constant. |
| 681 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) |
| 682 | return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); |
| 683 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 684 | return false; |
| 685 | } |
| 686 | |
| 687 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 688 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 689 | /// for bits that V cannot have. |
| 690 | bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, |
| 691 | unsigned Depth) const { |
| 692 | uint64_t KnownZero, KnownOne; |
| 693 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 694 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 695 | return (KnownZero & Mask) == Mask; |
| 696 | } |
| 697 | |
| 698 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 699 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 700 | /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| 701 | /// processing. |
| 702 | void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, |
| 703 | uint64_t &KnownZero, uint64_t &KnownOne, |
| 704 | unsigned Depth) const { |
| 705 | KnownZero = KnownOne = 0; // Don't know anything. |
| 706 | if (Depth == 6 || Mask == 0) |
| 707 | return; // Limit search depth. |
| 708 | |
| 709 | uint64_t KnownZero2, KnownOne2; |
| 710 | |
| 711 | switch (Op.getOpcode()) { |
| 712 | case ISD::Constant: |
| 713 | // We know all of the bits for a constant! |
| 714 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; |
| 715 | KnownZero = ~KnownOne & Mask; |
| 716 | return; |
| 717 | case ISD::AND: |
| 718 | // If either the LHS or the RHS are Zero, the result is zero. |
| 719 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 720 | Mask &= ~KnownZero; |
| 721 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 722 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 723 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 724 | |
| 725 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 726 | KnownOne &= KnownOne2; |
| 727 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 728 | KnownZero |= KnownZero2; |
| 729 | return; |
| 730 | case ISD::OR: |
| 731 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 732 | Mask &= ~KnownOne; |
| 733 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 734 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 735 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 736 | |
| 737 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 738 | KnownZero &= KnownZero2; |
| 739 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 740 | KnownOne |= KnownOne2; |
| 741 | return; |
| 742 | case ISD::XOR: { |
| 743 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 744 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 745 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 746 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 747 | |
| 748 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 749 | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 750 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 751 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 752 | KnownZero = KnownZeroOut; |
| 753 | return; |
| 754 | } |
| 755 | case ISD::SELECT: |
| 756 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| 757 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| 758 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 759 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 760 | |
| 761 | // Only known if known in both the LHS and RHS. |
| 762 | KnownOne &= KnownOne2; |
| 763 | KnownZero &= KnownZero2; |
| 764 | return; |
| 765 | case ISD::SELECT_CC: |
| 766 | ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| 767 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| 768 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 769 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 770 | |
| 771 | // Only known if known in both the LHS and RHS. |
| 772 | KnownOne &= KnownOne2; |
| 773 | KnownZero &= KnownZero2; |
| 774 | return; |
| 775 | case ISD::SETCC: |
| 776 | // If we know the result of a setcc has the top bits zero, use this info. |
| 777 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 778 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 779 | return; |
| 780 | case ISD::SHL: |
| 781 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 782 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 783 | Mask >>= SA->getValue(); |
| 784 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 785 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 786 | KnownZero <<= SA->getValue(); |
| 787 | KnownOne <<= SA->getValue(); |
| 788 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
| 789 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 790 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 791 | case ISD::SRL: |
| 792 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 793 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 794 | uint64_t HighBits = (1ULL << SA->getValue())-1; |
| 795 | HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue(); |
| 796 | Mask <<= SA->getValue(); |
| 797 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 798 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 799 | KnownZero >>= SA->getValue(); |
| 800 | KnownOne >>= SA->getValue(); |
| 801 | KnownZero |= HighBits; // high bits known zero. |
| 802 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 803 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 804 | case ISD::SRA: |
| 805 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 806 | uint64_t HighBits = (1ULL << SA->getValue())-1; |
| 807 | HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue(); |
| 808 | Mask <<= SA->getValue(); |
| 809 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 810 | assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| 811 | KnownZero >>= SA->getValue(); |
| 812 | KnownOne >>= SA->getValue(); |
| 813 | |
| 814 | // Handle the sign bits. |
| 815 | uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1); |
| 816 | SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. |
| 817 | |
| 818 | if (KnownZero & SignBit) { // New bits are known zero. |
| 819 | KnownZero |= HighBits; |
| 820 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 821 | KnownOne |= HighBits; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 822 | } |
| 823 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 824 | return; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 825 | case ISD::SIGN_EXTEND_INREG: { |
| 826 | MVT::ValueType VT = Op.getValueType(); |
| 827 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 828 | |
| 829 | // Sign extension. Compute the demanded bits in the result that are not |
| 830 | // present in the input. |
| 831 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; |
| 832 | |
| 833 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 834 | int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); |
| 835 | |
| 836 | // If the sign extended bits are demanded, we know that the sign |
| 837 | // bit is demanded. |
| 838 | if (NewBits) |
| 839 | InputDemandedBits |= InSignBit; |
| 840 | |
| 841 | ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, |
| 842 | KnownZero, KnownOne, Depth+1); |
| 843 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 844 | |
| 845 | // If the sign bit of the input is known set or clear, then we know the |
| 846 | // top bits of the result. |
| 847 | if (KnownZero & InSignBit) { // Input sign bit known clear |
| 848 | KnownZero |= NewBits; |
| 849 | KnownOne &= ~NewBits; |
| 850 | } else if (KnownOne & InSignBit) { // Input sign bit known set |
| 851 | KnownOne |= NewBits; |
| 852 | KnownZero &= ~NewBits; |
| 853 | } else { // Input sign bit unknown |
| 854 | KnownZero &= ~NewBits; |
| 855 | KnownOne &= ~NewBits; |
| 856 | } |
| 857 | return; |
| 858 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 859 | case ISD::CTTZ: |
| 860 | case ISD::CTLZ: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 861 | case ISD::CTPOP: { |
| 862 | MVT::ValueType VT = Op.getValueType(); |
| 863 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 864 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 865 | KnownOne = 0; |
| 866 | return; |
| 867 | } |
| 868 | case ISD::ZEXTLOAD: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 869 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT(); |
| 870 | KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 871 | return; |
| 872 | } |
| 873 | case ISD::ZERO_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 874 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 875 | uint64_t NewBits = (~InMask) & Mask; |
| 876 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 877 | KnownOne, Depth+1); |
| 878 | KnownZero |= NewBits & Mask; |
| 879 | KnownOne &= ~NewBits; |
| 880 | return; |
| 881 | } |
| 882 | case ISD::SIGN_EXTEND: { |
| 883 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 884 | unsigned InBits = MVT::getSizeInBits(InVT); |
| 885 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 886 | uint64_t InSignBit = 1ULL << (InBits-1); |
| 887 | uint64_t NewBits = (~InMask) & Mask; |
| 888 | uint64_t InDemandedBits = Mask & InMask; |
| 889 | |
| 890 | // If any of the sign extended bits are demanded, we know that the sign |
| 891 | // bit is demanded. |
| 892 | if (NewBits & Mask) |
| 893 | InDemandedBits |= InSignBit; |
| 894 | |
| 895 | ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 896 | KnownOne, Depth+1); |
| 897 | // If the sign bit is known zero or one, the top bits match. |
| 898 | if (KnownZero & InSignBit) { |
| 899 | KnownZero |= NewBits; |
| 900 | KnownOne &= ~NewBits; |
| 901 | } else if (KnownOne & InSignBit) { |
| 902 | KnownOne |= NewBits; |
| 903 | KnownZero &= ~NewBits; |
| 904 | } else { // Otherwise, top bits aren't known. |
| 905 | KnownOne &= ~NewBits; |
| 906 | KnownZero &= ~NewBits; |
| 907 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 908 | return; |
| 909 | } |
| 910 | case ISD::ANY_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 911 | MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| 912 | ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), |
| 913 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 914 | return; |
| 915 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 916 | case ISD::TRUNCATE: { |
| 917 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 918 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 919 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 920 | KnownZero &= OutMask; |
| 921 | KnownOne &= OutMask; |
| 922 | break; |
| 923 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 924 | case ISD::AssertZext: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 925 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 926 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 927 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 928 | KnownOne, Depth+1); |
| 929 | KnownZero |= (~InMask) & Mask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 930 | return; |
| 931 | } |
| 932 | case ISD::ADD: { |
| 933 | // If either the LHS or the RHS are Zero, the result is zero. |
| 934 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 935 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 936 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 937 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 938 | |
| 939 | // Output known-0 bits are known if clear or set in both the low clear bits |
Chris Lattner | b6b17ff | 2006-03-13 06:42:16 +0000 | [diff] [blame] | 940 | // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| 941 | // low 3 bits clear. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 942 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 943 | CountTrailingZeros_64(~KnownZero2)); |
| 944 | |
| 945 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 946 | KnownOne = 0; |
| 947 | return; |
| 948 | } |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 949 | case ISD::SUB: { |
| 950 | ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| 951 | if (!CLHS) return; |
| 952 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 953 | // We know that the top bits of C-X are clear if X contains less bits |
| 954 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 955 | // positive if we can prove that X is >= 0 and < 16. |
| 956 | MVT::ValueType VT = CLHS->getValueType(0); |
| 957 | if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear |
| 958 | unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); |
| 959 | uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit |
| 960 | MaskV = ~MaskV & MVT::getIntVTBitMask(VT); |
| 961 | ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); |
| 962 | |
| 963 | // If all of the MaskV bits are known to be zero, then we know the output |
| 964 | // top bits are zero, because we now know that the output is from [0-C]. |
| 965 | if ((KnownZero & MaskV) == MaskV) { |
| 966 | unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); |
| 967 | KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. |
| 968 | KnownOne = 0; // No one bits known. |
| 969 | } else { |
| 970 | KnownOne = KnownOne = 0; // Otherwise, nothing known. |
| 971 | } |
| 972 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 973 | return; |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 974 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 975 | default: |
| 976 | // Allow the target to implement this method for its nodes. |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 977 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
| 978 | case ISD::INTRINSIC_WO_CHAIN: |
| 979 | case ISD::INTRINSIC_W_CHAIN: |
| 980 | case ISD::INTRINSIC_VOID: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 981 | computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne); |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 982 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 983 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 984 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 985 | } |
| 986 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 987 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| 988 | /// in Mask are known to be either zero or one and return them in the |
| 989 | /// KnownZero/KnownOne bitsets. |
| 990 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| 991 | uint64_t Mask, |
| 992 | uint64_t &KnownZero, |
| 993 | uint64_t &KnownOne, |
| 994 | unsigned Depth) const { |
Chris Lattner | 1b5232a | 2006-04-02 06:19:46 +0000 | [diff] [blame] | 995 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 996 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 997 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 998 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 999 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 1000 | " is a target node!"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1001 | KnownZero = 0; |
| 1002 | KnownOne = 0; |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 1003 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1004 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1005 | /// ComputeNumSignBits - Return the number of times the sign bit of the |
| 1006 | /// register is replicated into the other bits. We know that at least 1 bit |
| 1007 | /// is always equal to the sign bit (itself), but other cases can give us |
| 1008 | /// information. For example, immediately after an "SRA X, 2", we know that |
| 1009 | /// the top 3 bits are all equal to each other, so we return 3. |
| 1010 | unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ |
| 1011 | MVT::ValueType VT = Op.getValueType(); |
| 1012 | assert(MVT::isInteger(VT) && "Invalid VT!"); |
| 1013 | unsigned VTBits = MVT::getSizeInBits(VT); |
| 1014 | unsigned Tmp, Tmp2; |
| 1015 | |
| 1016 | if (Depth == 6) |
| 1017 | return 1; // Limit search depth. |
| 1018 | |
| 1019 | switch (Op.getOpcode()) { |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1020 | default: break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1021 | case ISD::AssertSext: |
| 1022 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1023 | return VTBits-Tmp+1; |
| 1024 | case ISD::AssertZext: |
| 1025 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1026 | return VTBits-Tmp; |
| 1027 | |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1028 | case ISD::SEXTLOAD: // '17' bits known |
| 1029 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT()); |
| 1030 | return VTBits-Tmp+1; |
| 1031 | case ISD::ZEXTLOAD: // '16' bits known |
| 1032 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT()); |
| 1033 | return VTBits-Tmp; |
| 1034 | |
| 1035 | case ISD::Constant: { |
| 1036 | uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); |
| 1037 | // If negative, invert the bits, then look at it. |
| 1038 | if (Val & MVT::getIntVTSignBit(VT)) |
| 1039 | Val = ~Val; |
| 1040 | |
| 1041 | // Shift the bits so they are the leading bits in the int64_t. |
| 1042 | Val <<= 64-VTBits; |
| 1043 | |
| 1044 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1045 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1046 | return std::min(VTBits, CountLeadingZeros_64(Val)); |
| 1047 | } |
| 1048 | |
| 1049 | case ISD::SIGN_EXTEND: |
| 1050 | Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| 1051 | return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; |
| 1052 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1053 | case ISD::SIGN_EXTEND_INREG: |
| 1054 | // Max of the input and what this extends. |
| 1055 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1056 | Tmp = VTBits-Tmp+1; |
| 1057 | |
| 1058 | Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1059 | return std::max(Tmp, Tmp2); |
| 1060 | |
| 1061 | case ISD::SRA: |
| 1062 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1063 | // SRA X, C -> adds C sign bits. |
| 1064 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1065 | Tmp += C->getValue(); |
| 1066 | if (Tmp > VTBits) Tmp = VTBits; |
| 1067 | } |
| 1068 | return Tmp; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1069 | case ISD::SHL: |
| 1070 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1071 | // shl destroys sign bits. |
| 1072 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1073 | if (C->getValue() >= VTBits || // Bad shift. |
| 1074 | C->getValue() >= Tmp) break; // Shifted all sign bits out. |
| 1075 | return Tmp - C->getValue(); |
| 1076 | } |
| 1077 | break; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1078 | case ISD::AND: |
| 1079 | case ISD::OR: |
| 1080 | case ISD::XOR: // NOT is handled here. |
| 1081 | // Logical binary ops preserve the number of sign bits. |
| 1082 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1083 | if (Tmp == 1) return 1; // Early out. |
| 1084 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1085 | return std::min(Tmp, Tmp2); |
| 1086 | |
| 1087 | case ISD::SELECT: |
| 1088 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1089 | if (Tmp == 1) return 1; // Early out. |
| 1090 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1091 | return std::min(Tmp, Tmp2); |
| 1092 | |
| 1093 | case ISD::SETCC: |
| 1094 | // If setcc returns 0/-1, all bits are sign bits. |
| 1095 | if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult) |
| 1096 | return VTBits; |
| 1097 | break; |
Chris Lattner | e60351b | 2006-05-06 23:40:29 +0000 | [diff] [blame] | 1098 | case ISD::ROTL: |
| 1099 | case ISD::ROTR: |
| 1100 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1101 | unsigned RotAmt = C->getValue() & (VTBits-1); |
| 1102 | |
| 1103 | // Handle rotate right by N like a rotate left by 32-N. |
| 1104 | if (Op.getOpcode() == ISD::ROTR) |
| 1105 | RotAmt = (VTBits-RotAmt) & (VTBits-1); |
| 1106 | |
| 1107 | // If we aren't rotating out all of the known-in sign bits, return the |
| 1108 | // number that are left. This handles rotl(sext(x), 1) for example. |
| 1109 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1110 | if (Tmp > RotAmt+1) return Tmp-RotAmt; |
| 1111 | } |
| 1112 | break; |
| 1113 | case ISD::ADD: |
| 1114 | // Add can have at most one carry bit. Thus we know that the output |
| 1115 | // is, at worst, one more bit than the inputs. |
| 1116 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1117 | if (Tmp == 1) return 1; // Early out. |
| 1118 | |
| 1119 | // Special case decrementing a value (ADD X, -1): |
| 1120 | if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1121 | if (CRHS->isAllOnesValue()) { |
| 1122 | uint64_t KnownZero, KnownOne; |
| 1123 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1124 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 1125 | |
| 1126 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1127 | // sign bits set. |
| 1128 | if ((KnownZero|1) == Mask) |
| 1129 | return VTBits; |
| 1130 | |
| 1131 | // If we are subtracting one from a positive number, there is no carry |
| 1132 | // out of the result. |
| 1133 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1134 | return Tmp; |
| 1135 | } |
| 1136 | |
| 1137 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1138 | if (Tmp2 == 1) return 1; |
| 1139 | return std::min(Tmp, Tmp2)-1; |
| 1140 | break; |
| 1141 | |
| 1142 | case ISD::SUB: |
| 1143 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1144 | if (Tmp2 == 1) return 1; |
| 1145 | |
| 1146 | // Handle NEG. |
| 1147 | if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1148 | if (CLHS->getValue() == 0) { |
| 1149 | uint64_t KnownZero, KnownOne; |
| 1150 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1151 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 1152 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1153 | // sign bits set. |
| 1154 | if ((KnownZero|1) == Mask) |
| 1155 | return VTBits; |
| 1156 | |
| 1157 | // If the input is known to be positive (the sign bit is known clear), |
| 1158 | // the output of the NEG has the same number of sign bits as the input. |
| 1159 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1160 | return Tmp2; |
| 1161 | |
| 1162 | // Otherwise, we treat this like a SUB. |
| 1163 | } |
| 1164 | |
| 1165 | // Sub can have at most one carry bit. Thus we know that the output |
| 1166 | // is, at worst, one more bit than the inputs. |
| 1167 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1168 | if (Tmp == 1) return 1; // Early out. |
| 1169 | return std::min(Tmp, Tmp2)-1; |
| 1170 | break; |
| 1171 | case ISD::TRUNCATE: |
| 1172 | // FIXME: it's tricky to do anything useful for this, but it is an important |
| 1173 | // case for targets like X86. |
| 1174 | break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1175 | } |
| 1176 | |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1177 | // Allow the target to implement this method for its nodes. |
| 1178 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1179 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1180 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1181 | Op.getOpcode() == ISD::INTRINSIC_VOID) { |
| 1182 | unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth); |
| 1183 | if (NumBits > 1) return NumBits; |
| 1184 | } |
| 1185 | |
Chris Lattner | 822db93 | 2006-05-06 23:48:13 +0000 | [diff] [blame] | 1186 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 1187 | // use this information. |
| 1188 | uint64_t KnownZero, KnownOne; |
| 1189 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1190 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 1191 | |
| 1192 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 1193 | if (KnownZero & SignBit) { // SignBit is 0 |
| 1194 | Mask = KnownZero; |
| 1195 | } else if (KnownOne & SignBit) { // SignBit is 1; |
| 1196 | Mask = KnownOne; |
| 1197 | } else { |
| 1198 | // Nothing known. |
| 1199 | return 1; |
| 1200 | } |
| 1201 | |
| 1202 | // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| 1203 | // the number of identical bits in the top of the input value. |
| 1204 | Mask ^= ~0ULL; |
| 1205 | Mask <<= 64-VTBits; |
| 1206 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1207 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1208 | return std::min(VTBits, CountLeadingZeros_64(Mask)); |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1209 | } |
| 1210 | |
| 1211 | |
| 1212 | |
| 1213 | /// ComputeNumSignBitsForTargetNode - This method can be implemented by |
| 1214 | /// targets that want to expose additional information about sign bits to the |
| 1215 | /// DAG Combiner. |
| 1216 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, |
| 1217 | unsigned Depth) const { |
| 1218 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1219 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1220 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1221 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 1222 | "Should use ComputeNumSignBits if you don't know whether Op" |
| 1223 | " is a target node!"); |
| 1224 | return 1; |
| 1225 | } |
| 1226 | |
| 1227 | |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 1228 | SDOperand TargetLowering:: |
| 1229 | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { |
| 1230 | // Default implementation: no optimization. |
| 1231 | return SDOperand(); |
| 1232 | } |
| 1233 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1234 | //===----------------------------------------------------------------------===// |
| 1235 | // Inline Assembler Implementation Methods |
| 1236 | //===----------------------------------------------------------------------===// |
| 1237 | |
| 1238 | TargetLowering::ConstraintType |
| 1239 | TargetLowering::getConstraintType(char ConstraintLetter) const { |
| 1240 | // FIXME: lots more standard ones to handle. |
| 1241 | switch (ConstraintLetter) { |
| 1242 | default: return C_Unknown; |
| 1243 | case 'r': return C_RegisterClass; |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1244 | case 'm': // memory |
| 1245 | case 'o': // offsetable |
| 1246 | case 'V': // not offsetable |
| 1247 | return C_Memory; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1248 | case 'i': // Simple Integer or Relocatable Constant |
| 1249 | case 'n': // Simple Integer |
| 1250 | case 's': // Relocatable Constant |
| 1251 | case 'I': // Target registers. |
| 1252 | case 'J': |
| 1253 | case 'K': |
| 1254 | case 'L': |
| 1255 | case 'M': |
| 1256 | case 'N': |
| 1257 | case 'O': |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1258 | case 'P': |
| 1259 | return C_Other; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | bool TargetLowering::isOperandValidForConstraint(SDOperand Op, |
| 1264 | char ConstraintLetter) { |
| 1265 | switch (ConstraintLetter) { |
| 1266 | default: return false; |
| 1267 | case 'i': // Simple Integer or Relocatable Constant |
| 1268 | case 'n': // Simple Integer |
| 1269 | case 's': // Relocatable Constant |
| 1270 | return true; // FIXME: not right. |
| 1271 | } |
| 1272 | } |
| 1273 | |
| 1274 | |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1275 | std::vector<unsigned> TargetLowering:: |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1276 | getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| 1277 | MVT::ValueType VT) const { |
| 1278 | return std::vector<unsigned>(); |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: |
Chris Lattner | 4217ca8dc | 2006-02-21 23:11:00 +0000 | [diff] [blame] | 1283 | getRegForInlineAsmConstraint(const std::string &Constraint, |
| 1284 | MVT::ValueType VT) const { |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1285 | if (Constraint[0] != '{') |
| 1286 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1287 | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); |
| 1288 | |
| 1289 | // Remove the braces from around the name. |
| 1290 | std::string RegName(Constraint.begin()+1, Constraint.end()-1); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1291 | |
| 1292 | // Figure out which register class contains this reg. |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1293 | const MRegisterInfo *RI = TM.getRegisterInfo(); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1294 | for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), |
| 1295 | E = RI->regclass_end(); RCI != E; ++RCI) { |
| 1296 | const TargetRegisterClass *RC = *RCI; |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1297 | |
| 1298 | // If none of the the value types for this register class are valid, we |
| 1299 | // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| 1300 | bool isLegal = false; |
| 1301 | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| 1302 | I != E; ++I) { |
| 1303 | if (isTypeLegal(*I)) { |
| 1304 | isLegal = true; |
| 1305 | break; |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | if (!isLegal) continue; |
| 1310 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1311 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| 1312 | I != E; ++I) { |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1313 | if (StringsEqualNoCase(RegName, RI->get(*I).Name)) |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1314 | return std::make_pair(*I, RC); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1315 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1316 | } |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1317 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1318 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1319 | } |
Evan Cheng | 30b37b5 | 2006-03-13 23:18:16 +0000 | [diff] [blame] | 1320 | |
| 1321 | //===----------------------------------------------------------------------===// |
| 1322 | // Loop Strength Reduction hooks |
| 1323 | //===----------------------------------------------------------------------===// |
| 1324 | |
| 1325 | /// isLegalAddressImmediate - Return true if the integer value or |
| 1326 | /// GlobalValue can be used as the offset of the target addressing mode. |
| 1327 | bool TargetLowering::isLegalAddressImmediate(int64_t V) const { |
| 1328 | return false; |
| 1329 | } |
| 1330 | bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { |
| 1331 | return false; |
| 1332 | } |