blob: 5bc04424ba7bbb1f2f82686669b142c02a98cf12 [file] [log] [blame]
Misha Brukmancd603132003-06-02 03:28:00 +00001//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner40ead952002-12-02 21:24:12 +00009//
10// This file contains the pass that transforms the X86 machine instructions into
11// actual executable machine code.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnercb533582003-08-03 21:14:38 +000015#define DEBUG_TYPE "jit"
Chris Lattner40ead952002-12-02 21:24:12 +000016#include "X86TargetMachine.h"
Chris Lattnerea1ddab2002-12-03 06:34:06 +000017#include "X86.h"
Chris Lattner40ead952002-12-02 21:24:12 +000018#include "llvm/PassManager.h"
19#include "llvm/CodeGen/MachineCodeEmitter.h"
Chris Lattner5ae99fe2002-12-28 20:24:48 +000020#include "llvm/CodeGen/MachineFunctionPass.h"
Chris Lattner76041ce2002-12-02 21:44:34 +000021#include "llvm/CodeGen/MachineInstr.h"
Chris Lattner655239c2003-12-20 10:20:19 +000022#include "llvm/CodeGen/Passes.h"
Chris Lattnerc01d1232003-10-20 03:42:58 +000023#include "llvm/Function.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000024#include "llvm/Support/Debug.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Config/alloca.h"
Chris Lattner65b05ce2003-12-12 07:11:18 +000027using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000028
Chris Lattner40ead952002-12-02 21:24:12 +000029namespace {
Chris Lattner302de592003-06-06 04:00:05 +000030 Statistic<>
31 NumEmitted("x86-emitter", "Number of machine instructions emitted");
32
Chris Lattner04b0b302003-06-01 23:23:50 +000033 class JITResolver {
34 MachineCodeEmitter &MCE;
35
36 // LazyCodeGenMap - Keep track of call sites for functions that are to be
37 // lazily resolved.
38 std::map<unsigned, Function*> LazyCodeGenMap;
39
40 // LazyResolverMap - Keep track of the lazy resolver created for a
41 // particular function so that we can reuse them if necessary.
42 std::map<Function*, unsigned> LazyResolverMap;
43 public:
44 JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
45 unsigned getLazyResolver(Function *F);
46 unsigned addFunctionReference(unsigned Address, Function *F);
47
48 private:
49 unsigned emitStubForFunction(Function *F);
50 static void CompilationCallback();
51 unsigned resolveFunctionReference(unsigned RetAddr);
52 };
53
Chris Lattner28289702003-12-20 02:03:14 +000054 static JITResolver &getResolver(MachineCodeEmitter &MCE) {
55 static JITResolver *TheJITResolver = 0;
56 if (TheJITResolver == 0)
57 TheJITResolver = new JITResolver(MCE);
58 return *TheJITResolver;
59 }
Chris Lattner04b0b302003-06-01 23:23:50 +000060}
61
Chris Lattner28289702003-12-20 02:03:14 +000062
Chris Lattner1e60a912003-12-20 01:22:19 +000063void *X86JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE) {
Chris Lattner28289702003-12-20 02:03:14 +000064 return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F));
Chris Lattner65b05ce2003-12-12 07:11:18 +000065}
Chris Lattner04b0b302003-06-01 23:23:50 +000066
Chris Lattner1e60a912003-12-20 01:22:19 +000067void X86JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
68 char *OldByte = (char *) Old;
69 *OldByte++ = 0xE9; // Emit JMP opcode.
70 int32_t *OldWord = (int32_t *) OldByte;
71 int32_t NewAddr = (intptr_t) New;
72 int32_t OldAddr = (intptr_t) OldWord;
73 *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
74}
75
Chris Lattner04b0b302003-06-01 23:23:50 +000076/// addFunctionReference - This method is called when we need to emit the
77/// address of a function that has not yet been emitted, so we don't know the
78/// address. Instead, we emit a call to the CompilationCallback method, and
79/// keep track of where we are.
80///
81unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
82 LazyCodeGenMap[Address] = F;
83 return (intptr_t)&JITResolver::CompilationCallback;
84}
85
86unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
87 std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
88 assert(I != LazyCodeGenMap.end() && "Not in map!");
89 Function *F = I->second;
90 LazyCodeGenMap.erase(I);
91 return MCE.forceCompilationOf(F);
92}
93
94unsigned JITResolver::getLazyResolver(Function *F) {
95 std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
96 if (I != LazyResolverMap.end() && I->first == F) return I->second;
97
98//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
99
100 unsigned Stub = emitStubForFunction(F);
101 LazyResolverMap.insert(I, std::make_pair(F, Stub));
102 return Stub;
103}
104
105void JITResolver::CompilationCallback() {
106 unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
Misha Brukmanbc80b222003-06-02 04:13:58 +0000107 unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
Chris Lattner04b0b302003-06-01 23:23:50 +0000108 assert(StackPtr[1] == RetAddr &&
109 "Could not find return address on the stack!");
Chris Lattner30d002b2003-06-06 18:25:33 +0000110
111 // It's a stub if there is an interrupt marker after the call...
112 bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;
Chris Lattner04b0b302003-06-01 23:23:50 +0000113
Chris Lattner302de592003-06-06 04:00:05 +0000114 // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
115 // pointer elimination has been performed. Having a variable sized alloca
116 // disables frame pointer elimination currently, even if it's dead. This is a
117 // gross hack.
118 alloca(10+isStub);
119 // FIXME FIXME FIXME FIXME
120
Chris Lattner04b0b302003-06-01 23:23:50 +0000121 // The call instruction should have pushed the return value onto the stack...
122 RetAddr -= 4; // Backtrack to the reference itself...
123
124#if 0
125 DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
126 << " ESP=0x" << (unsigned)StackPtr << std::dec
127 << ": Resolving call to function: "
128 << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
129#endif
130
131 // Sanity check to make sure this really is a call instruction...
Chris Lattner30d002b2003-06-06 18:25:33 +0000132 assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
Chris Lattner04b0b302003-06-01 23:23:50 +0000133
Chris Lattner28289702003-12-20 02:03:14 +0000134 JITResolver &JR = getResolver(*(MachineCodeEmitter*)0);
135 unsigned NewVal = JR.resolveFunctionReference(RetAddr);
Chris Lattner04b0b302003-06-01 23:23:50 +0000136
137 // Rewrite the call target... so that we don't fault every time we execute
138 // the call.
Chris Lattner30d002b2003-06-06 18:25:33 +0000139 *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;
Chris Lattner04b0b302003-06-01 23:23:50 +0000140
141 if (isStub) {
142 // If this is a stub, rewrite the call into an unconditional branch
143 // instruction so that two return addresses are not pushed onto the stack
144 // when the requested function finally gets called. This also makes the
145 // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
Chris Lattner30d002b2003-06-06 18:25:33 +0000146 ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
Chris Lattner04b0b302003-06-01 23:23:50 +0000147 }
148
149 // Change the return address to reexecute the call instruction...
150 StackPtr[1] -= 5;
151}
152
153/// emitStubForFunction - This method is used by the JIT when it needs to emit
154/// the address of a function for a function whose code has not yet been
155/// generated. In order to do this, it generates a stub which jumps to the lazy
156/// function compiler, which will eventually get fixed to call the function
157/// directly.
158///
159unsigned JITResolver::emitStubForFunction(Function *F) {
160 MCE.startFunctionStub(*F, 6);
161 MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
162
163 unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
164 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
165
166 MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
167 return (intptr_t)MCE.finishFunctionStub(*F);
168}
169
170
Chris Lattner04b0b302003-06-01 23:23:50 +0000171namespace {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000172 class Emitter : public MachineFunctionPass {
173 const X86InstrInfo *II;
Chris Lattner8f04b092002-12-02 21:56:18 +0000174 MachineCodeEmitter &MCE;
Brian Gaeke09015d92004-05-14 06:54:58 +0000175 std::map<const MachineBasicBlock*, unsigned> BasicBlockAddrs;
176 std::vector<std::pair<const MachineBasicBlock *, unsigned> > BBRefs;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000177 public:
Alkis Evlogimenos39c20052004-03-09 03:34:53 +0000178 explicit Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
179 Emitter(MachineCodeEmitter &mce, const X86InstrInfo& ii)
180 : II(&ii), MCE(mce) {}
Chris Lattner40ead952002-12-02 21:24:12 +0000181
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000182 bool runOnMachineFunction(MachineFunction &MF);
Chris Lattner76041ce2002-12-02 21:44:34 +0000183
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000184 virtual const char *getPassName() const {
185 return "X86 Machine Code Emitter";
186 }
187
Alkis Evlogimenos39c20052004-03-09 03:34:53 +0000188 void emitInstruction(const MachineInstr &MI);
189
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000190 private:
Alkis Evlogimenosf6e81562004-03-09 03:30:12 +0000191 void emitBasicBlock(const MachineBasicBlock &MBB);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000192
Brian Gaeke09015d92004-05-14 06:54:58 +0000193 void emitPCRelativeBlockAddress(const MachineBasicBlock *BB);
Chris Lattner04b0b302003-06-01 23:23:50 +0000194 void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative);
195 void emitGlobalAddressForCall(GlobalValue *GV);
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000196 void emitGlobalAddressForPtr(GlobalValue *GV, int Disp = 0);
Chris Lattner04b0b302003-06-01 23:23:50 +0000197
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000198 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
199 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
200 void emitConstant(unsigned Val, unsigned Size);
201
202 void emitMemModRMByte(const MachineInstr &MI,
203 unsigned Op, unsigned RegOpcodeField);
204
Chris Lattner40ead952002-12-02 21:24:12 +0000205 };
206}
207
Misha Brukmanfb0796e2004-09-12 21:26:04 +0000208// This function is required by X86AsmPrinter.cpp to work around GAS bugs
Alkis Evlogimenos39c20052004-03-09 03:34:53 +0000209void llvm::X86::emitInstruction(MachineCodeEmitter& mce,
210 const X86InstrInfo& ii,
211 const MachineInstr& mi)
212{
213 Emitter(mce, ii).emitInstruction(mi);
214}
215
Chris Lattner40ead952002-12-02 21:24:12 +0000216/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
Brian Gaeke45f0b6d2003-10-16 23:45:05 +0000217/// machine code emitted. This uses a MachineCodeEmitter object to handle
Chris Lattner40ead952002-12-02 21:24:12 +0000218/// actually outputting the machine code and resolving things like the address
219/// of functions. This method should returns true if machine code emission is
220/// not supported.
221///
Brian Gaeke8844a0b2003-08-13 18:17:27 +0000222bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
Chris Lattner40ead952002-12-02 21:24:12 +0000223 MachineCodeEmitter &MCE) {
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000224 PM.add(new Emitter(MCE));
Alkis Evlogimenosc81efdc2004-02-15 00:03:15 +0000225 // Delete machine code for this function
226 PM.add(createMachineCodeDeleter());
Chris Lattner40ead952002-12-02 21:24:12 +0000227 return false;
228}
Chris Lattner76041ce2002-12-02 21:44:34 +0000229
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000230bool Emitter::runOnMachineFunction(MachineFunction &MF) {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000231 II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo();
Chris Lattner76041ce2002-12-02 21:44:34 +0000232
233 MCE.startFunction(MF);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000234 MCE.emitConstantPool(MF.getConstantPool());
Chris Lattner76041ce2002-12-02 21:44:34 +0000235 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
236 emitBasicBlock(*I);
237 MCE.finishFunction(MF);
Chris Lattner04b0b302003-06-01 23:23:50 +0000238
239 // Resolve all forward branches now...
240 for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
241 unsigned Location = BasicBlockAddrs[BBRefs[i].first];
242 unsigned Ref = BBRefs[i].second;
Brian Gaekeb61fc832004-04-23 17:11:16 +0000243 MCE.emitWordAt (Location-Ref-4, (unsigned*)(intptr_t)Ref);
Chris Lattner04b0b302003-06-01 23:23:50 +0000244 }
245 BBRefs.clear();
246 BasicBlockAddrs.clear();
Chris Lattner76041ce2002-12-02 21:44:34 +0000247 return false;
248}
249
Alkis Evlogimenosf6e81562004-03-09 03:30:12 +0000250void Emitter::emitBasicBlock(const MachineBasicBlock &MBB) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000251 if (uint64_t Addr = MCE.getCurrentPCValue())
Brian Gaeke09015d92004-05-14 06:54:58 +0000252 BasicBlockAddrs[&MBB] = Addr;
Chris Lattner04b0b302003-06-01 23:23:50 +0000253
Alkis Evlogimenosf6e81562004-03-09 03:30:12 +0000254 for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000255 emitInstruction(*I);
Chris Lattner76041ce2002-12-02 21:44:34 +0000256}
257
Chris Lattner04b0b302003-06-01 23:23:50 +0000258/// emitPCRelativeBlockAddress - This method emits the PC relative address of
259/// the specified basic block, or if the basic block hasn't been emitted yet
260/// (because this is a forward branch), it keeps track of the information
261/// necessary to resolve this address later (and emits a dummy value).
262///
Brian Gaeke09015d92004-05-14 06:54:58 +0000263void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock *MBB) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000264 // FIXME: Emit backward branches directly
Brian Gaeke09015d92004-05-14 06:54:58 +0000265 BBRefs.push_back(std::make_pair(MBB, MCE.getCurrentPCValue()));
266 MCE.emitWord(0);
Chris Lattner04b0b302003-06-01 23:23:50 +0000267}
268
269/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative.
270///
271void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) {
272 if (isPCRelative)
273 MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
274 else
275 MCE.emitWord(Address);
276}
277
278/// emitGlobalAddressForCall - Emit the specified address to the code stream
279/// assuming this is part of a function call, which is PC relative.
280///
281void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
282 // Get the address from the backend...
283 unsigned Address = MCE.getGlobalValueAddress(GV);
284
Chris Lattner04b0b302003-06-01 23:23:50 +0000285 if (Address == 0) {
286 // FIXME: this is JIT specific!
Chris Lattner28289702003-12-20 02:03:14 +0000287 Address = getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(),
288 cast<Function>(GV));
Chris Lattner04b0b302003-06-01 23:23:50 +0000289 }
290 emitMaybePCRelativeValue(Address, true);
291}
292
293/// emitGlobalAddress - Emit the specified address to the code stream assuming
294/// this is part of a "take the address of a global" instruction, which is not
295/// PC relative.
296///
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000297void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, int Disp /* = 0 */) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000298 // Get the address from the backend...
299 unsigned Address = MCE.getGlobalValueAddress(GV);
300
301 // If the machine code emitter doesn't know what the address IS yet, we have
302 // to take special measures.
303 //
304 if (Address == 0) {
305 // FIXME: this is JIT specific!
Chris Lattner28289702003-12-20 02:03:14 +0000306 Address = getResolver(MCE).getLazyResolver((Function*)GV);
Chris Lattner04b0b302003-06-01 23:23:50 +0000307 }
308
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000309 emitMaybePCRelativeValue(Address + Disp, false);
Chris Lattner04b0b302003-06-01 23:23:50 +0000310}
311
312
313
Chris Lattnerff3261a2003-06-03 15:31:23 +0000314/// N86 namespace - Native X86 Register numbers... used by X86 backend.
315///
316namespace N86 {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000317 enum {
318 EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
319 };
320}
321
322
323// getX86RegNum - This function maps LLVM register identifiers to their X86
324// specific numbering, which is used in various places encoding instructions.
325//
326static unsigned getX86RegNum(unsigned RegNo) {
327 switch(RegNo) {
328 case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
329 case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
330 case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
331 case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
332 case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
333 case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
334 case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
335 case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000336
337 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
338 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
339 return RegNo-X86::ST0;
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000340 default:
Alkis Evlogimenos859a18b2004-02-15 21:37:17 +0000341 assert(MRegisterInfo::isVirtualRegister(RegNo) &&
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000342 "Unknown physical register!");
343 assert(0 && "Register allocator hasn't allocated reg correctly yet!");
344 return 0;
345 }
346}
347
348inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
349 unsigned RM) {
350 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
351 return RM | (RegOpcode << 3) | (Mod << 6);
352}
353
354void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
355 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
356}
357
358void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
359 // SIB byte is in the same format as the ModRMByte...
360 MCE.emitByte(ModRMByte(SS, Index, Base));
361}
362
363void Emitter::emitConstant(unsigned Val, unsigned Size) {
364 // Output the constant in little endian byte order...
365 for (unsigned i = 0; i != Size; ++i) {
366 MCE.emitByte(Val & 255);
367 Val >>= 8;
368 }
369}
370
371static bool isDisp8(int Value) {
372 return Value == (signed char)Value;
373}
374
375void Emitter::emitMemModRMByte(const MachineInstr &MI,
376 unsigned Op, unsigned RegOpcodeField) {
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000377 const MachineOperand &Op3 = MI.getOperand(Op+3);
378 GlobalValue *GV = 0;
379 int DispVal = 0;
380
381 if (Op3.isGlobalAddress()) {
382 GV = Op3.getGlobal();
383 DispVal = Op3.getOffset();
384 } else {
385 DispVal = Op3.getImmedValue();
386 }
387
Chris Lattner07306de2004-10-17 07:49:45 +0000388 const MachineOperand &Base = MI.getOperand(Op);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000389 const MachineOperand &Scale = MI.getOperand(Op+1);
390 const MachineOperand &IndexReg = MI.getOperand(Op+2);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000391
Chris Lattner07306de2004-10-17 07:49:45 +0000392 unsigned BaseReg = 0;
393
394 if (Base.isConstantPoolIndex()) {
395 // Emit a direct address reference [disp32] where the displacement of the
396 // constant pool entry is controlled by the MCE.
397 assert(!GV && "Constant Pool reference cannot be relative to global!");
398 DispVal += MCE.getConstantPoolEntryAddress(Base.getConstantPoolIndex());
399 } else {
400 BaseReg = Base.getReg();
401 }
402
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000403 // Is a SIB byte needed?
Chris Lattner07306de2004-10-17 07:49:45 +0000404 if (IndexReg.getReg() == 0 && BaseReg != X86::ESP) {
405 if (BaseReg == 0) { // Just a displacement?
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000406 // Emit special case [disp32] encoding
407 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000408 if (GV)
409 emitGlobalAddressForPtr(GV, DispVal);
410 else
411 emitConstant(DispVal, 4);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000412 } else {
Chris Lattner07306de2004-10-17 07:49:45 +0000413 unsigned BaseRegNo = getX86RegNum(BaseReg);
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000414 if (GV) {
415 // Emit the most general non-SIB encoding: [REG+disp32]
416 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
417 emitGlobalAddressForPtr(GV, DispVal);
418 } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000419 // Emit simple indirect register encoding... [EAX] f.e.
420 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000421 } else if (isDisp8(DispVal)) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000422 // Emit the disp8 encoding... [REG+disp8]
423 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000424 emitConstant(DispVal, 1);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000425 } else {
426 // Emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner20671842002-12-13 05:05:05 +0000427 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000428 emitConstant(DispVal, 4);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000429 }
430 }
431
432 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
433 assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
434
435 bool ForceDisp32 = false;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000436 bool ForceDisp8 = false;
Chris Lattner07306de2004-10-17 07:49:45 +0000437 if (BaseReg == 0) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000438 // If there is no base register, we emit the special case SIB byte with
439 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
440 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
441 ForceDisp32 = true;
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000442 } else if (GV) {
443 // Emit the normal disp32 encoding...
444 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
445 ForceDisp32 = true;
Chris Lattner07306de2004-10-17 07:49:45 +0000446 } else if (DispVal == 0 && BaseReg != X86::EBP) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000447 // Emit no displacement ModR/M byte
448 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000449 } else if (isDisp8(DispVal)) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000450 // Emit the disp8 encoding...
451 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
Brian Gaeke95780cc2002-12-13 07:56:18 +0000452 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000453 } else {
454 // Emit the normal disp32 encoding...
455 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
456 }
457
458 // Calculate what the SS field value should be...
459 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
460 unsigned SS = SSTable[Scale.getImmedValue()];
461
Chris Lattner07306de2004-10-17 07:49:45 +0000462 if (BaseReg == 0) {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000463 // Handle the SIB byte for the case where there is no base. The
464 // displacement has already been output.
465 assert(IndexReg.getReg() && "Index register must be specified!");
466 emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
467 } else {
Chris Lattner07306de2004-10-17 07:49:45 +0000468 unsigned BaseRegNo = getX86RegNum(BaseReg);
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000469 unsigned IndexRegNo;
470 if (IndexReg.getReg())
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000471 IndexRegNo = getX86RegNum(IndexReg.getReg());
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000472 else
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000473 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000474 emitSIBByte(SS, IndexRegNo, BaseRegNo);
475 }
476
477 // Do we need to output a displacement?
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000478 if (DispVal != 0 || ForceDisp32 || ForceDisp8) {
479 if (!ForceDisp32 && isDisp8(DispVal))
480 emitConstant(DispVal, 1);
481 else if (GV)
482 emitGlobalAddressForPtr(GV, DispVal);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000483 else
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000484 emitConstant(DispVal, 4);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000485 }
486 }
487}
488
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000489static unsigned sizeOfImm(const TargetInstrDescriptor &Desc) {
490 switch (Desc.TSFlags & X86II::ImmMask) {
491 case X86II::Imm8: return 1;
492 case X86II::Imm16: return 2;
493 case X86II::Imm32: return 4;
494 default: assert(0 && "Immediate size not set!");
495 return 0;
496 }
497}
498
Alkis Evlogimenosf6e81562004-03-09 03:30:12 +0000499void Emitter::emitInstruction(const MachineInstr &MI) {
Chris Lattner302de592003-06-06 04:00:05 +0000500 NumEmitted++; // Keep track of the # of mi's emitted
501
Chris Lattner76041ce2002-12-02 21:44:34 +0000502 unsigned Opcode = MI.getOpcode();
Chris Lattner3501fea2003-01-14 22:00:31 +0000503 const TargetInstrDescriptor &Desc = II->get(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000504
Chris Lattner915e5e52004-02-12 17:53:22 +0000505 // Emit the repeat opcode prefix as needed.
506 if ((Desc.TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
507
Misha Brukman5560c9d2003-08-18 14:43:39 +0000508 // Emit instruction prefixes if necessary
Chris Lattner76041ce2002-12-02 21:44:34 +0000509 if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
Chris Lattner5ada8df2002-12-25 05:09:21 +0000510
511 switch (Desc.TSFlags & X86II::Op0Mask) {
512 case X86II::TB:
513 MCE.emitByte(0x0F); // Two-byte opcode prefix
514 break;
Chris Lattner915e5e52004-02-12 17:53:22 +0000515 case X86II::REP: break; // already handled.
Chris Lattner5ada8df2002-12-25 05:09:21 +0000516 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
517 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
Chris Lattnere831b6b2003-01-13 00:33:59 +0000518 MCE.emitByte(0xD8+
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000519 (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
520 >> X86II::Op0Shift));
Chris Lattner5ada8df2002-12-25 05:09:21 +0000521 break; // Two-byte opcode prefix
Chris Lattnere831b6b2003-01-13 00:33:59 +0000522 default: assert(0 && "Invalid prefix!");
523 case 0: break; // No prefix!
Chris Lattner5ada8df2002-12-25 05:09:21 +0000524 }
Chris Lattner76041ce2002-12-02 21:44:34 +0000525
Chris Lattner5ae99fe2002-12-28 20:24:48 +0000526 unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
Chris Lattner76041ce2002-12-02 21:44:34 +0000527 switch (Desc.TSFlags & X86II::FormMask) {
Chris Lattnere831b6b2003-01-13 00:33:59 +0000528 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
Chris Lattner5ada8df2002-12-25 05:09:21 +0000529 case X86II::Pseudo:
Alkis Evlogimenose0bb3e72003-12-20 16:22:59 +0000530 if (Opcode != X86::IMPLICIT_USE &&
531 Opcode != X86::IMPLICIT_DEF &&
532 Opcode != X86::FP_REG_KILL)
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000533 std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI;
Chris Lattner5ada8df2002-12-25 05:09:21 +0000534 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000535
Chris Lattner76041ce2002-12-02 21:44:34 +0000536 case X86II::RawFrm:
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000537 MCE.emitByte(BaseOpcode);
Chris Lattner8f04b092002-12-02 21:56:18 +0000538 if (MI.getNumOperands() == 1) {
Alkis Evlogimenosf6e81562004-03-09 03:30:12 +0000539 const MachineOperand &MO = MI.getOperand(0);
Brian Gaeke09015d92004-05-14 06:54:58 +0000540 if (MO.isMachineBasicBlock()) {
541 emitPCRelativeBlockAddress(MO.getMachineBasicBlock());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000542 } else if (MO.isGlobalAddress()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000543 assert(MO.isPCRelative() && "Call target is not PC Relative?");
544 emitGlobalAddressForCall(MO.getGlobal());
Chris Lattnere831b6b2003-01-13 00:33:59 +0000545 } else if (MO.isExternalSymbol()) {
Chris Lattner04b0b302003-06-01 23:23:50 +0000546 unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
547 assert(Address && "Unknown external symbol!");
548 emitMaybePCRelativeValue(Address, MO.isPCRelative());
Chris Lattnere47f4ff2004-04-13 17:18:51 +0000549 } else if (MO.isImmediate()) {
550 emitConstant(MO.getImmedValue(), sizeOfImm(Desc));
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000551 } else {
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000552 assert(0 && "Unknown RawFrm operand!");
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000553 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000554 }
555 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000556
557 case X86II::AddRegFrm:
558 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
559 if (MI.getNumOperands() == 2) {
Alkis Evlogimenosf6e81562004-03-09 03:30:12 +0000560 const MachineOperand &MO1 = MI.getOperand(1);
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000561 if (Value *V = MO1.getVRegValueOrNull()) {
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000562 assert(sizeOfImm(Desc) == 4 &&
563 "Don't know how to emit non-pointer values!");
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000564 emitGlobalAddressForPtr(cast<GlobalValue>(V));
565 } else if (MO1.isGlobalAddress()) {
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000566 assert(sizeOfImm(Desc) == 4 &&
567 "Don't know how to emit non-pointer values!");
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000568 assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000569 emitGlobalAddressForPtr(MO1.getGlobal(), MO1.getOffset());
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000570 } else if (MO1.isExternalSymbol()) {
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000571 assert(sizeOfImm(Desc) == 4 &&
572 "Don't know how to emit non-pointer values!");
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000573 unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
574 assert(Address && "Unknown external symbol!");
575 emitMaybePCRelativeValue(Address, MO1.isPCRelative());
576 } else {
577 emitConstant(MO1.getImmedValue(), sizeOfImm(Desc));
Chris Lattnere831b6b2003-01-13 00:33:59 +0000578 }
579 }
580 break;
581
582 case X86II::MRMDestReg: {
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000583 MCE.emitByte(BaseOpcode);
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000584 emitRegModRMByte(MI.getOperand(0).getReg(),
585 getX86RegNum(MI.getOperand(1).getReg()));
586 if (MI.getNumOperands() == 3)
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000587 emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
Chris Lattner9dedbcc2003-05-06 21:31:47 +0000588 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000589 }
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000590 case X86II::MRMDestMem:
591 MCE.emitByte(BaseOpcode);
592 emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
Chris Lattner42df4612004-07-17 20:26:14 +0000593 if (MI.getNumOperands() == 6)
594 emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc));
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000595 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000596
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000597 case X86II::MRMSrcReg:
598 MCE.emitByte(BaseOpcode);
Chris Lattnerc01d1232003-10-20 03:42:58 +0000599
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000600 emitRegModRMByte(MI.getOperand(1).getReg(),
601 getX86RegNum(MI.getOperand(0).getReg()));
602 if (MI.getNumOperands() == 3)
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000603 emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000604 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000605
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000606 case X86II::MRMSrcMem:
607 MCE.emitByte(BaseOpcode);
Chris Lattner5b672522004-02-17 07:40:44 +0000608 emitMemModRMByte(MI, 1, getX86RegNum(MI.getOperand(0).getReg()));
609 if (MI.getNumOperands() == 2+4)
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000610 emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc));
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000611 break;
612
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000613 case X86II::MRM0r: case X86II::MRM1r:
614 case X86II::MRM2r: case X86II::MRM3r:
615 case X86II::MRM4r: case X86II::MRM5r:
616 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000617 MCE.emitByte(BaseOpcode);
618 emitRegModRMByte(MI.getOperand(0).getReg(),
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000619 (Desc.TSFlags & X86II::FormMask)-X86II::MRM0r);
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000620
Chris Lattnerd9096832002-12-15 08:01:39 +0000621 if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000622 emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), sizeOfImm(Desc));
Chris Lattnerea1ddab2002-12-03 06:34:06 +0000623 }
624 break;
Chris Lattnere831b6b2003-01-13 00:33:59 +0000625
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000626 case X86II::MRM0m: case X86II::MRM1m:
627 case X86II::MRM2m: case X86II::MRM3m:
628 case X86II::MRM4m: case X86II::MRM5m:
629 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattnere831b6b2003-01-13 00:33:59 +0000630 MCE.emitByte(BaseOpcode);
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000631 emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRM0m);
Chris Lattnere831b6b2003-01-13 00:33:59 +0000632
633 if (MI.getNumOperands() == 5) {
Chris Lattnercc0d2f52004-02-17 18:23:55 +0000634 if (MI.getOperand(4).isImmediate())
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000635 emitConstant(MI.getOperand(4).getImmedValue(), sizeOfImm(Desc));
Chris Lattnercc0d2f52004-02-17 18:23:55 +0000636 else if (MI.getOperand(4).isGlobalAddress())
Chris Lattner8cce7cd2004-10-15 04:53:13 +0000637 emitGlobalAddressForPtr(MI.getOperand(4).getGlobal(),
638 MI.getOperand(4).getOffset());
Chris Lattnercc0d2f52004-02-17 18:23:55 +0000639 else
640 assert(0 && "Unknown operand!");
Chris Lattnere831b6b2003-01-13 00:33:59 +0000641 }
642 break;
Chris Lattner76041ce2002-12-02 21:44:34 +0000643 }
644}