blob: 43cec2acb8cdd31444e0913136ace1c4a1dcc249 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000029#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000030#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000031
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032using namespace llvm;
33
Owen Anderson9a184ef2008-01-07 01:35:02 +000034namespace {
35 cl::opt<bool>
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
38 cl::opt<bool>
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
42 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000043 cl::opt<bool>
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000047}
48
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000219 std::make_pair(RegOp,
220 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000221 AmbEntries.push_back(MemOp);
222 }
223
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0[][3] = {
226 { X86::CALL32r, X86::CALL32m, 1 },
227 { X86::CALL64r, X86::CALL64m, 1 },
228 { X86::CMP16ri, X86::CMP16mi, 1 },
229 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000230 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000231 { X86::CMP32ri, X86::CMP32mi, 1 },
232 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000233 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000234 { X86::CMP64ri32, X86::CMP64mi32, 1 },
235 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000238 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000239 { X86::DIV16r, X86::DIV16m, 1 },
240 { X86::DIV32r, X86::DIV32m, 1 },
241 { X86::DIV64r, X86::DIV64m, 1 },
242 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000243 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000244 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
245 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
246 { X86::IDIV16r, X86::IDIV16m, 1 },
247 { X86::IDIV32r, X86::IDIV32m, 1 },
248 { X86::IDIV64r, X86::IDIV64m, 1 },
249 { X86::IDIV8r, X86::IDIV8m, 1 },
250 { X86::IMUL16r, X86::IMUL16m, 1 },
251 { X86::IMUL32r, X86::IMUL32m, 1 },
252 { X86::IMUL64r, X86::IMUL64m, 1 },
253 { X86::IMUL8r, X86::IMUL8m, 1 },
254 { X86::JMP32r, X86::JMP32m, 1 },
255 { X86::JMP64r, X86::JMP64m, 1 },
256 { X86::MOV16ri, X86::MOV16mi, 0 },
257 { X86::MOV16rr, X86::MOV16mr, 0 },
258 { X86::MOV16to16_, X86::MOV16_mr, 0 },
259 { X86::MOV32ri, X86::MOV32mi, 0 },
260 { X86::MOV32rr, X86::MOV32mr, 0 },
261 { X86::MOV32to32_, X86::MOV32_mr, 0 },
262 { X86::MOV64ri32, X86::MOV64mi32, 0 },
263 { X86::MOV64rr, X86::MOV64mr, 0 },
264 { X86::MOV8ri, X86::MOV8mi, 0 },
265 { X86::MOV8rr, X86::MOV8mr, 0 },
266 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
267 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
268 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
269 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
270 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
271 { X86::MOVSDrr, X86::MOVSDmr, 0 },
272 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
273 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
274 { X86::MOVSSrr, X86::MOVSSmr, 0 },
275 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
276 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
277 { X86::MUL16r, X86::MUL16m, 1 },
278 { X86::MUL32r, X86::MUL32m, 1 },
279 { X86::MUL64r, X86::MUL64m, 1 },
280 { X86::MUL8r, X86::MUL8m, 1 },
281 { X86::SETAEr, X86::SETAEm, 0 },
282 { X86::SETAr, X86::SETAm, 0 },
283 { X86::SETBEr, X86::SETBEm, 0 },
284 { X86::SETBr, X86::SETBm, 0 },
285 { X86::SETEr, X86::SETEm, 0 },
286 { X86::SETGEr, X86::SETGEm, 0 },
287 { X86::SETGr, X86::SETGm, 0 },
288 { X86::SETLEr, X86::SETLEm, 0 },
289 { X86::SETLr, X86::SETLm, 0 },
290 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000291 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000292 { X86::SETNPr, X86::SETNPm, 0 },
293 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000294 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000295 { X86::SETPr, X86::SETPm, 0 },
296 { X86::SETSr, X86::SETSm, 0 },
297 { X86::TAILJMPr, X86::TAILJMPm, 1 },
298 { X86::TEST16ri, X86::TEST16mi, 1 },
299 { X86::TEST32ri, X86::TEST32mi, 1 },
300 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000301 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000302 };
303
304 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
305 unsigned RegOp = OpTbl0[i][0];
306 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000307 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
308 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000309 assert(false && "Duplicated entries?");
310 unsigned FoldedLoad = OpTbl0[i][2];
311 // Index 0, folded load or store.
312 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
313 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
314 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000315 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000316 AmbEntries.push_back(MemOp);
317 }
318
319 static const unsigned OpTbl1[][2] = {
320 { X86::CMP16rr, X86::CMP16rm },
321 { X86::CMP32rr, X86::CMP32rm },
322 { X86::CMP64rr, X86::CMP64rm },
323 { X86::CMP8rr, X86::CMP8rm },
324 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
325 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
326 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
327 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
328 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
329 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
330 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
331 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
332 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
333 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
334 { X86::FsMOVAPDrr, X86::MOVSDrm },
335 { X86::FsMOVAPSrr, X86::MOVSSrm },
336 { X86::IMUL16rri, X86::IMUL16rmi },
337 { X86::IMUL16rri8, X86::IMUL16rmi8 },
338 { X86::IMUL32rri, X86::IMUL32rmi },
339 { X86::IMUL32rri8, X86::IMUL32rmi8 },
340 { X86::IMUL64rri32, X86::IMUL64rmi32 },
341 { X86::IMUL64rri8, X86::IMUL64rmi8 },
342 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
343 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
344 { X86::Int_COMISDrr, X86::Int_COMISDrm },
345 { X86::Int_COMISSrr, X86::Int_COMISSrm },
346 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
347 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
348 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
349 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
350 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
351 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
352 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
353 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
354 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
355 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
356 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
357 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
358 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
359 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
360 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
361 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
362 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
363 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
364 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
365 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
366 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
367 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
368 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
369 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
370 { X86::MOV16rr, X86::MOV16rm },
371 { X86::MOV16to16_, X86::MOV16_rm },
372 { X86::MOV32rr, X86::MOV32rm },
373 { X86::MOV32to32_, X86::MOV32_rm },
374 { X86::MOV64rr, X86::MOV64rm },
375 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
376 { X86::MOV64toSDrr, X86::MOV64toSDrm },
377 { X86::MOV8rr, X86::MOV8rm },
378 { X86::MOVAPDrr, X86::MOVAPDrm },
379 { X86::MOVAPSrr, X86::MOVAPSrm },
380 { X86::MOVDDUPrr, X86::MOVDDUPrm },
381 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
382 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
383 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
384 { X86::MOVSDrr, X86::MOVSDrm },
385 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
386 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
387 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
388 { X86::MOVSSrr, X86::MOVSSrm },
389 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
390 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
391 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
392 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
393 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
394 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
395 { X86::MOVUPDrr, X86::MOVUPDrm },
396 { X86::MOVUPSrr, X86::MOVUPSrm },
397 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
398 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
399 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
400 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
401 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
402 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
403 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000404 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000405 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
406 { X86::PSHUFDri, X86::PSHUFDmi },
407 { X86::PSHUFHWri, X86::PSHUFHWmi },
408 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000409 { X86::RCPPSr, X86::RCPPSm },
410 { X86::RCPPSr_Int, X86::RCPPSm_Int },
411 { X86::RSQRTPSr, X86::RSQRTPSm },
412 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
413 { X86::RSQRTSSr, X86::RSQRTSSm },
414 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
415 { X86::SQRTPDr, X86::SQRTPDm },
416 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
417 { X86::SQRTPSr, X86::SQRTPSm },
418 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
419 { X86::SQRTSDr, X86::SQRTSDm },
420 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
421 { X86::SQRTSSr, X86::SQRTSSm },
422 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
423 { X86::TEST16rr, X86::TEST16rm },
424 { X86::TEST32rr, X86::TEST32rm },
425 { X86::TEST64rr, X86::TEST64rm },
426 { X86::TEST8rr, X86::TEST8rm },
427 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
428 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000429 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000430 };
431
432 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
433 unsigned RegOp = OpTbl1[i][0];
434 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000435 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
436 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000437 assert(false && "Duplicated entries?");
438 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
439 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
440 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000441 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000442 AmbEntries.push_back(MemOp);
443 }
444
445 static const unsigned OpTbl2[][2] = {
446 { X86::ADC32rr, X86::ADC32rm },
447 { X86::ADC64rr, X86::ADC64rm },
448 { X86::ADD16rr, X86::ADD16rm },
449 { X86::ADD32rr, X86::ADD32rm },
450 { X86::ADD64rr, X86::ADD64rm },
451 { X86::ADD8rr, X86::ADD8rm },
452 { X86::ADDPDrr, X86::ADDPDrm },
453 { X86::ADDPSrr, X86::ADDPSrm },
454 { X86::ADDSDrr, X86::ADDSDrm },
455 { X86::ADDSSrr, X86::ADDSSrm },
456 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
457 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
458 { X86::AND16rr, X86::AND16rm },
459 { X86::AND32rr, X86::AND32rm },
460 { X86::AND64rr, X86::AND64rm },
461 { X86::AND8rr, X86::AND8rm },
462 { X86::ANDNPDrr, X86::ANDNPDrm },
463 { X86::ANDNPSrr, X86::ANDNPSrm },
464 { X86::ANDPDrr, X86::ANDPDrm },
465 { X86::ANDPSrr, X86::ANDPSrm },
466 { X86::CMOVA16rr, X86::CMOVA16rm },
467 { X86::CMOVA32rr, X86::CMOVA32rm },
468 { X86::CMOVA64rr, X86::CMOVA64rm },
469 { X86::CMOVAE16rr, X86::CMOVAE16rm },
470 { X86::CMOVAE32rr, X86::CMOVAE32rm },
471 { X86::CMOVAE64rr, X86::CMOVAE64rm },
472 { X86::CMOVB16rr, X86::CMOVB16rm },
473 { X86::CMOVB32rr, X86::CMOVB32rm },
474 { X86::CMOVB64rr, X86::CMOVB64rm },
475 { X86::CMOVBE16rr, X86::CMOVBE16rm },
476 { X86::CMOVBE32rr, X86::CMOVBE32rm },
477 { X86::CMOVBE64rr, X86::CMOVBE64rm },
478 { X86::CMOVE16rr, X86::CMOVE16rm },
479 { X86::CMOVE32rr, X86::CMOVE32rm },
480 { X86::CMOVE64rr, X86::CMOVE64rm },
481 { X86::CMOVG16rr, X86::CMOVG16rm },
482 { X86::CMOVG32rr, X86::CMOVG32rm },
483 { X86::CMOVG64rr, X86::CMOVG64rm },
484 { X86::CMOVGE16rr, X86::CMOVGE16rm },
485 { X86::CMOVGE32rr, X86::CMOVGE32rm },
486 { X86::CMOVGE64rr, X86::CMOVGE64rm },
487 { X86::CMOVL16rr, X86::CMOVL16rm },
488 { X86::CMOVL32rr, X86::CMOVL32rm },
489 { X86::CMOVL64rr, X86::CMOVL64rm },
490 { X86::CMOVLE16rr, X86::CMOVLE16rm },
491 { X86::CMOVLE32rr, X86::CMOVLE32rm },
492 { X86::CMOVLE64rr, X86::CMOVLE64rm },
493 { X86::CMOVNE16rr, X86::CMOVNE16rm },
494 { X86::CMOVNE32rr, X86::CMOVNE32rm },
495 { X86::CMOVNE64rr, X86::CMOVNE64rm },
496 { X86::CMOVNP16rr, X86::CMOVNP16rm },
497 { X86::CMOVNP32rr, X86::CMOVNP32rm },
498 { X86::CMOVNP64rr, X86::CMOVNP64rm },
499 { X86::CMOVNS16rr, X86::CMOVNS16rm },
500 { X86::CMOVNS32rr, X86::CMOVNS32rm },
501 { X86::CMOVNS64rr, X86::CMOVNS64rm },
502 { X86::CMOVP16rr, X86::CMOVP16rm },
503 { X86::CMOVP32rr, X86::CMOVP32rm },
504 { X86::CMOVP64rr, X86::CMOVP64rm },
505 { X86::CMOVS16rr, X86::CMOVS16rm },
506 { X86::CMOVS32rr, X86::CMOVS32rm },
507 { X86::CMOVS64rr, X86::CMOVS64rm },
508 { X86::CMPPDrri, X86::CMPPDrmi },
509 { X86::CMPPSrri, X86::CMPPSrmi },
510 { X86::CMPSDrr, X86::CMPSDrm },
511 { X86::CMPSSrr, X86::CMPSSrm },
512 { X86::DIVPDrr, X86::DIVPDrm },
513 { X86::DIVPSrr, X86::DIVPSrm },
514 { X86::DIVSDrr, X86::DIVSDrm },
515 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000516 { X86::FsANDNPDrr, X86::FsANDNPDrm },
517 { X86::FsANDNPSrr, X86::FsANDNPSrm },
518 { X86::FsANDPDrr, X86::FsANDPDrm },
519 { X86::FsANDPSrr, X86::FsANDPSrm },
520 { X86::FsORPDrr, X86::FsORPDrm },
521 { X86::FsORPSrr, X86::FsORPSrm },
522 { X86::FsXORPDrr, X86::FsXORPDrm },
523 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000524 { X86::HADDPDrr, X86::HADDPDrm },
525 { X86::HADDPSrr, X86::HADDPSrm },
526 { X86::HSUBPDrr, X86::HSUBPDrm },
527 { X86::HSUBPSrr, X86::HSUBPSrm },
528 { X86::IMUL16rr, X86::IMUL16rm },
529 { X86::IMUL32rr, X86::IMUL32rm },
530 { X86::IMUL64rr, X86::IMUL64rm },
531 { X86::MAXPDrr, X86::MAXPDrm },
532 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
533 { X86::MAXPSrr, X86::MAXPSrm },
534 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
535 { X86::MAXSDrr, X86::MAXSDrm },
536 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
537 { X86::MAXSSrr, X86::MAXSSrm },
538 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
539 { X86::MINPDrr, X86::MINPDrm },
540 { X86::MINPDrr_Int, X86::MINPDrm_Int },
541 { X86::MINPSrr, X86::MINPSrm },
542 { X86::MINPSrr_Int, X86::MINPSrm_Int },
543 { X86::MINSDrr, X86::MINSDrm },
544 { X86::MINSDrr_Int, X86::MINSDrm_Int },
545 { X86::MINSSrr, X86::MINSSrm },
546 { X86::MINSSrr_Int, X86::MINSSrm_Int },
547 { X86::MULPDrr, X86::MULPDrm },
548 { X86::MULPSrr, X86::MULPSrm },
549 { X86::MULSDrr, X86::MULSDrm },
550 { X86::MULSSrr, X86::MULSSrm },
551 { X86::OR16rr, X86::OR16rm },
552 { X86::OR32rr, X86::OR32rm },
553 { X86::OR64rr, X86::OR64rm },
554 { X86::OR8rr, X86::OR8rm },
555 { X86::ORPDrr, X86::ORPDrm },
556 { X86::ORPSrr, X86::ORPSrm },
557 { X86::PACKSSDWrr, X86::PACKSSDWrm },
558 { X86::PACKSSWBrr, X86::PACKSSWBrm },
559 { X86::PACKUSWBrr, X86::PACKUSWBrm },
560 { X86::PADDBrr, X86::PADDBrm },
561 { X86::PADDDrr, X86::PADDDrm },
562 { X86::PADDQrr, X86::PADDQrm },
563 { X86::PADDSBrr, X86::PADDSBrm },
564 { X86::PADDSWrr, X86::PADDSWrm },
565 { X86::PADDWrr, X86::PADDWrm },
566 { X86::PANDNrr, X86::PANDNrm },
567 { X86::PANDrr, X86::PANDrm },
568 { X86::PAVGBrr, X86::PAVGBrm },
569 { X86::PAVGWrr, X86::PAVGWrm },
570 { X86::PCMPEQBrr, X86::PCMPEQBrm },
571 { X86::PCMPEQDrr, X86::PCMPEQDrm },
572 { X86::PCMPEQWrr, X86::PCMPEQWrm },
573 { X86::PCMPGTBrr, X86::PCMPGTBrm },
574 { X86::PCMPGTDrr, X86::PCMPGTDrm },
575 { X86::PCMPGTWrr, X86::PCMPGTWrm },
576 { X86::PINSRWrri, X86::PINSRWrmi },
577 { X86::PMADDWDrr, X86::PMADDWDrm },
578 { X86::PMAXSWrr, X86::PMAXSWrm },
579 { X86::PMAXUBrr, X86::PMAXUBrm },
580 { X86::PMINSWrr, X86::PMINSWrm },
581 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000582 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000583 { X86::PMULHUWrr, X86::PMULHUWrm },
584 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000585 { X86::PMULLDrr, X86::PMULLDrm },
586 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000587 { X86::PMULLWrr, X86::PMULLWrm },
588 { X86::PMULUDQrr, X86::PMULUDQrm },
589 { X86::PORrr, X86::PORrm },
590 { X86::PSADBWrr, X86::PSADBWrm },
591 { X86::PSLLDrr, X86::PSLLDrm },
592 { X86::PSLLQrr, X86::PSLLQrm },
593 { X86::PSLLWrr, X86::PSLLWrm },
594 { X86::PSRADrr, X86::PSRADrm },
595 { X86::PSRAWrr, X86::PSRAWrm },
596 { X86::PSRLDrr, X86::PSRLDrm },
597 { X86::PSRLQrr, X86::PSRLQrm },
598 { X86::PSRLWrr, X86::PSRLWrm },
599 { X86::PSUBBrr, X86::PSUBBrm },
600 { X86::PSUBDrr, X86::PSUBDrm },
601 { X86::PSUBSBrr, X86::PSUBSBrm },
602 { X86::PSUBSWrr, X86::PSUBSWrm },
603 { X86::PSUBWrr, X86::PSUBWrm },
604 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
605 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
606 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
607 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
608 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
609 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
610 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
611 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
612 { X86::PXORrr, X86::PXORrm },
613 { X86::SBB32rr, X86::SBB32rm },
614 { X86::SBB64rr, X86::SBB64rm },
615 { X86::SHUFPDrri, X86::SHUFPDrmi },
616 { X86::SHUFPSrri, X86::SHUFPSrmi },
617 { X86::SUB16rr, X86::SUB16rm },
618 { X86::SUB32rr, X86::SUB32rm },
619 { X86::SUB64rr, X86::SUB64rm },
620 { X86::SUB8rr, X86::SUB8rm },
621 { X86::SUBPDrr, X86::SUBPDrm },
622 { X86::SUBPSrr, X86::SUBPSrm },
623 { X86::SUBSDrr, X86::SUBSDrm },
624 { X86::SUBSSrr, X86::SUBSSrm },
625 // FIXME: TEST*rr -> swapped operand of TEST*mr.
626 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
627 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
628 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
629 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
630 { X86::XOR16rr, X86::XOR16rm },
631 { X86::XOR32rr, X86::XOR32rm },
632 { X86::XOR64rr, X86::XOR64rm },
633 { X86::XOR8rr, X86::XOR8rm },
634 { X86::XORPDrr, X86::XORPDrm },
635 { X86::XORPSrr, X86::XORPSrm }
636 };
637
638 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
639 unsigned RegOp = OpTbl2[i][0];
640 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000641 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
642 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000643 assert(false && "Duplicated entries?");
644 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
645 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000646 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000647 AmbEntries.push_back(MemOp);
648 }
649
650 // Remove ambiguous entries.
651 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000652}
653
654bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
655 unsigned& sourceReg,
656 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000657 switch (MI.getOpcode()) {
658 default:
659 return false;
660 case X86::MOV8rr:
661 case X86::MOV16rr:
662 case X86::MOV32rr:
663 case X86::MOV64rr:
664 case X86::MOV16to16_:
665 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000666 case X86::MOVSSrr:
667 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000668
669 // FP Stack register class copies
670 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
671 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
672 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
673
Chris Lattnerff195282008-03-11 19:28:17 +0000674 case X86::FsMOVAPSrr:
675 case X86::FsMOVAPDrr:
676 case X86::MOVAPSrr:
677 case X86::MOVAPDrr:
678 case X86::MOVSS2PSrr:
679 case X86::MOVSD2PDrr:
680 case X86::MOVPS2SSrr:
681 case X86::MOVPD2SDrr:
682 case X86::MMX_MOVD64rr:
683 case X86::MMX_MOVQ64rr:
684 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000685 MI.getOperand(0).isReg() &&
686 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000687 "invalid register-register move instruction");
688 sourceReg = MI.getOperand(1).getReg();
689 destReg = MI.getOperand(0).getReg();
690 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000691 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692}
693
Dan Gohman90feee22008-11-18 19:49:32 +0000694unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695 int &FrameIndex) const {
696 switch (MI->getOpcode()) {
697 default: break;
698 case X86::MOV8rm:
699 case X86::MOV16rm:
700 case X86::MOV16_rm:
701 case X86::MOV32rm:
702 case X86::MOV32_rm:
703 case X86::MOV64rm:
704 case X86::LD_Fp64m:
705 case X86::MOVSSrm:
706 case X86::MOVSDrm:
707 case X86::MOVAPSrm:
708 case X86::MOVAPDrm:
709 case X86::MMX_MOVD64rm:
710 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000711 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
712 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000713 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000715 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000716 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 return MI->getOperand(0).getReg();
718 }
719 break;
720 }
721 return 0;
722}
723
Dan Gohman90feee22008-11-18 19:49:32 +0000724unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 int &FrameIndex) const {
726 switch (MI->getOpcode()) {
727 default: break;
728 case X86::MOV8mr:
729 case X86::MOV16mr:
730 case X86::MOV16_mr:
731 case X86::MOV32mr:
732 case X86::MOV32_mr:
733 case X86::MOV64mr:
734 case X86::ST_FpP64m:
735 case X86::MOVSSmr:
736 case X86::MOVSDmr:
737 case X86::MOVAPSmr:
738 case X86::MOVAPDmr:
739 case X86::MMX_MOVD64mr:
740 case X86::MMX_MOVQ64mr:
741 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000742 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
743 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000744 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000746 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000747 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 return MI->getOperand(4).getReg();
749 }
750 break;
751 }
752 return 0;
753}
754
755
Evan Chengb819a512008-03-27 01:45:11 +0000756/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
757/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000758static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000759 bool isPICBase = false;
760 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
761 E = MRI.def_end(); I != E; ++I) {
762 MachineInstr *DefMI = I.getOperand().getParent();
763 if (DefMI->getOpcode() != X86::MOVPC32r)
764 return false;
765 assert(!isPICBase && "More than one PIC base?");
766 isPICBase = true;
767 }
768 return isPICBase;
769}
Evan Chenge9caab52008-03-31 07:54:19 +0000770
771/// isGVStub - Return true if the GV requires an extra load to get the
772/// real address.
773static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
774 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
775}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000776
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000777bool
778X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779 switch (MI->getOpcode()) {
780 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000781 case X86::MOV8rm:
782 case X86::MOV16rm:
783 case X86::MOV16_rm:
784 case X86::MOV32rm:
785 case X86::MOV32_rm:
786 case X86::MOV64rm:
787 case X86::LD_Fp64m:
788 case X86::MOVSSrm:
789 case X86::MOVSDrm:
790 case X86::MOVAPSrm:
791 case X86::MOVAPDrm:
792 case X86::MMX_MOVD64rm:
793 case X86::MMX_MOVQ64rm: {
794 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000795 if (MI->getOperand(1).isReg() &&
796 MI->getOperand(2).isImm() &&
797 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
798 (MI->getOperand(4).isCPI() ||
799 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000800 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000801 unsigned BaseReg = MI->getOperand(1).getReg();
802 if (BaseReg == 0)
803 return true;
804 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000805 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000806 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000807 const MachineFunction &MF = *MI->getParent()->getParent();
808 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000809 bool isPICBase = false;
810 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
811 E = MRI.def_end(); I != E; ++I) {
812 MachineInstr *DefMI = I.getOperand().getParent();
813 if (DefMI->getOpcode() != X86::MOVPC32r)
814 return false;
815 assert(!isPICBase && "More than one PIC base?");
816 isPICBase = true;
817 }
818 return isPICBase;
819 }
820 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000821 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000822
823 case X86::LEA32r:
824 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000825 if (MI->getOperand(2).isImm() &&
826 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
827 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000828 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000829 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000830 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000831 unsigned BaseReg = MI->getOperand(1).getReg();
832 if (BaseReg == 0)
833 return true;
834 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000835 const MachineFunction &MF = *MI->getParent()->getParent();
836 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000837 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000838 }
839 return false;
840 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000841 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000842
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000843 // All other instructions marked M_REMATERIALIZABLE are always trivially
844 // rematerializable.
845 return true;
846}
847
Evan Chengc564ded2008-06-24 07:10:51 +0000848/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
849/// would clobber the EFLAGS condition register. Note the result may be
850/// conservative. If it cannot definitely determine the safety after visiting
851/// two instructions it assumes it's not safe.
852static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
853 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000854 // It's always safe to clobber EFLAGS at the end of a block.
855 if (I == MBB.end())
856 return true;
857
Evan Chengc564ded2008-06-24 07:10:51 +0000858 // For compile time consideration, if we are not able to determine the
859 // safety after visiting 2 instructions, we will assume it's not safe.
860 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000861 bool SeenDef = false;
862 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
863 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000864 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000865 continue;
866 if (MO.getReg() == X86::EFLAGS) {
867 if (MO.isUse())
868 return false;
869 SeenDef = true;
870 }
871 }
872
873 if (SeenDef)
874 // This instruction defines EFLAGS, no need to look any further.
875 return true;
876 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000877
878 // If we make it to the end of the block, it's safe to clobber EFLAGS.
879 if (I == MBB.end())
880 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000881 }
882
883 // Conservative answer.
884 return false;
885}
886
Evan Cheng7d73efc2008-03-31 20:40:39 +0000887void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
888 MachineBasicBlock::iterator I,
889 unsigned DestReg,
890 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000891 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000892 ? Orig->getOperand(0).getSubReg() : 0;
893 bool ChangeSubIdx = SubIdx != 0;
894 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
895 DestReg = RI.getSubReg(DestReg, SubIdx);
896 SubIdx = 0;
897 }
898
Evan Cheng7d73efc2008-03-31 20:40:39 +0000899 // MOV32r0 etc. are implemented with xor which clobbers condition code.
900 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000901 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000902 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000903 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000904 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000905 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000906 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000907 case X86::MOV64r0: {
908 if (!isSafeToClobberEFLAGS(MBB, I)) {
909 unsigned Opc = 0;
910 switch (Orig->getOpcode()) {
911 default: break;
912 case X86::MOV8r0: Opc = X86::MOV8ri; break;
913 case X86::MOV16r0: Opc = X86::MOV16ri; break;
914 case X86::MOV32r0: Opc = X86::MOV32ri; break;
915 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
916 }
917 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
918 Emitted = true;
919 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000920 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000921 }
922 }
923
924 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000925 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000926 MI->getOperand(0).setReg(DestReg);
927 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000928 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000929
930 if (ChangeSubIdx) {
931 MachineInstr *NewMI = prior(I);
932 NewMI->getOperand(0).setSubReg(SubIdx);
933 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000934}
935
Chris Lattnerea3a1812008-01-10 23:08:24 +0000936/// isInvariantLoad - Return true if the specified instruction (which is marked
937/// mayLoad) is loading from a location whose value is invariant across the
938/// function. For example, loading a value from the constant pool or from
939/// from the argument area of a function if it does not change. This should
940/// only return true of *all* loads the instruction does are invariant (if it
941/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000942bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000943 // This code cares about loads from three cases: constant pool entries,
944 // invariant argument slots, and global stubs. In order to handle these cases
945 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000946 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000947 // none of these three cases is ever used as anything other than a load base
948 // and X86 doesn't have any instructions that load from multiple places.
949
950 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
951 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000952 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000953 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000954 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000955
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000956 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000957 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000958
959 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000960 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000961 const MachineFrameInfo &MFI =
962 *MI->getParent()->getParent()->getFrameInfo();
963 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000964 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
965 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000966 }
Chris Lattner0875b572008-01-12 00:35:08 +0000967
Chris Lattnerea3a1812008-01-10 23:08:24 +0000968 // All other instances of these instructions are presumed to have other
969 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000970 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000971}
972
Evan Chengfa1a4952007-10-05 08:04:01 +0000973/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
974/// is not marked dead.
975static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000976 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
977 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000978 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000979 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
980 return true;
981 }
982 }
983 return false;
984}
985
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000986/// convertToThreeAddress - This method must be implemented by targets that
987/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
988/// may be able to convert a two-address instruction into a true
989/// three-address instruction on demand. This allows the X86 target (for
990/// example) to convert ADD and SHL instructions into LEA instructions if they
991/// would require register copies due to two-addressness.
992///
993/// This method returns a null pointer if the transformation cannot be
994/// performed, otherwise it returns the new instruction.
995///
996MachineInstr *
997X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
998 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000999 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001000 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001001 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001002 // All instructions input are two-addr instructions. Get the known operands.
1003 unsigned Dest = MI->getOperand(0).getReg();
1004 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001005 bool isDead = MI->getOperand(0).isDead();
1006 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007
1008 MachineInstr *NewMI = NULL;
1009 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1010 // we have better subtarget support, enable the 16-bit LEA generation here.
1011 bool DisableLEA16 = true;
1012
Evan Cheng6b96ed32007-10-05 20:34:26 +00001013 unsigned MIOpc = MI->getOpcode();
1014 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 case X86::SHUFPSrri: {
1016 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1017 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1018
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 unsigned B = MI->getOperand(1).getReg();
1020 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001022 unsigned A = MI->getOperand(0).getReg();
1023 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001024 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001025 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 break;
1027 }
1028 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001029 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1031 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 unsigned ShAmt = MI->getOperand(2).getImm();
1033 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001034
Dan Gohman221a4372008-07-07 23:14:23 +00001035 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001036 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001037 break;
1038 }
1039 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001040 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1042 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 unsigned ShAmt = MI->getOperand(2).getImm();
1044 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001045
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001046 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1047 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001048 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001049 .addReg(0).addImm(1 << ShAmt)
1050 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 break;
1052 }
1053 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001054 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001055 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1056 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001057 unsigned ShAmt = MI->getOperand(2).getImm();
1058 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001059
Christopher Lamb380c6272007-08-10 21:18:25 +00001060 if (DisableLEA16) {
1061 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001062 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001063 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1064 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001065 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1066 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001067
Christopher Lamb8d226a22008-03-11 10:27:36 +00001068 // Build and insert into an implicit UNDEF value. This is OK because
1069 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001070 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1071 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001072 .addReg(leaInReg).addReg(Src, false, false, isKill)
1073 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001074
Dan Gohman221a4372008-07-07 23:14:23 +00001075 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001076 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001077
Dan Gohman221a4372008-07-07 23:14:23 +00001078 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001079 .addReg(Dest, true, false, false, isDead)
1080 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001081 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001082 // Update live variables
1083 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1084 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1085 if (isKill)
1086 LV->replaceKillInstruction(Src, MI, InsMI);
1087 if (isDead)
1088 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001089 }
Evan Chenge52c1912008-07-03 09:09:37 +00001090 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001091 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001092 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001093 .addReg(0).addImm(1 << ShAmt)
1094 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001095 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001096 break;
1097 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001098 default: {
1099 // The following opcodes also sets the condition code register(s). Only
1100 // convert them to equivalent lea if the condition code register def's
1101 // are dead!
1102 if (hasLiveCondCodeDef(MI))
1103 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001104
Evan Chenga28a9562007-10-09 07:14:53 +00001105 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001106 switch (MIOpc) {
1107 default: return 0;
1108 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001109 case X86::INC32r:
1110 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001111 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001112 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1113 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001114 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001115 .addReg(Dest, true, false, false, isDead),
1116 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001117 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001119 case X86::INC16r:
1120 case X86::INC64_16r:
1121 if (DisableLEA16) return 0;
1122 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001123 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001124 .addReg(Dest, true, false, false, isDead),
1125 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001126 break;
1127 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001128 case X86::DEC32r:
1129 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001130 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001131 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1132 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001133 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001134 .addReg(Dest, true, false, false, isDead),
1135 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001136 break;
1137 }
1138 case X86::DEC16r:
1139 case X86::DEC64_16r:
1140 if (DisableLEA16) return 0;
1141 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001142 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001143 .addReg(Dest, true, false, false, isDead),
1144 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001145 break;
1146 case X86::ADD64rr:
1147 case X86::ADD32rr: {
1148 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001149 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1150 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001151 unsigned Src2 = MI->getOperand(2).getReg();
1152 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001153 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001154 .addReg(Dest, true, false, false, isDead),
1155 Src, isKill, Src2, isKill2);
1156 if (LV && isKill2)
1157 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001158 break;
1159 }
Evan Chenge52c1912008-07-03 09:09:37 +00001160 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001161 if (DisableLEA16) return 0;
1162 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001163 unsigned Src2 = MI->getOperand(2).getReg();
1164 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001165 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001166 .addReg(Dest, true, false, false, isDead),
1167 Src, isKill, Src2, isKill2);
1168 if (LV && isKill2)
1169 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001170 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001171 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001172 case X86::ADD64ri32:
1173 case X86::ADD64ri8:
1174 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001175 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001176 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001177 .addReg(Dest, true, false, false, isDead),
1178 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001179 break;
1180 case X86::ADD32ri:
1181 case X86::ADD32ri8:
1182 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001183 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001184 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001185 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001186 .addReg(Dest, true, false, false, isDead),
1187 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001188 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001189 break;
1190 case X86::ADD16ri:
1191 case X86::ADD16ri8:
1192 if (DisableLEA16) return 0;
1193 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001194 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001195 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001196 .addReg(Dest, true, false, false, isDead),
1197 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001198 break;
1199 case X86::SHL16ri:
1200 if (DisableLEA16) return 0;
1201 case X86::SHL32ri:
1202 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001203 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001204 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001205 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001206 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1207 X86AddressMode AM;
1208 AM.Scale = 1 << ShAmt;
1209 AM.IndexReg = Src;
1210 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001211 : (MIOpc == X86::SHL32ri
1212 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001213 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001214 .addReg(Dest, true, false, false, isDead), AM);
1215 if (isKill)
1216 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001217 }
1218 break;
1219 }
1220 }
1221 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222 }
1223
Evan Chengc3cb24d2008-02-07 08:29:53 +00001224 if (!NewMI) return 0;
1225
Evan Chenge52c1912008-07-03 09:09:37 +00001226 if (LV) { // Update live variables
1227 if (isKill)
1228 LV->replaceKillInstruction(Src, MI, NewMI);
1229 if (isDead)
1230 LV->replaceKillInstruction(Dest, MI, NewMI);
1231 }
1232
Evan Cheng6b96ed32007-10-05 20:34:26 +00001233 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001234 return NewMI;
1235}
1236
1237/// commuteInstruction - We have a few instructions that must be hacked on to
1238/// commute them.
1239///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001240MachineInstr *
1241X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 switch (MI->getOpcode()) {
1243 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1244 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1245 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001246 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1247 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1248 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 unsigned Opc;
1250 unsigned Size;
1251 switch (MI->getOpcode()) {
1252 default: assert(0 && "Unreachable!");
1253 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1254 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1255 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1256 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001257 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1258 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001260 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001261 if (NewMI) {
1262 MachineFunction &MF = *MI->getParent()->getParent();
1263 MI = MF.CloneMachineInstr(MI);
1264 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001265 }
Dan Gohman921581d2008-10-17 01:23:35 +00001266 MI->setDesc(get(Opc));
1267 MI->getOperand(3).setImm(Size-Amt);
1268 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 }
Evan Cheng926658c2007-10-05 23:13:21 +00001270 case X86::CMOVB16rr:
1271 case X86::CMOVB32rr:
1272 case X86::CMOVB64rr:
1273 case X86::CMOVAE16rr:
1274 case X86::CMOVAE32rr:
1275 case X86::CMOVAE64rr:
1276 case X86::CMOVE16rr:
1277 case X86::CMOVE32rr:
1278 case X86::CMOVE64rr:
1279 case X86::CMOVNE16rr:
1280 case X86::CMOVNE32rr:
1281 case X86::CMOVNE64rr:
1282 case X86::CMOVBE16rr:
1283 case X86::CMOVBE32rr:
1284 case X86::CMOVBE64rr:
1285 case X86::CMOVA16rr:
1286 case X86::CMOVA32rr:
1287 case X86::CMOVA64rr:
1288 case X86::CMOVL16rr:
1289 case X86::CMOVL32rr:
1290 case X86::CMOVL64rr:
1291 case X86::CMOVGE16rr:
1292 case X86::CMOVGE32rr:
1293 case X86::CMOVGE64rr:
1294 case X86::CMOVLE16rr:
1295 case X86::CMOVLE32rr:
1296 case X86::CMOVLE64rr:
1297 case X86::CMOVG16rr:
1298 case X86::CMOVG32rr:
1299 case X86::CMOVG64rr:
1300 case X86::CMOVS16rr:
1301 case X86::CMOVS32rr:
1302 case X86::CMOVS64rr:
1303 case X86::CMOVNS16rr:
1304 case X86::CMOVNS32rr:
1305 case X86::CMOVNS64rr:
1306 case X86::CMOVP16rr:
1307 case X86::CMOVP32rr:
1308 case X86::CMOVP64rr:
1309 case X86::CMOVNP16rr:
1310 case X86::CMOVNP32rr:
1311 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001312 unsigned Opc = 0;
1313 switch (MI->getOpcode()) {
1314 default: break;
1315 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1316 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1317 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1318 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1319 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1320 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1321 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1322 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1323 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1324 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1325 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1326 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1327 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1328 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1329 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1330 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1331 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1332 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1333 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1334 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1335 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1336 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1337 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1338 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1339 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1340 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1341 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1342 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1343 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1344 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1345 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1346 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1347 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1348 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1349 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1350 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1351 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1352 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1353 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1354 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1355 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1356 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1357 }
Dan Gohman921581d2008-10-17 01:23:35 +00001358 if (NewMI) {
1359 MachineFunction &MF = *MI->getParent()->getParent();
1360 MI = MF.CloneMachineInstr(MI);
1361 NewMI = false;
1362 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001363 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001364 // Fallthrough intended.
1365 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001366 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001367 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 }
1369}
1370
1371static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1372 switch (BrOpc) {
1373 default: return X86::COND_INVALID;
1374 case X86::JE: return X86::COND_E;
1375 case X86::JNE: return X86::COND_NE;
1376 case X86::JL: return X86::COND_L;
1377 case X86::JLE: return X86::COND_LE;
1378 case X86::JG: return X86::COND_G;
1379 case X86::JGE: return X86::COND_GE;
1380 case X86::JB: return X86::COND_B;
1381 case X86::JBE: return X86::COND_BE;
1382 case X86::JA: return X86::COND_A;
1383 case X86::JAE: return X86::COND_AE;
1384 case X86::JS: return X86::COND_S;
1385 case X86::JNS: return X86::COND_NS;
1386 case X86::JP: return X86::COND_P;
1387 case X86::JNP: return X86::COND_NP;
1388 case X86::JO: return X86::COND_O;
1389 case X86::JNO: return X86::COND_NO;
1390 }
1391}
1392
1393unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1394 switch (CC) {
1395 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001396 case X86::COND_E: return X86::JE;
1397 case X86::COND_NE: return X86::JNE;
1398 case X86::COND_L: return X86::JL;
1399 case X86::COND_LE: return X86::JLE;
1400 case X86::COND_G: return X86::JG;
1401 case X86::COND_GE: return X86::JGE;
1402 case X86::COND_B: return X86::JB;
1403 case X86::COND_BE: return X86::JBE;
1404 case X86::COND_A: return X86::JA;
1405 case X86::COND_AE: return X86::JAE;
1406 case X86::COND_S: return X86::JS;
1407 case X86::COND_NS: return X86::JNS;
1408 case X86::COND_P: return X86::JP;
1409 case X86::COND_NP: return X86::JNP;
1410 case X86::COND_O: return X86::JO;
1411 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001412 }
1413}
1414
1415/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1416/// e.g. turning COND_E to COND_NE.
1417X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1418 switch (CC) {
1419 default: assert(0 && "Illegal condition code!");
1420 case X86::COND_E: return X86::COND_NE;
1421 case X86::COND_NE: return X86::COND_E;
1422 case X86::COND_L: return X86::COND_GE;
1423 case X86::COND_LE: return X86::COND_G;
1424 case X86::COND_G: return X86::COND_LE;
1425 case X86::COND_GE: return X86::COND_L;
1426 case X86::COND_B: return X86::COND_AE;
1427 case X86::COND_BE: return X86::COND_A;
1428 case X86::COND_A: return X86::COND_BE;
1429 case X86::COND_AE: return X86::COND_B;
1430 case X86::COND_S: return X86::COND_NS;
1431 case X86::COND_NS: return X86::COND_S;
1432 case X86::COND_P: return X86::COND_NP;
1433 case X86::COND_NP: return X86::COND_P;
1434 case X86::COND_O: return X86::COND_NO;
1435 case X86::COND_NO: return X86::COND_O;
1436 }
1437}
1438
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001439bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001440 const TargetInstrDesc &TID = MI->getDesc();
1441 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001442
1443 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001444 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001445 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001446 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001447 return true;
1448 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001449}
1450
Evan Cheng12515792007-07-26 17:32:14 +00001451// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1452static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1453 const X86InstrInfo &TII) {
1454 if (MI->getOpcode() == X86::FP_REG_KILL)
1455 return false;
1456 return TII.isUnpredicatedTerminator(MI);
1457}
1458
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1460 MachineBasicBlock *&TBB,
1461 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001462 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001463 // Start from the bottom of the block and work up, examining the
1464 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001465 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001466 while (I != MBB.begin()) {
1467 --I;
1468 // Working from the bottom, when we see a non-terminator
1469 // instruction, we're done.
1470 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1471 break;
1472 // A terminator that isn't a branch can't easily be handled
1473 // by this analysis.
1474 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001475 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001476 // Handle unconditional branches.
1477 if (I->getOpcode() == X86::JMP) {
1478 // If the block has any instructions after a JMP, delete them.
1479 while (next(I) != MBB.end())
1480 next(I)->eraseFromParent();
1481 Cond.clear();
1482 FBB = 0;
1483 // Delete the JMP if it's equivalent to a fall-through.
1484 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1485 TBB = 0;
1486 I->eraseFromParent();
1487 I = MBB.end();
1488 continue;
1489 }
1490 // TBB is used to indicate the unconditinal destination.
1491 TBB = I->getOperand(0).getMBB();
1492 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001493 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001494 // Handle conditional branches.
1495 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001496 if (BranchCode == X86::COND_INVALID)
1497 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001498 // Working from the bottom, handle the first conditional branch.
1499 if (Cond.empty()) {
1500 FBB = TBB;
1501 TBB = I->getOperand(0).getMBB();
1502 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1503 continue;
1504 }
1505 // Handle subsequent conditional branches. Only handle the case
1506 // where all conditional branches branch to the same destination
1507 // and their condition opcodes fit one of the special
1508 // multi-branch idioms.
1509 assert(Cond.size() == 1);
1510 assert(TBB);
1511 // Only handle the case where all conditional branches branch to
1512 // the same destination.
1513 if (TBB != I->getOperand(0).getMBB())
1514 return true;
1515 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1516 // If the conditions are the same, we can leave them alone.
1517 if (OldBranchCode == BranchCode)
1518 continue;
1519 // If they differ, see if they fit one of the known patterns.
1520 // Theoretically we could handle more patterns here, but
1521 // we shouldn't expect to see them if instruction selection
1522 // has done a reasonable job.
1523 if ((OldBranchCode == X86::COND_NP &&
1524 BranchCode == X86::COND_E) ||
1525 (OldBranchCode == X86::COND_E &&
1526 BranchCode == X86::COND_NP))
1527 BranchCode = X86::COND_NP_OR_E;
1528 else if ((OldBranchCode == X86::COND_P &&
1529 BranchCode == X86::COND_NE) ||
1530 (OldBranchCode == X86::COND_NE &&
1531 BranchCode == X86::COND_P))
1532 BranchCode = X86::COND_NE_OR_P;
1533 else
1534 return true;
1535 // Update the MachineOperand.
1536 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001537 }
1538
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001539 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001540}
1541
1542unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1543 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001544 unsigned Count = 0;
1545
1546 while (I != MBB.begin()) {
1547 --I;
1548 if (I->getOpcode() != X86::JMP &&
1549 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1550 break;
1551 // Remove the branch.
1552 I->eraseFromParent();
1553 I = MBB.end();
1554 ++Count;
1555 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001556
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001557 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001558}
1559
Owen Anderson81875432008-01-01 21:11:32 +00001560static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001561 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001562 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001563 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001564 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001565 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001566 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001567 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001568 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001569 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001570 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001571 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001572 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001573 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001574 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001575 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001576 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1577 else
1578 assert(0 && "Unknown operand for X86InstrAddOperand!");
1579
1580 return MIB;
1581}
1582
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583unsigned
1584X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1585 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001586 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001587 // Shouldn't be a fall through.
1588 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1589 assert((Cond.size() == 1 || Cond.size() == 0) &&
1590 "X86 branch conditions have one component!");
1591
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001592 if (Cond.empty()) {
1593 // Unconditional branch?
1594 assert(!FBB && "Unconditional branch with multiple successors!");
1595 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596 return 1;
1597 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001598
1599 // Conditional branch.
1600 unsigned Count = 0;
1601 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1602 switch (CC) {
1603 case X86::COND_NP_OR_E:
1604 // Synthesize NP_OR_E with two branches.
1605 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1606 ++Count;
1607 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1608 ++Count;
1609 break;
1610 case X86::COND_NE_OR_P:
1611 // Synthesize NE_OR_P with two branches.
1612 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1613 ++Count;
1614 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1615 ++Count;
1616 break;
1617 default: {
1618 unsigned Opc = GetCondBranchFromCond(CC);
1619 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1620 ++Count;
1621 }
1622 }
1623 if (FBB) {
1624 // Two-way Conditional branch. Insert the second branch.
1625 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1626 ++Count;
1627 }
1628 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001629}
1630
Owen Anderson9fa72d92008-08-26 18:03:31 +00001631bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001632 MachineBasicBlock::iterator MI,
1633 unsigned DestReg, unsigned SrcReg,
1634 const TargetRegisterClass *DestRC,
1635 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001636 if (DestRC == SrcRC) {
1637 unsigned Opc;
1638 if (DestRC == &X86::GR64RegClass) {
1639 Opc = X86::MOV64rr;
1640 } else if (DestRC == &X86::GR32RegClass) {
1641 Opc = X86::MOV32rr;
1642 } else if (DestRC == &X86::GR16RegClass) {
1643 Opc = X86::MOV16rr;
1644 } else if (DestRC == &X86::GR8RegClass) {
1645 Opc = X86::MOV8rr;
1646 } else if (DestRC == &X86::GR32_RegClass) {
1647 Opc = X86::MOV32_rr;
1648 } else if (DestRC == &X86::GR16_RegClass) {
1649 Opc = X86::MOV16_rr;
1650 } else if (DestRC == &X86::RFP32RegClass) {
1651 Opc = X86::MOV_Fp3232;
1652 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1653 Opc = X86::MOV_Fp6464;
1654 } else if (DestRC == &X86::RFP80RegClass) {
1655 Opc = X86::MOV_Fp8080;
1656 } else if (DestRC == &X86::FR32RegClass) {
1657 Opc = X86::FsMOVAPSrr;
1658 } else if (DestRC == &X86::FR64RegClass) {
1659 Opc = X86::FsMOVAPDrr;
1660 } else if (DestRC == &X86::VR128RegClass) {
1661 Opc = X86::MOVAPSrr;
1662 } else if (DestRC == &X86::VR64RegClass) {
1663 Opc = X86::MMX_MOVQ64rr;
1664 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001665 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001666 }
Chris Lattner59707122008-03-09 07:58:04 +00001667 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001668 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001669 }
Chris Lattner59707122008-03-09 07:58:04 +00001670
1671 // Moving EFLAGS to / from another register requires a push and a pop.
1672 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001673 if (SrcReg != X86::EFLAGS)
1674 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001675 if (DestRC == &X86::GR64RegClass) {
1676 BuildMI(MBB, MI, get(X86::PUSHFQ));
1677 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001678 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001679 } else if (DestRC == &X86::GR32RegClass) {
1680 BuildMI(MBB, MI, get(X86::PUSHFD));
1681 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001682 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001683 }
1684 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001685 if (DestReg != X86::EFLAGS)
1686 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001687 if (SrcRC == &X86::GR64RegClass) {
1688 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1689 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001690 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001691 } else if (SrcRC == &X86::GR32RegClass) {
1692 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1693 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001694 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001695 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001696 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001697
Chris Lattner0d128722008-03-09 09:15:31 +00001698 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001699 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001700 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001701 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1702 // Can only copy from ST(0)/ST(1) right now
1703 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001704 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001705 unsigned Opc;
1706 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001707 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001708 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001709 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001710 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001711 if (DestRC != &X86::RFP80RegClass)
1712 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001713 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001714 }
1715 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001716 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001717 }
Chris Lattner0d128722008-03-09 09:15:31 +00001718
1719 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1720 if (DestRC == &X86::RSTRegClass) {
1721 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001722 if (DestReg != X86::ST0)
1723 // Can only copy to TOS right now
1724 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001725 unsigned Opc;
1726 if (SrcRC == &X86::RFP32RegClass)
1727 Opc = X86::FpSET_ST0_32;
1728 else if (SrcRC == &X86::RFP64RegClass)
1729 Opc = X86::FpSET_ST0_64;
1730 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001731 if (SrcRC != &X86::RFP80RegClass)
1732 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001733 Opc = X86::FpSET_ST0_80;
1734 }
1735 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001736 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001737 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001738
Owen Anderson9fa72d92008-08-26 18:03:31 +00001739 // Not yet supported!
1740 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001741}
1742
Owen Anderson81875432008-01-01 21:11:32 +00001743static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001744 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001745 unsigned Opc = 0;
1746 if (RC == &X86::GR64RegClass) {
1747 Opc = X86::MOV64mr;
1748 } else if (RC == &X86::GR32RegClass) {
1749 Opc = X86::MOV32mr;
1750 } else if (RC == &X86::GR16RegClass) {
1751 Opc = X86::MOV16mr;
1752 } else if (RC == &X86::GR8RegClass) {
1753 Opc = X86::MOV8mr;
1754 } else if (RC == &X86::GR32_RegClass) {
1755 Opc = X86::MOV32_mr;
1756 } else if (RC == &X86::GR16_RegClass) {
1757 Opc = X86::MOV16_mr;
1758 } else if (RC == &X86::RFP80RegClass) {
1759 Opc = X86::ST_FpP80m; // pops
1760 } else if (RC == &X86::RFP64RegClass) {
1761 Opc = X86::ST_Fp64m;
1762 } else if (RC == &X86::RFP32RegClass) {
1763 Opc = X86::ST_Fp32m;
1764 } else if (RC == &X86::FR32RegClass) {
1765 Opc = X86::MOVSSmr;
1766 } else if (RC == &X86::FR64RegClass) {
1767 Opc = X86::MOVSDmr;
1768 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001769 // If stack is realigned we can use aligned stores.
1770 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001771 } else if (RC == &X86::VR64RegClass) {
1772 Opc = X86::MMX_MOVQ64mr;
1773 } else {
1774 assert(0 && "Unknown regclass");
1775 abort();
1776 }
1777
1778 return Opc;
1779}
1780
1781void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1782 MachineBasicBlock::iterator MI,
1783 unsigned SrcReg, bool isKill, int FrameIdx,
1784 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001785 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001786 bool isAligned = (RI.getStackAlignment() >= 16) ||
1787 RI.needsStackRealignment(MF);
1788 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001789 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1790 .addReg(SrcReg, false, false, isKill);
1791}
1792
1793void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1794 bool isKill,
1795 SmallVectorImpl<MachineOperand> &Addr,
1796 const TargetRegisterClass *RC,
1797 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001798 bool isAligned = (RI.getStackAlignment() >= 16) ||
1799 RI.needsStackRealignment(MF);
1800 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001801 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001802 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1803 MIB = X86InstrAddOperand(MIB, Addr[i]);
1804 MIB.addReg(SrcReg, false, false, isKill);
1805 NewMIs.push_back(MIB);
1806}
1807
1808static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001809 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001810 unsigned Opc = 0;
1811 if (RC == &X86::GR64RegClass) {
1812 Opc = X86::MOV64rm;
1813 } else if (RC == &X86::GR32RegClass) {
1814 Opc = X86::MOV32rm;
1815 } else if (RC == &X86::GR16RegClass) {
1816 Opc = X86::MOV16rm;
1817 } else if (RC == &X86::GR8RegClass) {
1818 Opc = X86::MOV8rm;
1819 } else if (RC == &X86::GR32_RegClass) {
1820 Opc = X86::MOV32_rm;
1821 } else if (RC == &X86::GR16_RegClass) {
1822 Opc = X86::MOV16_rm;
1823 } else if (RC == &X86::RFP80RegClass) {
1824 Opc = X86::LD_Fp80m;
1825 } else if (RC == &X86::RFP64RegClass) {
1826 Opc = X86::LD_Fp64m;
1827 } else if (RC == &X86::RFP32RegClass) {
1828 Opc = X86::LD_Fp32m;
1829 } else if (RC == &X86::FR32RegClass) {
1830 Opc = X86::MOVSSrm;
1831 } else if (RC == &X86::FR64RegClass) {
1832 Opc = X86::MOVSDrm;
1833 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001834 // If stack is realigned we can use aligned loads.
1835 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001836 } else if (RC == &X86::VR64RegClass) {
1837 Opc = X86::MMX_MOVQ64rm;
1838 } else {
1839 assert(0 && "Unknown regclass");
1840 abort();
1841 }
1842
1843 return Opc;
1844}
1845
1846void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001847 MachineBasicBlock::iterator MI,
1848 unsigned DestReg, int FrameIdx,
1849 const TargetRegisterClass *RC) const{
1850 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001851 bool isAligned = (RI.getStackAlignment() >= 16) ||
1852 RI.needsStackRealignment(MF);
1853 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001854 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1855}
1856
1857void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001858 SmallVectorImpl<MachineOperand> &Addr,
1859 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001860 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001861 bool isAligned = (RI.getStackAlignment() >= 16) ||
1862 RI.needsStackRealignment(MF);
1863 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001864 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001865 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1866 MIB = X86InstrAddOperand(MIB, Addr[i]);
1867 NewMIs.push_back(MIB);
1868}
1869
Owen Anderson6690c7f2008-01-04 23:57:37 +00001870bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001871 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001872 const std::vector<CalleeSavedInfo> &CSI) const {
1873 if (CSI.empty())
1874 return false;
1875
Evan Chengc275cf62008-09-26 19:14:21 +00001876 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001877 unsigned SlotSize = is64Bit ? 8 : 4;
1878
1879 MachineFunction &MF = *MBB.getParent();
1880 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1881 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1882
Owen Anderson6690c7f2008-01-04 23:57:37 +00001883 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1884 for (unsigned i = CSI.size(); i != 0; --i) {
1885 unsigned Reg = CSI[i-1].getReg();
1886 // Add the callee-saved register as live-in. It's killed at the spill.
1887 MBB.addLiveIn(Reg);
Dan Gohman4df0e362008-11-26 06:39:12 +00001888 BuildMI(MBB, MI, get(Opc))
1889 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001890 }
1891 return true;
1892}
1893
1894bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001895 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001896 const std::vector<CalleeSavedInfo> &CSI) const {
1897 if (CSI.empty())
1898 return false;
1899
1900 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1901
1902 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1903 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1904 unsigned Reg = CSI[i].getReg();
1905 BuildMI(MBB, MI, get(Opc), Reg);
1906 }
1907 return true;
1908}
1909
Dan Gohman221a4372008-07-07 23:14:23 +00001910static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001911 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001912 MachineInstr *MI, const TargetInstrInfo &TII) {
1913 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001914 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001915 MachineInstrBuilder MIB(NewMI);
1916 unsigned NumAddrOps = MOs.size();
1917 for (unsigned i = 0; i != NumAddrOps; ++i)
1918 MIB = X86InstrAddOperand(MIB, MOs[i]);
1919 if (NumAddrOps < 4) // FrameIndex only
1920 MIB.addImm(1).addReg(0).addImm(0);
1921
1922 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001923 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001924 for (unsigned i = 0; i != NumOps; ++i) {
1925 MachineOperand &MO = MI->getOperand(i+2);
1926 MIB = X86InstrAddOperand(MIB, MO);
1927 }
1928 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1929 MachineOperand &MO = MI->getOperand(i);
1930 MIB = X86InstrAddOperand(MIB, MO);
1931 }
1932 return MIB;
1933}
1934
Dan Gohman221a4372008-07-07 23:14:23 +00001935static MachineInstr *FuseInst(MachineFunction &MF,
1936 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001937 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001938 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001939 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001940 MachineInstrBuilder MIB(NewMI);
1941
1942 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1943 MachineOperand &MO = MI->getOperand(i);
1944 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001945 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001946 unsigned NumAddrOps = MOs.size();
1947 for (unsigned i = 0; i != NumAddrOps; ++i)
1948 MIB = X86InstrAddOperand(MIB, MOs[i]);
1949 if (NumAddrOps < 4) // FrameIndex only
1950 MIB.addImm(1).addReg(0).addImm(0);
1951 } else {
1952 MIB = X86InstrAddOperand(MIB, MO);
1953 }
1954 }
1955 return MIB;
1956}
1957
1958static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001959 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001960 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001961 MachineFunction &MF = *MI->getParent()->getParent();
1962 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001963
1964 unsigned NumAddrOps = MOs.size();
1965 for (unsigned i = 0; i != NumAddrOps; ++i)
1966 MIB = X86InstrAddOperand(MIB, MOs[i]);
1967 if (NumAddrOps < 4) // FrameIndex only
1968 MIB.addImm(1).addReg(0).addImm(0);
1969 return MIB.addImm(0);
1970}
1971
1972MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00001973X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
1974 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001975 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00001976 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1977 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001978 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001979 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001980 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001981
1982 MachineInstr *NewMI = NULL;
1983 // Folding a memory location into the two-address part of a two-address
1984 // instruction is different than folding it other places. It requires
1985 // replacing the *two* registers with the memory location.
1986 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001987 MI->getOperand(0).isReg() &&
1988 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00001989 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1990 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1991 isTwoAddrFold = true;
1992 } else if (i == 0) { // If operand 0
1993 if (MI->getOpcode() == X86::MOV16r0)
1994 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1995 else if (MI->getOpcode() == X86::MOV32r0)
1996 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1997 else if (MI->getOpcode() == X86::MOV64r0)
1998 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1999 else if (MI->getOpcode() == X86::MOV8r0)
2000 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002001 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002002 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002003
2004 OpcodeTablePtr = &RegOp2MemOpTable0;
2005 } else if (i == 1) {
2006 OpcodeTablePtr = &RegOp2MemOpTable1;
2007 } else if (i == 2) {
2008 OpcodeTablePtr = &RegOp2MemOpTable2;
2009 }
2010
2011 // If table selected...
2012 if (OpcodeTablePtr) {
2013 // Find the Opcode to fuse
2014 DenseMap<unsigned*, unsigned>::iterator I =
2015 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2016 if (I != OpcodeTablePtr->end()) {
2017 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002018 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002019 else
Dan Gohman221a4372008-07-07 23:14:23 +00002020 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002021 return NewMI;
2022 }
2023 }
2024
2025 // No fusion
2026 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002027 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002028 return NULL;
2029}
2030
2031
Dan Gohmanedc83d62008-12-03 18:43:12 +00002032MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2033 MachineInstr *MI,
2034 const SmallVectorImpl<unsigned> &Ops,
2035 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002036 // Check switch flag
2037 if (NoFusing) return NULL;
2038
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002039 const MachineFrameInfo *MFI = MF.getFrameInfo();
2040 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2041 // FIXME: Move alignment requirement into tables?
2042 if (Alignment < 16) {
2043 switch (MI->getOpcode()) {
2044 default: break;
2045 // Not always safe to fold movsd into these instructions since their load
2046 // folding variants expects the address to be 16 byte aligned.
2047 case X86::FsANDNPDrr:
2048 case X86::FsANDNPSrr:
2049 case X86::FsANDPDrr:
2050 case X86::FsANDPSrr:
2051 case X86::FsORPDrr:
2052 case X86::FsORPSrr:
2053 case X86::FsXORPDrr:
2054 case X86::FsXORPSrr:
2055 return NULL;
2056 }
2057 }
2058
Owen Anderson9a184ef2008-01-07 01:35:02 +00002059 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2060 unsigned NewOpc = 0;
2061 switch (MI->getOpcode()) {
2062 default: return NULL;
2063 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2064 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2065 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2066 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2067 }
2068 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002069 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002070 MI->getOperand(1).ChangeToImmediate(0);
2071 } else if (Ops.size() != 1)
2072 return NULL;
2073
2074 SmallVector<MachineOperand,4> MOs;
2075 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002076 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002077}
2078
Dan Gohmanedc83d62008-12-03 18:43:12 +00002079MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2080 MachineInstr *MI,
2081 const SmallVectorImpl<unsigned> &Ops,
2082 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002083 // Check switch flag
2084 if (NoFusing) return NULL;
2085
Dan Gohmand0e8c752008-07-12 00:10:52 +00002086 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002087 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002088 if (LoadMI->hasOneMemOperand())
2089 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002090
2091 // FIXME: Move alignment requirement into tables?
2092 if (Alignment < 16) {
2093 switch (MI->getOpcode()) {
2094 default: break;
2095 // Not always safe to fold movsd into these instructions since their load
2096 // folding variants expects the address to be 16 byte aligned.
2097 case X86::FsANDNPDrr:
2098 case X86::FsANDNPSrr:
2099 case X86::FsANDPDrr:
2100 case X86::FsANDPSrr:
2101 case X86::FsORPDrr:
2102 case X86::FsORPSrr:
2103 case X86::FsXORPDrr:
2104 case X86::FsXORPSrr:
2105 return NULL;
2106 }
2107 }
2108
Owen Anderson9a184ef2008-01-07 01:35:02 +00002109 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2110 unsigned NewOpc = 0;
2111 switch (MI->getOpcode()) {
2112 default: return NULL;
2113 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2114 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2115 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2116 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2117 }
2118 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002119 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002120 MI->getOperand(1).ChangeToImmediate(0);
2121 } else if (Ops.size() != 1)
2122 return NULL;
2123
2124 SmallVector<MachineOperand,4> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002125 if (LoadMI->getOpcode() == X86::V_SET0 ||
2126 LoadMI->getOpcode() == X86::V_SETALLONES) {
2127 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2128 // Create a constant-pool entry and operands to load from it.
2129
2130 // x86-32 PIC requires a PIC base register for constant pools.
2131 unsigned PICBase = 0;
2132 if (TM.getRelocationModel() == Reloc::PIC_ &&
2133 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002134 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2135 // This doesn't work for several reasons.
2136 // 1. GlobalBaseReg may have been spilled.
2137 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002138 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002139
2140 // Create a v4i32 constant-pool entry.
2141 MachineConstantPool &MCP = *MF.getConstantPool();
2142 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2143 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2144 ConstantVector::getNullValue(Ty) :
2145 ConstantVector::getAllOnesValue(Ty);
2146 unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2147
2148 // Create operands to load from the constant pool entry.
2149 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2150 MOs.push_back(MachineOperand::CreateImm(1));
2151 MOs.push_back(MachineOperand::CreateReg(0, false));
2152 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2153 } else {
2154 // Folding a normal load. Just copy the load's address operands.
2155 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2156 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2157 MOs.push_back(LoadMI->getOperand(i));
2158 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002159 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002160}
2161
2162
Dan Gohman46b948e2008-10-16 01:49:15 +00002163bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2164 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002165 // Check switch flag
2166 if (NoFusing) return 0;
2167
2168 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2169 switch (MI->getOpcode()) {
2170 default: return false;
2171 case X86::TEST8rr:
2172 case X86::TEST16rr:
2173 case X86::TEST32rr:
2174 case X86::TEST64rr:
2175 return true;
2176 }
2177 }
2178
2179 if (Ops.size() != 1)
2180 return false;
2181
2182 unsigned OpNum = Ops[0];
2183 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002184 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002185 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002186 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002187
2188 // Folding a memory location into the two-address part of a two-address
2189 // instruction is different than folding it other places. It requires
2190 // replacing the *two* registers with the memory location.
2191 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2192 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2193 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2194 } else if (OpNum == 0) { // If operand 0
2195 switch (Opc) {
2196 case X86::MOV16r0:
2197 case X86::MOV32r0:
2198 case X86::MOV64r0:
2199 case X86::MOV8r0:
2200 return true;
2201 default: break;
2202 }
2203 OpcodeTablePtr = &RegOp2MemOpTable0;
2204 } else if (OpNum == 1) {
2205 OpcodeTablePtr = &RegOp2MemOpTable1;
2206 } else if (OpNum == 2) {
2207 OpcodeTablePtr = &RegOp2MemOpTable2;
2208 }
2209
2210 if (OpcodeTablePtr) {
2211 // Find the Opcode to fuse
2212 DenseMap<unsigned*, unsigned>::iterator I =
2213 OpcodeTablePtr->find((unsigned*)Opc);
2214 if (I != OpcodeTablePtr->end())
2215 return true;
2216 }
2217 return false;
2218}
2219
2220bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2221 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2222 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2223 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2224 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2225 if (I == MemOp2RegOpTable.end())
2226 return false;
2227 unsigned Opc = I->second.first;
2228 unsigned Index = I->second.second & 0xf;
2229 bool FoldedLoad = I->second.second & (1 << 4);
2230 bool FoldedStore = I->second.second & (1 << 5);
2231 if (UnfoldLoad && !FoldedLoad)
2232 return false;
2233 UnfoldLoad &= FoldedLoad;
2234 if (UnfoldStore && !FoldedStore)
2235 return false;
2236 UnfoldStore &= FoldedStore;
2237
Chris Lattner5b930372008-01-07 07:27:27 +00002238 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002239 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002240 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002241 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2242 SmallVector<MachineOperand,4> AddrOps;
2243 SmallVector<MachineOperand,2> BeforeOps;
2244 SmallVector<MachineOperand,2> AfterOps;
2245 SmallVector<MachineOperand,4> ImpOps;
2246 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2247 MachineOperand &Op = MI->getOperand(i);
2248 if (i >= Index && i < Index+4)
2249 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002250 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002251 ImpOps.push_back(Op);
2252 else if (i < Index)
2253 BeforeOps.push_back(Op);
2254 else if (i > Index)
2255 AfterOps.push_back(Op);
2256 }
2257
2258 // Emit the load instruction.
2259 if (UnfoldLoad) {
2260 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2261 if (UnfoldStore) {
2262 // Address operands cannot be marked isKill.
2263 for (unsigned i = 1; i != 5; ++i) {
2264 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002265 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002266 MO.setIsKill(false);
2267 }
2268 }
2269 }
2270
2271 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002272 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002273 MachineInstrBuilder MIB(DataMI);
2274
2275 if (FoldedStore)
2276 MIB.addReg(Reg, true);
2277 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2278 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2279 if (FoldedLoad)
2280 MIB.addReg(Reg);
2281 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2282 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2283 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2284 MachineOperand &MO = ImpOps[i];
2285 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2286 }
2287 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2288 unsigned NewOpc = 0;
2289 switch (DataMI->getOpcode()) {
2290 default: break;
2291 case X86::CMP64ri32:
2292 case X86::CMP32ri:
2293 case X86::CMP16ri:
2294 case X86::CMP8ri: {
2295 MachineOperand &MO0 = DataMI->getOperand(0);
2296 MachineOperand &MO1 = DataMI->getOperand(1);
2297 if (MO1.getImm() == 0) {
2298 switch (DataMI->getOpcode()) {
2299 default: break;
2300 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2301 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2302 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2303 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2304 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002305 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002306 MO1.ChangeToRegister(MO0.getReg(), false);
2307 }
2308 }
2309 }
2310 NewMIs.push_back(DataMI);
2311
2312 // Emit the store instruction.
2313 if (UnfoldStore) {
2314 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002315 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002316 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2317 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2318 }
2319
2320 return true;
2321}
2322
2323bool
2324X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2325 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002326 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002327 return false;
2328
2329 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002330 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002331 if (I == MemOp2RegOpTable.end())
2332 return false;
2333 unsigned Opc = I->second.first;
2334 unsigned Index = I->second.second & 0xf;
2335 bool FoldedLoad = I->second.second & (1 << 4);
2336 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002337 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002338 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002339 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002340 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002341 std::vector<SDValue> AddrOps;
2342 std::vector<SDValue> BeforeOps;
2343 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002344 unsigned NumOps = N->getNumOperands();
2345 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002346 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002347 if (i >= Index && i < Index+4)
2348 AddrOps.push_back(Op);
2349 else if (i < Index)
2350 BeforeOps.push_back(Op);
2351 else if (i > Index)
2352 AfterOps.push_back(Op);
2353 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002354 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002355 AddrOps.push_back(Chain);
2356
2357 // Emit the load instruction.
2358 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002359 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002360 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002361 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002362 bool isAligned = (RI.getStackAlignment() >= 16) ||
2363 RI.needsStackRealignment(MF);
2364 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002365 VT, MVT::Other,
2366 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002367 NewNodes.push_back(Load);
2368 }
2369
2370 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002371 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002372 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002373 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002374 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002375 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002376 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2377 VTs.push_back(*DstRC->vt_begin());
2378 }
2379 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002380 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002381 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002382 VTs.push_back(VT);
2383 }
2384 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002385 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002386 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2387 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2388 NewNodes.push_back(NewNode);
2389
2390 // Emit the store instruction.
2391 if (FoldedStore) {
2392 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002393 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002394 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002395 bool isAligned = (RI.getStackAlignment() >= 16) ||
2396 RI.needsStackRealignment(MF);
2397 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2398 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002399 NewNodes.push_back(Store);
2400 }
2401
2402 return true;
2403}
2404
2405unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2406 bool UnfoldLoad, bool UnfoldStore) const {
2407 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2408 MemOp2RegOpTable.find((unsigned*)Opc);
2409 if (I == MemOp2RegOpTable.end())
2410 return 0;
2411 bool FoldedLoad = I->second.second & (1 << 4);
2412 bool FoldedStore = I->second.second & (1 << 5);
2413 if (UnfoldLoad && !FoldedLoad)
2414 return 0;
2415 if (UnfoldStore && !FoldedStore)
2416 return 0;
2417 return I->second.first;
2418}
2419
Dan Gohman46b948e2008-10-16 01:49:15 +00002420bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421 if (MBB.empty()) return false;
2422
2423 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002424 case X86::TCRETURNri:
2425 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426 case X86::RET: // Return.
2427 case X86::RETI:
2428 case X86::TAILJMPd:
2429 case X86::TAILJMPr:
2430 case X86::TAILJMPm:
2431 case X86::JMP: // Uncond branch.
2432 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002433 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002434 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002435 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002436 return true;
2437 default: return false;
2438 }
2439}
2440
2441bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002442ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002443 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002444 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002445 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2446 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002447 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002448 return false;
2449}
2450
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002451bool X86InstrInfo::
2452IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2453 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2454 // allow any loads of these registers before FpGet_ST0_80.
2455 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2456 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2457}
2458
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002459const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2460 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2461 if (Subtarget->is64Bit())
2462 return &X86::GR64RegClass;
2463 else
2464 return &X86::GR32RegClass;
2465}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002466
2467unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2468 switch (Desc->TSFlags & X86II::ImmMask) {
2469 case X86II::Imm8: return 1;
2470 case X86II::Imm16: return 2;
2471 case X86II::Imm32: return 4;
2472 case X86II::Imm64: return 8;
2473 default: assert(0 && "Immediate size not set!");
2474 return 0;
2475 }
2476}
2477
2478/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2479/// e.g. r8, xmm8, etc.
2480bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002481 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002482 switch (MO.getReg()) {
2483 default: break;
2484 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2485 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2486 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2487 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2488 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2489 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2490 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2491 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2492 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2493 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2494 return true;
2495 }
2496 return false;
2497}
2498
2499
2500/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2501/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2502/// size, and 3) use of X86-64 extended registers.
2503unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2504 unsigned REX = 0;
2505 const TargetInstrDesc &Desc = MI.getDesc();
2506
2507 // Pseudo instructions do not need REX prefix byte.
2508 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2509 return 0;
2510 if (Desc.TSFlags & X86II::REX_W)
2511 REX |= 1 << 3;
2512
2513 unsigned NumOps = Desc.getNumOperands();
2514 if (NumOps) {
2515 bool isTwoAddr = NumOps > 1 &&
2516 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2517
2518 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2519 unsigned i = isTwoAddr ? 1 : 0;
2520 for (unsigned e = NumOps; i != e; ++i) {
2521 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002522 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002523 unsigned Reg = MO.getReg();
2524 if (isX86_64NonExtLowByteReg(Reg))
2525 REX |= 0x40;
2526 }
2527 }
2528
2529 switch (Desc.TSFlags & X86II::FormMask) {
2530 case X86II::MRMInitReg:
2531 if (isX86_64ExtendedReg(MI.getOperand(0)))
2532 REX |= (1 << 0) | (1 << 2);
2533 break;
2534 case X86II::MRMSrcReg: {
2535 if (isX86_64ExtendedReg(MI.getOperand(0)))
2536 REX |= 1 << 2;
2537 i = isTwoAddr ? 2 : 1;
2538 for (unsigned e = NumOps; i != e; ++i) {
2539 const MachineOperand& MO = MI.getOperand(i);
2540 if (isX86_64ExtendedReg(MO))
2541 REX |= 1 << 0;
2542 }
2543 break;
2544 }
2545 case X86II::MRMSrcMem: {
2546 if (isX86_64ExtendedReg(MI.getOperand(0)))
2547 REX |= 1 << 2;
2548 unsigned Bit = 0;
2549 i = isTwoAddr ? 2 : 1;
2550 for (; i != NumOps; ++i) {
2551 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002552 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002553 if (isX86_64ExtendedReg(MO))
2554 REX |= 1 << Bit;
2555 Bit++;
2556 }
2557 }
2558 break;
2559 }
2560 case X86II::MRM0m: case X86II::MRM1m:
2561 case X86II::MRM2m: case X86II::MRM3m:
2562 case X86II::MRM4m: case X86II::MRM5m:
2563 case X86II::MRM6m: case X86II::MRM7m:
2564 case X86II::MRMDestMem: {
2565 unsigned e = isTwoAddr ? 5 : 4;
2566 i = isTwoAddr ? 1 : 0;
2567 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2568 REX |= 1 << 2;
2569 unsigned Bit = 0;
2570 for (; i != e; ++i) {
2571 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002572 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002573 if (isX86_64ExtendedReg(MO))
2574 REX |= 1 << Bit;
2575 Bit++;
2576 }
2577 }
2578 break;
2579 }
2580 default: {
2581 if (isX86_64ExtendedReg(MI.getOperand(0)))
2582 REX |= 1 << 0;
2583 i = isTwoAddr ? 2 : 1;
2584 for (unsigned e = NumOps; i != e; ++i) {
2585 const MachineOperand& MO = MI.getOperand(i);
2586 if (isX86_64ExtendedReg(MO))
2587 REX |= 1 << 2;
2588 }
2589 break;
2590 }
2591 }
2592 }
2593 return REX;
2594}
2595
2596/// sizePCRelativeBlockAddress - This method returns the size of a PC
2597/// relative block address instruction
2598///
2599static unsigned sizePCRelativeBlockAddress() {
2600 return 4;
2601}
2602
2603/// sizeGlobalAddress - Give the size of the emission of this global address
2604///
2605static unsigned sizeGlobalAddress(bool dword) {
2606 return dword ? 8 : 4;
2607}
2608
2609/// sizeConstPoolAddress - Give the size of the emission of this constant
2610/// pool address
2611///
2612static unsigned sizeConstPoolAddress(bool dword) {
2613 return dword ? 8 : 4;
2614}
2615
2616/// sizeExternalSymbolAddress - Give the size of the emission of this external
2617/// symbol
2618///
2619static unsigned sizeExternalSymbolAddress(bool dword) {
2620 return dword ? 8 : 4;
2621}
2622
2623/// sizeJumpTableAddress - Give the size of the emission of this jump
2624/// table address
2625///
2626static unsigned sizeJumpTableAddress(bool dword) {
2627 return dword ? 8 : 4;
2628}
2629
2630static unsigned sizeConstant(unsigned Size) {
2631 return Size;
2632}
2633
2634static unsigned sizeRegModRMByte(){
2635 return 1;
2636}
2637
2638static unsigned sizeSIBByte(){
2639 return 1;
2640}
2641
2642static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2643 unsigned FinalSize = 0;
2644 // If this is a simple integer displacement that doesn't require a relocation.
2645 if (!RelocOp) {
2646 FinalSize += sizeConstant(4);
2647 return FinalSize;
2648 }
2649
2650 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002651 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002652 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002653 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002654 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002655 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002656 FinalSize += sizeJumpTableAddress(false);
2657 } else {
2658 assert(0 && "Unknown value to relocate!");
2659 }
2660 return FinalSize;
2661}
2662
2663static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2664 bool IsPIC, bool Is64BitMode) {
2665 const MachineOperand &Op3 = MI.getOperand(Op+3);
2666 int DispVal = 0;
2667 const MachineOperand *DispForReloc = 0;
2668 unsigned FinalSize = 0;
2669
2670 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002671 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002672 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002673 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002674 if (Is64BitMode || IsPIC) {
2675 DispForReloc = &Op3;
2676 } else {
2677 DispVal = 1;
2678 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002679 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002680 if (Is64BitMode || IsPIC) {
2681 DispForReloc = &Op3;
2682 } else {
2683 DispVal = 1;
2684 }
2685 } else {
2686 DispVal = 1;
2687 }
2688
2689 const MachineOperand &Base = MI.getOperand(Op);
2690 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2691
2692 unsigned BaseReg = Base.getReg();
2693
2694 // Is a SIB byte needed?
2695 if (IndexReg.getReg() == 0 &&
2696 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2697 if (BaseReg == 0) { // Just a displacement?
2698 // Emit special case [disp32] encoding
2699 ++FinalSize;
2700 FinalSize += getDisplacementFieldSize(DispForReloc);
2701 } else {
2702 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2703 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2704 // Emit simple indirect register encoding... [EAX] f.e.
2705 ++FinalSize;
2706 // Be pessimistic and assume it's a disp32, not a disp8
2707 } else {
2708 // Emit the most general non-SIB encoding: [REG+disp32]
2709 ++FinalSize;
2710 FinalSize += getDisplacementFieldSize(DispForReloc);
2711 }
2712 }
2713
2714 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2715 assert(IndexReg.getReg() != X86::ESP &&
2716 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2717
2718 bool ForceDisp32 = false;
2719 if (BaseReg == 0 || DispForReloc) {
2720 // Emit the normal disp32 encoding.
2721 ++FinalSize;
2722 ForceDisp32 = true;
2723 } else {
2724 ++FinalSize;
2725 }
2726
2727 FinalSize += sizeSIBByte();
2728
2729 // Do we need to output a displacement?
2730 if (DispVal != 0 || ForceDisp32) {
2731 FinalSize += getDisplacementFieldSize(DispForReloc);
2732 }
2733 }
2734 return FinalSize;
2735}
2736
2737
2738static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2739 const TargetInstrDesc *Desc,
2740 bool IsPIC, bool Is64BitMode) {
2741
2742 unsigned Opcode = Desc->Opcode;
2743 unsigned FinalSize = 0;
2744
2745 // Emit the lock opcode prefix as needed.
2746 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2747
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002748 // Emit segment overrid opcode prefix as needed.
2749 switch (Desc->TSFlags & X86II::SegOvrMask) {
2750 case X86II::FS:
2751 case X86II::GS:
2752 ++FinalSize;
2753 break;
2754 default: assert(0 && "Invalid segment!");
2755 case 0: break; // No segment override!
2756 }
2757
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002758 // Emit the repeat opcode prefix as needed.
2759 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2760
2761 // Emit the operand size opcode prefix as needed.
2762 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2763
2764 // Emit the address size opcode prefix as needed.
2765 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2766
2767 bool Need0FPrefix = false;
2768 switch (Desc->TSFlags & X86II::Op0Mask) {
2769 case X86II::TB: // Two-byte opcode prefix
2770 case X86II::T8: // 0F 38
2771 case X86II::TA: // 0F 3A
2772 Need0FPrefix = true;
2773 break;
2774 case X86II::REP: break; // already handled.
2775 case X86II::XS: // F3 0F
2776 ++FinalSize;
2777 Need0FPrefix = true;
2778 break;
2779 case X86II::XD: // F2 0F
2780 ++FinalSize;
2781 Need0FPrefix = true;
2782 break;
2783 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2784 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2785 ++FinalSize;
2786 break; // Two-byte opcode prefix
2787 default: assert(0 && "Invalid prefix!");
2788 case 0: break; // No prefix!
2789 }
2790
2791 if (Is64BitMode) {
2792 // REX prefix
2793 unsigned REX = X86InstrInfo::determineREX(MI);
2794 if (REX)
2795 ++FinalSize;
2796 }
2797
2798 // 0x0F escape code must be emitted just before the opcode.
2799 if (Need0FPrefix)
2800 ++FinalSize;
2801
2802 switch (Desc->TSFlags & X86II::Op0Mask) {
2803 case X86II::T8: // 0F 38
2804 ++FinalSize;
2805 break;
2806 case X86II::TA: // 0F 3A
2807 ++FinalSize;
2808 break;
2809 }
2810
2811 // If this is a two-address instruction, skip one of the register operands.
2812 unsigned NumOps = Desc->getNumOperands();
2813 unsigned CurOp = 0;
2814 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2815 CurOp++;
2816
2817 switch (Desc->TSFlags & X86II::FormMask) {
2818 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2819 case X86II::Pseudo:
2820 // Remember the current PC offset, this is the PIC relocation
2821 // base address.
2822 switch (Opcode) {
2823 default:
2824 break;
2825 case TargetInstrInfo::INLINEASM: {
2826 const MachineFunction *MF = MI.getParent()->getParent();
2827 const char *AsmStr = MI.getOperand(0).getSymbolName();
2828 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2829 FinalSize += AI->getInlineAsmLength(AsmStr);
2830 break;
2831 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002832 case TargetInstrInfo::DBG_LABEL:
2833 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002834 break;
2835 case TargetInstrInfo::IMPLICIT_DEF:
2836 case TargetInstrInfo::DECLARE:
2837 case X86::DWARF_LOC:
2838 case X86::FP_REG_KILL:
2839 break;
2840 case X86::MOVPC32r: {
2841 // This emits the "call" portion of this pseudo instruction.
2842 ++FinalSize;
2843 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2844 break;
2845 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002846 case X86::TLS_tp:
2847 case X86::TLS_gs_ri:
2848 FinalSize += 2;
2849 FinalSize += sizeGlobalAddress(false);
2850 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002851 }
2852 CurOp = NumOps;
2853 break;
2854 case X86II::RawFrm:
2855 ++FinalSize;
2856
2857 if (CurOp != NumOps) {
2858 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002859 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002860 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002861 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002862 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002863 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002864 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002865 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002866 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2867 } else {
2868 assert(0 && "Unknown RawFrm operand!");
2869 }
2870 }
2871 break;
2872
2873 case X86II::AddRegFrm:
2874 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002875 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002876
2877 if (CurOp != NumOps) {
2878 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2879 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002880 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002881 FinalSize += sizeConstant(Size);
2882 else {
2883 bool dword = false;
2884 if (Opcode == X86::MOV64ri)
2885 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002886 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002887 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002888 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002889 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002890 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002891 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002892 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002893 FinalSize += sizeJumpTableAddress(dword);
2894 }
2895 }
2896 break;
2897
2898 case X86II::MRMDestReg: {
2899 ++FinalSize;
2900 FinalSize += sizeRegModRMByte();
2901 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002902 if (CurOp != NumOps) {
2903 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002904 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002905 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002906 break;
2907 }
2908 case X86II::MRMDestMem: {
2909 ++FinalSize;
2910 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2911 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002912 if (CurOp != NumOps) {
2913 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002914 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002915 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002916 break;
2917 }
2918
2919 case X86II::MRMSrcReg:
2920 ++FinalSize;
2921 FinalSize += sizeRegModRMByte();
2922 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002923 if (CurOp != NumOps) {
2924 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002925 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002926 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002927 break;
2928
2929 case X86II::MRMSrcMem: {
2930
2931 ++FinalSize;
2932 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2933 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002934 if (CurOp != NumOps) {
2935 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002936 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002937 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002938 break;
2939 }
2940
2941 case X86II::MRM0r: case X86II::MRM1r:
2942 case X86II::MRM2r: case X86II::MRM3r:
2943 case X86II::MRM4r: case X86II::MRM5r:
2944 case X86II::MRM6r: case X86II::MRM7r:
2945 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002946 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002947 FinalSize += sizeRegModRMByte();
2948
2949 if (CurOp != NumOps) {
2950 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2951 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002952 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002953 FinalSize += sizeConstant(Size);
2954 else {
2955 bool dword = false;
2956 if (Opcode == X86::MOV64ri32)
2957 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002958 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002959 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002960 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002961 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002962 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002963 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002964 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002965 FinalSize += sizeJumpTableAddress(dword);
2966 }
2967 }
2968 break;
2969
2970 case X86II::MRM0m: case X86II::MRM1m:
2971 case X86II::MRM2m: case X86II::MRM3m:
2972 case X86II::MRM4m: case X86II::MRM5m:
2973 case X86II::MRM6m: case X86II::MRM7m: {
2974
2975 ++FinalSize;
2976 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2977 CurOp += 4;
2978
2979 if (CurOp != NumOps) {
2980 const MachineOperand &MO = MI.getOperand(CurOp++);
2981 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002982 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002983 FinalSize += sizeConstant(Size);
2984 else {
2985 bool dword = false;
2986 if (Opcode == X86::MOV64mi32)
2987 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002988 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002989 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002990 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002991 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002992 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002993 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002994 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002995 FinalSize += sizeJumpTableAddress(dword);
2996 }
2997 }
2998 break;
2999 }
3000
3001 case X86II::MRMInitReg:
3002 ++FinalSize;
3003 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3004 FinalSize += sizeRegModRMByte();
3005 ++CurOp;
3006 break;
3007 }
3008
3009 if (!Desc->isVariadic() && CurOp != NumOps) {
3010 cerr << "Cannot determine size: ";
3011 MI.dump();
3012 cerr << '\n';
3013 abort();
3014 }
3015
3016
3017 return FinalSize;
3018}
3019
3020
3021unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3022 const TargetInstrDesc &Desc = MI->getDesc();
3023 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003024 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003025 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3026 if (Desc.getOpcode() == X86::MOVPC32r) {
3027 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3028 }
3029 return Size;
3030}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003031
Dan Gohman882ab732008-09-30 00:58:23 +00003032/// getGlobalBaseReg - Return a virtual register initialized with the
3033/// the global base register value. Output instructions required to
3034/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003035///
Dan Gohman882ab732008-09-30 00:58:23 +00003036unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3037 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3038 "X86-64 PIC uses RIP relative addressing");
3039
3040 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3041 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3042 if (GlobalBaseReg != 0)
3043 return GlobalBaseReg;
3044
Dan Gohmanb60482f2008-09-23 18:22:58 +00003045 // Insert the set of GlobalBaseReg into the first MBB of the function
3046 MachineBasicBlock &FirstMBB = MF->front();
3047 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3048 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3049 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3050
3051 const TargetInstrInfo *TII = TM.getInstrInfo();
3052 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3053 // only used in JIT code emission as displacement to pc.
3054 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3055
3056 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3057 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3058 if (TM.getRelocationModel() == Reloc::PIC_ &&
3059 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003060 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003061 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3062 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3063 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003064 } else {
3065 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003066 }
3067
Dan Gohman882ab732008-09-30 00:58:23 +00003068 X86FI->setGlobalBaseReg(GlobalBaseReg);
3069 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003070}