blob: a871fa8dc432f7e3b0d2a435e1891c4492f7c732 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
241 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
242 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
243 { X86::IDIV16r, X86::IDIV16m, 1 },
244 { X86::IDIV32r, X86::IDIV32m, 1 },
245 { X86::IDIV64r, X86::IDIV64m, 1 },
246 { X86::IDIV8r, X86::IDIV8m, 1 },
247 { X86::IMUL16r, X86::IMUL16m, 1 },
248 { X86::IMUL32r, X86::IMUL32m, 1 },
249 { X86::IMUL64r, X86::IMUL64m, 1 },
250 { X86::IMUL8r, X86::IMUL8m, 1 },
251 { X86::JMP32r, X86::JMP32m, 1 },
252 { X86::JMP64r, X86::JMP64m, 1 },
253 { X86::MOV16ri, X86::MOV16mi, 0 },
254 { X86::MOV16rr, X86::MOV16mr, 0 },
255 { X86::MOV16to16_, X86::MOV16_mr, 0 },
256 { X86::MOV32ri, X86::MOV32mi, 0 },
257 { X86::MOV32rr, X86::MOV32mr, 0 },
258 { X86::MOV32to32_, X86::MOV32_mr, 0 },
259 { X86::MOV64ri32, X86::MOV64mi32, 0 },
260 { X86::MOV64rr, X86::MOV64mr, 0 },
261 { X86::MOV8ri, X86::MOV8mi, 0 },
262 { X86::MOV8rr, X86::MOV8mr, 0 },
263 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
264 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
265 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
266 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
267 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
268 { X86::MOVSDrr, X86::MOVSDmr, 0 },
269 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
270 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
271 { X86::MOVSSrr, X86::MOVSSmr, 0 },
272 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
273 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
274 { X86::MUL16r, X86::MUL16m, 1 },
275 { X86::MUL32r, X86::MUL32m, 1 },
276 { X86::MUL64r, X86::MUL64m, 1 },
277 { X86::MUL8r, X86::MUL8m, 1 },
278 { X86::SETAEr, X86::SETAEm, 0 },
279 { X86::SETAr, X86::SETAm, 0 },
280 { X86::SETBEr, X86::SETBEm, 0 },
281 { X86::SETBr, X86::SETBm, 0 },
282 { X86::SETEr, X86::SETEm, 0 },
283 { X86::SETGEr, X86::SETGEm, 0 },
284 { X86::SETGr, X86::SETGm, 0 },
285 { X86::SETLEr, X86::SETLEm, 0 },
286 { X86::SETLr, X86::SETLm, 0 },
287 { X86::SETNEr, X86::SETNEm, 0 },
288 { X86::SETNPr, X86::SETNPm, 0 },
289 { X86::SETNSr, X86::SETNSm, 0 },
290 { X86::SETPr, X86::SETPm, 0 },
291 { X86::SETSr, X86::SETSm, 0 },
292 { X86::TAILJMPr, X86::TAILJMPm, 1 },
293 { X86::TEST16ri, X86::TEST16mi, 1 },
294 { X86::TEST32ri, X86::TEST32mi, 1 },
295 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000296 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000297 };
298
299 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
300 unsigned RegOp = OpTbl0[i][0];
301 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000302 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
303 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000304 assert(false && "Duplicated entries?");
305 unsigned FoldedLoad = OpTbl0[i][2];
306 // Index 0, folded load or store.
307 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
308 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
309 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000310 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000311 AmbEntries.push_back(MemOp);
312 }
313
314 static const unsigned OpTbl1[][2] = {
315 { X86::CMP16rr, X86::CMP16rm },
316 { X86::CMP32rr, X86::CMP32rm },
317 { X86::CMP64rr, X86::CMP64rm },
318 { X86::CMP8rr, X86::CMP8rm },
319 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
320 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
321 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
322 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
323 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
324 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
325 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
326 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
327 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
328 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
329 { X86::FsMOVAPDrr, X86::MOVSDrm },
330 { X86::FsMOVAPSrr, X86::MOVSSrm },
331 { X86::IMUL16rri, X86::IMUL16rmi },
332 { X86::IMUL16rri8, X86::IMUL16rmi8 },
333 { X86::IMUL32rri, X86::IMUL32rmi },
334 { X86::IMUL32rri8, X86::IMUL32rmi8 },
335 { X86::IMUL64rri32, X86::IMUL64rmi32 },
336 { X86::IMUL64rri8, X86::IMUL64rmi8 },
337 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
338 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
339 { X86::Int_COMISDrr, X86::Int_COMISDrm },
340 { X86::Int_COMISSrr, X86::Int_COMISSrm },
341 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
342 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
343 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
344 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
345 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
346 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
347 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
348 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
349 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
350 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
351 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
352 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
353 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
354 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
355 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
356 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
357 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
358 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
359 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
360 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
361 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
362 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
363 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
364 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
365 { X86::MOV16rr, X86::MOV16rm },
366 { X86::MOV16to16_, X86::MOV16_rm },
367 { X86::MOV32rr, X86::MOV32rm },
368 { X86::MOV32to32_, X86::MOV32_rm },
369 { X86::MOV64rr, X86::MOV64rm },
370 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
371 { X86::MOV64toSDrr, X86::MOV64toSDrm },
372 { X86::MOV8rr, X86::MOV8rm },
373 { X86::MOVAPDrr, X86::MOVAPDrm },
374 { X86::MOVAPSrr, X86::MOVAPSrm },
375 { X86::MOVDDUPrr, X86::MOVDDUPrm },
376 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
377 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
378 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
379 { X86::MOVSDrr, X86::MOVSDrm },
380 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
381 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
382 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
383 { X86::MOVSSrr, X86::MOVSSrm },
384 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
385 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
386 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
387 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
388 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
389 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
390 { X86::MOVUPDrr, X86::MOVUPDrm },
391 { X86::MOVUPSrr, X86::MOVUPSrm },
392 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
393 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
394 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
395 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
396 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
397 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
398 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000399 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000400 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
401 { X86::PSHUFDri, X86::PSHUFDmi },
402 { X86::PSHUFHWri, X86::PSHUFHWmi },
403 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000404 { X86::RCPPSr, X86::RCPPSm },
405 { X86::RCPPSr_Int, X86::RCPPSm_Int },
406 { X86::RSQRTPSr, X86::RSQRTPSm },
407 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
408 { X86::RSQRTSSr, X86::RSQRTSSm },
409 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
410 { X86::SQRTPDr, X86::SQRTPDm },
411 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
412 { X86::SQRTPSr, X86::SQRTPSm },
413 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
414 { X86::SQRTSDr, X86::SQRTSDm },
415 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
416 { X86::SQRTSSr, X86::SQRTSSm },
417 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
418 { X86::TEST16rr, X86::TEST16rm },
419 { X86::TEST32rr, X86::TEST32rm },
420 { X86::TEST64rr, X86::TEST64rm },
421 { X86::TEST8rr, X86::TEST8rm },
422 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
423 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000424 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000425 };
426
427 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
428 unsigned RegOp = OpTbl1[i][0];
429 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000430 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
431 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000432 assert(false && "Duplicated entries?");
433 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
434 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
435 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000436 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000437 AmbEntries.push_back(MemOp);
438 }
439
440 static const unsigned OpTbl2[][2] = {
441 { X86::ADC32rr, X86::ADC32rm },
442 { X86::ADC64rr, X86::ADC64rm },
443 { X86::ADD16rr, X86::ADD16rm },
444 { X86::ADD32rr, X86::ADD32rm },
445 { X86::ADD64rr, X86::ADD64rm },
446 { X86::ADD8rr, X86::ADD8rm },
447 { X86::ADDPDrr, X86::ADDPDrm },
448 { X86::ADDPSrr, X86::ADDPSrm },
449 { X86::ADDSDrr, X86::ADDSDrm },
450 { X86::ADDSSrr, X86::ADDSSrm },
451 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
452 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
453 { X86::AND16rr, X86::AND16rm },
454 { X86::AND32rr, X86::AND32rm },
455 { X86::AND64rr, X86::AND64rm },
456 { X86::AND8rr, X86::AND8rm },
457 { X86::ANDNPDrr, X86::ANDNPDrm },
458 { X86::ANDNPSrr, X86::ANDNPSrm },
459 { X86::ANDPDrr, X86::ANDPDrm },
460 { X86::ANDPSrr, X86::ANDPSrm },
461 { X86::CMOVA16rr, X86::CMOVA16rm },
462 { X86::CMOVA32rr, X86::CMOVA32rm },
463 { X86::CMOVA64rr, X86::CMOVA64rm },
464 { X86::CMOVAE16rr, X86::CMOVAE16rm },
465 { X86::CMOVAE32rr, X86::CMOVAE32rm },
466 { X86::CMOVAE64rr, X86::CMOVAE64rm },
467 { X86::CMOVB16rr, X86::CMOVB16rm },
468 { X86::CMOVB32rr, X86::CMOVB32rm },
469 { X86::CMOVB64rr, X86::CMOVB64rm },
470 { X86::CMOVBE16rr, X86::CMOVBE16rm },
471 { X86::CMOVBE32rr, X86::CMOVBE32rm },
472 { X86::CMOVBE64rr, X86::CMOVBE64rm },
473 { X86::CMOVE16rr, X86::CMOVE16rm },
474 { X86::CMOVE32rr, X86::CMOVE32rm },
475 { X86::CMOVE64rr, X86::CMOVE64rm },
476 { X86::CMOVG16rr, X86::CMOVG16rm },
477 { X86::CMOVG32rr, X86::CMOVG32rm },
478 { X86::CMOVG64rr, X86::CMOVG64rm },
479 { X86::CMOVGE16rr, X86::CMOVGE16rm },
480 { X86::CMOVGE32rr, X86::CMOVGE32rm },
481 { X86::CMOVGE64rr, X86::CMOVGE64rm },
482 { X86::CMOVL16rr, X86::CMOVL16rm },
483 { X86::CMOVL32rr, X86::CMOVL32rm },
484 { X86::CMOVL64rr, X86::CMOVL64rm },
485 { X86::CMOVLE16rr, X86::CMOVLE16rm },
486 { X86::CMOVLE32rr, X86::CMOVLE32rm },
487 { X86::CMOVLE64rr, X86::CMOVLE64rm },
488 { X86::CMOVNE16rr, X86::CMOVNE16rm },
489 { X86::CMOVNE32rr, X86::CMOVNE32rm },
490 { X86::CMOVNE64rr, X86::CMOVNE64rm },
491 { X86::CMOVNP16rr, X86::CMOVNP16rm },
492 { X86::CMOVNP32rr, X86::CMOVNP32rm },
493 { X86::CMOVNP64rr, X86::CMOVNP64rm },
494 { X86::CMOVNS16rr, X86::CMOVNS16rm },
495 { X86::CMOVNS32rr, X86::CMOVNS32rm },
496 { X86::CMOVNS64rr, X86::CMOVNS64rm },
497 { X86::CMOVP16rr, X86::CMOVP16rm },
498 { X86::CMOVP32rr, X86::CMOVP32rm },
499 { X86::CMOVP64rr, X86::CMOVP64rm },
500 { X86::CMOVS16rr, X86::CMOVS16rm },
501 { X86::CMOVS32rr, X86::CMOVS32rm },
502 { X86::CMOVS64rr, X86::CMOVS64rm },
503 { X86::CMPPDrri, X86::CMPPDrmi },
504 { X86::CMPPSrri, X86::CMPPSrmi },
505 { X86::CMPSDrr, X86::CMPSDrm },
506 { X86::CMPSSrr, X86::CMPSSrm },
507 { X86::DIVPDrr, X86::DIVPDrm },
508 { X86::DIVPSrr, X86::DIVPSrm },
509 { X86::DIVSDrr, X86::DIVSDrm },
510 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000511 { X86::FsANDNPDrr, X86::FsANDNPDrm },
512 { X86::FsANDNPSrr, X86::FsANDNPSrm },
513 { X86::FsANDPDrr, X86::FsANDPDrm },
514 { X86::FsANDPSrr, X86::FsANDPSrm },
515 { X86::FsORPDrr, X86::FsORPDrm },
516 { X86::FsORPSrr, X86::FsORPSrm },
517 { X86::FsXORPDrr, X86::FsXORPDrm },
518 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000519 { X86::HADDPDrr, X86::HADDPDrm },
520 { X86::HADDPSrr, X86::HADDPSrm },
521 { X86::HSUBPDrr, X86::HSUBPDrm },
522 { X86::HSUBPSrr, X86::HSUBPSrm },
523 { X86::IMUL16rr, X86::IMUL16rm },
524 { X86::IMUL32rr, X86::IMUL32rm },
525 { X86::IMUL64rr, X86::IMUL64rm },
526 { X86::MAXPDrr, X86::MAXPDrm },
527 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
528 { X86::MAXPSrr, X86::MAXPSrm },
529 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
530 { X86::MAXSDrr, X86::MAXSDrm },
531 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
532 { X86::MAXSSrr, X86::MAXSSrm },
533 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
534 { X86::MINPDrr, X86::MINPDrm },
535 { X86::MINPDrr_Int, X86::MINPDrm_Int },
536 { X86::MINPSrr, X86::MINPSrm },
537 { X86::MINPSrr_Int, X86::MINPSrm_Int },
538 { X86::MINSDrr, X86::MINSDrm },
539 { X86::MINSDrr_Int, X86::MINSDrm_Int },
540 { X86::MINSSrr, X86::MINSSrm },
541 { X86::MINSSrr_Int, X86::MINSSrm_Int },
542 { X86::MULPDrr, X86::MULPDrm },
543 { X86::MULPSrr, X86::MULPSrm },
544 { X86::MULSDrr, X86::MULSDrm },
545 { X86::MULSSrr, X86::MULSSrm },
546 { X86::OR16rr, X86::OR16rm },
547 { X86::OR32rr, X86::OR32rm },
548 { X86::OR64rr, X86::OR64rm },
549 { X86::OR8rr, X86::OR8rm },
550 { X86::ORPDrr, X86::ORPDrm },
551 { X86::ORPSrr, X86::ORPSrm },
552 { X86::PACKSSDWrr, X86::PACKSSDWrm },
553 { X86::PACKSSWBrr, X86::PACKSSWBrm },
554 { X86::PACKUSWBrr, X86::PACKUSWBrm },
555 { X86::PADDBrr, X86::PADDBrm },
556 { X86::PADDDrr, X86::PADDDrm },
557 { X86::PADDQrr, X86::PADDQrm },
558 { X86::PADDSBrr, X86::PADDSBrm },
559 { X86::PADDSWrr, X86::PADDSWrm },
560 { X86::PADDWrr, X86::PADDWrm },
561 { X86::PANDNrr, X86::PANDNrm },
562 { X86::PANDrr, X86::PANDrm },
563 { X86::PAVGBrr, X86::PAVGBrm },
564 { X86::PAVGWrr, X86::PAVGWrm },
565 { X86::PCMPEQBrr, X86::PCMPEQBrm },
566 { X86::PCMPEQDrr, X86::PCMPEQDrm },
567 { X86::PCMPEQWrr, X86::PCMPEQWrm },
568 { X86::PCMPGTBrr, X86::PCMPGTBrm },
569 { X86::PCMPGTDrr, X86::PCMPGTDrm },
570 { X86::PCMPGTWrr, X86::PCMPGTWrm },
571 { X86::PINSRWrri, X86::PINSRWrmi },
572 { X86::PMADDWDrr, X86::PMADDWDrm },
573 { X86::PMAXSWrr, X86::PMAXSWrm },
574 { X86::PMAXUBrr, X86::PMAXUBrm },
575 { X86::PMINSWrr, X86::PMINSWrm },
576 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000577 { X86::PMULDQrr, X86::PMULDQrm },
578 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000579 { X86::PMULHUWrr, X86::PMULHUWrm },
580 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000581 { X86::PMULLDrr, X86::PMULLDrm },
582 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000583 { X86::PMULLWrr, X86::PMULLWrm },
584 { X86::PMULUDQrr, X86::PMULUDQrm },
585 { X86::PORrr, X86::PORrm },
586 { X86::PSADBWrr, X86::PSADBWrm },
587 { X86::PSLLDrr, X86::PSLLDrm },
588 { X86::PSLLQrr, X86::PSLLQrm },
589 { X86::PSLLWrr, X86::PSLLWrm },
590 { X86::PSRADrr, X86::PSRADrm },
591 { X86::PSRAWrr, X86::PSRAWrm },
592 { X86::PSRLDrr, X86::PSRLDrm },
593 { X86::PSRLQrr, X86::PSRLQrm },
594 { X86::PSRLWrr, X86::PSRLWrm },
595 { X86::PSUBBrr, X86::PSUBBrm },
596 { X86::PSUBDrr, X86::PSUBDrm },
597 { X86::PSUBSBrr, X86::PSUBSBrm },
598 { X86::PSUBSWrr, X86::PSUBSWrm },
599 { X86::PSUBWrr, X86::PSUBWrm },
600 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
601 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
602 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
603 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
604 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
605 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
606 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
607 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
608 { X86::PXORrr, X86::PXORrm },
609 { X86::SBB32rr, X86::SBB32rm },
610 { X86::SBB64rr, X86::SBB64rm },
611 { X86::SHUFPDrri, X86::SHUFPDrmi },
612 { X86::SHUFPSrri, X86::SHUFPSrmi },
613 { X86::SUB16rr, X86::SUB16rm },
614 { X86::SUB32rr, X86::SUB32rm },
615 { X86::SUB64rr, X86::SUB64rm },
616 { X86::SUB8rr, X86::SUB8rm },
617 { X86::SUBPDrr, X86::SUBPDrm },
618 { X86::SUBPSrr, X86::SUBPSrm },
619 { X86::SUBSDrr, X86::SUBSDrm },
620 { X86::SUBSSrr, X86::SUBSSrm },
621 // FIXME: TEST*rr -> swapped operand of TEST*mr.
622 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
623 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
624 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
625 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
626 { X86::XOR16rr, X86::XOR16rm },
627 { X86::XOR32rr, X86::XOR32rm },
628 { X86::XOR64rr, X86::XOR64rm },
629 { X86::XOR8rr, X86::XOR8rm },
630 { X86::XORPDrr, X86::XORPDrm },
631 { X86::XORPSrr, X86::XORPSrm }
632 };
633
634 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
635 unsigned RegOp = OpTbl2[i][0];
636 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000637 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
638 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000639 assert(false && "Duplicated entries?");
640 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
641 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000642 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000643 AmbEntries.push_back(MemOp);
644 }
645
646 // Remove ambiguous entries.
647 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648}
649
650bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
651 unsigned& sourceReg,
652 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000653 switch (MI.getOpcode()) {
654 default:
655 return false;
656 case X86::MOV8rr:
657 case X86::MOV16rr:
658 case X86::MOV32rr:
659 case X86::MOV64rr:
660 case X86::MOV16to16_:
661 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000662 case X86::MOVSSrr:
663 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000664
665 // FP Stack register class copies
666 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
667 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
668 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
669
Chris Lattnerff195282008-03-11 19:28:17 +0000670 case X86::FsMOVAPSrr:
671 case X86::FsMOVAPDrr:
672 case X86::MOVAPSrr:
673 case X86::MOVAPDrr:
674 case X86::MOVSS2PSrr:
675 case X86::MOVSD2PDrr:
676 case X86::MOVPS2SSrr:
677 case X86::MOVPD2SDrr:
678 case X86::MMX_MOVD64rr:
679 case X86::MMX_MOVQ64rr:
680 assert(MI.getNumOperands() >= 2 &&
681 MI.getOperand(0).isRegister() &&
682 MI.getOperand(1).isRegister() &&
683 "invalid register-register move instruction");
684 sourceReg = MI.getOperand(1).getReg();
685 destReg = MI.getOperand(0).getReg();
686 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000687 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688}
689
690unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
691 int &FrameIndex) const {
692 switch (MI->getOpcode()) {
693 default: break;
694 case X86::MOV8rm:
695 case X86::MOV16rm:
696 case X86::MOV16_rm:
697 case X86::MOV32rm:
698 case X86::MOV32_rm:
699 case X86::MOV64rm:
700 case X86::LD_Fp64m:
701 case X86::MOVSSrm:
702 case X86::MOVSDrm:
703 case X86::MOVAPSrm:
704 case X86::MOVAPDrm:
705 case X86::MMX_MOVD64rm:
706 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000707 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
708 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000709 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000711 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000712 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 return MI->getOperand(0).getReg();
714 }
715 break;
716 }
717 return 0;
718}
719
720unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
721 int &FrameIndex) const {
722 switch (MI->getOpcode()) {
723 default: break;
724 case X86::MOV8mr:
725 case X86::MOV16mr:
726 case X86::MOV16_mr:
727 case X86::MOV32mr:
728 case X86::MOV32_mr:
729 case X86::MOV64mr:
730 case X86::ST_FpP64m:
731 case X86::MOVSSmr:
732 case X86::MOVSDmr:
733 case X86::MOVAPSmr:
734 case X86::MOVAPDmr:
735 case X86::MMX_MOVD64mr:
736 case X86::MMX_MOVQ64mr:
737 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000738 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
739 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000740 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000742 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000743 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 return MI->getOperand(4).getReg();
745 }
746 break;
747 }
748 return 0;
749}
750
751
Evan Chengb819a512008-03-27 01:45:11 +0000752/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
753/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000754static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000755 bool isPICBase = false;
756 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
757 E = MRI.def_end(); I != E; ++I) {
758 MachineInstr *DefMI = I.getOperand().getParent();
759 if (DefMI->getOpcode() != X86::MOVPC32r)
760 return false;
761 assert(!isPICBase && "More than one PIC base?");
762 isPICBase = true;
763 }
764 return isPICBase;
765}
Evan Chenge9caab52008-03-31 07:54:19 +0000766
767/// isGVStub - Return true if the GV requires an extra load to get the
768/// real address.
769static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
770 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
771}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000772
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000773bool
774X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 switch (MI->getOpcode()) {
776 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000777 case X86::MOV8rm:
778 case X86::MOV16rm:
779 case X86::MOV16_rm:
780 case X86::MOV32rm:
781 case X86::MOV32_rm:
782 case X86::MOV64rm:
783 case X86::LD_Fp64m:
784 case X86::MOVSSrm:
785 case X86::MOVSDrm:
786 case X86::MOVAPSrm:
787 case X86::MOVAPDrm:
788 case X86::MMX_MOVD64rm:
789 case X86::MMX_MOVQ64rm: {
790 // Loads from constant pools are trivially rematerializable.
791 if (MI->getOperand(1).isReg() &&
792 MI->getOperand(2).isImm() &&
793 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Chenge9caab52008-03-31 07:54:19 +0000794 (MI->getOperand(4).isCPI() ||
795 (MI->getOperand(4).isGlobal() &&
796 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000797 unsigned BaseReg = MI->getOperand(1).getReg();
798 if (BaseReg == 0)
799 return true;
800 // Allow re-materialization of PIC load.
Evan Chengc87df652008-04-01 23:26:12 +0000801 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
802 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000803 const MachineFunction &MF = *MI->getParent()->getParent();
804 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000805 bool isPICBase = false;
806 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
807 E = MRI.def_end(); I != E; ++I) {
808 MachineInstr *DefMI = I.getOperand().getParent();
809 if (DefMI->getOpcode() != X86::MOVPC32r)
810 return false;
811 assert(!isPICBase && "More than one PIC base?");
812 isPICBase = true;
813 }
814 return isPICBase;
815 }
816 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000817 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000818
819 case X86::LEA32r:
820 case X86::LEA64r: {
821 if (MI->getOperand(1).isReg() &&
822 MI->getOperand(2).isImm() &&
823 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
824 !MI->getOperand(4).isReg()) {
825 // lea fi#, lea GV, etc. are all rematerializable.
826 unsigned BaseReg = MI->getOperand(1).getReg();
827 if (BaseReg == 0)
828 return true;
829 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000830 const MachineFunction &MF = *MI->getParent()->getParent();
831 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000832 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000833 }
834 return false;
835 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000837
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000838 // All other instructions marked M_REMATERIALIZABLE are always trivially
839 // rematerializable.
840 return true;
841}
842
Evan Chengc564ded2008-06-24 07:10:51 +0000843/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
844/// would clobber the EFLAGS condition register. Note the result may be
845/// conservative. If it cannot definitely determine the safety after visiting
846/// two instructions it assumes it's not safe.
847static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
848 MachineBasicBlock::iterator I) {
849 // For compile time consideration, if we are not able to determine the
850 // safety after visiting 2 instructions, we will assume it's not safe.
851 for (unsigned i = 0; i < 2; ++i) {
852 if (I == MBB.end())
853 // Reached end of block, it's safe.
854 return true;
855 bool SeenDef = false;
856 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
857 MachineOperand &MO = I->getOperand(j);
858 if (!MO.isRegister())
859 continue;
860 if (MO.getReg() == X86::EFLAGS) {
861 if (MO.isUse())
862 return false;
863 SeenDef = true;
864 }
865 }
866
867 if (SeenDef)
868 // This instruction defines EFLAGS, no need to look any further.
869 return true;
870 ++I;
871 }
872
873 // Conservative answer.
874 return false;
875}
876
Evan Cheng7d73efc2008-03-31 20:40:39 +0000877void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
878 MachineBasicBlock::iterator I,
879 unsigned DestReg,
880 const MachineInstr *Orig) const {
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000881 unsigned SubIdx = Orig->getOperand(0).isReg()
882 ? Orig->getOperand(0).getSubReg() : 0;
883 bool ChangeSubIdx = SubIdx != 0;
884 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
885 DestReg = RI.getSubReg(DestReg, SubIdx);
886 SubIdx = 0;
887 }
888
Evan Cheng7d73efc2008-03-31 20:40:39 +0000889 // MOV32r0 etc. are implemented with xor which clobbers condition code.
890 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000891 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000892 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000893 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000894 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000895 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000896 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000897 case X86::MOV64r0: {
898 if (!isSafeToClobberEFLAGS(MBB, I)) {
899 unsigned Opc = 0;
900 switch (Orig->getOpcode()) {
901 default: break;
902 case X86::MOV8r0: Opc = X86::MOV8ri; break;
903 case X86::MOV16r0: Opc = X86::MOV16ri; break;
904 case X86::MOV32r0: Opc = X86::MOV32ri; break;
905 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
906 }
907 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
908 Emitted = true;
909 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000910 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000911 }
912 }
913
914 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000915 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000916 MI->getOperand(0).setReg(DestReg);
917 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000918 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000919
920 if (ChangeSubIdx) {
921 MachineInstr *NewMI = prior(I);
922 NewMI->getOperand(0).setSubReg(SubIdx);
923 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000924}
925
Chris Lattnerea3a1812008-01-10 23:08:24 +0000926/// isInvariantLoad - Return true if the specified instruction (which is marked
927/// mayLoad) is loading from a location whose value is invariant across the
928/// function. For example, loading a value from the constant pool or from
929/// from the argument area of a function if it does not change. This should
930/// only return true of *all* loads the instruction does are invariant (if it
931/// does multiple loads).
932bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000933 // This code cares about loads from three cases: constant pool entries,
934 // invariant argument slots, and global stubs. In order to handle these cases
935 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000936 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000937 // none of these three cases is ever used as anything other than a load base
938 // and X86 doesn't have any instructions that load from multiple places.
939
940 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
941 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000942 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000943 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000944 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000945
946 if (MO.isGlobal())
947 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000948
949 // If this is a load from an invariant stack slot, the load is a constant.
950 if (MO.isFI()) {
951 const MachineFrameInfo &MFI =
952 *MI->getParent()->getParent()->getFrameInfo();
953 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000954 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
955 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000956 }
Chris Lattner0875b572008-01-12 00:35:08 +0000957
Chris Lattnerea3a1812008-01-10 23:08:24 +0000958 // All other instances of these instructions are presumed to have other
959 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000960 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000961}
962
Evan Chengfa1a4952007-10-05 08:04:01 +0000963/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
964/// is not marked dead.
965static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000966 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
967 MachineOperand &MO = MI->getOperand(i);
968 if (MO.isRegister() && MO.isDef() &&
969 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
970 return true;
971 }
972 }
973 return false;
974}
975
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000976/// convertToThreeAddress - This method must be implemented by targets that
977/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
978/// may be able to convert a two-address instruction into a true
979/// three-address instruction on demand. This allows the X86 target (for
980/// example) to convert ADD and SHL instructions into LEA instructions if they
981/// would require register copies due to two-addressness.
982///
983/// This method returns a null pointer if the transformation cannot be
984/// performed, otherwise it returns the new instruction.
985///
986MachineInstr *
987X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
988 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000989 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000990 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +0000991 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 // All instructions input are two-addr instructions. Get the known operands.
993 unsigned Dest = MI->getOperand(0).getReg();
994 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000995 bool isDead = MI->getOperand(0).isDead();
996 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997
998 MachineInstr *NewMI = NULL;
999 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1000 // we have better subtarget support, enable the 16-bit LEA generation here.
1001 bool DisableLEA16 = true;
1002
Evan Cheng6b96ed32007-10-05 20:34:26 +00001003 unsigned MIOpc = MI->getOpcode();
1004 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 case X86::SHUFPSrri: {
1006 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1007 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1008
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 unsigned B = MI->getOperand(1).getReg();
1010 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001012 unsigned A = MI->getOperand(0).getReg();
1013 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001014 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001015 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016 break;
1017 }
1018 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001019 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001020 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1021 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022 unsigned ShAmt = MI->getOperand(2).getImm();
1023 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001024
Dan Gohman221a4372008-07-07 23:14:23 +00001025 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001026 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 break;
1028 }
1029 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001030 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1032 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 unsigned ShAmt = MI->getOperand(2).getImm();
1034 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001035
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1037 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001038 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001039 .addReg(0).addImm(1 << ShAmt)
1040 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 break;
1042 }
1043 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001044 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001045 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1046 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001047 unsigned ShAmt = MI->getOperand(2).getImm();
1048 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001049
Christopher Lamb380c6272007-08-10 21:18:25 +00001050 if (DisableLEA16) {
1051 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001052 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001053 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1054 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001055 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1056 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001057
Christopher Lamb8d226a22008-03-11 10:27:36 +00001058 // Build and insert into an implicit UNDEF value. This is OK because
1059 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001060 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1061 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001062 .addReg(leaInReg).addReg(Src, false, false, isKill)
1063 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001064
Dan Gohman221a4372008-07-07 23:14:23 +00001065 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001066 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001067
Dan Gohman221a4372008-07-07 23:14:23 +00001068 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001069 .addReg(Dest, true, false, false, isDead)
1070 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001071 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001072 // Update live variables
1073 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1074 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1075 if (isKill)
1076 LV->replaceKillInstruction(Src, MI, InsMI);
1077 if (isDead)
1078 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001079 }
Evan Chenge52c1912008-07-03 09:09:37 +00001080 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001081 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001082 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001083 .addReg(0).addImm(1 << ShAmt)
1084 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001085 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001086 break;
1087 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001088 default: {
1089 // The following opcodes also sets the condition code register(s). Only
1090 // convert them to equivalent lea if the condition code register def's
1091 // are dead!
1092 if (hasLiveCondCodeDef(MI))
1093 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094
Evan Chenga28a9562007-10-09 07:14:53 +00001095 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001096 switch (MIOpc) {
1097 default: return 0;
1098 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001099 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001100 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001101 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1102 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001103 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001104 .addReg(Dest, true, false, false, isDead),
1105 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001106 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001107 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001108 case X86::INC16r:
1109 case X86::INC64_16r:
1110 if (DisableLEA16) return 0;
1111 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001112 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001113 .addReg(Dest, true, false, false, isDead),
1114 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001115 break;
1116 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001117 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001118 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001119 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1120 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001121 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001122 .addReg(Dest, true, false, false, isDead),
1123 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001124 break;
1125 }
1126 case X86::DEC16r:
1127 case X86::DEC64_16r:
1128 if (DisableLEA16) return 0;
1129 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001130 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001131 .addReg(Dest, true, false, false, isDead),
1132 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001133 break;
1134 case X86::ADD64rr:
1135 case X86::ADD32rr: {
1136 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001137 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1138 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001139 unsigned Src2 = MI->getOperand(2).getReg();
1140 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001141 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001142 .addReg(Dest, true, false, false, isDead),
1143 Src, isKill, Src2, isKill2);
1144 if (LV && isKill2)
1145 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001146 break;
1147 }
Evan Chenge52c1912008-07-03 09:09:37 +00001148 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001149 if (DisableLEA16) return 0;
1150 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001151 unsigned Src2 = MI->getOperand(2).getReg();
1152 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001153 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001154 .addReg(Dest, true, false, false, isDead),
1155 Src, isKill, Src2, isKill2);
1156 if (LV && isKill2)
1157 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001158 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001159 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001160 case X86::ADD64ri32:
1161 case X86::ADD64ri8:
1162 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1163 if (MI->getOperand(2).isImmediate())
Dan Gohman221a4372008-07-07 23:14:23 +00001164 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001165 .addReg(Dest, true, false, false, isDead),
1166 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001167 break;
1168 case X86::ADD32ri:
1169 case X86::ADD32ri8:
1170 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001171 if (MI->getOperand(2).isImmediate()) {
1172 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001173 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001174 .addReg(Dest, true, false, false, isDead),
1175 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001176 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001177 break;
1178 case X86::ADD16ri:
1179 case X86::ADD16ri8:
1180 if (DisableLEA16) return 0;
1181 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1182 if (MI->getOperand(2).isImmediate())
Dan Gohman221a4372008-07-07 23:14:23 +00001183 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001184 .addReg(Dest, true, false, false, isDead),
1185 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001186 break;
1187 case X86::SHL16ri:
1188 if (DisableLEA16) return 0;
1189 case X86::SHL32ri:
1190 case X86::SHL64ri: {
1191 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1192 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001193 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001194 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1195 X86AddressMode AM;
1196 AM.Scale = 1 << ShAmt;
1197 AM.IndexReg = Src;
1198 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001199 : (MIOpc == X86::SHL32ri
1200 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001201 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001202 .addReg(Dest, true, false, false, isDead), AM);
1203 if (isKill)
1204 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001205 }
1206 break;
1207 }
1208 }
1209 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 }
1211
Evan Chengc3cb24d2008-02-07 08:29:53 +00001212 if (!NewMI) return 0;
1213
Evan Chenge52c1912008-07-03 09:09:37 +00001214 if (LV) { // Update live variables
1215 if (isKill)
1216 LV->replaceKillInstruction(Src, MI, NewMI);
1217 if (isDead)
1218 LV->replaceKillInstruction(Dest, MI, NewMI);
1219 }
1220
Evan Cheng6b96ed32007-10-05 20:34:26 +00001221 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222 return NewMI;
1223}
1224
1225/// commuteInstruction - We have a few instructions that must be hacked on to
1226/// commute them.
1227///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001228MachineInstr *
1229X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001230 switch (MI->getOpcode()) {
1231 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1232 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1233 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001234 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1235 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1236 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 unsigned Opc;
1238 unsigned Size;
1239 switch (MI->getOpcode()) {
1240 default: assert(0 && "Unreachable!");
1241 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1242 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1243 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1244 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001245 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1246 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001248 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 unsigned A = MI->getOperand(0).getReg();
1250 unsigned B = MI->getOperand(1).getReg();
1251 unsigned C = MI->getOperand(2).getReg();
Evan Chengeb76f832008-07-03 00:04:51 +00001252 bool AisDead = MI->getOperand(0).isDead();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001253 bool BisKill = MI->getOperand(1).isKill();
1254 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001255 // If machine instrs are no longer in two-address forms, update
1256 // destination register as well.
1257 if (A == B) {
1258 // Must be two address instruction!
1259 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1260 "Expecting a two-address instruction!");
1261 A = C;
1262 CisKill = false;
1263 }
Dan Gohman221a4372008-07-07 23:14:23 +00001264 MachineFunction &MF = *MI->getParent()->getParent();
1265 return BuildMI(MF, get(Opc))
1266 .addReg(A, true, false, false, AisDead)
Evan Chengeb76f832008-07-03 00:04:51 +00001267 .addReg(C, false, false, CisKill)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1269 }
Evan Cheng926658c2007-10-05 23:13:21 +00001270 case X86::CMOVB16rr:
1271 case X86::CMOVB32rr:
1272 case X86::CMOVB64rr:
1273 case X86::CMOVAE16rr:
1274 case X86::CMOVAE32rr:
1275 case X86::CMOVAE64rr:
1276 case X86::CMOVE16rr:
1277 case X86::CMOVE32rr:
1278 case X86::CMOVE64rr:
1279 case X86::CMOVNE16rr:
1280 case X86::CMOVNE32rr:
1281 case X86::CMOVNE64rr:
1282 case X86::CMOVBE16rr:
1283 case X86::CMOVBE32rr:
1284 case X86::CMOVBE64rr:
1285 case X86::CMOVA16rr:
1286 case X86::CMOVA32rr:
1287 case X86::CMOVA64rr:
1288 case X86::CMOVL16rr:
1289 case X86::CMOVL32rr:
1290 case X86::CMOVL64rr:
1291 case X86::CMOVGE16rr:
1292 case X86::CMOVGE32rr:
1293 case X86::CMOVGE64rr:
1294 case X86::CMOVLE16rr:
1295 case X86::CMOVLE32rr:
1296 case X86::CMOVLE64rr:
1297 case X86::CMOVG16rr:
1298 case X86::CMOVG32rr:
1299 case X86::CMOVG64rr:
1300 case X86::CMOVS16rr:
1301 case X86::CMOVS32rr:
1302 case X86::CMOVS64rr:
1303 case X86::CMOVNS16rr:
1304 case X86::CMOVNS32rr:
1305 case X86::CMOVNS64rr:
1306 case X86::CMOVP16rr:
1307 case X86::CMOVP32rr:
1308 case X86::CMOVP64rr:
1309 case X86::CMOVNP16rr:
1310 case X86::CMOVNP32rr:
1311 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001312 unsigned Opc = 0;
1313 switch (MI->getOpcode()) {
1314 default: break;
1315 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1316 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1317 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1318 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1319 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1320 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1321 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1322 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1323 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1324 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1325 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1326 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1327 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1328 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1329 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1330 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1331 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1332 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1333 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1334 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1335 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1336 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1337 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1338 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1339 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1340 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1341 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1342 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1343 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1344 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1345 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1346 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1347 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1348 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1349 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1350 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1351 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1352 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1353 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1354 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1355 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1356 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1357 }
1358
Chris Lattner86bb02f2008-01-11 18:10:50 +00001359 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001360 // Fallthrough intended.
1361 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001362 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001363 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364 }
1365}
1366
1367static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1368 switch (BrOpc) {
1369 default: return X86::COND_INVALID;
1370 case X86::JE: return X86::COND_E;
1371 case X86::JNE: return X86::COND_NE;
1372 case X86::JL: return X86::COND_L;
1373 case X86::JLE: return X86::COND_LE;
1374 case X86::JG: return X86::COND_G;
1375 case X86::JGE: return X86::COND_GE;
1376 case X86::JB: return X86::COND_B;
1377 case X86::JBE: return X86::COND_BE;
1378 case X86::JA: return X86::COND_A;
1379 case X86::JAE: return X86::COND_AE;
1380 case X86::JS: return X86::COND_S;
1381 case X86::JNS: return X86::COND_NS;
1382 case X86::JP: return X86::COND_P;
1383 case X86::JNP: return X86::COND_NP;
1384 case X86::JO: return X86::COND_O;
1385 case X86::JNO: return X86::COND_NO;
1386 }
1387}
1388
1389unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1390 switch (CC) {
1391 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001392 case X86::COND_E: return X86::JE;
1393 case X86::COND_NE: return X86::JNE;
1394 case X86::COND_L: return X86::JL;
1395 case X86::COND_LE: return X86::JLE;
1396 case X86::COND_G: return X86::JG;
1397 case X86::COND_GE: return X86::JGE;
1398 case X86::COND_B: return X86::JB;
1399 case X86::COND_BE: return X86::JBE;
1400 case X86::COND_A: return X86::JA;
1401 case X86::COND_AE: return X86::JAE;
1402 case X86::COND_S: return X86::JS;
1403 case X86::COND_NS: return X86::JNS;
1404 case X86::COND_P: return X86::JP;
1405 case X86::COND_NP: return X86::JNP;
1406 case X86::COND_O: return X86::JO;
1407 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001408 }
1409}
1410
1411/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1412/// e.g. turning COND_E to COND_NE.
1413X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1414 switch (CC) {
1415 default: assert(0 && "Illegal condition code!");
1416 case X86::COND_E: return X86::COND_NE;
1417 case X86::COND_NE: return X86::COND_E;
1418 case X86::COND_L: return X86::COND_GE;
1419 case X86::COND_LE: return X86::COND_G;
1420 case X86::COND_G: return X86::COND_LE;
1421 case X86::COND_GE: return X86::COND_L;
1422 case X86::COND_B: return X86::COND_AE;
1423 case X86::COND_BE: return X86::COND_A;
1424 case X86::COND_A: return X86::COND_BE;
1425 case X86::COND_AE: return X86::COND_B;
1426 case X86::COND_S: return X86::COND_NS;
1427 case X86::COND_NS: return X86::COND_S;
1428 case X86::COND_P: return X86::COND_NP;
1429 case X86::COND_NP: return X86::COND_P;
1430 case X86::COND_O: return X86::COND_NO;
1431 case X86::COND_NO: return X86::COND_O;
1432 }
1433}
1434
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001435bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001436 const TargetInstrDesc &TID = MI->getDesc();
1437 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001438
1439 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001440 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001441 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001442 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001443 return true;
1444 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001445}
1446
Evan Cheng12515792007-07-26 17:32:14 +00001447// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1448static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1449 const X86InstrInfo &TII) {
1450 if (MI->getOpcode() == X86::FP_REG_KILL)
1451 return false;
1452 return TII.isUnpredicatedTerminator(MI);
1453}
1454
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001455bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1456 MachineBasicBlock *&TBB,
1457 MachineBasicBlock *&FBB,
1458 std::vector<MachineOperand> &Cond) const {
1459 // If the block has no terminators, it just falls into the block after it.
1460 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001461 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001462 return false;
1463
1464 // Get the last instruction in the block.
1465 MachineInstr *LastInst = I;
1466
1467 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001468 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001469 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001470 return true;
1471
1472 // If the block ends with a branch there are 3 possibilities:
1473 // it's an unconditional, conditional, or indirect branch.
1474
1475 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001476 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 return false;
1478 }
1479 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1480 if (BranchCode == X86::COND_INVALID)
1481 return true; // Can't handle indirect branch.
1482
1483 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001484 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001485 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1486 return false;
1487 }
1488
1489 // Get the instruction before it if it's a terminator.
1490 MachineInstr *SecondLastInst = I;
1491
1492 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001493 if (SecondLastInst && I != MBB.begin() &&
1494 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 return true;
1496
1497 // If the block ends with X86::JMP and a conditional branch, handle it.
1498 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1499 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001500 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001502 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001503 return false;
1504 }
1505
1506 // If the block ends with two X86::JMPs, handle it. The second one is not
1507 // executed, so remove it.
1508 if (SecondLastInst->getOpcode() == X86::JMP &&
1509 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001510 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001511 I = LastInst;
1512 I->eraseFromParent();
1513 return false;
1514 }
1515
1516 // Otherwise, can't handle this.
1517 return true;
1518}
1519
1520unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1521 MachineBasicBlock::iterator I = MBB.end();
1522 if (I == MBB.begin()) return 0;
1523 --I;
1524 if (I->getOpcode() != X86::JMP &&
1525 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1526 return 0;
1527
1528 // Remove the branch.
1529 I->eraseFromParent();
1530
1531 I = MBB.end();
1532
1533 if (I == MBB.begin()) return 1;
1534 --I;
1535 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1536 return 1;
1537
1538 // Remove the branch.
1539 I->eraseFromParent();
1540 return 2;
1541}
1542
Owen Anderson81875432008-01-01 21:11:32 +00001543static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1544 MachineOperand &MO) {
1545 if (MO.isRegister())
1546 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001547 MO.isKill(), MO.isDead(), MO.getSubReg());
Owen Anderson81875432008-01-01 21:11:32 +00001548 else if (MO.isImmediate())
1549 MIB = MIB.addImm(MO.getImm());
1550 else if (MO.isFrameIndex())
1551 MIB = MIB.addFrameIndex(MO.getIndex());
1552 else if (MO.isGlobalAddress())
1553 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1554 else if (MO.isConstantPoolIndex())
1555 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1556 else if (MO.isJumpTableIndex())
1557 MIB = MIB.addJumpTableIndex(MO.getIndex());
1558 else if (MO.isExternalSymbol())
1559 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1560 else
1561 assert(0 && "Unknown operand for X86InstrAddOperand!");
1562
1563 return MIB;
1564}
1565
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001566unsigned
1567X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1568 MachineBasicBlock *FBB,
1569 const std::vector<MachineOperand> &Cond) const {
1570 // Shouldn't be a fall through.
1571 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1572 assert((Cond.size() == 1 || Cond.size() == 0) &&
1573 "X86 branch conditions have one component!");
1574
1575 if (FBB == 0) { // One way branch.
1576 if (Cond.empty()) {
1577 // Unconditional branch?
1578 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1579 } else {
1580 // Conditional branch.
1581 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1582 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1583 }
1584 return 1;
1585 }
1586
1587 // Two-way Conditional branch.
1588 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1589 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1590 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1591 return 2;
1592}
1593
Owen Anderson8f2c8932007-12-31 06:32:00 +00001594void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001595 MachineBasicBlock::iterator MI,
1596 unsigned DestReg, unsigned SrcReg,
1597 const TargetRegisterClass *DestRC,
1598 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001599 if (DestRC == SrcRC) {
1600 unsigned Opc;
1601 if (DestRC == &X86::GR64RegClass) {
1602 Opc = X86::MOV64rr;
1603 } else if (DestRC == &X86::GR32RegClass) {
1604 Opc = X86::MOV32rr;
1605 } else if (DestRC == &X86::GR16RegClass) {
1606 Opc = X86::MOV16rr;
1607 } else if (DestRC == &X86::GR8RegClass) {
1608 Opc = X86::MOV8rr;
1609 } else if (DestRC == &X86::GR32_RegClass) {
1610 Opc = X86::MOV32_rr;
1611 } else if (DestRC == &X86::GR16_RegClass) {
1612 Opc = X86::MOV16_rr;
1613 } else if (DestRC == &X86::RFP32RegClass) {
1614 Opc = X86::MOV_Fp3232;
1615 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1616 Opc = X86::MOV_Fp6464;
1617 } else if (DestRC == &X86::RFP80RegClass) {
1618 Opc = X86::MOV_Fp8080;
1619 } else if (DestRC == &X86::FR32RegClass) {
1620 Opc = X86::FsMOVAPSrr;
1621 } else if (DestRC == &X86::FR64RegClass) {
1622 Opc = X86::FsMOVAPDrr;
1623 } else if (DestRC == &X86::VR128RegClass) {
1624 Opc = X86::MOVAPSrr;
1625 } else if (DestRC == &X86::VR64RegClass) {
1626 Opc = X86::MMX_MOVQ64rr;
1627 } else {
1628 assert(0 && "Unknown regclass");
1629 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001630 }
Chris Lattner59707122008-03-09 07:58:04 +00001631 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1632 return;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001633 }
Chris Lattner59707122008-03-09 07:58:04 +00001634
1635 // Moving EFLAGS to / from another register requires a push and a pop.
1636 if (SrcRC == &X86::CCRRegClass) {
1637 assert(SrcReg == X86::EFLAGS);
1638 if (DestRC == &X86::GR64RegClass) {
1639 BuildMI(MBB, MI, get(X86::PUSHFQ));
1640 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1641 return;
1642 } else if (DestRC == &X86::GR32RegClass) {
1643 BuildMI(MBB, MI, get(X86::PUSHFD));
1644 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1645 return;
1646 }
1647 } else if (DestRC == &X86::CCRRegClass) {
1648 assert(DestReg == X86::EFLAGS);
1649 if (SrcRC == &X86::GR64RegClass) {
1650 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1651 BuildMI(MBB, MI, get(X86::POPFQ));
1652 return;
1653 } else if (SrcRC == &X86::GR32RegClass) {
1654 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1655 BuildMI(MBB, MI, get(X86::POPFD));
1656 return;
1657 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001658 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001659
Chris Lattner0d128722008-03-09 09:15:31 +00001660 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001661 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001662 // Copying from ST(0)/ST(1).
1663 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1664 "Can only copy from ST(0)/ST(1) right now");
1665 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001666 unsigned Opc;
1667 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001668 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001669 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001670 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001671 else {
1672 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner60d14d82008-03-21 06:38:26 +00001673 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001674 }
1675 BuildMI(MBB, MI, get(Opc), DestReg);
1676 return;
1677 }
Chris Lattner0d128722008-03-09 09:15:31 +00001678
1679 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1680 if (DestRC == &X86::RSTRegClass) {
1681 // Copying to ST(0). FIXME: handle ST(1) also
1682 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1683 unsigned Opc;
1684 if (SrcRC == &X86::RFP32RegClass)
1685 Opc = X86::FpSET_ST0_32;
1686 else if (SrcRC == &X86::RFP64RegClass)
1687 Opc = X86::FpSET_ST0_64;
1688 else {
1689 assert(SrcRC == &X86::RFP80RegClass);
1690 Opc = X86::FpSET_ST0_80;
1691 }
1692 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1693 return;
1694 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001695
Chris Lattnercffd2472008-03-10 23:56:08 +00001696 assert(0 && "Not yet supported!");
Chris Lattner59707122008-03-09 07:58:04 +00001697 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001698}
1699
Owen Anderson81875432008-01-01 21:11:32 +00001700static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001701 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001702 unsigned Opc = 0;
1703 if (RC == &X86::GR64RegClass) {
1704 Opc = X86::MOV64mr;
1705 } else if (RC == &X86::GR32RegClass) {
1706 Opc = X86::MOV32mr;
1707 } else if (RC == &X86::GR16RegClass) {
1708 Opc = X86::MOV16mr;
1709 } else if (RC == &X86::GR8RegClass) {
1710 Opc = X86::MOV8mr;
1711 } else if (RC == &X86::GR32_RegClass) {
1712 Opc = X86::MOV32_mr;
1713 } else if (RC == &X86::GR16_RegClass) {
1714 Opc = X86::MOV16_mr;
1715 } else if (RC == &X86::RFP80RegClass) {
1716 Opc = X86::ST_FpP80m; // pops
1717 } else if (RC == &X86::RFP64RegClass) {
1718 Opc = X86::ST_Fp64m;
1719 } else if (RC == &X86::RFP32RegClass) {
1720 Opc = X86::ST_Fp32m;
1721 } else if (RC == &X86::FR32RegClass) {
1722 Opc = X86::MOVSSmr;
1723 } else if (RC == &X86::FR64RegClass) {
1724 Opc = X86::MOVSDmr;
1725 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001726 // If stack is realigned we can use aligned stores.
1727 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001728 } else if (RC == &X86::VR64RegClass) {
1729 Opc = X86::MMX_MOVQ64mr;
1730 } else {
1731 assert(0 && "Unknown regclass");
1732 abort();
1733 }
1734
1735 return Opc;
1736}
1737
1738void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1739 MachineBasicBlock::iterator MI,
1740 unsigned SrcReg, bool isKill, int FrameIdx,
1741 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001742 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001743 bool isAligned = (RI.getStackAlignment() >= 16) ||
1744 RI.needsStackRealignment(MF);
1745 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001746 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1747 .addReg(SrcReg, false, false, isKill);
1748}
1749
1750void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1751 bool isKill,
1752 SmallVectorImpl<MachineOperand> &Addr,
1753 const TargetRegisterClass *RC,
1754 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001755 bool isAligned = (RI.getStackAlignment() >= 16) ||
1756 RI.needsStackRealignment(MF);
1757 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001758 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001759 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1760 MIB = X86InstrAddOperand(MIB, Addr[i]);
1761 MIB.addReg(SrcReg, false, false, isKill);
1762 NewMIs.push_back(MIB);
1763}
1764
1765static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001766 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001767 unsigned Opc = 0;
1768 if (RC == &X86::GR64RegClass) {
1769 Opc = X86::MOV64rm;
1770 } else if (RC == &X86::GR32RegClass) {
1771 Opc = X86::MOV32rm;
1772 } else if (RC == &X86::GR16RegClass) {
1773 Opc = X86::MOV16rm;
1774 } else if (RC == &X86::GR8RegClass) {
1775 Opc = X86::MOV8rm;
1776 } else if (RC == &X86::GR32_RegClass) {
1777 Opc = X86::MOV32_rm;
1778 } else if (RC == &X86::GR16_RegClass) {
1779 Opc = X86::MOV16_rm;
1780 } else if (RC == &X86::RFP80RegClass) {
1781 Opc = X86::LD_Fp80m;
1782 } else if (RC == &X86::RFP64RegClass) {
1783 Opc = X86::LD_Fp64m;
1784 } else if (RC == &X86::RFP32RegClass) {
1785 Opc = X86::LD_Fp32m;
1786 } else if (RC == &X86::FR32RegClass) {
1787 Opc = X86::MOVSSrm;
1788 } else if (RC == &X86::FR64RegClass) {
1789 Opc = X86::MOVSDrm;
1790 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001791 // If stack is realigned we can use aligned loads.
1792 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001793 } else if (RC == &X86::VR64RegClass) {
1794 Opc = X86::MMX_MOVQ64rm;
1795 } else {
1796 assert(0 && "Unknown regclass");
1797 abort();
1798 }
1799
1800 return Opc;
1801}
1802
1803void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001804 MachineBasicBlock::iterator MI,
1805 unsigned DestReg, int FrameIdx,
1806 const TargetRegisterClass *RC) const{
1807 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001808 bool isAligned = (RI.getStackAlignment() >= 16) ||
1809 RI.needsStackRealignment(MF);
1810 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001811 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1812}
1813
1814void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001815 SmallVectorImpl<MachineOperand> &Addr,
1816 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001817 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001818 bool isAligned = (RI.getStackAlignment() >= 16) ||
1819 RI.needsStackRealignment(MF);
1820 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001821 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001822 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1823 MIB = X86InstrAddOperand(MIB, Addr[i]);
1824 NewMIs.push_back(MIB);
1825}
1826
Owen Anderson6690c7f2008-01-04 23:57:37 +00001827bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1828 MachineBasicBlock::iterator MI,
1829 const std::vector<CalleeSavedInfo> &CSI) const {
1830 if (CSI.empty())
1831 return false;
1832
1833 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1834 unsigned SlotSize = is64Bit ? 8 : 4;
1835
1836 MachineFunction &MF = *MBB.getParent();
1837 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1838 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1839
1840 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1841 for (unsigned i = CSI.size(); i != 0; --i) {
1842 unsigned Reg = CSI[i-1].getReg();
1843 // Add the callee-saved register as live-in. It's killed at the spill.
1844 MBB.addLiveIn(Reg);
1845 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1846 }
1847 return true;
1848}
1849
1850bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1851 MachineBasicBlock::iterator MI,
1852 const std::vector<CalleeSavedInfo> &CSI) const {
1853 if (CSI.empty())
1854 return false;
1855
1856 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1857
1858 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1859 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1860 unsigned Reg = CSI[i].getReg();
1861 BuildMI(MBB, MI, get(Opc), Reg);
1862 }
1863 return true;
1864}
1865
Dan Gohman221a4372008-07-07 23:14:23 +00001866static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001867 SmallVector<MachineOperand,4> &MOs,
1868 MachineInstr *MI, const TargetInstrInfo &TII) {
1869 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001870 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001871 MachineInstrBuilder MIB(NewMI);
1872 unsigned NumAddrOps = MOs.size();
1873 for (unsigned i = 0; i != NumAddrOps; ++i)
1874 MIB = X86InstrAddOperand(MIB, MOs[i]);
1875 if (NumAddrOps < 4) // FrameIndex only
1876 MIB.addImm(1).addReg(0).addImm(0);
1877
1878 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001879 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001880 for (unsigned i = 0; i != NumOps; ++i) {
1881 MachineOperand &MO = MI->getOperand(i+2);
1882 MIB = X86InstrAddOperand(MIB, MO);
1883 }
1884 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1885 MachineOperand &MO = MI->getOperand(i);
1886 MIB = X86InstrAddOperand(MIB, MO);
1887 }
1888 return MIB;
1889}
1890
Dan Gohman221a4372008-07-07 23:14:23 +00001891static MachineInstr *FuseInst(MachineFunction &MF,
1892 unsigned Opcode, unsigned OpNo,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001893 SmallVector<MachineOperand,4> &MOs,
1894 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001895 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001896 MachineInstrBuilder MIB(NewMI);
1897
1898 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1899 MachineOperand &MO = MI->getOperand(i);
1900 if (i == OpNo) {
1901 assert(MO.isRegister() && "Expected to fold into reg operand!");
1902 unsigned NumAddrOps = MOs.size();
1903 for (unsigned i = 0; i != NumAddrOps; ++i)
1904 MIB = X86InstrAddOperand(MIB, MOs[i]);
1905 if (NumAddrOps < 4) // FrameIndex only
1906 MIB.addImm(1).addReg(0).addImm(0);
1907 } else {
1908 MIB = X86InstrAddOperand(MIB, MO);
1909 }
1910 }
1911 return MIB;
1912}
1913
1914static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1915 SmallVector<MachineOperand,4> &MOs,
1916 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001917 MachineFunction &MF = *MI->getParent()->getParent();
1918 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001919
1920 unsigned NumAddrOps = MOs.size();
1921 for (unsigned i = 0; i != NumAddrOps; ++i)
1922 MIB = X86InstrAddOperand(MIB, MOs[i]);
1923 if (NumAddrOps < 4) // FrameIndex only
1924 MIB.addImm(1).addReg(0).addImm(0);
1925 return MIB.addImm(0);
1926}
1927
1928MachineInstr*
Dan Gohman221a4372008-07-07 23:14:23 +00001929X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1930 MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001931 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001932 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1933 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001934 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001935 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001936 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001937
1938 MachineInstr *NewMI = NULL;
1939 // Folding a memory location into the two-address part of a two-address
1940 // instruction is different than folding it other places. It requires
1941 // replacing the *two* registers with the memory location.
1942 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1943 MI->getOperand(0).isRegister() &&
1944 MI->getOperand(1).isRegister() &&
1945 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1946 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1947 isTwoAddrFold = true;
1948 } else if (i == 0) { // If operand 0
1949 if (MI->getOpcode() == X86::MOV16r0)
1950 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1951 else if (MI->getOpcode() == X86::MOV32r0)
1952 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1953 else if (MI->getOpcode() == X86::MOV64r0)
1954 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1955 else if (MI->getOpcode() == X86::MOV8r0)
1956 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00001957 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00001958 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001959
1960 OpcodeTablePtr = &RegOp2MemOpTable0;
1961 } else if (i == 1) {
1962 OpcodeTablePtr = &RegOp2MemOpTable1;
1963 } else if (i == 2) {
1964 OpcodeTablePtr = &RegOp2MemOpTable2;
1965 }
1966
1967 // If table selected...
1968 if (OpcodeTablePtr) {
1969 // Find the Opcode to fuse
1970 DenseMap<unsigned*, unsigned>::iterator I =
1971 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1972 if (I != OpcodeTablePtr->end()) {
1973 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00001974 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001975 else
Dan Gohman221a4372008-07-07 23:14:23 +00001976 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001977 return NewMI;
1978 }
1979 }
1980
1981 // No fusion
1982 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001983 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001984 return NULL;
1985}
1986
1987
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001988MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1989 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001990 SmallVectorImpl<unsigned> &Ops,
1991 int FrameIndex) const {
1992 // Check switch flag
1993 if (NoFusing) return NULL;
1994
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001995 const MachineFrameInfo *MFI = MF.getFrameInfo();
1996 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1997 // FIXME: Move alignment requirement into tables?
1998 if (Alignment < 16) {
1999 switch (MI->getOpcode()) {
2000 default: break;
2001 // Not always safe to fold movsd into these instructions since their load
2002 // folding variants expects the address to be 16 byte aligned.
2003 case X86::FsANDNPDrr:
2004 case X86::FsANDNPSrr:
2005 case X86::FsANDPDrr:
2006 case X86::FsANDPSrr:
2007 case X86::FsORPDrr:
2008 case X86::FsORPSrr:
2009 case X86::FsXORPDrr:
2010 case X86::FsXORPSrr:
2011 return NULL;
2012 }
2013 }
2014
Owen Anderson9a184ef2008-01-07 01:35:02 +00002015 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2016 unsigned NewOpc = 0;
2017 switch (MI->getOpcode()) {
2018 default: return NULL;
2019 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2020 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2021 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2022 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2023 }
2024 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002025 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002026 MI->getOperand(1).ChangeToImmediate(0);
2027 } else if (Ops.size() != 1)
2028 return NULL;
2029
2030 SmallVector<MachineOperand,4> MOs;
2031 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohman221a4372008-07-07 23:14:23 +00002032 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002033}
2034
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002035MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2036 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002037 SmallVectorImpl<unsigned> &Ops,
2038 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002039 // Check switch flag
2040 if (NoFusing) return NULL;
2041
Dan Gohmand0e8c752008-07-12 00:10:52 +00002042 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002043 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002044 if (LoadMI->hasOneMemOperand())
2045 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002046
2047 // FIXME: Move alignment requirement into tables?
2048 if (Alignment < 16) {
2049 switch (MI->getOpcode()) {
2050 default: break;
2051 // Not always safe to fold movsd into these instructions since their load
2052 // folding variants expects the address to be 16 byte aligned.
2053 case X86::FsANDNPDrr:
2054 case X86::FsANDNPSrr:
2055 case X86::FsANDPDrr:
2056 case X86::FsANDPSrr:
2057 case X86::FsORPDrr:
2058 case X86::FsORPSrr:
2059 case X86::FsXORPDrr:
2060 case X86::FsXORPSrr:
2061 return NULL;
2062 }
2063 }
2064
Owen Anderson9a184ef2008-01-07 01:35:02 +00002065 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2066 unsigned NewOpc = 0;
2067 switch (MI->getOpcode()) {
2068 default: return NULL;
2069 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2070 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2071 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2072 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2073 }
2074 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002075 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002076 MI->getOperand(1).ChangeToImmediate(0);
2077 } else if (Ops.size() != 1)
2078 return NULL;
2079
2080 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002081 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002082 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2083 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman221a4372008-07-07 23:14:23 +00002084 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002085}
2086
2087
2088bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002089 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002090 // Check switch flag
2091 if (NoFusing) return 0;
2092
2093 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2094 switch (MI->getOpcode()) {
2095 default: return false;
2096 case X86::TEST8rr:
2097 case X86::TEST16rr:
2098 case X86::TEST32rr:
2099 case X86::TEST64rr:
2100 return true;
2101 }
2102 }
2103
2104 if (Ops.size() != 1)
2105 return false;
2106
2107 unsigned OpNum = Ops[0];
2108 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002109 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002110 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002111 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002112
2113 // Folding a memory location into the two-address part of a two-address
2114 // instruction is different than folding it other places. It requires
2115 // replacing the *two* registers with the memory location.
2116 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2117 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2118 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2119 } else if (OpNum == 0) { // If operand 0
2120 switch (Opc) {
2121 case X86::MOV16r0:
2122 case X86::MOV32r0:
2123 case X86::MOV64r0:
2124 case X86::MOV8r0:
2125 return true;
2126 default: break;
2127 }
2128 OpcodeTablePtr = &RegOp2MemOpTable0;
2129 } else if (OpNum == 1) {
2130 OpcodeTablePtr = &RegOp2MemOpTable1;
2131 } else if (OpNum == 2) {
2132 OpcodeTablePtr = &RegOp2MemOpTable2;
2133 }
2134
2135 if (OpcodeTablePtr) {
2136 // Find the Opcode to fuse
2137 DenseMap<unsigned*, unsigned>::iterator I =
2138 OpcodeTablePtr->find((unsigned*)Opc);
2139 if (I != OpcodeTablePtr->end())
2140 return true;
2141 }
2142 return false;
2143}
2144
2145bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2146 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2147 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2148 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2149 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2150 if (I == MemOp2RegOpTable.end())
2151 return false;
2152 unsigned Opc = I->second.first;
2153 unsigned Index = I->second.second & 0xf;
2154 bool FoldedLoad = I->second.second & (1 << 4);
2155 bool FoldedStore = I->second.second & (1 << 5);
2156 if (UnfoldLoad && !FoldedLoad)
2157 return false;
2158 UnfoldLoad &= FoldedLoad;
2159 if (UnfoldStore && !FoldedStore)
2160 return false;
2161 UnfoldStore &= FoldedStore;
2162
Chris Lattner5b930372008-01-07 07:27:27 +00002163 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002164 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002165 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002166 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2167 SmallVector<MachineOperand,4> AddrOps;
2168 SmallVector<MachineOperand,2> BeforeOps;
2169 SmallVector<MachineOperand,2> AfterOps;
2170 SmallVector<MachineOperand,4> ImpOps;
2171 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2172 MachineOperand &Op = MI->getOperand(i);
2173 if (i >= Index && i < Index+4)
2174 AddrOps.push_back(Op);
2175 else if (Op.isRegister() && Op.isImplicit())
2176 ImpOps.push_back(Op);
2177 else if (i < Index)
2178 BeforeOps.push_back(Op);
2179 else if (i > Index)
2180 AfterOps.push_back(Op);
2181 }
2182
2183 // Emit the load instruction.
2184 if (UnfoldLoad) {
2185 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2186 if (UnfoldStore) {
2187 // Address operands cannot be marked isKill.
2188 for (unsigned i = 1; i != 5; ++i) {
2189 MachineOperand &MO = NewMIs[0]->getOperand(i);
2190 if (MO.isRegister())
2191 MO.setIsKill(false);
2192 }
2193 }
2194 }
2195
2196 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002197 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002198 MachineInstrBuilder MIB(DataMI);
2199
2200 if (FoldedStore)
2201 MIB.addReg(Reg, true);
2202 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2203 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2204 if (FoldedLoad)
2205 MIB.addReg(Reg);
2206 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2207 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2208 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2209 MachineOperand &MO = ImpOps[i];
2210 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2211 }
2212 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2213 unsigned NewOpc = 0;
2214 switch (DataMI->getOpcode()) {
2215 default: break;
2216 case X86::CMP64ri32:
2217 case X86::CMP32ri:
2218 case X86::CMP16ri:
2219 case X86::CMP8ri: {
2220 MachineOperand &MO0 = DataMI->getOperand(0);
2221 MachineOperand &MO1 = DataMI->getOperand(1);
2222 if (MO1.getImm() == 0) {
2223 switch (DataMI->getOpcode()) {
2224 default: break;
2225 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2226 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2227 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2228 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2229 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002230 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002231 MO1.ChangeToRegister(MO0.getReg(), false);
2232 }
2233 }
2234 }
2235 NewMIs.push_back(DataMI);
2236
2237 // Emit the store instruction.
2238 if (UnfoldStore) {
2239 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002240 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002241 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2242 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2243 }
2244
2245 return true;
2246}
2247
2248bool
2249X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2250 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002251 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002252 return false;
2253
2254 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002255 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002256 if (I == MemOp2RegOpTable.end())
2257 return false;
2258 unsigned Opc = I->second.first;
2259 unsigned Index = I->second.second & 0xf;
2260 bool FoldedLoad = I->second.second & (1 << 4);
2261 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002262 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002263 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002264 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002265 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002266 std::vector<SDValue> AddrOps;
2267 std::vector<SDValue> BeforeOps;
2268 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002269 unsigned NumOps = N->getNumOperands();
2270 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002271 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002272 if (i >= Index && i < Index+4)
2273 AddrOps.push_back(Op);
2274 else if (i < Index)
2275 BeforeOps.push_back(Op);
2276 else if (i > Index)
2277 AfterOps.push_back(Op);
2278 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002279 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002280 AddrOps.push_back(Chain);
2281
2282 // Emit the load instruction.
2283 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002284 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002285 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002286 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002287 bool isAligned = (RI.getStackAlignment() >= 16) ||
2288 RI.needsStackRealignment(MF);
2289 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002290 VT, MVT::Other,
2291 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002292 NewNodes.push_back(Load);
2293 }
2294
2295 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002296 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002297 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002298 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002299 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002300 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002301 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2302 VTs.push_back(*DstRC->vt_begin());
2303 }
2304 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002305 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002306 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002307 VTs.push_back(VT);
2308 }
2309 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002310 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002311 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2312 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2313 NewNodes.push_back(NewNode);
2314
2315 // Emit the store instruction.
2316 if (FoldedStore) {
2317 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002318 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002319 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002320 bool isAligned = (RI.getStackAlignment() >= 16) ||
2321 RI.needsStackRealignment(MF);
2322 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2323 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002324 NewNodes.push_back(Store);
2325 }
2326
2327 return true;
2328}
2329
2330unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2331 bool UnfoldLoad, bool UnfoldStore) const {
2332 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2333 MemOp2RegOpTable.find((unsigned*)Opc);
2334 if (I == MemOp2RegOpTable.end())
2335 return 0;
2336 bool FoldedLoad = I->second.second & (1 << 4);
2337 bool FoldedStore = I->second.second & (1 << 5);
2338 if (UnfoldLoad && !FoldedLoad)
2339 return 0;
2340 if (UnfoldStore && !FoldedStore)
2341 return 0;
2342 return I->second.first;
2343}
2344
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2346 if (MBB.empty()) return false;
2347
2348 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002349 case X86::TCRETURNri:
2350 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351 case X86::RET: // Return.
2352 case X86::RETI:
2353 case X86::TAILJMPd:
2354 case X86::TAILJMPr:
2355 case X86::TAILJMPm:
2356 case X86::JMP: // Uncond branch.
2357 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002358 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002360 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361 return true;
2362 default: return false;
2363 }
2364}
2365
2366bool X86InstrInfo::
2367ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2368 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2369 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2370 return false;
2371}
2372
2373const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2374 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2375 if (Subtarget->is64Bit())
2376 return &X86::GR64RegClass;
2377 else
2378 return &X86::GR32RegClass;
2379}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002380
2381unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2382 switch (Desc->TSFlags & X86II::ImmMask) {
2383 case X86II::Imm8: return 1;
2384 case X86II::Imm16: return 2;
2385 case X86II::Imm32: return 4;
2386 case X86II::Imm64: return 8;
2387 default: assert(0 && "Immediate size not set!");
2388 return 0;
2389 }
2390}
2391
2392/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2393/// e.g. r8, xmm8, etc.
2394bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2395 if (!MO.isRegister()) return false;
2396 switch (MO.getReg()) {
2397 default: break;
2398 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2399 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2400 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2401 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2402 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2403 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2404 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2405 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2406 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2407 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2408 return true;
2409 }
2410 return false;
2411}
2412
2413
2414/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2415/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2416/// size, and 3) use of X86-64 extended registers.
2417unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2418 unsigned REX = 0;
2419 const TargetInstrDesc &Desc = MI.getDesc();
2420
2421 // Pseudo instructions do not need REX prefix byte.
2422 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2423 return 0;
2424 if (Desc.TSFlags & X86II::REX_W)
2425 REX |= 1 << 3;
2426
2427 unsigned NumOps = Desc.getNumOperands();
2428 if (NumOps) {
2429 bool isTwoAddr = NumOps > 1 &&
2430 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2431
2432 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2433 unsigned i = isTwoAddr ? 1 : 0;
2434 for (unsigned e = NumOps; i != e; ++i) {
2435 const MachineOperand& MO = MI.getOperand(i);
2436 if (MO.isRegister()) {
2437 unsigned Reg = MO.getReg();
2438 if (isX86_64NonExtLowByteReg(Reg))
2439 REX |= 0x40;
2440 }
2441 }
2442
2443 switch (Desc.TSFlags & X86II::FormMask) {
2444 case X86II::MRMInitReg:
2445 if (isX86_64ExtendedReg(MI.getOperand(0)))
2446 REX |= (1 << 0) | (1 << 2);
2447 break;
2448 case X86II::MRMSrcReg: {
2449 if (isX86_64ExtendedReg(MI.getOperand(0)))
2450 REX |= 1 << 2;
2451 i = isTwoAddr ? 2 : 1;
2452 for (unsigned e = NumOps; i != e; ++i) {
2453 const MachineOperand& MO = MI.getOperand(i);
2454 if (isX86_64ExtendedReg(MO))
2455 REX |= 1 << 0;
2456 }
2457 break;
2458 }
2459 case X86II::MRMSrcMem: {
2460 if (isX86_64ExtendedReg(MI.getOperand(0)))
2461 REX |= 1 << 2;
2462 unsigned Bit = 0;
2463 i = isTwoAddr ? 2 : 1;
2464 for (; i != NumOps; ++i) {
2465 const MachineOperand& MO = MI.getOperand(i);
2466 if (MO.isRegister()) {
2467 if (isX86_64ExtendedReg(MO))
2468 REX |= 1 << Bit;
2469 Bit++;
2470 }
2471 }
2472 break;
2473 }
2474 case X86II::MRM0m: case X86II::MRM1m:
2475 case X86II::MRM2m: case X86II::MRM3m:
2476 case X86II::MRM4m: case X86II::MRM5m:
2477 case X86II::MRM6m: case X86II::MRM7m:
2478 case X86II::MRMDestMem: {
2479 unsigned e = isTwoAddr ? 5 : 4;
2480 i = isTwoAddr ? 1 : 0;
2481 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2482 REX |= 1 << 2;
2483 unsigned Bit = 0;
2484 for (; i != e; ++i) {
2485 const MachineOperand& MO = MI.getOperand(i);
2486 if (MO.isRegister()) {
2487 if (isX86_64ExtendedReg(MO))
2488 REX |= 1 << Bit;
2489 Bit++;
2490 }
2491 }
2492 break;
2493 }
2494 default: {
2495 if (isX86_64ExtendedReg(MI.getOperand(0)))
2496 REX |= 1 << 0;
2497 i = isTwoAddr ? 2 : 1;
2498 for (unsigned e = NumOps; i != e; ++i) {
2499 const MachineOperand& MO = MI.getOperand(i);
2500 if (isX86_64ExtendedReg(MO))
2501 REX |= 1 << 2;
2502 }
2503 break;
2504 }
2505 }
2506 }
2507 return REX;
2508}
2509
2510/// sizePCRelativeBlockAddress - This method returns the size of a PC
2511/// relative block address instruction
2512///
2513static unsigned sizePCRelativeBlockAddress() {
2514 return 4;
2515}
2516
2517/// sizeGlobalAddress - Give the size of the emission of this global address
2518///
2519static unsigned sizeGlobalAddress(bool dword) {
2520 return dword ? 8 : 4;
2521}
2522
2523/// sizeConstPoolAddress - Give the size of the emission of this constant
2524/// pool address
2525///
2526static unsigned sizeConstPoolAddress(bool dword) {
2527 return dword ? 8 : 4;
2528}
2529
2530/// sizeExternalSymbolAddress - Give the size of the emission of this external
2531/// symbol
2532///
2533static unsigned sizeExternalSymbolAddress(bool dword) {
2534 return dword ? 8 : 4;
2535}
2536
2537/// sizeJumpTableAddress - Give the size of the emission of this jump
2538/// table address
2539///
2540static unsigned sizeJumpTableAddress(bool dword) {
2541 return dword ? 8 : 4;
2542}
2543
2544static unsigned sizeConstant(unsigned Size) {
2545 return Size;
2546}
2547
2548static unsigned sizeRegModRMByte(){
2549 return 1;
2550}
2551
2552static unsigned sizeSIBByte(){
2553 return 1;
2554}
2555
2556static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2557 unsigned FinalSize = 0;
2558 // If this is a simple integer displacement that doesn't require a relocation.
2559 if (!RelocOp) {
2560 FinalSize += sizeConstant(4);
2561 return FinalSize;
2562 }
2563
2564 // Otherwise, this is something that requires a relocation.
2565 if (RelocOp->isGlobalAddress()) {
2566 FinalSize += sizeGlobalAddress(false);
2567 } else if (RelocOp->isConstantPoolIndex()) {
2568 FinalSize += sizeConstPoolAddress(false);
2569 } else if (RelocOp->isJumpTableIndex()) {
2570 FinalSize += sizeJumpTableAddress(false);
2571 } else {
2572 assert(0 && "Unknown value to relocate!");
2573 }
2574 return FinalSize;
2575}
2576
2577static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2578 bool IsPIC, bool Is64BitMode) {
2579 const MachineOperand &Op3 = MI.getOperand(Op+3);
2580 int DispVal = 0;
2581 const MachineOperand *DispForReloc = 0;
2582 unsigned FinalSize = 0;
2583
2584 // Figure out what sort of displacement we have to handle here.
2585 if (Op3.isGlobalAddress()) {
2586 DispForReloc = &Op3;
2587 } else if (Op3.isConstantPoolIndex()) {
2588 if (Is64BitMode || IsPIC) {
2589 DispForReloc = &Op3;
2590 } else {
2591 DispVal = 1;
2592 }
2593 } else if (Op3.isJumpTableIndex()) {
2594 if (Is64BitMode || IsPIC) {
2595 DispForReloc = &Op3;
2596 } else {
2597 DispVal = 1;
2598 }
2599 } else {
2600 DispVal = 1;
2601 }
2602
2603 const MachineOperand &Base = MI.getOperand(Op);
2604 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2605
2606 unsigned BaseReg = Base.getReg();
2607
2608 // Is a SIB byte needed?
2609 if (IndexReg.getReg() == 0 &&
2610 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2611 if (BaseReg == 0) { // Just a displacement?
2612 // Emit special case [disp32] encoding
2613 ++FinalSize;
2614 FinalSize += getDisplacementFieldSize(DispForReloc);
2615 } else {
2616 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2617 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2618 // Emit simple indirect register encoding... [EAX] f.e.
2619 ++FinalSize;
2620 // Be pessimistic and assume it's a disp32, not a disp8
2621 } else {
2622 // Emit the most general non-SIB encoding: [REG+disp32]
2623 ++FinalSize;
2624 FinalSize += getDisplacementFieldSize(DispForReloc);
2625 }
2626 }
2627
2628 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2629 assert(IndexReg.getReg() != X86::ESP &&
2630 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2631
2632 bool ForceDisp32 = false;
2633 if (BaseReg == 0 || DispForReloc) {
2634 // Emit the normal disp32 encoding.
2635 ++FinalSize;
2636 ForceDisp32 = true;
2637 } else {
2638 ++FinalSize;
2639 }
2640
2641 FinalSize += sizeSIBByte();
2642
2643 // Do we need to output a displacement?
2644 if (DispVal != 0 || ForceDisp32) {
2645 FinalSize += getDisplacementFieldSize(DispForReloc);
2646 }
2647 }
2648 return FinalSize;
2649}
2650
2651
2652static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2653 const TargetInstrDesc *Desc,
2654 bool IsPIC, bool Is64BitMode) {
2655
2656 unsigned Opcode = Desc->Opcode;
2657 unsigned FinalSize = 0;
2658
2659 // Emit the lock opcode prefix as needed.
2660 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2661
2662 // Emit the repeat opcode prefix as needed.
2663 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2664
2665 // Emit the operand size opcode prefix as needed.
2666 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2667
2668 // Emit the address size opcode prefix as needed.
2669 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2670
2671 bool Need0FPrefix = false;
2672 switch (Desc->TSFlags & X86II::Op0Mask) {
2673 case X86II::TB: // Two-byte opcode prefix
2674 case X86II::T8: // 0F 38
2675 case X86II::TA: // 0F 3A
2676 Need0FPrefix = true;
2677 break;
2678 case X86II::REP: break; // already handled.
2679 case X86II::XS: // F3 0F
2680 ++FinalSize;
2681 Need0FPrefix = true;
2682 break;
2683 case X86II::XD: // F2 0F
2684 ++FinalSize;
2685 Need0FPrefix = true;
2686 break;
2687 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2688 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2689 ++FinalSize;
2690 break; // Two-byte opcode prefix
2691 default: assert(0 && "Invalid prefix!");
2692 case 0: break; // No prefix!
2693 }
2694
2695 if (Is64BitMode) {
2696 // REX prefix
2697 unsigned REX = X86InstrInfo::determineREX(MI);
2698 if (REX)
2699 ++FinalSize;
2700 }
2701
2702 // 0x0F escape code must be emitted just before the opcode.
2703 if (Need0FPrefix)
2704 ++FinalSize;
2705
2706 switch (Desc->TSFlags & X86II::Op0Mask) {
2707 case X86II::T8: // 0F 38
2708 ++FinalSize;
2709 break;
2710 case X86II::TA: // 0F 3A
2711 ++FinalSize;
2712 break;
2713 }
2714
2715 // If this is a two-address instruction, skip one of the register operands.
2716 unsigned NumOps = Desc->getNumOperands();
2717 unsigned CurOp = 0;
2718 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2719 CurOp++;
2720
2721 switch (Desc->TSFlags & X86II::FormMask) {
2722 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2723 case X86II::Pseudo:
2724 // Remember the current PC offset, this is the PIC relocation
2725 // base address.
2726 switch (Opcode) {
2727 default:
2728 break;
2729 case TargetInstrInfo::INLINEASM: {
2730 const MachineFunction *MF = MI.getParent()->getParent();
2731 const char *AsmStr = MI.getOperand(0).getSymbolName();
2732 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2733 FinalSize += AI->getInlineAsmLength(AsmStr);
2734 break;
2735 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002736 case TargetInstrInfo::DBG_LABEL:
2737 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002738 break;
2739 case TargetInstrInfo::IMPLICIT_DEF:
2740 case TargetInstrInfo::DECLARE:
2741 case X86::DWARF_LOC:
2742 case X86::FP_REG_KILL:
2743 break;
2744 case X86::MOVPC32r: {
2745 // This emits the "call" portion of this pseudo instruction.
2746 ++FinalSize;
2747 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2748 break;
2749 }
2750 }
2751 CurOp = NumOps;
2752 break;
2753 case X86II::RawFrm:
2754 ++FinalSize;
2755
2756 if (CurOp != NumOps) {
2757 const MachineOperand &MO = MI.getOperand(CurOp++);
2758 if (MO.isMachineBasicBlock()) {
2759 FinalSize += sizePCRelativeBlockAddress();
2760 } else if (MO.isGlobalAddress()) {
2761 FinalSize += sizeGlobalAddress(false);
2762 } else if (MO.isExternalSymbol()) {
2763 FinalSize += sizeExternalSymbolAddress(false);
2764 } else if (MO.isImmediate()) {
2765 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2766 } else {
2767 assert(0 && "Unknown RawFrm operand!");
2768 }
2769 }
2770 break;
2771
2772 case X86II::AddRegFrm:
2773 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002774 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002775
2776 if (CurOp != NumOps) {
2777 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2778 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2779 if (MO1.isImmediate())
2780 FinalSize += sizeConstant(Size);
2781 else {
2782 bool dword = false;
2783 if (Opcode == X86::MOV64ri)
2784 dword = true;
2785 if (MO1.isGlobalAddress()) {
2786 FinalSize += sizeGlobalAddress(dword);
2787 } else if (MO1.isExternalSymbol())
2788 FinalSize += sizeExternalSymbolAddress(dword);
2789 else if (MO1.isConstantPoolIndex())
2790 FinalSize += sizeConstPoolAddress(dword);
2791 else if (MO1.isJumpTableIndex())
2792 FinalSize += sizeJumpTableAddress(dword);
2793 }
2794 }
2795 break;
2796
2797 case X86II::MRMDestReg: {
2798 ++FinalSize;
2799 FinalSize += sizeRegModRMByte();
2800 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002801 if (CurOp != NumOps) {
2802 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002803 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002804 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002805 break;
2806 }
2807 case X86II::MRMDestMem: {
2808 ++FinalSize;
2809 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2810 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002811 if (CurOp != NumOps) {
2812 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002813 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002814 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002815 break;
2816 }
2817
2818 case X86II::MRMSrcReg:
2819 ++FinalSize;
2820 FinalSize += sizeRegModRMByte();
2821 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002822 if (CurOp != NumOps) {
2823 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002824 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002825 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002826 break;
2827
2828 case X86II::MRMSrcMem: {
2829
2830 ++FinalSize;
2831 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2832 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002833 if (CurOp != NumOps) {
2834 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002835 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002836 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002837 break;
2838 }
2839
2840 case X86II::MRM0r: case X86II::MRM1r:
2841 case X86II::MRM2r: case X86II::MRM3r:
2842 case X86II::MRM4r: case X86II::MRM5r:
2843 case X86II::MRM6r: case X86II::MRM7r:
2844 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002845 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002846 FinalSize += sizeRegModRMByte();
2847
2848 if (CurOp != NumOps) {
2849 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2850 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2851 if (MO1.isImmediate())
2852 FinalSize += sizeConstant(Size);
2853 else {
2854 bool dword = false;
2855 if (Opcode == X86::MOV64ri32)
2856 dword = true;
2857 if (MO1.isGlobalAddress()) {
2858 FinalSize += sizeGlobalAddress(dword);
2859 } else if (MO1.isExternalSymbol())
2860 FinalSize += sizeExternalSymbolAddress(dword);
2861 else if (MO1.isConstantPoolIndex())
2862 FinalSize += sizeConstPoolAddress(dword);
2863 else if (MO1.isJumpTableIndex())
2864 FinalSize += sizeJumpTableAddress(dword);
2865 }
2866 }
2867 break;
2868
2869 case X86II::MRM0m: case X86II::MRM1m:
2870 case X86II::MRM2m: case X86II::MRM3m:
2871 case X86II::MRM4m: case X86II::MRM5m:
2872 case X86II::MRM6m: case X86II::MRM7m: {
2873
2874 ++FinalSize;
2875 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2876 CurOp += 4;
2877
2878 if (CurOp != NumOps) {
2879 const MachineOperand &MO = MI.getOperand(CurOp++);
2880 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2881 if (MO.isImmediate())
2882 FinalSize += sizeConstant(Size);
2883 else {
2884 bool dword = false;
2885 if (Opcode == X86::MOV64mi32)
2886 dword = true;
2887 if (MO.isGlobalAddress()) {
2888 FinalSize += sizeGlobalAddress(dword);
2889 } else if (MO.isExternalSymbol())
2890 FinalSize += sizeExternalSymbolAddress(dword);
2891 else if (MO.isConstantPoolIndex())
2892 FinalSize += sizeConstPoolAddress(dword);
2893 else if (MO.isJumpTableIndex())
2894 FinalSize += sizeJumpTableAddress(dword);
2895 }
2896 }
2897 break;
2898 }
2899
2900 case X86II::MRMInitReg:
2901 ++FinalSize;
2902 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2903 FinalSize += sizeRegModRMByte();
2904 ++CurOp;
2905 break;
2906 }
2907
2908 if (!Desc->isVariadic() && CurOp != NumOps) {
2909 cerr << "Cannot determine size: ";
2910 MI.dump();
2911 cerr << '\n';
2912 abort();
2913 }
2914
2915
2916 return FinalSize;
2917}
2918
2919
2920unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2921 const TargetInstrDesc &Desc = MI->getDesc();
2922 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002923 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002924 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2925 if (Desc.getOpcode() == X86::MOVPC32r) {
2926 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2927 }
2928 return Size;
2929}