blob: 7185f4d0a62f8953dbaae8fdc87206e49c349328 [file] [log] [blame]
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
Jim Laskeyb744c252006-12-15 10:40:48 +00005 <meta http-equiv="content-type" content="text/html; charset=utf-8">
Chris Lattnerce52b7e2004-06-01 06:48:00 +00006 <title>The LLVM Target-Independent Code Generator</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 The LLVM Target-Independent Code Generator
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction</a>
17 <ul>
18 <li><a href="#required">Required components in the code generator</a></li>
Chris Lattnere35d3bb2005-10-16 00:36:38 +000019 <li><a href="#high-level-design">The high-level design of the code
20 generator</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000021 <li><a href="#tablegen">Using TableGen for target description</a></li>
22 </ul>
23 </li>
24 <li><a href="#targetdesc">Target description classes</a>
25 <ul>
26 <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
27 <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000028 <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
Dan Gohman6f0d0242008-02-10 18:45:23 +000029 <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000030 <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
31 <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
Chris Lattner47adebb2005-10-16 17:06:07 +000032 <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000033 <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
34 </ul>
35 </li>
Chris Lattnere1b83452010-09-11 23:02:10 +000036 <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
Chris Lattnerec94f802004-06-04 00:16:02 +000037 <ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000038 <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000039 <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
40 class</a></li>
41 <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
Chris Lattnerec94f802004-06-04 00:16:02 +000042 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000043 </li>
Chris Lattnere1b83452010-09-11 23:02:10 +000044 <li><a href="#mc">The "MC" Layer</a>
45 <ul>
46 <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
47 <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
48 <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
49 <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
50 <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
51 </ul>
52 </li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000053 <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000054 <ul>
55 <li><a href="#instselect">Instruction Selection</a>
56 <ul>
57 <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
58 <li><a href="#selectiondag_process">SelectionDAG Code Generation
59 Process</a></li>
60 <li><a href="#selectiondag_build">Initial SelectionDAG
61 Construction</a></li>
Dan Gohman641b2792008-11-24 16:27:17 +000062 <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000063 <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
64 <li><a href="#selectiondag_optimize">SelectionDAG Optimization
Chris Lattnere35d3bb2005-10-16 00:36:38 +000065 Phase: the DAG Combiner</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000066 <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000067 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
Chris Lattnere35d3bb2005-10-16 00:36:38 +000068 Phase</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000069 <li><a href="#selectiondag_future">Future directions for the
70 SelectionDAG</a></li>
71 </ul></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000072 <li><a href="#liveintervals">Live Intervals</a>
Bill Wendling2f87a882006-09-04 23:35:52 +000073 <ul>
74 <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000075 <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
Bill Wendling2f87a882006-09-04 23:35:52 +000076 </ul></li>
Bill Wendlinga396ee82006-09-01 21:46:00 +000077 <li><a href="#regalloc">Register Allocation</a>
78 <ul>
79 <li><a href="#regAlloc_represent">How registers are represented in
80 LLVM</a></li>
81 <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
82 registers</a></li>
83 <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
84 <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
85 <li><a href="#regAlloc_fold">Instruction folding</a></li>
86 <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
87 </ul></li>
Chris Lattnere1b83452010-09-11 23:02:10 +000088 <li><a href="#codeemit">Code Emission</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000089 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000090 </li>
Chris Lattnere1b83452010-09-11 23:02:10 +000091 <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
92
Chris Lattner32e89f22005-10-16 18:31:08 +000093 <li><a href="#targetimpls">Target-specific Implementation Notes</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000094 <ul>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +000095 <li><a href="#tailcallopt">Tail call optimization</a></li>
Evan Chengdc444e92010-03-08 21:05:02 +000096 <li><a href="#sibcallopt">Sibling call optimization</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000097 <li><a href="#x86">The X86 backend</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +000098 <li><a href="#ppc">The PowerPC backend</a>
Jim Laskey762b6cb2006-12-14 17:19:50 +000099 <ul>
100 <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
101 <li><a href="#ppc_frame">Frame Layout</a></li>
102 <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
103 <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000104 </ul></li>
105 </ul></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000106
107</ol>
108
109<div class="doc_author">
Chris Lattnere1b83452010-09-11 23:02:10 +0000110 <p>Written by the LLVM Team.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000111</div>
112
Chris Lattner10d68002004-06-01 17:18:11 +0000113<div class="doc_warning">
114 <p>Warning: This is a work in progress.</p>
115</div>
116
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000117<!-- *********************************************************************** -->
118<div class="doc_section">
119 <a name="introduction">Introduction</a>
120</div>
121<!-- *********************************************************************** -->
122
123<div class="doc_text">
124
125<p>The LLVM target-independent code generator is a framework that provides a
Bill Wendling80118802009-04-15 02:12:37 +0000126 suite of reusable components for translating the LLVM internal representation
127 to the machine code for a specified target&mdash;either in assembly form
128 (suitable for a static compiler) or in binary machine code format (usable for
Chris Lattnere1b83452010-09-11 23:02:10 +0000129 a JIT compiler). The LLVM target-independent code generator consists of six
Bill Wendling80118802009-04-15 02:12:37 +0000130 main components:</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000131
132<ol>
Bill Wendling80118802009-04-15 02:12:37 +0000133 <li><a href="#targetdesc">Abstract target description</a> interfaces which
134 capture important properties about various aspects of the machine,
135 independently of how they will be used. These interfaces are defined in
136 <tt>include/llvm/Target/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000137
Chris Lattnere1b83452010-09-11 23:02:10 +0000138 <li>Classes used to represent the <a href="#codegendesc">code being
139 generated</a> for a target. These classes are intended to be abstract
Bill Wendling80118802009-04-15 02:12:37 +0000140 enough to represent the machine code for <i>any</i> target machine. These
Chris Lattnere1b83452010-09-11 23:02:10 +0000141 classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
142 concepts like "constant pool entries" and "jump tables" are explicitly
143 exposed.</li>
144
145 <li>Classes and algorithms used to represent code as the object file level,
146 the <a href="#mc">MC Layer</a>. These classes represent assembly level
147 constructs like labels, sections, and instructions. At this level,
148 concepts like "constant pool entries" and "jump tables" don't exist.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000149
Bill Wendling80118802009-04-15 02:12:37 +0000150 <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
151 various phases of native code generation (register allocation, scheduling,
152 stack frame representation, etc). This code lives
153 in <tt>lib/CodeGen/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000154
Bill Wendling80118802009-04-15 02:12:37 +0000155 <li><a href="#targetimpls">Implementations of the abstract target description
156 interfaces</a> for particular targets. These machine descriptions make
157 use of the components provided by LLVM, and can optionally provide custom
158 target-specific passes, to build complete code generators for a specific
159 target. Target descriptions live in <tt>lib/Target/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000160
Bill Wendling80118802009-04-15 02:12:37 +0000161 <li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is
162 completely target independent (it uses the <tt>TargetJITInfo</tt>
163 structure to interface for target-specific issues. The code for the
164 target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000165</ol>
166
Bill Wendling80118802009-04-15 02:12:37 +0000167<p>Depending on which part of the code generator you are interested in working
168 on, different pieces of this will be useful to you. In any case, you should
169 be familiar with the <a href="#targetdesc">target description</a>
170 and <a href="#codegendesc">machine code representation</a> classes. If you
171 want to add a backend for a new target, you will need
172 to <a href="#targetimpls">implement the target description</a> classes for
173 your new target and understand the <a href="LangRef.html">LLVM code
174 representation</a>. If you are interested in implementing a
175 new <a href="#codegenalgs">code generation algorithm</a>, it should only
176 depend on the target-description and machine code representation classes,
177 ensuring that it is portable.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000178
179</div>
180
181<!-- ======================================================================= -->
182<div class="doc_subsection">
183 <a name="required">Required components in the code generator</a>
184</div>
185
186<div class="doc_text">
187
188<p>The two pieces of the LLVM code generator are the high-level interface to the
Bill Wendling80118802009-04-15 02:12:37 +0000189 code generator and the set of reusable components that can be used to build
190 target-specific backends. The two most important interfaces
191 (<a href="#targetmachine"><tt>TargetMachine</tt></a>
192 and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
193 required to be defined for a backend to fit into the LLVM system, but the
194 others must be defined if the reusable code generator components are going to
195 be used.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000196
197<p>This design has two important implications. The first is that LLVM can
Bill Wendling80118802009-04-15 02:12:37 +0000198 support completely non-traditional code generation targets. For example, the
199 C backend does not require register allocation, instruction selection, or any
200 of the other standard components provided by the system. As such, it only
201 implements these two interfaces, and does its own thing. Another example of
202 a code generator like this is a (purely hypothetical) backend that converts
203 LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000204
Bill Wendling80118802009-04-15 02:12:37 +0000205<p>This design also implies that it is possible to design and implement
206 radically different code generators in the LLVM system that do not make use
207 of any of the built-in components. Doing so is not recommended at all, but
208 could be required for radically different targets that do not fit into the
209 LLVM machine description model: FPGAs for example.</p>
Chris Lattner900bf8c2004-06-02 07:06:06 +0000210
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000211</div>
212
213<!-- ======================================================================= -->
214<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000215 <a name="high-level-design">The high-level design of the code generator</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000216</div>
217
218<div class="doc_text">
219
Bill Wendling80118802009-04-15 02:12:37 +0000220<p>The LLVM target-independent code generator is designed to support efficient
221 and quality code generation for standard register-based microprocessors.
222 Code generation in this model is divided into the following stages:</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000223
224<ol>
Bill Wendling80118802009-04-15 02:12:37 +0000225 <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
226 determines an efficient way to express the input LLVM code in the target
227 instruction set. This stage produces the initial code for the program in
228 the target instruction set, then makes use of virtual registers in SSA
229 form and physical registers that represent any required register
230 assignments due to target constraints or calling conventions. This step
231 turns the LLVM code into a DAG of target instructions.</li>
Chris Lattner32e89f22005-10-16 18:31:08 +0000232
Bill Wendling80118802009-04-15 02:12:37 +0000233 <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
234 This phase takes the DAG of target instructions produced by the
235 instruction selection phase, determines an ordering of the instructions,
236 then emits the instructions
237 as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
238 Note that we describe this in the <a href="#instselect">instruction
239 selection section</a> because it operates on
240 a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000241
Bill Wendling80118802009-04-15 02:12:37 +0000242 <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
243 This optional stage consists of a series of machine-code optimizations
244 that operate on the SSA-form produced by the instruction selector.
245 Optimizations like modulo-scheduling or peephole optimization work
246 here.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000247
Bill Wendling80118802009-04-15 02:12:37 +0000248 <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
249 is transformed from an infinite virtual register file in SSA form to the
250 concrete register file used by the target. This phase introduces spill
251 code and eliminates all virtual register references from the program.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000252
Bill Wendling80118802009-04-15 02:12:37 +0000253 <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
254 the machine code has been generated for the function and the amount of
255 stack space required is known (used for LLVM alloca's and spill slots),
256 the prolog and epilog code for the function can be inserted and "abstract
257 stack location references" can be eliminated. This stage is responsible
258 for implementing optimizations like frame-pointer elimination and stack
259 packing.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000260
Bill Wendling80118802009-04-15 02:12:37 +0000261 <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
262 Optimizations that operate on "final" machine code can go here, such as
263 spill code scheduling and peephole optimizations.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000264
Bill Wendling80118802009-04-15 02:12:37 +0000265 <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
266 actually puts out the code for the current function, either in the target
267 assembler format or in machine code.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000268</ol>
269
Bill Wendling91e10c42006-08-28 02:26:32 +0000270<p>The code generator is based on the assumption that the instruction selector
Bill Wendling80118802009-04-15 02:12:37 +0000271 will use an optimal pattern matching selector to create high-quality
272 sequences of native instructions. Alternative code generator designs based
273 on pattern expansion and aggressive iterative peephole optimization are much
274 slower. This design permits efficient compilation (important for JIT
275 environments) and aggressive optimization (used when generating code offline)
276 by allowing components of varying levels of sophistication to be used for any
277 step of compilation.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000278
Bill Wendling91e10c42006-08-28 02:26:32 +0000279<p>In addition to these stages, target implementations can insert arbitrary
Bill Wendling80118802009-04-15 02:12:37 +0000280 target-specific passes into the flow. For example, the X86 target uses a
281 special pass to handle the 80x87 floating point stack architecture. Other
282 targets with unusual requirements can be supported with custom passes as
283 needed.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000284
285</div>
286
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000287<!-- ======================================================================= -->
288<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000289 <a name="tablegen">Using TableGen for target description</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000290</div>
291
292<div class="doc_text">
293
Chris Lattner5489e932004-06-01 18:35:00 +0000294<p>The target description classes require a detailed description of the target
Bill Wendling80118802009-04-15 02:12:37 +0000295 architecture. These target descriptions often have a large amount of common
296 information (e.g., an <tt>add</tt> instruction is almost identical to a
297 <tt>sub</tt> instruction). In order to allow the maximum amount of
298 commonality to be factored out, the LLVM code generator uses
299 the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
300 chunks of the target machine, which allows the use of domain-specific and
301 target-specific abstractions to reduce the amount of repetition.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000302
Chris Lattner32e89f22005-10-16 18:31:08 +0000303<p>As LLVM continues to be developed and refined, we plan to move more and more
Bill Wendling80118802009-04-15 02:12:37 +0000304 of the target description to the <tt>.td</tt> form. Doing so gives us a
305 number of advantages. The most important is that it makes it easier to port
306 LLVM because it reduces the amount of C++ code that has to be written, and
307 the surface area of the code generator that needs to be understood before
308 someone can get something working. Second, it makes it easier to change
309 things. In particular, if tables and other things are all emitted
310 by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
311 update all of the targets to a new interface.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000312
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000313</div>
314
315<!-- *********************************************************************** -->
316<div class="doc_section">
317 <a name="targetdesc">Target description classes</a>
318</div>
319<!-- *********************************************************************** -->
320
321<div class="doc_text">
322
Bill Wendling91e10c42006-08-28 02:26:32 +0000323<p>The LLVM target description classes (located in the
Bill Wendling80118802009-04-15 02:12:37 +0000324 <tt>include/llvm/Target</tt> directory) provide an abstract description of
325 the target machine independent of any particular client. These classes are
326 designed to capture the <i>abstract</i> properties of the target (such as the
327 instructions and registers it has), and do not incorporate any particular
328 pieces of code generation algorithms.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000329
Bill Wendling80118802009-04-15 02:12:37 +0000330<p>All of the target description classes (except the
331 <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
332 subclassed by the concrete target implementation, and have virtual methods
333 implemented. To get to these implementations, the
334 <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
335 that should be implemented by the target.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000336
337</div>
338
339<!-- ======================================================================= -->
340<div class="doc_subsection">
341 <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
342</div>
343
344<div class="doc_text">
345
346<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
Bill Wendling80118802009-04-15 02:12:37 +0000347 access the target-specific implementations of the various target description
348 classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
349 <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is
350 designed to be specialized by a concrete target implementation
351 (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
352 methods. The only required target description class is
353 the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
354 generator components are to be used, the other interfaces should be
355 implemented as well.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000356
357</div>
358
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000359<!-- ======================================================================= -->
360<div class="doc_subsection">
361 <a name="targetdata">The <tt>TargetData</tt> class</a>
362</div>
363
364<div class="doc_text">
365
366<p>The <tt>TargetData</tt> class is the only required target description class,
Bill Wendling80118802009-04-15 02:12:37 +0000367 and it is the only class that is not extensible (you cannot derived a new
368 class from it). <tt>TargetData</tt> specifies information about how the
369 target lays out memory for structures, the alignment requirements for various
370 data types, the size of pointers in the target, and whether the target is
371 little-endian or big-endian.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000372
373</div>
374
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000375<!-- ======================================================================= -->
376<div class="doc_subsection">
377 <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
378</div>
379
380<div class="doc_text">
381
382<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
Bill Wendling80118802009-04-15 02:12:37 +0000383 selectors primarily to describe how LLVM code should be lowered to
384 SelectionDAG operations. Among other things, this class indicates:</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000385
386<ul>
Bill Wendling80118802009-04-15 02:12:37 +0000387 <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
388
389 <li>which operations are natively supported by the target machine,</li>
390
391 <li>the return type of <tt>setcc</tt> operations,</li>
392
393 <li>the type to use for shift amounts, and</li>
394
Chris Lattner32e89f22005-10-16 18:31:08 +0000395 <li>various high-level characteristics, like whether it is profitable to turn
396 division by a constant into a multiplication sequence</li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000397</ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000398
399</div>
400
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000401<!-- ======================================================================= -->
402<div class="doc_subsection">
Dan Gohman6f0d0242008-02-10 18:45:23 +0000403 <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000404</div>
405
406<div class="doc_text">
407
Bill Wendling80118802009-04-15 02:12:37 +0000408<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
409 of the target and any interactions between the registers.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000410
411<p>Registers in the code generator are represented in the code generator by
Bill Wendling80118802009-04-15 02:12:37 +0000412 unsigned integers. Physical registers (those that actually exist in the
413 target description) are unique small numbers, and virtual registers are
414 generally large. Note that register #0 is reserved as a flag value.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000415
416<p>Each register in the processor description has an associated
Bill Wendling80118802009-04-15 02:12:37 +0000417 <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
418 register (used for assembly output and debugging dumps) and a set of aliases
419 (used to indicate whether one register overlaps with another).</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000420
Dan Gohman6f0d0242008-02-10 18:45:23 +0000421<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
Bill Wendling80118802009-04-15 02:12:37 +0000422 class exposes a set of processor specific register classes (instances of the
423 <tt>TargetRegisterClass</tt> class). Each register class contains sets of
424 registers that have the same properties (for example, they are all 32-bit
425 integer registers). Each SSA virtual register created by the instruction
426 selector has an associated register class. When the register allocator runs,
427 it replaces virtual registers with a physical register in the set.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000428
Bill Wendling80118802009-04-15 02:12:37 +0000429<p>The target-specific implementations of these classes is auto-generated from
430 a <a href="TableGenFundamentals.html">TableGen</a> description of the
431 register file.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000432
433</div>
434
435<!-- ======================================================================= -->
436<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000437 <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000438</div>
439
Reid Spencer627cd002005-07-19 01:36:35 +0000440<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000441
442<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
443 instructions supported by the target. It is essentially an array of
444 <tt>TargetInstrDescriptor</tt> objects, each of which describes one
445 instruction the target supports. Descriptors define things like the mnemonic
446 for the opcode, the number of operands, the list of implicit register uses
447 and defs, whether the instruction has certain target-independent properties
448 (accesses memory, is commutable, etc), and holds any target-specific
449 flags.</p>
450
Reid Spencer627cd002005-07-19 01:36:35 +0000451</div>
452
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000453<!-- ======================================================================= -->
454<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000455 <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000456</div>
457
Reid Spencer627cd002005-07-19 01:36:35 +0000458<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000459
460<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
461 stack frame layout of the target. It holds the direction of stack growth, the
462 known stack alignment on entry to each function, and the offset to the local
463 area. The offset to the local area is the offset from the stack pointer on
464 function entry to the first location where function data (local variables,
465 spill locations) can be stored.</p>
466
Reid Spencer627cd002005-07-19 01:36:35 +0000467</div>
Chris Lattner47adebb2005-10-16 17:06:07 +0000468
469<!-- ======================================================================= -->
470<div class="doc_subsection">
471 <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
472</div>
473
474<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000475
476<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
477 specific chip set being targeted. A sub-target informs code generation of
478 which instructions are supported, instruction latencies and instruction
479 execution itinerary; i.e., which processing units are used, in what order,
480 and for how long.</p>
481
Chris Lattner47adebb2005-10-16 17:06:07 +0000482</div>
483
484
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000485<!-- ======================================================================= -->
486<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000487 <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000488</div>
489
Bill Wendling91e10c42006-08-28 02:26:32 +0000490<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000491
492<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
493 Just-In-Time code generator to perform target-specific activities, such as
494 emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it
495 should provide one of these objects through the <tt>getJITInfo</tt>
496 method.</p>
497
Bill Wendling91e10c42006-08-28 02:26:32 +0000498</div>
499
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000500<!-- *********************************************************************** -->
501<div class="doc_section">
502 <a name="codegendesc">Machine code description classes</a>
503</div>
504<!-- *********************************************************************** -->
505
Chris Lattnerec94f802004-06-04 00:16:02 +0000506<div class="doc_text">
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000507
Bill Wendling91e10c42006-08-28 02:26:32 +0000508<p>At the high-level, LLVM code is translated to a machine specific
Bill Wendling80118802009-04-15 02:12:37 +0000509 representation formed out of
510 <a href="#machinefunction"><tt>MachineFunction</tt></a>,
511 <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
512 and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
513 in <tt>include/llvm/CodeGen</tt>). This representation is completely target
514 agnostic, representing instructions in their most abstract form: an opcode
515 and a series of operands. This representation is designed to support both an
516 SSA representation for machine code, as well as a register allocated, non-SSA
517 form.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000518
519</div>
520
521<!-- ======================================================================= -->
522<div class="doc_subsection">
523 <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
524</div>
525
526<div class="doc_text">
527
528<p>Target machine instructions are represented as instances of the
Bill Wendling80118802009-04-15 02:12:37 +0000529 <tt>MachineInstr</tt> class. This class is an extremely abstract way of
530 representing machine instructions. In particular, it only keeps track of an
531 opcode number and a set of operands.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000532
Bill Wendling80118802009-04-15 02:12:37 +0000533<p>The opcode number is a simple unsigned integer that only has meaning to a
534 specific backend. All of the instructions for a target should be defined in
535 the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
536 auto-generated from this description. The <tt>MachineInstr</tt> class does
537 not have any information about how to interpret the instruction (i.e., what
538 the semantics of the instruction are); for that you must refer to the
539 <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000540
Bill Wendling80118802009-04-15 02:12:37 +0000541<p>The operands of a machine instruction can be of several different types: a
542 register reference, a constant integer, a basic block reference, etc. In
543 addition, a machine operand should be marked as a def or a use of the value
544 (though only registers are allowed to be defs).</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000545
546<p>By convention, the LLVM code generator orders instruction operands so that
Bill Wendling80118802009-04-15 02:12:37 +0000547 all register definitions come before the register uses, even on architectures
548 that are normally printed in other orders. For example, the SPARC add
549 instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
550 and stores the result into the "%i3" register. In the LLVM code generator,
551 the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
552 destination first.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000553
Bill Wendling80118802009-04-15 02:12:37 +0000554<p>Keeping destination (definition) operands at the beginning of the operand
555 list has several advantages. In particular, the debugging printer will print
556 the instruction like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000557
Bill Wendling91e10c42006-08-28 02:26:32 +0000558<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000559<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000560%r3 = add %i1, %i2
Chris Lattnerec94f802004-06-04 00:16:02 +0000561</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000562</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000563
Bill Wendling80118802009-04-15 02:12:37 +0000564<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
565 instructions</a> whose only def is the first operand.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000566
567</div>
568
569<!-- _______________________________________________________________________ -->
570<div class="doc_subsubsection">
571 <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
572</div>
573
574<div class="doc_text">
575
576<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
Bill Wendling80118802009-04-15 02:12:37 +0000577 located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The
578 <tt>BuildMI</tt> functions make it easy to build arbitrary machine
579 instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000580
Bill Wendling91e10c42006-08-28 02:26:32 +0000581<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000582<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000583// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
584// instruction. The '1' specifies how many operands will be added.
585MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000586
Bill Wendling91e10c42006-08-28 02:26:32 +0000587// Create the same instr, but insert it at the end of a basic block.
588MachineBasicBlock &amp;MBB = ...
589BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000590
Bill Wendling91e10c42006-08-28 02:26:32 +0000591// Create the same instr, but insert it before a specified iterator point.
592MachineBasicBlock::iterator MBBI = ...
593BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000594
Bill Wendling91e10c42006-08-28 02:26:32 +0000595// Create a 'cmp Reg, 0' instruction, no destination reg.
596MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
597// Create an 'sahf' instruction which takes no operands and stores nothing.
598MI = BuildMI(X86::SAHF, 0);
Chris Lattnerec94f802004-06-04 00:16:02 +0000599
Bill Wendling91e10c42006-08-28 02:26:32 +0000600// Create a self looping branch instruction.
601BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
Chris Lattnerec94f802004-06-04 00:16:02 +0000602</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000603</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000604
Bill Wendling91e10c42006-08-28 02:26:32 +0000605<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
Bill Wendling80118802009-04-15 02:12:37 +0000606 have to specify the number of operands that the machine instruction will
607 take. This allows for efficient memory allocation. You also need to specify
608 if operands default to be uses of values, not definitions. If you need to
609 add a definition operand (other than the optional destination register), you
610 must explicitly mark it as such:</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000611
612<div class="doc_code">
613<pre>
Bill Wendling587daed2009-05-13 21:33:08 +0000614MI.addReg(Reg, RegState::Define);
Bill Wendling91e10c42006-08-28 02:26:32 +0000615</pre>
616</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000617
618</div>
619
620<!-- _______________________________________________________________________ -->
621<div class="doc_subsubsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000622 <a name="fixedregs">Fixed (preassigned) registers</a>
Chris Lattnerec94f802004-06-04 00:16:02 +0000623</div>
624
625<div class="doc_text">
626
627<p>One important issue that the code generator needs to be aware of is the
Bill Wendling80118802009-04-15 02:12:37 +0000628 presence of fixed registers. In particular, there are often places in the
629 instruction stream where the register allocator <em>must</em> arrange for a
630 particular value to be in a particular register. This can occur due to
631 limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
632 with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
633 calling conventions. In any case, the instruction selector should emit code
634 that copies a virtual register into or out of a physical register when
635 needed.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000636
637<p>For example, consider this simple LLVM example:</p>
638
Bill Wendling91e10c42006-08-28 02:26:32 +0000639<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000640<pre>
Matthijs Kooijman61399af2008-06-04 15:46:35 +0000641define i32 @test(i32 %X, i32 %Y) {
642 %Z = udiv i32 %X, %Y
643 ret i32 %Z
Bill Wendling91e10c42006-08-28 02:26:32 +0000644}
Chris Lattnerec94f802004-06-04 00:16:02 +0000645</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000646</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000647
Bill Wendling91e10c42006-08-28 02:26:32 +0000648<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
Bill Wendling80118802009-04-15 02:12:37 +0000649 and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
650 get this):</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000651
Bill Wendling91e10c42006-08-28 02:26:32 +0000652<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000653<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000654;; Start of div
655%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
656%reg1027 = sar %reg1024, 31
657%EDX = mov %reg1027 ;; Sign extend X into EDX
658idiv %reg1025 ;; Divide by Y (in reg1025)
659%reg1026 = mov %EAX ;; Read the result (Z) out of EAX
Chris Lattnerec94f802004-06-04 00:16:02 +0000660
Bill Wendling91e10c42006-08-28 02:26:32 +0000661;; Start of ret
662%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
663ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000664</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000665</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000666
Bill Wendling80118802009-04-15 02:12:37 +0000667<p>By the end of code generation, the register allocator has coalesced the
668 registers and deleted the resultant identity moves producing the following
669 code:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000670
Bill Wendling91e10c42006-08-28 02:26:32 +0000671<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000672<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000673;; X is in EAX, Y is in ECX
674mov %EAX, %EDX
675sar %EDX, 31
676idiv %ECX
677ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000678</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000679</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000680
Bill Wendling80118802009-04-15 02:12:37 +0000681<p>This approach is extremely general (if it can handle the X86 architecture, it
682 can handle anything!) and allows all of the target specific knowledge about
683 the instruction stream to be isolated in the instruction selector. Note that
684 physical registers should have a short lifetime for good code generation, and
685 all physical registers are assumed dead on entry to and exit from basic
686 blocks (before register allocation). Thus, if you need a value to be live
687 across basic block boundaries, it <em>must</em> live in a virtual
688 register.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000689
690</div>
691
692<!-- _______________________________________________________________________ -->
693<div class="doc_subsubsection">
Bill Wendling91e10c42006-08-28 02:26:32 +0000694 <a name="ssa">Machine code in SSA form</a>
Chris Lattnerec94f802004-06-04 00:16:02 +0000695</div>
696
697<div class="doc_text">
698
Bill Wendling80118802009-04-15 02:12:37 +0000699<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
700 maintained in SSA-form until register allocation happens. For the most part,
701 this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
702 become machine code PHI nodes, and virtual registers are only allowed to have
703 a single definition.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000704
Bill Wendling80118802009-04-15 02:12:37 +0000705<p>After register allocation, machine code is no longer in SSA-form because
706 there are no virtual registers left in the code.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000707
708</div>
709
Chris Lattner32e89f22005-10-16 18:31:08 +0000710<!-- ======================================================================= -->
711<div class="doc_subsection">
712 <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
713</div>
714
715<div class="doc_text">
716
717<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
Bill Wendling80118802009-04-15 02:12:37 +0000718 (<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly
719 corresponds to the LLVM code input to the instruction selector, but there can
720 be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
721 machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
722 "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
723 comes from.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000724
725</div>
726
727<!-- ======================================================================= -->
728<div class="doc_subsection">
729 <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
730</div>
731
732<div class="doc_text">
733
734<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
Bill Wendling80118802009-04-15 02:12:37 +0000735 (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It
736 corresponds one-to-one with the LLVM function input to the instruction
737 selector. In addition to a list of basic blocks,
738 the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
739 a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
740 <tt>MachineRegisterInfo</tt>. See
741 <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000742
743</div>
744
Chris Lattnere1b83452010-09-11 23:02:10 +0000745
746<!-- *********************************************************************** -->
747<div class="doc_section">
748 <a name="mc">The "MC" Layer</a>
749</div>
750<!-- *********************************************************************** -->
751
752<div class="doc_text">
753
754<p>
755The MC Layer is used to represent and process code at the raw machine code
756level, devoid of "high level" information like "constant pools", "jump tables",
757"global variables" or anything like that. At this level, LLVM handles things
758like label names, machine instructions, and sections in the object file. The
759code in this layer is used for a number of important purposes: the tail end of
760the code generator uses it to write a .s or .o file, and it is also used by the
761llvm-mc tool to implement standalone machine codeassemblers and disassemblers.
762</p>
763
764<p>
765This section describes some of the important classes. There are also a number
766of important subsystems that interact at this layer, they are described later
767in this manual.
768</p>
769
770</div>
771
772
773<!-- ======================================================================= -->
774<div class="doc_subsection">
775 <a name="mcstreamer">The <tt>MCStreamer</tt> API</a>
776</div>
777
778<div class="doc_text">
779
780<p>
781MCStreamer is best thought of as an assembler API. It is an abstract API which
782is <em>implemented</em> in different ways (e.g. to output a .s file, output an
783ELF .o file, etc) but whose API correspond directly to what you see in a .s
784file. MCStreamer has one method per directive, such as EmitLabel,
785EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which
786directly correspond to assembly level directives. It also has an
787EmitInstruction method, which is used to output an MCInst to the streamer.
788</p>
789
790<p>
791This API is most important for two clients: the llvm-mc stand-alone assembler is
792effectively a parser that parses a line, then invokes a method on MCStreamer. In
793the code generator, the <a href="#codeemit">Code Emission</a> phase of the code
794generator lowers higher level LLVM IR and Machine* constructs down to the MC
795layer, emitting directives through MCStreamer.</p>
796
797<p>
798On the implementation side of MCStreamer, there are two major implementations:
799one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
800file (MCObjectStreamer). MCAsmStreamer is a straight-forward implementation
801that prints out a directive for each method (e.g. EmitValue -&gt; .byte), but
802MCObjectStreamer implements a full assembler.
803</p>
804
805</div>
806
807<!-- ======================================================================= -->
808<div class="doc_subsection">
809 <a name="mccontext">The <tt>MCContext</tt> class</a>
810</div>
811
812<div class="doc_text">
813
814<p>
815The MCContext class is the owner of a variety of uniqued data structures at the
816MC layer, including symbols, sections, etc. As such, this is the class that you
817interact with to create symbols and sections. This class can not be subclassed.
818</p>
819
820</div>
821
822<!-- ======================================================================= -->
823<div class="doc_subsection">
824 <a name="mcsymbol">The <tt>MCSymbol</tt> class</a>
825</div>
826
827<div class="doc_text">
828
829<p>
830The MCSymbol class represents a symbol (aka label) in the assembly file. There
831are two interesting kinds of symbols: assembler temporary symbols, and normal
832symbols. Assembler temporary symbols are used and processed by the assembler
833but are discarded when the object file is produced. The distinction is usually
834represented by adding a prefix to the label, for example "L" labels are
835assembler temporary labels in MachO.
836</p>
837
838<p>MCSymbols are created by MCContext and uniqued there. This means that
839MCSymbols can be compared for pointer equivalence to find out if they are the
840same symbol. Note that pointer inequality does not guarantee the labels will
841end up at different addresses though. It's perfectly legal to output something
842like this to the .s file:<p>
843
844<pre>
845 foo:
846 bar:
847 .byte 4
848</pre>
849
850<p>In this case, both the foo and bar symbols will have the same address.</p>
851
852</div>
853
854<!-- ======================================================================= -->
855<div class="doc_subsection">
856 <a name="mcsection">The <tt>MCSection</tt> class</a>
857</div>
858
859<div class="doc_text">
860
861<p>
862The MCSection class represents an object-file specific section. It is subclassed
863by object file specific implementations (e.g. <tt>MCSectionMachO</tt>,
864<tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued
865by MCContext. The MCStreamer has a notion of the current section, which can be
866changed with the SwitchToSection method (which corresponds to a ".section"
867directive in a .s file).
868</p>
869
870</div>
871
872<!-- ======================================================================= -->
873<div class="doc_subsection">
874 <a name="mcinst">The <tt>MCInst</tt> class</a></li>
875</div>
876
877<div class="doc_text">
878
879<p>
880The MCInst class is a target-independent representation of an instruction. It
881is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>)
882that holds a target-specific opcode and a vector of MCOperands. MCOperand, in
883turn, is a simple discriminated union of three cases: 1) a simple immediate,
8842) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an
885MCExpr.
886</p>
887
888<p>MCInst is the common currency used to represent machine instructions at the
889MC layer. It is the type used by the instruction encoder, the instruction
890printer, and the type generated by the assembly parser and disassembler.
891</p>
892
893</div>
894
895
Chris Lattnerec94f802004-06-04 00:16:02 +0000896<!-- *********************************************************************** -->
897<div class="doc_section">
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000898 <a name="codegenalgs">Target-independent code generation algorithms</a>
899</div>
900<!-- *********************************************************************** -->
901
902<div class="doc_text">
903
Bill Wendling80118802009-04-15 02:12:37 +0000904<p>This section documents the phases described in the
905 <a href="#high-level-design">high-level design of the code generator</a>.
906 It explains how they work and some of the rationale behind their design.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000907
908</div>
909
910<!-- ======================================================================= -->
911<div class="doc_subsection">
912 <a name="instselect">Instruction Selection</a>
913</div>
914
915<div class="doc_text">
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000916
Bill Wendling80118802009-04-15 02:12:37 +0000917<p>Instruction Selection is the process of translating LLVM code presented to
918 the code generator into target-specific machine instructions. There are
919 several well-known ways to do this in the literature. LLVM uses a
920 SelectionDAG based instruction selector.</p>
921
922<p>Portions of the DAG instruction selector are generated from the target
923 description (<tt>*.td</tt>) files. Our goal is for the entire instruction
924 selector to be generated from these <tt>.td</tt> files, though currently
925 there are still things that require custom C++ code.</p>
926
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000927</div>
928
929<!-- _______________________________________________________________________ -->
930<div class="doc_subsubsection">
931 <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
932</div>
933
934<div class="doc_text">
935
Bill Wendling91e10c42006-08-28 02:26:32 +0000936<p>The SelectionDAG provides an abstraction for code representation in a way
Bill Wendling80118802009-04-15 02:12:37 +0000937 that is amenable to instruction selection using automatic techniques
938 (e.g. dynamic-programming based optimal pattern matching selectors). It is
939 also well-suited to other phases of code generation; in particular,
940 instruction scheduling (SelectionDAG's are very close to scheduling DAGs
941 post-selection). Additionally, the SelectionDAG provides a host
942 representation where a large variety of very-low-level (but
943 target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
944 performed; ones which require extensive information about the instructions
945 efficiently supported by the target.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000946
Bill Wendling91e10c42006-08-28 02:26:32 +0000947<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
Bill Wendling80118802009-04-15 02:12:37 +0000948 <tt>SDNode</tt> class. The primary payload of the <tt>SDNode</tt> is its
949 operation code (Opcode) that indicates what operation the node performs and
950 the operands to the operation. The various operation node types are
951 described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
952 file.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000953
Bill Wendling80118802009-04-15 02:12:37 +0000954<p>Although most operations define a single value, each node in the graph may
955 define multiple values. For example, a combined div/rem operation will
956 define both the dividend and the remainder. Many other situations require
957 multiple values as well. Each node also has some number of operands, which
958 are edges to the node defining the used value. Because nodes may define
959 multiple values, edges are represented by instances of the <tt>SDValue</tt>
960 class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
961 and result value being used, respectively. Each value produced by
962 an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
963 indicating what the type of the value is.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000964
Bill Wendling91e10c42006-08-28 02:26:32 +0000965<p>SelectionDAGs contain two different kinds of values: those that represent
Bill Wendling80118802009-04-15 02:12:37 +0000966 data flow and those that represent control flow dependencies. Data values
967 are simple edges with an integer or floating point value type. Control edges
968 are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
969 These edges provide an ordering between nodes that have side effects (such as
970 loads, stores, calls, returns, etc). All nodes that have side effects should
971 take a token chain as input and produce a new one as output. By convention,
972 token chain inputs are always operand #0, and chain results are always the
973 last value produced by an operation.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000974
Bill Wendling91e10c42006-08-28 02:26:32 +0000975<p>A SelectionDAG has designated "Entry" and "Root" nodes. The Entry node is
Bill Wendling80118802009-04-15 02:12:37 +0000976 always a marker node with an Opcode of <tt>ISD::EntryToken</tt>. The Root
977 node is the final side-effecting node in the token chain. For example, in a
978 single basic block function it would be the return node.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000979
Bill Wendling91e10c42006-08-28 02:26:32 +0000980<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
Bill Wendling80118802009-04-15 02:12:37 +0000981 "illegal" DAG. A legal DAG for a target is one that only uses supported
982 operations and supported types. On a 32-bit PowerPC, for example, a DAG with
983 a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
984 uses a SREM or UREM operation. The
985 <a href="#selectinodag_legalize_types">legalize types</a> and
986 <a href="#selectiondag_legalize">legalize operations</a> phases are
987 responsible for turning an illegal DAG into a legal DAG.</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000988
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000989</div>
990
991<!-- _______________________________________________________________________ -->
992<div class="doc_subsubsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000993 <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000994</div>
995
996<div class="doc_text">
997
Bill Wendling91e10c42006-08-28 02:26:32 +0000998<p>SelectionDAG-based instruction selection consists of the following steps:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000999
1000<ol>
Bill Wendling80118802009-04-15 02:12:37 +00001001 <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
1002 performs a simple translation from the input LLVM code to an illegal
1003 SelectionDAG.</li>
1004
1005 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
1006 stage performs simple optimizations on the SelectionDAG to simplify it,
1007 and recognize meta instructions (like rotates
1008 and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
1009 operations. This makes the resultant code more efficient and
1010 the <a href="#selectiondag_select">select instructions from DAG</a> phase
1011 (below) simpler.</li>
1012
1013 <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
1014 &mdash; This stage transforms SelectionDAG nodes to eliminate any types
1015 that are unsupported on the target.</li>
1016
1017 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1018 SelectionDAG optimizer is run to clean up redundancies exposed by type
1019 legalization.</li>
1020
1021 <li><a href="#selectiondag_legalize">Legalize SelectionDAG Types</a> &mdash;
1022 This stage transforms SelectionDAG nodes to eliminate any types that are
1023 unsupported on the target.</li>
1024
1025 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1026 SelectionDAG optimizer is run to eliminate inefficiencies introduced by
1027 operation legalization.</li>
1028
1029 <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
1030 Finally, the target instruction selector matches the DAG operations to
1031 target instructions. This process translates the target-independent input
1032 DAG into another DAG of target instructions.</li>
1033
1034 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
1035 &mdash; The last phase assigns a linear order to the instructions in the
1036 target-instruction DAG and emits them into the MachineFunction being
1037 compiled. This step uses traditional prepass scheduling techniques.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001038</ol>
1039
1040<p>After all of these steps are complete, the SelectionDAG is destroyed and the
Bill Wendling80118802009-04-15 02:12:37 +00001041 rest of the code generation passes are run.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001042
Bill Wendling80118802009-04-15 02:12:37 +00001043<p>One great way to visualize what is going on here is to take advantage of a
1044 few LLC command line options. The following options pop up a window
1045 displaying the SelectionDAG at specific times (if you only get errors printed
1046 to the console while using this, you probably
1047 <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
1048 to add support for it).</p>
Dan Gohman8c9c55f2008-09-10 22:23:41 +00001049
1050<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001051 <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
1052 before the first optimization pass.</li>
1053
1054 <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
1055
1056 <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
1057 optimization pass.</li>
1058
1059 <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
1060
1061 <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
Dan Gohman8c9c55f2008-09-10 22:23:41 +00001062</ul>
1063
1064<p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
Bill Wendling80118802009-04-15 02:12:37 +00001065 This graph is based on the final SelectionDAG, with nodes that must be
1066 scheduled together bundled into a single scheduling-unit node, and with
1067 immediate operands and other nodes that aren't relevant for scheduling
1068 omitted.</p>
Bill Wendling91e10c42006-08-28 02:26:32 +00001069
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001070</div>
1071
1072<!-- _______________________________________________________________________ -->
1073<div class="doc_subsubsection">
1074 <a name="selectiondag_build">Initial SelectionDAG Construction</a>
1075</div>
1076
1077<div class="doc_text">
1078
Bill Wendling16448772006-08-28 03:04:05 +00001079<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
Bill Wendling80118802009-04-15 02:12:37 +00001080 input by the <tt>SelectionDAGLowering</tt> class in the
1081 <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file. The intent of
1082 this pass is to expose as much low-level, target-specific details to the
1083 SelectionDAG as possible. This pass is mostly hard-coded (e.g. an
1084 LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
1085 <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
1086 requires target-specific hooks to lower calls, returns, varargs, etc. For
1087 these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
1088 interface is used.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001089
1090</div>
1091
1092<!-- _______________________________________________________________________ -->
1093<div class="doc_subsubsection">
Dan Gohman641b2792008-11-24 16:27:17 +00001094 <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
1095</div>
1096
1097<div class="doc_text">
1098
1099<p>The Legalize phase is in charge of converting a DAG to only use the types
Bill Wendling80118802009-04-15 02:12:37 +00001100 that are natively supported by the target.</p>
Dan Gohman641b2792008-11-24 16:27:17 +00001101
Bill Wendling80118802009-04-15 02:12:37 +00001102<p>There are two main ways of converting values of unsupported scalar types to
1103 values of supported types: converting small types to larger types
1104 ("promoting"), and breaking up large integer types into smaller ones
1105 ("expanding"). For example, a target might require that all f32 values are
1106 promoted to f64 and that all i1/i8/i16 values are promoted to i32. The same
1107 target might require that all i64 values be expanded into pairs of i32
1108 values. These changes can insert sign and zero extensions as needed to make
1109 sure that the final code has the same behavior as the input.</p>
Dan Gohman641b2792008-11-24 16:27:17 +00001110
Bill Wendling80118802009-04-15 02:12:37 +00001111<p>There are two main ways of converting values of unsupported vector types to
1112 value of supported types: splitting vector types, multiple times if
1113 necessary, until a legal type is found, and extending vector types by adding
1114 elements to the end to round them out to legal types ("widening"). If a
1115 vector gets split all the way down to single-element parts with no supported
1116 vector type being found, the elements are converted to scalars
1117 ("scalarizing").</p>
Dan Gohman641b2792008-11-24 16:27:17 +00001118
Bill Wendling80118802009-04-15 02:12:37 +00001119<p>A target implementation tells the legalizer which types are supported (and
1120 which register class to use for them) by calling the
Dan Gohman641b2792008-11-24 16:27:17 +00001121 <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
1122
1123</div>
1124
1125<!-- _______________________________________________________________________ -->
1126<div class="doc_subsubsection">
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001127 <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
1128</div>
1129
1130<div class="doc_text">
1131
Dan Gohman641b2792008-11-24 16:27:17 +00001132<p>The Legalize phase is in charge of converting a DAG to only use the
Bill Wendling80118802009-04-15 02:12:37 +00001133 operations that are natively supported by the target.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001134
Bill Wendling80118802009-04-15 02:12:37 +00001135<p>Targets often have weird constraints, such as not supporting every operation
1136 on every supported datatype (e.g. X86 does not support byte conditional moves
1137 and PowerPC does not support sign-extending loads from a 16-bit memory
1138 location). Legalize takes care of this by open-coding another sequence of
1139 operations to emulate the operation ("expansion"), by promoting one type to a
1140 larger type that supports the operation ("promotion"), or by using a
1141 target-specific hook to implement the legalization ("custom").</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001142
Dan Gohman641b2792008-11-24 16:27:17 +00001143<p>A target implementation tells the legalizer which operations are not
1144 supported (and which of the above three actions to take) by calling the
1145 <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
1146 constructor.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001147
Dan Gohman641b2792008-11-24 16:27:17 +00001148<p>Prior to the existence of the Legalize passes, we required that every target
Bill Wendling80118802009-04-15 02:12:37 +00001149 <a href="#selectiondag_optimize">selector</a> supported and handled every
1150 operator and type even if they are not natively supported. The introduction
1151 of the Legalize phases allows all of the canonicalization patterns to be
1152 shared across targets, and makes it very easy to optimize the canonicalized
1153 code because it is still in the form of a DAG.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001154
1155</div>
1156
1157<!-- _______________________________________________________________________ -->
1158<div class="doc_subsubsection">
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001159 <a name="selectiondag_optimize">SelectionDAG Optimization Phase: the DAG
1160 Combiner</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001161</div>
1162
1163<div class="doc_text">
1164
Bill Wendling80118802009-04-15 02:12:37 +00001165<p>The SelectionDAG optimization phase is run multiple times for code
1166 generation, immediately after the DAG is built and once after each
1167 legalization. The first run of the pass allows the initial code to be
1168 cleaned up (e.g. performing optimizations that depend on knowing that the
1169 operators have restricted type inputs). Subsequent runs of the pass clean up
1170 the messy code generated by the Legalize passes, which allows Legalize to be
1171 very simple (it can focus on making code legal instead of focusing on
1172 generating <em>good</em> and legal code).</p>
Bill Wendling91e10c42006-08-28 02:26:32 +00001173
1174<p>One important class of optimizations performed is optimizing inserted sign
Bill Wendling80118802009-04-15 02:12:37 +00001175 and zero extension instructions. We currently use ad-hoc techniques, but
1176 could move to more rigorous techniques in the future. Here are some good
1177 papers on the subject:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001178
Bill Wendling80118802009-04-15 02:12:37 +00001179<p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
1180 integer arithmetic</a>"<br>
1181 Kevin Redwine and Norman Ramsey<br>
1182 International Conference on Compiler Construction (CC) 2004</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001183
Bill Wendling80118802009-04-15 02:12:37 +00001184<p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
1185 sign extension elimination</a>"<br>
1186 Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
1187 Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
1188 and Implementation.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001189
1190</div>
1191
1192<!-- _______________________________________________________________________ -->
1193<div class="doc_subsubsection">
1194 <a name="selectiondag_select">SelectionDAG Select Phase</a>
1195</div>
1196
1197<div class="doc_text">
1198
1199<p>The Select phase is the bulk of the target-specific code for instruction
Bill Wendling80118802009-04-15 02:12:37 +00001200 selection. This phase takes a legal SelectionDAG as input, pattern matches
1201 the instructions supported by the target to this DAG, and produces a new DAG
1202 of target code. For example, consider the following LLVM fragment:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001203
Bill Wendling91e10c42006-08-28 02:26:32 +00001204<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001205<pre>
Dan Gohmana9445e12010-03-02 01:11:08 +00001206%t1 = fadd float %W, %X
1207%t2 = fmul float %t1, %Y
1208%t3 = fadd float %t2, %Z
Chris Lattner7a025c82005-10-16 20:02:19 +00001209</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001210</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001211
Bill Wendling91e10c42006-08-28 02:26:32 +00001212<p>This LLVM code corresponds to a SelectionDAG that looks basically like
Bill Wendling80118802009-04-15 02:12:37 +00001213 this:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001214
Bill Wendling91e10c42006-08-28 02:26:32 +00001215<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001216<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001217(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001218</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001219</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001220
Bill Wendling80118802009-04-15 02:12:37 +00001221<p>If a target supports floating point multiply-and-add (FMA) operations, one of
1222 the adds can be merged with the multiply. On the PowerPC, for example, the
1223 output of the instruction selector might look like this DAG:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001224
Bill Wendling91e10c42006-08-28 02:26:32 +00001225<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001226<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001227(FMADDS (FADDS W, X), Y, Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001228</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001229</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001230
Bill Wendling91e10c42006-08-28 02:26:32 +00001231<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
1232first two operands and adds the third (as single-precision floating-point
1233numbers). The <tt>FADDS</tt> instruction is a simple binary single-precision
1234add instruction. To perform this pattern match, the PowerPC backend includes
1235the following instruction definitions:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001236
Bill Wendling91e10c42006-08-28 02:26:32 +00001237<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001238<pre>
1239def FMADDS : AForm_1&lt;59, 29,
1240 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
1241 "fmadds $FRT, $FRA, $FRC, $FRB",
1242 [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
1243 F4RC:$FRB))</b>]&gt;;
1244def FADDS : AForm_2&lt;59, 21,
1245 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
1246 "fadds $FRT, $FRA, $FRB",
1247 [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
1248</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001249</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001250
1251<p>The portion of the instruction definition in bold indicates the pattern used
Bill Wendling80118802009-04-15 02:12:37 +00001252 to match the instruction. The DAG operators
1253 (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
Dan Gohman6a4824c2010-03-25 00:03:04 +00001254 the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file. "
1255 <tt>F4RC</tt>" is the register class of the input and result values.</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001256
Bill Wendling80118802009-04-15 02:12:37 +00001257<p>The TableGen DAG instruction selector generator reads the instruction
1258 patterns in the <tt>.td</tt> file and automatically builds parts of the
1259 pattern matching code for your target. It has the following strengths:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001260
1261<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001262 <li>At compiler-compiler time, it analyzes your instruction patterns and tells
1263 you if your patterns make sense or not.</li>
1264
1265 <li>It can handle arbitrary constraints on operands for the pattern match. In
1266 particular, it is straight-forward to say things like "match any immediate
1267 that is a 13-bit sign-extended value". For examples, see the
1268 <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
1269 backend.</li>
1270
1271 <li>It knows several important identities for the patterns defined. For
1272 example, it knows that addition is commutative, so it allows the
1273 <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
1274 well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
1275 to specially handle this case.</li>
1276
1277 <li>It has a full-featured type-inferencing system. In particular, you should
1278 rarely have to explicitly tell the system what type parts of your patterns
1279 are. In the <tt>FMADDS</tt> case above, we didn't have to tell
1280 <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
1281 It was able to infer and propagate this knowledge from the fact that
1282 <tt>F4RC</tt> has type 'f32'.</li>
1283
1284 <li>Targets can define their own (and rely on built-in) "pattern fragments".
1285 Pattern fragments are chunks of reusable patterns that get inlined into
1286 your patterns during compiler-compiler time. For example, the integer
1287 "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
1288 that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
1289 have a native '<tt>not</tt>' operation. Targets can define their own
1290 short-hand fragments as they see fit. See the definition of
1291 '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
1292
1293 <li>In addition to instructions, targets can specify arbitrary patterns that
1294 map to one or more instructions using the 'Pat' class. For example, the
1295 PowerPC has no way to load an arbitrary integer immediate into a register
1296 in one instruction. To tell tblgen how to do this, it defines:
1297 <br>
1298 <br>
1299<div class="doc_code">
1300<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001301// Arbitrary immediate support. Implement in terms of LIS/ORI.
1302def : Pat&lt;(i32 imm:$imm),
1303 (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
Bill Wendling80118802009-04-15 02:12:37 +00001304</pre>
1305</div>
1306 <br>
1307 If none of the single-instruction patterns for loading an immediate into a
1308 register match, this will be used. This rule says "match an arbitrary i32
1309 immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
1310 an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
1311 the left 16 bits') instruction". To make this work, the
1312 <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
1313 the input immediate (in this case, take the high or low 16-bits of the
1314 immediate).</li>
1315
1316 <li>While the system does automate a lot, it still allows you to write custom
1317 C++ code to match special cases if there is something that is hard to
1318 express.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001319</ul>
1320
Bill Wendling91e10c42006-08-28 02:26:32 +00001321<p>While it has many strengths, the system currently has some limitations,
Bill Wendling80118802009-04-15 02:12:37 +00001322 primarily because it is a work in progress and is not yet finished:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001323
1324<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001325 <li>Overall, there is no way to define or match SelectionDAG nodes that define
Dan Gohmane370c802009-04-22 15:55:31 +00001326 multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
Bill Wendling80118802009-04-15 02:12:37 +00001327 etc). This is the biggest reason that you currently still <em>have
1328 to</em> write custom C++ code for your instruction selector.</li>
1329
1330 <li>There is no great way to support matching complex addressing modes yet.
1331 In the future, we will extend pattern fragments to allow them to define
1332 multiple values (e.g. the four operands of the <a href="#x86_memory">X86
1333 addressing mode</a>, which are currently matched with custom C++ code).
1334 In addition, we'll extend fragments so that a fragment can match multiple
1335 different patterns.</li>
1336
1337 <li>We don't automatically infer flags like isStore/isLoad yet.</li>
1338
1339 <li>We don't automatically generate the set of supported registers and
1340 operations for the <a href="#selectiondag_legalize">Legalizer</a>
1341 yet.</li>
1342
1343 <li>We don't have a way of tying in custom legalized nodes yet.</li>
Chris Lattner7d6915c2005-10-17 04:18:41 +00001344</ul>
Chris Lattner7a025c82005-10-16 20:02:19 +00001345
1346<p>Despite these limitations, the instruction selector generator is still quite
Bill Wendling80118802009-04-15 02:12:37 +00001347 useful for most of the binary and logical operations in typical instruction
1348 sets. If you run into any problems or can't figure out how to do something,
1349 please let Chris know!</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001350
1351</div>
1352
1353<!-- _______________________________________________________________________ -->
1354<div class="doc_subsubsection">
Chris Lattner32e89f22005-10-16 18:31:08 +00001355 <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001356</div>
1357
1358<div class="doc_text">
1359
1360<p>The scheduling phase takes the DAG of target instructions from the selection
Bill Wendling80118802009-04-15 02:12:37 +00001361 phase and assigns an order. The scheduler can pick an order depending on
1362 various constraints of the machines (i.e. order for minimal register pressure
1363 or try to cover instruction latencies). Once an order is established, the
1364 DAG is converted to a list
1365 of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
1366 destroyed.</p>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001367
Jeff Cohen0b81cda2005-10-24 16:54:55 +00001368<p>Note that this phase is logically separate from the instruction selection
Bill Wendling80118802009-04-15 02:12:37 +00001369 phase, but is tied to it closely in the code because it operates on
1370 SelectionDAGs.</p>
Chris Lattnerc38959f2005-10-17 03:09:31 +00001371
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001372</div>
1373
1374<!-- _______________________________________________________________________ -->
1375<div class="doc_subsubsection">
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001376 <a name="selectiondag_future">Future directions for the SelectionDAG</a>
1377</div>
1378
1379<div class="doc_text">
1380
1381<ol>
Bill Wendling80118802009-04-15 02:12:37 +00001382 <li>Optional function-at-a-time selection.</li>
1383
1384 <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001385</ol>
1386
1387</div>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001388
1389<!-- ======================================================================= -->
1390<div class="doc_subsection">
1391 <a name="ssamco">SSA-based Machine Code Optimizations</a>
1392</div>
1393<div class="doc_text"><p>To Be Written</p></div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001394
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001395<!-- ======================================================================= -->
1396<div class="doc_subsection">
Bill Wendling3fc488d2006-09-06 18:42:41 +00001397 <a name="liveintervals">Live Intervals</a>
Bill Wendling2f87a882006-09-04 23:35:52 +00001398</div>
1399
1400<div class="doc_text">
1401
Bill Wendling3fc488d2006-09-06 18:42:41 +00001402<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
Bill Wendling80118802009-04-15 02:12:37 +00001403 They are used by some <a href="#regalloc">register allocator</a> passes to
1404 determine if two or more virtual registers which require the same physical
1405 register are live at the same point in the program (i.e., they conflict).
1406 When this situation occurs, one virtual register must be <i>spilled</i>.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001407
1408</div>
1409
1410<!-- _______________________________________________________________________ -->
1411<div class="doc_subsubsection">
1412 <a name="livevariable_analysis">Live Variable Analysis</a>
1413</div>
1414
1415<div class="doc_text">
1416
Bill Wendling80118802009-04-15 02:12:37 +00001417<p>The first step in determining the live intervals of variables is to calculate
1418 the set of registers that are immediately dead after the instruction (i.e.,
1419 the instruction calculates the value, but it is never used) and the set of
1420 registers that are used by the instruction, but are never used after the
1421 instruction (i.e., they are killed). Live variable information is computed
1422 for each <i>virtual</i> register and <i>register allocatable</i> physical
1423 register in the function. This is done in a very efficient manner because it
1424 uses SSA to sparsely compute lifetime information for virtual registers
1425 (which are in SSA form) and only has to track physical registers within a
1426 block. Before register allocation, LLVM can assume that physical registers
1427 are only live within a single basic block. This allows it to do a single,
1428 local analysis to resolve physical register lifetimes within each basic
1429 block. If a physical register is not register allocatable (e.g., a stack
1430 pointer or condition codes), it is not tracked.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001431
Bill Wendling80118802009-04-15 02:12:37 +00001432<p>Physical registers may be live in to or out of a function. Live in values are
1433 typically arguments in registers. Live out values are typically return values
1434 in registers. Live in values are marked as such, and are given a dummy
1435 "defining" instruction during live intervals analysis. If the last basic
1436 block of a function is a <tt>return</tt>, then it's marked as using all live
1437 out values in the function.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001438
Bill Wendling80118802009-04-15 02:12:37 +00001439<p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
1440 the live variable information from a depth first traversal of the CFG of the
1441 function won't guarantee that a virtual register used by the <tt>PHI</tt>
1442 node is defined before it's used. When a <tt>PHI</tt> node is encountered,
1443 only the definition is handled, because the uses will be handled in other
1444 basic blocks.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001445
1446<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
Bill Wendling80118802009-04-15 02:12:37 +00001447 assignment at the end of the current basic block and traverse the successor
1448 basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
1449 the <tt>PHI</tt> node's operands is coming from the current basic block, then
1450 the variable is marked as <i>alive</i> within the current basic block and all
1451 of its predecessor basic blocks, until the basic block with the defining
1452 instruction is encountered.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001453
1454</div>
1455
Bill Wendling3fc488d2006-09-06 18:42:41 +00001456<!-- _______________________________________________________________________ -->
1457<div class="doc_subsubsection">
1458 <a name="liveintervals_analysis">Live Intervals Analysis</a>
1459</div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001460
Bill Wendling3fc488d2006-09-06 18:42:41 +00001461<div class="doc_text">
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001462
Bill Wendling82e2eea2006-10-11 18:00:22 +00001463<p>We now have the information available to perform the live intervals analysis
Bill Wendling80118802009-04-15 02:12:37 +00001464 and build the live intervals themselves. We start off by numbering the basic
1465 blocks and machine instructions. We then handle the "live-in" values. These
1466 are in physical registers, so the physical register is assumed to be killed
1467 by the end of the basic block. Live intervals for virtual registers are
1468 computed for some ordering of the machine instructions <tt>[1, N]</tt>. A
1469 live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
1470 &lt; N</tt>, for which a variable is live.</p>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001471
Bill Wendling82e2eea2006-10-11 18:00:22 +00001472<p><i><b>More to come...</b></i></p>
1473
Bill Wendling3fc488d2006-09-06 18:42:41 +00001474</div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001475
1476<!-- ======================================================================= -->
1477<div class="doc_subsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001478 <a name="regalloc">Register Allocation</a>
1479</div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001480
1481<div class="doc_text">
1482
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001483<p>The <i>Register Allocation problem</i> consists in mapping a program
Bill Wendling80118802009-04-15 02:12:37 +00001484 <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
1485 to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
1486 number of physical registers. Each target architecture has a different number
1487 of physical registers. If the number of physical registers is not enough to
1488 accommodate all the virtual registers, some of them will have to be mapped
1489 into memory. These virtuals are called <i>spilled virtuals</i>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001490
1491</div>
1492
1493<!-- _______________________________________________________________________ -->
1494
1495<div class="doc_subsubsection">
1496 <a name="regAlloc_represent">How registers are represented in LLVM</a>
1497</div>
1498
1499<div class="doc_text">
1500
Bill Wendling80118802009-04-15 02:12:37 +00001501<p>In LLVM, physical registers are denoted by integer numbers that normally
1502 range from 1 to 1023. To see how this numbering is defined for a particular
1503 architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
1504 architecture. For instance, by
1505 inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
1506 32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
1507 <tt>MM0</tt> is mapped to 48.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001508
Bill Wendling80118802009-04-15 02:12:37 +00001509<p>Some architectures contain registers that share the same physical location. A
1510 notable example is the X86 platform. For instance, in the X86 architecture,
1511 the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
1512 bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
1513 particular architecture, you can check which registers are aliased by
1514 inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
1515 <tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
1516 all the physical registers aliased to the register <tt>p_reg</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001517
1518<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
Bill Wendling80118802009-04-15 02:12:37 +00001519 Elements in the same register class are functionally equivalent, and can be
1520 interchangeably used. Each virtual register can only be mapped to physical
1521 registers of a particular class. For instance, in the X86 architecture, some
1522 virtuals can only be allocated to 8 bit registers. A register class is
1523 described by <tt>TargetRegisterClass</tt> objects. To discover if a virtual
1524 register is compatible with a given physical, this code can be used:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001525
1526<div class="doc_code">
1527<pre>
Jim Laskeyb744c252006-12-15 10:40:48 +00001528bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
Bill Wendlinga396ee82006-09-01 21:46:00 +00001529 unsigned v_reg,
1530 unsigned p_reg) {
Dan Gohman6f0d0242008-02-10 18:45:23 +00001531 assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
Bill Wendlinga396ee82006-09-01 21:46:00 +00001532 "Target register must be physical");
Chris Lattner534bcfb2007-12-31 04:16:08 +00001533 const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
1534 return trc-&gt;contains(p_reg);
Bill Wendlinga396ee82006-09-01 21:46:00 +00001535}
1536</pre>
1537</div>
1538
Bill Wendling80118802009-04-15 02:12:37 +00001539<p>Sometimes, mostly for debugging purposes, it is useful to change the number
1540 of physical registers available in the target architecture. This must be done
1541 statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
1542 for <tt>RegisterClass</tt>, the last parameter of which is a list of
1543 registers. Just commenting some out is one simple way to avoid them being
1544 used. A more polite way is to explicitly exclude some registers from
Dan Gohmand2cb3d22009-07-24 00:30:09 +00001545 the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
1546 class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
1547 </p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001548
Bill Wendling80118802009-04-15 02:12:37 +00001549<p>Virtual registers are also denoted by integer numbers. Contrary to physical
1550 registers, different virtual registers never share the same number. The
1551 smallest virtual register is normally assigned the number 1024. This may
1552 change, so, in order to know which is the first virtual register, you should
1553 access <tt>TargetRegisterInfo::FirstVirtualRegister</tt>. Any register whose
1554 number is greater than or equal
1555 to <tt>TargetRegisterInfo::FirstVirtualRegister</tt> is considered a virtual
1556 register. Whereas physical registers are statically defined in
1557 a <tt>TargetRegisterInfo.td</tt> file and cannot be created by the
1558 application developer, that is not the case with virtual registers. In order
1559 to create new virtual registers, use the
1560 method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
1561 will return a virtual register with the highest code.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001562
Bill Wendling80118802009-04-15 02:12:37 +00001563<p>Before register allocation, the operands of an instruction are mostly virtual
1564 registers, although physical registers may also be used. In order to check if
1565 a given machine operand is a register, use the boolean
1566 function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
1567 a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
1568 or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
1569 defines the registers 1024, and uses registers 1025 and 1026. Given a
1570 register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
1571 register is being used by the instruction. The
1572 method <tt>MachineOperand::isDef()</tt> informs if that registers is being
1573 defined.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001574
Bill Wendling80118802009-04-15 02:12:37 +00001575<p>We will call physical registers present in the LLVM bitcode before register
1576 allocation <i>pre-colored registers</i>. Pre-colored registers are used in
1577 many different situations, for instance, to pass parameters of functions
1578 calls, and to store results of particular instructions. There are two types
1579 of pre-colored registers: the ones <i>implicitly</i> defined, and
1580 those <i>explicitly</i> defined. Explicitly defined registers are normal
1581 operands, and can be accessed
1582 with <tt>MachineInstr::getOperand(int)::getReg()</tt>. In order to check
1583 which registers are implicitly defined by an instruction, use
1584 the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
1585 where <tt>opcode</tt> is the opcode of the target instruction. One important
1586 difference between explicit and implicit physical registers is that the
1587 latter are defined statically for each instruction, whereas the former may
1588 vary depending on the program being compiled. For example, an instruction
1589 that represents a function call will always implicitly define or use the same
1590 set of physical registers. To read the registers implicitly used by an
1591 instruction,
1592 use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
1593 registers impose constraints on any register allocation algorithm. The
Bob Wilson04738682010-04-09 18:39:54 +00001594 register allocator must make sure that none of them are overwritten by
Bill Wendling80118802009-04-15 02:12:37 +00001595 the values of virtual registers while still alive.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001596
1597</div>
1598
1599<!-- _______________________________________________________________________ -->
1600
1601<div class="doc_subsubsection">
1602 <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
1603</div>
1604
1605<div class="doc_text">
1606
1607<p>There are two ways to map virtual registers to physical registers (or to
Bill Wendling80118802009-04-15 02:12:37 +00001608 memory slots). The first way, that we will call <i>direct mapping</i>, is
1609 based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
1610 and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
1611 mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
1612 and stores sending and getting values to and from memory.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001613
Bill Wendling80118802009-04-15 02:12:37 +00001614<p>The direct mapping provides more flexibility to the developer of the register
1615 allocator; however, it is more error prone, and demands more implementation
1616 work. Basically, the programmer will have to specify where load and store
1617 instructions should be inserted in the target function being compiled in
1618 order to get and store values in memory. To assign a physical register to a
1619 virtual register present in a given operand,
1620 use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
Jakob Stoklund Olesen297907f2010-08-31 22:01:07 +00001621 use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a
1622 load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001623
Bill Wendling80118802009-04-15 02:12:37 +00001624<p>The indirect mapping shields the application developer from the complexities
1625 of inserting load and store instructions. In order to map a virtual register
1626 to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>. In
1627 order to map a certain virtual register to memory,
1628 use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
1629 the stack slot where <tt>vreg</tt>'s value will be located. If it is
1630 necessary to map another virtual register to the same stack slot,
1631 use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
1632 important point to consider when using the indirect mapping, is that even if
1633 a virtual register is mapped to memory, it still needs to be mapped to a
1634 physical register. This physical register is the location where the virtual
1635 register is supposed to be found before being stored or after being
1636 reloaded.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001637
Bill Wendling80118802009-04-15 02:12:37 +00001638<p>If the indirect strategy is used, after all the virtual registers have been
1639 mapped to physical registers or stack slots, it is necessary to use a spiller
1640 object to place load and store instructions in the code. Every virtual that
1641 has been mapped to a stack slot will be stored to memory after been defined
1642 and will be loaded before being used. The implementation of the spiller tries
1643 to recycle load/store instructions, avoiding unnecessary instructions. For an
1644 example of how to invoke the spiller,
1645 see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
1646 in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001647
1648</div>
1649
1650<!-- _______________________________________________________________________ -->
1651<div class="doc_subsubsection">
1652 <a name="regAlloc_twoAddr">Handling two address instructions</a>
1653</div>
1654
1655<div class="doc_text">
1656
Bill Wendling80118802009-04-15 02:12:37 +00001657<p>With very rare exceptions (e.g., function calls), the LLVM machine code
1658 instructions are three address instructions. That is, each instruction is
1659 expected to define at most one register, and to use at most two registers.
1660 However, some architectures use two address instructions. In this case, the
1661 defined register is also one of the used register. For instance, an
1662 instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
1663 to <tt>%EAX = %EAX + %EBX</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001664
1665<p>In order to produce correct code, LLVM must convert three address
Bill Wendling80118802009-04-15 02:12:37 +00001666 instructions that represent two address instructions into true two address
1667 instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
1668 this specific purpose. It must be run before register allocation takes
1669 place. After its execution, the resulting code may no longer be in SSA
1670 form. This happens, for instance, in situations where an instruction such
1671 as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001672
1673<div class="doc_code">
1674<pre>
1675%a = MOVE %b
Dan Gohman03e58572008-06-13 17:55:57 +00001676%a = ADD %a %c
Bill Wendlinga396ee82006-09-01 21:46:00 +00001677</pre>
1678</div>
1679
1680<p>Notice that, internally, the second instruction is represented as
Bill Wendling80118802009-04-15 02:12:37 +00001681 <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
1682 used and defined by the instruction.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001683
1684</div>
1685
1686<!-- _______________________________________________________________________ -->
1687<div class="doc_subsubsection">
1688 <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
1689</div>
1690
1691<div class="doc_text">
1692
1693<p>An important transformation that happens during register allocation is called
Bill Wendling80118802009-04-15 02:12:37 +00001694 the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
1695 that are performed on the control flow graph of programs. However,
1696 traditional instruction sets do not implement PHI instructions. Thus, in
1697 order to generate executable code, compilers must replace PHI instructions
1698 with other instructions that preserve their semantics.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001699
Bill Wendling80118802009-04-15 02:12:37 +00001700<p>There are many ways in which PHI instructions can safely be removed from the
1701 target code. The most traditional PHI deconstruction algorithm replaces PHI
1702 instructions with copy instructions. That is the strategy adopted by
1703 LLVM. The SSA deconstruction algorithm is implemented
1704 in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
1705 identifier <tt>PHIEliminationID</tt> must be marked as required in the code
1706 of the register allocator.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001707
1708</div>
1709
1710<!-- _______________________________________________________________________ -->
1711<div class="doc_subsubsection">
1712 <a name="regAlloc_fold">Instruction folding</a>
1713</div>
1714
1715<div class="doc_text">
1716
Bill Wendling80118802009-04-15 02:12:37 +00001717<p><i>Instruction folding</i> is an optimization performed during register
1718 allocation that removes unnecessary copy instructions. For instance, a
1719 sequence of instructions such as:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001720
1721<div class="doc_code">
1722<pre>
1723%EBX = LOAD %mem_address
1724%EAX = COPY %EBX
1725</pre>
1726</div>
1727
Dan Gohmana7ab2bf2008-11-24 16:35:31 +00001728<p>can be safely substituted by the single instruction:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001729
1730<div class="doc_code">
1731<pre>
1732%EAX = LOAD %mem_address
1733</pre>
1734</div>
1735
Bill Wendling80118802009-04-15 02:12:37 +00001736<p>Instructions can be folded with
1737 the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
1738 taken when folding instructions; a folded instruction can be quite different
1739 from the original
1740 instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
1741 in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
1742 use.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001743
1744</div>
1745
1746<!-- _______________________________________________________________________ -->
1747
1748<div class="doc_subsubsection">
1749 <a name="regAlloc_builtIn">Built in register allocators</a>
1750</div>
1751
1752<div class="doc_text">
1753
Bill Wendling80118802009-04-15 02:12:37 +00001754<p>The LLVM infrastructure provides the application developer with three
1755 different register allocators:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001756
1757<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001758 <li><i>Linear Scan</i> &mdash; <i>The default allocator</i>. This is the
Bill Wendlinga396ee82006-09-01 21:46:00 +00001759 well-know linear scan register allocator. Whereas the
1760 <i>Simple</i> and <i>Local</i> algorithms use a direct mapping
1761 implementation technique, the <i>Linear Scan</i> implementation
1762 uses a spiller in order to place load and stores.</li>
Jakob Stoklund Olesen8a3eab92010-06-15 21:58:33 +00001763
1764 <li><i>Fast</i> &mdash; This register allocator is the default for debug
1765 builds. It allocates registers on a basic block level, attempting to keep
1766 values in registers and reusing registers as appropriate.</li>
1767
1768 <li><i>PBQP</i> &mdash; A Partitioned Boolean Quadratic Programming (PBQP)
1769 based register allocator. This allocator works by constructing a PBQP
1770 problem representing the register allocation problem under consideration,
1771 solving this using a PBQP solver, and mapping the solution back to a
1772 register assignment.</li>
1773
Bill Wendlinga396ee82006-09-01 21:46:00 +00001774</ul>
1775
1776<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
Bill Wendling80118802009-04-15 02:12:37 +00001777 command line option <tt>-regalloc=...</tt>:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001778
1779<div class="doc_code">
1780<pre>
Dan Gohman0cabaa52009-08-25 15:54:01 +00001781$ llc -regalloc=linearscan file.bc -o ln.s;
Jakob Stoklund Olesen8a3eab92010-06-15 21:58:33 +00001782$ llc -regalloc=fast file.bc -o fa.s;
1783$ llc -regalloc=pbqp file.bc -o pbqp.s;
Bill Wendlinga396ee82006-09-01 21:46:00 +00001784</pre>
1785</div>
1786
1787</div>
1788
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001789<!-- ======================================================================= -->
1790<div class="doc_subsection">
1791 <a name="proepicode">Prolog/Epilog Code Insertion</a>
1792</div>
1793<div class="doc_text"><p>To Be Written</p></div>
1794<!-- ======================================================================= -->
1795<div class="doc_subsection">
1796 <a name="latemco">Late Machine Code Optimizations</a>
1797</div>
1798<div class="doc_text"><p>To Be Written</p></div>
Chris Lattnere1b83452010-09-11 23:02:10 +00001799
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001800<!-- ======================================================================= -->
1801<div class="doc_subsection">
Chris Lattner32e89f22005-10-16 18:31:08 +00001802 <a name="codeemit">Code Emission</a>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001803</div>
Chris Lattnere1b83452010-09-11 23:02:10 +00001804
1805<div class="doc_text">
1806
1807<p>The code emission step of code generation is responsible for lowering from
1808the code generator abstractions (like <a
1809href="#machinefunction">MachineFunction</a>, <a
1810href="#machineinstr">MachineInstr</a>, etc) down
1811to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>,
1812<a href="#mcstreamer">MCStreamer</a>, etc). This is
1813done with a combination of several different classes: the (misnamed)
1814target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
1815(such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p>
1816
1817<p>Since the MC layer works at the level of abstraction of object files, it
1818doesn't have a notion of functions, global variables etc. Instead, it thinks
1819about labels, directives, and instructions. A key class used at this time is
1820the MCStreamer class. This is an abstract API that is implemented in different
1821ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively
1822an "assembler API". MCStreamer has one method per directive, such as EmitLabel,
1823EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
1824level directives.
1825</p>
1826
1827<p>If you are interested in implementing a code generator for a target, there
1828are three important things that you have to implement for your target:</p>
1829
1830<ol>
1831<li>First, you need a subclass of AsmPrinter for your target. This class
1832implements the general lowering process converting MachineFunction's into MC
1833label constructs. The AsmPrinter base class provides a number of useful methods
1834and routines, and also allows you to override the lowering process in some
1835important ways. You should get much of the lowering for free if you are
1836implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile
1837class implements much of the common logic.</li>
1838
1839<li>Second, you need to implement an instruction printer for your target. The
1840instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a
1841raw_ostream as text. Most of this is automatically generated from the .td file
1842(when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the
1843instructions), but you need to implement routines to print operands.</li>
1844
1845<li>Third, you need to implement code that lowers a <a
1846href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in
1847"&lt;target&gt;MCInstLower.cpp". This lowering process is often target
1848specific, and is responsible for turning jump table entries, constant pool
1849indices, global variable addresses, etc into MCLabels as appropriate. This
1850translation layer is also responsible for expanding pseudo ops used by the code
1851generator into the actual machine instructions they correspond to. The MCInsts
1852that are generated by this are fed into the instruction printer or the encoder.
1853</li>
1854
1855</ol>
1856
1857<p>Finally, at your choosing, you can also implement an subclass of
1858MCCodeEmitter which lowers MCInst's into machine code bytes and relocations.
1859This is important if you want to support direct .o file emission, or would like
1860to implement an assembler for your target.</p>
1861
Chris Lattner32e89f22005-10-16 18:31:08 +00001862</div>
Chris Lattnere1b83452010-09-11 23:02:10 +00001863
1864
1865<!-- ======================================================================= -->
1866<div class="doc_section">
1867 <a name="nativeassembler">Implementing a Native Assembler</a>
Chris Lattner32e89f22005-10-16 18:31:08 +00001868</div>
1869
1870<div class="doc_text">
Chris Lattnere1b83452010-09-11 23:02:10 +00001871
1872<p>TODO</p>
1873
Chris Lattner32e89f22005-10-16 18:31:08 +00001874</div>
1875
1876
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001877<!-- *********************************************************************** -->
1878<div class="doc_section">
Chris Lattner32e89f22005-10-16 18:31:08 +00001879 <a name="targetimpls">Target-specific Implementation Notes</a>
Chris Lattnerec94f802004-06-04 00:16:02 +00001880</div>
1881<!-- *********************************************************************** -->
1882
1883<div class="doc_text">
1884
Bill Wendling80118802009-04-15 02:12:37 +00001885<p>This section of the document explains features or design decisions that are
1886 specific to the code generator for a particular target.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001887
1888</div>
1889
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001890<!-- ======================================================================= -->
1891<div class="doc_subsection">
1892 <a name="tailcallopt">Tail call optimization</a>
1893</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001894
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001895<div class="doc_text">
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001896
Bill Wendling80118802009-04-15 02:12:37 +00001897<p>Tail call optimization, callee reusing the stack of the caller, is currently
1898 supported on x86/x86-64 and PowerPC. It is performed if:</p>
1899
1900<ul>
Chris Lattner29689432010-03-11 00:22:57 +00001901 <li>Caller and callee have the calling convention <tt>fastcc</tt> or
1902 <tt>cc 10</tt> (GHC call convention).</li>
Bill Wendling80118802009-04-15 02:12:37 +00001903
1904 <li>The call is a tail call - in tail position (ret immediately follows call
1905 and ret uses value of call or is void).</li>
1906
1907 <li>Option <tt>-tailcallopt</tt> is enabled.</li>
1908
1909 <li>Platform specific constraints are met.</li>
1910</ul>
1911
1912<p>x86/x86-64 constraints:</p>
1913
1914<ul>
1915 <li>No variable argument lists are used.</li>
1916
1917 <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
1918 = hidden or protected) are supported.</li>
1919</ul>
1920
1921<p>PowerPC constraints:</p>
1922
1923<ul>
1924 <li>No variable argument lists are used.</li>
1925
1926 <li>No byval parameters are used.</li>
1927
1928 <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
1929</ul>
1930
1931<p>Example:</p>
1932
1933<p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
1934
1935<div class="doc_code">
1936<pre>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001937declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
1938
1939define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
1940 %l1 = add i32 %in1, %in2
1941 %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
1942 ret i32 %tmp
Bill Wendling80118802009-04-15 02:12:37 +00001943}
1944</pre>
1945</div>
1946
1947<p>Implications of <tt>-tailcallopt</tt>:</p>
1948
1949<p>To support tail call optimization in situations where the callee has more
1950 arguments than the caller a 'callee pops arguments' convention is used. This
1951 currently causes each <tt>fastcc</tt> call that is not tail call optimized
1952 (because one or more of above constraints are not met) to be followed by a
1953 readjustment of the stack. So performance might be worse in such cases.</p>
1954
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001955</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001956<!-- ======================================================================= -->
1957<div class="doc_subsection">
Evan Chengdc444e92010-03-08 21:05:02 +00001958 <a name="sibcallopt">Sibling call optimization</a>
1959</div>
1960
1961<div class="doc_text">
1962
1963<p>Sibling call optimization is a restricted form of tail call optimization.
1964 Unlike tail call optimization described in the previous section, it can be
1965 performed automatically on any tail calls when <tt>-tailcallopt</tt> option
1966 is not specified.</p>
1967
1968<p>Sibling call optimization is currently performed on x86/x86-64 when the
1969 following constraints are met:</p>
1970
1971<ul>
1972 <li>Caller and callee have the same calling convention. It can be either
1973 <tt>c</tt> or <tt>fastcc</tt>.
1974
1975 <li>The call is a tail call - in tail position (ret immediately follows call
1976 and ret uses value of call or is void).</li>
1977
1978 <li>Caller and callee have matching return type or the callee result is not
1979 used.
1980
1981 <li>If any of the callee arguments are being passed in stack, they must be
1982 available in caller's own incoming argument stack and the frame offsets
1983 must be the same.
1984</ul>
1985
1986<p>Example:</p>
1987<div class="doc_code">
1988<pre>
1989declare i32 @bar(i32, i32)
1990
1991define i32 @foo(i32 %a, i32 %b, i32 %c) {
1992entry:
1993 %0 = tail call i32 @bar(i32 %a, i32 %b)
1994 ret i32 %0
1995}
1996</pre>
1997</div>
1998
1999</div>
2000<!-- ======================================================================= -->
2001<div class="doc_subsection">
Chris Lattnerec94f802004-06-04 00:16:02 +00002002 <a name="x86">The X86 backend</a>
2003</div>
2004
2005<div class="doc_text">
2006
Bill Wendling91e10c42006-08-28 02:26:32 +00002007<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory. This
Bill Wendling80118802009-04-15 02:12:37 +00002008 code generator is capable of targeting a variety of x86-32 and x86-64
2009 processors, and includes support for ISA extensions such as MMX and SSE.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002010
2011</div>
2012
2013<!-- _______________________________________________________________________ -->
2014<div class="doc_subsubsection">
Nate Begeman34509842009-01-26 02:54:45 +00002015 <a name="x86_tt">X86 Target Triples supported</a>
Chris Lattner9b988be2005-07-12 00:20:49 +00002016</div>
2017
2018<div class="doc_text">
Bill Wendling91e10c42006-08-28 02:26:32 +00002019
Bill Wendling80118802009-04-15 02:12:37 +00002020<p>The following are the known target triples that are supported by the X86
2021 backend. This is not an exhaustive list, and it would be useful to add those
2022 that people test.</p>
Chris Lattner9b988be2005-07-12 00:20:49 +00002023
2024<ul>
Bill Wendling80118802009-04-15 02:12:37 +00002025 <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>
2026
2027 <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>
2028
2029 <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>
2030
2031 <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>
2032
2033 <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>
2034
2035 <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>
Torok Edwinc457b652009-06-15 12:17:44 +00002036
2037 <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
Chris Lattner9b988be2005-07-12 00:20:49 +00002038</ul>
2039
2040</div>
2041
2042<!-- _______________________________________________________________________ -->
2043<div class="doc_subsubsection">
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002044 <a name="x86_cc">X86 Calling Conventions supported</a>
2045</div>
2046
2047
2048<div class="doc_text">
2049
Dan Gohman641b2792008-11-24 16:27:17 +00002050<p>The following target-specific calling conventions are known to backend:</p>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002051
2052<ul>
Bill Wendling80118802009-04-15 02:12:37 +00002053 <li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
2054 Windows platform (CC ID = 64).</li>
2055
2056 <li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
2057 Windows platform (CC ID = 65).</li>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00002058</ul>
2059
2060</div>
2061
2062<!-- _______________________________________________________________________ -->
2063<div class="doc_subsubsection">
Chris Lattnerec94f802004-06-04 00:16:02 +00002064 <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
2065</div>
2066
2067<div class="doc_text">
2068
Misha Brukman600df452005-02-17 22:22:24 +00002069<p>The x86 has a very flexible way of accessing memory. It is capable of
Bill Wendling80118802009-04-15 02:12:37 +00002070 forming memory addresses of the following expression directly in integer
2071 instructions (which use ModR/M addressing):</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002072
Bill Wendling91e10c42006-08-28 02:26:32 +00002073<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +00002074<pre>
Chris Lattnerb91227d2009-10-10 21:30:55 +00002075SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
Chris Lattnerec94f802004-06-04 00:16:02 +00002076</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00002077</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002078
Chris Lattnerb91227d2009-10-10 21:30:55 +00002079<p>In order to represent this, LLVM tracks no less than 5 operands for each
Bill Wendling80118802009-04-15 02:12:37 +00002080 memory operand of this form. This means that the "load" form of
2081 '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002082
Bill Wendling80118802009-04-15 02:12:37 +00002083<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +00002084<pre>
Chris Lattnerb91227d2009-10-10 21:30:55 +00002085Index: 0 | 1 2 3 4 5
2086Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement Segment
2087OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm PhysReg
Chris Lattnerec94f802004-06-04 00:16:02 +00002088</pre>
Bill Wendling80118802009-04-15 02:12:37 +00002089</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002090
Bill Wendling80118802009-04-15 02:12:37 +00002091<p>Stores, and all other instructions, treat the four memory operands in the
Chris Lattnerb91227d2009-10-10 21:30:55 +00002092 same way and in the same order. If the segment register is unspecified
2093 (regno = 0), then no segment override is generated. "Lea" operations do not
2094 have a segment register specified, so they only have 4 operands for their
2095 memory reference.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002096
2097</div>
2098
2099<!-- _______________________________________________________________________ -->
2100<div class="doc_subsubsection">
Nate Begeman34509842009-01-26 02:54:45 +00002101 <a name="x86_memory">X86 address spaces supported</a>
2102</div>
2103
2104<div class="doc_text">
2105
Dan Gohmand26795a2009-05-05 20:48:47 +00002106<p>x86 has an experimental feature which provides
2107 the ability to perform loads and stores to different address spaces
Bill Wendling80118802009-04-15 02:12:37 +00002108 via the x86 segment registers. A segment override prefix byte on an
2109 instruction causes the instruction's memory access to go to the specified
2110 segment. LLVM address space 0 is the default address space, which includes
2111 the stack, and any unqualified memory accesses in a program. Address spaces
2112 1-255 are currently reserved for user-defined code. The GS-segment is
Chris Lattner1777d0c2009-05-05 18:52:19 +00002113 represented by address space 256, while the FS-segment is represented by
2114 address space 257. Other x86 segments have yet to be allocated address space
2115 numbers.</p>
Nate Begeman34509842009-01-26 02:54:45 +00002116
Dan Gohmand26795a2009-05-05 20:48:47 +00002117<p>While these address spaces may seem similar to TLS via the
2118 <tt>thread_local</tt> keyword, and often use the same underlying hardware,
2119 there are some fundamental differences.</p>
2120
2121<p>The <tt>thread_local</tt> keyword applies to global variables and
2122 specifies that they are to be allocated in thread-local memory. There are
2123 no type qualifiers involved, and these variables can be pointed to with
2124 normal pointers and accessed with normal loads and stores.
2125 The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
2126 level (though LLVM doesn't yet have implementations of it for some
2127 configurations).<p>
2128
2129<p>Special address spaces, in contrast, apply to static types. Every
2130 load and store has a particular address space in its address operand type,
2131 and this is what determines which address space is accessed.
2132 LLVM ignores these special address space qualifiers on global variables,
2133 and does not provide a way to directly allocate storage in them.
2134 At the LLVM IR level, the behavior of these special address spaces depends
2135 in part on the underlying OS or runtime environment, and they are specific
2136 to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
2137
2138<p>Some operating systems and runtime environments use (or may in the future
2139 use) the FS/GS-segment registers for various low-level purposes, so care
2140 should be taken when considering them.</p>
Nate Begeman34509842009-01-26 02:54:45 +00002141
2142</div>
2143
2144<!-- _______________________________________________________________________ -->
2145<div class="doc_subsubsection">
Chris Lattnerec94f802004-06-04 00:16:02 +00002146 <a name="x86_names">Instruction naming</a>
2147</div>
2148
2149<div class="doc_text">
2150
Bill Wendling91e10c42006-08-28 02:26:32 +00002151<p>An instruction name consists of the base name, a default operand size, and a
Bill Wendling80118802009-04-15 02:12:37 +00002152 a character per operand with an optional special size. For example:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00002153
Bill Wendling80118802009-04-15 02:12:37 +00002154<div class="doc_code">
2155<pre>
2156ADD8rr -&gt; add, 8-bit register, 8-bit register
2157IMUL16rmi -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
2158IMUL16rmi8 -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
2159MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
2160</pre>
2161</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00002162
2163</div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002164
Jim Laskey762b6cb2006-12-14 17:19:50 +00002165<!-- ======================================================================= -->
2166<div class="doc_subsection">
2167 <a name="ppc">The PowerPC backend</a>
2168</div>
2169
2170<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00002171
Jim Laskey762b6cb2006-12-14 17:19:50 +00002172<p>The PowerPC code generator lives in the lib/Target/PowerPC directory. The
Bill Wendling80118802009-04-15 02:12:37 +00002173 code generation is retargetable to several variations or <i>subtargets</i> of
2174 the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
2175
Jim Laskey762b6cb2006-12-14 17:19:50 +00002176</div>
2177
2178<!-- _______________________________________________________________________ -->
2179<div class="doc_subsubsection">
2180 <a name="ppc_abi">LLVM PowerPC ABI</a>
2181</div>
2182
2183<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00002184
Jim Laskey762b6cb2006-12-14 17:19:50 +00002185<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
Bill Wendling80118802009-04-15 02:12:37 +00002186 relative (PIC) or static addressing for accessing global values, so no TOC
2187 (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
2188 of a stack frame. LLVM takes advantage of having no TOC to provide space to
2189 save the frame pointer in the PowerPC linkage area of the caller frame.
2190 Other details of PowerPC ABI can be found at <a href=
2191 "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
2192 >PowerPC ABI.</a> Note: This link describes the 32 bit ABI. The 64 bit ABI
2193 is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
2194 for system use.</p>
2195
Jim Laskey762b6cb2006-12-14 17:19:50 +00002196</div>
2197
2198<!-- _______________________________________________________________________ -->
2199<div class="doc_subsubsection">
2200 <a name="ppc_frame">Frame Layout</a>
2201</div>
2202
2203<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00002204
Jim Laskey762b6cb2006-12-14 17:19:50 +00002205<p>The size of a PowerPC frame is usually fixed for the duration of a
Bill Wendling80118802009-04-15 02:12:37 +00002206 function's invocation. Since the frame is fixed size, all references
2207 into the frame can be accessed via fixed offsets from the stack pointer. The
2208 exception to this is when dynamic alloca or variable sized arrays are
2209 present, then a base pointer (r31) is used as a proxy for the stack pointer
2210 and stack pointer is free to grow or shrink. A base pointer is also used if
2211 llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
2212 always aligned to 16 bytes, so that space allocated for altivec vectors will
2213 be properly aligned.</p>
2214
Dan Gohman641b2792008-11-24 16:27:17 +00002215<p>An invocation frame is laid out as follows (low memory at top);</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002216
Jim Laskey762b6cb2006-12-14 17:19:50 +00002217<table class="layout">
Bill Wendling80118802009-04-15 02:12:37 +00002218 <tr>
2219 <td>Linkage<br><br></td>
2220 </tr>
2221 <tr>
2222 <td>Parameter area<br><br></td>
2223 </tr>
2224 <tr>
2225 <td>Dynamic area<br><br></td>
2226 </tr>
2227 <tr>
2228 <td>Locals area<br><br></td>
2229 </tr>
2230 <tr>
2231 <td>Saved registers area<br><br></td>
2232 </tr>
2233 <tr style="border-style: none hidden none hidden;">
2234 <td><br></td>
2235 </tr>
2236 <tr>
2237 <td>Previous Frame<br><br></td>
2238 </tr>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002239</table>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002240
Jim Laskey762b6cb2006-12-14 17:19:50 +00002241<p>The <i>linkage</i> area is used by a callee to save special registers prior
Bill Wendling80118802009-04-15 02:12:37 +00002242 to allocating its own frame. Only three entries are relevant to LLVM. The
2243 first entry is the previous stack pointer (sp), aka link. This allows
2244 probing tools like gdb or exception handlers to quickly scan the frames in
2245 the stack. A function epilog can also use the link to pop the frame from the
2246 stack. The third entry in the linkage area is used to save the return
2247 address from the lr register. Finally, as mentioned above, the last entry is
2248 used to save the previous frame pointer (r31.) The entries in the linkage
2249 area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
2250 mode and 48 bytes in 64 bit mode.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002251
Jim Laskey762b6cb2006-12-14 17:19:50 +00002252<p>32 bit linkage area</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002253
Bill Wendling80118802009-04-15 02:12:37 +00002254<table class="layout">
2255 <tr>
2256 <td>0</td>
2257 <td>Saved SP (r1)</td>
2258 </tr>
2259 <tr>
2260 <td>4</td>
2261 <td>Saved CR</td>
2262 </tr>
2263 <tr>
2264 <td>8</td>
2265 <td>Saved LR</td>
2266 </tr>
2267 <tr>
2268 <td>12</td>
2269 <td>Reserved</td>
2270 </tr>
2271 <tr>
2272 <td>16</td>
2273 <td>Reserved</td>
2274 </tr>
2275 <tr>
2276 <td>20</td>
2277 <td>Saved FP (r31)</td>
2278 </tr>
2279</table>
2280
Jim Laskey762b6cb2006-12-14 17:19:50 +00002281<p>64 bit linkage area</p>
Bill Wendling80118802009-04-15 02:12:37 +00002282
Jim Laskey762b6cb2006-12-14 17:19:50 +00002283<table class="layout">
Bill Wendling80118802009-04-15 02:12:37 +00002284 <tr>
2285 <td>0</td>
2286 <td>Saved SP (r1)</td>
2287 </tr>
2288 <tr>
2289 <td>8</td>
2290 <td>Saved CR</td>
2291 </tr>
2292 <tr>
2293 <td>16</td>
2294 <td>Saved LR</td>
2295 </tr>
2296 <tr>
2297 <td>24</td>
2298 <td>Reserved</td>
2299 </tr>
2300 <tr>
2301 <td>32</td>
2302 <td>Reserved</td>
2303 </tr>
2304 <tr>
2305 <td>40</td>
2306 <td>Saved FP (r31)</td>
2307 </tr>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002308</table>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002309
Jim Laskey762b6cb2006-12-14 17:19:50 +00002310<p>The <i>parameter area</i> is used to store arguments being passed to a callee
Bill Wendling80118802009-04-15 02:12:37 +00002311 function. Following the PowerPC ABI, the first few arguments are actually
2312 passed in registers, with the space in the parameter area unused. However,
2313 if there are not enough registers or the callee is a thunk or vararg
2314 function, these register arguments can be spilled into the parameter area.
2315 Thus, the parameter area must be large enough to store all the parameters for
2316 the largest call sequence made by the caller. The size must also be
2317 minimally large enough to spill registers r3-r10. This allows callees blind
2318 to the call signature, such as thunks and vararg functions, enough space to
2319 cache the argument registers. Therefore, the parameter area is minimally 32
2320 bytes (64 bytes in 64 bit mode.) Also note that since the parameter area is
2321 a fixed offset from the top of the frame, that a callee can access its spilt
2322 arguments using fixed offsets from the stack pointer (or base pointer.)</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002323
Jim Laskey762b6cb2006-12-14 17:19:50 +00002324<p>Combining the information about the linkage, parameter areas and alignment. A
Bill Wendling80118802009-04-15 02:12:37 +00002325 stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
2326 mode.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002327
Jim Laskey762b6cb2006-12-14 17:19:50 +00002328<p>The <i>dynamic area</i> starts out as size zero. If a function uses dynamic
Bill Wendling80118802009-04-15 02:12:37 +00002329 alloca then space is added to the stack, the linkage and parameter areas are
2330 shifted to top of stack, and the new space is available immediately below the
2331 linkage and parameter areas. The cost of shifting the linkage and parameter
2332 areas is minor since only the link value needs to be copied. The link value
2333 can be easily fetched by adding the original frame size to the base pointer.
2334 Note that allocations in the dynamic space need to observe 16 byte
2335 alignment.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002336
Jim Laskey762b6cb2006-12-14 17:19:50 +00002337<p>The <i>locals area</i> is where the llvm compiler reserves space for local
Bill Wendling80118802009-04-15 02:12:37 +00002338 variables.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002339
Bill Wendling80118802009-04-15 02:12:37 +00002340<p>The <i>saved registers area</i> is where the llvm compiler spills callee
2341 saved registers on entry to the callee.</p>
2342
Jim Laskey762b6cb2006-12-14 17:19:50 +00002343</div>
2344
2345<!-- _______________________________________________________________________ -->
2346<div class="doc_subsubsection">
2347 <a name="ppc_prolog">Prolog/Epilog</a>
2348</div>
2349
2350<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00002351
Jim Laskey762b6cb2006-12-14 17:19:50 +00002352<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
Bill Wendling80118802009-04-15 02:12:37 +00002353 the following exceptions. Callee saved registers are spilled after the frame
2354 is created. This allows the llvm epilog/prolog support to be common with
2355 other targets. The base pointer callee saved register r31 is saved in the
2356 TOC slot of linkage area. This simplifies allocation of space for the base
2357 pointer and makes it convenient to locate programatically and during
2358 debugging.</p>
2359
Jim Laskey762b6cb2006-12-14 17:19:50 +00002360</div>
2361
2362<!-- _______________________________________________________________________ -->
2363<div class="doc_subsubsection">
2364 <a name="ppc_dynamic">Dynamic Allocation</a>
2365</div>
2366
2367<div class="doc_text">
Jim Laskey762b6cb2006-12-14 17:19:50 +00002368
Jim Laskeyb744c252006-12-15 10:40:48 +00002369<p><i>TODO - More to come.</i></p>
Bill Wendling80118802009-04-15 02:12:37 +00002370
Jim Laskeyb744c252006-12-15 10:40:48 +00002371</div>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002372
2373
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002374<!-- *********************************************************************** -->
2375<hr>
2376<address>
2377 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00002378 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002379 <a href="http://validator.w3.org/check/referer"><img
Misha Brukmanf00ddb02008-12-11 18:23:24 +00002380 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002381
2382 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00002383 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002384 Last modified: $Date$
2385</address>
2386
2387</body>
2388</html>