blob: d31eb9a5069461161acd3d327c989eb22da43924 [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000018#include "X86RegisterInfo.h"
19
Brian Gaeked0fde302003-11-11 22:41:34 +000020namespace llvm {
21
Chris Lattner9d177402002-10-30 01:09:34 +000022/// X86II - This namespace holds all of the target specific flags that
23/// instruction info tracks.
24///
25namespace X86II {
26 enum {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000027 //===------------------------------------------------------------------===//
28 // Instruction types. These are the standard/most common forms for X86
29 // instructions.
30 //
31
Chris Lattner4c299f52002-12-25 05:09:59 +000032 // PseudoFrm - This represents an instruction that is a pseudo instruction
33 // or one that has not been implemented yet. It is illegal to code generate
34 // it, but tolerated for intermediate implementation stages.
35 Pseudo = 0,
36
Chris Lattner6aab9cf2002-11-18 05:37:11 +000037 /// Raw - This form is for instructions that don't have any operands, so
38 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +000039 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000040
Chris Lattner6aab9cf2002-11-18 05:37:11 +000041 /// AddRegFrm - This form is used for instructions like 'push r32' that have
42 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +000043 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000044
45 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
46 /// to specify a destination, which in this case is a register.
47 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000048 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000049
50 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
51 /// to specify a destination, which in this case is memory.
52 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000053 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000054
55 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
56 /// to specify a source, which in this case is a register.
57 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000058 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000059
60 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
61 /// to specify a source, which in this case is memory.
62 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000063 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000064
Alkis Evlogimenos169584e2004-02-27 18:55:12 +000065 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +000066 /// a Mod/RM byte, and use the middle field to hold extended opcode
67 /// information. In the intel manual these are represented as /0, /1, ...
68 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +000069
Chris Lattner85b39f22002-11-21 17:08:49 +000070 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +000071 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
72 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +000073
74 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +000075 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
76 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +000077
Evan Cheng3c55c542006-02-01 06:13:50 +000078 // MRMInitReg - This form is used for instructions whose source and
79 // destinations are the same register.
80 MRMInitReg = 32,
81
82 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000083
84 //===------------------------------------------------------------------===//
85 // Actual flags...
86
Chris Lattner11e53e32002-11-21 01:32:55 +000087 // OpSize - Set if this instruction requires an operand size prefix (0x66),
88 // which most often indicates that the instruction operates on 16 bit data
89 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +000090 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +000091
Chris Lattner4c299f52002-12-25 05:09:59 +000092 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +000093 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
94 // used to obtain the setting of this field. If no bits in this field is
95 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +000096 //
Evan Cheng3c55c542006-02-01 06:13:50 +000097 Op0Shift = 7,
Chris Lattner2959b6e2003-08-06 15:32:20 +000098 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +000099
100 // TB - TwoByte - Set if this instruction has a two byte opcode, which
101 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000102 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000103
Chris Lattner915e5e52004-02-12 17:53:22 +0000104 // REP - The 0xF3 prefix byte indicating repetition of the following
105 // instruction.
106 REP = 2 << Op0Shift,
107
Chris Lattner4c299f52002-12-25 05:09:59 +0000108 // D8-DF - These escape opcodes are used by the floating point unit. These
109 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000110 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
111 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
112 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
113 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000114
Nate Begemanf63be7d2005-07-06 18:59:04 +0000115 // XS, XD - These prefix codes are for single and double precision scalar
116 // floating point operations performed in the SSE registers.
117 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000118
Chris Lattner0c514f42003-01-13 00:49:24 +0000119 //===------------------------------------------------------------------===//
John Criswell4ffff9e2004-04-08 20:31:47 +0000120 // This two-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000121 // unused so that we can tell if we forgot to set a value.
Evan Cheng3c55c542006-02-01 06:13:50 +0000122 ImmShift = 11,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000123 ImmMask = 7 << ImmShift,
124 Imm8 = 1 << ImmShift,
125 Imm16 = 2 << ImmShift,
126 Imm32 = 3 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000127
Chris Lattner0c514f42003-01-13 00:49:24 +0000128 //===------------------------------------------------------------------===//
129 // FP Instruction Classification... Zero is non-fp instruction.
130
Chris Lattner2959b6e2003-08-06 15:32:20 +0000131 // FPTypeMask - Mask for all of the FP types...
Evan Cheng3c55c542006-02-01 06:13:50 +0000132 FPTypeShift = 13,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000133 FPTypeMask = 7 << FPTypeShift,
134
Chris Lattner79b13732004-01-30 22:24:18 +0000135 // NotFP - The default, set for instructions that do not use FP registers.
136 NotFP = 0 << FPTypeShift,
137
Chris Lattner0c514f42003-01-13 00:49:24 +0000138 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000139 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000140
141 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000142 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000143
144 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
145 // result back to ST(0). For example, fcos, fsqrt, etc.
146 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000147 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000148
149 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
150 // explicit argument, storing the result to either ST(0) or the implicit
151 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000152 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000153
Chris Lattnerab8decc2004-06-11 04:41:24 +0000154 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
155 // explicit argument, but have no destination. Example: fucom, fucomi, ...
156 CompareFP = 5 << FPTypeShift,
157
Chris Lattner1c54a852004-03-31 22:02:13 +0000158 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000159 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000160
Chris Lattner0c514f42003-01-13 00:49:24 +0000161 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000162 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000163
Chris Lattnerc96bb812004-08-11 07:12:04 +0000164 // Bit 15 is unused.
Evan Cheng3c55c542006-02-01 06:13:50 +0000165 OpcodeShift = 17,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000166 OpcodeMask = 0xFF << OpcodeShift,
Evan Cheng3c55c542006-02-01 06:13:50 +0000167 // Bits 25 -> 31 are unused
Chris Lattner9d177402002-10-30 01:09:34 +0000168 };
169}
170
Chris Lattner3501fea2003-01-14 22:00:31 +0000171class X86InstrInfo : public TargetInstrInfo {
Chris Lattner72614082002-10-25 22:55:53 +0000172 const X86RegisterInfo RI;
173public:
Chris Lattner055c9652002-10-29 21:05:24 +0000174 X86InstrInfo();
Chris Lattner72614082002-10-25 22:55:53 +0000175
Chris Lattner3501fea2003-01-14 22:00:31 +0000176 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000177 /// such, whenever a client has an instance of instruction info, it should
178 /// always be able to get register info as well (through this method).
179 ///
180 virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
181
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000182 //
183 // Return true if the instruction is a register to register move and
184 // leave the source and dest operands in the passed parameters.
185 //
186 virtual bool isMoveInstr(const MachineInstr& MI,
187 unsigned& sourceReg,
188 unsigned& destReg) const;
189
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000190 /// convertToThreeAddress - This method must be implemented by targets that
191 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
192 /// may be able to convert a two-address instruction into a true
193 /// three-address instruction on demand. This allows the X86 target (for
194 /// example) to convert ADD and SHL instructions into LEA instructions if they
195 /// would require register copies due to two-addressness.
196 ///
197 /// This method returns a null pointer if the transformation cannot be
198 /// performed, otherwise it returns the new instruction.
199 ///
200 virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
201
Chris Lattner41e431b2005-01-19 07:11:01 +0000202 /// commuteInstruction - We have a few instructions that must be hacked on to
203 /// commute them.
204 ///
205 virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
206
207
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000208 /// Insert a goto (unconditional branch) sequence to TMBB, at the
209 /// end of MBB
210 virtual void insertGoto(MachineBasicBlock& MBB,
211 MachineBasicBlock& TMBB) const;
212
213 /// Reverses the branch condition of the MachineInstr pointed by
214 /// MI. The instruction is replaced and the new MI is returned.
215 virtual MachineBasicBlock::iterator
216 reverseBranchCondition(MachineBasicBlock::iterator MI) const;
217
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000218 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
219 // specified opcode number.
220 //
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000221 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
222 return get(Opcode).TSFlags >> X86II::OpcodeShift;
223 }
Chris Lattner72614082002-10-25 22:55:53 +0000224};
225
Brian Gaeked0fde302003-11-11 22:41:34 +0000226} // End llvm namespace
227
Chris Lattner72614082002-10-25 22:55:53 +0000228#endif