blob: 41128c3b23a2df67994ee0410c8602ddc082e320 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
31 <li><a href="#datalayout">Data Layout</a></li>
32 </ol>
33 </li>
34 <li><a href="#typesystem">Type System</a>
35 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037 <li><a href="#t_primitive">Primitive Types</a>
38 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000039 <li><a href="#t_floating">Floating Point Types</a></li>
40 <li><a href="#t_void">Void Type</a></li>
41 <li><a href="#t_label">Label Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042 </ol>
43 </li>
44 <li><a href="#t_derived">Derived Types</a>
45 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000046 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047 <li><a href="#t_array">Array Type</a></li>
48 <li><a href="#t_function">Function Type</a></li>
49 <li><a href="#t_pointer">Pointer Type</a></li>
50 <li><a href="#t_struct">Structure Type</a></li>
51 <li><a href="#t_pstruct">Packed Structure Type</a></li>
52 <li><a href="#t_vector">Vector Type</a></li>
53 <li><a href="#t_opaque">Opaque Type</a></li>
54 </ol>
55 </li>
56 </ol>
57 </li>
58 <li><a href="#constants">Constants</a>
59 <ol>
60 <li><a href="#simpleconstants">Simple Constants</a>
61 <li><a href="#aggregateconstants">Aggregate Constants</a>
62 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63 <li><a href="#undefvalues">Undefined Values</a>
64 <li><a href="#constantexprs">Constant Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#othervalues">Other Values</a>
68 <ol>
69 <li><a href="#inlineasm">Inline Assembler Expressions</a>
70 </ol>
71 </li>
72 <li><a href="#instref">Instruction Reference</a>
73 <ol>
74 <li><a href="#terminators">Terminator Instructions</a>
75 <ol>
76 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
78 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
80 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
81 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
82 </ol>
83 </li>
84 <li><a href="#binaryops">Binary Operations</a>
85 <ol>
86 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
89 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
92 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
95 </ol>
96 </li>
97 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98 <ol>
99 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
102 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
103 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
104 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
105 </ol>
106 </li>
107 <li><a href="#vectorops">Vector Operations</a>
108 <ol>
109 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
112 </ol>
113 </li>
114 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
115 <ol>
116 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
117 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
118 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
119 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
120 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
121 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
122 </ol>
123 </li>
124 <li><a href="#convertops">Conversion Operations</a>
125 <ol>
126 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
127 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
128 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
129 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
130 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
131 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
132 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
133 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
134 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
135 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
136 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
137 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
138 </ol>
139 <li><a href="#otherops">Other Operations</a>
140 <ol>
141 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
142 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
143 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
144 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
145 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
146 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patela3cc5372008-03-10 20:49:15 +0000147 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 </ol>
149 </li>
150 </ol>
151 </li>
152 <li><a href="#intrinsics">Intrinsic Functions</a>
153 <ol>
154 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
155 <ol>
156 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
157 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
158 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
159 </ol>
160 </li>
161 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
162 <ol>
163 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
164 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
165 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
166 </ol>
167 </li>
168 <li><a href="#int_codegen">Code Generator Intrinsics</a>
169 <ol>
170 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
171 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
172 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
173 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
174 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
175 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
176 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
177 </ol>
178 </li>
179 <li><a href="#int_libc">Standard C Library Intrinsics</a>
180 <ol>
181 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
182 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
183 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
184 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
185 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000186 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
187 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
188 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000189 </ol>
190 </li>
191 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
192 <ol>
193 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
194 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
195 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
196 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
197 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
198 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
199 </ol>
200 </li>
201 <li><a href="#int_debugger">Debugger intrinsics</a></li>
202 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000203 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000204 <ol>
205 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000206 </ol>
207 </li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000208 <li><a href="#int_atomics">Atomic intrinsics</a>
209 <ol>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000210 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
211 <li><a href="#int_atomic_lcs"><tt>llvm.atomic.lcs</tt></a></li>
212 <li><a href="#int_atomic_las"><tt>llvm.atomic.las</tt></a></li>
213 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000214 </ol>
215 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000216 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000218 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000219 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000220 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000221 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000222 <li><a href="#int_trap">
223 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000224 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225 </li>
226 </ol>
227 </li>
228</ol>
229
230<div class="doc_author">
231 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
232 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
233</div>
234
235<!-- *********************************************************************** -->
236<div class="doc_section"> <a name="abstract">Abstract </a></div>
237<!-- *********************************************************************** -->
238
239<div class="doc_text">
240<p>This document is a reference manual for the LLVM assembly language.
241LLVM is an SSA based representation that provides type safety,
242low-level operations, flexibility, and the capability of representing
243'all' high-level languages cleanly. It is the common code
244representation used throughout all phases of the LLVM compilation
245strategy.</p>
246</div>
247
248<!-- *********************************************************************** -->
249<div class="doc_section"> <a name="introduction">Introduction</a> </div>
250<!-- *********************************************************************** -->
251
252<div class="doc_text">
253
254<p>The LLVM code representation is designed to be used in three
255different forms: as an in-memory compiler IR, as an on-disk bitcode
256representation (suitable for fast loading by a Just-In-Time compiler),
257and as a human readable assembly language representation. This allows
258LLVM to provide a powerful intermediate representation for efficient
259compiler transformations and analysis, while providing a natural means
260to debug and visualize the transformations. The three different forms
261of LLVM are all equivalent. This document describes the human readable
262representation and notation.</p>
263
264<p>The LLVM representation aims to be light-weight and low-level
265while being expressive, typed, and extensible at the same time. It
266aims to be a "universal IR" of sorts, by being at a low enough level
267that high-level ideas may be cleanly mapped to it (similar to how
268microprocessors are "universal IR's", allowing many source languages to
269be mapped to them). By providing type information, LLVM can be used as
270the target of optimizations: for example, through pointer analysis, it
271can be proven that a C automatic variable is never accessed outside of
272the current function... allowing it to be promoted to a simple SSA
273value instead of a memory location.</p>
274
275</div>
276
277<!-- _______________________________________________________________________ -->
278<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
279
280<div class="doc_text">
281
282<p>It is important to note that this document describes 'well formed'
283LLVM assembly language. There is a difference between what the parser
284accepts and what is considered 'well formed'. For example, the
285following instruction is syntactically okay, but not well formed:</p>
286
287<div class="doc_code">
288<pre>
289%x = <a href="#i_add">add</a> i32 1, %x
290</pre>
291</div>
292
293<p>...because the definition of <tt>%x</tt> does not dominate all of
294its uses. The LLVM infrastructure provides a verification pass that may
295be used to verify that an LLVM module is well formed. This pass is
296automatically run by the parser after parsing input assembly and by
297the optimizer before it outputs bitcode. The violations pointed out
298by the verifier pass indicate bugs in transformation passes or input to
299the parser.</p>
300</div>
301
Chris Lattnera83fdc02007-10-03 17:34:29 +0000302<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000303
304<!-- *********************************************************************** -->
305<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
306<!-- *********************************************************************** -->
307
308<div class="doc_text">
309
Reid Spencerc8245b02007-08-07 14:34:28 +0000310 <p>LLVM identifiers come in two basic types: global and local. Global
311 identifiers (functions, global variables) begin with the @ character. Local
312 identifiers (register names, types) begin with the % character. Additionally,
313 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314
315<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000316 <li>Named values are represented as a string of characters with their prefix.
317 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
318 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000320 with quotes. In this way, anything except a <tt>&quot;</tt> character can
321 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000322
Reid Spencerc8245b02007-08-07 14:34:28 +0000323 <li>Unnamed values are represented as an unsigned numeric value with their
324 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325
326 <li>Constants, which are described in a <a href="#constants">section about
327 constants</a>, below.</li>
328</ol>
329
Reid Spencerc8245b02007-08-07 14:34:28 +0000330<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331don't need to worry about name clashes with reserved words, and the set of
332reserved words may be expanded in the future without penalty. Additionally,
333unnamed identifiers allow a compiler to quickly come up with a temporary
334variable without having to avoid symbol table conflicts.</p>
335
336<p>Reserved words in LLVM are very similar to reserved words in other
337languages. There are keywords for different opcodes
338('<tt><a href="#i_add">add</a></tt>',
339 '<tt><a href="#i_bitcast">bitcast</a></tt>',
340 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
341href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
342and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000343none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344
345<p>Here is an example of LLVM code to multiply the integer variable
346'<tt>%X</tt>' by 8:</p>
347
348<p>The easy way:</p>
349
350<div class="doc_code">
351<pre>
352%result = <a href="#i_mul">mul</a> i32 %X, 8
353</pre>
354</div>
355
356<p>After strength reduction:</p>
357
358<div class="doc_code">
359<pre>
360%result = <a href="#i_shl">shl</a> i32 %X, i8 3
361</pre>
362</div>
363
364<p>And the hard way:</p>
365
366<div class="doc_code">
367<pre>
368<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
369<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
370%result = <a href="#i_add">add</a> i32 %1, %1
371</pre>
372</div>
373
374<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
375important lexical features of LLVM:</p>
376
377<ol>
378
379 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
380 line.</li>
381
382 <li>Unnamed temporaries are created when the result of a computation is not
383 assigned to a named value.</li>
384
385 <li>Unnamed temporaries are numbered sequentially</li>
386
387</ol>
388
389<p>...and it also shows a convention that we follow in this document. When
390demonstrating instructions, we will follow an instruction with a comment that
391defines the type and name of value produced. Comments are shown in italic
392text.</p>
393
394</div>
395
396<!-- *********************************************************************** -->
397<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
398<!-- *********************************************************************** -->
399
400<!-- ======================================================================= -->
401<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
402</div>
403
404<div class="doc_text">
405
406<p>LLVM programs are composed of "Module"s, each of which is a
407translation unit of the input programs. Each module consists of
408functions, global variables, and symbol table entries. Modules may be
409combined together with the LLVM linker, which merges function (and
410global variable) definitions, resolves forward declarations, and merges
411symbol table entries. Here is an example of the "hello world" module:</p>
412
413<div class="doc_code">
414<pre><i>; Declare the string constant as a global constant...</i>
415<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
416 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
417
418<i>; External declaration of the puts function</i>
419<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
420
421<i>; Definition of main function</i>
422define i32 @main() { <i>; i32()* </i>
423 <i>; Convert [13x i8 ]* to i8 *...</i>
424 %cast210 = <a
425 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
426
427 <i>; Call puts function to write out the string to stdout...</i>
428 <a
429 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
430 <a
431 href="#i_ret">ret</a> i32 0<br>}<br>
432</pre>
433</div>
434
435<p>This example is made up of a <a href="#globalvars">global variable</a>
436named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
437function, and a <a href="#functionstructure">function definition</a>
438for "<tt>main</tt>".</p>
439
440<p>In general, a module is made up of a list of global values,
441where both functions and global variables are global values. Global values are
442represented by a pointer to a memory location (in this case, a pointer to an
443array of char, and a pointer to a function), and have one of the following <a
444href="#linkage">linkage types</a>.</p>
445
446</div>
447
448<!-- ======================================================================= -->
449<div class="doc_subsection">
450 <a name="linkage">Linkage Types</a>
451</div>
452
453<div class="doc_text">
454
455<p>
456All Global Variables and Functions have one of the following types of linkage:
457</p>
458
459<dl>
460
461 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
462
463 <dd>Global values with internal linkage are only directly accessible by
464 objects in the current module. In particular, linking code into a module with
465 an internal global value may cause the internal to be renamed as necessary to
466 avoid collisions. Because the symbol is internal to the module, all
467 references can be updated. This corresponds to the notion of the
468 '<tt>static</tt>' keyword in C.
469 </dd>
470
471 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
472
473 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
474 the same name when linkage occurs. This is typically used to implement
475 inline functions, templates, or other code which must be generated in each
476 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
477 allowed to be discarded.
478 </dd>
479
480 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
481
482 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
483 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
484 used for globals that may be emitted in multiple translation units, but that
485 are not guaranteed to be emitted into every translation unit that uses them.
486 One example of this are common globals in C, such as "<tt>int X;</tt>" at
487 global scope.
488 </dd>
489
490 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
491
492 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
493 pointer to array type. When two global variables with appending linkage are
494 linked together, the two global arrays are appended together. This is the
495 LLVM, typesafe, equivalent of having the system linker append together
496 "sections" with identical names when .o files are linked.
497 </dd>
498
499 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
500 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
501 until linked, if not linked, the symbol becomes null instead of being an
502 undefined reference.
503 </dd>
504
505 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
506
507 <dd>If none of the above identifiers are used, the global is externally
508 visible, meaning that it participates in linkage and can be used to resolve
509 external symbol references.
510 </dd>
511</dl>
512
513 <p>
514 The next two types of linkage are targeted for Microsoft Windows platform
515 only. They are designed to support importing (exporting) symbols from (to)
516 DLLs.
517 </p>
518
519 <dl>
520 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
521
522 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
523 or variable via a global pointer to a pointer that is set up by the DLL
524 exporting the symbol. On Microsoft Windows targets, the pointer name is
525 formed by combining <code>_imp__</code> and the function or variable name.
526 </dd>
527
528 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
529
530 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
531 pointer to a pointer in a DLL, so that it can be referenced with the
532 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
533 name is formed by combining <code>_imp__</code> and the function or variable
534 name.
535 </dd>
536
537</dl>
538
539<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
540variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
541variable and was linked with this one, one of the two would be renamed,
542preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
543external (i.e., lacking any linkage declarations), they are accessible
544outside of the current module.</p>
545<p>It is illegal for a function <i>declaration</i>
546to have any linkage type other than "externally visible", <tt>dllimport</tt>,
547or <tt>extern_weak</tt>.</p>
548<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
549linkages.
550</div>
551
552<!-- ======================================================================= -->
553<div class="doc_subsection">
554 <a name="callingconv">Calling Conventions</a>
555</div>
556
557<div class="doc_text">
558
559<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
560and <a href="#i_invoke">invokes</a> can all have an optional calling convention
561specified for the call. The calling convention of any pair of dynamic
562caller/callee must match, or the behavior of the program is undefined. The
563following calling conventions are supported by LLVM, and more may be added in
564the future:</p>
565
566<dl>
567 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
568
569 <dd>This calling convention (the default if no other calling convention is
570 specified) matches the target C calling conventions. This calling convention
571 supports varargs function calls and tolerates some mismatch in the declared
572 prototype and implemented declaration of the function (as does normal C).
573 </dd>
574
575 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
576
577 <dd>This calling convention attempts to make calls as fast as possible
578 (e.g. by passing things in registers). This calling convention allows the
579 target to use whatever tricks it wants to produce fast code for the target,
580 without having to conform to an externally specified ABI. Implementations of
581 this convention should allow arbitrary tail call optimization to be supported.
582 This calling convention does not support varargs and requires the prototype of
583 all callees to exactly match the prototype of the function definition.
584 </dd>
585
586 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
587
588 <dd>This calling convention attempts to make code in the caller as efficient
589 as possible under the assumption that the call is not commonly executed. As
590 such, these calls often preserve all registers so that the call does not break
591 any live ranges in the caller side. This calling convention does not support
592 varargs and requires the prototype of all callees to exactly match the
593 prototype of the function definition.
594 </dd>
595
596 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
597
598 <dd>Any calling convention may be specified by number, allowing
599 target-specific calling conventions to be used. Target specific calling
600 conventions start at 64.
601 </dd>
602</dl>
603
604<p>More calling conventions can be added/defined on an as-needed basis, to
605support pascal conventions or any other well-known target-independent
606convention.</p>
607
608</div>
609
610<!-- ======================================================================= -->
611<div class="doc_subsection">
612 <a name="visibility">Visibility Styles</a>
613</div>
614
615<div class="doc_text">
616
617<p>
618All Global Variables and Functions have one of the following visibility styles:
619</p>
620
621<dl>
622 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
623
624 <dd>On ELF, default visibility means that the declaration is visible to other
625 modules and, in shared libraries, means that the declared entity may be
626 overridden. On Darwin, default visibility means that the declaration is
627 visible to other modules. Default visibility corresponds to "external
628 linkage" in the language.
629 </dd>
630
631 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
632
633 <dd>Two declarations of an object with hidden visibility refer to the same
634 object if they are in the same shared object. Usually, hidden visibility
635 indicates that the symbol will not be placed into the dynamic symbol table,
636 so no other module (executable or shared library) can reference it
637 directly.
638 </dd>
639
640 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
641
642 <dd>On ELF, protected visibility indicates that the symbol will be placed in
643 the dynamic symbol table, but that references within the defining module will
644 bind to the local symbol. That is, the symbol cannot be overridden by another
645 module.
646 </dd>
647</dl>
648
649</div>
650
651<!-- ======================================================================= -->
652<div class="doc_subsection">
653 <a name="globalvars">Global Variables</a>
654</div>
655
656<div class="doc_text">
657
658<p>Global variables define regions of memory allocated at compilation time
659instead of run-time. Global variables may optionally be initialized, may have
660an explicit section to be placed in, and may have an optional explicit alignment
661specified. A variable may be defined as "thread_local", which means that it
662will not be shared by threads (each thread will have a separated copy of the
663variable). A variable may be defined as a global "constant," which indicates
664that the contents of the variable will <b>never</b> be modified (enabling better
665optimization, allowing the global data to be placed in the read-only section of
666an executable, etc). Note that variables that need runtime initialization
667cannot be marked "constant" as there is a store to the variable.</p>
668
669<p>
670LLVM explicitly allows <em>declarations</em> of global variables to be marked
671constant, even if the final definition of the global is not. This capability
672can be used to enable slightly better optimization of the program, but requires
673the language definition to guarantee that optimizations based on the
674'constantness' are valid for the translation units that do not include the
675definition.
676</p>
677
678<p>As SSA values, global variables define pointer values that are in
679scope (i.e. they dominate) all basic blocks in the program. Global
680variables always define a pointer to their "content" type because they
681describe a region of memory, and all memory objects in LLVM are
682accessed through pointers.</p>
683
Christopher Lambdd0049d2007-12-11 09:31:00 +0000684<p>A global variable may be declared to reside in a target-specifc numbered
685address space. For targets that support them, address spaces may affect how
686optimizations are performed and/or what target instructions are used to access
Christopher Lamb20a39e92007-12-12 08:44:39 +0000687the variable. The default address space is zero. The address space qualifier
688must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000689
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000690<p>LLVM allows an explicit section to be specified for globals. If the target
691supports it, it will emit globals to the section specified.</p>
692
693<p>An explicit alignment may be specified for a global. If not present, or if
694the alignment is set to zero, the alignment of the global is set by the target
695to whatever it feels convenient. If an explicit alignment is specified, the
696global is forced to have at least that much alignment. All alignments must be
697a power of 2.</p>
698
Christopher Lambdd0049d2007-12-11 09:31:00 +0000699<p>For example, the following defines a global in a numbered address space with
700an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701
702<div class="doc_code">
703<pre>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000704@G = constant float 1.0 addrspace(5), section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705</pre>
706</div>
707
708</div>
709
710
711<!-- ======================================================================= -->
712<div class="doc_subsection">
713 <a name="functionstructure">Functions</a>
714</div>
715
716<div class="doc_text">
717
718<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
719an optional <a href="#linkage">linkage type</a>, an optional
720<a href="#visibility">visibility style</a>, an optional
721<a href="#callingconv">calling convention</a>, a return type, an optional
722<a href="#paramattrs">parameter attribute</a> for the return type, a function
723name, a (possibly empty) argument list (each with optional
724<a href="#paramattrs">parameter attributes</a>), an optional section, an
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000725optional alignment, an optional <a href="#gc">garbage collector name</a>, an
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000726opening curly brace, a list of basic blocks, and a closing curly brace.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727
728LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
729optional <a href="#linkage">linkage type</a>, an optional
730<a href="#visibility">visibility style</a>, an optional
731<a href="#callingconv">calling convention</a>, a return type, an optional
732<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000733name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000734<a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735
736<p>A function definition contains a list of basic blocks, forming the CFG for
737the function. Each basic block may optionally start with a label (giving the
738basic block a symbol table entry), contains a list of instructions, and ends
739with a <a href="#terminators">terminator</a> instruction (such as a branch or
740function return).</p>
741
742<p>The first basic block in a function is special in two ways: it is immediately
743executed on entrance to the function, and it is not allowed to have predecessor
744basic blocks (i.e. there can not be any branches to the entry block of a
745function). Because the block can have no predecessors, it also cannot have any
746<a href="#i_phi">PHI nodes</a>.</p>
747
748<p>LLVM allows an explicit section to be specified for functions. If the target
749supports it, it will emit functions to the section specified.</p>
750
751<p>An explicit alignment may be specified for a function. If not present, or if
752the alignment is set to zero, the alignment of the function is set by the target
753to whatever it feels convenient. If an explicit alignment is specified, the
754function is forced to have at least that much alignment. All alignments must be
755a power of 2.</p>
756
757</div>
758
759
760<!-- ======================================================================= -->
761<div class="doc_subsection">
762 <a name="aliasstructure">Aliases</a>
763</div>
764<div class="doc_text">
765 <p>Aliases act as "second name" for the aliasee value (which can be either
766 function or global variable or bitcast of global value). Aliases may have an
767 optional <a href="#linkage">linkage type</a>, and an
768 optional <a href="#visibility">visibility style</a>.</p>
769
770 <h5>Syntax:</h5>
771
772<div class="doc_code">
773<pre>
774@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
775</pre>
776</div>
777
778</div>
779
780
781
782<!-- ======================================================================= -->
783<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
784<div class="doc_text">
785 <p>The return type and each parameter of a function type may have a set of
786 <i>parameter attributes</i> associated with them. Parameter attributes are
787 used to communicate additional information about the result or parameters of
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000788 a function. Parameter attributes are considered to be part of the function,
789 not of the function type, so functions with different parameter attributes
790 can have the same function type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791
792 <p>Parameter attributes are simple keywords that follow the type specified. If
793 multiple parameter attributes are needed, they are space separated. For
794 example:</p>
795
796<div class="doc_code">
797<pre>
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000798declare i32 @printf(i8* noalias , ...) nounwind
799declare i32 @atoi(i8*) nounwind readonly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000800</pre>
801</div>
802
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000803 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
804 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805
806 <p>Currently, only the following parameter attributes are defined:</p>
807 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000808 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000809 <dd>This indicates that the parameter should be zero extended just before
810 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000811
Reid Spencerf234bed2007-07-19 23:13:04 +0000812 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000813 <dd>This indicates that the parameter should be sign extended just before
814 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000815
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 <dt><tt>inreg</tt></dt>
817 <dd>This indicates that the parameter should be placed in register (if
818 possible) during assembling function call. Support for this attribute is
819 target-specific</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000820
821 <dt><tt>byval</tt></dt>
Chris Lattner04c86182008-01-15 04:34:22 +0000822 <dd>This indicates that the pointer parameter should really be passed by
823 value to the function. The attribute implies that a hidden copy of the
824 pointee is made between the caller and the callee, so the callee is unable
825 to modify the value in the callee. This attribute is only valid on llvm
826 pointer arguments. It is generally used to pass structs and arrays by
827 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000828
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000829 <dt><tt>sret</tt></dt>
Duncan Sands616cc032008-02-18 04:19:38 +0000830 <dd>This indicates that the pointer parameter specifies the address of a
831 structure that is the return value of the function in the source program.
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000832 Loads and stores to the structure are assumed not to trap.
Duncan Sands616cc032008-02-18 04:19:38 +0000833 May only be applied to the first parameter.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000834
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835 <dt><tt>noalias</tt></dt>
Owen Andersonc4fc4cd2008-02-18 04:09:01 +0000836 <dd>This indicates that the parameter does not alias any global or any other
837 parameter. The caller is responsible for ensuring that this is the case,
838 usually by placing the value in a stack allocation.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000839
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 <dt><tt>noreturn</tt></dt>
841 <dd>This function attribute indicates that the function never returns. This
842 indicates to LLVM that every call to this function should be treated as if
843 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000844
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000845 <dt><tt>nounwind</tt></dt>
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000846 <dd>This function attribute indicates that no exceptions unwind out of the
847 function. Usually this is because the function makes no use of exceptions,
848 but it may also be that the function catches any exceptions thrown when
849 executing it.</dd>
850
Duncan Sands4ee46812007-07-27 19:57:41 +0000851 <dt><tt>nest</tt></dt>
852 <dd>This indicates that the parameter can be excised using the
853 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sands13e13f82007-11-22 20:23:04 +0000854 <dt><tt>readonly</tt></dt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000855 <dd>This function attribute indicates that the function has no side-effects
Duncan Sands13e13f82007-11-22 20:23:04 +0000856 except for producing a return value or throwing an exception. The value
857 returned must only depend on the function arguments and/or global variables.
858 It may use values obtained by dereferencing pointers.</dd>
859 <dt><tt>readnone</tt></dt>
860 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000861 function, but in addition it is not allowed to dereference any pointer arguments
862 or global variables.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000863 </dl>
864
865</div>
866
867<!-- ======================================================================= -->
868<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000869 <a name="gc">Garbage Collector Names</a>
870</div>
871
872<div class="doc_text">
873<p>Each function may specify a garbage collector name, which is simply a
874string.</p>
875
876<div class="doc_code"><pre
877>define void @f() gc "name" { ...</pre></div>
878
879<p>The compiler declares the supported values of <i>name</i>. Specifying a
880collector which will cause the compiler to alter its output in order to support
881the named garbage collection algorithm.</p>
882</div>
883
884<!-- ======================================================================= -->
885<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000886 <a name="moduleasm">Module-Level Inline Assembly</a>
887</div>
888
889<div class="doc_text">
890<p>
891Modules may contain "module-level inline asm" blocks, which corresponds to the
892GCC "file scope inline asm" blocks. These blocks are internally concatenated by
893LLVM and treated as a single unit, but may be separated in the .ll file if
894desired. The syntax is very simple:
895</p>
896
897<div class="doc_code">
898<pre>
899module asm "inline asm code goes here"
900module asm "more can go here"
901</pre>
902</div>
903
904<p>The strings can contain any character by escaping non-printable characters.
905 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
906 for the number.
907</p>
908
909<p>
910 The inline asm code is simply printed to the machine code .s file when
911 assembly code is generated.
912</p>
913</div>
914
915<!-- ======================================================================= -->
916<div class="doc_subsection">
917 <a name="datalayout">Data Layout</a>
918</div>
919
920<div class="doc_text">
921<p>A module may specify a target specific data layout string that specifies how
922data is to be laid out in memory. The syntax for the data layout is simply:</p>
923<pre> target datalayout = "<i>layout specification</i>"</pre>
924<p>The <i>layout specification</i> consists of a list of specifications
925separated by the minus sign character ('-'). Each specification starts with a
926letter and may include other information after the letter to define some
927aspect of the data layout. The specifications accepted are as follows: </p>
928<dl>
929 <dt><tt>E</tt></dt>
930 <dd>Specifies that the target lays out data in big-endian form. That is, the
931 bits with the most significance have the lowest address location.</dd>
932 <dt><tt>e</tt></dt>
933 <dd>Specifies that hte target lays out data in little-endian form. That is,
934 the bits with the least significance have the lowest address location.</dd>
935 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
936 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
937 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
938 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
939 too.</dd>
940 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
941 <dd>This specifies the alignment for an integer type of a given bit
942 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
943 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
944 <dd>This specifies the alignment for a vector type of a given bit
945 <i>size</i>.</dd>
946 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
947 <dd>This specifies the alignment for a floating point type of a given bit
948 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
949 (double).</dd>
950 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
951 <dd>This specifies the alignment for an aggregate type of a given bit
952 <i>size</i>.</dd>
953</dl>
954<p>When constructing the data layout for a given target, LLVM starts with a
955default set of specifications which are then (possibly) overriden by the
956specifications in the <tt>datalayout</tt> keyword. The default specifications
957are given in this list:</p>
958<ul>
959 <li><tt>E</tt> - big endian</li>
960 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
961 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
962 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
963 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
964 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
965 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
966 alignment of 64-bits</li>
967 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
968 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
969 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
970 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
971 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
972</ul>
973<p>When llvm is determining the alignment for a given type, it uses the
974following rules:
975<ol>
976 <li>If the type sought is an exact match for one of the specifications, that
977 specification is used.</li>
978 <li>If no match is found, and the type sought is an integer type, then the
979 smallest integer type that is larger than the bitwidth of the sought type is
980 used. If none of the specifications are larger than the bitwidth then the the
981 largest integer type is used. For example, given the default specifications
982 above, the i7 type will use the alignment of i8 (next largest) while both
983 i65 and i256 will use the alignment of i64 (largest specified).</li>
984 <li>If no match is found, and the type sought is a vector type, then the
985 largest vector type that is smaller than the sought vector type will be used
986 as a fall back. This happens because <128 x double> can be implemented in
987 terms of 64 <2 x double>, for example.</li>
988</ol>
989</div>
990
991<!-- *********************************************************************** -->
992<div class="doc_section"> <a name="typesystem">Type System</a> </div>
993<!-- *********************************************************************** -->
994
995<div class="doc_text">
996
997<p>The LLVM type system is one of the most important features of the
998intermediate representation. Being typed enables a number of
999optimizations to be performed on the IR directly, without having to do
1000extra analyses on the side before the transformation. A strong type
1001system makes it easier to read the generated code and enables novel
1002analyses and transformations that are not feasible to perform on normal
1003three address code representations.</p>
1004
1005</div>
1006
1007<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001008<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009Classifications</a> </div>
1010<div class="doc_text">
Chris Lattner488772f2008-01-04 04:32:38 +00001011<p>The types fall into a few useful
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012classifications:</p>
1013
1014<table border="1" cellspacing="0" cellpadding="4">
1015 <tbody>
1016 <tr><th>Classification</th><th>Types</th></tr>
1017 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001018 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1020 </tr>
1021 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001022 <td><a href="#t_floating">floating point</a></td>
1023 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001024 </tr>
1025 <tr>
1026 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001027 <td><a href="#t_integer">integer</a>,
1028 <a href="#t_floating">floating point</a>,
1029 <a href="#t_pointer">pointer</a>,
1030 <a href="#t_vector">vector</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 </td>
1032 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001033 <tr>
1034 <td><a href="#t_primitive">primitive</a></td>
1035 <td><a href="#t_label">label</a>,
1036 <a href="#t_void">void</a>,
1037 <a href="#t_integer">integer</a>,
1038 <a href="#t_floating">floating point</a>.</td>
1039 </tr>
1040 <tr>
1041 <td><a href="#t_derived">derived</a></td>
1042 <td><a href="#t_integer">integer</a>,
1043 <a href="#t_array">array</a>,
1044 <a href="#t_function">function</a>,
1045 <a href="#t_pointer">pointer</a>,
1046 <a href="#t_struct">structure</a>,
1047 <a href="#t_pstruct">packed structure</a>,
1048 <a href="#t_vector">vector</a>,
1049 <a href="#t_opaque">opaque</a>.
1050 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 </tbody>
1052</table>
1053
1054<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1055most important. Values of these types are the only ones which can be
1056produced by instructions, passed as arguments, or used as operands to
1057instructions. This means that all structures and arrays must be
1058manipulated either by pointer or by component.</p>
1059</div>
1060
1061<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001062<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001063
Chris Lattner488772f2008-01-04 04:32:38 +00001064<div class="doc_text">
1065<p>The primitive types are the fundamental building blocks of the LLVM
1066system.</p>
1067
Chris Lattner86437612008-01-04 04:34:14 +00001068</div>
1069
Chris Lattner488772f2008-01-04 04:32:38 +00001070<!-- _______________________________________________________________________ -->
1071<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1072
1073<div class="doc_text">
1074 <table>
1075 <tbody>
1076 <tr><th>Type</th><th>Description</th></tr>
1077 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1078 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1079 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1080 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1081 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1082 </tbody>
1083 </table>
1084</div>
1085
1086<!-- _______________________________________________________________________ -->
1087<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1088
1089<div class="doc_text">
1090<h5>Overview:</h5>
1091<p>The void type does not represent any value and has no size.</p>
1092
1093<h5>Syntax:</h5>
1094
1095<pre>
1096 void
1097</pre>
1098</div>
1099
1100<!-- _______________________________________________________________________ -->
1101<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1102
1103<div class="doc_text">
1104<h5>Overview:</h5>
1105<p>The label type represents code labels.</p>
1106
1107<h5>Syntax:</h5>
1108
1109<pre>
1110 label
1111</pre>
1112</div>
1113
1114
1115<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1117
1118<div class="doc_text">
1119
1120<p>The real power in LLVM comes from the derived types in the system.
1121This is what allows a programmer to represent arrays, functions,
1122pointers, and other useful types. Note that these derived types may be
1123recursive: For example, it is possible to have a two dimensional array.</p>
1124
1125</div>
1126
1127<!-- _______________________________________________________________________ -->
1128<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1129
1130<div class="doc_text">
1131
1132<h5>Overview:</h5>
1133<p>The integer type is a very simple derived type that simply specifies an
1134arbitrary bit width for the integer type desired. Any bit width from 1 bit to
11352^23-1 (about 8 million) can be specified.</p>
1136
1137<h5>Syntax:</h5>
1138
1139<pre>
1140 iN
1141</pre>
1142
1143<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1144value.</p>
1145
1146<h5>Examples:</h5>
1147<table class="layout">
Chris Lattner251ab812007-12-18 06:18:21 +00001148 <tbody>
1149 <tr>
1150 <td><tt>i1</tt></td>
1151 <td>a single-bit integer.</td>
1152 </tr><tr>
1153 <td><tt>i32</tt></td>
1154 <td>a 32-bit integer.</td>
1155 </tr><tr>
1156 <td><tt>i1942652</tt></td>
1157 <td>a really big integer of over 1 million bits.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 </tr>
Chris Lattner251ab812007-12-18 06:18:21 +00001159 </tbody>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160</table>
1161</div>
1162
1163<!-- _______________________________________________________________________ -->
1164<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1165
1166<div class="doc_text">
1167
1168<h5>Overview:</h5>
1169
1170<p>The array type is a very simple derived type that arranges elements
1171sequentially in memory. The array type requires a size (number of
1172elements) and an underlying data type.</p>
1173
1174<h5>Syntax:</h5>
1175
1176<pre>
1177 [&lt;# elements&gt; x &lt;elementtype&gt;]
1178</pre>
1179
1180<p>The number of elements is a constant integer value; elementtype may
1181be any type with a size.</p>
1182
1183<h5>Examples:</h5>
1184<table class="layout">
1185 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001186 <td class="left"><tt>[40 x i32]</tt></td>
1187 <td class="left">Array of 40 32-bit integer values.</td>
1188 </tr>
1189 <tr class="layout">
1190 <td class="left"><tt>[41 x i32]</tt></td>
1191 <td class="left">Array of 41 32-bit integer values.</td>
1192 </tr>
1193 <tr class="layout">
1194 <td class="left"><tt>[4 x i8]</tt></td>
1195 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001196 </tr>
1197</table>
1198<p>Here are some examples of multidimensional arrays:</p>
1199<table class="layout">
1200 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001201 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1202 <td class="left">3x4 array of 32-bit integer values.</td>
1203 </tr>
1204 <tr class="layout">
1205 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1206 <td class="left">12x10 array of single precision floating point values.</td>
1207 </tr>
1208 <tr class="layout">
1209 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1210 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 </tr>
1212</table>
1213
1214<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1215length array. Normally, accesses past the end of an array are undefined in
1216LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1217As a special case, however, zero length arrays are recognized to be variable
1218length. This allows implementation of 'pascal style arrays' with the LLVM
1219type "{ i32, [0 x float]}", for example.</p>
1220
1221</div>
1222
1223<!-- _______________________________________________________________________ -->
1224<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1225<div class="doc_text">
1226<h5>Overview:</h5>
1227<p>The function type can be thought of as a function signature. It
1228consists of a return type and a list of formal parameter types.
1229Function types are usually used to build virtual function tables
1230(which are structures of pointers to functions), for indirect function
1231calls, and when defining a function.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001232
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001233<h5>Syntax:</h5>
Devang Patela3cc5372008-03-10 20:49:15 +00001234<pre> &lt;returntype list&gt; (&lt;parameter list&gt;)<br></pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001235<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1236specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1237which indicates that the function takes a variable number of arguments.
1238Variable argument functions can access their arguments with the <a
Devang Patela3cc5372008-03-10 20:49:15 +00001239 href="#int_varargs">variable argument handling intrinsic</a> functions.
1240'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1241<a href="#t_firstclass">first class</a> type specifiers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242<h5>Examples:</h5>
1243<table class="layout">
1244 <tr class="layout">
1245 <td class="left"><tt>i32 (i32)</tt></td>
1246 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1247 </td>
1248 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001249 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 </tt></td>
1251 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1252 an <tt>i16</tt> that should be sign extended and a
1253 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1254 <tt>float</tt>.
1255 </td>
1256 </tr><tr class="layout">
1257 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1258 <td class="left">A vararg function that takes at least one
1259 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1260 which returns an integer. This is the signature for <tt>printf</tt> in
1261 LLVM.
1262 </td>
1263 </tr>
1264</table>
1265
1266</div>
1267<!-- _______________________________________________________________________ -->
1268<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1269<div class="doc_text">
1270<h5>Overview:</h5>
1271<p>The structure type is used to represent a collection of data members
1272together in memory. The packing of the field types is defined to match
1273the ABI of the underlying processor. The elements of a structure may
1274be any type that has a size.</p>
1275<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1276and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1277field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1278instruction.</p>
1279<h5>Syntax:</h5>
1280<pre> { &lt;type list&gt; }<br></pre>
1281<h5>Examples:</h5>
1282<table class="layout">
1283 <tr class="layout">
1284 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1285 <td class="left">A triple of three <tt>i32</tt> values</td>
1286 </tr><tr class="layout">
1287 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1288 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1289 second element is a <a href="#t_pointer">pointer</a> to a
1290 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1291 an <tt>i32</tt>.</td>
1292 </tr>
1293</table>
1294</div>
1295
1296<!-- _______________________________________________________________________ -->
1297<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1298</div>
1299<div class="doc_text">
1300<h5>Overview:</h5>
1301<p>The packed structure type is used to represent a collection of data members
1302together in memory. There is no padding between fields. Further, the alignment
1303of a packed structure is 1 byte. The elements of a packed structure may
1304be any type that has a size.</p>
1305<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1306and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1307field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1308instruction.</p>
1309<h5>Syntax:</h5>
1310<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1311<h5>Examples:</h5>
1312<table class="layout">
1313 <tr class="layout">
1314 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1315 <td class="left">A triple of three <tt>i32</tt> values</td>
1316 </tr><tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001317 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1319 second element is a <a href="#t_pointer">pointer</a> to a
1320 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1321 an <tt>i32</tt>.</td>
1322 </tr>
1323</table>
1324</div>
1325
1326<!-- _______________________________________________________________________ -->
1327<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1328<div class="doc_text">
1329<h5>Overview:</h5>
1330<p>As in many languages, the pointer type represents a pointer or
Christopher Lambdd0049d2007-12-11 09:31:00 +00001331reference to another object, which must live in memory. Pointer types may have
1332an optional address space attribute defining the target-specific numbered
1333address space where the pointed-to object resides. The default address space is
1334zero.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335<h5>Syntax:</h5>
1336<pre> &lt;type&gt; *<br></pre>
1337<h5>Examples:</h5>
1338<table class="layout">
1339 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001340 <td class="left"><tt>[4x i32]*</tt></td>
1341 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1342 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1343 </tr>
1344 <tr class="layout">
1345 <td class="left"><tt>i32 (i32 *) *</tt></td>
1346 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001347 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001348 <tt>i32</tt>.</td>
1349 </tr>
1350 <tr class="layout">
1351 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1352 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1353 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354 </tr>
1355</table>
1356</div>
1357
1358<!-- _______________________________________________________________________ -->
1359<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1360<div class="doc_text">
1361
1362<h5>Overview:</h5>
1363
1364<p>A vector type is a simple derived type that represents a vector
1365of elements. Vector types are used when multiple primitive data
1366are operated in parallel using a single instruction (SIMD).
1367A vector type requires a size (number of
1368elements) and an underlying primitive data type. Vectors must have a power
1369of two length (1, 2, 4, 8, 16 ...). Vector types are
1370considered <a href="#t_firstclass">first class</a>.</p>
1371
1372<h5>Syntax:</h5>
1373
1374<pre>
1375 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1376</pre>
1377
1378<p>The number of elements is a constant integer value; elementtype may
1379be any integer or floating point type.</p>
1380
1381<h5>Examples:</h5>
1382
1383<table class="layout">
1384 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001385 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1386 <td class="left">Vector of 4 32-bit integer values.</td>
1387 </tr>
1388 <tr class="layout">
1389 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1390 <td class="left">Vector of 8 32-bit floating-point values.</td>
1391 </tr>
1392 <tr class="layout">
1393 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1394 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001395 </tr>
1396</table>
1397</div>
1398
1399<!-- _______________________________________________________________________ -->
1400<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1401<div class="doc_text">
1402
1403<h5>Overview:</h5>
1404
1405<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001406corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407In LLVM, opaque types can eventually be resolved to any type (not just a
1408structure type).</p>
1409
1410<h5>Syntax:</h5>
1411
1412<pre>
1413 opaque
1414</pre>
1415
1416<h5>Examples:</h5>
1417
1418<table class="layout">
1419 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001420 <td class="left"><tt>opaque</tt></td>
1421 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001422 </tr>
1423</table>
1424</div>
1425
1426
1427<!-- *********************************************************************** -->
1428<div class="doc_section"> <a name="constants">Constants</a> </div>
1429<!-- *********************************************************************** -->
1430
1431<div class="doc_text">
1432
1433<p>LLVM has several different basic types of constants. This section describes
1434them all and their syntax.</p>
1435
1436</div>
1437
1438<!-- ======================================================================= -->
1439<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1440
1441<div class="doc_text">
1442
1443<dl>
1444 <dt><b>Boolean constants</b></dt>
1445
1446 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1447 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1448 </dd>
1449
1450 <dt><b>Integer constants</b></dt>
1451
1452 <dd>Standard integers (such as '4') are constants of the <a
1453 href="#t_integer">integer</a> type. Negative numbers may be used with
1454 integer types.
1455 </dd>
1456
1457 <dt><b>Floating point constants</b></dt>
1458
1459 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1460 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1461 notation (see below). Floating point constants must have a <a
1462 href="#t_floating">floating point</a> type. </dd>
1463
1464 <dt><b>Null pointer constants</b></dt>
1465
1466 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1467 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1468
1469</dl>
1470
1471<p>The one non-intuitive notation for constants is the optional hexadecimal form
1472of floating point constants. For example, the form '<tt>double
14730x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
14744.5e+15</tt>'. The only time hexadecimal floating point constants are required
1475(and the only time that they are generated by the disassembler) is when a
1476floating point constant must be emitted but it cannot be represented as a
1477decimal floating point number. For example, NaN's, infinities, and other
1478special values are represented in their IEEE hexadecimal format so that
1479assembly and disassembly do not cause any bits to change in the constants.</p>
1480
1481</div>
1482
1483<!-- ======================================================================= -->
1484<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1485</div>
1486
1487<div class="doc_text">
1488<p>Aggregate constants arise from aggregation of simple constants
1489and smaller aggregate constants.</p>
1490
1491<dl>
1492 <dt><b>Structure constants</b></dt>
1493
1494 <dd>Structure constants are represented with notation similar to structure
1495 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner6c8de962007-12-25 20:34:52 +00001496 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1497 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001498 must have <a href="#t_struct">structure type</a>, and the number and
1499 types of elements must match those specified by the type.
1500 </dd>
1501
1502 <dt><b>Array constants</b></dt>
1503
1504 <dd>Array constants are represented with notation similar to array type
1505 definitions (a comma separated list of elements, surrounded by square brackets
1506 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1507 constants must have <a href="#t_array">array type</a>, and the number and
1508 types of elements must match those specified by the type.
1509 </dd>
1510
1511 <dt><b>Vector constants</b></dt>
1512
1513 <dd>Vector constants are represented with notation similar to vector type
1514 definitions (a comma separated list of elements, surrounded by
1515 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1516 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1517 href="#t_vector">vector type</a>, and the number and types of elements must
1518 match those specified by the type.
1519 </dd>
1520
1521 <dt><b>Zero initialization</b></dt>
1522
1523 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1524 value to zero of <em>any</em> type, including scalar and aggregate types.
1525 This is often used to avoid having to print large zero initializers (e.g. for
1526 large arrays) and is always exactly equivalent to using explicit zero
1527 initializers.
1528 </dd>
1529</dl>
1530
1531</div>
1532
1533<!-- ======================================================================= -->
1534<div class="doc_subsection">
1535 <a name="globalconstants">Global Variable and Function Addresses</a>
1536</div>
1537
1538<div class="doc_text">
1539
1540<p>The addresses of <a href="#globalvars">global variables</a> and <a
1541href="#functionstructure">functions</a> are always implicitly valid (link-time)
1542constants. These constants are explicitly referenced when the <a
1543href="#identifiers">identifier for the global</a> is used and always have <a
1544href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1545file:</p>
1546
1547<div class="doc_code">
1548<pre>
1549@X = global i32 17
1550@Y = global i32 42
1551@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1552</pre>
1553</div>
1554
1555</div>
1556
1557<!-- ======================================================================= -->
1558<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1559<div class="doc_text">
1560 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1561 no specific value. Undefined values may be of any type and be used anywhere
1562 a constant is permitted.</p>
1563
1564 <p>Undefined values indicate to the compiler that the program is well defined
1565 no matter what value is used, giving the compiler more freedom to optimize.
1566 </p>
1567</div>
1568
1569<!-- ======================================================================= -->
1570<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1571</div>
1572
1573<div class="doc_text">
1574
1575<p>Constant expressions are used to allow expressions involving other constants
1576to be used as constants. Constant expressions may be of any <a
1577href="#t_firstclass">first class</a> type and may involve any LLVM operation
1578that does not have side effects (e.g. load and call are not supported). The
1579following is the syntax for constant expressions:</p>
1580
1581<dl>
1582 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1583 <dd>Truncate a constant to another type. The bit size of CST must be larger
1584 than the bit size of TYPE. Both types must be integers.</dd>
1585
1586 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1587 <dd>Zero extend a constant to another type. The bit size of CST must be
1588 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1589
1590 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1591 <dd>Sign extend a constant to another type. The bit size of CST must be
1592 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1593
1594 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1595 <dd>Truncate a floating point constant to another floating point type. The
1596 size of CST must be larger than the size of TYPE. Both types must be
1597 floating point.</dd>
1598
1599 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1600 <dd>Floating point extend a constant to another type. The size of CST must be
1601 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1602
Reid Spencere6adee82007-07-31 14:40:14 +00001603 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001604 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001605 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1606 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1607 of the same number of elements. If the value won't fit in the integer type,
1608 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001609
1610 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1611 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001612 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1613 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1614 of the same number of elements. If the value won't fit in the integer type,
1615 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001616
1617 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1618 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001619 constant. TYPE must be a scalar or vector floating point type. CST must be of
1620 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1621 of the same number of elements. If the value won't fit in the floating point
1622 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623
1624 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1625 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001626 constant. TYPE must be a scalar or vector floating point type. CST must be of
1627 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1628 of the same number of elements. If the value won't fit in the floating point
1629 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001630
1631 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1632 <dd>Convert a pointer typed constant to the corresponding integer constant
1633 TYPE must be an integer type. CST must be of pointer type. The CST value is
1634 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1635
1636 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1637 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1638 pointer type. CST must be of integer type. The CST value is zero extended,
1639 truncated, or unchanged to make it fit in a pointer size. This one is
1640 <i>really</i> dangerous!</dd>
1641
1642 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1643 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1644 identical (same number of bits). The conversion is done as if the CST value
1645 was stored to memory and read back as TYPE. In other words, no bits change
1646 with this operator, just the type. This can be used for conversion of
1647 vector types to any other type, as long as they have the same bit width. For
1648 pointers it is only valid to cast to another pointer type.
1649 </dd>
1650
1651 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1652
1653 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1654 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1655 instruction, the index list may have zero or more indexes, which are required
1656 to make sense for the type of "CSTPTR".</dd>
1657
1658 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1659
1660 <dd>Perform the <a href="#i_select">select operation</a> on
1661 constants.</dd>
1662
1663 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1664 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1665
1666 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1667 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1668
1669 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1670
1671 <dd>Perform the <a href="#i_extractelement">extractelement
1672 operation</a> on constants.
1673
1674 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1675
1676 <dd>Perform the <a href="#i_insertelement">insertelement
1677 operation</a> on constants.</dd>
1678
1679
1680 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1681
1682 <dd>Perform the <a href="#i_shufflevector">shufflevector
1683 operation</a> on constants.</dd>
1684
1685 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1686
1687 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1688 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1689 binary</a> operations. The constraints on operands are the same as those for
1690 the corresponding instruction (e.g. no bitwise operations on floating point
1691 values are allowed).</dd>
1692</dl>
1693</div>
1694
1695<!-- *********************************************************************** -->
1696<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1697<!-- *********************************************************************** -->
1698
1699<!-- ======================================================================= -->
1700<div class="doc_subsection">
1701<a name="inlineasm">Inline Assembler Expressions</a>
1702</div>
1703
1704<div class="doc_text">
1705
1706<p>
1707LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1708Module-Level Inline Assembly</a>) through the use of a special value. This
1709value represents the inline assembler as a string (containing the instructions
1710to emit), a list of operand constraints (stored as a string), and a flag that
1711indicates whether or not the inline asm expression has side effects. An example
1712inline assembler expression is:
1713</p>
1714
1715<div class="doc_code">
1716<pre>
1717i32 (i32) asm "bswap $0", "=r,r"
1718</pre>
1719</div>
1720
1721<p>
1722Inline assembler expressions may <b>only</b> be used as the callee operand of
1723a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1724</p>
1725
1726<div class="doc_code">
1727<pre>
1728%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1729</pre>
1730</div>
1731
1732<p>
1733Inline asms with side effects not visible in the constraint list must be marked
1734as having side effects. This is done through the use of the
1735'<tt>sideeffect</tt>' keyword, like so:
1736</p>
1737
1738<div class="doc_code">
1739<pre>
1740call void asm sideeffect "eieio", ""()
1741</pre>
1742</div>
1743
1744<p>TODO: The format of the asm and constraints string still need to be
1745documented here. Constraints on what can be done (e.g. duplication, moving, etc
1746need to be documented).
1747</p>
1748
1749</div>
1750
1751<!-- *********************************************************************** -->
1752<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1753<!-- *********************************************************************** -->
1754
1755<div class="doc_text">
1756
1757<p>The LLVM instruction set consists of several different
1758classifications of instructions: <a href="#terminators">terminator
1759instructions</a>, <a href="#binaryops">binary instructions</a>,
1760<a href="#bitwiseops">bitwise binary instructions</a>, <a
1761 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1762instructions</a>.</p>
1763
1764</div>
1765
1766<!-- ======================================================================= -->
1767<div class="doc_subsection"> <a name="terminators">Terminator
1768Instructions</a> </div>
1769
1770<div class="doc_text">
1771
1772<p>As mentioned <a href="#functionstructure">previously</a>, every
1773basic block in a program ends with a "Terminator" instruction, which
1774indicates which block should be executed after the current block is
1775finished. These terminator instructions typically yield a '<tt>void</tt>'
1776value: they produce control flow, not values (the one exception being
1777the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1778<p>There are six different terminator instructions: the '<a
1779 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1780instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1781the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1782 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1783 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1784
1785</div>
1786
1787<!-- _______________________________________________________________________ -->
1788<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1789Instruction</a> </div>
1790<div class="doc_text">
1791<h5>Syntax:</h5>
1792<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1793 ret void <i>; Return from void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001794 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795</pre>
1796<h5>Overview:</h5>
1797<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1798value) from a function back to the caller.</p>
1799<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1800returns a value and then causes control flow, and one that just causes
1801control flow to occur.</p>
1802<h5>Arguments:</h5>
Devang Patela3cc5372008-03-10 20:49:15 +00001803<p>The '<tt>ret</tt>' instruction may return one or multiple values. The
Devang Patelec8a5b02008-03-11 05:51:59 +00001804type of each return value must be a '<a href="#t_firstclass">first class</a>'
1805 type. Note that a function is not <a href="#wellformed">well formed</a>
Devang Patela3cc5372008-03-10 20:49:15 +00001806if there exists a '<tt>ret</tt>' instruction inside of the function that
Devang Patelec8a5b02008-03-11 05:51:59 +00001807returns values that do not match the return type of the function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001808<h5>Semantics:</h5>
1809<p>When the '<tt>ret</tt>' instruction is executed, control flow
1810returns back to the calling function's context. If the caller is a "<a
1811 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1812the instruction after the call. If the caller was an "<a
1813 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1814at the beginning of the "normal" destination block. If the instruction
1815returns a value, that value shall set the call or invoke instruction's
Devang Patela3cc5372008-03-10 20:49:15 +00001816return value. If the instruction returns multiple values then these
Devang Patelec8a5b02008-03-11 05:51:59 +00001817values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1818</a>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819<h5>Example:</h5>
1820<pre> ret i32 5 <i>; Return an integer value of 5</i>
1821 ret void <i>; Return from a void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001822 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001823</pre>
1824</div>
1825<!-- _______________________________________________________________________ -->
1826<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1827<div class="doc_text">
1828<h5>Syntax:</h5>
1829<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1830</pre>
1831<h5>Overview:</h5>
1832<p>The '<tt>br</tt>' instruction is used to cause control flow to
1833transfer to a different basic block in the current function. There are
1834two forms of this instruction, corresponding to a conditional branch
1835and an unconditional branch.</p>
1836<h5>Arguments:</h5>
1837<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1838single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1839unconditional form of the '<tt>br</tt>' instruction takes a single
1840'<tt>label</tt>' value as a target.</p>
1841<h5>Semantics:</h5>
1842<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1843argument is evaluated. If the value is <tt>true</tt>, control flows
1844to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1845control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1846<h5>Example:</h5>
1847<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1848 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1849</div>
1850<!-- _______________________________________________________________________ -->
1851<div class="doc_subsubsection">
1852 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1853</div>
1854
1855<div class="doc_text">
1856<h5>Syntax:</h5>
1857
1858<pre>
1859 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1860</pre>
1861
1862<h5>Overview:</h5>
1863
1864<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1865several different places. It is a generalization of the '<tt>br</tt>'
1866instruction, allowing a branch to occur to one of many possible
1867destinations.</p>
1868
1869
1870<h5>Arguments:</h5>
1871
1872<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1873comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1874an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1875table is not allowed to contain duplicate constant entries.</p>
1876
1877<h5>Semantics:</h5>
1878
1879<p>The <tt>switch</tt> instruction specifies a table of values and
1880destinations. When the '<tt>switch</tt>' instruction is executed, this
1881table is searched for the given value. If the value is found, control flow is
1882transfered to the corresponding destination; otherwise, control flow is
1883transfered to the default destination.</p>
1884
1885<h5>Implementation:</h5>
1886
1887<p>Depending on properties of the target machine and the particular
1888<tt>switch</tt> instruction, this instruction may be code generated in different
1889ways. For example, it could be generated as a series of chained conditional
1890branches or with a lookup table.</p>
1891
1892<h5>Example:</h5>
1893
1894<pre>
1895 <i>; Emulate a conditional br instruction</i>
1896 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1897 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1898
1899 <i>; Emulate an unconditional br instruction</i>
1900 switch i32 0, label %dest [ ]
1901
1902 <i>; Implement a jump table:</i>
1903 switch i32 %val, label %otherwise [ i32 0, label %onzero
1904 i32 1, label %onone
1905 i32 2, label %ontwo ]
1906</pre>
1907</div>
1908
1909<!-- _______________________________________________________________________ -->
1910<div class="doc_subsubsection">
1911 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1912</div>
1913
1914<div class="doc_text">
1915
1916<h5>Syntax:</h5>
1917
1918<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00001919 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1921</pre>
1922
1923<h5>Overview:</h5>
1924
1925<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1926function, with the possibility of control flow transfer to either the
1927'<tt>normal</tt>' label or the
1928'<tt>exception</tt>' label. If the callee function returns with the
1929"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1930"normal" label. If the callee (or any indirect callees) returns with the "<a
1931href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patela3cc5372008-03-10 20:49:15 +00001932continued at the dynamically nearest "exception" label. If the callee function
Devang Patelec8a5b02008-03-11 05:51:59 +00001933returns multiple values then individual return values are only accessible through
1934a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001935
1936<h5>Arguments:</h5>
1937
1938<p>This instruction requires several arguments:</p>
1939
1940<ol>
1941 <li>
1942 The optional "cconv" marker indicates which <a href="#callingconv">calling
1943 convention</a> the call should use. If none is specified, the call defaults
1944 to using C calling conventions.
1945 </li>
1946 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1947 function value being invoked. In most cases, this is a direct function
1948 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1949 an arbitrary pointer to function value.
1950 </li>
1951
1952 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1953 function to be invoked. </li>
1954
1955 <li>'<tt>function args</tt>': argument list whose types match the function
1956 signature argument types. If the function signature indicates the function
1957 accepts a variable number of arguments, the extra arguments can be
1958 specified. </li>
1959
1960 <li>'<tt>normal label</tt>': the label reached when the called function
1961 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1962
1963 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1964 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1965
1966</ol>
1967
1968<h5>Semantics:</h5>
1969
1970<p>This instruction is designed to operate as a standard '<tt><a
1971href="#i_call">call</a></tt>' instruction in most regards. The primary
1972difference is that it establishes an association with a label, which is used by
1973the runtime library to unwind the stack.</p>
1974
1975<p>This instruction is used in languages with destructors to ensure that proper
1976cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1977exception. Additionally, this is important for implementation of
1978'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1979
1980<h5>Example:</h5>
1981<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00001982 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001983 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00001984 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985 unwind label %TestCleanup <i>; {i32}:retval set</i>
1986</pre>
1987</div>
1988
1989
1990<!-- _______________________________________________________________________ -->
1991
1992<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1993Instruction</a> </div>
1994
1995<div class="doc_text">
1996
1997<h5>Syntax:</h5>
1998<pre>
1999 unwind
2000</pre>
2001
2002<h5>Overview:</h5>
2003
2004<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2005at the first callee in the dynamic call stack which used an <a
2006href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2007primarily used to implement exception handling.</p>
2008
2009<h5>Semantics:</h5>
2010
2011<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
2012immediately halt. The dynamic call stack is then searched for the first <a
2013href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2014execution continues at the "exceptional" destination block specified by the
2015<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2016dynamic call chain, undefined behavior results.</p>
2017</div>
2018
2019<!-- _______________________________________________________________________ -->
2020
2021<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2022Instruction</a> </div>
2023
2024<div class="doc_text">
2025
2026<h5>Syntax:</h5>
2027<pre>
2028 unreachable
2029</pre>
2030
2031<h5>Overview:</h5>
2032
2033<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2034instruction is used to inform the optimizer that a particular portion of the
2035code is not reachable. This can be used to indicate that the code after a
2036no-return function cannot be reached, and other facts.</p>
2037
2038<h5>Semantics:</h5>
2039
2040<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2041</div>
2042
2043
2044
2045<!-- ======================================================================= -->
2046<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2047<div class="doc_text">
2048<p>Binary operators are used to do most of the computation in a
2049program. They require two operands, execute an operation on them, and
2050produce a single value. The operands might represent
2051multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
2052The result value of a binary operator is not
2053necessarily the same type as its operands.</p>
2054<p>There are several different binary operators:</p>
2055</div>
2056<!-- _______________________________________________________________________ -->
2057<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
2058Instruction</a> </div>
2059<div class="doc_text">
2060<h5>Syntax:</h5>
2061<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2062</pre>
2063<h5>Overview:</h5>
2064<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
2065<h5>Arguments:</h5>
2066<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
2067 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
2068 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2069Both arguments must have identical types.</p>
2070<h5>Semantics:</h5>
2071<p>The value produced is the integer or floating point sum of the two
2072operands.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002073<p>If an integer sum has unsigned overflow, the result returned is the
2074mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2075the result.</p>
2076<p>Because LLVM integers use a two's complement representation, this
2077instruction is appropriate for both signed and unsigned integers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002078<h5>Example:</h5>
2079<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
2080</pre>
2081</div>
2082<!-- _______________________________________________________________________ -->
2083<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
2084Instruction</a> </div>
2085<div class="doc_text">
2086<h5>Syntax:</h5>
2087<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2088</pre>
2089<h5>Overview:</h5>
2090<p>The '<tt>sub</tt>' instruction returns the difference of its two
2091operands.</p>
2092<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
2093instruction present in most other intermediate representations.</p>
2094<h5>Arguments:</h5>
2095<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
2096 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2097values.
2098This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2099Both arguments must have identical types.</p>
2100<h5>Semantics:</h5>
2101<p>The value produced is the integer or floating point difference of
2102the two operands.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002103<p>If an integer difference has unsigned overflow, the result returned is the
2104mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2105the result.</p>
2106<p>Because LLVM integers use a two's complement representation, this
2107instruction is appropriate for both signed and unsigned integers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108<h5>Example:</h5>
2109<pre>
2110 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2111 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2112</pre>
2113</div>
2114<!-- _______________________________________________________________________ -->
2115<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
2116Instruction</a> </div>
2117<div class="doc_text">
2118<h5>Syntax:</h5>
2119<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2120</pre>
2121<h5>Overview:</h5>
2122<p>The '<tt>mul</tt>' instruction returns the product of its two
2123operands.</p>
2124<h5>Arguments:</h5>
2125<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2126 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2127values.
2128This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2129Both arguments must have identical types.</p>
2130<h5>Semantics:</h5>
2131<p>The value produced is the integer or floating point product of the
2132two operands.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002133<p>If the result of an integer multiplication has unsigned overflow,
2134the result returned is the mathematical result modulo
21352<sup>n</sup>, where n is the bit width of the result.</p>
2136<p>Because LLVM integers use a two's complement representation, and the
2137result is the same width as the operands, this instruction returns the
2138correct result for both signed and unsigned integers. If a full product
2139(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2140should be sign-extended or zero-extended as appropriate to the
2141width of the full product.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002142<h5>Example:</h5>
2143<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2144</pre>
2145</div>
2146<!-- _______________________________________________________________________ -->
2147<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2148</a></div>
2149<div class="doc_text">
2150<h5>Syntax:</h5>
2151<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2152</pre>
2153<h5>Overview:</h5>
2154<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2155operands.</p>
2156<h5>Arguments:</h5>
2157<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2158<a href="#t_integer">integer</a> values. Both arguments must have identical
2159types. This instruction can also take <a href="#t_vector">vector</a> versions
2160of the values in which case the elements must be integers.</p>
2161<h5>Semantics:</h5>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002162<p>The value produced is the unsigned integer quotient of the two operands.</p>
2163<p>Note that unsigned integer division and signed integer division are distinct
2164operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2165<p>Division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002166<h5>Example:</h5>
2167<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2168</pre>
2169</div>
2170<!-- _______________________________________________________________________ -->
2171<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2172</a> </div>
2173<div class="doc_text">
2174<h5>Syntax:</h5>
2175<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2176</pre>
2177<h5>Overview:</h5>
2178<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2179operands.</p>
2180<h5>Arguments:</h5>
2181<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2182<a href="#t_integer">integer</a> values. Both arguments must have identical
2183types. This instruction can also take <a href="#t_vector">vector</a> versions
2184of the values in which case the elements must be integers.</p>
2185<h5>Semantics:</h5>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002186<p>The value produced is the signed integer quotient of the two operands.</p>
2187<p>Note that signed integer division and unsigned integer division are distinct
2188operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2189<p>Division by zero leads to undefined behavior. Overflow also leads to
2190undefined behavior; this is a rare case, but can occur, for example,
2191by doing a 32-bit division of -2147483648 by -1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002192<h5>Example:</h5>
2193<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2194</pre>
2195</div>
2196<!-- _______________________________________________________________________ -->
2197<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2198Instruction</a> </div>
2199<div class="doc_text">
2200<h5>Syntax:</h5>
2201<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2202</pre>
2203<h5>Overview:</h5>
2204<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2205operands.</p>
2206<h5>Arguments:</h5>
2207<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2208<a href="#t_floating">floating point</a> values. Both arguments must have
2209identical types. This instruction can also take <a href="#t_vector">vector</a>
2210versions of floating point values.</p>
2211<h5>Semantics:</h5>
2212<p>The value produced is the floating point quotient of the two operands.</p>
2213<h5>Example:</h5>
2214<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2215</pre>
2216</div>
2217<!-- _______________________________________________________________________ -->
2218<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2219</div>
2220<div class="doc_text">
2221<h5>Syntax:</h5>
2222<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2223</pre>
2224<h5>Overview:</h5>
2225<p>The '<tt>urem</tt>' instruction returns the remainder from the
2226unsigned division of its two arguments.</p>
2227<h5>Arguments:</h5>
2228<p>The two arguments to the '<tt>urem</tt>' instruction must be
2229<a href="#t_integer">integer</a> values. Both arguments must have identical
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002230types. This instruction can also take <a href="#t_vector">vector</a> versions
2231of the values in which case the elements must be integers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002232<h5>Semantics:</h5>
2233<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2234This instruction always performs an unsigned division to get the remainder,
2235regardless of whether the arguments are unsigned or not.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002236<p>Note that unsigned integer remainder and signed integer remainder are
2237distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2238<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002239<h5>Example:</h5>
2240<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2241</pre>
2242
2243</div>
2244<!-- _______________________________________________________________________ -->
2245<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2246Instruction</a> </div>
2247<div class="doc_text">
2248<h5>Syntax:</h5>
2249<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2250</pre>
2251<h5>Overview:</h5>
2252<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002253signed division of its two operands. This instruction can also take
2254<a href="#t_vector">vector</a> versions of the values in which case
2255the elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00002256
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002257<h5>Arguments:</h5>
2258<p>The two arguments to the '<tt>srem</tt>' instruction must be
2259<a href="#t_integer">integer</a> values. Both arguments must have identical
2260types.</p>
2261<h5>Semantics:</h5>
2262<p>This instruction returns the <i>remainder</i> of a division (where the result
2263has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2264operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2265a value. For more information about the difference, see <a
2266 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2267Math Forum</a>. For a table of how this is implemented in various languages,
2268please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2269Wikipedia: modulo operation</a>.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002270<p>Note that signed integer remainder and unsigned integer remainder are
2271distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2272<p>Taking the remainder of a division by zero leads to undefined behavior.
2273Overflow also leads to undefined behavior; this is a rare case, but can occur,
2274for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2275(The remainder doesn't actually overflow, but this rule lets srem be
2276implemented using instructions that return both the result of the division
2277and the remainder.)</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002278<h5>Example:</h5>
2279<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2280</pre>
2281
2282</div>
2283<!-- _______________________________________________________________________ -->
2284<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2285Instruction</a> </div>
2286<div class="doc_text">
2287<h5>Syntax:</h5>
2288<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2289</pre>
2290<h5>Overview:</h5>
2291<p>The '<tt>frem</tt>' instruction returns the remainder from the
2292division of its two operands.</p>
2293<h5>Arguments:</h5>
2294<p>The two arguments to the '<tt>frem</tt>' instruction must be
2295<a href="#t_floating">floating point</a> values. Both arguments must have
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002296identical types. This instruction can also take <a href="#t_vector">vector</a>
2297versions of floating point values.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002298<h5>Semantics:</h5>
2299<p>This instruction returns the <i>remainder</i> of a division.</p>
2300<h5>Example:</h5>
2301<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2302</pre>
2303</div>
2304
2305<!-- ======================================================================= -->
2306<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2307Operations</a> </div>
2308<div class="doc_text">
2309<p>Bitwise binary operators are used to do various forms of
2310bit-twiddling in a program. They are generally very efficient
2311instructions and can commonly be strength reduced from other
2312instructions. They require two operands, execute an operation on them,
2313and produce a single value. The resulting value of the bitwise binary
2314operators is always the same type as its first operand.</p>
2315</div>
2316
2317<!-- _______________________________________________________________________ -->
2318<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2319Instruction</a> </div>
2320<div class="doc_text">
2321<h5>Syntax:</h5>
2322<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2323</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002324
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002325<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002326
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002327<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2328the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002329
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2333 href="#t_integer">integer</a> type.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002334
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002335<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002336
2337<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>. If
2338<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2339of bits in <tt>var1</tt>, the result is undefined.</p>
2340
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002341<h5>Example:</h5><pre>
2342 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2343 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2344 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002345 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002346</pre>
2347</div>
2348<!-- _______________________________________________________________________ -->
2349<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2350Instruction</a> </div>
2351<div class="doc_text">
2352<h5>Syntax:</h5>
2353<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2354</pre>
2355
2356<h5>Overview:</h5>
2357<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2358operand shifted to the right a specified number of bits with zero fill.</p>
2359
2360<h5>Arguments:</h5>
2361<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2362<a href="#t_integer">integer</a> type.</p>
2363
2364<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002365
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002366<p>This instruction always performs a logical shift right operation. The most
2367significant bits of the result will be filled with zero bits after the
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002368shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2369the number of bits in <tt>var1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370
2371<h5>Example:</h5>
2372<pre>
2373 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2374 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2375 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2376 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002377 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002378</pre>
2379</div>
2380
2381<!-- _______________________________________________________________________ -->
2382<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2383Instruction</a> </div>
2384<div class="doc_text">
2385
2386<h5>Syntax:</h5>
2387<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2388</pre>
2389
2390<h5>Overview:</h5>
2391<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2392operand shifted to the right a specified number of bits with sign extension.</p>
2393
2394<h5>Arguments:</h5>
2395<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2396<a href="#t_integer">integer</a> type.</p>
2397
2398<h5>Semantics:</h5>
2399<p>This instruction always performs an arithmetic shift right operation,
2400The most significant bits of the result will be filled with the sign bit
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002401of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2402larger than the number of bits in <tt>var1</tt>, the result is undefined.
2403</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404
2405<h5>Example:</h5>
2406<pre>
2407 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2408 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2409 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2410 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002411 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412</pre>
2413</div>
2414
2415<!-- _______________________________________________________________________ -->
2416<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2417Instruction</a> </div>
2418<div class="doc_text">
2419<h5>Syntax:</h5>
2420<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2421</pre>
2422<h5>Overview:</h5>
2423<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2424its two operands.</p>
2425<h5>Arguments:</h5>
2426<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2427 href="#t_integer">integer</a> values. Both arguments must have
2428identical types.</p>
2429<h5>Semantics:</h5>
2430<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2431<p> </p>
2432<div style="align: center">
2433<table border="1" cellspacing="0" cellpadding="4">
2434 <tbody>
2435 <tr>
2436 <td>In0</td>
2437 <td>In1</td>
2438 <td>Out</td>
2439 </tr>
2440 <tr>
2441 <td>0</td>
2442 <td>0</td>
2443 <td>0</td>
2444 </tr>
2445 <tr>
2446 <td>0</td>
2447 <td>1</td>
2448 <td>0</td>
2449 </tr>
2450 <tr>
2451 <td>1</td>
2452 <td>0</td>
2453 <td>0</td>
2454 </tr>
2455 <tr>
2456 <td>1</td>
2457 <td>1</td>
2458 <td>1</td>
2459 </tr>
2460 </tbody>
2461</table>
2462</div>
2463<h5>Example:</h5>
2464<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2465 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2466 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2467</pre>
2468</div>
2469<!-- _______________________________________________________________________ -->
2470<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2471<div class="doc_text">
2472<h5>Syntax:</h5>
2473<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2474</pre>
2475<h5>Overview:</h5>
2476<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2477or of its two operands.</p>
2478<h5>Arguments:</h5>
2479<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2480 href="#t_integer">integer</a> values. Both arguments must have
2481identical types.</p>
2482<h5>Semantics:</h5>
2483<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2484<p> </p>
2485<div style="align: center">
2486<table border="1" cellspacing="0" cellpadding="4">
2487 <tbody>
2488 <tr>
2489 <td>In0</td>
2490 <td>In1</td>
2491 <td>Out</td>
2492 </tr>
2493 <tr>
2494 <td>0</td>
2495 <td>0</td>
2496 <td>0</td>
2497 </tr>
2498 <tr>
2499 <td>0</td>
2500 <td>1</td>
2501 <td>1</td>
2502 </tr>
2503 <tr>
2504 <td>1</td>
2505 <td>0</td>
2506 <td>1</td>
2507 </tr>
2508 <tr>
2509 <td>1</td>
2510 <td>1</td>
2511 <td>1</td>
2512 </tr>
2513 </tbody>
2514</table>
2515</div>
2516<h5>Example:</h5>
2517<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2518 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2519 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2520</pre>
2521</div>
2522<!-- _______________________________________________________________________ -->
2523<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2524Instruction</a> </div>
2525<div class="doc_text">
2526<h5>Syntax:</h5>
2527<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2528</pre>
2529<h5>Overview:</h5>
2530<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2531or of its two operands. The <tt>xor</tt> is used to implement the
2532"one's complement" operation, which is the "~" operator in C.</p>
2533<h5>Arguments:</h5>
2534<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2535 href="#t_integer">integer</a> values. Both arguments must have
2536identical types.</p>
2537<h5>Semantics:</h5>
2538<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2539<p> </p>
2540<div style="align: center">
2541<table border="1" cellspacing="0" cellpadding="4">
2542 <tbody>
2543 <tr>
2544 <td>In0</td>
2545 <td>In1</td>
2546 <td>Out</td>
2547 </tr>
2548 <tr>
2549 <td>0</td>
2550 <td>0</td>
2551 <td>0</td>
2552 </tr>
2553 <tr>
2554 <td>0</td>
2555 <td>1</td>
2556 <td>1</td>
2557 </tr>
2558 <tr>
2559 <td>1</td>
2560 <td>0</td>
2561 <td>1</td>
2562 </tr>
2563 <tr>
2564 <td>1</td>
2565 <td>1</td>
2566 <td>0</td>
2567 </tr>
2568 </tbody>
2569</table>
2570</div>
2571<p> </p>
2572<h5>Example:</h5>
2573<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2574 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2575 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2576 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2577</pre>
2578</div>
2579
2580<!-- ======================================================================= -->
2581<div class="doc_subsection">
2582 <a name="vectorops">Vector Operations</a>
2583</div>
2584
2585<div class="doc_text">
2586
2587<p>LLVM supports several instructions to represent vector operations in a
2588target-independent manner. These instructions cover the element-access and
2589vector-specific operations needed to process vectors effectively. While LLVM
2590does directly support these vector operations, many sophisticated algorithms
2591will want to use target-specific intrinsics to take full advantage of a specific
2592target.</p>
2593
2594</div>
2595
2596<!-- _______________________________________________________________________ -->
2597<div class="doc_subsubsection">
2598 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2599</div>
2600
2601<div class="doc_text">
2602
2603<h5>Syntax:</h5>
2604
2605<pre>
2606 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2607</pre>
2608
2609<h5>Overview:</h5>
2610
2611<p>
2612The '<tt>extractelement</tt>' instruction extracts a single scalar
2613element from a vector at a specified index.
2614</p>
2615
2616
2617<h5>Arguments:</h5>
2618
2619<p>
2620The first operand of an '<tt>extractelement</tt>' instruction is a
2621value of <a href="#t_vector">vector</a> type. The second operand is
2622an index indicating the position from which to extract the element.
2623The index may be a variable.</p>
2624
2625<h5>Semantics:</h5>
2626
2627<p>
2628The result is a scalar of the same type as the element type of
2629<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2630<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2631results are undefined.
2632</p>
2633
2634<h5>Example:</h5>
2635
2636<pre>
2637 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2638</pre>
2639</div>
2640
2641
2642<!-- _______________________________________________________________________ -->
2643<div class="doc_subsubsection">
2644 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2645</div>
2646
2647<div class="doc_text">
2648
2649<h5>Syntax:</h5>
2650
2651<pre>
2652 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2653</pre>
2654
2655<h5>Overview:</h5>
2656
2657<p>
2658The '<tt>insertelement</tt>' instruction inserts a scalar
2659element into a vector at a specified index.
2660</p>
2661
2662
2663<h5>Arguments:</h5>
2664
2665<p>
2666The first operand of an '<tt>insertelement</tt>' instruction is a
2667value of <a href="#t_vector">vector</a> type. The second operand is a
2668scalar value whose type must equal the element type of the first
2669operand. The third operand is an index indicating the position at
2670which to insert the value. The index may be a variable.</p>
2671
2672<h5>Semantics:</h5>
2673
2674<p>
2675The result is a vector of the same type as <tt>val</tt>. Its
2676element values are those of <tt>val</tt> except at position
2677<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2678exceeds the length of <tt>val</tt>, the results are undefined.
2679</p>
2680
2681<h5>Example:</h5>
2682
2683<pre>
2684 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2685</pre>
2686</div>
2687
2688<!-- _______________________________________________________________________ -->
2689<div class="doc_subsubsection">
2690 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2691</div>
2692
2693<div class="doc_text">
2694
2695<h5>Syntax:</h5>
2696
2697<pre>
2698 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2699</pre>
2700
2701<h5>Overview:</h5>
2702
2703<p>
2704The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2705from two input vectors, returning a vector of the same type.
2706</p>
2707
2708<h5>Arguments:</h5>
2709
2710<p>
2711The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2712with types that match each other and types that match the result of the
2713instruction. The third argument is a shuffle mask, which has the same number
2714of elements as the other vector type, but whose element type is always 'i32'.
2715</p>
2716
2717<p>
2718The shuffle mask operand is required to be a constant vector with either
2719constant integer or undef values.
2720</p>
2721
2722<h5>Semantics:</h5>
2723
2724<p>
2725The elements of the two input vectors are numbered from left to right across
2726both of the vectors. The shuffle mask operand specifies, for each element of
2727the result vector, which element of the two input registers the result element
2728gets. The element selector may be undef (meaning "don't care") and the second
2729operand may be undef if performing a shuffle from only one vector.
2730</p>
2731
2732<h5>Example:</h5>
2733
2734<pre>
2735 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2736 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2737 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2738 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2739</pre>
2740</div>
2741
2742
2743<!-- ======================================================================= -->
2744<div class="doc_subsection">
2745 <a name="memoryops">Memory Access and Addressing Operations</a>
2746</div>
2747
2748<div class="doc_text">
2749
2750<p>A key design point of an SSA-based representation is how it
2751represents memory. In LLVM, no memory locations are in SSA form, which
2752makes things very simple. This section describes how to read, write,
2753allocate, and free memory in LLVM.</p>
2754
2755</div>
2756
2757<!-- _______________________________________________________________________ -->
2758<div class="doc_subsubsection">
2759 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2760</div>
2761
2762<div class="doc_text">
2763
2764<h5>Syntax:</h5>
2765
2766<pre>
2767 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2768</pre>
2769
2770<h5>Overview:</h5>
2771
2772<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lambcfe00962007-12-17 01:00:21 +00002773heap and returns a pointer to it. The object is always allocated in the generic
2774address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002775
2776<h5>Arguments:</h5>
2777
2778<p>The '<tt>malloc</tt>' instruction allocates
2779<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2780bytes of memory from the operating system and returns a pointer of the
2781appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif5082cf42008-02-09 22:24:34 +00002782number of elements allocated, otherwise "NumElements" is defaulted to be one.
2783If an alignment is specified, the value result of the allocation is guaranteed to
2784be aligned to at least that boundary. If not specified, or if zero, the target can
2785choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002786
2787<p>'<tt>type</tt>' must be a sized type.</p>
2788
2789<h5>Semantics:</h5>
2790
2791<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2792a pointer is returned.</p>
2793
2794<h5>Example:</h5>
2795
2796<pre>
2797 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2798
2799 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2800 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2801 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2802 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2803 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2804</pre>
2805</div>
2806
2807<!-- _______________________________________________________________________ -->
2808<div class="doc_subsubsection">
2809 <a name="i_free">'<tt>free</tt>' Instruction</a>
2810</div>
2811
2812<div class="doc_text">
2813
2814<h5>Syntax:</h5>
2815
2816<pre>
2817 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2818</pre>
2819
2820<h5>Overview:</h5>
2821
2822<p>The '<tt>free</tt>' instruction returns memory back to the unused
2823memory heap to be reallocated in the future.</p>
2824
2825<h5>Arguments:</h5>
2826
2827<p>'<tt>value</tt>' shall be a pointer value that points to a value
2828that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2829instruction.</p>
2830
2831<h5>Semantics:</h5>
2832
2833<p>Access to the memory pointed to by the pointer is no longer defined
2834after this instruction executes.</p>
2835
2836<h5>Example:</h5>
2837
2838<pre>
2839 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2840 free [4 x i8]* %array
2841</pre>
2842</div>
2843
2844<!-- _______________________________________________________________________ -->
2845<div class="doc_subsubsection">
2846 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2847</div>
2848
2849<div class="doc_text">
2850
2851<h5>Syntax:</h5>
2852
2853<pre>
2854 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2855</pre>
2856
2857<h5>Overview:</h5>
2858
2859<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2860currently executing function, to be automatically released when this function
Christopher Lambcfe00962007-12-17 01:00:21 +00002861returns to its caller. The object is always allocated in the generic address
2862space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863
2864<h5>Arguments:</h5>
2865
2866<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2867bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif5082cf42008-02-09 22:24:34 +00002868appropriate type to the program. If "NumElements" is specified, it is the
2869number of elements allocated, otherwise "NumElements" is defaulted to be one.
2870If an alignment is specified, the value result of the allocation is guaranteed
2871to be aligned to at least that boundary. If not specified, or if zero, the target
2872can choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002873
2874<p>'<tt>type</tt>' may be any sized type.</p>
2875
2876<h5>Semantics:</h5>
2877
2878<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2879memory is automatically released when the function returns. The '<tt>alloca</tt>'
2880instruction is commonly used to represent automatic variables that must
2881have an address available. When the function returns (either with the <tt><a
2882 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2883instructions), the memory is reclaimed.</p>
2884
2885<h5>Example:</h5>
2886
2887<pre>
2888 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2889 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2890 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2891 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2892</pre>
2893</div>
2894
2895<!-- _______________________________________________________________________ -->
2896<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2897Instruction</a> </div>
2898<div class="doc_text">
2899<h5>Syntax:</h5>
2900<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2901<h5>Overview:</h5>
2902<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2903<h5>Arguments:</h5>
2904<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2905address from which to load. The pointer must point to a <a
2906 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2907marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2908the number or order of execution of this <tt>load</tt> with other
2909volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2910instructions. </p>
Chris Lattner21003c82008-01-06 21:04:43 +00002911<p>
2912The optional "align" argument specifies the alignment of the operation
2913(that is, the alignment of the memory address). A value of 0 or an
2914omitted "align" argument means that the operation has the preferential
2915alignment for the target. It is the responsibility of the code emitter
2916to ensure that the alignment information is correct. Overestimating
2917the alignment results in an undefined behavior. Underestimating the
2918alignment may produce less efficient code. An alignment of 1 is always
2919safe.
2920</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921<h5>Semantics:</h5>
2922<p>The location of memory pointed to is loaded.</p>
2923<h5>Examples:</h5>
2924<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2925 <a
2926 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2927 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2928</pre>
2929</div>
2930<!-- _______________________________________________________________________ -->
2931<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2932Instruction</a> </div>
2933<div class="doc_text">
2934<h5>Syntax:</h5>
2935<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2936 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2937</pre>
2938<h5>Overview:</h5>
2939<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2940<h5>Arguments:</h5>
2941<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2942to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2943operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2944operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2945optimizer is not allowed to modify the number or order of execution of
2946this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2947 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner21003c82008-01-06 21:04:43 +00002948<p>
2949The optional "align" argument specifies the alignment of the operation
2950(that is, the alignment of the memory address). A value of 0 or an
2951omitted "align" argument means that the operation has the preferential
2952alignment for the target. It is the responsibility of the code emitter
2953to ensure that the alignment information is correct. Overestimating
2954the alignment results in an undefined behavior. Underestimating the
2955alignment may produce less efficient code. An alignment of 1 is always
2956safe.
2957</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002958<h5>Semantics:</h5>
2959<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2960at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2961<h5>Example:</h5>
2962<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00002963 store i32 3, i32* %ptr <i>; yields {void}</i>
2964 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002965</pre>
2966</div>
2967
2968<!-- _______________________________________________________________________ -->
2969<div class="doc_subsubsection">
2970 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2971</div>
2972
2973<div class="doc_text">
2974<h5>Syntax:</h5>
2975<pre>
2976 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2977</pre>
2978
2979<h5>Overview:</h5>
2980
2981<p>
2982The '<tt>getelementptr</tt>' instruction is used to get the address of a
2983subelement of an aggregate data structure.</p>
2984
2985<h5>Arguments:</h5>
2986
2987<p>This instruction takes a list of integer operands that indicate what
2988elements of the aggregate object to index to. The actual types of the arguments
2989provided depend on the type of the first pointer argument. The
2990'<tt>getelementptr</tt>' instruction is used to index down through the type
2991levels of a structure or to a specific index in an array. When indexing into a
2992structure, only <tt>i32</tt> integer constants are allowed. When indexing
2993into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2994be sign extended to 64-bit values.</p>
2995
2996<p>For example, let's consider a C code fragment and how it gets
2997compiled to LLVM:</p>
2998
2999<div class="doc_code">
3000<pre>
3001struct RT {
3002 char A;
3003 int B[10][20];
3004 char C;
3005};
3006struct ST {
3007 int X;
3008 double Y;
3009 struct RT Z;
3010};
3011
3012int *foo(struct ST *s) {
3013 return &amp;s[1].Z.B[5][13];
3014}
3015</pre>
3016</div>
3017
3018<p>The LLVM code generated by the GCC frontend is:</p>
3019
3020<div class="doc_code">
3021<pre>
3022%RT = type { i8 , [10 x [20 x i32]], i8 }
3023%ST = type { i32, double, %RT }
3024
3025define i32* %foo(%ST* %s) {
3026entry:
3027 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3028 ret i32* %reg
3029}
3030</pre>
3031</div>
3032
3033<h5>Semantics:</h5>
3034
3035<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
3036on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
3037and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
3038<a href="#t_integer">integer</a> type but the value will always be sign extended
3039to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
3040<b>constants</b>.</p>
3041
3042<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3043type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3044}</tt>' type, a structure. The second index indexes into the third element of
3045the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3046i8 }</tt>' type, another structure. The third index indexes into the second
3047element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3048array. The two dimensions of the array are subscripted into, yielding an
3049'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3050to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3051
3052<p>Note that it is perfectly legal to index partially through a
3053structure, returning a pointer to an inner element. Because of this,
3054the LLVM code for the given testcase is equivalent to:</p>
3055
3056<pre>
3057 define i32* %foo(%ST* %s) {
3058 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3059 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3060 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3061 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3062 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3063 ret i32* %t5
3064 }
3065</pre>
3066
3067<p>Note that it is undefined to access an array out of bounds: array and
3068pointer indexes must always be within the defined bounds of the array type.
3069The one exception for this rules is zero length arrays. These arrays are
3070defined to be accessible as variable length arrays, which requires access
3071beyond the zero'th element.</p>
3072
3073<p>The getelementptr instruction is often confusing. For some more insight
3074into how it works, see <a href="GetElementPtr.html">the getelementptr
3075FAQ</a>.</p>
3076
3077<h5>Example:</h5>
3078
3079<pre>
3080 <i>; yields [12 x i8]*:aptr</i>
3081 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3082</pre>
3083</div>
3084
3085<!-- ======================================================================= -->
3086<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3087</div>
3088<div class="doc_text">
3089<p>The instructions in this category are the conversion instructions (casting)
3090which all take a single operand and a type. They perform various bit conversions
3091on the operand.</p>
3092</div>
3093
3094<!-- _______________________________________________________________________ -->
3095<div class="doc_subsubsection">
3096 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3097</div>
3098<div class="doc_text">
3099
3100<h5>Syntax:</h5>
3101<pre>
3102 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3103</pre>
3104
3105<h5>Overview:</h5>
3106<p>
3107The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3108</p>
3109
3110<h5>Arguments:</h5>
3111<p>
3112The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3113be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3114and type of the result, which must be an <a href="#t_integer">integer</a>
3115type. The bit size of <tt>value</tt> must be larger than the bit size of
3116<tt>ty2</tt>. Equal sized types are not allowed.</p>
3117
3118<h5>Semantics:</h5>
3119<p>
3120The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3121and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3122larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3123It will always truncate bits.</p>
3124
3125<h5>Example:</h5>
3126<pre>
3127 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3128 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3129 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3130</pre>
3131</div>
3132
3133<!-- _______________________________________________________________________ -->
3134<div class="doc_subsubsection">
3135 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3136</div>
3137<div class="doc_text">
3138
3139<h5>Syntax:</h5>
3140<pre>
3141 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3142</pre>
3143
3144<h5>Overview:</h5>
3145<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3146<tt>ty2</tt>.</p>
3147
3148
3149<h5>Arguments:</h5>
3150<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3151<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3152also be of <a href="#t_integer">integer</a> type. The bit size of the
3153<tt>value</tt> must be smaller than the bit size of the destination type,
3154<tt>ty2</tt>.</p>
3155
3156<h5>Semantics:</h5>
3157<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3158bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3159
3160<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3161
3162<h5>Example:</h5>
3163<pre>
3164 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3165 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3166</pre>
3167</div>
3168
3169<!-- _______________________________________________________________________ -->
3170<div class="doc_subsubsection">
3171 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3172</div>
3173<div class="doc_text">
3174
3175<h5>Syntax:</h5>
3176<pre>
3177 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3178</pre>
3179
3180<h5>Overview:</h5>
3181<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3182
3183<h5>Arguments:</h5>
3184<p>
3185The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3186<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3187also be of <a href="#t_integer">integer</a> type. The bit size of the
3188<tt>value</tt> must be smaller than the bit size of the destination type,
3189<tt>ty2</tt>.</p>
3190
3191<h5>Semantics:</h5>
3192<p>
3193The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3194bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3195the type <tt>ty2</tt>.</p>
3196
3197<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3198
3199<h5>Example:</h5>
3200<pre>
3201 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3202 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3203</pre>
3204</div>
3205
3206<!-- _______________________________________________________________________ -->
3207<div class="doc_subsubsection">
3208 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3209</div>
3210
3211<div class="doc_text">
3212
3213<h5>Syntax:</h5>
3214
3215<pre>
3216 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3217</pre>
3218
3219<h5>Overview:</h5>
3220<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3221<tt>ty2</tt>.</p>
3222
3223
3224<h5>Arguments:</h5>
3225<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3226 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3227cast it to. The size of <tt>value</tt> must be larger than the size of
3228<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3229<i>no-op cast</i>.</p>
3230
3231<h5>Semantics:</h5>
3232<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3233<a href="#t_floating">floating point</a> type to a smaller
3234<a href="#t_floating">floating point</a> type. If the value cannot fit within
3235the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3236
3237<h5>Example:</h5>
3238<pre>
3239 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3240 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3241</pre>
3242</div>
3243
3244<!-- _______________________________________________________________________ -->
3245<div class="doc_subsubsection">
3246 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3247</div>
3248<div class="doc_text">
3249
3250<h5>Syntax:</h5>
3251<pre>
3252 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3253</pre>
3254
3255<h5>Overview:</h5>
3256<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3257floating point value.</p>
3258
3259<h5>Arguments:</h5>
3260<p>The '<tt>fpext</tt>' instruction takes a
3261<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3262and a <a href="#t_floating">floating point</a> type to cast it to. The source
3263type must be smaller than the destination type.</p>
3264
3265<h5>Semantics:</h5>
3266<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3267<a href="#t_floating">floating point</a> type to a larger
3268<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3269used to make a <i>no-op cast</i> because it always changes bits. Use
3270<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3271
3272<h5>Example:</h5>
3273<pre>
3274 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3275 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3276</pre>
3277</div>
3278
3279<!-- _______________________________________________________________________ -->
3280<div class="doc_subsubsection">
3281 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3282</div>
3283<div class="doc_text">
3284
3285<h5>Syntax:</h5>
3286<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003287 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003288</pre>
3289
3290<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003291<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003292unsigned integer equivalent of type <tt>ty2</tt>.
3293</p>
3294
3295<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003296<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003297scalar or vector <a href="#t_floating">floating point</a> value, and a type
3298to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3299type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3300vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003301
3302<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003303<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003304<a href="#t_floating">floating point</a> operand into the nearest (rounding
3305towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3306the results are undefined.</p>
3307
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003308<h5>Example:</h5>
3309<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003310 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003311 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003312 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003313</pre>
3314</div>
3315
3316<!-- _______________________________________________________________________ -->
3317<div class="doc_subsubsection">
3318 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3319</div>
3320<div class="doc_text">
3321
3322<h5>Syntax:</h5>
3323<pre>
3324 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3325</pre>
3326
3327<h5>Overview:</h5>
3328<p>The '<tt>fptosi</tt>' instruction converts
3329<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3330</p>
3331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003332<h5>Arguments:</h5>
3333<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003334scalar or vector <a href="#t_floating">floating point</a> value, and a type
3335to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3336type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3337vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003338
3339<h5>Semantics:</h5>
3340<p>The '<tt>fptosi</tt>' instruction converts its
3341<a href="#t_floating">floating point</a> operand into the nearest (rounding
3342towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3343the results are undefined.</p>
3344
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003345<h5>Example:</h5>
3346<pre>
3347 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003348 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003349 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3350</pre>
3351</div>
3352
3353<!-- _______________________________________________________________________ -->
3354<div class="doc_subsubsection">
3355 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3356</div>
3357<div class="doc_text">
3358
3359<h5>Syntax:</h5>
3360<pre>
3361 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3362</pre>
3363
3364<h5>Overview:</h5>
3365<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3366integer and converts that value to the <tt>ty2</tt> type.</p>
3367
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003368<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003369<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3370scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3371to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3372type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3373floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003374
3375<h5>Semantics:</h5>
3376<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3377integer quantity and converts it to the corresponding floating point value. If
3378the value cannot fit in the floating point value, the results are undefined.</p>
3379
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003380<h5>Example:</h5>
3381<pre>
3382 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3383 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3384</pre>
3385</div>
3386
3387<!-- _______________________________________________________________________ -->
3388<div class="doc_subsubsection">
3389 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3390</div>
3391<div class="doc_text">
3392
3393<h5>Syntax:</h5>
3394<pre>
3395 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3396</pre>
3397
3398<h5>Overview:</h5>
3399<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3400integer and converts that value to the <tt>ty2</tt> type.</p>
3401
3402<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003403<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3404scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3405to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3406type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3407floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003408
3409<h5>Semantics:</h5>
3410<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3411integer quantity and converts it to the corresponding floating point value. If
3412the value cannot fit in the floating point value, the results are undefined.</p>
3413
3414<h5>Example:</h5>
3415<pre>
3416 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3417 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3418</pre>
3419</div>
3420
3421<!-- _______________________________________________________________________ -->
3422<div class="doc_subsubsection">
3423 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3424</div>
3425<div class="doc_text">
3426
3427<h5>Syntax:</h5>
3428<pre>
3429 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3430</pre>
3431
3432<h5>Overview:</h5>
3433<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3434the integer type <tt>ty2</tt>.</p>
3435
3436<h5>Arguments:</h5>
3437<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3438must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3439<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3440
3441<h5>Semantics:</h5>
3442<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3443<tt>ty2</tt> by interpreting the pointer value as an integer and either
3444truncating or zero extending that value to the size of the integer type. If
3445<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3446<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3447are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3448change.</p>
3449
3450<h5>Example:</h5>
3451<pre>
3452 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3453 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3454</pre>
3455</div>
3456
3457<!-- _______________________________________________________________________ -->
3458<div class="doc_subsubsection">
3459 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3460</div>
3461<div class="doc_text">
3462
3463<h5>Syntax:</h5>
3464<pre>
3465 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3466</pre>
3467
3468<h5>Overview:</h5>
3469<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3470a pointer type, <tt>ty2</tt>.</p>
3471
3472<h5>Arguments:</h5>
3473<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3474value to cast, and a type to cast it to, which must be a
3475<a href="#t_pointer">pointer</a> type.
3476
3477<h5>Semantics:</h5>
3478<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3479<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3480the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3481size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3482the size of a pointer then a zero extension is done. If they are the same size,
3483nothing is done (<i>no-op cast</i>).</p>
3484
3485<h5>Example:</h5>
3486<pre>
3487 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3488 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3489 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3490</pre>
3491</div>
3492
3493<!-- _______________________________________________________________________ -->
3494<div class="doc_subsubsection">
3495 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3496</div>
3497<div class="doc_text">
3498
3499<h5>Syntax:</h5>
3500<pre>
3501 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3502</pre>
3503
3504<h5>Overview:</h5>
3505<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3506<tt>ty2</tt> without changing any bits.</p>
3507
3508<h5>Arguments:</h5>
3509<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3510a first class value, and a type to cast it to, which must also be a <a
3511 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3512and the destination type, <tt>ty2</tt>, must be identical. If the source
3513type is a pointer, the destination type must also be a pointer.</p>
3514
3515<h5>Semantics:</h5>
3516<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3517<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3518this conversion. The conversion is done as if the <tt>value</tt> had been
3519stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3520converted to other pointer types with this instruction. To convert pointers to
3521other types, use the <a href="#i_inttoptr">inttoptr</a> or
3522<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3523
3524<h5>Example:</h5>
3525<pre>
3526 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3527 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3528 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3529</pre>
3530</div>
3531
3532<!-- ======================================================================= -->
3533<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3534<div class="doc_text">
3535<p>The instructions in this category are the "miscellaneous"
3536instructions, which defy better classification.</p>
3537</div>
3538
3539<!-- _______________________________________________________________________ -->
3540<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3541</div>
3542<div class="doc_text">
3543<h5>Syntax:</h5>
3544<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3545</pre>
3546<h5>Overview:</h5>
3547<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3548of its two integer operands.</p>
3549<h5>Arguments:</h5>
3550<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3551the condition code indicating the kind of comparison to perform. It is not
3552a value, just a keyword. The possible condition code are:
3553<ol>
3554 <li><tt>eq</tt>: equal</li>
3555 <li><tt>ne</tt>: not equal </li>
3556 <li><tt>ugt</tt>: unsigned greater than</li>
3557 <li><tt>uge</tt>: unsigned greater or equal</li>
3558 <li><tt>ult</tt>: unsigned less than</li>
3559 <li><tt>ule</tt>: unsigned less or equal</li>
3560 <li><tt>sgt</tt>: signed greater than</li>
3561 <li><tt>sge</tt>: signed greater or equal</li>
3562 <li><tt>slt</tt>: signed less than</li>
3563 <li><tt>sle</tt>: signed less or equal</li>
3564</ol>
3565<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3566<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3567<h5>Semantics:</h5>
3568<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3569the condition code given as <tt>cond</tt>. The comparison performed always
3570yields a <a href="#t_primitive">i1</a> result, as follows:
3571<ol>
3572 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3573 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3574 </li>
3575 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3576 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3577 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3578 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3579 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3580 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3581 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3582 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3583 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3584 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3585 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3586 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3587 <li><tt>sge</tt>: interprets the operands as signed values and yields
3588 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3589 <li><tt>slt</tt>: interprets the operands as signed values and yields
3590 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3591 <li><tt>sle</tt>: interprets the operands as signed values and yields
3592 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3593</ol>
3594<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3595values are compared as if they were integers.</p>
3596
3597<h5>Example:</h5>
3598<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3599 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3600 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3601 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3602 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3603 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3604</pre>
3605</div>
3606
3607<!-- _______________________________________________________________________ -->
3608<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3609</div>
3610<div class="doc_text">
3611<h5>Syntax:</h5>
3612<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3613</pre>
3614<h5>Overview:</h5>
3615<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3616of its floating point operands.</p>
3617<h5>Arguments:</h5>
3618<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3619the condition code indicating the kind of comparison to perform. It is not
3620a value, just a keyword. The possible condition code are:
3621<ol>
3622 <li><tt>false</tt>: no comparison, always returns false</li>
3623 <li><tt>oeq</tt>: ordered and equal</li>
3624 <li><tt>ogt</tt>: ordered and greater than </li>
3625 <li><tt>oge</tt>: ordered and greater than or equal</li>
3626 <li><tt>olt</tt>: ordered and less than </li>
3627 <li><tt>ole</tt>: ordered and less than or equal</li>
3628 <li><tt>one</tt>: ordered and not equal</li>
3629 <li><tt>ord</tt>: ordered (no nans)</li>
3630 <li><tt>ueq</tt>: unordered or equal</li>
3631 <li><tt>ugt</tt>: unordered or greater than </li>
3632 <li><tt>uge</tt>: unordered or greater than or equal</li>
3633 <li><tt>ult</tt>: unordered or less than </li>
3634 <li><tt>ule</tt>: unordered or less than or equal</li>
3635 <li><tt>une</tt>: unordered or not equal</li>
3636 <li><tt>uno</tt>: unordered (either nans)</li>
3637 <li><tt>true</tt>: no comparison, always returns true</li>
3638</ol>
3639<p><i>Ordered</i> means that neither operand is a QNAN while
3640<i>unordered</i> means that either operand may be a QNAN.</p>
3641<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3642<a href="#t_floating">floating point</a> typed. They must have identical
3643types.</p>
3644<h5>Semantics:</h5>
3645<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3646the condition code given as <tt>cond</tt>. The comparison performed always
3647yields a <a href="#t_primitive">i1</a> result, as follows:
3648<ol>
3649 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3650 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3651 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3652 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3653 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3654 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3655 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3656 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3657 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3658 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3659 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3660 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3661 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3662 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3663 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3664 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3665 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3666 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3667 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3668 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3669 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3670 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3671 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3672 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3673 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3674 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3675 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3676 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3677</ol>
3678
3679<h5>Example:</h5>
3680<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3681 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3682 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3683 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3684</pre>
3685</div>
3686
3687<!-- _______________________________________________________________________ -->
3688<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3689Instruction</a> </div>
3690<div class="doc_text">
3691<h5>Syntax:</h5>
3692<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3693<h5>Overview:</h5>
3694<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3695the SSA graph representing the function.</p>
3696<h5>Arguments:</h5>
3697<p>The type of the incoming values is specified with the first type
3698field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3699as arguments, with one pair for each predecessor basic block of the
3700current block. Only values of <a href="#t_firstclass">first class</a>
3701type may be used as the value arguments to the PHI node. Only labels
3702may be used as the label arguments.</p>
3703<p>There must be no non-phi instructions between the start of a basic
3704block and the PHI instructions: i.e. PHI instructions must be first in
3705a basic block.</p>
3706<h5>Semantics:</h5>
3707<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3708specified by the pair corresponding to the predecessor basic block that executed
3709just prior to the current block.</p>
3710<h5>Example:</h5>
3711<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3712</div>
3713
3714<!-- _______________________________________________________________________ -->
3715<div class="doc_subsubsection">
3716 <a name="i_select">'<tt>select</tt>' Instruction</a>
3717</div>
3718
3719<div class="doc_text">
3720
3721<h5>Syntax:</h5>
3722
3723<pre>
3724 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3725</pre>
3726
3727<h5>Overview:</h5>
3728
3729<p>
3730The '<tt>select</tt>' instruction is used to choose one value based on a
3731condition, without branching.
3732</p>
3733
3734
3735<h5>Arguments:</h5>
3736
3737<p>
3738The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3739</p>
3740
3741<h5>Semantics:</h5>
3742
3743<p>
3744If the boolean condition evaluates to true, the instruction returns the first
3745value argument; otherwise, it returns the second value argument.
3746</p>
3747
3748<h5>Example:</h5>
3749
3750<pre>
3751 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3752</pre>
3753</div>
3754
3755
3756<!-- _______________________________________________________________________ -->
3757<div class="doc_subsubsection">
3758 <a name="i_call">'<tt>call</tt>' Instruction</a>
3759</div>
3760
3761<div class="doc_text">
3762
3763<h5>Syntax:</h5>
3764<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003765 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003766</pre>
3767
3768<h5>Overview:</h5>
3769
3770<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3771
3772<h5>Arguments:</h5>
3773
3774<p>This instruction requires several arguments:</p>
3775
3776<ol>
3777 <li>
3778 <p>The optional "tail" marker indicates whether the callee function accesses
3779 any allocas or varargs in the caller. If the "tail" marker is present, the
3780 function call is eligible for tail call optimization. Note that calls may
3781 be marked "tail" even if they do not occur before a <a
3782 href="#i_ret"><tt>ret</tt></a> instruction.
3783 </li>
3784 <li>
3785 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3786 convention</a> the call should use. If none is specified, the call defaults
3787 to using C calling conventions.
3788 </li>
3789 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003790 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3791 the type of the return value. Functions that return no value are marked
3792 <tt><a href="#t_void">void</a></tt>.</p>
3793 </li>
3794 <li>
3795 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3796 value being invoked. The argument types must match the types implied by
3797 this signature. This type can be omitted if the function is not varargs
3798 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003799 </li>
3800 <li>
3801 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3802 be invoked. In most cases, this is a direct function invocation, but
3803 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3804 to function value.</p>
3805 </li>
3806 <li>
3807 <p>'<tt>function args</tt>': argument list whose types match the
3808 function signature argument types. All arguments must be of
3809 <a href="#t_firstclass">first class</a> type. If the function signature
3810 indicates the function accepts a variable number of arguments, the extra
3811 arguments can be specified.</p>
3812 </li>
3813</ol>
3814
3815<h5>Semantics:</h5>
3816
3817<p>The '<tt>call</tt>' instruction is used to cause control flow to
3818transfer to a specified function, with its incoming arguments bound to
3819the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3820instruction in the called function, control flow continues with the
3821instruction after the function call, and the return value of the
Chris Lattner5e893ef2008-03-21 17:24:17 +00003822function is bound to the result argument. If the callee returns multiple
3823values then the return values of the function are only accessible through
3824the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825
3826<h5>Example:</h5>
3827
3828<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003829 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00003830 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
3831 %X = tail call i32 @foo() <i>; yields i32</i>
3832 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
3833 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00003834
3835 %struct.A = type { i32, i8 }
Chris Lattner5e893ef2008-03-21 17:24:17 +00003836 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
3837 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
3838 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003839</pre>
3840
3841</div>
3842
3843<!-- _______________________________________________________________________ -->
3844<div class="doc_subsubsection">
3845 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3846</div>
3847
3848<div class="doc_text">
3849
3850<h5>Syntax:</h5>
3851
3852<pre>
3853 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3854</pre>
3855
3856<h5>Overview:</h5>
3857
3858<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3859the "variable argument" area of a function call. It is used to implement the
3860<tt>va_arg</tt> macro in C.</p>
3861
3862<h5>Arguments:</h5>
3863
3864<p>This instruction takes a <tt>va_list*</tt> value and the type of
3865the argument. It returns a value of the specified argument type and
3866increments the <tt>va_list</tt> to point to the next argument. The
3867actual type of <tt>va_list</tt> is target specific.</p>
3868
3869<h5>Semantics:</h5>
3870
3871<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3872type from the specified <tt>va_list</tt> and causes the
3873<tt>va_list</tt> to point to the next argument. For more information,
3874see the variable argument handling <a href="#int_varargs">Intrinsic
3875Functions</a>.</p>
3876
3877<p>It is legal for this instruction to be called in a function which does not
3878take a variable number of arguments, for example, the <tt>vfprintf</tt>
3879function.</p>
3880
3881<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3882href="#intrinsics">intrinsic function</a> because it takes a type as an
3883argument.</p>
3884
3885<h5>Example:</h5>
3886
3887<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3888
3889</div>
3890
Devang Patela3cc5372008-03-10 20:49:15 +00003891<!-- _______________________________________________________________________ -->
3892<div class="doc_subsubsection">
3893 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
3894</div>
3895
3896<div class="doc_text">
3897
3898<h5>Syntax:</h5>
3899<pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00003900 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patela3cc5372008-03-10 20:49:15 +00003901</pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00003902
Devang Patela3cc5372008-03-10 20:49:15 +00003903<h5>Overview:</h5>
3904
3905<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattneree9da3f2008-03-21 17:20:51 +00003906from a '<tt><a href="#i_call">call</a></tt>'
3907or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
3908results.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00003909
3910<h5>Arguments:</h5>
3911
Chris Lattneree9da3f2008-03-21 17:20:51 +00003912<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
3913first argument. The value must have <a href="#t_struct">structure type</a>.
3914The second argument is an unsigned index value which must be in range for
3915the number of values returned by the call.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00003916
3917<h5>Semantics:</h5>
3918
Chris Lattneree9da3f2008-03-21 17:20:51 +00003919<p>The '<tt>getresult</tt>' instruction extracts the element identified by
3920'<tt>index</tt>' from the aggregate value.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00003921
3922<h5>Example:</h5>
3923
3924<pre>
3925 %struct.A = type { i32, i8 }
3926
3927 %r = call %struct.A @foo()
Chris Lattneree9da3f2008-03-21 17:20:51 +00003928 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
3929 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patela3cc5372008-03-10 20:49:15 +00003930 add i32 %gr, 42
3931 add i8 %gr1, 41
3932</pre>
3933
3934</div>
3935
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003936<!-- *********************************************************************** -->
3937<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3938<!-- *********************************************************************** -->
3939
3940<div class="doc_text">
3941
3942<p>LLVM supports the notion of an "intrinsic function". These functions have
3943well known names and semantics and are required to follow certain restrictions.
3944Overall, these intrinsics represent an extension mechanism for the LLVM
3945language that does not require changing all of the transformations in LLVM when
3946adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3947
3948<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3949prefix is reserved in LLVM for intrinsic names; thus, function names may not
3950begin with this prefix. Intrinsic functions must always be external functions:
3951you cannot define the body of intrinsic functions. Intrinsic functions may
3952only be used in call or invoke instructions: it is illegal to take the address
3953of an intrinsic function. Additionally, because intrinsic functions are part
3954of the LLVM language, it is required if any are added that they be documented
3955here.</p>
3956
Chandler Carrutha228e392007-08-04 01:51:18 +00003957<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3958a family of functions that perform the same operation but on different data
3959types. Because LLVM can represent over 8 million different integer types,
3960overloading is used commonly to allow an intrinsic function to operate on any
3961integer type. One or more of the argument types or the result type can be
3962overloaded to accept any integer type. Argument types may also be defined as
3963exactly matching a previous argument's type or the result type. This allows an
3964intrinsic function which accepts multiple arguments, but needs all of them to
3965be of the same type, to only be overloaded with respect to a single argument or
3966the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967
Chandler Carrutha228e392007-08-04 01:51:18 +00003968<p>Overloaded intrinsics will have the names of its overloaded argument types
3969encoded into its function name, each preceded by a period. Only those types
3970which are overloaded result in a name suffix. Arguments whose type is matched
3971against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3972take an integer of any width and returns an integer of exactly the same integer
3973width. This leads to a family of functions such as
3974<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3975Only one type, the return type, is overloaded, and only one type suffix is
3976required. Because the argument's type is matched against the return type, it
3977does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003978
3979<p>To learn how to add an intrinsic function, please see the
3980<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3981</p>
3982
3983</div>
3984
3985<!-- ======================================================================= -->
3986<div class="doc_subsection">
3987 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3988</div>
3989
3990<div class="doc_text">
3991
3992<p>Variable argument support is defined in LLVM with the <a
3993 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3994intrinsic functions. These functions are related to the similarly
3995named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3996
3997<p>All of these functions operate on arguments that use a
3998target-specific value type "<tt>va_list</tt>". The LLVM assembly
3999language reference manual does not define what this type is, so all
4000transformations should be prepared to handle these functions regardless of
4001the type used.</p>
4002
4003<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4004instruction and the variable argument handling intrinsic functions are
4005used.</p>
4006
4007<div class="doc_code">
4008<pre>
4009define i32 @test(i32 %X, ...) {
4010 ; Initialize variable argument processing
4011 %ap = alloca i8*
4012 %ap2 = bitcast i8** %ap to i8*
4013 call void @llvm.va_start(i8* %ap2)
4014
4015 ; Read a single integer argument
4016 %tmp = va_arg i8** %ap, i32
4017
4018 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4019 %aq = alloca i8*
4020 %aq2 = bitcast i8** %aq to i8*
4021 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4022 call void @llvm.va_end(i8* %aq2)
4023
4024 ; Stop processing of arguments.
4025 call void @llvm.va_end(i8* %ap2)
4026 ret i32 %tmp
4027}
4028
4029declare void @llvm.va_start(i8*)
4030declare void @llvm.va_copy(i8*, i8*)
4031declare void @llvm.va_end(i8*)
4032</pre>
4033</div>
4034
4035</div>
4036
4037<!-- _______________________________________________________________________ -->
4038<div class="doc_subsubsection">
4039 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4040</div>
4041
4042
4043<div class="doc_text">
4044<h5>Syntax:</h5>
4045<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
4046<h5>Overview:</h5>
4047<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4048<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4049href="#i_va_arg">va_arg</a></tt>.</p>
4050
4051<h5>Arguments:</h5>
4052
4053<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4054
4055<h5>Semantics:</h5>
4056
4057<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4058macro available in C. In a target-dependent way, it initializes the
4059<tt>va_list</tt> element to which the argument points, so that the next call to
4060<tt>va_arg</tt> will produce the first variable argument passed to the function.
4061Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4062last argument of the function as the compiler can figure that out.</p>
4063
4064</div>
4065
4066<!-- _______________________________________________________________________ -->
4067<div class="doc_subsubsection">
4068 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4069</div>
4070
4071<div class="doc_text">
4072<h5>Syntax:</h5>
4073<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
4074<h5>Overview:</h5>
4075
4076<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
4077which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4078or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4079
4080<h5>Arguments:</h5>
4081
4082<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4083
4084<h5>Semantics:</h5>
4085
4086<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4087macro available in C. In a target-dependent way, it destroys the
4088<tt>va_list</tt> element to which the argument points. Calls to <a
4089href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4090<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4091<tt>llvm.va_end</tt>.</p>
4092
4093</div>
4094
4095<!-- _______________________________________________________________________ -->
4096<div class="doc_subsubsection">
4097 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4098</div>
4099
4100<div class="doc_text">
4101
4102<h5>Syntax:</h5>
4103
4104<pre>
4105 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4106</pre>
4107
4108<h5>Overview:</h5>
4109
4110<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4111from the source argument list to the destination argument list.</p>
4112
4113<h5>Arguments:</h5>
4114
4115<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4116The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4117
4118
4119<h5>Semantics:</h5>
4120
4121<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4122macro available in C. In a target-dependent way, it copies the source
4123<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4124intrinsic is necessary because the <tt><a href="#int_va_start">
4125llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4126example, memory allocation.</p>
4127
4128</div>
4129
4130<!-- ======================================================================= -->
4131<div class="doc_subsection">
4132 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4133</div>
4134
4135<div class="doc_text">
4136
4137<p>
4138LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4139Collection</a> requires the implementation and generation of these intrinsics.
4140These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4141stack</a>, as well as garbage collector implementations that require <a
4142href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4143Front-ends for type-safe garbage collected languages should generate these
4144intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4145href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4146</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00004147
4148<p>The garbage collection intrinsics only operate on objects in the generic
4149 address space (address space zero).</p>
4150
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004151</div>
4152
4153<!-- _______________________________________________________________________ -->
4154<div class="doc_subsubsection">
4155 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4156</div>
4157
4158<div class="doc_text">
4159
4160<h5>Syntax:</h5>
4161
4162<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004163 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004164</pre>
4165
4166<h5>Overview:</h5>
4167
4168<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4169the code generator, and allows some metadata to be associated with it.</p>
4170
4171<h5>Arguments:</h5>
4172
4173<p>The first argument specifies the address of a stack object that contains the
4174root pointer. The second pointer (which must be either a constant or a global
4175value address) contains the meta-data to be associated with the root.</p>
4176
4177<h5>Semantics:</h5>
4178
4179<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
4180location. At compile-time, the code generator generates information to allow
Gordon Henriksen40393542007-12-25 02:31:26 +00004181the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4182intrinsic may only be used in a function which <a href="#gc">specifies a GC
4183algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004184
4185</div>
4186
4187
4188<!-- _______________________________________________________________________ -->
4189<div class="doc_subsubsection">
4190 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4191</div>
4192
4193<div class="doc_text">
4194
4195<h5>Syntax:</h5>
4196
4197<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004198 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004199</pre>
4200
4201<h5>Overview:</h5>
4202
4203<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4204locations, allowing garbage collector implementations that require read
4205barriers.</p>
4206
4207<h5>Arguments:</h5>
4208
4209<p>The second argument is the address to read from, which should be an address
4210allocated from the garbage collector. The first object is a pointer to the
4211start of the referenced object, if needed by the language runtime (otherwise
4212null).</p>
4213
4214<h5>Semantics:</h5>
4215
4216<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4217instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004218garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4219may only be used in a function which <a href="#gc">specifies a GC
4220algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004221
4222</div>
4223
4224
4225<!-- _______________________________________________________________________ -->
4226<div class="doc_subsubsection">
4227 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4228</div>
4229
4230<div class="doc_text">
4231
4232<h5>Syntax:</h5>
4233
4234<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004235 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004236</pre>
4237
4238<h5>Overview:</h5>
4239
4240<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4241locations, allowing garbage collector implementations that require write
4242barriers (such as generational or reference counting collectors).</p>
4243
4244<h5>Arguments:</h5>
4245
4246<p>The first argument is the reference to store, the second is the start of the
4247object to store it to, and the third is the address of the field of Obj to
4248store to. If the runtime does not require a pointer to the object, Obj may be
4249null.</p>
4250
4251<h5>Semantics:</h5>
4252
4253<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4254instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004255garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4256may only be used in a function which <a href="#gc">specifies a GC
4257algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004258
4259</div>
4260
4261
4262
4263<!-- ======================================================================= -->
4264<div class="doc_subsection">
4265 <a name="int_codegen">Code Generator Intrinsics</a>
4266</div>
4267
4268<div class="doc_text">
4269<p>
4270These intrinsics are provided by LLVM to expose special features that may only
4271be implemented with code generator support.
4272</p>
4273
4274</div>
4275
4276<!-- _______________________________________________________________________ -->
4277<div class="doc_subsubsection">
4278 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4279</div>
4280
4281<div class="doc_text">
4282
4283<h5>Syntax:</h5>
4284<pre>
4285 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4286</pre>
4287
4288<h5>Overview:</h5>
4289
4290<p>
4291The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4292target-specific value indicating the return address of the current function
4293or one of its callers.
4294</p>
4295
4296<h5>Arguments:</h5>
4297
4298<p>
4299The argument to this intrinsic indicates which function to return the address
4300for. Zero indicates the calling function, one indicates its caller, etc. The
4301argument is <b>required</b> to be a constant integer value.
4302</p>
4303
4304<h5>Semantics:</h5>
4305
4306<p>
4307The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4308the return address of the specified call frame, or zero if it cannot be
4309identified. The value returned by this intrinsic is likely to be incorrect or 0
4310for arguments other than zero, so it should only be used for debugging purposes.
4311</p>
4312
4313<p>
4314Note that calling this intrinsic does not prevent function inlining or other
4315aggressive transformations, so the value returned may not be that of the obvious
4316source-language caller.
4317</p>
4318</div>
4319
4320
4321<!-- _______________________________________________________________________ -->
4322<div class="doc_subsubsection">
4323 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4324</div>
4325
4326<div class="doc_text">
4327
4328<h5>Syntax:</h5>
4329<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004330 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004331</pre>
4332
4333<h5>Overview:</h5>
4334
4335<p>
4336The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4337target-specific frame pointer value for the specified stack frame.
4338</p>
4339
4340<h5>Arguments:</h5>
4341
4342<p>
4343The argument to this intrinsic indicates which function to return the frame
4344pointer for. Zero indicates the calling function, one indicates its caller,
4345etc. The argument is <b>required</b> to be a constant integer value.
4346</p>
4347
4348<h5>Semantics:</h5>
4349
4350<p>
4351The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4352the frame address of the specified call frame, or zero if it cannot be
4353identified. The value returned by this intrinsic is likely to be incorrect or 0
4354for arguments other than zero, so it should only be used for debugging purposes.
4355</p>
4356
4357<p>
4358Note that calling this intrinsic does not prevent function inlining or other
4359aggressive transformations, so the value returned may not be that of the obvious
4360source-language caller.
4361</p>
4362</div>
4363
4364<!-- _______________________________________________________________________ -->
4365<div class="doc_subsubsection">
4366 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4367</div>
4368
4369<div class="doc_text">
4370
4371<h5>Syntax:</h5>
4372<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004373 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004374</pre>
4375
4376<h5>Overview:</h5>
4377
4378<p>
4379The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4380the function stack, for use with <a href="#int_stackrestore">
4381<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4382features like scoped automatic variable sized arrays in C99.
4383</p>
4384
4385<h5>Semantics:</h5>
4386
4387<p>
4388This intrinsic returns a opaque pointer value that can be passed to <a
4389href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4390<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4391<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4392state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4393practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4394that were allocated after the <tt>llvm.stacksave</tt> was executed.
4395</p>
4396
4397</div>
4398
4399<!-- _______________________________________________________________________ -->
4400<div class="doc_subsubsection">
4401 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4402</div>
4403
4404<div class="doc_text">
4405
4406<h5>Syntax:</h5>
4407<pre>
4408 declare void @llvm.stackrestore(i8 * %ptr)
4409</pre>
4410
4411<h5>Overview:</h5>
4412
4413<p>
4414The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4415the function stack to the state it was in when the corresponding <a
4416href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4417useful for implementing language features like scoped automatic variable sized
4418arrays in C99.
4419</p>
4420
4421<h5>Semantics:</h5>
4422
4423<p>
4424See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4425</p>
4426
4427</div>
4428
4429
4430<!-- _______________________________________________________________________ -->
4431<div class="doc_subsubsection">
4432 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4433</div>
4434
4435<div class="doc_text">
4436
4437<h5>Syntax:</h5>
4438<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004439 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004440</pre>
4441
4442<h5>Overview:</h5>
4443
4444
4445<p>
4446The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4447a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4448no
4449effect on the behavior of the program but can change its performance
4450characteristics.
4451</p>
4452
4453<h5>Arguments:</h5>
4454
4455<p>
4456<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4457determining if the fetch should be for a read (0) or write (1), and
4458<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4459locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4460<tt>locality</tt> arguments must be constant integers.
4461</p>
4462
4463<h5>Semantics:</h5>
4464
4465<p>
4466This intrinsic does not modify the behavior of the program. In particular,
4467prefetches cannot trap and do not produce a value. On targets that support this
4468intrinsic, the prefetch can provide hints to the processor cache for better
4469performance.
4470</p>
4471
4472</div>
4473
4474<!-- _______________________________________________________________________ -->
4475<div class="doc_subsubsection">
4476 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4477</div>
4478
4479<div class="doc_text">
4480
4481<h5>Syntax:</h5>
4482<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004483 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004484</pre>
4485
4486<h5>Overview:</h5>
4487
4488
4489<p>
4490The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4491(PC) in a region of
4492code to simulators and other tools. The method is target specific, but it is
4493expected that the marker will use exported symbols to transmit the PC of the marker.
4494The marker makes no guarantees that it will remain with any specific instruction
4495after optimizations. It is possible that the presence of a marker will inhibit
4496optimizations. The intended use is to be inserted after optimizations to allow
4497correlations of simulation runs.
4498</p>
4499
4500<h5>Arguments:</h5>
4501
4502<p>
4503<tt>id</tt> is a numerical id identifying the marker.
4504</p>
4505
4506<h5>Semantics:</h5>
4507
4508<p>
4509This intrinsic does not modify the behavior of the program. Backends that do not
4510support this intrinisic may ignore it.
4511</p>
4512
4513</div>
4514
4515<!-- _______________________________________________________________________ -->
4516<div class="doc_subsubsection">
4517 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4518</div>
4519
4520<div class="doc_text">
4521
4522<h5>Syntax:</h5>
4523<pre>
4524 declare i64 @llvm.readcyclecounter( )
4525</pre>
4526
4527<h5>Overview:</h5>
4528
4529
4530<p>
4531The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4532counter register (or similar low latency, high accuracy clocks) on those targets
4533that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4534As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4535should only be used for small timings.
4536</p>
4537
4538<h5>Semantics:</h5>
4539
4540<p>
4541When directly supported, reading the cycle counter should not modify any memory.
4542Implementations are allowed to either return a application specific value or a
4543system wide value. On backends without support, this is lowered to a constant 0.
4544</p>
4545
4546</div>
4547
4548<!-- ======================================================================= -->
4549<div class="doc_subsection">
4550 <a name="int_libc">Standard C Library Intrinsics</a>
4551</div>
4552
4553<div class="doc_text">
4554<p>
4555LLVM provides intrinsics for a few important standard C library functions.
4556These intrinsics allow source-language front-ends to pass information about the
4557alignment of the pointer arguments to the code generator, providing opportunity
4558for more efficient code generation.
4559</p>
4560
4561</div>
4562
4563<!-- _______________________________________________________________________ -->
4564<div class="doc_subsubsection">
4565 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4566</div>
4567
4568<div class="doc_text">
4569
4570<h5>Syntax:</h5>
4571<pre>
4572 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4573 i32 &lt;len&gt;, i32 &lt;align&gt;)
4574 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4575 i64 &lt;len&gt;, i32 &lt;align&gt;)
4576</pre>
4577
4578<h5>Overview:</h5>
4579
4580<p>
4581The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4582location to the destination location.
4583</p>
4584
4585<p>
4586Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4587intrinsics do not return a value, and takes an extra alignment argument.
4588</p>
4589
4590<h5>Arguments:</h5>
4591
4592<p>
4593The first argument is a pointer to the destination, the second is a pointer to
4594the source. The third argument is an integer argument
4595specifying the number of bytes to copy, and the fourth argument is the alignment
4596of the source and destination locations.
4597</p>
4598
4599<p>
4600If the call to this intrinisic has an alignment value that is not 0 or 1, then
4601the caller guarantees that both the source and destination pointers are aligned
4602to that boundary.
4603</p>
4604
4605<h5>Semantics:</h5>
4606
4607<p>
4608The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4609location to the destination location, which are not allowed to overlap. It
4610copies "len" bytes of memory over. If the argument is known to be aligned to
4611some boundary, this can be specified as the fourth argument, otherwise it should
4612be set to 0 or 1.
4613</p>
4614</div>
4615
4616
4617<!-- _______________________________________________________________________ -->
4618<div class="doc_subsubsection">
4619 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4620</div>
4621
4622<div class="doc_text">
4623
4624<h5>Syntax:</h5>
4625<pre>
4626 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4627 i32 &lt;len&gt;, i32 &lt;align&gt;)
4628 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4629 i64 &lt;len&gt;, i32 &lt;align&gt;)
4630</pre>
4631
4632<h5>Overview:</h5>
4633
4634<p>
4635The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4636location to the destination location. It is similar to the
Chris Lattnerdba16ea2008-01-06 19:51:52 +00004637'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004638</p>
4639
4640<p>
4641Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4642intrinsics do not return a value, and takes an extra alignment argument.
4643</p>
4644
4645<h5>Arguments:</h5>
4646
4647<p>
4648The first argument is a pointer to the destination, the second is a pointer to
4649the source. The third argument is an integer argument
4650specifying the number of bytes to copy, and the fourth argument is the alignment
4651of the source and destination locations.
4652</p>
4653
4654<p>
4655If the call to this intrinisic has an alignment value that is not 0 or 1, then
4656the caller guarantees that the source and destination pointers are aligned to
4657that boundary.
4658</p>
4659
4660<h5>Semantics:</h5>
4661
4662<p>
4663The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4664location to the destination location, which may overlap. It
4665copies "len" bytes of memory over. If the argument is known to be aligned to
4666some boundary, this can be specified as the fourth argument, otherwise it should
4667be set to 0 or 1.
4668</p>
4669</div>
4670
4671
4672<!-- _______________________________________________________________________ -->
4673<div class="doc_subsubsection">
4674 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4675</div>
4676
4677<div class="doc_text">
4678
4679<h5>Syntax:</h5>
4680<pre>
4681 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4682 i32 &lt;len&gt;, i32 &lt;align&gt;)
4683 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4684 i64 &lt;len&gt;, i32 &lt;align&gt;)
4685</pre>
4686
4687<h5>Overview:</h5>
4688
4689<p>
4690The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4691byte value.
4692</p>
4693
4694<p>
4695Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4696does not return a value, and takes an extra alignment argument.
4697</p>
4698
4699<h5>Arguments:</h5>
4700
4701<p>
4702The first argument is a pointer to the destination to fill, the second is the
4703byte value to fill it with, the third argument is an integer
4704argument specifying the number of bytes to fill, and the fourth argument is the
4705known alignment of destination location.
4706</p>
4707
4708<p>
4709If the call to this intrinisic has an alignment value that is not 0 or 1, then
4710the caller guarantees that the destination pointer is aligned to that boundary.
4711</p>
4712
4713<h5>Semantics:</h5>
4714
4715<p>
4716The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4717the
4718destination location. If the argument is known to be aligned to some boundary,
4719this can be specified as the fourth argument, otherwise it should be set to 0 or
47201.
4721</p>
4722</div>
4723
4724
4725<!-- _______________________________________________________________________ -->
4726<div class="doc_subsubsection">
4727 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4728</div>
4729
4730<div class="doc_text">
4731
4732<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004733<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00004734floating point or vector of floating point type. Not all targets support all
4735types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004736<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004737 declare float @llvm.sqrt.f32(float %Val)
4738 declare double @llvm.sqrt.f64(double %Val)
4739 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4740 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4741 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004742</pre>
4743
4744<h5>Overview:</h5>
4745
4746<p>
4747The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00004748returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004749<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattnerf914a002008-01-29 07:00:44 +00004750negative numbers other than -0.0 (which allows for better optimization, because
4751there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
4752defined to return -0.0 like IEEE sqrt.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004753</p>
4754
4755<h5>Arguments:</h5>
4756
4757<p>
4758The argument and return value are floating point numbers of the same type.
4759</p>
4760
4761<h5>Semantics:</h5>
4762
4763<p>
4764This function returns the sqrt of the specified operand if it is a nonnegative
4765floating point number.
4766</p>
4767</div>
4768
4769<!-- _______________________________________________________________________ -->
4770<div class="doc_subsubsection">
4771 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4772</div>
4773
4774<div class="doc_text">
4775
4776<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004777<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00004778floating point or vector of floating point type. Not all targets support all
4779types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004780<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004781 declare float @llvm.powi.f32(float %Val, i32 %power)
4782 declare double @llvm.powi.f64(double %Val, i32 %power)
4783 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
4784 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
4785 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004786</pre>
4787
4788<h5>Overview:</h5>
4789
4790<p>
4791The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4792specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00004793multiplications is not defined. When a vector of floating point type is
4794used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004795</p>
4796
4797<h5>Arguments:</h5>
4798
4799<p>
4800The second argument is an integer power, and the first is a value to raise to
4801that power.
4802</p>
4803
4804<h5>Semantics:</h5>
4805
4806<p>
4807This function returns the first value raised to the second power with an
4808unspecified sequence of rounding operations.</p>
4809</div>
4810
Dan Gohman361079c2007-10-15 20:30:11 +00004811<!-- _______________________________________________________________________ -->
4812<div class="doc_subsubsection">
4813 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
4814</div>
4815
4816<div class="doc_text">
4817
4818<h5>Syntax:</h5>
4819<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
4820floating point or vector of floating point type. Not all targets support all
4821types however.
4822<pre>
4823 declare float @llvm.sin.f32(float %Val)
4824 declare double @llvm.sin.f64(double %Val)
4825 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
4826 declare fp128 @llvm.sin.f128(fp128 %Val)
4827 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
4828</pre>
4829
4830<h5>Overview:</h5>
4831
4832<p>
4833The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
4834</p>
4835
4836<h5>Arguments:</h5>
4837
4838<p>
4839The argument and return value are floating point numbers of the same type.
4840</p>
4841
4842<h5>Semantics:</h5>
4843
4844<p>
4845This function returns the sine of the specified operand, returning the
4846same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004847conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004848</div>
4849
4850<!-- _______________________________________________________________________ -->
4851<div class="doc_subsubsection">
4852 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
4853</div>
4854
4855<div class="doc_text">
4856
4857<h5>Syntax:</h5>
4858<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
4859floating point or vector of floating point type. Not all targets support all
4860types however.
4861<pre>
4862 declare float @llvm.cos.f32(float %Val)
4863 declare double @llvm.cos.f64(double %Val)
4864 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
4865 declare fp128 @llvm.cos.f128(fp128 %Val)
4866 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
4867</pre>
4868
4869<h5>Overview:</h5>
4870
4871<p>
4872The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
4873</p>
4874
4875<h5>Arguments:</h5>
4876
4877<p>
4878The argument and return value are floating point numbers of the same type.
4879</p>
4880
4881<h5>Semantics:</h5>
4882
4883<p>
4884This function returns the cosine of the specified operand, returning the
4885same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004886conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004887</div>
4888
4889<!-- _______________________________________________________________________ -->
4890<div class="doc_subsubsection">
4891 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
4892</div>
4893
4894<div class="doc_text">
4895
4896<h5>Syntax:</h5>
4897<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
4898floating point or vector of floating point type. Not all targets support all
4899types however.
4900<pre>
4901 declare float @llvm.pow.f32(float %Val, float %Power)
4902 declare double @llvm.pow.f64(double %Val, double %Power)
4903 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
4904 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
4905 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
4906</pre>
4907
4908<h5>Overview:</h5>
4909
4910<p>
4911The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
4912specified (positive or negative) power.
4913</p>
4914
4915<h5>Arguments:</h5>
4916
4917<p>
4918The second argument is a floating point power, and the first is a value to
4919raise to that power.
4920</p>
4921
4922<h5>Semantics:</h5>
4923
4924<p>
4925This function returns the first value raised to the second power,
4926returning the
4927same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004928conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004929</div>
4930
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931
4932<!-- ======================================================================= -->
4933<div class="doc_subsection">
4934 <a name="int_manip">Bit Manipulation Intrinsics</a>
4935</div>
4936
4937<div class="doc_text">
4938<p>
4939LLVM provides intrinsics for a few important bit manipulation operations.
4940These allow efficient code generation for some algorithms.
4941</p>
4942
4943</div>
4944
4945<!-- _______________________________________________________________________ -->
4946<div class="doc_subsubsection">
4947 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4948</div>
4949
4950<div class="doc_text">
4951
4952<h5>Syntax:</h5>
4953<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00004954type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004955<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004956 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4957 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4958 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004959</pre>
4960
4961<h5>Overview:</h5>
4962
4963<p>
4964The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4965values with an even number of bytes (positive multiple of 16 bits). These are
4966useful for performing operations on data that is not in the target's native
4967byte order.
4968</p>
4969
4970<h5>Semantics:</h5>
4971
4972<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00004973The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004974and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4975intrinsic returns an i32 value that has the four bytes of the input i32
4976swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00004977i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4978<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004979additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4980</p>
4981
4982</div>
4983
4984<!-- _______________________________________________________________________ -->
4985<div class="doc_subsubsection">
4986 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4987</div>
4988
4989<div class="doc_text">
4990
4991<h5>Syntax:</h5>
4992<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4993width. Not all targets support all bit widths however.
4994<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004995 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4996 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004997 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004998 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4999 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005000</pre>
5001
5002<h5>Overview:</h5>
5003
5004<p>
5005The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5006value.
5007</p>
5008
5009<h5>Arguments:</h5>
5010
5011<p>
5012The only argument is the value to be counted. The argument may be of any
5013integer type. The return type must match the argument type.
5014</p>
5015
5016<h5>Semantics:</h5>
5017
5018<p>
5019The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5020</p>
5021</div>
5022
5023<!-- _______________________________________________________________________ -->
5024<div class="doc_subsubsection">
5025 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5026</div>
5027
5028<div class="doc_text">
5029
5030<h5>Syntax:</h5>
5031<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5032integer bit width. Not all targets support all bit widths however.
5033<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005034 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5035 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005036 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005037 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5038 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005039</pre>
5040
5041<h5>Overview:</h5>
5042
5043<p>
5044The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5045leading zeros in a variable.
5046</p>
5047
5048<h5>Arguments:</h5>
5049
5050<p>
5051The only argument is the value to be counted. The argument may be of any
5052integer type. The return type must match the argument type.
5053</p>
5054
5055<h5>Semantics:</h5>
5056
5057<p>
5058The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5059in a variable. If the src == 0 then the result is the size in bits of the type
5060of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5061</p>
5062</div>
5063
5064
5065
5066<!-- _______________________________________________________________________ -->
5067<div class="doc_subsubsection">
5068 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5069</div>
5070
5071<div class="doc_text">
5072
5073<h5>Syntax:</h5>
5074<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5075integer bit width. Not all targets support all bit widths however.
5076<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005077 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5078 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005079 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005080 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5081 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005082</pre>
5083
5084<h5>Overview:</h5>
5085
5086<p>
5087The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5088trailing zeros.
5089</p>
5090
5091<h5>Arguments:</h5>
5092
5093<p>
5094The only argument is the value to be counted. The argument may be of any
5095integer type. The return type must match the argument type.
5096</p>
5097
5098<h5>Semantics:</h5>
5099
5100<p>
5101The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5102in a variable. If the src == 0 then the result is the size in bits of the type
5103of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5104</p>
5105</div>
5106
5107<!-- _______________________________________________________________________ -->
5108<div class="doc_subsubsection">
5109 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5110</div>
5111
5112<div class="doc_text">
5113
5114<h5>Syntax:</h5>
5115<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
5116on any integer bit width.
5117<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005118 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5119 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005120</pre>
5121
5122<h5>Overview:</h5>
5123<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5124range of bits from an integer value and returns them in the same bit width as
5125the original value.</p>
5126
5127<h5>Arguments:</h5>
5128<p>The first argument, <tt>%val</tt> and the result may be integer types of
5129any bit width but they must have the same bit width. The second and third
5130arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5131
5132<h5>Semantics:</h5>
5133<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5134of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5135<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5136operates in forward mode.</p>
5137<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5138right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5139only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5140<ol>
5141 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5142 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5143 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5144 to determine the number of bits to retain.</li>
5145 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5146 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5147</ol>
5148<p>In reverse mode, a similar computation is made except that the bits are
5149returned in the reverse order. So, for example, if <tt>X</tt> has the value
5150<tt>i16 0x0ACF (101011001111)</tt> and we apply
5151<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5152<tt>i16 0x0026 (000000100110)</tt>.</p>
5153</div>
5154
5155<div class="doc_subsubsection">
5156 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5157</div>
5158
5159<div class="doc_text">
5160
5161<h5>Syntax:</h5>
5162<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5163on any integer bit width.
5164<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005165 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5166 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005167</pre>
5168
5169<h5>Overview:</h5>
5170<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5171of bits in an integer value with another integer value. It returns the integer
5172with the replaced bits.</p>
5173
5174<h5>Arguments:</h5>
5175<p>The first argument, <tt>%val</tt> and the result may be integer types of
5176any bit width but they must have the same bit width. <tt>%val</tt> is the value
5177whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5178integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5179type since they specify only a bit index.</p>
5180
5181<h5>Semantics:</h5>
5182<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5183of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5184<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5185operates in forward mode.</p>
5186<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5187truncating it down to the size of the replacement area or zero extending it
5188up to that size.</p>
5189<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5190are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5191in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5192to the <tt>%hi</tt>th bit.
5193<p>In reverse mode, a similar computation is made except that the bits are
5194reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5195<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5196<h5>Examples:</h5>
5197<pre>
5198 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5199 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5200 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5201 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5202 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5203</pre>
5204</div>
5205
5206<!-- ======================================================================= -->
5207<div class="doc_subsection">
5208 <a name="int_debugger">Debugger Intrinsics</a>
5209</div>
5210
5211<div class="doc_text">
5212<p>
5213The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5214are described in the <a
5215href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5216Debugging</a> document.
5217</p>
5218</div>
5219
5220
5221<!-- ======================================================================= -->
5222<div class="doc_subsection">
5223 <a name="int_eh">Exception Handling Intrinsics</a>
5224</div>
5225
5226<div class="doc_text">
5227<p> The LLVM exception handling intrinsics (which all start with
5228<tt>llvm.eh.</tt> prefix), are described in the <a
5229href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5230Handling</a> document. </p>
5231</div>
5232
5233<!-- ======================================================================= -->
5234<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005235 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005236</div>
5237
5238<div class="doc_text">
5239<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005240 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005241 the <tt>nest</tt> attribute, from a function. The result is a callable
5242 function pointer lacking the nest parameter - the caller does not need
5243 to provide a value for it. Instead, the value to use is stored in
5244 advance in a "trampoline", a block of memory usually allocated
5245 on the stack, which also contains code to splice the nest value into the
5246 argument list. This is used to implement the GCC nested function address
5247 extension.
5248</p>
5249<p>
5250 For example, if the function is
5251 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005252 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005253<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005254 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5255 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5256 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5257 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005258</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005259 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5260 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005261</div>
5262
5263<!-- _______________________________________________________________________ -->
5264<div class="doc_subsubsection">
5265 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5266</div>
5267<div class="doc_text">
5268<h5>Syntax:</h5>
5269<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005270declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005271</pre>
5272<h5>Overview:</h5>
5273<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005274 This fills the memory pointed to by <tt>tramp</tt> with code
5275 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005276</p>
5277<h5>Arguments:</h5>
5278<p>
5279 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5280 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5281 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005282 intrinsic. Note that the size and the alignment are target-specific - LLVM
5283 currently provides no portable way of determining them, so a front-end that
5284 generates this intrinsic needs to have some target-specific knowledge.
5285 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005286</p>
5287<h5>Semantics:</h5>
5288<p>
5289 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005290 dependent code, turning it into a function. A pointer to this function is
5291 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005292 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005293 before being called. The new function's signature is the same as that of
5294 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5295 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5296 of pointer type. Calling the new function is equivalent to calling
5297 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5298 missing <tt>nest</tt> argument. If, after calling
5299 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5300 modified, then the effect of any later call to the returned function pointer is
5301 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005302</p>
5303</div>
5304
5305<!-- ======================================================================= -->
5306<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00005307 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5308</div>
5309
5310<div class="doc_text">
5311<p>
5312 These intrinsic functions expand the "universal IR" of LLVM to represent
5313 hardware constructs for atomic operations and memory synchronization. This
5314 provides an interface to the hardware, not an interface to the programmer. It
5315 is aimed at a low enough level to allow any programming models or APIs which
5316 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5317 hardware behavior. Just as hardware provides a "universal IR" for source
5318 languages, it also provides a starting point for developing a "universal"
5319 atomic operation and synchronization IR.
5320</p>
5321<p>
5322 These do <em>not</em> form an API such as high-level threading libraries,
5323 software transaction memory systems, atomic primitives, and intrinsic
5324 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5325 application libraries. The hardware interface provided by LLVM should allow
5326 a clean implementation of all of these APIs and parallel programming models.
5327 No one model or paradigm should be selected above others unless the hardware
5328 itself ubiquitously does so.
5329
5330</p>
5331</div>
5332
5333<!-- _______________________________________________________________________ -->
5334<div class="doc_subsubsection">
5335 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5336</div>
5337<div class="doc_text">
5338<h5>Syntax:</h5>
5339<pre>
5340declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5341i1 &lt;device&gt; )
5342
5343</pre>
5344<h5>Overview:</h5>
5345<p>
5346 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5347 specific pairs of memory access types.
5348</p>
5349<h5>Arguments:</h5>
5350<p>
5351 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5352 The first four arguments enables a specific barrier as listed below. The fith
5353 argument specifies that the barrier applies to io or device or uncached memory.
5354
5355</p>
5356 <ul>
5357 <li><tt>ll</tt>: load-load barrier</li>
5358 <li><tt>ls</tt>: load-store barrier</li>
5359 <li><tt>sl</tt>: store-load barrier</li>
5360 <li><tt>ss</tt>: store-store barrier</li>
5361 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5362 </ul>
5363<h5>Semantics:</h5>
5364<p>
5365 This intrinsic causes the system to enforce some ordering constraints upon
5366 the loads and stores of the program. This barrier does not indicate
5367 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5368 which they occur. For any of the specified pairs of load and store operations
5369 (f.ex. load-load, or store-load), all of the first operations preceding the
5370 barrier will complete before any of the second operations succeeding the
5371 barrier begin. Specifically the semantics for each pairing is as follows:
5372</p>
5373 <ul>
5374 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5375 after the barrier begins.</li>
5376
5377 <li><tt>ls</tt>: All loads before the barrier must complete before any
5378 store after the barrier begins.</li>
5379 <li><tt>ss</tt>: All stores before the barrier must complete before any
5380 store after the barrier begins.</li>
5381 <li><tt>sl</tt>: All stores before the barrier must complete before any
5382 load after the barrier begins.</li>
5383 </ul>
5384<p>
5385 These semantics are applied with a logical "and" behavior when more than one
5386 is enabled in a single memory barrier intrinsic.
5387</p>
5388<p>
5389 Backends may implement stronger barriers than those requested when they do not
5390 support as fine grained a barrier as requested. Some architectures do not
5391 need all types of barriers and on such architectures, these become noops.
5392</p>
5393<h5>Example:</h5>
5394<pre>
5395%ptr = malloc i32
5396 store i32 4, %ptr
5397
5398%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5399 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5400 <i>; guarantee the above finishes</i>
5401 store i32 8, %ptr <i>; before this begins</i>
5402</pre>
5403</div>
5404
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005405<!-- _______________________________________________________________________ -->
5406<div class="doc_subsubsection">
5407 <a name="int_atomic_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
5408</div>
5409<div class="doc_text">
5410<h5>Syntax:</h5>
5411<p>
5412 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
5413 integer bit width. Not all targets support all bit widths however.</p>
5414
5415<pre>
5416declare i8 @llvm.atomic.lcs.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5417declare i16 @llvm.atomic.lcs.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5418declare i32 @llvm.atomic.lcs.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5419declare i64 @llvm.atomic.lcs.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
5420
5421</pre>
5422<h5>Overview:</h5>
5423<p>
5424 This loads a value in memory and compares it to a given value. If they are
5425 equal, it stores a new value into the memory.
5426</p>
5427<h5>Arguments:</h5>
5428<p>
5429 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
5430 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5431 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5432 this integer type. While any bit width integer may be used, targets may only
5433 lower representations they support in hardware.
5434
5435</p>
5436<h5>Semantics:</h5>
5437<p>
5438 This entire intrinsic must be executed atomically. It first loads the value
5439 in memory pointed to by <tt>ptr</tt> and compares it with the value
5440 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5441 loaded value is yielded in all cases. This provides the equivalent of an
5442 atomic compare-and-swap operation within the SSA framework.
5443</p>
5444<h5>Examples:</h5>
5445
5446<pre>
5447%ptr = malloc i32
5448 store i32 4, %ptr
5449
5450%val1 = add i32 4, 4
5451%result1 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 4, %val1 )
5452 <i>; yields {i32}:result1 = 4</i>
5453%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5454%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5455
5456%val2 = add i32 1, 1
5457%result2 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 5, %val2 )
5458 <i>; yields {i32}:result2 = 8</i>
5459%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5460
5461%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5462</pre>
5463</div>
5464
5465<!-- _______________________________________________________________________ -->
5466<div class="doc_subsubsection">
5467 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5468</div>
5469<div class="doc_text">
5470<h5>Syntax:</h5>
5471
5472<p>
5473 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5474 integer bit width. Not all targets support all bit widths however.</p>
5475<pre>
5476declare i8 @llvm.atomic.swap.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5477declare i16 @llvm.atomic.swap.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5478declare i32 @llvm.atomic.swap.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5479declare i64 @llvm.atomic.swap.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
5480
5481</pre>
5482<h5>Overview:</h5>
5483<p>
5484 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5485 the value from memory. It then stores the value in <tt>val</tt> in the memory
5486 at <tt>ptr</tt>.
5487</p>
5488<h5>Arguments:</h5>
5489
5490<p>
5491 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
5492 <tt>val</tt> argument and the result must be integers of the same bit width.
5493 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5494 integer type. The targets may only lower integer representations they
5495 support.
5496</p>
5497<h5>Semantics:</h5>
5498<p>
5499 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5500 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5501 equivalent of an atomic swap operation within the SSA framework.
5502
5503</p>
5504<h5>Examples:</h5>
5505<pre>
5506%ptr = malloc i32
5507 store i32 4, %ptr
5508
5509%val1 = add i32 4, 4
5510%result1 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val1 )
5511 <i>; yields {i32}:result1 = 4</i>
5512%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5513%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5514
5515%val2 = add i32 1, 1
5516%result2 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val2 )
5517 <i>; yields {i32}:result2 = 8</i>
5518
5519%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5520%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5521</pre>
5522</div>
5523
5524<!-- _______________________________________________________________________ -->
5525<div class="doc_subsubsection">
5526 <a name="int_atomic_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
5527
5528</div>
5529<div class="doc_text">
5530<h5>Syntax:</h5>
5531<p>
5532 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
5533 integer bit width. Not all targets support all bit widths however.</p>
5534<pre>
5535declare i8 @llvm.atomic.las.i8.( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5536declare i16 @llvm.atomic.las.i16.( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5537declare i32 @llvm.atomic.las.i32.( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5538declare i64 @llvm.atomic.las.i64.( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5539
5540</pre>
5541<h5>Overview:</h5>
5542<p>
5543 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5544 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5545</p>
5546<h5>Arguments:</h5>
5547<p>
5548
5549 The intrinsic takes two arguments, the first a pointer to an integer value
5550 and the second an integer value. The result is also an integer value. These
5551 integer types can have any bit width, but they must all have the same bit
5552 width. The targets may only lower integer representations they support.
5553</p>
5554<h5>Semantics:</h5>
5555<p>
5556 This intrinsic does a series of operations atomically. It first loads the
5557 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5558 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5559</p>
5560
5561<h5>Examples:</h5>
5562<pre>
5563%ptr = malloc i32
5564 store i32 4, %ptr
5565%result1 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 4 )
5566 <i>; yields {i32}:result1 = 4</i>
5567%result2 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 2 )
5568 <i>; yields {i32}:result2 = 8</i>
5569%result3 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 5 )
5570 <i>; yields {i32}:result3 = 10</i>
5571%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5572</pre>
5573</div>
5574
Andrew Lenharth785610d2008-02-16 01:24:58 +00005575
5576<!-- ======================================================================= -->
5577<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005578 <a name="int_general">General Intrinsics</a>
5579</div>
5580
5581<div class="doc_text">
5582<p> This class of intrinsics is designed to be generic and has
5583no specific purpose. </p>
5584</div>
5585
5586<!-- _______________________________________________________________________ -->
5587<div class="doc_subsubsection">
5588 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5589</div>
5590
5591<div class="doc_text">
5592
5593<h5>Syntax:</h5>
5594<pre>
5595 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5596</pre>
5597
5598<h5>Overview:</h5>
5599
5600<p>
5601The '<tt>llvm.var.annotation</tt>' intrinsic
5602</p>
5603
5604<h5>Arguments:</h5>
5605
5606<p>
5607The first argument is a pointer to a value, the second is a pointer to a
5608global string, the third is a pointer to a global string which is the source
5609file name, and the last argument is the line number.
5610</p>
5611
5612<h5>Semantics:</h5>
5613
5614<p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00005615This intrinsic allows annotation of local variables with arbitrary strings.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005616This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00005617annotations. These have no other defined use, they are ignored by code
5618generation and optimization.
5619</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005620</div>
5621
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005622<!-- _______________________________________________________________________ -->
5623<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00005624 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005625</div>
5626
5627<div class="doc_text">
5628
5629<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00005630<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5631any integer bit width.
5632</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005633<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00005634 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5635 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5636 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5637 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5638 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005639</pre>
5640
5641<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00005642
5643<p>
5644The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005645</p>
5646
5647<h5>Arguments:</h5>
5648
5649<p>
5650The first argument is an integer value (result of some expression),
5651the second is a pointer to a global string, the third is a pointer to a global
5652string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00005653It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005654</p>
5655
5656<h5>Semantics:</h5>
5657
5658<p>
5659This intrinsic allows annotations to be put on arbitrary expressions
5660with arbitrary strings. This can be useful for special purpose optimizations
5661that want to look for these annotations. These have no other defined use, they
5662are ignored by code generation and optimization.
5663</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005664
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00005665<!-- _______________________________________________________________________ -->
5666<div class="doc_subsubsection">
5667 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
5668</div>
5669
5670<div class="doc_text">
5671
5672<h5>Syntax:</h5>
5673<pre>
5674 declare void @llvm.trap()
5675</pre>
5676
5677<h5>Overview:</h5>
5678
5679<p>
5680The '<tt>llvm.trap</tt>' intrinsic
5681</p>
5682
5683<h5>Arguments:</h5>
5684
5685<p>
5686None
5687</p>
5688
5689<h5>Semantics:</h5>
5690
5691<p>
5692This intrinsics is lowered to the target dependent trap instruction. If the
5693target does not have a trap instruction, this intrinsic will be lowered to the
5694call of the abort() function.
5695</p>
5696</div>
5697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005698<!-- *********************************************************************** -->
5699<hr>
5700<address>
5701 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5702 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5703 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner08497ce2008-01-04 04:33:49 +00005704 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005705
5706 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5707 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5708 Last modified: $Date$
5709</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00005710
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005711</body>
5712</html>