blob: c1a101475c7f1af1e873d9f2f8ba12b254e70692 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dale Johannesen98738822008-02-22 22:17:59 +000021#include "llvm/ParamAttrsList.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Evan Cheng17254e62008-01-11 09:12:49 +000090 std::set<const Value*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 public:
93 static char ID;
94 CWriter(std::ostream &o)
95 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
96 TheModule(0), TAsm(0), TD(0) {}
97
98 virtual const char *getPassName() const { return "C backend"; }
99
100 void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LoopInfo>();
102 AU.setPreservesAll();
103 }
104
105 virtual bool doInitialization(Module &M);
106
107 bool runOnFunction(Function &F) {
108 LI = &getAnalysis<LoopInfo>();
109
110 // Get rid of intrinsics we can't handle.
111 lowerIntrinsics(F);
112
113 // Output all floating point constants that cannot be printed accurately.
114 printFloatingPointConstants(F);
115
116 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000123 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
126 ByValParams.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 return false;
128 }
129
130 std::ostream &printType(std::ostream &Out, const Type *Ty,
131 bool isSigned = false,
132 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000133 bool IgnoreName = false,
134 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000136 bool isSigned,
137 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000140 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 const PointerType *Ty);
142
143 void writeOperand(Value *Operand);
144 void writeOperandRaw(Value *Operand);
145 void writeOperandInternal(Value *Operand);
146 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000147 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 bool writeInstructionCast(const Instruction &I);
149
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000150 void writeMemoryAccess(Value *Operand, const Type *OperandType,
151 bool IsVolatile, unsigned Alignment);
152
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 private :
154 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
155
156 void lowerIntrinsics(Function &F);
157
158 void printModule(Module *M);
159 void printModuleTypes(const TypeSymbolTable &ST);
160 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
161 void printFloatingPointConstants(Function &F);
162 void printFunctionSignature(const Function *F, bool Prototype);
163
164 void printFunction(Function &);
165 void printBasicBlock(BasicBlock *BB);
166 void printLoop(Loop *L);
167
168 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
169 void printConstant(Constant *CPV);
170 void printConstantWithCast(Constant *CPV, unsigned Opcode);
171 bool printConstExprCast(const ConstantExpr *CE);
172 void printConstantArray(ConstantArray *CPA);
173 void printConstantVector(ConstantVector *CP);
174
175 // isInlinableInst - Attempt to inline instructions into their uses to build
176 // trees as much as possible. To do this, we have to consistently decide
177 // what is acceptable to inline, so that variable declarations don't get
178 // printed and an extra copy of the expr is not emitted.
179 //
180 static bool isInlinableInst(const Instruction &I) {
181 // Always inline cmp instructions, even if they are shared by multiple
182 // expressions. GCC generates horrible code if we don't.
183 if (isa<CmpInst>(I))
184 return true;
185
186 // Must be an expression, must be used exactly once. If it is dead, we
187 // emit it inline where it would go.
188 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
189 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
190 isa<LoadInst>(I) || isa<VAArgInst>(I))
191 // Don't inline a load across a store or other bad things!
192 return false;
193
194 // Must not be used in inline asm
195 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
196
197 // Only inline instruction it if it's use is in the same BB as the inst.
198 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
199 }
200
201 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
202 // variables which are accessed with the & operator. This causes GCC to
203 // generate significantly better code than to emit alloca calls directly.
204 //
205 static const AllocaInst *isDirectAlloca(const Value *V) {
206 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
207 if (!AI) return false;
208 if (AI->isArrayAllocation())
209 return 0; // FIXME: we can also inline fixed size array allocas!
210 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
211 return 0;
212 return AI;
213 }
214
215 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
216 static bool isInlineAsm(const Instruction& I) {
217 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
218 return true;
219 return false;
220 }
221
222 // Instruction visitation functions
223 friend class InstVisitor<CWriter>;
224
225 void visitReturnInst(ReturnInst &I);
226 void visitBranchInst(BranchInst &I);
227 void visitSwitchInst(SwitchInst &I);
228 void visitInvokeInst(InvokeInst &I) {
229 assert(0 && "Lowerinvoke pass didn't work!");
230 }
231
232 void visitUnwindInst(UnwindInst &I) {
233 assert(0 && "Lowerinvoke pass didn't work!");
234 }
235 void visitUnreachableInst(UnreachableInst &I);
236
237 void visitPHINode(PHINode &I);
238 void visitBinaryOperator(Instruction &I);
239 void visitICmpInst(ICmpInst &I);
240 void visitFCmpInst(FCmpInst &I);
241
242 void visitCastInst (CastInst &I);
243 void visitSelectInst(SelectInst &I);
244 void visitCallInst (CallInst &I);
245 void visitInlineAsm(CallInst &I);
246
247 void visitMallocInst(MallocInst &I);
248 void visitAllocaInst(AllocaInst &I);
249 void visitFreeInst (FreeInst &I);
250 void visitLoadInst (LoadInst &I);
251 void visitStoreInst (StoreInst &I);
252 void visitGetElementPtrInst(GetElementPtrInst &I);
253 void visitVAArgInst (VAArgInst &I);
254
255 void visitInstruction(Instruction &I) {
256 cerr << "C Writer does not know about " << I;
257 abort();
258 }
259
260 void outputLValue(Instruction *I) {
261 Out << " " << GetValueName(I) << " = ";
262 }
263
264 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
265 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
266 BasicBlock *Successor, unsigned Indent);
267 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
268 unsigned Indent);
269 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
270 gep_type_iterator E);
271
272 std::string GetValueName(const Value *Operand);
273 };
274}
275
276char CWriter::ID = 0;
277
278/// This method inserts names for any unnamed structure types that are used by
279/// the program, and removes names from structure types that are not used by the
280/// program.
281///
282bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
283 // Get a set of types that are used by the program...
284 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
285
286 // Loop over the module symbol table, removing types from UT that are
287 // already named, and removing names for types that are not used.
288 //
289 TypeSymbolTable &TST = M.getTypeSymbolTable();
290 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
291 TI != TE; ) {
292 TypeSymbolTable::iterator I = TI++;
293
294 // If this isn't a struct type, remove it from our set of types to name.
295 // This simplifies emission later.
296 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
297 TST.remove(I);
298 } else {
299 // If this is not used, remove it from the symbol table.
300 std::set<const Type *>::iterator UTI = UT.find(I->second);
301 if (UTI == UT.end())
302 TST.remove(I);
303 else
304 UT.erase(UTI); // Only keep one name for this type.
305 }
306 }
307
308 // UT now contains types that are not named. Loop over it, naming
309 // structure types.
310 //
311 bool Changed = false;
312 unsigned RenameCounter = 0;
313 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
314 I != E; ++I)
315 if (const StructType *ST = dyn_cast<StructType>(*I)) {
316 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
317 ++RenameCounter;
318 Changed = true;
319 }
320
321
322 // Loop over all external functions and globals. If we have two with
323 // identical names, merge them.
324 // FIXME: This code should disappear when we don't allow values with the same
325 // names when they have different types!
326 std::map<std::string, GlobalValue*> ExtSymbols;
327 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
328 Function *GV = I++;
329 if (GV->isDeclaration() && GV->hasName()) {
330 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
331 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
332 if (!X.second) {
333 // Found a conflict, replace this global with the previous one.
334 GlobalValue *OldGV = X.first->second;
335 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
336 GV->eraseFromParent();
337 Changed = true;
338 }
339 }
340 }
341 // Do the same for globals.
342 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
343 I != E;) {
344 GlobalVariable *GV = I++;
345 if (GV->isDeclaration() && GV->hasName()) {
346 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
347 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
348 if (!X.second) {
349 // Found a conflict, replace this global with the previous one.
350 GlobalValue *OldGV = X.first->second;
351 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
352 GV->eraseFromParent();
353 Changed = true;
354 }
355 }
356 }
357
358 return Changed;
359}
360
361/// printStructReturnPointerFunctionType - This is like printType for a struct
362/// return type, except, instead of printing the type as void (*)(Struct*, ...)
363/// print it as "Struct (*)(...)", for struct return functions.
364void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000365 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 const PointerType *TheTy) {
367 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
368 std::stringstream FunctionInnards;
369 FunctionInnards << " (*) (";
370 bool PrintedType = false;
371
372 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
373 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
374 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000375 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 if (PrintedType)
377 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000378 const Type *ArgTy = *I;
Evan Cheng17254e62008-01-11 09:12:49 +0000379 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
380 assert(isa<PointerType>(ArgTy));
381 ArgTy = cast<PointerType>(ArgTy)->getElementType();
382 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000383 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000384 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 PrintedType = true;
386 }
387 if (FTy->isVarArg()) {
388 if (PrintedType)
389 FunctionInnards << ", ...";
390 } else if (!PrintedType) {
391 FunctionInnards << "void";
392 }
393 FunctionInnards << ')';
394 std::string tstr = FunctionInnards.str();
395 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000396 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397}
398
399std::ostream &
400CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
401 const std::string &NameSoFar) {
402 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
403 "Invalid type for printSimpleType");
404 switch (Ty->getTypeID()) {
405 case Type::VoidTyID: return Out << "void " << NameSoFar;
406 case Type::IntegerTyID: {
407 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
408 if (NumBits == 1)
409 return Out << "bool " << NameSoFar;
410 else if (NumBits <= 8)
411 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
412 else if (NumBits <= 16)
413 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
414 else if (NumBits <= 32)
415 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
416 else {
417 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
418 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
419 }
420 }
421 case Type::FloatTyID: return Out << "float " << NameSoFar;
422 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000423 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
424 // present matches host 'long double'.
425 case Type::X86_FP80TyID:
426 case Type::PPC_FP128TyID:
427 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 default :
429 cerr << "Unknown primitive type: " << *Ty << "\n";
430 abort();
431 }
432}
433
434// Pass the Type* and the variable name and this prints out the variable
435// declaration.
436//
437std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
438 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000439 bool IgnoreName, const ParamAttrsList* PAL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 if (Ty->isPrimitiveType() || Ty->isInteger()) {
441 printSimpleType(Out, Ty, isSigned, NameSoFar);
442 return Out;
443 }
444
445 // Check to see if the type is named.
446 if (!IgnoreName || isa<OpaqueType>(Ty)) {
447 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
448 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
449 }
450
451 switch (Ty->getTypeID()) {
452 case Type::FunctionTyID: {
453 const FunctionType *FTy = cast<FunctionType>(Ty);
454 std::stringstream FunctionInnards;
455 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 unsigned Idx = 1;
457 for (FunctionType::param_iterator I = FTy->param_begin(),
458 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000459 const Type *ArgTy = *I;
460 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
461 assert(isa<PointerType>(ArgTy));
462 ArgTy = cast<PointerType>(ArgTy)->getElementType();
463 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 if (I != FTy->param_begin())
465 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000466 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000467 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468 ++Idx;
469 }
470 if (FTy->isVarArg()) {
471 if (FTy->getNumParams())
472 FunctionInnards << ", ...";
473 } else if (!FTy->getNumParams()) {
474 FunctionInnards << "void";
475 }
476 FunctionInnards << ')';
477 std::string tstr = FunctionInnards.str();
478 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000479 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480 return Out;
481 }
482 case Type::StructTyID: {
483 const StructType *STy = cast<StructType>(Ty);
484 Out << NameSoFar + " {\n";
485 unsigned Idx = 0;
486 for (StructType::element_iterator I = STy->element_begin(),
487 E = STy->element_end(); I != E; ++I) {
488 Out << " ";
489 printType(Out, *I, false, "field" + utostr(Idx++));
490 Out << ";\n";
491 }
492 Out << '}';
493 if (STy->isPacked())
494 Out << " __attribute__ ((packed))";
495 return Out;
496 }
497
498 case Type::PointerTyID: {
499 const PointerType *PTy = cast<PointerType>(Ty);
500 std::string ptrName = "*" + NameSoFar;
501
502 if (isa<ArrayType>(PTy->getElementType()) ||
503 isa<VectorType>(PTy->getElementType()))
504 ptrName = "(" + ptrName + ")";
505
Evan Chengb8a072c2008-01-12 18:53:07 +0000506 if (PAL)
507 // Must be a function ptr cast!
508 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000509 return printType(Out, PTy->getElementType(), false, ptrName);
510 }
511
512 case Type::ArrayTyID: {
513 const ArrayType *ATy = cast<ArrayType>(Ty);
514 unsigned NumElements = ATy->getNumElements();
515 if (NumElements == 0) NumElements = 1;
516 return printType(Out, ATy->getElementType(), false,
517 NameSoFar + "[" + utostr(NumElements) + "]");
518 }
519
520 case Type::VectorTyID: {
521 const VectorType *PTy = cast<VectorType>(Ty);
522 unsigned NumElements = PTy->getNumElements();
523 if (NumElements == 0) NumElements = 1;
524 return printType(Out, PTy->getElementType(), false,
525 NameSoFar + "[" + utostr(NumElements) + "]");
526 }
527
528 case Type::OpaqueTyID: {
529 static int Count = 0;
530 std::string TyName = "struct opaque_" + itostr(Count++);
531 assert(TypeNames.find(Ty) == TypeNames.end());
532 TypeNames[Ty] = TyName;
533 return Out << TyName << ' ' << NameSoFar;
534 }
535 default:
536 assert(0 && "Unhandled case in getTypeProps!");
537 abort();
538 }
539
540 return Out;
541}
542
543void CWriter::printConstantArray(ConstantArray *CPA) {
544
545 // As a special case, print the array as a string if it is an array of
546 // ubytes or an array of sbytes with positive values.
547 //
548 const Type *ETy = CPA->getType()->getElementType();
549 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
550
551 // Make sure the last character is a null char, as automatically added by C
552 if (isString && (CPA->getNumOperands() == 0 ||
553 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
554 isString = false;
555
556 if (isString) {
557 Out << '\"';
558 // Keep track of whether the last number was a hexadecimal escape
559 bool LastWasHex = false;
560
561 // Do not include the last character, which we know is null
562 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
563 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
564
565 // Print it out literally if it is a printable character. The only thing
566 // to be careful about is when the last letter output was a hex escape
567 // code, in which case we have to be careful not to print out hex digits
568 // explicitly (the C compiler thinks it is a continuation of the previous
569 // character, sheesh...)
570 //
571 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
572 LastWasHex = false;
573 if (C == '"' || C == '\\')
574 Out << "\\" << C;
575 else
576 Out << C;
577 } else {
578 LastWasHex = false;
579 switch (C) {
580 case '\n': Out << "\\n"; break;
581 case '\t': Out << "\\t"; break;
582 case '\r': Out << "\\r"; break;
583 case '\v': Out << "\\v"; break;
584 case '\a': Out << "\\a"; break;
585 case '\"': Out << "\\\""; break;
586 case '\'': Out << "\\\'"; break;
587 default:
588 Out << "\\x";
589 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
590 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
591 LastWasHex = true;
592 break;
593 }
594 }
595 }
596 Out << '\"';
597 } else {
598 Out << '{';
599 if (CPA->getNumOperands()) {
600 Out << ' ';
601 printConstant(cast<Constant>(CPA->getOperand(0)));
602 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
603 Out << ", ";
604 printConstant(cast<Constant>(CPA->getOperand(i)));
605 }
606 }
607 Out << " }";
608 }
609}
610
611void CWriter::printConstantVector(ConstantVector *CP) {
612 Out << '{';
613 if (CP->getNumOperands()) {
614 Out << ' ';
615 printConstant(cast<Constant>(CP->getOperand(0)));
616 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
617 Out << ", ";
618 printConstant(cast<Constant>(CP->getOperand(i)));
619 }
620 }
621 Out << " }";
622}
623
624// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
625// textually as a double (rather than as a reference to a stack-allocated
626// variable). We decide this by converting CFP to a string and back into a
627// double, and then checking whether the conversion results in a bit-equal
628// double to the original value of CFP. This depends on us and the target C
629// compiler agreeing on the conversion process (which is pretty likely since we
630// only deal in IEEE FP).
631//
632static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000633 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000634 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
635 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000636 APFloat APF = APFloat(CFP->getValueAPF()); // copy
637 if (CFP->getType()==Type::FloatTy)
638 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
640 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000641 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 if (!strncmp(Buffer, "0x", 2) ||
643 !strncmp(Buffer, "-0x", 3) ||
644 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000645 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000646 return false;
647#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000648 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649
650 while (StrVal[0] == ' ')
651 StrVal.erase(StrVal.begin());
652
653 // Check to make sure that the stringized number is not some string like "Inf"
654 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
655 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
656 ((StrVal[0] == '-' || StrVal[0] == '+') &&
657 (StrVal[1] >= '0' && StrVal[1] <= '9')))
658 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000659 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 return false;
661#endif
662}
663
664/// Print out the casting for a cast operation. This does the double casting
665/// necessary for conversion to the destination type, if necessary.
666/// @brief Print a cast
667void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
668 // Print the destination type cast
669 switch (opc) {
670 case Instruction::UIToFP:
671 case Instruction::SIToFP:
672 case Instruction::IntToPtr:
673 case Instruction::Trunc:
674 case Instruction::BitCast:
675 case Instruction::FPExt:
676 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
677 Out << '(';
678 printType(Out, DstTy);
679 Out << ')';
680 break;
681 case Instruction::ZExt:
682 case Instruction::PtrToInt:
683 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
684 Out << '(';
685 printSimpleType(Out, DstTy, false);
686 Out << ')';
687 break;
688 case Instruction::SExt:
689 case Instruction::FPToSI: // For these, make sure we get a signed dest
690 Out << '(';
691 printSimpleType(Out, DstTy, true);
692 Out << ')';
693 break;
694 default:
695 assert(0 && "Invalid cast opcode");
696 }
697
698 // Print the source type cast
699 switch (opc) {
700 case Instruction::UIToFP:
701 case Instruction::ZExt:
702 Out << '(';
703 printSimpleType(Out, SrcTy, false);
704 Out << ')';
705 break;
706 case Instruction::SIToFP:
707 case Instruction::SExt:
708 Out << '(';
709 printSimpleType(Out, SrcTy, true);
710 Out << ')';
711 break;
712 case Instruction::IntToPtr:
713 case Instruction::PtrToInt:
714 // Avoid "cast to pointer from integer of different size" warnings
715 Out << "(unsigned long)";
716 break;
717 case Instruction::Trunc:
718 case Instruction::BitCast:
719 case Instruction::FPExt:
720 case Instruction::FPTrunc:
721 case Instruction::FPToSI:
722 case Instruction::FPToUI:
723 break; // These don't need a source cast.
724 default:
725 assert(0 && "Invalid cast opcode");
726 break;
727 }
728}
729
730// printConstant - The LLVM Constant to C Constant converter.
731void CWriter::printConstant(Constant *CPV) {
732 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
733 switch (CE->getOpcode()) {
734 case Instruction::Trunc:
735 case Instruction::ZExt:
736 case Instruction::SExt:
737 case Instruction::FPTrunc:
738 case Instruction::FPExt:
739 case Instruction::UIToFP:
740 case Instruction::SIToFP:
741 case Instruction::FPToUI:
742 case Instruction::FPToSI:
743 case Instruction::PtrToInt:
744 case Instruction::IntToPtr:
745 case Instruction::BitCast:
746 Out << "(";
747 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
748 if (CE->getOpcode() == Instruction::SExt &&
749 CE->getOperand(0)->getType() == Type::Int1Ty) {
750 // Make sure we really sext from bool here by subtracting from 0
751 Out << "0-";
752 }
753 printConstant(CE->getOperand(0));
754 if (CE->getType() == Type::Int1Ty &&
755 (CE->getOpcode() == Instruction::Trunc ||
756 CE->getOpcode() == Instruction::FPToUI ||
757 CE->getOpcode() == Instruction::FPToSI ||
758 CE->getOpcode() == Instruction::PtrToInt)) {
759 // Make sure we really truncate to bool here by anding with 1
760 Out << "&1u";
761 }
762 Out << ')';
763 return;
764
765 case Instruction::GetElementPtr:
766 Out << "(&(";
767 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
768 gep_type_end(CPV));
769 Out << "))";
770 return;
771 case Instruction::Select:
772 Out << '(';
773 printConstant(CE->getOperand(0));
774 Out << '?';
775 printConstant(CE->getOperand(1));
776 Out << ':';
777 printConstant(CE->getOperand(2));
778 Out << ')';
779 return;
780 case Instruction::Add:
781 case Instruction::Sub:
782 case Instruction::Mul:
783 case Instruction::SDiv:
784 case Instruction::UDiv:
785 case Instruction::FDiv:
786 case Instruction::URem:
787 case Instruction::SRem:
788 case Instruction::FRem:
789 case Instruction::And:
790 case Instruction::Or:
791 case Instruction::Xor:
792 case Instruction::ICmp:
793 case Instruction::Shl:
794 case Instruction::LShr:
795 case Instruction::AShr:
796 {
797 Out << '(';
798 bool NeedsClosingParens = printConstExprCast(CE);
799 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
800 switch (CE->getOpcode()) {
801 case Instruction::Add: Out << " + "; break;
802 case Instruction::Sub: Out << " - "; break;
803 case Instruction::Mul: Out << " * "; break;
804 case Instruction::URem:
805 case Instruction::SRem:
806 case Instruction::FRem: Out << " % "; break;
807 case Instruction::UDiv:
808 case Instruction::SDiv:
809 case Instruction::FDiv: Out << " / "; break;
810 case Instruction::And: Out << " & "; break;
811 case Instruction::Or: Out << " | "; break;
812 case Instruction::Xor: Out << " ^ "; break;
813 case Instruction::Shl: Out << " << "; break;
814 case Instruction::LShr:
815 case Instruction::AShr: Out << " >> "; break;
816 case Instruction::ICmp:
817 switch (CE->getPredicate()) {
818 case ICmpInst::ICMP_EQ: Out << " == "; break;
819 case ICmpInst::ICMP_NE: Out << " != "; break;
820 case ICmpInst::ICMP_SLT:
821 case ICmpInst::ICMP_ULT: Out << " < "; break;
822 case ICmpInst::ICMP_SLE:
823 case ICmpInst::ICMP_ULE: Out << " <= "; break;
824 case ICmpInst::ICMP_SGT:
825 case ICmpInst::ICMP_UGT: Out << " > "; break;
826 case ICmpInst::ICMP_SGE:
827 case ICmpInst::ICMP_UGE: Out << " >= "; break;
828 default: assert(0 && "Illegal ICmp predicate");
829 }
830 break;
831 default: assert(0 && "Illegal opcode here!");
832 }
833 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
834 if (NeedsClosingParens)
835 Out << "))";
836 Out << ')';
837 return;
838 }
839 case Instruction::FCmp: {
840 Out << '(';
841 bool NeedsClosingParens = printConstExprCast(CE);
842 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
843 Out << "0";
844 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
845 Out << "1";
846 else {
847 const char* op = 0;
848 switch (CE->getPredicate()) {
849 default: assert(0 && "Illegal FCmp predicate");
850 case FCmpInst::FCMP_ORD: op = "ord"; break;
851 case FCmpInst::FCMP_UNO: op = "uno"; break;
852 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
853 case FCmpInst::FCMP_UNE: op = "une"; break;
854 case FCmpInst::FCMP_ULT: op = "ult"; break;
855 case FCmpInst::FCMP_ULE: op = "ule"; break;
856 case FCmpInst::FCMP_UGT: op = "ugt"; break;
857 case FCmpInst::FCMP_UGE: op = "uge"; break;
858 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
859 case FCmpInst::FCMP_ONE: op = "one"; break;
860 case FCmpInst::FCMP_OLT: op = "olt"; break;
861 case FCmpInst::FCMP_OLE: op = "ole"; break;
862 case FCmpInst::FCMP_OGT: op = "ogt"; break;
863 case FCmpInst::FCMP_OGE: op = "oge"; break;
864 }
865 Out << "llvm_fcmp_" << op << "(";
866 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
867 Out << ", ";
868 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
869 Out << ")";
870 }
871 if (NeedsClosingParens)
872 Out << "))";
873 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000874 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000875 }
876 default:
877 cerr << "CWriter Error: Unhandled constant expression: "
878 << *CE << "\n";
879 abort();
880 }
881 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
882 Out << "((";
883 printType(Out, CPV->getType()); // sign doesn't matter
884 Out << ")/*UNDEF*/0)";
885 return;
886 }
887
888 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
889 const Type* Ty = CI->getType();
890 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000891 Out << (CI->getZExtValue() ? '1' : '0');
892 else if (Ty == Type::Int32Ty)
893 Out << CI->getZExtValue() << 'u';
894 else if (Ty->getPrimitiveSizeInBits() > 32)
895 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000896 else {
897 Out << "((";
898 printSimpleType(Out, Ty, false) << ')';
899 if (CI->isMinValue(true))
900 Out << CI->getZExtValue() << 'u';
901 else
902 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000903 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904 }
905 return;
906 }
907
908 switch (CPV->getType()->getTypeID()) {
909 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000910 case Type::DoubleTyID:
911 case Type::X86_FP80TyID:
912 case Type::PPC_FP128TyID:
913 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914 ConstantFP *FPC = cast<ConstantFP>(CPV);
915 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
916 if (I != FPConstantMap.end()) {
917 // Because of FP precision problems we must load from a stack allocated
918 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000919 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
920 FPC->getType() == Type::DoubleTy ? "double" :
921 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 << "*)&FPConstant" << I->second << ')';
923 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000924 assert(FPC->getType() == Type::FloatTy ||
925 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000926 double V = FPC->getType() == Type::FloatTy ?
927 FPC->getValueAPF().convertToFloat() :
928 FPC->getValueAPF().convertToDouble();
929 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930 // The value is NaN
931
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000932 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
934 // it's 0x7ff4.
935 const unsigned long QuietNaN = 0x7ff8UL;
936 //const unsigned long SignalNaN = 0x7ff4UL;
937
938 // We need to grab the first part of the FP #
939 char Buffer[100];
940
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000941 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
943
944 std::string Num(&Buffer[0], &Buffer[6]);
945 unsigned long Val = strtoul(Num.c_str(), 0, 16);
946
947 if (FPC->getType() == Type::FloatTy)
948 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
949 << Buffer << "\") /*nan*/ ";
950 else
951 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
952 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000953 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000955 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000956 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
957 << " /*inf*/ ";
958 } else {
959 std::string Num;
960#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
961 // Print out the constant as a floating point number.
962 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000963 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964 Num = Buffer;
965#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000966 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000968 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 }
970 }
971 break;
972 }
973
974 case Type::ArrayTyID:
Chris Lattner63fb1f02008-03-02 03:16:38 +0000975 if (const ConstantArray *CA = cast<ConstantArray>(CPV)) {
976 printConstantVector(CA);
977 } else {
978 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 const ArrayType *AT = cast<ArrayType>(CPV->getType());
980 Out << '{';
981 if (AT->getNumElements()) {
982 Out << ' ';
983 Constant *CZ = Constant::getNullValue(AT->getElementType());
984 printConstant(CZ);
985 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
986 Out << ", ";
987 printConstant(CZ);
988 }
989 }
990 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 }
992 break;
993
994 case Type::VectorTyID:
Chris Lattner63fb1f02008-03-02 03:16:38 +0000995 if (const ConstantVector *CV = cast<ConstantVector>(CPV)) {
996 printConstantVector(CV);
997 } else {
998 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
999 const VectorType *VT = cast<VectorType>(CPV->getType());
1000 Out << "{ ";
1001 Constant *CZ = Constant::getNullValue(VT->getElementType());
1002 printConstant(CZ);
1003 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1004 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006 }
1007 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 }
1009 break;
1010
1011 case Type::StructTyID:
1012 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1013 const StructType *ST = cast<StructType>(CPV->getType());
1014 Out << '{';
1015 if (ST->getNumElements()) {
1016 Out << ' ';
1017 printConstant(Constant::getNullValue(ST->getElementType(0)));
1018 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1019 Out << ", ";
1020 printConstant(Constant::getNullValue(ST->getElementType(i)));
1021 }
1022 }
1023 Out << " }";
1024 } else {
1025 Out << '{';
1026 if (CPV->getNumOperands()) {
1027 Out << ' ';
1028 printConstant(cast<Constant>(CPV->getOperand(0)));
1029 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1030 Out << ", ";
1031 printConstant(cast<Constant>(CPV->getOperand(i)));
1032 }
1033 }
1034 Out << " }";
1035 }
1036 break;
1037
1038 case Type::PointerTyID:
1039 if (isa<ConstantPointerNull>(CPV)) {
1040 Out << "((";
1041 printType(Out, CPV->getType()); // sign doesn't matter
1042 Out << ")/*NULL*/0)";
1043 break;
1044 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1045 writeOperand(GV);
1046 break;
1047 }
1048 // FALL THROUGH
1049 default:
1050 cerr << "Unknown constant type: " << *CPV << "\n";
1051 abort();
1052 }
1053}
1054
1055// Some constant expressions need to be casted back to the original types
1056// because their operands were casted to the expected type. This function takes
1057// care of detecting that case and printing the cast for the ConstantExpr.
1058bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1059 bool NeedsExplicitCast = false;
1060 const Type *Ty = CE->getOperand(0)->getType();
1061 bool TypeIsSigned = false;
1062 switch (CE->getOpcode()) {
1063 case Instruction::LShr:
1064 case Instruction::URem:
1065 case Instruction::UDiv: NeedsExplicitCast = true; break;
1066 case Instruction::AShr:
1067 case Instruction::SRem:
1068 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1069 case Instruction::SExt:
1070 Ty = CE->getType();
1071 NeedsExplicitCast = true;
1072 TypeIsSigned = true;
1073 break;
1074 case Instruction::ZExt:
1075 case Instruction::Trunc:
1076 case Instruction::FPTrunc:
1077 case Instruction::FPExt:
1078 case Instruction::UIToFP:
1079 case Instruction::SIToFP:
1080 case Instruction::FPToUI:
1081 case Instruction::FPToSI:
1082 case Instruction::PtrToInt:
1083 case Instruction::IntToPtr:
1084 case Instruction::BitCast:
1085 Ty = CE->getType();
1086 NeedsExplicitCast = true;
1087 break;
1088 default: break;
1089 }
1090 if (NeedsExplicitCast) {
1091 Out << "((";
1092 if (Ty->isInteger() && Ty != Type::Int1Ty)
1093 printSimpleType(Out, Ty, TypeIsSigned);
1094 else
1095 printType(Out, Ty); // not integer, sign doesn't matter
1096 Out << ")(";
1097 }
1098 return NeedsExplicitCast;
1099}
1100
1101// Print a constant assuming that it is the operand for a given Opcode. The
1102// opcodes that care about sign need to cast their operands to the expected
1103// type before the operation proceeds. This function does the casting.
1104void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1105
1106 // Extract the operand's type, we'll need it.
1107 const Type* OpTy = CPV->getType();
1108
1109 // Indicate whether to do the cast or not.
1110 bool shouldCast = false;
1111 bool typeIsSigned = false;
1112
1113 // Based on the Opcode for which this Constant is being written, determine
1114 // the new type to which the operand should be casted by setting the value
1115 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1116 // casted below.
1117 switch (Opcode) {
1118 default:
1119 // for most instructions, it doesn't matter
1120 break;
1121 case Instruction::LShr:
1122 case Instruction::UDiv:
1123 case Instruction::URem:
1124 shouldCast = true;
1125 break;
1126 case Instruction::AShr:
1127 case Instruction::SDiv:
1128 case Instruction::SRem:
1129 shouldCast = true;
1130 typeIsSigned = true;
1131 break;
1132 }
1133
1134 // Write out the casted constant if we should, otherwise just write the
1135 // operand.
1136 if (shouldCast) {
1137 Out << "((";
1138 printSimpleType(Out, OpTy, typeIsSigned);
1139 Out << ")";
1140 printConstant(CPV);
1141 Out << ")";
1142 } else
1143 printConstant(CPV);
1144}
1145
1146std::string CWriter::GetValueName(const Value *Operand) {
1147 std::string Name;
1148
1149 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1150 std::string VarName;
1151
1152 Name = Operand->getName();
1153 VarName.reserve(Name.capacity());
1154
1155 for (std::string::iterator I = Name.begin(), E = Name.end();
1156 I != E; ++I) {
1157 char ch = *I;
1158
1159 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001160 (ch >= '0' && ch <= '9') || ch == '_')) {
1161 char buffer[5];
1162 sprintf(buffer, "_%x_", ch);
1163 VarName += buffer;
1164 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001165 VarName += ch;
1166 }
1167
1168 Name = "llvm_cbe_" + VarName;
1169 } else {
1170 Name = Mang->getValueName(Operand);
1171 }
1172
1173 return Name;
1174}
1175
1176void CWriter::writeOperandInternal(Value *Operand) {
1177 if (Instruction *I = dyn_cast<Instruction>(Operand))
1178 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1179 // Should we inline this instruction to build a tree?
1180 Out << '(';
1181 visit(*I);
1182 Out << ')';
1183 return;
1184 }
1185
1186 Constant* CPV = dyn_cast<Constant>(Operand);
1187
1188 if (CPV && !isa<GlobalValue>(CPV))
1189 printConstant(CPV);
1190 else
1191 Out << GetValueName(Operand);
1192}
1193
1194void CWriter::writeOperandRaw(Value *Operand) {
1195 Constant* CPV = dyn_cast<Constant>(Operand);
1196 if (CPV && !isa<GlobalValue>(CPV)) {
1197 printConstant(CPV);
1198 } else {
1199 Out << GetValueName(Operand);
1200 }
1201}
1202
1203void CWriter::writeOperand(Value *Operand) {
Evan Chengc25c7742008-02-20 18:32:05 +00001204 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001205 Out << "(&"; // Global variables are referenced as their addresses by llvm
1206
1207 writeOperandInternal(Operand);
1208
Evan Chengc25c7742008-02-20 18:32:05 +00001209 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 Out << ')';
1211}
1212
1213// Some instructions need to have their result value casted back to the
1214// original types because their operands were casted to the expected type.
1215// This function takes care of detecting that case and printing the cast
1216// for the Instruction.
1217bool CWriter::writeInstructionCast(const Instruction &I) {
1218 const Type *Ty = I.getOperand(0)->getType();
1219 switch (I.getOpcode()) {
1220 case Instruction::LShr:
1221 case Instruction::URem:
1222 case Instruction::UDiv:
1223 Out << "((";
1224 printSimpleType(Out, Ty, false);
1225 Out << ")(";
1226 return true;
1227 case Instruction::AShr:
1228 case Instruction::SRem:
1229 case Instruction::SDiv:
1230 Out << "((";
1231 printSimpleType(Out, Ty, true);
1232 Out << ")(";
1233 return true;
1234 default: break;
1235 }
1236 return false;
1237}
1238
1239// Write the operand with a cast to another type based on the Opcode being used.
1240// This will be used in cases where an instruction has specific type
1241// requirements (usually signedness) for its operands.
1242void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1243
1244 // Extract the operand's type, we'll need it.
1245 const Type* OpTy = Operand->getType();
1246
1247 // Indicate whether to do the cast or not.
1248 bool shouldCast = false;
1249
1250 // Indicate whether the cast should be to a signed type or not.
1251 bool castIsSigned = false;
1252
1253 // Based on the Opcode for which this Operand is being written, determine
1254 // the new type to which the operand should be casted by setting the value
1255 // of OpTy. If we change OpTy, also set shouldCast to true.
1256 switch (Opcode) {
1257 default:
1258 // for most instructions, it doesn't matter
1259 break;
1260 case Instruction::LShr:
1261 case Instruction::UDiv:
1262 case Instruction::URem: // Cast to unsigned first
1263 shouldCast = true;
1264 castIsSigned = false;
1265 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001266 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 case Instruction::AShr:
1268 case Instruction::SDiv:
1269 case Instruction::SRem: // Cast to signed first
1270 shouldCast = true;
1271 castIsSigned = true;
1272 break;
1273 }
1274
1275 // Write out the casted operand if we should, otherwise just write the
1276 // operand.
1277 if (shouldCast) {
1278 Out << "((";
1279 printSimpleType(Out, OpTy, castIsSigned);
1280 Out << ")";
1281 writeOperand(Operand);
1282 Out << ")";
1283 } else
1284 writeOperand(Operand);
1285}
1286
1287// Write the operand with a cast to another type based on the icmp predicate
1288// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001289void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1290 // This has to do a cast to ensure the operand has the right signedness.
1291 // Also, if the operand is a pointer, we make sure to cast to an integer when
1292 // doing the comparison both for signedness and so that the C compiler doesn't
1293 // optimize things like "p < NULL" to false (p may contain an integer value
1294 // f.e.).
1295 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296
1297 // Write out the casted operand if we should, otherwise just write the
1298 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001299 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001301 return;
1302 }
1303
1304 // Should this be a signed comparison? If so, convert to signed.
1305 bool castIsSigned = Cmp.isSignedPredicate();
1306
1307 // If the operand was a pointer, convert to a large integer type.
1308 const Type* OpTy = Operand->getType();
1309 if (isa<PointerType>(OpTy))
1310 OpTy = TD->getIntPtrType();
1311
1312 Out << "((";
1313 printSimpleType(Out, OpTy, castIsSigned);
1314 Out << ")";
1315 writeOperand(Operand);
1316 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001317}
1318
1319// generateCompilerSpecificCode - This is where we add conditional compilation
1320// directives to cater to specific compilers as need be.
1321//
1322static void generateCompilerSpecificCode(std::ostream& Out) {
1323 // Alloca is hard to get, and we don't want to include stdlib.h here.
1324 Out << "/* get a declaration for alloca */\n"
1325 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1326 << "#define alloca(x) __builtin_alloca((x))\n"
1327 << "#define _alloca(x) __builtin_alloca((x))\n"
1328 << "#elif defined(__APPLE__)\n"
1329 << "extern void *__builtin_alloca(unsigned long);\n"
1330 << "#define alloca(x) __builtin_alloca(x)\n"
1331 << "#define longjmp _longjmp\n"
1332 << "#define setjmp _setjmp\n"
1333 << "#elif defined(__sun__)\n"
1334 << "#if defined(__sparcv9)\n"
1335 << "extern void *__builtin_alloca(unsigned long);\n"
1336 << "#else\n"
1337 << "extern void *__builtin_alloca(unsigned int);\n"
1338 << "#endif\n"
1339 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001340 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341 << "#define alloca(x) __builtin_alloca(x)\n"
1342 << "#elif defined(_MSC_VER)\n"
1343 << "#define inline _inline\n"
1344 << "#define alloca(x) _alloca(x)\n"
1345 << "#else\n"
1346 << "#include <alloca.h>\n"
1347 << "#endif\n\n";
1348
1349 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1350 // If we aren't being compiled with GCC, just drop these attributes.
1351 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1352 << "#define __attribute__(X)\n"
1353 << "#endif\n\n";
1354
1355 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1356 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1357 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1358 << "#elif defined(__GNUC__)\n"
1359 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1360 << "#else\n"
1361 << "#define __EXTERNAL_WEAK__\n"
1362 << "#endif\n\n";
1363
1364 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1365 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1366 << "#define __ATTRIBUTE_WEAK__\n"
1367 << "#elif defined(__GNUC__)\n"
1368 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1369 << "#else\n"
1370 << "#define __ATTRIBUTE_WEAK__\n"
1371 << "#endif\n\n";
1372
1373 // Add hidden visibility support. FIXME: APPLE_CC?
1374 Out << "#if defined(__GNUC__)\n"
1375 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1376 << "#endif\n\n";
1377
1378 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1379 // From the GCC documentation:
1380 //
1381 // double __builtin_nan (const char *str)
1382 //
1383 // This is an implementation of the ISO C99 function nan.
1384 //
1385 // Since ISO C99 defines this function in terms of strtod, which we do
1386 // not implement, a description of the parsing is in order. The string is
1387 // parsed as by strtol; that is, the base is recognized by leading 0 or
1388 // 0x prefixes. The number parsed is placed in the significand such that
1389 // the least significant bit of the number is at the least significant
1390 // bit of the significand. The number is truncated to fit the significand
1391 // field provided. The significand is forced to be a quiet NaN.
1392 //
1393 // This function, if given a string literal, is evaluated early enough
1394 // that it is considered a compile-time constant.
1395 //
1396 // float __builtin_nanf (const char *str)
1397 //
1398 // Similar to __builtin_nan, except the return type is float.
1399 //
1400 // double __builtin_inf (void)
1401 //
1402 // Similar to __builtin_huge_val, except a warning is generated if the
1403 // target floating-point format does not support infinities. This
1404 // function is suitable for implementing the ISO C99 macro INFINITY.
1405 //
1406 // float __builtin_inff (void)
1407 //
1408 // Similar to __builtin_inf, except the return type is float.
1409 Out << "#ifdef __GNUC__\n"
1410 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1411 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1412 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1413 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1414 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1415 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1416 << "#define LLVM_PREFETCH(addr,rw,locality) "
1417 "__builtin_prefetch(addr,rw,locality)\n"
1418 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1419 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1420 << "#define LLVM_ASM __asm__\n"
1421 << "#else\n"
1422 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1423 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1424 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1425 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1426 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1427 << "#define LLVM_INFF 0.0F /* Float */\n"
1428 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1429 << "#define __ATTRIBUTE_CTOR__\n"
1430 << "#define __ATTRIBUTE_DTOR__\n"
1431 << "#define LLVM_ASM(X)\n"
1432 << "#endif\n\n";
1433
1434 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1435 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1436 << "#define __builtin_stack_restore(X) /* noop */\n"
1437 << "#endif\n\n";
1438
1439 // Output target-specific code that should be inserted into main.
1440 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001441}
1442
1443/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1444/// the StaticTors set.
1445static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1446 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1447 if (!InitList) return;
1448
1449 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1450 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1451 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1452
1453 if (CS->getOperand(1)->isNullValue())
1454 return; // Found a null terminator, exit printing.
1455 Constant *FP = CS->getOperand(1);
1456 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1457 if (CE->isCast())
1458 FP = CE->getOperand(0);
1459 if (Function *F = dyn_cast<Function>(FP))
1460 StaticTors.insert(F);
1461 }
1462}
1463
1464enum SpecialGlobalClass {
1465 NotSpecial = 0,
1466 GlobalCtors, GlobalDtors,
1467 NotPrinted
1468};
1469
1470/// getGlobalVariableClass - If this is a global that is specially recognized
1471/// by LLVM, return a code that indicates how we should handle it.
1472static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1473 // If this is a global ctors/dtors list, handle it now.
1474 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1475 if (GV->getName() == "llvm.global_ctors")
1476 return GlobalCtors;
1477 else if (GV->getName() == "llvm.global_dtors")
1478 return GlobalDtors;
1479 }
1480
1481 // Otherwise, it it is other metadata, don't print it. This catches things
1482 // like debug information.
1483 if (GV->getSection() == "llvm.metadata")
1484 return NotPrinted;
1485
1486 return NotSpecial;
1487}
1488
1489
1490bool CWriter::doInitialization(Module &M) {
1491 // Initialize
1492 TheModule = &M;
1493
1494 TD = new TargetData(&M);
1495 IL = new IntrinsicLowering(*TD);
1496 IL->AddPrototypes(M);
1497
1498 // Ensure that all structure types have names...
1499 Mang = new Mangler(M);
1500 Mang->markCharUnacceptable('.');
1501
1502 // Keep track of which functions are static ctors/dtors so they can have
1503 // an attribute added to their prototypes.
1504 std::set<Function*> StaticCtors, StaticDtors;
1505 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1506 I != E; ++I) {
1507 switch (getGlobalVariableClass(I)) {
1508 default: break;
1509 case GlobalCtors:
1510 FindStaticTors(I, StaticCtors);
1511 break;
1512 case GlobalDtors:
1513 FindStaticTors(I, StaticDtors);
1514 break;
1515 }
1516 }
1517
1518 // get declaration for alloca
1519 Out << "/* Provide Declarations */\n";
1520 Out << "#include <stdarg.h>\n"; // Varargs support
1521 Out << "#include <setjmp.h>\n"; // Unwind support
1522 generateCompilerSpecificCode(Out);
1523
1524 // Provide a definition for `bool' if not compiling with a C++ compiler.
1525 Out << "\n"
1526 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1527
1528 << "\n\n/* Support for floating point constants */\n"
1529 << "typedef unsigned long long ConstantDoubleTy;\n"
1530 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001531 << "typedef struct { unsigned long long f1; unsigned short f2; "
1532 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001533 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001534 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1535 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536 << "\n\n/* Global Declarations */\n";
1537
1538 // First output all the declarations for the program, because C requires
1539 // Functions & globals to be declared before they are used.
1540 //
1541
1542 // Loop over the symbol table, emitting all named constants...
1543 printModuleTypes(M.getTypeSymbolTable());
1544
1545 // Global variable declarations...
1546 if (!M.global_empty()) {
1547 Out << "\n/* External Global Variable Declarations */\n";
1548 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1549 I != E; ++I) {
1550
1551 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1552 Out << "extern ";
1553 else if (I->hasDLLImportLinkage())
1554 Out << "__declspec(dllimport) ";
1555 else
1556 continue; // Internal Global
1557
1558 // Thread Local Storage
1559 if (I->isThreadLocal())
1560 Out << "__thread ";
1561
1562 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1563
1564 if (I->hasExternalWeakLinkage())
1565 Out << " __EXTERNAL_WEAK__";
1566 Out << ";\n";
1567 }
1568 }
1569
1570 // Function declarations
1571 Out << "\n/* Function Declarations */\n";
1572 Out << "double fmod(double, double);\n"; // Support for FP rem
1573 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001574 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001575
1576 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1577 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001578 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001579 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1580 if (I->hasExternalWeakLinkage())
1581 Out << "extern ";
1582 printFunctionSignature(I, true);
1583 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1584 Out << " __ATTRIBUTE_WEAK__";
1585 if (I->hasExternalWeakLinkage())
1586 Out << " __EXTERNAL_WEAK__";
1587 if (StaticCtors.count(I))
1588 Out << " __ATTRIBUTE_CTOR__";
1589 if (StaticDtors.count(I))
1590 Out << " __ATTRIBUTE_DTOR__";
1591 if (I->hasHiddenVisibility())
1592 Out << " __HIDDEN__";
1593
1594 if (I->hasName() && I->getName()[0] == 1)
1595 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1596
1597 Out << ";\n";
1598 }
1599 }
1600
1601 // Output the global variable declarations
1602 if (!M.global_empty()) {
1603 Out << "\n\n/* Global Variable Declarations */\n";
1604 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1605 I != E; ++I)
1606 if (!I->isDeclaration()) {
1607 // Ignore special globals, such as debug info.
1608 if (getGlobalVariableClass(I))
1609 continue;
1610
1611 if (I->hasInternalLinkage())
1612 Out << "static ";
1613 else
1614 Out << "extern ";
1615
1616 // Thread Local Storage
1617 if (I->isThreadLocal())
1618 Out << "__thread ";
1619
1620 printType(Out, I->getType()->getElementType(), false,
1621 GetValueName(I));
1622
1623 if (I->hasLinkOnceLinkage())
1624 Out << " __attribute__((common))";
1625 else if (I->hasWeakLinkage())
1626 Out << " __ATTRIBUTE_WEAK__";
1627 else if (I->hasExternalWeakLinkage())
1628 Out << " __EXTERNAL_WEAK__";
1629 if (I->hasHiddenVisibility())
1630 Out << " __HIDDEN__";
1631 Out << ";\n";
1632 }
1633 }
1634
1635 // Output the global variable definitions and contents...
1636 if (!M.global_empty()) {
1637 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1638 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1639 I != E; ++I)
1640 if (!I->isDeclaration()) {
1641 // Ignore special globals, such as debug info.
1642 if (getGlobalVariableClass(I))
1643 continue;
1644
1645 if (I->hasInternalLinkage())
1646 Out << "static ";
1647 else if (I->hasDLLImportLinkage())
1648 Out << "__declspec(dllimport) ";
1649 else if (I->hasDLLExportLinkage())
1650 Out << "__declspec(dllexport) ";
1651
1652 // Thread Local Storage
1653 if (I->isThreadLocal())
1654 Out << "__thread ";
1655
1656 printType(Out, I->getType()->getElementType(), false,
1657 GetValueName(I));
1658 if (I->hasLinkOnceLinkage())
1659 Out << " __attribute__((common))";
1660 else if (I->hasWeakLinkage())
1661 Out << " __ATTRIBUTE_WEAK__";
1662
1663 if (I->hasHiddenVisibility())
1664 Out << " __HIDDEN__";
1665
1666 // If the initializer is not null, emit the initializer. If it is null,
1667 // we try to avoid emitting large amounts of zeros. The problem with
1668 // this, however, occurs when the variable has weak linkage. In this
1669 // case, the assembler will complain about the variable being both weak
1670 // and common, so we disable this optimization.
1671 if (!I->getInitializer()->isNullValue()) {
1672 Out << " = " ;
1673 writeOperand(I->getInitializer());
1674 } else if (I->hasWeakLinkage()) {
1675 // We have to specify an initializer, but it doesn't have to be
1676 // complete. If the value is an aggregate, print out { 0 }, and let
1677 // the compiler figure out the rest of the zeros.
1678 Out << " = " ;
1679 if (isa<StructType>(I->getInitializer()->getType()) ||
1680 isa<ArrayType>(I->getInitializer()->getType()) ||
1681 isa<VectorType>(I->getInitializer()->getType())) {
1682 Out << "{ 0 }";
1683 } else {
1684 // Just print it out normally.
1685 writeOperand(I->getInitializer());
1686 }
1687 }
1688 Out << ";\n";
1689 }
1690 }
1691
1692 if (!M.empty())
1693 Out << "\n\n/* Function Bodies */\n";
1694
1695 // Emit some helper functions for dealing with FCMP instruction's
1696 // predicates
1697 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1698 Out << "return X == X && Y == Y; }\n";
1699 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1700 Out << "return X != X || Y != Y; }\n";
1701 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1702 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1703 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1704 Out << "return X != Y; }\n";
1705 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1706 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1707 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1708 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1709 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1710 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1711 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1712 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1713 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1714 Out << "return X == Y ; }\n";
1715 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1716 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1717 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1718 Out << "return X < Y ; }\n";
1719 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1720 Out << "return X > Y ; }\n";
1721 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1722 Out << "return X <= Y ; }\n";
1723 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1724 Out << "return X >= Y ; }\n";
1725 return false;
1726}
1727
1728
1729/// Output all floating point constants that cannot be printed accurately...
1730void CWriter::printFloatingPointConstants(Function &F) {
1731 // Scan the module for floating point constants. If any FP constant is used
1732 // in the function, we want to redirect it here so that we do not depend on
1733 // the precision of the printed form, unless the printed form preserves
1734 // precision.
1735 //
1736 static unsigned FPCounter = 0;
1737 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1738 I != E; ++I)
1739 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1740 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1741 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001742 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1743
1744 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001745 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001746 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001748 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 << "ULL; /* " << Val << " */\n";
1750 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001751 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001752 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1753 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001755 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001757 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001758 // api needed to prevent premature destruction
1759 APInt api = FPC->getValueAPF().convertToAPInt();
1760 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001761 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1762 << " = { 0x" << std::hex
1763 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1764 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1765 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001766 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1767 APInt api = FPC->getValueAPF().convertToAPInt();
1768 const uint64_t *p = api.getRawData();
1769 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1770 << " = { 0x" << std::hex
1771 << p[0] << ", 0x" << p[1]
1772 << "}; /* Long double constant */\n" << std::dec;
1773
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001774 } else
1775 assert(0 && "Unknown float type!");
1776 }
1777
1778 Out << '\n';
1779}
1780
1781
1782/// printSymbolTable - Run through symbol table looking for type names. If a
1783/// type name is found, emit its declaration...
1784///
1785void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1786 Out << "/* Helper union for bitcasts */\n";
1787 Out << "typedef union {\n";
1788 Out << " unsigned int Int32;\n";
1789 Out << " unsigned long long Int64;\n";
1790 Out << " float Float;\n";
1791 Out << " double Double;\n";
1792 Out << "} llvmBitCastUnion;\n";
1793
1794 // We are only interested in the type plane of the symbol table.
1795 TypeSymbolTable::const_iterator I = TST.begin();
1796 TypeSymbolTable::const_iterator End = TST.end();
1797
1798 // If there are no type names, exit early.
1799 if (I == End) return;
1800
1801 // Print out forward declarations for structure types before anything else!
1802 Out << "/* Structure forward decls */\n";
1803 for (; I != End; ++I) {
1804 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1805 Out << Name << ";\n";
1806 TypeNames.insert(std::make_pair(I->second, Name));
1807 }
1808
1809 Out << '\n';
1810
1811 // Now we can print out typedefs. Above, we guaranteed that this can only be
1812 // for struct or opaque types.
1813 Out << "/* Typedefs */\n";
1814 for (I = TST.begin(); I != End; ++I) {
1815 std::string Name = "l_" + Mang->makeNameProper(I->first);
1816 Out << "typedef ";
1817 printType(Out, I->second, false, Name);
1818 Out << ";\n";
1819 }
1820
1821 Out << '\n';
1822
1823 // Keep track of which structures have been printed so far...
1824 std::set<const StructType *> StructPrinted;
1825
1826 // Loop over all structures then push them into the stack so they are
1827 // printed in the correct order.
1828 //
1829 Out << "/* Structure contents */\n";
1830 for (I = TST.begin(); I != End; ++I)
1831 if (const StructType *STy = dyn_cast<StructType>(I->second))
1832 // Only print out used types!
1833 printContainedStructs(STy, StructPrinted);
1834}
1835
1836// Push the struct onto the stack and recursively push all structs
1837// this one depends on.
1838//
1839// TODO: Make this work properly with vector types
1840//
1841void CWriter::printContainedStructs(const Type *Ty,
1842 std::set<const StructType*> &StructPrinted){
1843 // Don't walk through pointers.
1844 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1845
1846 // Print all contained types first.
1847 for (Type::subtype_iterator I = Ty->subtype_begin(),
1848 E = Ty->subtype_end(); I != E; ++I)
1849 printContainedStructs(*I, StructPrinted);
1850
1851 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1852 // Check to see if we have already printed this struct.
1853 if (StructPrinted.insert(STy).second) {
1854 // Print structure type out.
1855 std::string Name = TypeNames[STy];
1856 printType(Out, STy, false, Name, true);
1857 Out << ";\n\n";
1858 }
1859 }
1860}
1861
1862void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1863 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001864 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001865
1866 if (F->hasInternalLinkage()) Out << "static ";
1867 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1868 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1869 switch (F->getCallingConv()) {
1870 case CallingConv::X86_StdCall:
1871 Out << "__stdcall ";
1872 break;
1873 case CallingConv::X86_FastCall:
1874 Out << "__fastcall ";
1875 break;
1876 }
1877
1878 // Loop over the arguments, printing them...
1879 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001880 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881
1882 std::stringstream FunctionInnards;
1883
1884 // Print out the name...
1885 FunctionInnards << GetValueName(F) << '(';
1886
1887 bool PrintedArg = false;
1888 if (!F->isDeclaration()) {
1889 if (!F->arg_empty()) {
1890 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001891 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001892
1893 // If this is a struct-return function, don't print the hidden
1894 // struct-return argument.
1895 if (isStructReturn) {
1896 assert(I != E && "Invalid struct return function!");
1897 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001898 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001899 }
1900
1901 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001902 for (; I != E; ++I) {
1903 if (PrintedArg) FunctionInnards << ", ";
1904 if (I->hasName() || !Prototype)
1905 ArgName = GetValueName(I);
1906 else
1907 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001908 const Type *ArgTy = I->getType();
Evan Cheng17254e62008-01-11 09:12:49 +00001909 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1910 assert(isa<PointerType>(ArgTy));
1911 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1912 const Value *Arg = &(*I);
1913 ByValParams.insert(Arg);
1914 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001915 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001916 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001917 ArgName);
1918 PrintedArg = true;
1919 ++Idx;
1920 }
1921 }
1922 } else {
1923 // Loop over the arguments, printing them.
1924 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001925 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001926
1927 // If this is a struct-return function, don't print the hidden
1928 // struct-return argument.
1929 if (isStructReturn) {
1930 assert(I != E && "Invalid struct return function!");
1931 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001932 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001933 }
1934
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001935 for (; I != E; ++I) {
1936 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001937 const Type *ArgTy = *I;
1938 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1939 assert(isa<PointerType>(ArgTy));
1940 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1941 }
1942 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001943 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944 PrintedArg = true;
1945 ++Idx;
1946 }
1947 }
1948
1949 // Finish printing arguments... if this is a vararg function, print the ...,
1950 // unless there are no known types, in which case, we just emit ().
1951 //
1952 if (FT->isVarArg() && PrintedArg) {
1953 if (PrintedArg) FunctionInnards << ", ";
1954 FunctionInnards << "..."; // Output varargs portion of signature!
1955 } else if (!FT->isVarArg() && !PrintedArg) {
1956 FunctionInnards << "void"; // ret() -> ret(void) in C.
1957 }
1958 FunctionInnards << ')';
1959
1960 // Get the return tpe for the function.
1961 const Type *RetTy;
1962 if (!isStructReturn)
1963 RetTy = F->getReturnType();
1964 else {
1965 // If this is a struct-return function, print the struct-return type.
1966 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1967 }
1968
1969 // Print out the return type and the signature built above.
1970 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001971 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001972 FunctionInnards.str());
1973}
1974
1975static inline bool isFPIntBitCast(const Instruction &I) {
1976 if (!isa<BitCastInst>(I))
1977 return false;
1978 const Type *SrcTy = I.getOperand(0)->getType();
1979 const Type *DstTy = I.getType();
1980 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1981 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1982}
1983
1984void CWriter::printFunction(Function &F) {
1985 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001986 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001987
1988 printFunctionSignature(&F, false);
1989 Out << " {\n";
1990
1991 // If this is a struct return function, handle the result with magic.
1992 if (isStructReturn) {
1993 const Type *StructTy =
1994 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1995 Out << " ";
1996 printType(Out, StructTy, false, "StructReturn");
1997 Out << "; /* Struct return temporary */\n";
1998
1999 Out << " ";
2000 printType(Out, F.arg_begin()->getType(), false,
2001 GetValueName(F.arg_begin()));
2002 Out << " = &StructReturn;\n";
2003 }
2004
2005 bool PrintedVar = false;
2006
2007 // print local variable information for the function
2008 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2009 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2010 Out << " ";
2011 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2012 Out << "; /* Address-exposed local */\n";
2013 PrintedVar = true;
2014 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2015 Out << " ";
2016 printType(Out, I->getType(), false, GetValueName(&*I));
2017 Out << ";\n";
2018
2019 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2020 Out << " ";
2021 printType(Out, I->getType(), false,
2022 GetValueName(&*I)+"__PHI_TEMPORARY");
2023 Out << ";\n";
2024 }
2025 PrintedVar = true;
2026 }
2027 // We need a temporary for the BitCast to use so it can pluck a value out
2028 // of a union to do the BitCast. This is separate from the need for a
2029 // variable to hold the result of the BitCast.
2030 if (isFPIntBitCast(*I)) {
2031 Out << " llvmBitCastUnion " << GetValueName(&*I)
2032 << "__BITCAST_TEMPORARY;\n";
2033 PrintedVar = true;
2034 }
2035 }
2036
2037 if (PrintedVar)
2038 Out << '\n';
2039
2040 if (F.hasExternalLinkage() && F.getName() == "main")
2041 Out << " CODE_FOR_MAIN();\n";
2042
2043 // print the basic blocks
2044 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2045 if (Loop *L = LI->getLoopFor(BB)) {
2046 if (L->getHeader() == BB && L->getParentLoop() == 0)
2047 printLoop(L);
2048 } else {
2049 printBasicBlock(BB);
2050 }
2051 }
2052
2053 Out << "}\n\n";
2054}
2055
2056void CWriter::printLoop(Loop *L) {
2057 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2058 << "' to make GCC happy */\n";
2059 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2060 BasicBlock *BB = L->getBlocks()[i];
2061 Loop *BBLoop = LI->getLoopFor(BB);
2062 if (BBLoop == L)
2063 printBasicBlock(BB);
2064 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2065 printLoop(BBLoop);
2066 }
2067 Out << " } while (1); /* end of syntactic loop '"
2068 << L->getHeader()->getName() << "' */\n";
2069}
2070
2071void CWriter::printBasicBlock(BasicBlock *BB) {
2072
2073 // Don't print the label for the basic block if there are no uses, or if
2074 // the only terminator use is the predecessor basic block's terminator.
2075 // We have to scan the use list because PHI nodes use basic blocks too but
2076 // do not require a label to be generated.
2077 //
2078 bool NeedsLabel = false;
2079 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2080 if (isGotoCodeNecessary(*PI, BB)) {
2081 NeedsLabel = true;
2082 break;
2083 }
2084
2085 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2086
2087 // Output all of the instructions in the basic block...
2088 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2089 ++II) {
2090 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2091 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2092 outputLValue(II);
2093 else
2094 Out << " ";
2095 visit(*II);
2096 Out << ";\n";
2097 }
2098 }
2099
2100 // Don't emit prefix or suffix for the terminator...
2101 visit(*BB->getTerminator());
2102}
2103
2104
2105// Specific Instruction type classes... note that all of the casts are
2106// necessary because we use the instruction classes as opaque types...
2107//
2108void CWriter::visitReturnInst(ReturnInst &I) {
2109 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002110 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002111
2112 if (isStructReturn) {
2113 Out << " return StructReturn;\n";
2114 return;
2115 }
2116
2117 // Don't output a void return if this is the last basic block in the function
2118 if (I.getNumOperands() == 0 &&
2119 &*--I.getParent()->getParent()->end() == I.getParent() &&
2120 !I.getParent()->size() == 1) {
2121 return;
2122 }
2123
2124 Out << " return";
2125 if (I.getNumOperands()) {
2126 Out << ' ';
2127 writeOperand(I.getOperand(0));
2128 }
2129 Out << ";\n";
2130}
2131
2132void CWriter::visitSwitchInst(SwitchInst &SI) {
2133
2134 Out << " switch (";
2135 writeOperand(SI.getOperand(0));
2136 Out << ") {\n default:\n";
2137 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2138 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2139 Out << ";\n";
2140 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2141 Out << " case ";
2142 writeOperand(SI.getOperand(i));
2143 Out << ":\n";
2144 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2145 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2146 printBranchToBlock(SI.getParent(), Succ, 2);
2147 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2148 Out << " break;\n";
2149 }
2150 Out << " }\n";
2151}
2152
2153void CWriter::visitUnreachableInst(UnreachableInst &I) {
2154 Out << " /*UNREACHABLE*/;\n";
2155}
2156
2157bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2158 /// FIXME: This should be reenabled, but loop reordering safe!!
2159 return true;
2160
2161 if (next(Function::iterator(From)) != Function::iterator(To))
2162 return true; // Not the direct successor, we need a goto.
2163
2164 //isa<SwitchInst>(From->getTerminator())
2165
2166 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2167 return true;
2168 return false;
2169}
2170
2171void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2172 BasicBlock *Successor,
2173 unsigned Indent) {
2174 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2175 PHINode *PN = cast<PHINode>(I);
2176 // Now we have to do the printing.
2177 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2178 if (!isa<UndefValue>(IV)) {
2179 Out << std::string(Indent, ' ');
2180 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2181 writeOperand(IV);
2182 Out << "; /* for PHI node */\n";
2183 }
2184 }
2185}
2186
2187void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2188 unsigned Indent) {
2189 if (isGotoCodeNecessary(CurBB, Succ)) {
2190 Out << std::string(Indent, ' ') << " goto ";
2191 writeOperand(Succ);
2192 Out << ";\n";
2193 }
2194}
2195
2196// Branch instruction printing - Avoid printing out a branch to a basic block
2197// that immediately succeeds the current one.
2198//
2199void CWriter::visitBranchInst(BranchInst &I) {
2200
2201 if (I.isConditional()) {
2202 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2203 Out << " if (";
2204 writeOperand(I.getCondition());
2205 Out << ") {\n";
2206
2207 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2208 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2209
2210 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2211 Out << " } else {\n";
2212 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2213 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2214 }
2215 } else {
2216 // First goto not necessary, assume second one is...
2217 Out << " if (!";
2218 writeOperand(I.getCondition());
2219 Out << ") {\n";
2220
2221 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2222 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2223 }
2224
2225 Out << " }\n";
2226 } else {
2227 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2228 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2229 }
2230 Out << "\n";
2231}
2232
2233// PHI nodes get copied into temporary values at the end of predecessor basic
2234// blocks. We now need to copy these temporary values into the REAL value for
2235// the PHI.
2236void CWriter::visitPHINode(PHINode &I) {
2237 writeOperand(&I);
2238 Out << "__PHI_TEMPORARY";
2239}
2240
2241
2242void CWriter::visitBinaryOperator(Instruction &I) {
2243 // binary instructions, shift instructions, setCond instructions.
2244 assert(!isa<PointerType>(I.getType()));
2245
2246 // We must cast the results of binary operations which might be promoted.
2247 bool needsCast = false;
2248 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2249 || (I.getType() == Type::FloatTy)) {
2250 needsCast = true;
2251 Out << "((";
2252 printType(Out, I.getType(), false);
2253 Out << ")(";
2254 }
2255
2256 // If this is a negation operation, print it out as such. For FP, we don't
2257 // want to print "-0.0 - X".
2258 if (BinaryOperator::isNeg(&I)) {
2259 Out << "-(";
2260 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2261 Out << ")";
2262 } else if (I.getOpcode() == Instruction::FRem) {
2263 // Output a call to fmod/fmodf instead of emitting a%b
2264 if (I.getType() == Type::FloatTy)
2265 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002266 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002267 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002268 else // all 3 flavors of long double
2269 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002270 writeOperand(I.getOperand(0));
2271 Out << ", ";
2272 writeOperand(I.getOperand(1));
2273 Out << ")";
2274 } else {
2275
2276 // Write out the cast of the instruction's value back to the proper type
2277 // if necessary.
2278 bool NeedsClosingParens = writeInstructionCast(I);
2279
2280 // Certain instructions require the operand to be forced to a specific type
2281 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2282 // below for operand 1
2283 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2284
2285 switch (I.getOpcode()) {
2286 case Instruction::Add: Out << " + "; break;
2287 case Instruction::Sub: Out << " - "; break;
2288 case Instruction::Mul: Out << " * "; break;
2289 case Instruction::URem:
2290 case Instruction::SRem:
2291 case Instruction::FRem: Out << " % "; break;
2292 case Instruction::UDiv:
2293 case Instruction::SDiv:
2294 case Instruction::FDiv: Out << " / "; break;
2295 case Instruction::And: Out << " & "; break;
2296 case Instruction::Or: Out << " | "; break;
2297 case Instruction::Xor: Out << " ^ "; break;
2298 case Instruction::Shl : Out << " << "; break;
2299 case Instruction::LShr:
2300 case Instruction::AShr: Out << " >> "; break;
2301 default: cerr << "Invalid operator type!" << I; abort();
2302 }
2303
2304 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2305 if (NeedsClosingParens)
2306 Out << "))";
2307 }
2308
2309 if (needsCast) {
2310 Out << "))";
2311 }
2312}
2313
2314void CWriter::visitICmpInst(ICmpInst &I) {
2315 // We must cast the results of icmp which might be promoted.
2316 bool needsCast = false;
2317
2318 // Write out the cast of the instruction's value back to the proper type
2319 // if necessary.
2320 bool NeedsClosingParens = writeInstructionCast(I);
2321
2322 // Certain icmp predicate require the operand to be forced to a specific type
2323 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2324 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002325 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002326
2327 switch (I.getPredicate()) {
2328 case ICmpInst::ICMP_EQ: Out << " == "; break;
2329 case ICmpInst::ICMP_NE: Out << " != "; break;
2330 case ICmpInst::ICMP_ULE:
2331 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2332 case ICmpInst::ICMP_UGE:
2333 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2334 case ICmpInst::ICMP_ULT:
2335 case ICmpInst::ICMP_SLT: Out << " < "; break;
2336 case ICmpInst::ICMP_UGT:
2337 case ICmpInst::ICMP_SGT: Out << " > "; break;
2338 default: cerr << "Invalid icmp predicate!" << I; abort();
2339 }
2340
Chris Lattner389c9142007-09-15 06:51:03 +00002341 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002342 if (NeedsClosingParens)
2343 Out << "))";
2344
2345 if (needsCast) {
2346 Out << "))";
2347 }
2348}
2349
2350void CWriter::visitFCmpInst(FCmpInst &I) {
2351 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2352 Out << "0";
2353 return;
2354 }
2355 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2356 Out << "1";
2357 return;
2358 }
2359
2360 const char* op = 0;
2361 switch (I.getPredicate()) {
2362 default: assert(0 && "Illegal FCmp predicate");
2363 case FCmpInst::FCMP_ORD: op = "ord"; break;
2364 case FCmpInst::FCMP_UNO: op = "uno"; break;
2365 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2366 case FCmpInst::FCMP_UNE: op = "une"; break;
2367 case FCmpInst::FCMP_ULT: op = "ult"; break;
2368 case FCmpInst::FCMP_ULE: op = "ule"; break;
2369 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2370 case FCmpInst::FCMP_UGE: op = "uge"; break;
2371 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2372 case FCmpInst::FCMP_ONE: op = "one"; break;
2373 case FCmpInst::FCMP_OLT: op = "olt"; break;
2374 case FCmpInst::FCMP_OLE: op = "ole"; break;
2375 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2376 case FCmpInst::FCMP_OGE: op = "oge"; break;
2377 }
2378
2379 Out << "llvm_fcmp_" << op << "(";
2380 // Write the first operand
2381 writeOperand(I.getOperand(0));
2382 Out << ", ";
2383 // Write the second operand
2384 writeOperand(I.getOperand(1));
2385 Out << ")";
2386}
2387
2388static const char * getFloatBitCastField(const Type *Ty) {
2389 switch (Ty->getTypeID()) {
2390 default: assert(0 && "Invalid Type");
2391 case Type::FloatTyID: return "Float";
2392 case Type::DoubleTyID: return "Double";
2393 case Type::IntegerTyID: {
2394 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2395 if (NumBits <= 32)
2396 return "Int32";
2397 else
2398 return "Int64";
2399 }
2400 }
2401}
2402
2403void CWriter::visitCastInst(CastInst &I) {
2404 const Type *DstTy = I.getType();
2405 const Type *SrcTy = I.getOperand(0)->getType();
2406 Out << '(';
2407 if (isFPIntBitCast(I)) {
2408 // These int<->float and long<->double casts need to be handled specially
2409 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2410 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2411 writeOperand(I.getOperand(0));
2412 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2413 << getFloatBitCastField(I.getType());
2414 } else {
2415 printCast(I.getOpcode(), SrcTy, DstTy);
2416 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2417 // Make sure we really get a sext from bool by subtracing the bool from 0
2418 Out << "0-";
2419 }
Evan Cheng17254e62008-01-11 09:12:49 +00002420 // If it's a byval parameter being casted, then takes its address.
2421 bool isByVal = ByValParams.count(I.getOperand(0));
2422 if (isByVal) {
2423 assert(I.getOpcode() == Instruction::BitCast &&
2424 "ByVal aggregate parameter must ptr type");
2425 Out << '&';
2426 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427 writeOperand(I.getOperand(0));
2428 if (DstTy == Type::Int1Ty &&
2429 (I.getOpcode() == Instruction::Trunc ||
2430 I.getOpcode() == Instruction::FPToUI ||
2431 I.getOpcode() == Instruction::FPToSI ||
2432 I.getOpcode() == Instruction::PtrToInt)) {
2433 // Make sure we really get a trunc to bool by anding the operand with 1
2434 Out << "&1u";
2435 }
2436 }
2437 Out << ')';
2438}
2439
2440void CWriter::visitSelectInst(SelectInst &I) {
2441 Out << "((";
2442 writeOperand(I.getCondition());
2443 Out << ") ? (";
2444 writeOperand(I.getTrueValue());
2445 Out << ") : (";
2446 writeOperand(I.getFalseValue());
2447 Out << "))";
2448}
2449
2450
2451void CWriter::lowerIntrinsics(Function &F) {
2452 // This is used to keep track of intrinsics that get generated to a lowered
2453 // function. We must generate the prototypes before the function body which
2454 // will only be expanded on first use (by the loop below).
2455 std::vector<Function*> prototypesToGen;
2456
2457 // Examine all the instructions in this function to find the intrinsics that
2458 // need to be lowered.
2459 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2460 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2461 if (CallInst *CI = dyn_cast<CallInst>(I++))
2462 if (Function *F = CI->getCalledFunction())
2463 switch (F->getIntrinsicID()) {
2464 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002465 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002466 case Intrinsic::vastart:
2467 case Intrinsic::vacopy:
2468 case Intrinsic::vaend:
2469 case Intrinsic::returnaddress:
2470 case Intrinsic::frameaddress:
2471 case Intrinsic::setjmp:
2472 case Intrinsic::longjmp:
2473 case Intrinsic::prefetch:
2474 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002475 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476 // We directly implement these intrinsics
2477 break;
2478 default:
2479 // If this is an intrinsic that directly corresponds to a GCC
2480 // builtin, we handle it.
2481 const char *BuiltinName = "";
2482#define GET_GCC_BUILTIN_NAME
2483#include "llvm/Intrinsics.gen"
2484#undef GET_GCC_BUILTIN_NAME
2485 // If we handle it, don't lower it.
2486 if (BuiltinName[0]) break;
2487
2488 // All other intrinsic calls we must lower.
2489 Instruction *Before = 0;
2490 if (CI != &BB->front())
2491 Before = prior(BasicBlock::iterator(CI));
2492
2493 IL->LowerIntrinsicCall(CI);
2494 if (Before) { // Move iterator to instruction after call
2495 I = Before; ++I;
2496 } else {
2497 I = BB->begin();
2498 }
2499 // If the intrinsic got lowered to another call, and that call has
2500 // a definition then we need to make sure its prototype is emitted
2501 // before any calls to it.
2502 if (CallInst *Call = dyn_cast<CallInst>(I))
2503 if (Function *NewF = Call->getCalledFunction())
2504 if (!NewF->isDeclaration())
2505 prototypesToGen.push_back(NewF);
2506
2507 break;
2508 }
2509
2510 // We may have collected some prototypes to emit in the loop above.
2511 // Emit them now, before the function that uses them is emitted. But,
2512 // be careful not to emit them twice.
2513 std::vector<Function*>::iterator I = prototypesToGen.begin();
2514 std::vector<Function*>::iterator E = prototypesToGen.end();
2515 for ( ; I != E; ++I) {
2516 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2517 Out << '\n';
2518 printFunctionSignature(*I, true);
2519 Out << ";\n";
2520 }
2521 }
2522}
2523
2524
2525void CWriter::visitCallInst(CallInst &I) {
2526 //check if we have inline asm
2527 if (isInlineAsm(I)) {
2528 visitInlineAsm(I);
2529 return;
2530 }
2531
2532 bool WroteCallee = false;
2533
2534 // Handle intrinsic function calls first...
2535 if (Function *F = I.getCalledFunction())
2536 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2537 switch (ID) {
2538 default: {
2539 // If this is an intrinsic that directly corresponds to a GCC
2540 // builtin, we emit it here.
2541 const char *BuiltinName = "";
2542#define GET_GCC_BUILTIN_NAME
2543#include "llvm/Intrinsics.gen"
2544#undef GET_GCC_BUILTIN_NAME
2545 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2546
2547 Out << BuiltinName;
2548 WroteCallee = true;
2549 break;
2550 }
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002551 case Intrinsic::memory_barrier:
2552 Out << "0; __sync_syncronize()";
2553 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002554 case Intrinsic::vastart:
2555 Out << "0; ";
2556
2557 Out << "va_start(*(va_list*)";
2558 writeOperand(I.getOperand(1));
2559 Out << ", ";
2560 // Output the last argument to the enclosing function...
2561 if (I.getParent()->getParent()->arg_empty()) {
2562 cerr << "The C backend does not currently support zero "
2563 << "argument varargs functions, such as '"
2564 << I.getParent()->getParent()->getName() << "'!\n";
2565 abort();
2566 }
2567 writeOperand(--I.getParent()->getParent()->arg_end());
2568 Out << ')';
2569 return;
2570 case Intrinsic::vaend:
2571 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2572 Out << "0; va_end(*(va_list*)";
2573 writeOperand(I.getOperand(1));
2574 Out << ')';
2575 } else {
2576 Out << "va_end(*(va_list*)0)";
2577 }
2578 return;
2579 case Intrinsic::vacopy:
2580 Out << "0; ";
2581 Out << "va_copy(*(va_list*)";
2582 writeOperand(I.getOperand(1));
2583 Out << ", *(va_list*)";
2584 writeOperand(I.getOperand(2));
2585 Out << ')';
2586 return;
2587 case Intrinsic::returnaddress:
2588 Out << "__builtin_return_address(";
2589 writeOperand(I.getOperand(1));
2590 Out << ')';
2591 return;
2592 case Intrinsic::frameaddress:
2593 Out << "__builtin_frame_address(";
2594 writeOperand(I.getOperand(1));
2595 Out << ')';
2596 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002597 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002598 Out << "__builtin_powi(";
2599 writeOperand(I.getOperand(1));
2600 Out << ", ";
2601 writeOperand(I.getOperand(2));
2602 Out << ')';
2603 return;
2604 case Intrinsic::setjmp:
2605 Out << "setjmp(*(jmp_buf*)";
2606 writeOperand(I.getOperand(1));
2607 Out << ')';
2608 return;
2609 case Intrinsic::longjmp:
2610 Out << "longjmp(*(jmp_buf*)";
2611 writeOperand(I.getOperand(1));
2612 Out << ", ";
2613 writeOperand(I.getOperand(2));
2614 Out << ')';
2615 return;
2616 case Intrinsic::prefetch:
2617 Out << "LLVM_PREFETCH((const void *)";
2618 writeOperand(I.getOperand(1));
2619 Out << ", ";
2620 writeOperand(I.getOperand(2));
2621 Out << ", ";
2622 writeOperand(I.getOperand(3));
2623 Out << ")";
2624 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002625 case Intrinsic::stacksave:
2626 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2627 // to work around GCC bugs (see PR1809).
2628 Out << "0; *((void**)&" << GetValueName(&I)
2629 << ") = __builtin_stack_save()";
2630 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002631 case Intrinsic::dbg_stoppoint: {
2632 // If we use writeOperand directly we get a "u" suffix which is rejected
2633 // by gcc.
2634 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2635
2636 Out << "\n#line "
2637 << SPI.getLine()
2638 << " \"" << SPI.getDirectory()
2639 << SPI.getFileName() << "\"\n";
2640 return;
2641 }
2642 }
2643 }
2644
2645 Value *Callee = I.getCalledValue();
2646
2647 const PointerType *PTy = cast<PointerType>(Callee->getType());
2648 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2649
2650 // If this is a call to a struct-return function, assign to the first
2651 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002652 const ParamAttrsList *PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002653 bool hasByVal = I.hasByValArgument();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002654 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 if (isStructRet) {
Evan Chengf8956382008-01-11 23:10:11 +00002656 bool isByVal = ByValParams.count(I.getOperand(1));
2657 if (!isByVal) Out << "*(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002658 writeOperand(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002659 if (!isByVal) Out << ")";
2660 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002661 }
2662
2663 if (I.isTailCall()) Out << " /*tail*/ ";
2664
2665 if (!WroteCallee) {
2666 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002667 // the pointer. Ditto for indirect calls with byval arguments.
2668 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002669
2670 // GCC is a real PITA. It does not permit codegening casts of functions to
2671 // function pointers if they are in a call (it generates a trap instruction
2672 // instead!). We work around this by inserting a cast to void* in between
2673 // the function and the function pointer cast. Unfortunately, we can't just
2674 // form the constant expression here, because the folder will immediately
2675 // nuke it.
2676 //
2677 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2678 // that void* and function pointers have the same size. :( To deal with this
2679 // in the common case, we handle casts where the number of arguments passed
2680 // match exactly.
2681 //
2682 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2683 if (CE->isCast())
2684 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2685 NeedsCast = true;
2686 Callee = RF;
2687 }
2688
2689 if (NeedsCast) {
2690 // Ok, just cast the pointer type.
2691 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002692 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002693 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002694 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002695 else if (hasByVal)
2696 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2697 else
2698 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002699 Out << ")(void*)";
2700 }
2701 writeOperand(Callee);
2702 if (NeedsCast) Out << ')';
2703 }
2704
2705 Out << '(';
2706
2707 unsigned NumDeclaredParams = FTy->getNumParams();
2708
2709 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2710 unsigned ArgNo = 0;
2711 if (isStructRet) { // Skip struct return argument.
2712 ++AI;
2713 ++ArgNo;
2714 }
2715
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002716 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002717 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002718 if (PrintedArg) Out << ", ";
2719 if (ArgNo < NumDeclaredParams &&
2720 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2721 Out << '(';
2722 printType(Out, FTy->getParamType(ArgNo),
Evan Chengf8956382008-01-11 23:10:11 +00002723 /*isSigned=*/PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002724 Out << ')';
2725 }
Evan Chengf8956382008-01-11 23:10:11 +00002726 // Check if the argument is expected to be passed by value.
2727 bool isOutByVal = PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::ByVal);
2728 // Check if this argument itself is passed in by reference.
Evan Chengc25c7742008-02-20 18:32:05 +00002729 bool isInByVal = ByValParams.count(*AI);
2730 if (isOutByVal && !isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002731 Out << "*(";
Evan Chengc25c7742008-02-20 18:32:05 +00002732 else if (!isOutByVal && isInByVal)
2733 Out << "&(";
Evan Chengf8956382008-01-11 23:10:11 +00002734 writeOperand(*AI);
Evan Chengc25c7742008-02-20 18:32:05 +00002735 if (isOutByVal ^ isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002736 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002737 PrintedArg = true;
2738 }
2739 Out << ')';
2740}
2741
2742
2743//This converts the llvm constraint string to something gcc is expecting.
2744//TODO: work out platform independent constraints and factor those out
2745// of the per target tables
2746// handle multiple constraint codes
2747std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2748
2749 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2750
2751 const char** table = 0;
2752
2753 //Grab the translation table from TargetAsmInfo if it exists
2754 if (!TAsm) {
2755 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002756 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002757 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2758 if (Match) {
2759 //Per platform Target Machines don't exist, so create it
2760 // this must be done only once
2761 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2762 TAsm = TM->getTargetAsmInfo();
2763 }
2764 }
2765 if (TAsm)
2766 table = TAsm->getAsmCBE();
2767
2768 //Search the translation table if it exists
2769 for (int i = 0; table && table[i]; i += 2)
2770 if (c.Codes[0] == table[i])
2771 return table[i+1];
2772
2773 //default is identity
2774 return c.Codes[0];
2775}
2776
2777//TODO: import logic from AsmPrinter.cpp
2778static std::string gccifyAsm(std::string asmstr) {
2779 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2780 if (asmstr[i] == '\n')
2781 asmstr.replace(i, 1, "\\n");
2782 else if (asmstr[i] == '\t')
2783 asmstr.replace(i, 1, "\\t");
2784 else if (asmstr[i] == '$') {
2785 if (asmstr[i + 1] == '{') {
2786 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2787 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2788 std::string n = "%" +
2789 asmstr.substr(a + 1, b - a - 1) +
2790 asmstr.substr(i + 2, a - i - 2);
2791 asmstr.replace(i, b - i + 1, n);
2792 i += n.size() - 1;
2793 } else
2794 asmstr.replace(i, 1, "%");
2795 }
2796 else if (asmstr[i] == '%')//grr
2797 { asmstr.replace(i, 1, "%%"); ++i;}
2798
2799 return asmstr;
2800}
2801
2802//TODO: assumptions about what consume arguments from the call are likely wrong
2803// handle communitivity
2804void CWriter::visitInlineAsm(CallInst &CI) {
2805 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2806 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2807 std::vector<std::pair<std::string, Value*> > Input;
2808 std::vector<std::pair<std::string, Value*> > Output;
2809 std::string Clobber;
2810 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2811 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2812 E = Constraints.end(); I != E; ++I) {
2813 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2814 std::string c =
2815 InterpretASMConstraint(*I);
2816 switch(I->Type) {
2817 default:
2818 assert(0 && "Unknown asm constraint");
2819 break;
2820 case InlineAsm::isInput: {
2821 if (c.size()) {
2822 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2823 ++count; //consume arg
2824 }
2825 break;
2826 }
2827 case InlineAsm::isOutput: {
2828 if (c.size()) {
2829 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2830 count ? CI.getOperand(count) : &CI));
2831 ++count; //consume arg
2832 }
2833 break;
2834 }
2835 case InlineAsm::isClobber: {
2836 if (c.size())
2837 Clobber += ",\"" + c + "\"";
2838 break;
2839 }
2840 }
2841 }
2842
2843 //fix up the asm string for gcc
2844 std::string asmstr = gccifyAsm(as->getAsmString());
2845
2846 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2847 Out << " :";
2848 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2849 E = Output.end(); I != E; ++I) {
2850 Out << "\"" << I->first << "\"(";
2851 writeOperandRaw(I->second);
2852 Out << ")";
2853 if (I + 1 != E)
2854 Out << ",";
2855 }
2856 Out << "\n :";
2857 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2858 E = Input.end(); I != E; ++I) {
2859 Out << "\"" << I->first << "\"(";
2860 writeOperandRaw(I->second);
2861 Out << ")";
2862 if (I + 1 != E)
2863 Out << ",";
2864 }
2865 if (Clobber.size())
2866 Out << "\n :" << Clobber.substr(1);
2867 Out << ")";
2868}
2869
2870void CWriter::visitMallocInst(MallocInst &I) {
2871 assert(0 && "lowerallocations pass didn't work!");
2872}
2873
2874void CWriter::visitAllocaInst(AllocaInst &I) {
2875 Out << '(';
2876 printType(Out, I.getType());
2877 Out << ") alloca(sizeof(";
2878 printType(Out, I.getType()->getElementType());
2879 Out << ')';
2880 if (I.isArrayAllocation()) {
2881 Out << " * " ;
2882 writeOperand(I.getOperand(0));
2883 }
2884 Out << ')';
2885}
2886
2887void CWriter::visitFreeInst(FreeInst &I) {
2888 assert(0 && "lowerallocations pass didn't work!");
2889}
2890
2891void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2892 gep_type_iterator E) {
2893 bool HasImplicitAddress = false;
2894 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2895 if (isa<GlobalValue>(Ptr)) {
2896 HasImplicitAddress = true;
2897 } else if (isDirectAlloca(Ptr)) {
2898 HasImplicitAddress = true;
2899 }
2900
2901 if (I == E) {
2902 if (!HasImplicitAddress)
2903 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2904
2905 writeOperandInternal(Ptr);
2906 return;
2907 }
2908
2909 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2910 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2911 Out << "(&";
2912
2913 writeOperandInternal(Ptr);
2914
2915 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2916 Out << ')';
2917 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2918 }
2919
Anton Korobeynikov8c90d2a2008-02-20 11:22:39 +00002920 assert((!HasImplicitAddress || (CI && CI->isNullValue())) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921 "Can only have implicit address with direct accessing");
2922
2923 if (HasImplicitAddress) {
2924 ++I;
2925 } else if (CI && CI->isNullValue()) {
2926 gep_type_iterator TmpI = I; ++TmpI;
2927
2928 // Print out the -> operator if possible...
2929 if (TmpI != E && isa<StructType>(*TmpI)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002930 // Check if it's actually an aggregate parameter passed by value.
2931 bool isByVal = ByValParams.count(Ptr);
2932 Out << ((HasImplicitAddress || isByVal) ? "." : "->");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002933 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2934 I = ++TmpI;
2935 }
2936 }
2937
2938 for (; I != E; ++I)
2939 if (isa<StructType>(*I)) {
2940 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2941 } else {
2942 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002943 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002944 Out << ']';
2945 }
2946}
2947
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002948void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
2949 bool IsVolatile, unsigned Alignment) {
2950
2951 bool IsUnaligned = Alignment &&
2952 Alignment < TD->getABITypeAlignment(OperandType);
2953
2954 if (!IsUnaligned)
2955 Out << '*';
2956 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002958 if (IsUnaligned)
2959 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
2960 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
2961 if (IsUnaligned) {
2962 Out << "; } ";
2963 if (IsVolatile) Out << "volatile ";
2964 Out << "*";
2965 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002966 Out << ")";
2967 }
2968
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002969 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002970
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002971 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002972 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002973 if (IsUnaligned)
2974 Out << "->data";
2975 }
2976}
2977
2978void CWriter::visitLoadInst(LoadInst &I) {
2979
2980 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
2981 I.getAlignment());
2982
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002983}
2984
2985void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002986
2987 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
2988 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002989 Out << " = ";
2990 Value *Operand = I.getOperand(0);
2991 Constant *BitMask = 0;
2992 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2993 if (!ITy->isPowerOf2ByteWidth())
2994 // We have a bit width that doesn't match an even power-of-2 byte
2995 // size. Consequently we must & the value with the type's bit mask
2996 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2997 if (BitMask)
2998 Out << "((";
2999 writeOperand(Operand);
3000 if (BitMask) {
3001 Out << ") & ";
3002 printConstant(BitMask);
3003 Out << ")";
3004 }
3005}
3006
3007void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3008 Out << '&';
3009 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
3010 gep_type_end(I));
3011}
3012
3013void CWriter::visitVAArgInst(VAArgInst &I) {
3014 Out << "va_arg(*(va_list*)";
3015 writeOperand(I.getOperand(0));
3016 Out << ", ";
3017 printType(Out, I.getType());
3018 Out << ");\n ";
3019}
3020
3021//===----------------------------------------------------------------------===//
3022// External Interface declaration
3023//===----------------------------------------------------------------------===//
3024
3025bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3026 std::ostream &o,
3027 CodeGenFileType FileType,
3028 bool Fast) {
3029 if (FileType != TargetMachine::AssemblyFile) return true;
3030
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003031 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003032 PM.add(createLowerAllocationsPass(true));
3033 PM.add(createLowerInvokePass());
3034 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3035 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3036 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003037 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003038 return false;
3039}