blob: e92fa5bc8664cf68a9db684d804eeb99f1510a09 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Devang Patel25928cb2008-09-04 23:10:26 +000030 <li><a href="#notes">Function Notes</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
32 <li><a href="#datalayout">Data Layout</a></li>
33 </ol>
34 </li>
35 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038 <li><a href="#t_primitive">Primitive Types</a>
39 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 </ol>
44 </li>
45 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 <li><a href="#t_array">Array Type</a></li>
49 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
51 <li><a href="#t_struct">Structure Type</a></li>
52 <li><a href="#t_pstruct">Packed Structure Type</a></li>
53 <li><a href="#t_vector">Vector Type</a></li>
54 <li><a href="#t_opaque">Opaque Type</a></li>
55 </ol>
56 </li>
57 </ol>
58 </li>
59 <li><a href="#constants">Constants</a>
60 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
67 </li>
68 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
73 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
77 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
79 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
81 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
82 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
83 </ol>
84 </li>
85 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
87 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
90 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
93 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
96 </ol>
97 </li>
98 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
106 </ol>
107 </li>
108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
113 </ol>
114 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
122 <ol>
123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
129 </ol>
130 </li>
131 <li><a href="#convertops">Conversion Operations</a>
132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
145 </ol>
146 <li><a href="#otherops">Other Operations</a>
147 <ol>
148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begeman646fa482008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patela3cc5372008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 </ol>
158 </li>
159 </ol>
160 </li>
161 <li><a href="#intrinsics">Intrinsic Functions</a>
162 <ol>
163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
168 </ol>
169 </li>
170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
175 </ol>
176 </li>
177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
186 </ol>
187 </li>
188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 </ol>
199 </li>
200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
201 <ol>
202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
208 </ol>
209 </li>
210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000242 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 </li>
244 </ol>
245 </li>
246</ol>
247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
251</div>
252
253<!-- *********************************************************************** -->
254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
256
257<div class="doc_text">
258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendlinge7846a52008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner96451482008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
264</div>
265
266<!-- *********************************************************************** -->
267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
269
270<div class="doc_text">
271
272<p>The LLVM code representation is designed to be used in three
273different forms: as an in-memory compiler IR, as an on-disk bitcode
274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
281
282<p>The LLVM representation aims to be light-weight and low-level
283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
292
293</div>
294
295<!-- _______________________________________________________________________ -->
296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
297
298<div class="doc_text">
299
300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
304
305<div class="doc_code">
306<pre>
307%x = <a href="#i_add">add</a> i32 1, %x
308</pre>
309</div>
310
311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
314automatically run by the parser after parsing input assembly and by
315the optimizer before it outputs bitcode. The violations pointed out
316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
318</div>
319
Chris Lattnera83fdc02007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321
322<!-- *********************************************************************** -->
323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
324<!-- *********************************************************************** -->
325
326<div class="doc_text">
327
Reid Spencerc8245b02007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
333<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340
Reid Spencerc8245b02007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
346</ol>
347
Reid Spencerc8245b02007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
354<p>Reserved words in LLVM are very similar to reserved words in other
355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
360and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
366<p>The easy way:</p>
367
368<div class="doc_code">
369<pre>
370%result = <a href="#i_mul">mul</a> i32 %X, 8
371</pre>
372</div>
373
374<p>After strength reduction:</p>
375
376<div class="doc_code">
377<pre>
378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
379</pre>
380</div>
381
382<p>And the hard way:</p>
383
384<div class="doc_code">
385<pre>
386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
389</pre>
390</div>
391
392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
394
395<ol>
396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
403 <li>Unnamed temporaries are numbered sequentially</li>
404
405</ol>
406
407<p>...and it also shows a convention that we follow in this document. When
408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
412</div>
413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
431<div class="doc_code">
432<pre><i>; Declare the string constant as a global constant...</i>
433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
435
436<i>; External declaration of the puts function</i>
437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
438
439<i>; Definition of main function</i>
440define i32 @main() { <i>; i32()* </i>
441 <i>; Convert [13x i8 ]* to i8 *...</i>
442 %cast210 = <a
443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
448 <a
449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
463
464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
476
477<dl>
478
Dale Johannesen96e7e092008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
486 '<tt>static</tt>' keyword in C.
487 </dd>
488
489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
490
491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
496 </dd>
497
Dale Johannesen96e7e092008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
509
Dale Johannesen96e7e092008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 </dd>
515
516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
523 </dd>
524
525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner96451482008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 </dd>
530
531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
536 </dd>
537</dl>
538
539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner96451482008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 </p>
544
545 <dl>
546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
563</dl>
564
565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
573or <tt>extern_weak</tt>.</p>
574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
597 supports varargs function calls and tolerates some mismatch in the declared
598 prototype and implemented declaration of the function (as does normal C).
599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner96451482008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer07444922008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
630</dl>
631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattner96451482008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
687<p>Global variables define regions of memory allocated at compilation time
688instead of run-time. Global variables may optionally be initialized, may have
689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
696cannot be marked "constant" as there is a store to the variable.</p>
697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lambdd0049d2007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lamb20a39e92007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000718
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lambdd0049d2007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730
731<div class="doc_code">
732<pre>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734</pre>
735</div>
736
737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
749<a href="#visibility">visibility style</a>, an optional
750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Pateld468f1c2008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
755an optional <a href="#notes">function notes</a>, an
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000756opening curly brace, a list of basic blocks, and a closing curly brace.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757
758LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
759optional <a href="#linkage">linkage type</a>, an optional
760<a href="#visibility">visibility style</a>, an optional
761<a href="#callingconv">calling convention</a>, a return type, an optional
762<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000763name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000764<a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765
Chris Lattner96451482008-08-05 18:29:16 +0000766<p>A function definition contains a list of basic blocks, forming the CFG
767(Control Flow Graph) for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768the function. Each basic block may optionally start with a label (giving the
769basic block a symbol table entry), contains a list of instructions, and ends
770with a <a href="#terminators">terminator</a> instruction (such as a branch or
771function return).</p>
772
773<p>The first basic block in a function is special in two ways: it is immediately
774executed on entrance to the function, and it is not allowed to have predecessor
775basic blocks (i.e. there can not be any branches to the entry block of a
776function). Because the block can have no predecessors, it also cannot have any
777<a href="#i_phi">PHI nodes</a>.</p>
778
779<p>LLVM allows an explicit section to be specified for functions. If the target
780supports it, it will emit functions to the section specified.</p>
781
782<p>An explicit alignment may be specified for a function. If not present, or if
783the alignment is set to zero, the alignment of the function is set by the target
784to whatever it feels convenient. If an explicit alignment is specified, the
785function is forced to have at least that much alignment. All alignments must be
786a power of 2.</p>
787
788</div>
789
790
791<!-- ======================================================================= -->
792<div class="doc_subsection">
793 <a name="aliasstructure">Aliases</a>
794</div>
795<div class="doc_text">
796 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov96822812008-03-22 08:36:14 +0000797 function, global variable, another alias or bitcast of global value). Aliases
798 may have an optional <a href="#linkage">linkage type</a>, and an
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 optional <a href="#visibility">visibility style</a>.</p>
800
801 <h5>Syntax:</h5>
802
803<div class="doc_code">
804<pre>
805@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
806</pre>
807</div>
808
809</div>
810
811
812
813<!-- ======================================================================= -->
814<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
815<div class="doc_text">
816 <p>The return type and each parameter of a function type may have a set of
817 <i>parameter attributes</i> associated with them. Parameter attributes are
818 used to communicate additional information about the result or parameters of
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000819 a function. Parameter attributes are considered to be part of the function,
820 not of the function type, so functions with different parameter attributes
821 can have the same function type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822
823 <p>Parameter attributes are simple keywords that follow the type specified. If
824 multiple parameter attributes are needed, they are space separated. For
825 example:</p>
826
827<div class="doc_code">
828<pre>
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000829declare i32 @printf(i8* noalias , ...) nounwind
830declare i32 @atoi(i8*) nounwind readonly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831</pre>
832</div>
833
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836
837 <p>Currently, only the following parameter attributes are defined:</p>
838 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 <dd>This indicates that the parameter should be zero extended just before
841 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000842
Reid Spencerf234bed2007-07-19 23:13:04 +0000843 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 <dd>This indicates that the parameter should be sign extended just before
845 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000846
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000847 <dt><tt>inreg</tt></dt>
848 <dd>This indicates that the parameter should be placed in register (if
849 possible) during assembling function call. Support for this attribute is
850 target-specific</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000851
852 <dt><tt>byval</tt></dt>
Chris Lattner04c86182008-01-15 04:34:22 +0000853 <dd>This indicates that the pointer parameter should really be passed by
854 value to the function. The attribute implies that a hidden copy of the
855 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner6a9f3c42008-08-05 18:21:08 +0000856 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner04c86182008-01-15 04:34:22 +0000857 pointer arguments. It is generally used to pass structs and arrays by
858 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000859
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 <dt><tt>sret</tt></dt>
Duncan Sands616cc032008-02-18 04:19:38 +0000861 <dd>This indicates that the pointer parameter specifies the address of a
862 structure that is the return value of the function in the source program.
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000863 Loads and stores to the structure are assumed not to trap.
Duncan Sands616cc032008-02-18 04:19:38 +0000864 May only be applied to the first parameter.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000865
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866 <dt><tt>noalias</tt></dt>
Owen Andersonc4fc4cd2008-02-18 04:09:01 +0000867 <dd>This indicates that the parameter does not alias any global or any other
868 parameter. The caller is responsible for ensuring that this is the case,
869 usually by placing the value in a stack allocation.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000870
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871 <dt><tt>noreturn</tt></dt>
872 <dd>This function attribute indicates that the function never returns. This
873 indicates to LLVM that every call to this function should be treated as if
874 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000875
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000876 <dt><tt>nounwind</tt></dt>
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000877 <dd>This function attribute indicates that no exceptions unwind out of the
878 function. Usually this is because the function makes no use of exceptions,
879 but it may also be that the function catches any exceptions thrown when
880 executing it.</dd>
881
Duncan Sands4ee46812007-07-27 19:57:41 +0000882 <dt><tt>nest</tt></dt>
Duncan Sandsf1a7d4c2008-07-08 09:27:25 +0000883 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands4ee46812007-07-27 19:57:41 +0000884 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sands13e13f82007-11-22 20:23:04 +0000885 <dt><tt>readonly</tt></dt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000886 <dd>This function attribute indicates that the function has no side-effects
Duncan Sands13e13f82007-11-22 20:23:04 +0000887 except for producing a return value or throwing an exception. The value
888 returned must only depend on the function arguments and/or global variables.
889 It may use values obtained by dereferencing pointers.</dd>
890 <dt><tt>readnone</tt></dt>
891 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000892 function, but in addition it is not allowed to dereference any pointer arguments
893 or global variables.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 </dl>
895
896</div>
897
898<!-- ======================================================================= -->
899<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000900 <a name="gc">Garbage Collector Names</a>
901</div>
902
903<div class="doc_text">
904<p>Each function may specify a garbage collector name, which is simply a
905string.</p>
906
907<div class="doc_code"><pre
908>define void @f() gc "name" { ...</pre></div>
909
910<p>The compiler declares the supported values of <i>name</i>. Specifying a
911collector which will cause the compiler to alter its output in order to support
912the named garbage collection algorithm.</p>
913</div>
914
915<!-- ======================================================================= -->
916<div class="doc_subsection">
Devang Pateld468f1c2008-09-04 23:05:13 +0000917 <a name="notes">Function Notes</a>
918</div>
919
920<div class="doc_text">
Devang Patel25928cb2008-09-04 23:10:26 +0000921<p>The function definition may list function notes which are used by
922various passes.</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000923
924<div class="doc_code">
925<pre>define void @f() notes(inline=Always) { ... }</pre>
926<pre>define void @f() notes(inline=Always,opt-size) { ... }</pre>
927<pre>define void @f() notes(inline=Never,opt-size) { ... }</pre>
928<pre>define void @f() notes(opt-size) { ... }</pre>
929</div>
930
931<p>
932<li>inline=Always
933<p>
934This note requests inliner to inline this function irrespective of
935inlining size threshold for this function.
936</p></li>
937<li>inline=Never
938<p>
939This note requests inliner to never inline this function in any situation.
940This note may not be used together with inline=Always note.
941</p></li>
942<li>opt-size
943<p>
944This note suggests optimization passes and code generator passes to make
945choices that help reduce code size.
946</p></li>
947<p>
948The notes that are not documented here are considered invalid notes.
949</div>
950
951<!-- ======================================================================= -->
952<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 <a name="moduleasm">Module-Level Inline Assembly</a>
954</div>
955
956<div class="doc_text">
957<p>
958Modules may contain "module-level inline asm" blocks, which corresponds to the
959GCC "file scope inline asm" blocks. These blocks are internally concatenated by
960LLVM and treated as a single unit, but may be separated in the .ll file if
961desired. The syntax is very simple:
962</p>
963
964<div class="doc_code">
965<pre>
966module asm "inline asm code goes here"
967module asm "more can go here"
968</pre>
969</div>
970
971<p>The strings can contain any character by escaping non-printable characters.
972 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
973 for the number.
974</p>
975
976<p>
977 The inline asm code is simply printed to the machine code .s file when
978 assembly code is generated.
979</p>
980</div>
981
982<!-- ======================================================================= -->
983<div class="doc_subsection">
984 <a name="datalayout">Data Layout</a>
985</div>
986
987<div class="doc_text">
988<p>A module may specify a target specific data layout string that specifies how
989data is to be laid out in memory. The syntax for the data layout is simply:</p>
990<pre> target datalayout = "<i>layout specification</i>"</pre>
991<p>The <i>layout specification</i> consists of a list of specifications
992separated by the minus sign character ('-'). Each specification starts with a
993letter and may include other information after the letter to define some
994aspect of the data layout. The specifications accepted are as follows: </p>
995<dl>
996 <dt><tt>E</tt></dt>
997 <dd>Specifies that the target lays out data in big-endian form. That is, the
998 bits with the most significance have the lowest address location.</dd>
999 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001000 <dd>Specifies that the target lays out data in little-endian form. That is,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 the bits with the least significance have the lowest address location.</dd>
1002 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1003 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1004 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1005 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1006 too.</dd>
1007 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1008 <dd>This specifies the alignment for an integer type of a given bit
1009 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1010 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1011 <dd>This specifies the alignment for a vector type of a given bit
1012 <i>size</i>.</dd>
1013 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1014 <dd>This specifies the alignment for a floating point type of a given bit
1015 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1016 (double).</dd>
1017 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1018 <dd>This specifies the alignment for an aggregate type of a given bit
1019 <i>size</i>.</dd>
1020</dl>
1021<p>When constructing the data layout for a given target, LLVM starts with a
1022default set of specifications which are then (possibly) overriden by the
1023specifications in the <tt>datalayout</tt> keyword. The default specifications
1024are given in this list:</p>
1025<ul>
1026 <li><tt>E</tt> - big endian</li>
1027 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1028 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1029 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1030 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1031 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001032 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 alignment of 64-bits</li>
1034 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1035 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1036 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1037 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1038 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1039</ul>
Chris Lattner6a9f3c42008-08-05 18:21:08 +00001040<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041following rules:
1042<ol>
1043 <li>If the type sought is an exact match for one of the specifications, that
1044 specification is used.</li>
1045 <li>If no match is found, and the type sought is an integer type, then the
1046 smallest integer type that is larger than the bitwidth of the sought type is
1047 used. If none of the specifications are larger than the bitwidth then the the
1048 largest integer type is used. For example, given the default specifications
1049 above, the i7 type will use the alignment of i8 (next largest) while both
1050 i65 and i256 will use the alignment of i64 (largest specified).</li>
1051 <li>If no match is found, and the type sought is a vector type, then the
1052 largest vector type that is smaller than the sought vector type will be used
1053 as a fall back. This happens because <128 x double> can be implemented in
1054 terms of 64 <2 x double>, for example.</li>
1055</ol>
1056</div>
1057
1058<!-- *********************************************************************** -->
1059<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1060<!-- *********************************************************************** -->
1061
1062<div class="doc_text">
1063
1064<p>The LLVM type system is one of the most important features of the
1065intermediate representation. Being typed enables a number of
Chris Lattner96451482008-08-05 18:29:16 +00001066optimizations to be performed on the intermediate representation directly,
1067without having to do
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001068extra analyses on the side before the transformation. A strong type
1069system makes it easier to read the generated code and enables novel
1070analyses and transformations that are not feasible to perform on normal
1071three address code representations.</p>
1072
1073</div>
1074
1075<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001076<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077Classifications</a> </div>
1078<div class="doc_text">
Chris Lattner488772f2008-01-04 04:32:38 +00001079<p>The types fall into a few useful
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080classifications:</p>
1081
1082<table border="1" cellspacing="0" cellpadding="4">
1083 <tbody>
1084 <tr><th>Classification</th><th>Types</th></tr>
1085 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001086 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001087 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1088 </tr>
1089 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001090 <td><a href="#t_floating">floating point</a></td>
1091 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001092 </tr>
1093 <tr>
1094 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001095 <td><a href="#t_integer">integer</a>,
1096 <a href="#t_floating">floating point</a>,
1097 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001098 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001099 <a href="#t_struct">structure</a>,
1100 <a href="#t_array">array</a>,
Dan Gohmand13951e2008-05-23 22:50:26 +00001101 <a href="#t_label">label</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 </td>
1103 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001104 <tr>
1105 <td><a href="#t_primitive">primitive</a></td>
1106 <td><a href="#t_label">label</a>,
1107 <a href="#t_void">void</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001108 <a href="#t_floating">floating point</a>.</td>
1109 </tr>
1110 <tr>
1111 <td><a href="#t_derived">derived</a></td>
1112 <td><a href="#t_integer">integer</a>,
1113 <a href="#t_array">array</a>,
1114 <a href="#t_function">function</a>,
1115 <a href="#t_pointer">pointer</a>,
1116 <a href="#t_struct">structure</a>,
1117 <a href="#t_pstruct">packed structure</a>,
1118 <a href="#t_vector">vector</a>,
1119 <a href="#t_opaque">opaque</a>.
1120 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 </tbody>
1122</table>
1123
1124<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1125most important. Values of these types are the only ones which can be
1126produced by instructions, passed as arguments, or used as operands to
Dan Gohman4f29e422008-05-23 21:53:15 +00001127instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001128</div>
1129
1130<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001131<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001132
Chris Lattner488772f2008-01-04 04:32:38 +00001133<div class="doc_text">
1134<p>The primitive types are the fundamental building blocks of the LLVM
1135system.</p>
1136
Chris Lattner86437612008-01-04 04:34:14 +00001137</div>
1138
Chris Lattner488772f2008-01-04 04:32:38 +00001139<!-- _______________________________________________________________________ -->
1140<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1141
1142<div class="doc_text">
1143 <table>
1144 <tbody>
1145 <tr><th>Type</th><th>Description</th></tr>
1146 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1147 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1148 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1149 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1150 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1151 </tbody>
1152 </table>
1153</div>
1154
1155<!-- _______________________________________________________________________ -->
1156<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1157
1158<div class="doc_text">
1159<h5>Overview:</h5>
1160<p>The void type does not represent any value and has no size.</p>
1161
1162<h5>Syntax:</h5>
1163
1164<pre>
1165 void
1166</pre>
1167</div>
1168
1169<!-- _______________________________________________________________________ -->
1170<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1171
1172<div class="doc_text">
1173<h5>Overview:</h5>
1174<p>The label type represents code labels.</p>
1175
1176<h5>Syntax:</h5>
1177
1178<pre>
1179 label
1180</pre>
1181</div>
1182
1183
1184<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001185<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1186
1187<div class="doc_text">
1188
1189<p>The real power in LLVM comes from the derived types in the system.
1190This is what allows a programmer to represent arrays, functions,
1191pointers, and other useful types. Note that these derived types may be
1192recursive: For example, it is possible to have a two dimensional array.</p>
1193
1194</div>
1195
1196<!-- _______________________________________________________________________ -->
1197<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1198
1199<div class="doc_text">
1200
1201<h5>Overview:</h5>
1202<p>The integer type is a very simple derived type that simply specifies an
1203arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12042^23-1 (about 8 million) can be specified.</p>
1205
1206<h5>Syntax:</h5>
1207
1208<pre>
1209 iN
1210</pre>
1211
1212<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1213value.</p>
1214
1215<h5>Examples:</h5>
1216<table class="layout">
Chris Lattner251ab812007-12-18 06:18:21 +00001217 <tbody>
1218 <tr>
1219 <td><tt>i1</tt></td>
1220 <td>a single-bit integer.</td>
1221 </tr><tr>
1222 <td><tt>i32</tt></td>
1223 <td>a 32-bit integer.</td>
1224 </tr><tr>
1225 <td><tt>i1942652</tt></td>
1226 <td>a really big integer of over 1 million bits.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 </tr>
Chris Lattner251ab812007-12-18 06:18:21 +00001228 </tbody>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229</table>
1230</div>
1231
1232<!-- _______________________________________________________________________ -->
1233<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1234
1235<div class="doc_text">
1236
1237<h5>Overview:</h5>
1238
1239<p>The array type is a very simple derived type that arranges elements
1240sequentially in memory. The array type requires a size (number of
1241elements) and an underlying data type.</p>
1242
1243<h5>Syntax:</h5>
1244
1245<pre>
1246 [&lt;# elements&gt; x &lt;elementtype&gt;]
1247</pre>
1248
1249<p>The number of elements is a constant integer value; elementtype may
1250be any type with a size.</p>
1251
1252<h5>Examples:</h5>
1253<table class="layout">
1254 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001255 <td class="left"><tt>[40 x i32]</tt></td>
1256 <td class="left">Array of 40 32-bit integer values.</td>
1257 </tr>
1258 <tr class="layout">
1259 <td class="left"><tt>[41 x i32]</tt></td>
1260 <td class="left">Array of 41 32-bit integer values.</td>
1261 </tr>
1262 <tr class="layout">
1263 <td class="left"><tt>[4 x i8]</tt></td>
1264 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 </tr>
1266</table>
1267<p>Here are some examples of multidimensional arrays:</p>
1268<table class="layout">
1269 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001270 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1271 <td class="left">3x4 array of 32-bit integer values.</td>
1272 </tr>
1273 <tr class="layout">
1274 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1275 <td class="left">12x10 array of single precision floating point values.</td>
1276 </tr>
1277 <tr class="layout">
1278 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1279 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001280 </tr>
1281</table>
1282
1283<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1284length array. Normally, accesses past the end of an array are undefined in
1285LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1286As a special case, however, zero length arrays are recognized to be variable
1287length. This allows implementation of 'pascal style arrays' with the LLVM
1288type "{ i32, [0 x float]}", for example.</p>
1289
1290</div>
1291
1292<!-- _______________________________________________________________________ -->
1293<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1294<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001295
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001297
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298<p>The function type can be thought of as a function signature. It
Devang Pateld4ba41d2008-03-24 05:35:41 +00001299consists of a return type and a list of formal parameter types. The
Chris Lattner43030e72008-04-23 04:59:35 +00001300return type of a function type is a scalar type, a void type, or a struct type.
Devang Pateld5404c02008-03-24 20:52:42 +00001301If the return type is a struct type then all struct elements must be of first
Chris Lattner43030e72008-04-23 04:59:35 +00001302class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001303
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001305
1306<pre>
1307 &lt;returntype list&gt; (&lt;parameter list&gt;)
1308</pre>
1309
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001310<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1311specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1312which indicates that the function takes a variable number of arguments.
1313Variable argument functions can access their arguments with the <a
Devang Patela3cc5372008-03-10 20:49:15 +00001314 href="#int_varargs">variable argument handling intrinsic</a> functions.
1315'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1316<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001317
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318<h5>Examples:</h5>
1319<table class="layout">
1320 <tr class="layout">
1321 <td class="left"><tt>i32 (i32)</tt></td>
1322 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1323 </td>
1324 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001325 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001326 </tt></td>
1327 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1328 an <tt>i16</tt> that should be sign extended and a
1329 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1330 <tt>float</tt>.
1331 </td>
1332 </tr><tr class="layout">
1333 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1334 <td class="left">A vararg function that takes at least one
1335 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1336 which returns an integer. This is the signature for <tt>printf</tt> in
1337 LLVM.
1338 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001339 </tr><tr class="layout">
1340 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel6dddba22008-03-24 18:10:52 +00001341 <td class="left">A function taking an <tt>i32></tt>, returning two
1342 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001343 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 </tr>
1345</table>
1346
1347</div>
1348<!-- _______________________________________________________________________ -->
1349<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1350<div class="doc_text">
1351<h5>Overview:</h5>
1352<p>The structure type is used to represent a collection of data members
1353together in memory. The packing of the field types is defined to match
1354the ABI of the underlying processor. The elements of a structure may
1355be any type that has a size.</p>
1356<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1357and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1358field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1359instruction.</p>
1360<h5>Syntax:</h5>
1361<pre> { &lt;type list&gt; }<br></pre>
1362<h5>Examples:</h5>
1363<table class="layout">
1364 <tr class="layout">
1365 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1366 <td class="left">A triple of three <tt>i32</tt> values</td>
1367 </tr><tr class="layout">
1368 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1369 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1370 second element is a <a href="#t_pointer">pointer</a> to a
1371 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1372 an <tt>i32</tt>.</td>
1373 </tr>
1374</table>
1375</div>
1376
1377<!-- _______________________________________________________________________ -->
1378<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1379</div>
1380<div class="doc_text">
1381<h5>Overview:</h5>
1382<p>The packed structure type is used to represent a collection of data members
1383together in memory. There is no padding between fields. Further, the alignment
1384of a packed structure is 1 byte. The elements of a packed structure may
1385be any type that has a size.</p>
1386<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1387and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1388field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1389instruction.</p>
1390<h5>Syntax:</h5>
1391<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1392<h5>Examples:</h5>
1393<table class="layout">
1394 <tr class="layout">
1395 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1396 <td class="left">A triple of three <tt>i32</tt> values</td>
1397 </tr><tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001398 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001399 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1400 second element is a <a href="#t_pointer">pointer</a> to a
1401 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1402 an <tt>i32</tt>.</td>
1403 </tr>
1404</table>
1405</div>
1406
1407<!-- _______________________________________________________________________ -->
1408<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1409<div class="doc_text">
1410<h5>Overview:</h5>
1411<p>As in many languages, the pointer type represents a pointer or
Christopher Lambdd0049d2007-12-11 09:31:00 +00001412reference to another object, which must live in memory. Pointer types may have
1413an optional address space attribute defining the target-specific numbered
1414address space where the pointed-to object resides. The default address space is
1415zero.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001416<h5>Syntax:</h5>
1417<pre> &lt;type&gt; *<br></pre>
1418<h5>Examples:</h5>
1419<table class="layout">
1420 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001421 <td class="left"><tt>[4x i32]*</tt></td>
1422 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1423 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1424 </tr>
1425 <tr class="layout">
1426 <td class="left"><tt>i32 (i32 *) *</tt></td>
1427 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001429 <tt>i32</tt>.</td>
1430 </tr>
1431 <tr class="layout">
1432 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1433 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1434 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001435 </tr>
1436</table>
1437</div>
1438
1439<!-- _______________________________________________________________________ -->
1440<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1441<div class="doc_text">
1442
1443<h5>Overview:</h5>
1444
1445<p>A vector type is a simple derived type that represents a vector
1446of elements. Vector types are used when multiple primitive data
1447are operated in parallel using a single instruction (SIMD).
1448A vector type requires a size (number of
1449elements) and an underlying primitive data type. Vectors must have a power
1450of two length (1, 2, 4, 8, 16 ...). Vector types are
1451considered <a href="#t_firstclass">first class</a>.</p>
1452
1453<h5>Syntax:</h5>
1454
1455<pre>
1456 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1457</pre>
1458
1459<p>The number of elements is a constant integer value; elementtype may
1460be any integer or floating point type.</p>
1461
1462<h5>Examples:</h5>
1463
1464<table class="layout">
1465 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001466 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1467 <td class="left">Vector of 4 32-bit integer values.</td>
1468 </tr>
1469 <tr class="layout">
1470 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1471 <td class="left">Vector of 8 32-bit floating-point values.</td>
1472 </tr>
1473 <tr class="layout">
1474 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1475 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476 </tr>
1477</table>
1478</div>
1479
1480<!-- _______________________________________________________________________ -->
1481<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1482<div class="doc_text">
1483
1484<h5>Overview:</h5>
1485
1486<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001487corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488In LLVM, opaque types can eventually be resolved to any type (not just a
1489structure type).</p>
1490
1491<h5>Syntax:</h5>
1492
1493<pre>
1494 opaque
1495</pre>
1496
1497<h5>Examples:</h5>
1498
1499<table class="layout">
1500 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001501 <td class="left"><tt>opaque</tt></td>
1502 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001503 </tr>
1504</table>
1505</div>
1506
1507
1508<!-- *********************************************************************** -->
1509<div class="doc_section"> <a name="constants">Constants</a> </div>
1510<!-- *********************************************************************** -->
1511
1512<div class="doc_text">
1513
1514<p>LLVM has several different basic types of constants. This section describes
1515them all and their syntax.</p>
1516
1517</div>
1518
1519<!-- ======================================================================= -->
1520<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1521
1522<div class="doc_text">
1523
1524<dl>
1525 <dt><b>Boolean constants</b></dt>
1526
1527 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1528 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1529 </dd>
1530
1531 <dt><b>Integer constants</b></dt>
1532
1533 <dd>Standard integers (such as '4') are constants of the <a
1534 href="#t_integer">integer</a> type. Negative numbers may be used with
1535 integer types.
1536 </dd>
1537
1538 <dt><b>Floating point constants</b></dt>
1539
1540 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1541 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00001542 notation (see below). The assembler requires the exact decimal value of
1543 a floating-point constant. For example, the assembler accepts 1.25 but
1544 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1545 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001546
1547 <dt><b>Null pointer constants</b></dt>
1548
1549 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1550 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1551
1552</dl>
1553
1554<p>The one non-intuitive notation for constants is the optional hexadecimal form
1555of floating point constants. For example, the form '<tt>double
15560x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15574.5e+15</tt>'. The only time hexadecimal floating point constants are required
1558(and the only time that they are generated by the disassembler) is when a
1559floating point constant must be emitted but it cannot be represented as a
1560decimal floating point number. For example, NaN's, infinities, and other
1561special values are represented in their IEEE hexadecimal format so that
1562assembly and disassembly do not cause any bits to change in the constants.</p>
1563
1564</div>
1565
1566<!-- ======================================================================= -->
1567<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1568</div>
1569
1570<div class="doc_text">
1571<p>Aggregate constants arise from aggregation of simple constants
1572and smaller aggregate constants.</p>
1573
1574<dl>
1575 <dt><b>Structure constants</b></dt>
1576
1577 <dd>Structure constants are represented with notation similar to structure
1578 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner6c8de962007-12-25 20:34:52 +00001579 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1580 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001581 must have <a href="#t_struct">structure type</a>, and the number and
1582 types of elements must match those specified by the type.
1583 </dd>
1584
1585 <dt><b>Array constants</b></dt>
1586
1587 <dd>Array constants are represented with notation similar to array type
1588 definitions (a comma separated list of elements, surrounded by square brackets
1589 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1590 constants must have <a href="#t_array">array type</a>, and the number and
1591 types of elements must match those specified by the type.
1592 </dd>
1593
1594 <dt><b>Vector constants</b></dt>
1595
1596 <dd>Vector constants are represented with notation similar to vector type
1597 definitions (a comma separated list of elements, surrounded by
1598 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1599 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1600 href="#t_vector">vector type</a>, and the number and types of elements must
1601 match those specified by the type.
1602 </dd>
1603
1604 <dt><b>Zero initialization</b></dt>
1605
1606 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1607 value to zero of <em>any</em> type, including scalar and aggregate types.
1608 This is often used to avoid having to print large zero initializers (e.g. for
1609 large arrays) and is always exactly equivalent to using explicit zero
1610 initializers.
1611 </dd>
1612</dl>
1613
1614</div>
1615
1616<!-- ======================================================================= -->
1617<div class="doc_subsection">
1618 <a name="globalconstants">Global Variable and Function Addresses</a>
1619</div>
1620
1621<div class="doc_text">
1622
1623<p>The addresses of <a href="#globalvars">global variables</a> and <a
1624href="#functionstructure">functions</a> are always implicitly valid (link-time)
1625constants. These constants are explicitly referenced when the <a
1626href="#identifiers">identifier for the global</a> is used and always have <a
1627href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1628file:</p>
1629
1630<div class="doc_code">
1631<pre>
1632@X = global i32 17
1633@Y = global i32 42
1634@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1635</pre>
1636</div>
1637
1638</div>
1639
1640<!-- ======================================================================= -->
1641<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1642<div class="doc_text">
1643 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1644 no specific value. Undefined values may be of any type and be used anywhere
1645 a constant is permitted.</p>
1646
1647 <p>Undefined values indicate to the compiler that the program is well defined
1648 no matter what value is used, giving the compiler more freedom to optimize.
1649 </p>
1650</div>
1651
1652<!-- ======================================================================= -->
1653<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1654</div>
1655
1656<div class="doc_text">
1657
1658<p>Constant expressions are used to allow expressions involving other constants
1659to be used as constants. Constant expressions may be of any <a
1660href="#t_firstclass">first class</a> type and may involve any LLVM operation
1661that does not have side effects (e.g. load and call are not supported). The
1662following is the syntax for constant expressions:</p>
1663
1664<dl>
1665 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1666 <dd>Truncate a constant to another type. The bit size of CST must be larger
1667 than the bit size of TYPE. Both types must be integers.</dd>
1668
1669 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1670 <dd>Zero extend a constant to another type. The bit size of CST must be
1671 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1672
1673 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1674 <dd>Sign extend a constant to another type. The bit size of CST must be
1675 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1676
1677 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1678 <dd>Truncate a floating point constant to another floating point type. The
1679 size of CST must be larger than the size of TYPE. Both types must be
1680 floating point.</dd>
1681
1682 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1683 <dd>Floating point extend a constant to another type. The size of CST must be
1684 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1685
Reid Spencere6adee82007-07-31 14:40:14 +00001686 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001687 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001688 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1689 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1690 of the same number of elements. If the value won't fit in the integer type,
1691 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001692
1693 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1694 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001695 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1696 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1697 of the same number of elements. If the value won't fit in the integer type,
1698 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699
1700 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1701 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001702 constant. TYPE must be a scalar or vector floating point type. CST must be of
1703 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1704 of the same number of elements. If the value won't fit in the floating point
1705 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001706
1707 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1708 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001709 constant. TYPE must be a scalar or vector floating point type. CST must be of
1710 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1711 of the same number of elements. If the value won't fit in the floating point
1712 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001713
1714 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1715 <dd>Convert a pointer typed constant to the corresponding integer constant
1716 TYPE must be an integer type. CST must be of pointer type. The CST value is
1717 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1718
1719 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1720 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1721 pointer type. CST must be of integer type. The CST value is zero extended,
1722 truncated, or unchanged to make it fit in a pointer size. This one is
1723 <i>really</i> dangerous!</dd>
1724
1725 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1726 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1727 identical (same number of bits). The conversion is done as if the CST value
1728 was stored to memory and read back as TYPE. In other words, no bits change
1729 with this operator, just the type. This can be used for conversion of
1730 vector types to any other type, as long as they have the same bit width. For
1731 pointers it is only valid to cast to another pointer type.
1732 </dd>
1733
1734 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1735
1736 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1737 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1738 instruction, the index list may have zero or more indexes, which are required
1739 to make sense for the type of "CSTPTR".</dd>
1740
1741 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1742
1743 <dd>Perform the <a href="#i_select">select operation</a> on
1744 constants.</dd>
1745
1746 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1747 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1748
1749 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1750 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1751
Nate Begeman646fa482008-05-12 19:01:56 +00001752 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1753 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1754
1755 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1756 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1757
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1759
1760 <dd>Perform the <a href="#i_extractelement">extractelement
1761 operation</a> on constants.
1762
1763 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1764
1765 <dd>Perform the <a href="#i_insertelement">insertelement
1766 operation</a> on constants.</dd>
1767
1768
1769 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1770
1771 <dd>Perform the <a href="#i_shufflevector">shufflevector
1772 operation</a> on constants.</dd>
1773
1774 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1775
1776 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1777 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1778 binary</a> operations. The constraints on operands are the same as those for
1779 the corresponding instruction (e.g. no bitwise operations on floating point
1780 values are allowed).</dd>
1781</dl>
1782</div>
1783
1784<!-- *********************************************************************** -->
1785<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1786<!-- *********************************************************************** -->
1787
1788<!-- ======================================================================= -->
1789<div class="doc_subsection">
1790<a name="inlineasm">Inline Assembler Expressions</a>
1791</div>
1792
1793<div class="doc_text">
1794
1795<p>
1796LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1797Module-Level Inline Assembly</a>) through the use of a special value. This
1798value represents the inline assembler as a string (containing the instructions
1799to emit), a list of operand constraints (stored as a string), and a flag that
1800indicates whether or not the inline asm expression has side effects. An example
1801inline assembler expression is:
1802</p>
1803
1804<div class="doc_code">
1805<pre>
1806i32 (i32) asm "bswap $0", "=r,r"
1807</pre>
1808</div>
1809
1810<p>
1811Inline assembler expressions may <b>only</b> be used as the callee operand of
1812a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1813</p>
1814
1815<div class="doc_code">
1816<pre>
1817%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1818</pre>
1819</div>
1820
1821<p>
1822Inline asms with side effects not visible in the constraint list must be marked
1823as having side effects. This is done through the use of the
1824'<tt>sideeffect</tt>' keyword, like so:
1825</p>
1826
1827<div class="doc_code">
1828<pre>
1829call void asm sideeffect "eieio", ""()
1830</pre>
1831</div>
1832
1833<p>TODO: The format of the asm and constraints string still need to be
1834documented here. Constraints on what can be done (e.g. duplication, moving, etc
1835need to be documented).
1836</p>
1837
1838</div>
1839
1840<!-- *********************************************************************** -->
1841<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1842<!-- *********************************************************************** -->
1843
1844<div class="doc_text">
1845
1846<p>The LLVM instruction set consists of several different
1847classifications of instructions: <a href="#terminators">terminator
1848instructions</a>, <a href="#binaryops">binary instructions</a>,
1849<a href="#bitwiseops">bitwise binary instructions</a>, <a
1850 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1851instructions</a>.</p>
1852
1853</div>
1854
1855<!-- ======================================================================= -->
1856<div class="doc_subsection"> <a name="terminators">Terminator
1857Instructions</a> </div>
1858
1859<div class="doc_text">
1860
1861<p>As mentioned <a href="#functionstructure">previously</a>, every
1862basic block in a program ends with a "Terminator" instruction, which
1863indicates which block should be executed after the current block is
1864finished. These terminator instructions typically yield a '<tt>void</tt>'
1865value: they produce control flow, not values (the one exception being
1866the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1867<p>There are six different terminator instructions: the '<a
1868 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1869instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1870the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1871 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1872 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1873
1874</div>
1875
1876<!-- _______________________________________________________________________ -->
1877<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1878Instruction</a> </div>
1879<div class="doc_text">
1880<h5>Syntax:</h5>
1881<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1882 ret void <i>; Return from void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001883 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001884</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00001885
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001886<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001887
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001888<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1889value) from a function back to the caller.</p>
1890<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner43030e72008-04-23 04:59:35 +00001891returns value(s) and then causes control flow, and one that just causes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001892control flow to occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001893
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001894<h5>Arguments:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001895
1896<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1897The type of each return value must be a '<a href="#t_firstclass">first
1898class</a>' type. Note that a function is not <a href="#wellformed">well
1899formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1900function that returns values that do not match the return type of the
1901function.</p>
1902
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001903<h5>Semantics:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001904
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905<p>When the '<tt>ret</tt>' instruction is executed, control flow
1906returns back to the calling function's context. If the caller is a "<a
1907 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1908the instruction after the call. If the caller was an "<a
1909 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1910at the beginning of the "normal" destination block. If the instruction
1911returns a value, that value shall set the call or invoke instruction's
Devang Patela3cc5372008-03-10 20:49:15 +00001912return value. If the instruction returns multiple values then these
Devang Patelec8a5b02008-03-11 05:51:59 +00001913values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1914</a>' instruction.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001915
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001916<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001917
1918<pre>
1919 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920 ret void <i>; Return from a void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001921 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001922</pre>
1923</div>
1924<!-- _______________________________________________________________________ -->
1925<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1926<div class="doc_text">
1927<h5>Syntax:</h5>
1928<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1929</pre>
1930<h5>Overview:</h5>
1931<p>The '<tt>br</tt>' instruction is used to cause control flow to
1932transfer to a different basic block in the current function. There are
1933two forms of this instruction, corresponding to a conditional branch
1934and an unconditional branch.</p>
1935<h5>Arguments:</h5>
1936<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1937single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1938unconditional form of the '<tt>br</tt>' instruction takes a single
1939'<tt>label</tt>' value as a target.</p>
1940<h5>Semantics:</h5>
1941<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1942argument is evaluated. If the value is <tt>true</tt>, control flows
1943to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1944control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1945<h5>Example:</h5>
1946<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1947 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1948</div>
1949<!-- _______________________________________________________________________ -->
1950<div class="doc_subsubsection">
1951 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1952</div>
1953
1954<div class="doc_text">
1955<h5>Syntax:</h5>
1956
1957<pre>
1958 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1959</pre>
1960
1961<h5>Overview:</h5>
1962
1963<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1964several different places. It is a generalization of the '<tt>br</tt>'
1965instruction, allowing a branch to occur to one of many possible
1966destinations.</p>
1967
1968
1969<h5>Arguments:</h5>
1970
1971<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1972comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1973an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1974table is not allowed to contain duplicate constant entries.</p>
1975
1976<h5>Semantics:</h5>
1977
1978<p>The <tt>switch</tt> instruction specifies a table of values and
1979destinations. When the '<tt>switch</tt>' instruction is executed, this
1980table is searched for the given value. If the value is found, control flow is
1981transfered to the corresponding destination; otherwise, control flow is
1982transfered to the default destination.</p>
1983
1984<h5>Implementation:</h5>
1985
1986<p>Depending on properties of the target machine and the particular
1987<tt>switch</tt> instruction, this instruction may be code generated in different
1988ways. For example, it could be generated as a series of chained conditional
1989branches or with a lookup table.</p>
1990
1991<h5>Example:</h5>
1992
1993<pre>
1994 <i>; Emulate a conditional br instruction</i>
1995 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1996 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1997
1998 <i>; Emulate an unconditional br instruction</i>
1999 switch i32 0, label %dest [ ]
2000
2001 <i>; Implement a jump table:</i>
2002 switch i32 %val, label %otherwise [ i32 0, label %onzero
2003 i32 1, label %onone
2004 i32 2, label %ontwo ]
2005</pre>
2006</div>
2007
2008<!-- _______________________________________________________________________ -->
2009<div class="doc_subsubsection">
2010 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2011</div>
2012
2013<div class="doc_text">
2014
2015<h5>Syntax:</h5>
2016
2017<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002018 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002019 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2020</pre>
2021
2022<h5>Overview:</h5>
2023
2024<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2025function, with the possibility of control flow transfer to either the
2026'<tt>normal</tt>' label or the
2027'<tt>exception</tt>' label. If the callee function returns with the
2028"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2029"normal" label. If the callee (or any indirect callees) returns with the "<a
2030href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patela3cc5372008-03-10 20:49:15 +00002031continued at the dynamically nearest "exception" label. If the callee function
Devang Patelec8a5b02008-03-11 05:51:59 +00002032returns multiple values then individual return values are only accessible through
2033a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002034
2035<h5>Arguments:</h5>
2036
2037<p>This instruction requires several arguments:</p>
2038
2039<ol>
2040 <li>
2041 The optional "cconv" marker indicates which <a href="#callingconv">calling
2042 convention</a> the call should use. If none is specified, the call defaults
2043 to using C calling conventions.
2044 </li>
2045 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2046 function value being invoked. In most cases, this is a direct function
2047 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2048 an arbitrary pointer to function value.
2049 </li>
2050
2051 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2052 function to be invoked. </li>
2053
2054 <li>'<tt>function args</tt>': argument list whose types match the function
2055 signature argument types. If the function signature indicates the function
2056 accepts a variable number of arguments, the extra arguments can be
2057 specified. </li>
2058
2059 <li>'<tt>normal label</tt>': the label reached when the called function
2060 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2061
2062 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2063 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2064
2065</ol>
2066
2067<h5>Semantics:</h5>
2068
2069<p>This instruction is designed to operate as a standard '<tt><a
2070href="#i_call">call</a></tt>' instruction in most regards. The primary
2071difference is that it establishes an association with a label, which is used by
2072the runtime library to unwind the stack.</p>
2073
2074<p>This instruction is used in languages with destructors to ensure that proper
2075cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2076exception. Additionally, this is important for implementation of
2077'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2078
2079<h5>Example:</h5>
2080<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002081 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002082 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002083 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002084 unwind label %TestCleanup <i>; {i32}:retval set</i>
2085</pre>
2086</div>
2087
2088
2089<!-- _______________________________________________________________________ -->
2090
2091<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2092Instruction</a> </div>
2093
2094<div class="doc_text">
2095
2096<h5>Syntax:</h5>
2097<pre>
2098 unwind
2099</pre>
2100
2101<h5>Overview:</h5>
2102
2103<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2104at the first callee in the dynamic call stack which used an <a
2105href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2106primarily used to implement exception handling.</p>
2107
2108<h5>Semantics:</h5>
2109
Chris Lattner8b094fc2008-04-19 21:01:16 +00002110<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002111immediately halt. The dynamic call stack is then searched for the first <a
2112href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2113execution continues at the "exceptional" destination block specified by the
2114<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2115dynamic call chain, undefined behavior results.</p>
2116</div>
2117
2118<!-- _______________________________________________________________________ -->
2119
2120<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2121Instruction</a> </div>
2122
2123<div class="doc_text">
2124
2125<h5>Syntax:</h5>
2126<pre>
2127 unreachable
2128</pre>
2129
2130<h5>Overview:</h5>
2131
2132<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2133instruction is used to inform the optimizer that a particular portion of the
2134code is not reachable. This can be used to indicate that the code after a
2135no-return function cannot be reached, and other facts.</p>
2136
2137<h5>Semantics:</h5>
2138
2139<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2140</div>
2141
2142
2143
2144<!-- ======================================================================= -->
2145<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2146<div class="doc_text">
2147<p>Binary operators are used to do most of the computation in a
Chris Lattnerab596d92008-04-01 18:47:32 +00002148program. They require two operands of the same type, execute an operation on them, and
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002149produce a single value. The operands might represent
2150multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnerab596d92008-04-01 18:47:32 +00002151The result value has the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002152<p>There are several different binary operators:</p>
2153</div>
2154<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002155<div class="doc_subsubsection">
2156 <a name="i_add">'<tt>add</tt>' Instruction</a>
2157</div>
2158
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002159<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002160
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002161<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002162
2163<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002164 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002165</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002166
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002167<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002170
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002171<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002172
2173<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2174 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2175 <a href="#t_vector">vector</a> values. Both arguments must have identical
2176 types.</p>
2177
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002178<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002179
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002180<p>The value produced is the integer or floating point sum of the two
2181operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002182
Chris Lattner9aba1e22008-01-28 00:36:27 +00002183<p>If an integer sum has unsigned overflow, the result returned is the
2184mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2185the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002186
Chris Lattner9aba1e22008-01-28 00:36:27 +00002187<p>Because LLVM integers use a two's complement representation, this
2188instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002189
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002190<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002191
2192<pre>
2193 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002194</pre>
2195</div>
2196<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002197<div class="doc_subsubsection">
2198 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2199</div>
2200
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002201<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002202
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002203<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002204
2205<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002206 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002207</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002208
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002209<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002210
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002211<p>The '<tt>sub</tt>' instruction returns the difference of its two
2212operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002213
2214<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2215'<tt>neg</tt>' instruction present in most other intermediate
2216representations.</p>
2217
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002218<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002219
2220<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2221 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2222 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2223 types.</p>
2224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002226
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002227<p>The value produced is the integer or floating point difference of
2228the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002229
Chris Lattner9aba1e22008-01-28 00:36:27 +00002230<p>If an integer difference has unsigned overflow, the result returned is the
2231mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2232the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002233
Chris Lattner9aba1e22008-01-28 00:36:27 +00002234<p>Because LLVM integers use a two's complement representation, this
2235instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002236
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002237<h5>Example:</h5>
2238<pre>
2239 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2240 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2241</pre>
2242</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002243
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002244<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002245<div class="doc_subsubsection">
2246 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2247</div>
2248
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002249<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002250
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002251<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002252<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253</pre>
2254<h5>Overview:</h5>
2255<p>The '<tt>mul</tt>' instruction returns the product of its two
2256operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002257
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002258<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002259
2260<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2261href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2262or <a href="#t_vector">vector</a> values. Both arguments must have identical
2263types.</p>
2264
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002265<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002266
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002267<p>The value produced is the integer or floating point product of the
2268two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002269
Chris Lattner9aba1e22008-01-28 00:36:27 +00002270<p>If the result of an integer multiplication has unsigned overflow,
2271the result returned is the mathematical result modulo
22722<sup>n</sup>, where n is the bit width of the result.</p>
2273<p>Because LLVM integers use a two's complement representation, and the
2274result is the same width as the operands, this instruction returns the
2275correct result for both signed and unsigned integers. If a full product
2276(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2277should be sign-extended or zero-extended as appropriate to the
2278width of the full product.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002279<h5>Example:</h5>
2280<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2281</pre>
2282</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002283
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002284<!-- _______________________________________________________________________ -->
2285<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2286</a></div>
2287<div class="doc_text">
2288<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002289<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002290</pre>
2291<h5>Overview:</h5>
2292<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2293operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002294
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002295<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002296
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002297<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002298<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2299values. Both arguments must have identical types.</p>
2300
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002301<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002302
Chris Lattner9aba1e22008-01-28 00:36:27 +00002303<p>The value produced is the unsigned integer quotient of the two operands.</p>
2304<p>Note that unsigned integer division and signed integer division are distinct
2305operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2306<p>Division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002307<h5>Example:</h5>
2308<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2309</pre>
2310</div>
2311<!-- _______________________________________________________________________ -->
2312<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2313</a> </div>
2314<div class="doc_text">
2315<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002316<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002317 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002318</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002319
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002320<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002321
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002322<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2323operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002324
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002325<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002326
2327<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2328<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2329values. Both arguments must have identical types.</p>
2330
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002331<h5>Semantics:</h5>
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002332<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002333<p>Note that signed integer division and unsigned integer division are distinct
2334operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2335<p>Division by zero leads to undefined behavior. Overflow also leads to
2336undefined behavior; this is a rare case, but can occur, for example,
2337by doing a 32-bit division of -2147483648 by -1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002338<h5>Example:</h5>
2339<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2340</pre>
2341</div>
2342<!-- _______________________________________________________________________ -->
2343<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2344Instruction</a> </div>
2345<div class="doc_text">
2346<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002347<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002348 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002349</pre>
2350<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002351
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002352<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2353operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002354
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002357<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002358<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2359of floating point values. Both arguments must have identical types.</p>
2360
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002362
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002364
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002366
2367<pre>
2368 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002369</pre>
2370</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002371
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372<!-- _______________________________________________________________________ -->
2373<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2374</div>
2375<div class="doc_text">
2376<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002377<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002378</pre>
2379<h5>Overview:</h5>
2380<p>The '<tt>urem</tt>' instruction returns the remainder from the
2381unsigned division of its two arguments.</p>
2382<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002383<p>The two arguments to the '<tt>urem</tt>' instruction must be
2384<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2385values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386<h5>Semantics:</h5>
2387<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002388This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002389<p>Note that unsigned integer remainder and signed integer remainder are
2390distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2391<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392<h5>Example:</h5>
2393<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2394</pre>
2395
2396</div>
2397<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002398<div class="doc_subsubsection">
2399 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2400</div>
2401
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002403
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002405
2406<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002407 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002409
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002411
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002413signed division of its two operands. This instruction can also take
2414<a href="#t_vector">vector</a> versions of the values in which case
2415the elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00002416
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002417<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002418
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002419<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002420<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2421values. Both arguments must have identical types.</p>
2422
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002423<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002424
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002425<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greifd9068fe2008-08-07 21:46:00 +00002426has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2427operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428a value. For more information about the difference, see <a
2429 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2430Math Forum</a>. For a table of how this is implemented in various languages,
2431please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2432Wikipedia: modulo operation</a>.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002433<p>Note that signed integer remainder and unsigned integer remainder are
2434distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2435<p>Taking the remainder of a division by zero leads to undefined behavior.
2436Overflow also leads to undefined behavior; this is a rare case, but can occur,
2437for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2438(The remainder doesn't actually overflow, but this rule lets srem be
2439implemented using instructions that return both the result of the division
2440and the remainder.)</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002441<h5>Example:</h5>
2442<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2443</pre>
2444
2445</div>
2446<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002447<div class="doc_subsubsection">
2448 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2449
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002450<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002451
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002452<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002453<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454</pre>
2455<h5>Overview:</h5>
2456<p>The '<tt>frem</tt>' instruction returns the remainder from the
2457division of its two operands.</p>
2458<h5>Arguments:</h5>
2459<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002460<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2461of floating point values. Both arguments must have identical types.</p>
2462
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002464
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002465<p>This instruction returns the <i>remainder</i> of a division.
2466The remainder has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002467
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002468<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002469
2470<pre>
2471 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472</pre>
2473</div>
2474
2475<!-- ======================================================================= -->
2476<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2477Operations</a> </div>
2478<div class="doc_text">
2479<p>Bitwise binary operators are used to do various forms of
2480bit-twiddling in a program. They are generally very efficient
2481instructions and can commonly be strength reduced from other
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002482instructions. They require two operands of the same type, execute an operation on them,
2483and produce a single value. The resulting value is the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002484</div>
2485
2486<!-- _______________________________________________________________________ -->
2487<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2488Instruction</a> </div>
2489<div class="doc_text">
2490<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002491<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002492</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002493
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002495
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2497the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002498
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002499<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002500
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002501<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanbb1ce942008-07-29 15:49:41 +00002502 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002503type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002504
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002506
Gabor Greifd9068fe2008-08-07 21:46:00 +00002507<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2508where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2509equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002510
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002511<h5>Example:</h5><pre>
2512 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2513 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2514 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002515 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002516</pre>
2517</div>
2518<!-- _______________________________________________________________________ -->
2519<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2520Instruction</a> </div>
2521<div class="doc_text">
2522<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002523<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002524</pre>
2525
2526<h5>Overview:</h5>
2527<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2528operand shifted to the right a specified number of bits with zero fill.</p>
2529
2530<h5>Arguments:</h5>
2531<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002532<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002533type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002534
2535<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002536
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002537<p>This instruction always performs a logical shift right operation. The most
2538significant bits of the result will be filled with zero bits after the
Gabor Greifd9068fe2008-08-07 21:46:00 +00002539shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2540the number of bits in <tt>op1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002541
2542<h5>Example:</h5>
2543<pre>
2544 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2545 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2546 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2547 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002548 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002549</pre>
2550</div>
2551
2552<!-- _______________________________________________________________________ -->
2553<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2554Instruction</a> </div>
2555<div class="doc_text">
2556
2557<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002558<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002559</pre>
2560
2561<h5>Overview:</h5>
2562<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2563operand shifted to the right a specified number of bits with sign extension.</p>
2564
2565<h5>Arguments:</h5>
2566<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002567<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002568type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002569
2570<h5>Semantics:</h5>
2571<p>This instruction always performs an arithmetic shift right operation,
2572The most significant bits of the result will be filled with the sign bit
Gabor Greifd9068fe2008-08-07 21:46:00 +00002573of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2574larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002575</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002576
2577<h5>Example:</h5>
2578<pre>
2579 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2580 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2581 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2582 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002583 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002584</pre>
2585</div>
2586
2587<!-- _______________________________________________________________________ -->
2588<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2589Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00002590
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002591<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002592
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002593<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002594
2595<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002596 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002597</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002598
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002599<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002600
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2602its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002603
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002604<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002605
2606<p>The two arguments to the '<tt>and</tt>' instruction must be
2607<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2608values. Both arguments must have identical types.</p>
2609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002610<h5>Semantics:</h5>
2611<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2612<p> </p>
2613<div style="align: center">
2614<table border="1" cellspacing="0" cellpadding="4">
2615 <tbody>
2616 <tr>
2617 <td>In0</td>
2618 <td>In1</td>
2619 <td>Out</td>
2620 </tr>
2621 <tr>
2622 <td>0</td>
2623 <td>0</td>
2624 <td>0</td>
2625 </tr>
2626 <tr>
2627 <td>0</td>
2628 <td>1</td>
2629 <td>0</td>
2630 </tr>
2631 <tr>
2632 <td>1</td>
2633 <td>0</td>
2634 <td>0</td>
2635 </tr>
2636 <tr>
2637 <td>1</td>
2638 <td>1</td>
2639 <td>1</td>
2640 </tr>
2641 </tbody>
2642</table>
2643</div>
2644<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002645<pre>
2646 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002647 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2648 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2649</pre>
2650</div>
2651<!-- _______________________________________________________________________ -->
2652<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2653<div class="doc_text">
2654<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002655<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002656</pre>
2657<h5>Overview:</h5>
2658<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2659or of its two operands.</p>
2660<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002661
2662<p>The two arguments to the '<tt>or</tt>' instruction must be
2663<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2664values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002665<h5>Semantics:</h5>
2666<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2667<p> </p>
2668<div style="align: center">
2669<table border="1" cellspacing="0" cellpadding="4">
2670 <tbody>
2671 <tr>
2672 <td>In0</td>
2673 <td>In1</td>
2674 <td>Out</td>
2675 </tr>
2676 <tr>
2677 <td>0</td>
2678 <td>0</td>
2679 <td>0</td>
2680 </tr>
2681 <tr>
2682 <td>0</td>
2683 <td>1</td>
2684 <td>1</td>
2685 </tr>
2686 <tr>
2687 <td>1</td>
2688 <td>0</td>
2689 <td>1</td>
2690 </tr>
2691 <tr>
2692 <td>1</td>
2693 <td>1</td>
2694 <td>1</td>
2695 </tr>
2696 </tbody>
2697</table>
2698</div>
2699<h5>Example:</h5>
2700<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2701 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2702 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2703</pre>
2704</div>
2705<!-- _______________________________________________________________________ -->
2706<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2707Instruction</a> </div>
2708<div class="doc_text">
2709<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002710<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002711</pre>
2712<h5>Overview:</h5>
2713<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2714or of its two operands. The <tt>xor</tt> is used to implement the
2715"one's complement" operation, which is the "~" operator in C.</p>
2716<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002717<p>The two arguments to the '<tt>xor</tt>' instruction must be
2718<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2719values. Both arguments must have identical types.</p>
2720
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002721<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002722
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002723<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2724<p> </p>
2725<div style="align: center">
2726<table border="1" cellspacing="0" cellpadding="4">
2727 <tbody>
2728 <tr>
2729 <td>In0</td>
2730 <td>In1</td>
2731 <td>Out</td>
2732 </tr>
2733 <tr>
2734 <td>0</td>
2735 <td>0</td>
2736 <td>0</td>
2737 </tr>
2738 <tr>
2739 <td>0</td>
2740 <td>1</td>
2741 <td>1</td>
2742 </tr>
2743 <tr>
2744 <td>1</td>
2745 <td>0</td>
2746 <td>1</td>
2747 </tr>
2748 <tr>
2749 <td>1</td>
2750 <td>1</td>
2751 <td>0</td>
2752 </tr>
2753 </tbody>
2754</table>
2755</div>
2756<p> </p>
2757<h5>Example:</h5>
2758<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2759 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2760 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2761 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2762</pre>
2763</div>
2764
2765<!-- ======================================================================= -->
2766<div class="doc_subsection">
2767 <a name="vectorops">Vector Operations</a>
2768</div>
2769
2770<div class="doc_text">
2771
2772<p>LLVM supports several instructions to represent vector operations in a
2773target-independent manner. These instructions cover the element-access and
2774vector-specific operations needed to process vectors effectively. While LLVM
2775does directly support these vector operations, many sophisticated algorithms
2776will want to use target-specific intrinsics to take full advantage of a specific
2777target.</p>
2778
2779</div>
2780
2781<!-- _______________________________________________________________________ -->
2782<div class="doc_subsubsection">
2783 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2784</div>
2785
2786<div class="doc_text">
2787
2788<h5>Syntax:</h5>
2789
2790<pre>
2791 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2792</pre>
2793
2794<h5>Overview:</h5>
2795
2796<p>
2797The '<tt>extractelement</tt>' instruction extracts a single scalar
2798element from a vector at a specified index.
2799</p>
2800
2801
2802<h5>Arguments:</h5>
2803
2804<p>
2805The first operand of an '<tt>extractelement</tt>' instruction is a
2806value of <a href="#t_vector">vector</a> type. The second operand is
2807an index indicating the position from which to extract the element.
2808The index may be a variable.</p>
2809
2810<h5>Semantics:</h5>
2811
2812<p>
2813The result is a scalar of the same type as the element type of
2814<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2815<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2816results are undefined.
2817</p>
2818
2819<h5>Example:</h5>
2820
2821<pre>
2822 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2823</pre>
2824</div>
2825
2826
2827<!-- _______________________________________________________________________ -->
2828<div class="doc_subsubsection">
2829 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2830</div>
2831
2832<div class="doc_text">
2833
2834<h5>Syntax:</h5>
2835
2836<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00002837 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002838</pre>
2839
2840<h5>Overview:</h5>
2841
2842<p>
2843The '<tt>insertelement</tt>' instruction inserts a scalar
2844element into a vector at a specified index.
2845</p>
2846
2847
2848<h5>Arguments:</h5>
2849
2850<p>
2851The first operand of an '<tt>insertelement</tt>' instruction is a
2852value of <a href="#t_vector">vector</a> type. The second operand is a
2853scalar value whose type must equal the element type of the first
2854operand. The third operand is an index indicating the position at
2855which to insert the value. The index may be a variable.</p>
2856
2857<h5>Semantics:</h5>
2858
2859<p>
2860The result is a vector of the same type as <tt>val</tt>. Its
2861element values are those of <tt>val</tt> except at position
2862<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2863exceeds the length of <tt>val</tt>, the results are undefined.
2864</p>
2865
2866<h5>Example:</h5>
2867
2868<pre>
2869 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2870</pre>
2871</div>
2872
2873<!-- _______________________________________________________________________ -->
2874<div class="doc_subsubsection">
2875 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2876</div>
2877
2878<div class="doc_text">
2879
2880<h5>Syntax:</h5>
2881
2882<pre>
2883 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2884</pre>
2885
2886<h5>Overview:</h5>
2887
2888<p>
2889The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2890from two input vectors, returning a vector of the same type.
2891</p>
2892
2893<h5>Arguments:</h5>
2894
2895<p>
2896The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2897with types that match each other and types that match the result of the
2898instruction. The third argument is a shuffle mask, which has the same number
2899of elements as the other vector type, but whose element type is always 'i32'.
2900</p>
2901
2902<p>
2903The shuffle mask operand is required to be a constant vector with either
2904constant integer or undef values.
2905</p>
2906
2907<h5>Semantics:</h5>
2908
2909<p>
2910The elements of the two input vectors are numbered from left to right across
2911both of the vectors. The shuffle mask operand specifies, for each element of
2912the result vector, which element of the two input registers the result element
2913gets. The element selector may be undef (meaning "don't care") and the second
2914operand may be undef if performing a shuffle from only one vector.
2915</p>
2916
2917<h5>Example:</h5>
2918
2919<pre>
2920 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2921 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2922 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2923 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2924</pre>
2925</div>
2926
2927
2928<!-- ======================================================================= -->
2929<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00002930 <a name="aggregateops">Aggregate Operations</a>
2931</div>
2932
2933<div class="doc_text">
2934
2935<p>LLVM supports several instructions for working with aggregate values.
2936</p>
2937
2938</div>
2939
2940<!-- _______________________________________________________________________ -->
2941<div class="doc_subsubsection">
2942 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2943</div>
2944
2945<div class="doc_text">
2946
2947<h5>Syntax:</h5>
2948
2949<pre>
2950 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2951</pre>
2952
2953<h5>Overview:</h5>
2954
2955<p>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002956The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2957or array element from an aggregate value.
Dan Gohman74d6faf2008-05-12 23:51:09 +00002958</p>
2959
2960
2961<h5>Arguments:</h5>
2962
2963<p>
2964The first operand of an '<tt>extractvalue</tt>' instruction is a
2965value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002966type. The operands are constant indices to specify which value to extract
Dan Gohmane5febe42008-05-31 00:58:22 +00002967in a similar manner as indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00002968'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2969</p>
2970
2971<h5>Semantics:</h5>
2972
2973<p>
2974The result is the value at the position in the aggregate specified by
2975the index operands.
2976</p>
2977
2978<h5>Example:</h5>
2979
2980<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002981 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002982</pre>
2983</div>
2984
2985
2986<!-- _______________________________________________________________________ -->
2987<div class="doc_subsubsection">
2988 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2989</div>
2990
2991<div class="doc_text">
2992
2993<h5>Syntax:</h5>
2994
2995<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002996 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002997</pre>
2998
2999<h5>Overview:</h5>
3000
3001<p>
3002The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman6c6dea02008-05-13 18:16:06 +00003003into a struct field or array element in an aggregate.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003004</p>
3005
3006
3007<h5>Arguments:</h5>
3008
3009<p>
3010The first operand of an '<tt>insertvalue</tt>' instruction is a
3011value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3012The second operand is a first-class value to insert.
Dan Gohman4f29e422008-05-23 21:53:15 +00003013The following operands are constant indices
Dan Gohmane5febe42008-05-31 00:58:22 +00003014indicating the position at which to insert the value in a similar manner as
Dan Gohman6c6dea02008-05-13 18:16:06 +00003015indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00003016'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3017The value to insert must have the same type as the value identified
Dan Gohman6c6dea02008-05-13 18:16:06 +00003018by the indices.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003019
3020<h5>Semantics:</h5>
3021
3022<p>
3023The result is an aggregate of the same type as <tt>val</tt>. Its
3024value is that of <tt>val</tt> except that the value at the position
Dan Gohman6c6dea02008-05-13 18:16:06 +00003025specified by the indices is that of <tt>elt</tt>.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003026</p>
3027
3028<h5>Example:</h5>
3029
3030<pre>
Dan Gohmanb1aab4e2008-06-23 15:26:37 +00003031 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003032</pre>
3033</div>
3034
3035
3036<!-- ======================================================================= -->
3037<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003038 <a name="memoryops">Memory Access and Addressing Operations</a>
3039</div>
3040
3041<div class="doc_text">
3042
3043<p>A key design point of an SSA-based representation is how it
3044represents memory. In LLVM, no memory locations are in SSA form, which
3045makes things very simple. This section describes how to read, write,
3046allocate, and free memory in LLVM.</p>
3047
3048</div>
3049
3050<!-- _______________________________________________________________________ -->
3051<div class="doc_subsubsection">
3052 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3053</div>
3054
3055<div class="doc_text">
3056
3057<h5>Syntax:</h5>
3058
3059<pre>
3060 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3061</pre>
3062
3063<h5>Overview:</h5>
3064
3065<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lambcfe00962007-12-17 01:00:21 +00003066heap and returns a pointer to it. The object is always allocated in the generic
3067address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003068
3069<h5>Arguments:</h5>
3070
3071<p>The '<tt>malloc</tt>' instruction allocates
3072<tt>sizeof(&lt;type&gt;)*NumElements</tt>
3073bytes of memory from the operating system and returns a pointer of the
3074appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif5082cf42008-02-09 22:24:34 +00003075number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003076If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif5082cf42008-02-09 22:24:34 +00003077be aligned to at least that boundary. If not specified, or if zero, the target can
3078choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003079
3080<p>'<tt>type</tt>' must be a sized type.</p>
3081
3082<h5>Semantics:</h5>
3083
3084<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner8b094fc2008-04-19 21:01:16 +00003085a pointer is returned. The result of a zero byte allocattion is undefined. The
3086result is null if there is insufficient memory available.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003087
3088<h5>Example:</h5>
3089
3090<pre>
3091 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
3092
3093 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3094 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3095 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3096 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3097 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3098</pre>
3099</div>
3100
3101<!-- _______________________________________________________________________ -->
3102<div class="doc_subsubsection">
3103 <a name="i_free">'<tt>free</tt>' Instruction</a>
3104</div>
3105
3106<div class="doc_text">
3107
3108<h5>Syntax:</h5>
3109
3110<pre>
3111 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
3112</pre>
3113
3114<h5>Overview:</h5>
3115
3116<p>The '<tt>free</tt>' instruction returns memory back to the unused
3117memory heap to be reallocated in the future.</p>
3118
3119<h5>Arguments:</h5>
3120
3121<p>'<tt>value</tt>' shall be a pointer value that points to a value
3122that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3123instruction.</p>
3124
3125<h5>Semantics:</h5>
3126
3127<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner329d6532008-04-19 22:41:32 +00003128after this instruction executes. If the pointer is null, the operation
3129is a noop.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003130
3131<h5>Example:</h5>
3132
3133<pre>
3134 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3135 free [4 x i8]* %array
3136</pre>
3137</div>
3138
3139<!-- _______________________________________________________________________ -->
3140<div class="doc_subsubsection">
3141 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3142</div>
3143
3144<div class="doc_text">
3145
3146<h5>Syntax:</h5>
3147
3148<pre>
3149 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3150</pre>
3151
3152<h5>Overview:</h5>
3153
3154<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3155currently executing function, to be automatically released when this function
Christopher Lambcfe00962007-12-17 01:00:21 +00003156returns to its caller. The object is always allocated in the generic address
3157space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003158
3159<h5>Arguments:</h5>
3160
3161<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
3162bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif5082cf42008-02-09 22:24:34 +00003163appropriate type to the program. If "NumElements" is specified, it is the
3164number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003165If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif5082cf42008-02-09 22:24:34 +00003166to be aligned to at least that boundary. If not specified, or if zero, the target
3167can choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003168
3169<p>'<tt>type</tt>' may be any sized type.</p>
3170
3171<h5>Semantics:</h5>
3172
Chris Lattner8b094fc2008-04-19 21:01:16 +00003173<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3174there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003175memory is automatically released when the function returns. The '<tt>alloca</tt>'
3176instruction is commonly used to represent automatic variables that must
3177have an address available. When the function returns (either with the <tt><a
3178 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner10368b62008-04-02 00:38:26 +00003179instructions), the memory is reclaimed. Allocating zero bytes
3180is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003181
3182<h5>Example:</h5>
3183
3184<pre>
3185 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3186 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3187 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3188 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3189</pre>
3190</div>
3191
3192<!-- _______________________________________________________________________ -->
3193<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3194Instruction</a> </div>
3195<div class="doc_text">
3196<h5>Syntax:</h5>
3197<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
3198<h5>Overview:</h5>
3199<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3200<h5>Arguments:</h5>
3201<p>The argument to the '<tt>load</tt>' instruction specifies the memory
3202address from which to load. The pointer must point to a <a
3203 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3204marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
3205the number or order of execution of this <tt>load</tt> with other
3206volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3207instructions. </p>
Chris Lattner21003c82008-01-06 21:04:43 +00003208<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003209The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003210(that is, the alignment of the memory address). A value of 0 or an
3211omitted "align" argument means that the operation has the preferential
3212alignment for the target. It is the responsibility of the code emitter
3213to ensure that the alignment information is correct. Overestimating
3214the alignment results in an undefined behavior. Underestimating the
3215alignment may produce less efficient code. An alignment of 1 is always
3216safe.
3217</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003218<h5>Semantics:</h5>
3219<p>The location of memory pointed to is loaded.</p>
3220<h5>Examples:</h5>
3221<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3222 <a
3223 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3224 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3225</pre>
3226</div>
3227<!-- _______________________________________________________________________ -->
3228<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3229Instruction</a> </div>
3230<div class="doc_text">
3231<h5>Syntax:</h5>
3232<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3233 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3234</pre>
3235<h5>Overview:</h5>
3236<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3237<h5>Arguments:</h5>
3238<p>There are two arguments to the '<tt>store</tt>' instruction: a value
3239to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner10368b62008-04-02 00:38:26 +00003240operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3241of the '<tt>&lt;value&gt;</tt>'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003242operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
3243optimizer is not allowed to modify the number or order of execution of
3244this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3245 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner21003c82008-01-06 21:04:43 +00003246<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003247The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003248(that is, the alignment of the memory address). A value of 0 or an
3249omitted "align" argument means that the operation has the preferential
3250alignment for the target. It is the responsibility of the code emitter
3251to ensure that the alignment information is correct. Overestimating
3252the alignment results in an undefined behavior. Underestimating the
3253alignment may produce less efficient code. An alignment of 1 is always
3254safe.
3255</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003256<h5>Semantics:</h5>
3257<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3258at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
3259<h5>Example:</h5>
3260<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00003261 store i32 3, i32* %ptr <i>; yields {void}</i>
3262 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003263</pre>
3264</div>
3265
3266<!-- _______________________________________________________________________ -->
3267<div class="doc_subsubsection">
3268 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3269</div>
3270
3271<div class="doc_text">
3272<h5>Syntax:</h5>
3273<pre>
3274 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3275</pre>
3276
3277<h5>Overview:</h5>
3278
3279<p>
3280The '<tt>getelementptr</tt>' instruction is used to get the address of a
3281subelement of an aggregate data structure.</p>
3282
3283<h5>Arguments:</h5>
3284
3285<p>This instruction takes a list of integer operands that indicate what
3286elements of the aggregate object to index to. The actual types of the arguments
3287provided depend on the type of the first pointer argument. The
3288'<tt>getelementptr</tt>' instruction is used to index down through the type
3289levels of a structure or to a specific index in an array. When indexing into a
3290structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003291into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3292values will be sign extended to 64-bits if required.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003293
3294<p>For example, let's consider a C code fragment and how it gets
3295compiled to LLVM:</p>
3296
3297<div class="doc_code">
3298<pre>
3299struct RT {
3300 char A;
3301 int B[10][20];
3302 char C;
3303};
3304struct ST {
3305 int X;
3306 double Y;
3307 struct RT Z;
3308};
3309
3310int *foo(struct ST *s) {
3311 return &amp;s[1].Z.B[5][13];
3312}
3313</pre>
3314</div>
3315
3316<p>The LLVM code generated by the GCC frontend is:</p>
3317
3318<div class="doc_code">
3319<pre>
3320%RT = type { i8 , [10 x [20 x i32]], i8 }
3321%ST = type { i32, double, %RT }
3322
3323define i32* %foo(%ST* %s) {
3324entry:
3325 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3326 ret i32* %reg
3327}
3328</pre>
3329</div>
3330
3331<h5>Semantics:</h5>
3332
3333<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
3334on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
3335and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
3336<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner10368b62008-04-02 00:38:26 +00003337to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3338structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003339
3340<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3341type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3342}</tt>' type, a structure. The second index indexes into the third element of
3343the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3344i8 }</tt>' type, another structure. The third index indexes into the second
3345element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3346array. The two dimensions of the array are subscripted into, yielding an
3347'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3348to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3349
3350<p>Note that it is perfectly legal to index partially through a
3351structure, returning a pointer to an inner element. Because of this,
3352the LLVM code for the given testcase is equivalent to:</p>
3353
3354<pre>
3355 define i32* %foo(%ST* %s) {
3356 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3357 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3358 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3359 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3360 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3361 ret i32* %t5
3362 }
3363</pre>
3364
3365<p>Note that it is undefined to access an array out of bounds: array and
3366pointer indexes must always be within the defined bounds of the array type.
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003367The one exception for this rule is zero length arrays. These arrays are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003368defined to be accessible as variable length arrays, which requires access
3369beyond the zero'th element.</p>
3370
3371<p>The getelementptr instruction is often confusing. For some more insight
3372into how it works, see <a href="GetElementPtr.html">the getelementptr
3373FAQ</a>.</p>
3374
3375<h5>Example:</h5>
3376
3377<pre>
3378 <i>; yields [12 x i8]*:aptr</i>
3379 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3380</pre>
3381</div>
3382
3383<!-- ======================================================================= -->
3384<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3385</div>
3386<div class="doc_text">
3387<p>The instructions in this category are the conversion instructions (casting)
3388which all take a single operand and a type. They perform various bit conversions
3389on the operand.</p>
3390</div>
3391
3392<!-- _______________________________________________________________________ -->
3393<div class="doc_subsubsection">
3394 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3395</div>
3396<div class="doc_text">
3397
3398<h5>Syntax:</h5>
3399<pre>
3400 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3401</pre>
3402
3403<h5>Overview:</h5>
3404<p>
3405The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3406</p>
3407
3408<h5>Arguments:</h5>
3409<p>
3410The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3411be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3412and type of the result, which must be an <a href="#t_integer">integer</a>
3413type. The bit size of <tt>value</tt> must be larger than the bit size of
3414<tt>ty2</tt>. Equal sized types are not allowed.</p>
3415
3416<h5>Semantics:</h5>
3417<p>
3418The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3419and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3420larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3421It will always truncate bits.</p>
3422
3423<h5>Example:</h5>
3424<pre>
3425 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3426 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3427 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3428</pre>
3429</div>
3430
3431<!-- _______________________________________________________________________ -->
3432<div class="doc_subsubsection">
3433 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3434</div>
3435<div class="doc_text">
3436
3437<h5>Syntax:</h5>
3438<pre>
3439 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3440</pre>
3441
3442<h5>Overview:</h5>
3443<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3444<tt>ty2</tt>.</p>
3445
3446
3447<h5>Arguments:</h5>
3448<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3449<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3450also be of <a href="#t_integer">integer</a> type. The bit size of the
3451<tt>value</tt> must be smaller than the bit size of the destination type,
3452<tt>ty2</tt>.</p>
3453
3454<h5>Semantics:</h5>
3455<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3456bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3457
3458<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3459
3460<h5>Example:</h5>
3461<pre>
3462 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3463 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3464</pre>
3465</div>
3466
3467<!-- _______________________________________________________________________ -->
3468<div class="doc_subsubsection">
3469 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3470</div>
3471<div class="doc_text">
3472
3473<h5>Syntax:</h5>
3474<pre>
3475 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3476</pre>
3477
3478<h5>Overview:</h5>
3479<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3480
3481<h5>Arguments:</h5>
3482<p>
3483The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3484<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3485also be of <a href="#t_integer">integer</a> type. The bit size of the
3486<tt>value</tt> must be smaller than the bit size of the destination type,
3487<tt>ty2</tt>.</p>
3488
3489<h5>Semantics:</h5>
3490<p>
3491The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3492bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3493the type <tt>ty2</tt>.</p>
3494
3495<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3496
3497<h5>Example:</h5>
3498<pre>
3499 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3500 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3501</pre>
3502</div>
3503
3504<!-- _______________________________________________________________________ -->
3505<div class="doc_subsubsection">
3506 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3507</div>
3508
3509<div class="doc_text">
3510
3511<h5>Syntax:</h5>
3512
3513<pre>
3514 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3515</pre>
3516
3517<h5>Overview:</h5>
3518<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3519<tt>ty2</tt>.</p>
3520
3521
3522<h5>Arguments:</h5>
3523<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3524 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3525cast it to. The size of <tt>value</tt> must be larger than the size of
3526<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3527<i>no-op cast</i>.</p>
3528
3529<h5>Semantics:</h5>
3530<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3531<a href="#t_floating">floating point</a> type to a smaller
3532<a href="#t_floating">floating point</a> type. If the value cannot fit within
3533the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3534
3535<h5>Example:</h5>
3536<pre>
3537 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3538 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3539</pre>
3540</div>
3541
3542<!-- _______________________________________________________________________ -->
3543<div class="doc_subsubsection">
3544 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3545</div>
3546<div class="doc_text">
3547
3548<h5>Syntax:</h5>
3549<pre>
3550 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3551</pre>
3552
3553<h5>Overview:</h5>
3554<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3555floating point value.</p>
3556
3557<h5>Arguments:</h5>
3558<p>The '<tt>fpext</tt>' instruction takes a
3559<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3560and a <a href="#t_floating">floating point</a> type to cast it to. The source
3561type must be smaller than the destination type.</p>
3562
3563<h5>Semantics:</h5>
3564<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3565<a href="#t_floating">floating point</a> type to a larger
3566<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3567used to make a <i>no-op cast</i> because it always changes bits. Use
3568<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3569
3570<h5>Example:</h5>
3571<pre>
3572 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3573 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3574</pre>
3575</div>
3576
3577<!-- _______________________________________________________________________ -->
3578<div class="doc_subsubsection">
3579 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3580</div>
3581<div class="doc_text">
3582
3583<h5>Syntax:</h5>
3584<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003585 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586</pre>
3587
3588<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003589<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003590unsigned integer equivalent of type <tt>ty2</tt>.
3591</p>
3592
3593<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003594<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003595scalar or vector <a href="#t_floating">floating point</a> value, and a type
3596to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3597type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3598vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003599
3600<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003601<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003602<a href="#t_floating">floating point</a> operand into the nearest (rounding
3603towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3604the results are undefined.</p>
3605
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003606<h5>Example:</h5>
3607<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003608 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003609 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003610 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003611</pre>
3612</div>
3613
3614<!-- _______________________________________________________________________ -->
3615<div class="doc_subsubsection">
3616 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3617</div>
3618<div class="doc_text">
3619
3620<h5>Syntax:</h5>
3621<pre>
3622 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3623</pre>
3624
3625<h5>Overview:</h5>
3626<p>The '<tt>fptosi</tt>' instruction converts
3627<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3628</p>
3629
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003630<h5>Arguments:</h5>
3631<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003632scalar or vector <a href="#t_floating">floating point</a> value, and a type
3633to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3634type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3635vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003636
3637<h5>Semantics:</h5>
3638<p>The '<tt>fptosi</tt>' instruction converts its
3639<a href="#t_floating">floating point</a> operand into the nearest (rounding
3640towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3641the results are undefined.</p>
3642
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003643<h5>Example:</h5>
3644<pre>
3645 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003646 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003647 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3648</pre>
3649</div>
3650
3651<!-- _______________________________________________________________________ -->
3652<div class="doc_subsubsection">
3653 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3654</div>
3655<div class="doc_text">
3656
3657<h5>Syntax:</h5>
3658<pre>
3659 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3660</pre>
3661
3662<h5>Overview:</h5>
3663<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3664integer and converts that value to the <tt>ty2</tt> type.</p>
3665
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003666<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003667<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3668scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3669to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3670type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3671floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003672
3673<h5>Semantics:</h5>
3674<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3675integer quantity and converts it to the corresponding floating point value. If
3676the value cannot fit in the floating point value, the results are undefined.</p>
3677
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003678<h5>Example:</h5>
3679<pre>
3680 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3681 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3682</pre>
3683</div>
3684
3685<!-- _______________________________________________________________________ -->
3686<div class="doc_subsubsection">
3687 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3688</div>
3689<div class="doc_text">
3690
3691<h5>Syntax:</h5>
3692<pre>
3693 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3694</pre>
3695
3696<h5>Overview:</h5>
3697<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3698integer and converts that value to the <tt>ty2</tt> type.</p>
3699
3700<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003701<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3702scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3703to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3704type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3705floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003706
3707<h5>Semantics:</h5>
3708<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3709integer quantity and converts it to the corresponding floating point value. If
3710the value cannot fit in the floating point value, the results are undefined.</p>
3711
3712<h5>Example:</h5>
3713<pre>
3714 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3715 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3716</pre>
3717</div>
3718
3719<!-- _______________________________________________________________________ -->
3720<div class="doc_subsubsection">
3721 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3722</div>
3723<div class="doc_text">
3724
3725<h5>Syntax:</h5>
3726<pre>
3727 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3728</pre>
3729
3730<h5>Overview:</h5>
3731<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3732the integer type <tt>ty2</tt>.</p>
3733
3734<h5>Arguments:</h5>
3735<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3736must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3737<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3738
3739<h5>Semantics:</h5>
3740<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3741<tt>ty2</tt> by interpreting the pointer value as an integer and either
3742truncating or zero extending that value to the size of the integer type. If
3743<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3744<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3745are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3746change.</p>
3747
3748<h5>Example:</h5>
3749<pre>
3750 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3751 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3752</pre>
3753</div>
3754
3755<!-- _______________________________________________________________________ -->
3756<div class="doc_subsubsection">
3757 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3758</div>
3759<div class="doc_text">
3760
3761<h5>Syntax:</h5>
3762<pre>
3763 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3764</pre>
3765
3766<h5>Overview:</h5>
3767<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3768a pointer type, <tt>ty2</tt>.</p>
3769
3770<h5>Arguments:</h5>
3771<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3772value to cast, and a type to cast it to, which must be a
3773<a href="#t_pointer">pointer</a> type.
3774
3775<h5>Semantics:</h5>
3776<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3777<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3778the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3779size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3780the size of a pointer then a zero extension is done. If they are the same size,
3781nothing is done (<i>no-op cast</i>).</p>
3782
3783<h5>Example:</h5>
3784<pre>
3785 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3786 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3787 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3788</pre>
3789</div>
3790
3791<!-- _______________________________________________________________________ -->
3792<div class="doc_subsubsection">
3793 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3794</div>
3795<div class="doc_text">
3796
3797<h5>Syntax:</h5>
3798<pre>
3799 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3800</pre>
3801
3802<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003803
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003804<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3805<tt>ty2</tt> without changing any bits.</p>
3806
3807<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003808
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3810a first class value, and a type to cast it to, which must also be a <a
3811 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3812and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner6704c212008-05-20 20:48:21 +00003813type is a pointer, the destination type must also be a pointer. This
3814instruction supports bitwise conversion of vectors to integers and to vectors
3815of other types (as long as they have the same size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816
3817<h5>Semantics:</h5>
3818<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3819<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3820this conversion. The conversion is done as if the <tt>value</tt> had been
3821stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3822converted to other pointer types with this instruction. To convert pointers to
3823other types, use the <a href="#i_inttoptr">inttoptr</a> or
3824<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3825
3826<h5>Example:</h5>
3827<pre>
3828 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3829 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3830 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3831</pre>
3832</div>
3833
3834<!-- ======================================================================= -->
3835<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3836<div class="doc_text">
3837<p>The instructions in this category are the "miscellaneous"
3838instructions, which defy better classification.</p>
3839</div>
3840
3841<!-- _______________________________________________________________________ -->
3842<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3843</div>
3844<div class="doc_text">
3845<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003846<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003847</pre>
3848<h5>Overview:</h5>
3849<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
Chris Lattner10368b62008-04-02 00:38:26 +00003850of its two integer or pointer operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003851<h5>Arguments:</h5>
3852<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3853the condition code indicating the kind of comparison to perform. It is not
3854a value, just a keyword. The possible condition code are:
3855<ol>
3856 <li><tt>eq</tt>: equal</li>
3857 <li><tt>ne</tt>: not equal </li>
3858 <li><tt>ugt</tt>: unsigned greater than</li>
3859 <li><tt>uge</tt>: unsigned greater or equal</li>
3860 <li><tt>ult</tt>: unsigned less than</li>
3861 <li><tt>ule</tt>: unsigned less or equal</li>
3862 <li><tt>sgt</tt>: signed greater than</li>
3863 <li><tt>sge</tt>: signed greater or equal</li>
3864 <li><tt>slt</tt>: signed less than</li>
3865 <li><tt>sle</tt>: signed less or equal</li>
3866</ol>
3867<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3868<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3869<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003870<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003871the condition code given as <tt>cond</tt>. The comparison performed always
3872yields a <a href="#t_primitive">i1</a> result, as follows:
3873<ol>
3874 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3875 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3876 </li>
3877 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3878 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3879 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003880 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003881 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003882 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003884 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003885 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003886 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003888 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003890 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003892 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003893 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003894 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895</ol>
3896<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3897values are compared as if they were integers.</p>
3898
3899<h5>Example:</h5>
3900<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3901 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3902 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3903 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3904 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3905 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3906</pre>
3907</div>
3908
3909<!-- _______________________________________________________________________ -->
3910<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3911</div>
3912<div class="doc_text">
3913<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003914<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003915</pre>
3916<h5>Overview:</h5>
3917<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3918of its floating point operands.</p>
3919<h5>Arguments:</h5>
3920<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3921the condition code indicating the kind of comparison to perform. It is not
3922a value, just a keyword. The possible condition code are:
3923<ol>
3924 <li><tt>false</tt>: no comparison, always returns false</li>
3925 <li><tt>oeq</tt>: ordered and equal</li>
3926 <li><tt>ogt</tt>: ordered and greater than </li>
3927 <li><tt>oge</tt>: ordered and greater than or equal</li>
3928 <li><tt>olt</tt>: ordered and less than </li>
3929 <li><tt>ole</tt>: ordered and less than or equal</li>
3930 <li><tt>one</tt>: ordered and not equal</li>
3931 <li><tt>ord</tt>: ordered (no nans)</li>
3932 <li><tt>ueq</tt>: unordered or equal</li>
3933 <li><tt>ugt</tt>: unordered or greater than </li>
3934 <li><tt>uge</tt>: unordered or greater than or equal</li>
3935 <li><tt>ult</tt>: unordered or less than </li>
3936 <li><tt>ule</tt>: unordered or less than or equal</li>
3937 <li><tt>une</tt>: unordered or not equal</li>
3938 <li><tt>uno</tt>: unordered (either nans)</li>
3939 <li><tt>true</tt>: no comparison, always returns true</li>
3940</ol>
3941<p><i>Ordered</i> means that neither operand is a QNAN while
3942<i>unordered</i> means that either operand may be a QNAN.</p>
3943<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3944<a href="#t_floating">floating point</a> typed. They must have identical
3945types.</p>
3946<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003947<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00003948according to the condition code given as <tt>cond</tt>. The comparison performed
3949always yields a <a href="#t_primitive">i1</a> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003950<ol>
3951 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3952 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003953 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003954 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003955 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003956 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003957 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003958 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003959 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003960 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003961 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003962 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003963 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003964 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3965 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003966 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003968 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003969 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003970 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003972 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003973 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003974 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003975 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003976 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003977 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3978 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3979</ol>
3980
3981<h5>Example:</h5>
3982<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3983 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3984 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3985 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3986</pre>
3987</div>
3988
3989<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00003990<div class="doc_subsubsection">
3991 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
3992</div>
3993<div class="doc_text">
3994<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003995<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begeman646fa482008-05-12 19:01:56 +00003996</pre>
3997<h5>Overview:</h5>
3998<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
3999element-wise comparison of its two integer vector operands.</p>
4000<h5>Arguments:</h5>
4001<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4002the condition code indicating the kind of comparison to perform. It is not
4003a value, just a keyword. The possible condition code are:
4004<ol>
4005 <li><tt>eq</tt>: equal</li>
4006 <li><tt>ne</tt>: not equal </li>
4007 <li><tt>ugt</tt>: unsigned greater than</li>
4008 <li><tt>uge</tt>: unsigned greater or equal</li>
4009 <li><tt>ult</tt>: unsigned less than</li>
4010 <li><tt>ule</tt>: unsigned less or equal</li>
4011 <li><tt>sgt</tt>: signed greater than</li>
4012 <li><tt>sge</tt>: signed greater or equal</li>
4013 <li><tt>slt</tt>: signed less than</li>
4014 <li><tt>sle</tt>: signed less or equal</li>
4015</ol>
4016<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4017<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4018<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004019<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004020according to the condition code given as <tt>cond</tt>. The comparison yields a
4021<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4022identical type as the values being compared. The most significant bit in each
4023element is 1 if the element-wise comparison evaluates to true, and is 0
4024otherwise. All other bits of the result are undefined. The condition codes
4025are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4026instruction</a>.
4027
4028<h5>Example:</h5>
4029<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004030 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4031 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004032</pre>
4033</div>
4034
4035<!-- _______________________________________________________________________ -->
4036<div class="doc_subsubsection">
4037 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4038</div>
4039<div class="doc_text">
4040<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004041<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begeman646fa482008-05-12 19:01:56 +00004042<h5>Overview:</h5>
4043<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4044element-wise comparison of its two floating point vector operands. The output
4045elements have the same width as the input elements.</p>
4046<h5>Arguments:</h5>
4047<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4048the condition code indicating the kind of comparison to perform. It is not
4049a value, just a keyword. The possible condition code are:
4050<ol>
4051 <li><tt>false</tt>: no comparison, always returns false</li>
4052 <li><tt>oeq</tt>: ordered and equal</li>
4053 <li><tt>ogt</tt>: ordered and greater than </li>
4054 <li><tt>oge</tt>: ordered and greater than or equal</li>
4055 <li><tt>olt</tt>: ordered and less than </li>
4056 <li><tt>ole</tt>: ordered and less than or equal</li>
4057 <li><tt>one</tt>: ordered and not equal</li>
4058 <li><tt>ord</tt>: ordered (no nans)</li>
4059 <li><tt>ueq</tt>: unordered or equal</li>
4060 <li><tt>ugt</tt>: unordered or greater than </li>
4061 <li><tt>uge</tt>: unordered or greater than or equal</li>
4062 <li><tt>ult</tt>: unordered or less than </li>
4063 <li><tt>ule</tt>: unordered or less than or equal</li>
4064 <li><tt>une</tt>: unordered or not equal</li>
4065 <li><tt>uno</tt>: unordered (either nans)</li>
4066 <li><tt>true</tt>: no comparison, always returns true</li>
4067</ol>
4068<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4069<a href="#t_floating">floating point</a> typed. They must also be identical
4070types.</p>
4071<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004072<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004073according to the condition code given as <tt>cond</tt>. The comparison yields a
4074<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4075an identical number of elements as the values being compared, and each element
4076having identical with to the width of the floating point elements. The most
4077significant bit in each element is 1 if the element-wise comparison evaluates to
4078true, and is 0 otherwise. All other bits of the result are undefined. The
4079condition codes are evaluated identically to the
4080<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4081
4082<h5>Example:</h5>
4083<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004084 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4085 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004086</pre>
4087</div>
4088
4089<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00004090<div class="doc_subsubsection">
4091 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4092</div>
4093
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004094<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00004095
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004096<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004097
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004098<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4099<h5>Overview:</h5>
4100<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4101the SSA graph representing the function.</p>
4102<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004103
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004104<p>The type of the incoming values is specified with the first type
4105field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4106as arguments, with one pair for each predecessor basic block of the
4107current block. Only values of <a href="#t_firstclass">first class</a>
4108type may be used as the value arguments to the PHI node. Only labels
4109may be used as the label arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004110
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004111<p>There must be no non-phi instructions between the start of a basic
4112block and the PHI instructions: i.e. PHI instructions must be first in
4113a basic block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004114
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004115<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004116
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004117<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4118specified by the pair corresponding to the predecessor basic block that executed
4119just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004120
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004121<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004122<pre>
4123Loop: ; Infinite loop that counts from 0 on up...
4124 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4125 %nextindvar = add i32 %indvar, 1
4126 br label %Loop
4127</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004128</div>
4129
4130<!-- _______________________________________________________________________ -->
4131<div class="doc_subsubsection">
4132 <a name="i_select">'<tt>select</tt>' Instruction</a>
4133</div>
4134
4135<div class="doc_text">
4136
4137<h5>Syntax:</h5>
4138
4139<pre>
4140 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4141</pre>
4142
4143<h5>Overview:</h5>
4144
4145<p>
4146The '<tt>select</tt>' instruction is used to choose one value based on a
4147condition, without branching.
4148</p>
4149
4150
4151<h5>Arguments:</h5>
4152
4153<p>
Chris Lattner6704c212008-05-20 20:48:21 +00004154The '<tt>select</tt>' instruction requires an 'i1' value indicating the
4155condition, and two values of the same <a href="#t_firstclass">first class</a>
4156type. If the val1/val2 are vectors, the entire vectors are selected, not
4157individual elements.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004158</p>
4159
4160<h5>Semantics:</h5>
4161
4162<p>
Chris Lattner6704c212008-05-20 20:48:21 +00004163If the i1 condition evaluates is 1, the instruction returns the first
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004164value argument; otherwise, it returns the second value argument.
4165</p>
4166
4167<h5>Example:</h5>
4168
4169<pre>
4170 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4171</pre>
4172</div>
4173
4174
4175<!-- _______________________________________________________________________ -->
4176<div class="doc_subsubsection">
4177 <a name="i_call">'<tt>call</tt>' Instruction</a>
4178</div>
4179
4180<div class="doc_text">
4181
4182<h5>Syntax:</h5>
4183<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004184 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004185</pre>
4186
4187<h5>Overview:</h5>
4188
4189<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4190
4191<h5>Arguments:</h5>
4192
4193<p>This instruction requires several arguments:</p>
4194
4195<ol>
4196 <li>
4197 <p>The optional "tail" marker indicates whether the callee function accesses
4198 any allocas or varargs in the caller. If the "tail" marker is present, the
4199 function call is eligible for tail call optimization. Note that calls may
4200 be marked "tail" even if they do not occur before a <a
4201 href="#i_ret"><tt>ret</tt></a> instruction.
4202 </li>
4203 <li>
4204 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
4205 convention</a> the call should use. If none is specified, the call defaults
4206 to using C calling conventions.
4207 </li>
4208 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004209 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4210 the type of the return value. Functions that return no value are marked
4211 <tt><a href="#t_void">void</a></tt>.</p>
4212 </li>
4213 <li>
4214 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4215 value being invoked. The argument types must match the types implied by
4216 this signature. This type can be omitted if the function is not varargs
4217 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004218 </li>
4219 <li>
4220 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4221 be invoked. In most cases, this is a direct function invocation, but
4222 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4223 to function value.</p>
4224 </li>
4225 <li>
4226 <p>'<tt>function args</tt>': argument list whose types match the
4227 function signature argument types. All arguments must be of
4228 <a href="#t_firstclass">first class</a> type. If the function signature
4229 indicates the function accepts a variable number of arguments, the extra
4230 arguments can be specified.</p>
4231 </li>
4232</ol>
4233
4234<h5>Semantics:</h5>
4235
4236<p>The '<tt>call</tt>' instruction is used to cause control flow to
4237transfer to a specified function, with its incoming arguments bound to
4238the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4239instruction in the called function, control flow continues with the
4240instruction after the function call, and the return value of the
Chris Lattner5e893ef2008-03-21 17:24:17 +00004241function is bound to the result argument. If the callee returns multiple
4242values then the return values of the function are only accessible through
4243the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004244
4245<h5>Example:</h5>
4246
4247<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004248 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00004249 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4250 %X = tail call i32 @foo() <i>; yields i32</i>
4251 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4252 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00004253
4254 %struct.A = type { i32, i8 }
Chris Lattner5e893ef2008-03-21 17:24:17 +00004255 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4256 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4257 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004258</pre>
4259
4260</div>
4261
4262<!-- _______________________________________________________________________ -->
4263<div class="doc_subsubsection">
4264 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4265</div>
4266
4267<div class="doc_text">
4268
4269<h5>Syntax:</h5>
4270
4271<pre>
4272 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4273</pre>
4274
4275<h5>Overview:</h5>
4276
4277<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4278the "variable argument" area of a function call. It is used to implement the
4279<tt>va_arg</tt> macro in C.</p>
4280
4281<h5>Arguments:</h5>
4282
4283<p>This instruction takes a <tt>va_list*</tt> value and the type of
4284the argument. It returns a value of the specified argument type and
4285increments the <tt>va_list</tt> to point to the next argument. The
4286actual type of <tt>va_list</tt> is target specific.</p>
4287
4288<h5>Semantics:</h5>
4289
4290<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4291type from the specified <tt>va_list</tt> and causes the
4292<tt>va_list</tt> to point to the next argument. For more information,
4293see the variable argument handling <a href="#int_varargs">Intrinsic
4294Functions</a>.</p>
4295
4296<p>It is legal for this instruction to be called in a function which does not
4297take a variable number of arguments, for example, the <tt>vfprintf</tt>
4298function.</p>
4299
4300<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
4301href="#intrinsics">intrinsic function</a> because it takes a type as an
4302argument.</p>
4303
4304<h5>Example:</h5>
4305
4306<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4307
4308</div>
4309
Devang Patela3cc5372008-03-10 20:49:15 +00004310<!-- _______________________________________________________________________ -->
4311<div class="doc_subsubsection">
4312 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4313</div>
4314
4315<div class="doc_text">
4316
4317<h5>Syntax:</h5>
4318<pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004319 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patela3cc5372008-03-10 20:49:15 +00004320</pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004321
Devang Patela3cc5372008-03-10 20:49:15 +00004322<h5>Overview:</h5>
4323
4324<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattneree9da3f2008-03-21 17:20:51 +00004325from a '<tt><a href="#i_call">call</a></tt>'
4326or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4327results.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004328
4329<h5>Arguments:</h5>
4330
Chris Lattneree9da3f2008-03-21 17:20:51 +00004331<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattnerd8dd3522008-04-23 04:06:52 +00004332first argument, or an undef value. The value must have <a
4333href="#t_struct">structure type</a>. The second argument is a constant
4334unsigned index value which must be in range for the number of values returned
4335by the call.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004336
4337<h5>Semantics:</h5>
4338
Chris Lattneree9da3f2008-03-21 17:20:51 +00004339<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4340'<tt>index</tt>' from the aggregate value.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004341
4342<h5>Example:</h5>
4343
4344<pre>
4345 %struct.A = type { i32, i8 }
4346
4347 %r = call %struct.A @foo()
Chris Lattneree9da3f2008-03-21 17:20:51 +00004348 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4349 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patela3cc5372008-03-10 20:49:15 +00004350 add i32 %gr, 42
4351 add i8 %gr1, 41
4352</pre>
4353
4354</div>
4355
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004356<!-- *********************************************************************** -->
4357<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4358<!-- *********************************************************************** -->
4359
4360<div class="doc_text">
4361
4362<p>LLVM supports the notion of an "intrinsic function". These functions have
4363well known names and semantics and are required to follow certain restrictions.
4364Overall, these intrinsics represent an extension mechanism for the LLVM
4365language that does not require changing all of the transformations in LLVM when
4366adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
4367
4368<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4369prefix is reserved in LLVM for intrinsic names; thus, function names may not
4370begin with this prefix. Intrinsic functions must always be external functions:
4371you cannot define the body of intrinsic functions. Intrinsic functions may
4372only be used in call or invoke instructions: it is illegal to take the address
4373of an intrinsic function. Additionally, because intrinsic functions are part
4374of the LLVM language, it is required if any are added that they be documented
4375here.</p>
4376
Chandler Carrutha228e392007-08-04 01:51:18 +00004377<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4378a family of functions that perform the same operation but on different data
4379types. Because LLVM can represent over 8 million different integer types,
4380overloading is used commonly to allow an intrinsic function to operate on any
4381integer type. One or more of the argument types or the result type can be
4382overloaded to accept any integer type. Argument types may also be defined as
4383exactly matching a previous argument's type or the result type. This allows an
4384intrinsic function which accepts multiple arguments, but needs all of them to
4385be of the same type, to only be overloaded with respect to a single argument or
4386the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004387
Chandler Carrutha228e392007-08-04 01:51:18 +00004388<p>Overloaded intrinsics will have the names of its overloaded argument types
4389encoded into its function name, each preceded by a period. Only those types
4390which are overloaded result in a name suffix. Arguments whose type is matched
4391against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4392take an integer of any width and returns an integer of exactly the same integer
4393width. This leads to a family of functions such as
4394<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4395Only one type, the return type, is overloaded, and only one type suffix is
4396required. Because the argument's type is matched against the return type, it
4397does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004398
4399<p>To learn how to add an intrinsic function, please see the
4400<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
4401</p>
4402
4403</div>
4404
4405<!-- ======================================================================= -->
4406<div class="doc_subsection">
4407 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4408</div>
4409
4410<div class="doc_text">
4411
4412<p>Variable argument support is defined in LLVM with the <a
4413 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4414intrinsic functions. These functions are related to the similarly
4415named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
4416
4417<p>All of these functions operate on arguments that use a
4418target-specific value type "<tt>va_list</tt>". The LLVM assembly
4419language reference manual does not define what this type is, so all
4420transformations should be prepared to handle these functions regardless of
4421the type used.</p>
4422
4423<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4424instruction and the variable argument handling intrinsic functions are
4425used.</p>
4426
4427<div class="doc_code">
4428<pre>
4429define i32 @test(i32 %X, ...) {
4430 ; Initialize variable argument processing
4431 %ap = alloca i8*
4432 %ap2 = bitcast i8** %ap to i8*
4433 call void @llvm.va_start(i8* %ap2)
4434
4435 ; Read a single integer argument
4436 %tmp = va_arg i8** %ap, i32
4437
4438 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4439 %aq = alloca i8*
4440 %aq2 = bitcast i8** %aq to i8*
4441 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4442 call void @llvm.va_end(i8* %aq2)
4443
4444 ; Stop processing of arguments.
4445 call void @llvm.va_end(i8* %ap2)
4446 ret i32 %tmp
4447}
4448
4449declare void @llvm.va_start(i8*)
4450declare void @llvm.va_copy(i8*, i8*)
4451declare void @llvm.va_end(i8*)
4452</pre>
4453</div>
4454
4455</div>
4456
4457<!-- _______________________________________________________________________ -->
4458<div class="doc_subsubsection">
4459 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4460</div>
4461
4462
4463<div class="doc_text">
4464<h5>Syntax:</h5>
4465<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
4466<h5>Overview:</h5>
4467<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4468<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4469href="#i_va_arg">va_arg</a></tt>.</p>
4470
4471<h5>Arguments:</h5>
4472
4473<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4474
4475<h5>Semantics:</h5>
4476
4477<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4478macro available in C. In a target-dependent way, it initializes the
4479<tt>va_list</tt> element to which the argument points, so that the next call to
4480<tt>va_arg</tt> will produce the first variable argument passed to the function.
4481Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4482last argument of the function as the compiler can figure that out.</p>
4483
4484</div>
4485
4486<!-- _______________________________________________________________________ -->
4487<div class="doc_subsubsection">
4488 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4489</div>
4490
4491<div class="doc_text">
4492<h5>Syntax:</h5>
4493<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
4494<h5>Overview:</h5>
4495
4496<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
4497which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4498or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4499
4500<h5>Arguments:</h5>
4501
4502<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4503
4504<h5>Semantics:</h5>
4505
4506<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4507macro available in C. In a target-dependent way, it destroys the
4508<tt>va_list</tt> element to which the argument points. Calls to <a
4509href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4510<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4511<tt>llvm.va_end</tt>.</p>
4512
4513</div>
4514
4515<!-- _______________________________________________________________________ -->
4516<div class="doc_subsubsection">
4517 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4518</div>
4519
4520<div class="doc_text">
4521
4522<h5>Syntax:</h5>
4523
4524<pre>
4525 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4526</pre>
4527
4528<h5>Overview:</h5>
4529
4530<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4531from the source argument list to the destination argument list.</p>
4532
4533<h5>Arguments:</h5>
4534
4535<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4536The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4537
4538
4539<h5>Semantics:</h5>
4540
4541<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4542macro available in C. In a target-dependent way, it copies the source
4543<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4544intrinsic is necessary because the <tt><a href="#int_va_start">
4545llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4546example, memory allocation.</p>
4547
4548</div>
4549
4550<!-- ======================================================================= -->
4551<div class="doc_subsection">
4552 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4553</div>
4554
4555<div class="doc_text">
4556
4557<p>
4558LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00004559Collection</a> (GC) requires the implementation and generation of these
4560intrinsics.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004561These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4562stack</a>, as well as garbage collector implementations that require <a
4563href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4564Front-ends for type-safe garbage collected languages should generate these
4565intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4566href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4567</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00004568
4569<p>The garbage collection intrinsics only operate on objects in the generic
4570 address space (address space zero).</p>
4571
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004572</div>
4573
4574<!-- _______________________________________________________________________ -->
4575<div class="doc_subsubsection">
4576 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4577</div>
4578
4579<div class="doc_text">
4580
4581<h5>Syntax:</h5>
4582
4583<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004584 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004585</pre>
4586
4587<h5>Overview:</h5>
4588
4589<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4590the code generator, and allows some metadata to be associated with it.</p>
4591
4592<h5>Arguments:</h5>
4593
4594<p>The first argument specifies the address of a stack object that contains the
4595root pointer. The second pointer (which must be either a constant or a global
4596value address) contains the meta-data to be associated with the root.</p>
4597
4598<h5>Semantics:</h5>
4599
Chris Lattnera7d94ba2008-04-24 05:59:56 +00004600<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004601location. At compile-time, the code generator generates information to allow
Gordon Henriksen40393542007-12-25 02:31:26 +00004602the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4603intrinsic may only be used in a function which <a href="#gc">specifies a GC
4604algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004605
4606</div>
4607
4608
4609<!-- _______________________________________________________________________ -->
4610<div class="doc_subsubsection">
4611 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4612</div>
4613
4614<div class="doc_text">
4615
4616<h5>Syntax:</h5>
4617
4618<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004619 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004620</pre>
4621
4622<h5>Overview:</h5>
4623
4624<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4625locations, allowing garbage collector implementations that require read
4626barriers.</p>
4627
4628<h5>Arguments:</h5>
4629
4630<p>The second argument is the address to read from, which should be an address
4631allocated from the garbage collector. The first object is a pointer to the
4632start of the referenced object, if needed by the language runtime (otherwise
4633null).</p>
4634
4635<h5>Semantics:</h5>
4636
4637<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4638instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004639garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4640may only be used in a function which <a href="#gc">specifies a GC
4641algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004642
4643</div>
4644
4645
4646<!-- _______________________________________________________________________ -->
4647<div class="doc_subsubsection">
4648 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4649</div>
4650
4651<div class="doc_text">
4652
4653<h5>Syntax:</h5>
4654
4655<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004656 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004657</pre>
4658
4659<h5>Overview:</h5>
4660
4661<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4662locations, allowing garbage collector implementations that require write
4663barriers (such as generational or reference counting collectors).</p>
4664
4665<h5>Arguments:</h5>
4666
4667<p>The first argument is the reference to store, the second is the start of the
4668object to store it to, and the third is the address of the field of Obj to
4669store to. If the runtime does not require a pointer to the object, Obj may be
4670null.</p>
4671
4672<h5>Semantics:</h5>
4673
4674<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4675instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004676garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4677may only be used in a function which <a href="#gc">specifies a GC
4678algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004679
4680</div>
4681
4682
4683
4684<!-- ======================================================================= -->
4685<div class="doc_subsection">
4686 <a name="int_codegen">Code Generator Intrinsics</a>
4687</div>
4688
4689<div class="doc_text">
4690<p>
4691These intrinsics are provided by LLVM to expose special features that may only
4692be implemented with code generator support.
4693</p>
4694
4695</div>
4696
4697<!-- _______________________________________________________________________ -->
4698<div class="doc_subsubsection">
4699 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4700</div>
4701
4702<div class="doc_text">
4703
4704<h5>Syntax:</h5>
4705<pre>
4706 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4707</pre>
4708
4709<h5>Overview:</h5>
4710
4711<p>
4712The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4713target-specific value indicating the return address of the current function
4714or one of its callers.
4715</p>
4716
4717<h5>Arguments:</h5>
4718
4719<p>
4720The argument to this intrinsic indicates which function to return the address
4721for. Zero indicates the calling function, one indicates its caller, etc. The
4722argument is <b>required</b> to be a constant integer value.
4723</p>
4724
4725<h5>Semantics:</h5>
4726
4727<p>
4728The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4729the return address of the specified call frame, or zero if it cannot be
4730identified. The value returned by this intrinsic is likely to be incorrect or 0
4731for arguments other than zero, so it should only be used for debugging purposes.
4732</p>
4733
4734<p>
4735Note that calling this intrinsic does not prevent function inlining or other
4736aggressive transformations, so the value returned may not be that of the obvious
4737source-language caller.
4738</p>
4739</div>
4740
4741
4742<!-- _______________________________________________________________________ -->
4743<div class="doc_subsubsection">
4744 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4745</div>
4746
4747<div class="doc_text">
4748
4749<h5>Syntax:</h5>
4750<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004751 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004752</pre>
4753
4754<h5>Overview:</h5>
4755
4756<p>
4757The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4758target-specific frame pointer value for the specified stack frame.
4759</p>
4760
4761<h5>Arguments:</h5>
4762
4763<p>
4764The argument to this intrinsic indicates which function to return the frame
4765pointer for. Zero indicates the calling function, one indicates its caller,
4766etc. The argument is <b>required</b> to be a constant integer value.
4767</p>
4768
4769<h5>Semantics:</h5>
4770
4771<p>
4772The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4773the frame address of the specified call frame, or zero if it cannot be
4774identified. The value returned by this intrinsic is likely to be incorrect or 0
4775for arguments other than zero, so it should only be used for debugging purposes.
4776</p>
4777
4778<p>
4779Note that calling this intrinsic does not prevent function inlining or other
4780aggressive transformations, so the value returned may not be that of the obvious
4781source-language caller.
4782</p>
4783</div>
4784
4785<!-- _______________________________________________________________________ -->
4786<div class="doc_subsubsection">
4787 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4788</div>
4789
4790<div class="doc_text">
4791
4792<h5>Syntax:</h5>
4793<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004794 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004795</pre>
4796
4797<h5>Overview:</h5>
4798
4799<p>
4800The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4801the function stack, for use with <a href="#int_stackrestore">
4802<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4803features like scoped automatic variable sized arrays in C99.
4804</p>
4805
4806<h5>Semantics:</h5>
4807
4808<p>
4809This intrinsic returns a opaque pointer value that can be passed to <a
4810href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4811<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4812<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4813state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4814practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4815that were allocated after the <tt>llvm.stacksave</tt> was executed.
4816</p>
4817
4818</div>
4819
4820<!-- _______________________________________________________________________ -->
4821<div class="doc_subsubsection">
4822 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4823</div>
4824
4825<div class="doc_text">
4826
4827<h5>Syntax:</h5>
4828<pre>
4829 declare void @llvm.stackrestore(i8 * %ptr)
4830</pre>
4831
4832<h5>Overview:</h5>
4833
4834<p>
4835The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4836the function stack to the state it was in when the corresponding <a
4837href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4838useful for implementing language features like scoped automatic variable sized
4839arrays in C99.
4840</p>
4841
4842<h5>Semantics:</h5>
4843
4844<p>
4845See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4846</p>
4847
4848</div>
4849
4850
4851<!-- _______________________________________________________________________ -->
4852<div class="doc_subsubsection">
4853 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4854</div>
4855
4856<div class="doc_text">
4857
4858<h5>Syntax:</h5>
4859<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004860 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004861</pre>
4862
4863<h5>Overview:</h5>
4864
4865
4866<p>
4867The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4868a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4869no
4870effect on the behavior of the program but can change its performance
4871characteristics.
4872</p>
4873
4874<h5>Arguments:</h5>
4875
4876<p>
4877<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4878determining if the fetch should be for a read (0) or write (1), and
4879<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4880locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4881<tt>locality</tt> arguments must be constant integers.
4882</p>
4883
4884<h5>Semantics:</h5>
4885
4886<p>
4887This intrinsic does not modify the behavior of the program. In particular,
4888prefetches cannot trap and do not produce a value. On targets that support this
4889intrinsic, the prefetch can provide hints to the processor cache for better
4890performance.
4891</p>
4892
4893</div>
4894
4895<!-- _______________________________________________________________________ -->
4896<div class="doc_subsubsection">
4897 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4898</div>
4899
4900<div class="doc_text">
4901
4902<h5>Syntax:</h5>
4903<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004904 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004905</pre>
4906
4907<h5>Overview:</h5>
4908
4909
4910<p>
4911The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner96451482008-08-05 18:29:16 +00004912(PC) in a region of
4913code to simulators and other tools. The method is target specific, but it is
4914expected that the marker will use exported symbols to transmit the PC of the
4915marker.
4916The marker makes no guarantees that it will remain with any specific instruction
4917after optimizations. It is possible that the presence of a marker will inhibit
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004918optimizations. The intended use is to be inserted after optimizations to allow
4919correlations of simulation runs.
4920</p>
4921
4922<h5>Arguments:</h5>
4923
4924<p>
4925<tt>id</tt> is a numerical id identifying the marker.
4926</p>
4927
4928<h5>Semantics:</h5>
4929
4930<p>
4931This intrinsic does not modify the behavior of the program. Backends that do not
4932support this intrinisic may ignore it.
4933</p>
4934
4935</div>
4936
4937<!-- _______________________________________________________________________ -->
4938<div class="doc_subsubsection">
4939 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4940</div>
4941
4942<div class="doc_text">
4943
4944<h5>Syntax:</h5>
4945<pre>
4946 declare i64 @llvm.readcyclecounter( )
4947</pre>
4948
4949<h5>Overview:</h5>
4950
4951
4952<p>
4953The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4954counter register (or similar low latency, high accuracy clocks) on those targets
4955that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4956As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4957should only be used for small timings.
4958</p>
4959
4960<h5>Semantics:</h5>
4961
4962<p>
4963When directly supported, reading the cycle counter should not modify any memory.
4964Implementations are allowed to either return a application specific value or a
4965system wide value. On backends without support, this is lowered to a constant 0.
4966</p>
4967
4968</div>
4969
4970<!-- ======================================================================= -->
4971<div class="doc_subsection">
4972 <a name="int_libc">Standard C Library Intrinsics</a>
4973</div>
4974
4975<div class="doc_text">
4976<p>
4977LLVM provides intrinsics for a few important standard C library functions.
4978These intrinsics allow source-language front-ends to pass information about the
4979alignment of the pointer arguments to the code generator, providing opportunity
4980for more efficient code generation.
4981</p>
4982
4983</div>
4984
4985<!-- _______________________________________________________________________ -->
4986<div class="doc_subsubsection">
4987 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4988</div>
4989
4990<div class="doc_text">
4991
4992<h5>Syntax:</h5>
4993<pre>
4994 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4995 i32 &lt;len&gt;, i32 &lt;align&gt;)
4996 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4997 i64 &lt;len&gt;, i32 &lt;align&gt;)
4998</pre>
4999
5000<h5>Overview:</h5>
5001
5002<p>
5003The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5004location to the destination location.
5005</p>
5006
5007<p>
5008Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5009intrinsics do not return a value, and takes an extra alignment argument.
5010</p>
5011
5012<h5>Arguments:</h5>
5013
5014<p>
5015The first argument is a pointer to the destination, the second is a pointer to
5016the source. The third argument is an integer argument
5017specifying the number of bytes to copy, and the fourth argument is the alignment
5018of the source and destination locations.
5019</p>
5020
5021<p>
5022If the call to this intrinisic has an alignment value that is not 0 or 1, then
5023the caller guarantees that both the source and destination pointers are aligned
5024to that boundary.
5025</p>
5026
5027<h5>Semantics:</h5>
5028
5029<p>
5030The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5031location to the destination location, which are not allowed to overlap. It
5032copies "len" bytes of memory over. If the argument is known to be aligned to
5033some boundary, this can be specified as the fourth argument, otherwise it should
5034be set to 0 or 1.
5035</p>
5036</div>
5037
5038
5039<!-- _______________________________________________________________________ -->
5040<div class="doc_subsubsection">
5041 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5042</div>
5043
5044<div class="doc_text">
5045
5046<h5>Syntax:</h5>
5047<pre>
5048 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5049 i32 &lt;len&gt;, i32 &lt;align&gt;)
5050 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5051 i64 &lt;len&gt;, i32 &lt;align&gt;)
5052</pre>
5053
5054<h5>Overview:</h5>
5055
5056<p>
5057The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5058location to the destination location. It is similar to the
Chris Lattnerdba16ea2008-01-06 19:51:52 +00005059'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005060</p>
5061
5062<p>
5063Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5064intrinsics do not return a value, and takes an extra alignment argument.
5065</p>
5066
5067<h5>Arguments:</h5>
5068
5069<p>
5070The first argument is a pointer to the destination, the second is a pointer to
5071the source. The third argument is an integer argument
5072specifying the number of bytes to copy, and the fourth argument is the alignment
5073of the source and destination locations.
5074</p>
5075
5076<p>
5077If the call to this intrinisic has an alignment value that is not 0 or 1, then
5078the caller guarantees that the source and destination pointers are aligned to
5079that boundary.
5080</p>
5081
5082<h5>Semantics:</h5>
5083
5084<p>
5085The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
5086location to the destination location, which may overlap. It
5087copies "len" bytes of memory over. If the argument is known to be aligned to
5088some boundary, this can be specified as the fourth argument, otherwise it should
5089be set to 0 or 1.
5090</p>
5091</div>
5092
5093
5094<!-- _______________________________________________________________________ -->
5095<div class="doc_subsubsection">
5096 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5097</div>
5098
5099<div class="doc_text">
5100
5101<h5>Syntax:</h5>
5102<pre>
5103 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5104 i32 &lt;len&gt;, i32 &lt;align&gt;)
5105 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5106 i64 &lt;len&gt;, i32 &lt;align&gt;)
5107</pre>
5108
5109<h5>Overview:</h5>
5110
5111<p>
5112The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
5113byte value.
5114</p>
5115
5116<p>
5117Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5118does not return a value, and takes an extra alignment argument.
5119</p>
5120
5121<h5>Arguments:</h5>
5122
5123<p>
5124The first argument is a pointer to the destination to fill, the second is the
5125byte value to fill it with, the third argument is an integer
5126argument specifying the number of bytes to fill, and the fourth argument is the
5127known alignment of destination location.
5128</p>
5129
5130<p>
5131If the call to this intrinisic has an alignment value that is not 0 or 1, then
5132the caller guarantees that the destination pointer is aligned to that boundary.
5133</p>
5134
5135<h5>Semantics:</h5>
5136
5137<p>
5138The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5139the
5140destination location. If the argument is known to be aligned to some boundary,
5141this can be specified as the fourth argument, otherwise it should be set to 0 or
51421.
5143</p>
5144</div>
5145
5146
5147<!-- _______________________________________________________________________ -->
5148<div class="doc_subsubsection">
5149 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5150</div>
5151
5152<div class="doc_text">
5153
5154<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005155<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005156floating point or vector of floating point type. Not all targets support all
5157types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005158<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005159 declare float @llvm.sqrt.f32(float %Val)
5160 declare double @llvm.sqrt.f64(double %Val)
5161 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5162 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5163 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005164</pre>
5165
5166<h5>Overview:</h5>
5167
5168<p>
5169The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00005170returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005171<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattnerf914a002008-01-29 07:00:44 +00005172negative numbers other than -0.0 (which allows for better optimization, because
5173there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5174defined to return -0.0 like IEEE sqrt.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005175</p>
5176
5177<h5>Arguments:</h5>
5178
5179<p>
5180The argument and return value are floating point numbers of the same type.
5181</p>
5182
5183<h5>Semantics:</h5>
5184
5185<p>
5186This function returns the sqrt of the specified operand if it is a nonnegative
5187floating point number.
5188</p>
5189</div>
5190
5191<!-- _______________________________________________________________________ -->
5192<div class="doc_subsubsection">
5193 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5194</div>
5195
5196<div class="doc_text">
5197
5198<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005199<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005200floating point or vector of floating point type. Not all targets support all
5201types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005202<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005203 declare float @llvm.powi.f32(float %Val, i32 %power)
5204 declare double @llvm.powi.f64(double %Val, i32 %power)
5205 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5206 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5207 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005208</pre>
5209
5210<h5>Overview:</h5>
5211
5212<p>
5213The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5214specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00005215multiplications is not defined. When a vector of floating point type is
5216used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005217</p>
5218
5219<h5>Arguments:</h5>
5220
5221<p>
5222The second argument is an integer power, and the first is a value to raise to
5223that power.
5224</p>
5225
5226<h5>Semantics:</h5>
5227
5228<p>
5229This function returns the first value raised to the second power with an
5230unspecified sequence of rounding operations.</p>
5231</div>
5232
Dan Gohman361079c2007-10-15 20:30:11 +00005233<!-- _______________________________________________________________________ -->
5234<div class="doc_subsubsection">
5235 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5236</div>
5237
5238<div class="doc_text">
5239
5240<h5>Syntax:</h5>
5241<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5242floating point or vector of floating point type. Not all targets support all
5243types however.
5244<pre>
5245 declare float @llvm.sin.f32(float %Val)
5246 declare double @llvm.sin.f64(double %Val)
5247 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5248 declare fp128 @llvm.sin.f128(fp128 %Val)
5249 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5250</pre>
5251
5252<h5>Overview:</h5>
5253
5254<p>
5255The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5256</p>
5257
5258<h5>Arguments:</h5>
5259
5260<p>
5261The argument and return value are floating point numbers of the same type.
5262</p>
5263
5264<h5>Semantics:</h5>
5265
5266<p>
5267This function returns the sine of the specified operand, returning the
5268same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005269conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005270</div>
5271
5272<!-- _______________________________________________________________________ -->
5273<div class="doc_subsubsection">
5274 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5275</div>
5276
5277<div class="doc_text">
5278
5279<h5>Syntax:</h5>
5280<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5281floating point or vector of floating point type. Not all targets support all
5282types however.
5283<pre>
5284 declare float @llvm.cos.f32(float %Val)
5285 declare double @llvm.cos.f64(double %Val)
5286 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5287 declare fp128 @llvm.cos.f128(fp128 %Val)
5288 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5289</pre>
5290
5291<h5>Overview:</h5>
5292
5293<p>
5294The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5295</p>
5296
5297<h5>Arguments:</h5>
5298
5299<p>
5300The argument and return value are floating point numbers of the same type.
5301</p>
5302
5303<h5>Semantics:</h5>
5304
5305<p>
5306This function returns the cosine of the specified operand, returning the
5307same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005308conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005309</div>
5310
5311<!-- _______________________________________________________________________ -->
5312<div class="doc_subsubsection">
5313 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5314</div>
5315
5316<div class="doc_text">
5317
5318<h5>Syntax:</h5>
5319<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5320floating point or vector of floating point type. Not all targets support all
5321types however.
5322<pre>
5323 declare float @llvm.pow.f32(float %Val, float %Power)
5324 declare double @llvm.pow.f64(double %Val, double %Power)
5325 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5326 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5327 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5328</pre>
5329
5330<h5>Overview:</h5>
5331
5332<p>
5333The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5334specified (positive or negative) power.
5335</p>
5336
5337<h5>Arguments:</h5>
5338
5339<p>
5340The second argument is a floating point power, and the first is a value to
5341raise to that power.
5342</p>
5343
5344<h5>Semantics:</h5>
5345
5346<p>
5347This function returns the first value raised to the second power,
5348returning the
5349same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005350conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005351</div>
5352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005353
5354<!-- ======================================================================= -->
5355<div class="doc_subsection">
5356 <a name="int_manip">Bit Manipulation Intrinsics</a>
5357</div>
5358
5359<div class="doc_text">
5360<p>
5361LLVM provides intrinsics for a few important bit manipulation operations.
5362These allow efficient code generation for some algorithms.
5363</p>
5364
5365</div>
5366
5367<!-- _______________________________________________________________________ -->
5368<div class="doc_subsubsection">
5369 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5370</div>
5371
5372<div class="doc_text">
5373
5374<h5>Syntax:</h5>
5375<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00005376type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005377<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005378 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5379 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5380 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005381</pre>
5382
5383<h5>Overview:</h5>
5384
5385<p>
5386The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5387values with an even number of bytes (positive multiple of 16 bits). These are
5388useful for performing operations on data that is not in the target's native
5389byte order.
5390</p>
5391
5392<h5>Semantics:</h5>
5393
5394<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00005395The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005396and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5397intrinsic returns an i32 value that has the four bytes of the input i32
5398swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00005399i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5400<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005401additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
5402</p>
5403
5404</div>
5405
5406<!-- _______________________________________________________________________ -->
5407<div class="doc_subsubsection">
5408 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5409</div>
5410
5411<div class="doc_text">
5412
5413<h5>Syntax:</h5>
5414<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5415width. Not all targets support all bit widths however.
5416<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005417 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5418 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005419 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005420 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5421 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005422</pre>
5423
5424<h5>Overview:</h5>
5425
5426<p>
5427The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5428value.
5429</p>
5430
5431<h5>Arguments:</h5>
5432
5433<p>
5434The only argument is the value to be counted. The argument may be of any
5435integer type. The return type must match the argument type.
5436</p>
5437
5438<h5>Semantics:</h5>
5439
5440<p>
5441The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5442</p>
5443</div>
5444
5445<!-- _______________________________________________________________________ -->
5446<div class="doc_subsubsection">
5447 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5448</div>
5449
5450<div class="doc_text">
5451
5452<h5>Syntax:</h5>
5453<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5454integer bit width. Not all targets support all bit widths however.
5455<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005456 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5457 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005458 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005459 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5460 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005461</pre>
5462
5463<h5>Overview:</h5>
5464
5465<p>
5466The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5467leading zeros in a variable.
5468</p>
5469
5470<h5>Arguments:</h5>
5471
5472<p>
5473The only argument is the value to be counted. The argument may be of any
5474integer type. The return type must match the argument type.
5475</p>
5476
5477<h5>Semantics:</h5>
5478
5479<p>
5480The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5481in a variable. If the src == 0 then the result is the size in bits of the type
5482of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5483</p>
5484</div>
5485
5486
5487
5488<!-- _______________________________________________________________________ -->
5489<div class="doc_subsubsection">
5490 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5491</div>
5492
5493<div class="doc_text">
5494
5495<h5>Syntax:</h5>
5496<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5497integer bit width. Not all targets support all bit widths however.
5498<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005499 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5500 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005501 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005502 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5503 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005504</pre>
5505
5506<h5>Overview:</h5>
5507
5508<p>
5509The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5510trailing zeros.
5511</p>
5512
5513<h5>Arguments:</h5>
5514
5515<p>
5516The only argument is the value to be counted. The argument may be of any
5517integer type. The return type must match the argument type.
5518</p>
5519
5520<h5>Semantics:</h5>
5521
5522<p>
5523The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5524in a variable. If the src == 0 then the result is the size in bits of the type
5525of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5526</p>
5527</div>
5528
5529<!-- _______________________________________________________________________ -->
5530<div class="doc_subsubsection">
5531 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5532</div>
5533
5534<div class="doc_text">
5535
5536<h5>Syntax:</h5>
5537<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
5538on any integer bit width.
5539<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005540 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5541 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005542</pre>
5543
5544<h5>Overview:</h5>
5545<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5546range of bits from an integer value and returns them in the same bit width as
5547the original value.</p>
5548
5549<h5>Arguments:</h5>
5550<p>The first argument, <tt>%val</tt> and the result may be integer types of
5551any bit width but they must have the same bit width. The second and third
5552arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5553
5554<h5>Semantics:</h5>
5555<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5556of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5557<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5558operates in forward mode.</p>
5559<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5560right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5561only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5562<ol>
5563 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5564 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5565 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5566 to determine the number of bits to retain.</li>
5567 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5568 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5569</ol>
5570<p>In reverse mode, a similar computation is made except that the bits are
5571returned in the reverse order. So, for example, if <tt>X</tt> has the value
5572<tt>i16 0x0ACF (101011001111)</tt> and we apply
5573<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5574<tt>i16 0x0026 (000000100110)</tt>.</p>
5575</div>
5576
5577<div class="doc_subsubsection">
5578 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5579</div>
5580
5581<div class="doc_text">
5582
5583<h5>Syntax:</h5>
5584<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5585on any integer bit width.
5586<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005587 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5588 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005589</pre>
5590
5591<h5>Overview:</h5>
5592<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5593of bits in an integer value with another integer value. It returns the integer
5594with the replaced bits.</p>
5595
5596<h5>Arguments:</h5>
5597<p>The first argument, <tt>%val</tt> and the result may be integer types of
5598any bit width but they must have the same bit width. <tt>%val</tt> is the value
5599whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5600integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5601type since they specify only a bit index.</p>
5602
5603<h5>Semantics:</h5>
5604<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5605of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5606<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5607operates in forward mode.</p>
5608<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5609truncating it down to the size of the replacement area or zero extending it
5610up to that size.</p>
5611<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5612are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5613in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5614to the <tt>%hi</tt>th bit.
5615<p>In reverse mode, a similar computation is made except that the bits are
5616reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5617<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5618<h5>Examples:</h5>
5619<pre>
5620 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5621 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5622 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5623 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5624 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5625</pre>
5626</div>
5627
5628<!-- ======================================================================= -->
5629<div class="doc_subsection">
5630 <a name="int_debugger">Debugger Intrinsics</a>
5631</div>
5632
5633<div class="doc_text">
5634<p>
5635The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5636are described in the <a
5637href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5638Debugging</a> document.
5639</p>
5640</div>
5641
5642
5643<!-- ======================================================================= -->
5644<div class="doc_subsection">
5645 <a name="int_eh">Exception Handling Intrinsics</a>
5646</div>
5647
5648<div class="doc_text">
5649<p> The LLVM exception handling intrinsics (which all start with
5650<tt>llvm.eh.</tt> prefix), are described in the <a
5651href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5652Handling</a> document. </p>
5653</div>
5654
5655<!-- ======================================================================= -->
5656<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005657 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005658</div>
5659
5660<div class="doc_text">
5661<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005662 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005663 the <tt>nest</tt> attribute, from a function. The result is a callable
5664 function pointer lacking the nest parameter - the caller does not need
5665 to provide a value for it. Instead, the value to use is stored in
5666 advance in a "trampoline", a block of memory usually allocated
5667 on the stack, which also contains code to splice the nest value into the
5668 argument list. This is used to implement the GCC nested function address
5669 extension.
5670</p>
5671<p>
5672 For example, if the function is
5673 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005674 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005675<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005676 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5677 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5678 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5679 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005680</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005681 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5682 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005683</div>
5684
5685<!-- _______________________________________________________________________ -->
5686<div class="doc_subsubsection">
5687 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5688</div>
5689<div class="doc_text">
5690<h5>Syntax:</h5>
5691<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005692declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005693</pre>
5694<h5>Overview:</h5>
5695<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005696 This fills the memory pointed to by <tt>tramp</tt> with code
5697 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005698</p>
5699<h5>Arguments:</h5>
5700<p>
5701 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5702 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5703 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005704 intrinsic. Note that the size and the alignment are target-specific - LLVM
5705 currently provides no portable way of determining them, so a front-end that
5706 generates this intrinsic needs to have some target-specific knowledge.
5707 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005708</p>
5709<h5>Semantics:</h5>
5710<p>
5711 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005712 dependent code, turning it into a function. A pointer to this function is
5713 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005714 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005715 before being called. The new function's signature is the same as that of
5716 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5717 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5718 of pointer type. Calling the new function is equivalent to calling
5719 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5720 missing <tt>nest</tt> argument. If, after calling
5721 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5722 modified, then the effect of any later call to the returned function pointer is
5723 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005724</p>
5725</div>
5726
5727<!-- ======================================================================= -->
5728<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00005729 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5730</div>
5731
5732<div class="doc_text">
5733<p>
5734 These intrinsic functions expand the "universal IR" of LLVM to represent
5735 hardware constructs for atomic operations and memory synchronization. This
5736 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner96451482008-08-05 18:29:16 +00005737 is aimed at a low enough level to allow any programming models or APIs
5738 (Application Programming Interfaces) which
Andrew Lenharth785610d2008-02-16 01:24:58 +00005739 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5740 hardware behavior. Just as hardware provides a "universal IR" for source
5741 languages, it also provides a starting point for developing a "universal"
5742 atomic operation and synchronization IR.
5743</p>
5744<p>
5745 These do <em>not</em> form an API such as high-level threading libraries,
5746 software transaction memory systems, atomic primitives, and intrinsic
5747 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5748 application libraries. The hardware interface provided by LLVM should allow
5749 a clean implementation of all of these APIs and parallel programming models.
5750 No one model or paradigm should be selected above others unless the hardware
5751 itself ubiquitously does so.
5752
5753</p>
5754</div>
5755
5756<!-- _______________________________________________________________________ -->
5757<div class="doc_subsubsection">
5758 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5759</div>
5760<div class="doc_text">
5761<h5>Syntax:</h5>
5762<pre>
5763declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5764i1 &lt;device&gt; )
5765
5766</pre>
5767<h5>Overview:</h5>
5768<p>
5769 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5770 specific pairs of memory access types.
5771</p>
5772<h5>Arguments:</h5>
5773<p>
5774 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5775 The first four arguments enables a specific barrier as listed below. The fith
5776 argument specifies that the barrier applies to io or device or uncached memory.
5777
5778</p>
5779 <ul>
5780 <li><tt>ll</tt>: load-load barrier</li>
5781 <li><tt>ls</tt>: load-store barrier</li>
5782 <li><tt>sl</tt>: store-load barrier</li>
5783 <li><tt>ss</tt>: store-store barrier</li>
5784 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5785 </ul>
5786<h5>Semantics:</h5>
5787<p>
5788 This intrinsic causes the system to enforce some ordering constraints upon
5789 the loads and stores of the program. This barrier does not indicate
5790 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5791 which they occur. For any of the specified pairs of load and store operations
5792 (f.ex. load-load, or store-load), all of the first operations preceding the
5793 barrier will complete before any of the second operations succeeding the
5794 barrier begin. Specifically the semantics for each pairing is as follows:
5795</p>
5796 <ul>
5797 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5798 after the barrier begins.</li>
5799
5800 <li><tt>ls</tt>: All loads before the barrier must complete before any
5801 store after the barrier begins.</li>
5802 <li><tt>ss</tt>: All stores before the barrier must complete before any
5803 store after the barrier begins.</li>
5804 <li><tt>sl</tt>: All stores before the barrier must complete before any
5805 load after the barrier begins.</li>
5806 </ul>
5807<p>
5808 These semantics are applied with a logical "and" behavior when more than one
5809 is enabled in a single memory barrier intrinsic.
5810</p>
5811<p>
5812 Backends may implement stronger barriers than those requested when they do not
5813 support as fine grained a barrier as requested. Some architectures do not
5814 need all types of barriers and on such architectures, these become noops.
5815</p>
5816<h5>Example:</h5>
5817<pre>
5818%ptr = malloc i32
5819 store i32 4, %ptr
5820
5821%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5822 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5823 <i>; guarantee the above finishes</i>
5824 store i32 8, %ptr <i>; before this begins</i>
5825</pre>
5826</div>
5827
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005828<!-- _______________________________________________________________________ -->
5829<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005830 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005831</div>
5832<div class="doc_text">
5833<h5>Syntax:</h5>
5834<p>
Mon P Wangce3ac892008-07-30 04:36:53 +00005835 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5836 any integer bit width and for different address spaces. Not all targets
5837 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005838
5839<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005840declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5841declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5842declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5843declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005844
5845</pre>
5846<h5>Overview:</h5>
5847<p>
5848 This loads a value in memory and compares it to a given value. If they are
5849 equal, it stores a new value into the memory.
5850</p>
5851<h5>Arguments:</h5>
5852<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005853 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005854 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5855 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5856 this integer type. While any bit width integer may be used, targets may only
5857 lower representations they support in hardware.
5858
5859</p>
5860<h5>Semantics:</h5>
5861<p>
5862 This entire intrinsic must be executed atomically. It first loads the value
5863 in memory pointed to by <tt>ptr</tt> and compares it with the value
5864 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5865 loaded value is yielded in all cases. This provides the equivalent of an
5866 atomic compare-and-swap operation within the SSA framework.
5867</p>
5868<h5>Examples:</h5>
5869
5870<pre>
5871%ptr = malloc i32
5872 store i32 4, %ptr
5873
5874%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005875%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005876 <i>; yields {i32}:result1 = 4</i>
5877%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5878%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5879
5880%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005881%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005882 <i>; yields {i32}:result2 = 8</i>
5883%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5884
5885%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5886</pre>
5887</div>
5888
5889<!-- _______________________________________________________________________ -->
5890<div class="doc_subsubsection">
5891 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5892</div>
5893<div class="doc_text">
5894<h5>Syntax:</h5>
5895
5896<p>
5897 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5898 integer bit width. Not all targets support all bit widths however.</p>
5899<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005900declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5901declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5902declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5903declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005904
5905</pre>
5906<h5>Overview:</h5>
5907<p>
5908 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5909 the value from memory. It then stores the value in <tt>val</tt> in the memory
5910 at <tt>ptr</tt>.
5911</p>
5912<h5>Arguments:</h5>
5913
5914<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005915 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005916 <tt>val</tt> argument and the result must be integers of the same bit width.
5917 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5918 integer type. The targets may only lower integer representations they
5919 support.
5920</p>
5921<h5>Semantics:</h5>
5922<p>
5923 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5924 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5925 equivalent of an atomic swap operation within the SSA framework.
5926
5927</p>
5928<h5>Examples:</h5>
5929<pre>
5930%ptr = malloc i32
5931 store i32 4, %ptr
5932
5933%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005934%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005935 <i>; yields {i32}:result1 = 4</i>
5936%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5937%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5938
5939%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005940%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005941 <i>; yields {i32}:result2 = 8</i>
5942
5943%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5944%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5945</pre>
5946</div>
5947
5948<!-- _______________________________________________________________________ -->
5949<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005950 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005951
5952</div>
5953<div class="doc_text">
5954<h5>Syntax:</h5>
5955<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005956 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005957 integer bit width. Not all targets support all bit widths however.</p>
5958<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005959declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5960declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5961declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5962declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005963
5964</pre>
5965<h5>Overview:</h5>
5966<p>
5967 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5968 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5969</p>
5970<h5>Arguments:</h5>
5971<p>
5972
5973 The intrinsic takes two arguments, the first a pointer to an integer value
5974 and the second an integer value. The result is also an integer value. These
5975 integer types can have any bit width, but they must all have the same bit
5976 width. The targets may only lower integer representations they support.
5977</p>
5978<h5>Semantics:</h5>
5979<p>
5980 This intrinsic does a series of operations atomically. It first loads the
5981 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5982 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5983</p>
5984
5985<h5>Examples:</h5>
5986<pre>
5987%ptr = malloc i32
5988 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00005989%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005990 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00005991%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005992 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00005993%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005994 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005995%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005996</pre>
5997</div>
5998
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005999<!-- _______________________________________________________________________ -->
6000<div class="doc_subsubsection">
6001 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6002
6003</div>
6004<div class="doc_text">
6005<h5>Syntax:</h5>
6006<p>
6007 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wangce3ac892008-07-30 04:36:53 +00006008 any integer bit width and for different address spaces. Not all targets
6009 support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006010<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006011declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6012declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6013declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6014declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006015
6016</pre>
6017<h5>Overview:</h5>
6018<p>
6019 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6020 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6021</p>
6022<h5>Arguments:</h5>
6023<p>
6024
6025 The intrinsic takes two arguments, the first a pointer to an integer value
6026 and the second an integer value. The result is also an integer value. These
6027 integer types can have any bit width, but they must all have the same bit
6028 width. The targets may only lower integer representations they support.
6029</p>
6030<h5>Semantics:</h5>
6031<p>
6032 This intrinsic does a series of operations atomically. It first loads the
6033 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6034 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6035</p>
6036
6037<h5>Examples:</h5>
6038<pre>
6039%ptr = malloc i32
6040 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006041%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006042 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006043%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006044 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006045%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006046 <i>; yields {i32}:result3 = 2</i>
6047%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6048</pre>
6049</div>
6050
6051<!-- _______________________________________________________________________ -->
6052<div class="doc_subsubsection">
6053 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6054 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6055 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6056 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6057
6058</div>
6059<div class="doc_text">
6060<h5>Syntax:</h5>
6061<p>
6062 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6063 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006064 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6065 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006066<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006067declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6068declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6069declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6070declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006071
6072</pre>
6073
6074<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006075declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6076declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6077declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6078declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006079
6080</pre>
6081
6082<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006083declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6084declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6085declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6086declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006087
6088</pre>
6089
6090<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006091declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6092declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6093declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6094declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006095
6096</pre>
6097<h5>Overview:</h5>
6098<p>
6099 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6100 the value stored in memory at <tt>ptr</tt>. It yields the original value
6101 at <tt>ptr</tt>.
6102</p>
6103<h5>Arguments:</h5>
6104<p>
6105
6106 These intrinsics take two arguments, the first a pointer to an integer value
6107 and the second an integer value. The result is also an integer value. These
6108 integer types can have any bit width, but they must all have the same bit
6109 width. The targets may only lower integer representations they support.
6110</p>
6111<h5>Semantics:</h5>
6112<p>
6113 These intrinsics does a series of operations atomically. They first load the
6114 value stored at <tt>ptr</tt>. They then do the bitwise operation
6115 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6116 value stored at <tt>ptr</tt>.
6117</p>
6118
6119<h5>Examples:</h5>
6120<pre>
6121%ptr = malloc i32
6122 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006123%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006124 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006125%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006126 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006127%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006128 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006129%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006130 <i>; yields {i32}:result3 = FF</i>
6131%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6132</pre>
6133</div>
6134
6135
6136<!-- _______________________________________________________________________ -->
6137<div class="doc_subsubsection">
6138 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6139 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6140 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6141 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6142
6143</div>
6144<div class="doc_text">
6145<h5>Syntax:</h5>
6146<p>
6147 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6148 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006149 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6150 address spaces. Not all targets
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006151 support all bit widths however.</p>
6152<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006153declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6154declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6155declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6156declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006157
6158</pre>
6159
6160<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006161declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6162declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6163declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6164declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006165
6166</pre>
6167
6168<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006169declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6170declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6171declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6172declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006173
6174</pre>
6175
6176<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006177declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6178declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6179declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6180declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006181
6182</pre>
6183<h5>Overview:</h5>
6184<p>
6185 These intrinsics takes the signed or unsigned minimum or maximum of
6186 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6187 original value at <tt>ptr</tt>.
6188</p>
6189<h5>Arguments:</h5>
6190<p>
6191
6192 These intrinsics take two arguments, the first a pointer to an integer value
6193 and the second an integer value. The result is also an integer value. These
6194 integer types can have any bit width, but they must all have the same bit
6195 width. The targets may only lower integer representations they support.
6196</p>
6197<h5>Semantics:</h5>
6198<p>
6199 These intrinsics does a series of operations atomically. They first load the
6200 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6201 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6202 the original value stored at <tt>ptr</tt>.
6203</p>
6204
6205<h5>Examples:</h5>
6206<pre>
6207%ptr = malloc i32
6208 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006209%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006210 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006211%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006212 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006213%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006214 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006215%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006216 <i>; yields {i32}:result3 = 8</i>
6217%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6218</pre>
6219</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006220
6221<!-- ======================================================================= -->
6222<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006223 <a name="int_general">General Intrinsics</a>
6224</div>
6225
6226<div class="doc_text">
6227<p> This class of intrinsics is designed to be generic and has
6228no specific purpose. </p>
6229</div>
6230
6231<!-- _______________________________________________________________________ -->
6232<div class="doc_subsubsection">
6233 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6234</div>
6235
6236<div class="doc_text">
6237
6238<h5>Syntax:</h5>
6239<pre>
6240 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6241</pre>
6242
6243<h5>Overview:</h5>
6244
6245<p>
6246The '<tt>llvm.var.annotation</tt>' intrinsic
6247</p>
6248
6249<h5>Arguments:</h5>
6250
6251<p>
6252The first argument is a pointer to a value, the second is a pointer to a
6253global string, the third is a pointer to a global string which is the source
6254file name, and the last argument is the line number.
6255</p>
6256
6257<h5>Semantics:</h5>
6258
6259<p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006260This intrinsic allows annotation of local variables with arbitrary strings.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006261This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006262annotations. These have no other defined use, they are ignored by code
6263generation and optimization.
6264</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006265</div>
6266
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006267<!-- _______________________________________________________________________ -->
6268<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00006269 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006270</div>
6271
6272<div class="doc_text">
6273
6274<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006275<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6276any integer bit width.
6277</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006278<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00006279 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6280 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6281 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6282 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6283 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006284</pre>
6285
6286<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006287
6288<p>
6289The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006290</p>
6291
6292<h5>Arguments:</h5>
6293
6294<p>
6295The first argument is an integer value (result of some expression),
6296the second is a pointer to a global string, the third is a pointer to a global
6297string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00006298It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006299</p>
6300
6301<h5>Semantics:</h5>
6302
6303<p>
6304This intrinsic allows annotations to be put on arbitrary expressions
6305with arbitrary strings. This can be useful for special purpose optimizations
6306that want to look for these annotations. These have no other defined use, they
6307are ignored by code generation and optimization.
6308</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006309
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006310<!-- _______________________________________________________________________ -->
6311<div class="doc_subsubsection">
6312 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6313</div>
6314
6315<div class="doc_text">
6316
6317<h5>Syntax:</h5>
6318<pre>
6319 declare void @llvm.trap()
6320</pre>
6321
6322<h5>Overview:</h5>
6323
6324<p>
6325The '<tt>llvm.trap</tt>' intrinsic
6326</p>
6327
6328<h5>Arguments:</h5>
6329
6330<p>
6331None
6332</p>
6333
6334<h5>Semantics:</h5>
6335
6336<p>
6337This intrinsics is lowered to the target dependent trap instruction. If the
6338target does not have a trap instruction, this intrinsic will be lowered to the
6339call of the abort() function.
6340</p>
6341</div>
6342
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006343<!-- *********************************************************************** -->
6344<hr>
6345<address>
6346 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6347 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6348 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner08497ce2008-01-04 04:33:49 +00006349 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006350
6351 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6352 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6353 Last modified: $Date$
6354</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00006355
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006356</body>
6357</html>