blob: 11b43befdff63b185c53347b578a1e165e8bfc7c [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000027 <li><a href="#paramattrs">Parameter Attributes</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000028 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000029 <li><a href="#datalayout">Data Layout</a></li>
Reid Spencerc10f0af2007-03-28 02:46:29 +000030 <li><a href="#checkpoint">Check Points</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000031 </ol>
32 </li>
Chris Lattner00950542001-06-06 20:29:01 +000033 <li><a href="#typesystem">Type System</a>
34 <ol>
Robert Bocchino7b81c752006-02-17 21:18:08 +000035 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000036 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000038 </ol>
39 </li>
Chris Lattner00950542001-06-06 20:29:01 +000040 <li><a href="#t_derived">Derived Types</a>
41 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000042 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000043 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000046 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000047 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000048 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 </ol>
50 </li>
51 </ol>
52 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000053 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000054 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000061 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000062 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
Chris Lattner00950542001-06-06 20:29:01 +000067 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000073 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000075 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000076 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000077 </ol>
78 </li>
Chris Lattner00950542001-06-06 20:29:01 +000079 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000084 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000087 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000090 </ol>
91 </li>
Chris Lattner00950542001-06-06 20:29:01 +000092 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000094 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000097 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000099 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000100 </ol>
101 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 </ol>
108 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000110 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000117 </ol>
118 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000119 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000133 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000134 <li><a href="#otherops">Other Operations</a>
135 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000142 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000143 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000144 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000145 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000146 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000147 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
Chris Lattner57e1f392006-01-13 02:03:13 +0000166 <li><a href="#i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +0000168 <li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +0000169 <li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Andrew Lenharth51b8d542005-11-11 16:47:30 +0000170 <li><a href="#i_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000171 </ol>
172 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
Chris Lattner5b310c32006-03-03 00:07:20 +0000175 <li><a href="#i_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#i_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#i_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
Chris Lattnerec6cb612006-01-16 22:38:59 +0000178 <li><a href="#i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
Chris Lattnerf4d252d2006-09-08 06:34:02 +0000179 <li><a href="#i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000180 </ol>
181 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000183 <ol>
Nate Begeman7e36c472006-01-13 23:26:38 +0000184 <li><a href="#i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000188 </ol>
189 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000190 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000191 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000192 </ol>
193 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000194</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000195
196<div class="doc_author">
197 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
198 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000199</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000200
Chris Lattner00950542001-06-06 20:29:01 +0000201<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000202<div class="doc_section"> <a name="abstract">Abstract </a></div>
203<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000204
Misha Brukman9d0919f2003-11-08 01:05:38 +0000205<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000206<p>This document is a reference manual for the LLVM assembly language.
207LLVM is an SSA based representation that provides type safety,
208low-level operations, flexibility, and the capability of representing
209'all' high-level languages cleanly. It is the common code
210representation used throughout all phases of the LLVM compilation
211strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000212</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000213
Chris Lattner00950542001-06-06 20:29:01 +0000214<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000215<div class="doc_section"> <a name="introduction">Introduction</a> </div>
216<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000217
Misha Brukman9d0919f2003-11-08 01:05:38 +0000218<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000219
Chris Lattner261efe92003-11-25 01:02:51 +0000220<p>The LLVM code representation is designed to be used in three
221different forms: as an in-memory compiler IR, as an on-disk bytecode
222representation (suitable for fast loading by a Just-In-Time compiler),
223and as a human readable assembly language representation. This allows
224LLVM to provide a powerful intermediate representation for efficient
225compiler transformations and analysis, while providing a natural means
226to debug and visualize the transformations. The three different forms
227of LLVM are all equivalent. This document describes the human readable
228representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000229
John Criswellc1f786c2005-05-13 22:25:59 +0000230<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000231while being expressive, typed, and extensible at the same time. It
232aims to be a "universal IR" of sorts, by being at a low enough level
233that high-level ideas may be cleanly mapped to it (similar to how
234microprocessors are "universal IR's", allowing many source languages to
235be mapped to them). By providing type information, LLVM can be used as
236the target of optimizations: for example, through pointer analysis, it
237can be proven that a C automatic variable is never accessed outside of
238the current function... allowing it to be promoted to a simple SSA
239value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000240
Misha Brukman9d0919f2003-11-08 01:05:38 +0000241</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Chris Lattner00950542001-06-06 20:29:01 +0000243<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000244<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000245
Misha Brukman9d0919f2003-11-08 01:05:38 +0000246<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000247
Chris Lattner261efe92003-11-25 01:02:51 +0000248<p>It is important to note that this document describes 'well formed'
249LLVM assembly language. There is a difference between what the parser
250accepts and what is considered 'well formed'. For example, the
251following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252
253<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000254 %x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000255</pre>
256
Chris Lattner261efe92003-11-25 01:02:51 +0000257<p>...because the definition of <tt>%x</tt> does not dominate all of
258its uses. The LLVM infrastructure provides a verification pass that may
259be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000260automatically run by the parser after parsing input assembly and by
Chris Lattner261efe92003-11-25 01:02:51 +0000261the optimizer before it outputs bytecode. The violations pointed out
262by the verifier pass indicate bugs in transformation passes or input to
263the parser.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000264
Chris Lattner261efe92003-11-25 01:02:51 +0000265<!-- Describe the typesetting conventions here. --> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
Chris Lattner00950542001-06-06 20:29:01 +0000267<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000268<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000269<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Misha Brukman9d0919f2003-11-08 01:05:38 +0000271<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000272
Chris Lattner261efe92003-11-25 01:02:51 +0000273<p>LLVM uses three different forms of identifiers, for different
274purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000275
Chris Lattner00950542001-06-06 20:29:01 +0000276<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000277 <li>Named values are represented as a string of characters with a '%' prefix.
278 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
279 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
280 Identifiers which require other characters in their names can be surrounded
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000281 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
Chris Lattnere5d947b2004-12-09 16:36:40 +0000282 in a name.</li>
283
284 <li>Unnamed values are represented as an unsigned numeric value with a '%'
285 prefix. For example, %12, %2, %44.</li>
286
Reid Spencercc16dc32004-12-09 18:02:53 +0000287 <li>Constants, which are described in a <a href="#constants">section about
288 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000289</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000290
291<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
292don't need to worry about name clashes with reserved words, and the set of
293reserved words may be expanded in the future without penalty. Additionally,
294unnamed identifiers allow a compiler to quickly come up with a temporary
295variable without having to avoid symbol table conflicts.</p>
296
Chris Lattner261efe92003-11-25 01:02:51 +0000297<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000298languages. There are keywords for different opcodes
299('<tt><a href="#i_add">add</a></tt>',
300 '<tt><a href="#i_bitcast">bitcast</a></tt>',
301 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000302href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000303and others. These reserved words cannot conflict with variable names, because
304none of them start with a '%' character.</p>
305
306<p>Here is an example of LLVM code to multiply the integer variable
307'<tt>%X</tt>' by 8:</p>
308
Misha Brukman9d0919f2003-11-08 01:05:38 +0000309<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000310
311<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000312 %result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000313</pre>
314
Misha Brukman9d0919f2003-11-08 01:05:38 +0000315<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000316
317<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000318 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000319</pre>
320
Misha Brukman9d0919f2003-11-08 01:05:38 +0000321<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000322
323<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000324 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
325 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
326 %result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000327</pre>
328
Chris Lattner261efe92003-11-25 01:02:51 +0000329<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
330important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000331
Chris Lattner00950542001-06-06 20:29:01 +0000332<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000333
334 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
335 line.</li>
336
337 <li>Unnamed temporaries are created when the result of a computation is not
338 assigned to a named value.</li>
339
Misha Brukman9d0919f2003-11-08 01:05:38 +0000340 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000341
Misha Brukman9d0919f2003-11-08 01:05:38 +0000342</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
John Criswelle4c57cc2005-05-12 16:52:32 +0000344<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000345demonstrating instructions, we will follow an instruction with a comment that
346defines the type and name of value produced. Comments are shown in italic
347text.</p>
348
Misha Brukman9d0919f2003-11-08 01:05:38 +0000349</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000350
351<!-- *********************************************************************** -->
352<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
353<!-- *********************************************************************** -->
354
355<!-- ======================================================================= -->
356<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
357</div>
358
359<div class="doc_text">
360
361<p>LLVM programs are composed of "Module"s, each of which is a
362translation unit of the input programs. Each module consists of
363functions, global variables, and symbol table entries. Modules may be
364combined together with the LLVM linker, which merges function (and
365global variable) definitions, resolves forward declarations, and merges
366symbol table entries. Here is an example of the "hello world" module:</p>
367
368<pre><i>; Declare the string constant as a global constant...</i>
369<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
Reid Spencerca86e162006-12-31 07:07:53 +0000370 href="#globalvars">constant</a> <a href="#t_array">[13 x i8 ]</a> c"hello world\0A\00" <i>; [13 x i8 ]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000371
372<i>; External declaration of the puts function</i>
Reid Spencerca86e162006-12-31 07:07:53 +0000373<a href="#functionstructure">declare</a> i32 %puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000374
375<i>; Definition of main function</i>
Reid Spencerca86e162006-12-31 07:07:53 +0000376define i32 %main() { <i>; i32()* </i>
377 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000378 %cast210 = <a
Reid Spencerca86e162006-12-31 07:07:53 +0000379 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* %.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000380
381 <i>; Call puts function to write out the string to stdout...</i>
382 <a
Reid Spencerca86e162006-12-31 07:07:53 +0000383 href="#i_call">call</a> i32 %puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000384 <a
Reid Spencerca86e162006-12-31 07:07:53 +0000385 href="#i_ret">ret</a> i32 0<br>}<br></pre>
Chris Lattnerfa730212004-12-09 16:11:40 +0000386
387<p>This example is made up of a <a href="#globalvars">global variable</a>
388named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
389function, and a <a href="#functionstructure">function definition</a>
390for "<tt>main</tt>".</p>
391
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392<p>In general, a module is made up of a list of global values,
393where both functions and global variables are global values. Global values are
394represented by a pointer to a memory location (in this case, a pointer to an
395array of char, and a pointer to a function), and have one of the following <a
396href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000397
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398</div>
399
400<!-- ======================================================================= -->
401<div class="doc_subsection">
402 <a name="linkage">Linkage Types</a>
403</div>
404
405<div class="doc_text">
406
407<p>
408All Global Variables and Functions have one of the following types of linkage:
409</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000410
411<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000412
Chris Lattnerfa730212004-12-09 16:11:40 +0000413 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000414
415 <dd>Global values with internal linkage are only directly accessible by
416 objects in the current module. In particular, linking code into a module with
417 an internal global value may cause the internal to be renamed as necessary to
418 avoid collisions. Because the symbol is internal to the module, all
419 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000420 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000421 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000422
Chris Lattnerfa730212004-12-09 16:11:40 +0000423 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424
Chris Lattner4887bd82007-01-14 06:51:48 +0000425 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
426 the same name when linkage occurs. This is typically used to implement
427 inline functions, templates, or other code which must be generated in each
428 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
429 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000430 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000431
Chris Lattnerfa730212004-12-09 16:11:40 +0000432 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000433
434 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
435 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000436 used for globals that may be emitted in multiple translation units, but that
437 are not guaranteed to be emitted into every translation unit that uses them.
438 One example of this are common globals in C, such as "<tt>int X;</tt>" at
439 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000440 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000441
Chris Lattnerfa730212004-12-09 16:11:40 +0000442 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000443
444 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
445 pointer to array type. When two global variables with appending linkage are
446 linked together, the two global arrays are appended together. This is the
447 LLVM, typesafe, equivalent of having the system linker append together
448 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000449 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000450
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000451 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
452 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
453 until linked, if not linked, the symbol becomes null instead of being an
454 undefined reference.
455 </dd>
456</dl>
457
Chris Lattnerfa730212004-12-09 16:11:40 +0000458 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000459
460 <dd>If none of the above identifiers are used, the global is externally
461 visible, meaning that it participates in linkage and can be used to resolve
462 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000463 </dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000464
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000465 <p>
466 The next two types of linkage are targeted for Microsoft Windows platform
467 only. They are designed to support importing (exporting) symbols from (to)
468 DLLs.
469 </p>
470
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000471 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000472 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
473
474 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
475 or variable via a global pointer to a pointer that is set up by the DLL
476 exporting the symbol. On Microsoft Windows targets, the pointer name is
477 formed by combining <code>_imp__</code> and the function or variable name.
478 </dd>
479
480 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
481
482 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
483 pointer to a pointer in a DLL, so that it can be referenced with the
484 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
485 name is formed by combining <code>_imp__</code> and the function or variable
486 name.
487 </dd>
488
Chris Lattnerfa730212004-12-09 16:11:40 +0000489</dl>
490
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000491<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000492variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
493variable and was linked with this one, one of the two would be renamed,
494preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
495external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000496outside of the current module.</p>
497<p>It is illegal for a function <i>declaration</i>
498to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000499or <tt>extern_weak</tt>.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000500
Chris Lattnerfa730212004-12-09 16:11:40 +0000501</div>
502
503<!-- ======================================================================= -->
504<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000505 <a name="callingconv">Calling Conventions</a>
506</div>
507
508<div class="doc_text">
509
510<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
511and <a href="#i_invoke">invokes</a> can all have an optional calling convention
512specified for the call. The calling convention of any pair of dynamic
513caller/callee must match, or the behavior of the program is undefined. The
514following calling conventions are supported by LLVM, and more may be added in
515the future:</p>
516
517<dl>
518 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
519
520 <dd>This calling convention (the default if no other calling convention is
521 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000522 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000523 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000524 </dd>
525
526 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
527
528 <dd>This calling convention attempts to make calls as fast as possible
529 (e.g. by passing things in registers). This calling convention allows the
530 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000531 without having to conform to an externally specified ABI. Implementations of
532 this convention should allow arbitrary tail call optimization to be supported.
533 This calling convention does not support varargs and requires the prototype of
534 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000535 </dd>
536
537 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
538
539 <dd>This calling convention attempts to make code in the caller as efficient
540 as possible under the assumption that the call is not commonly executed. As
541 such, these calls often preserve all registers so that the call does not break
542 any live ranges in the caller side. This calling convention does not support
543 varargs and requires the prototype of all callees to exactly match the
544 prototype of the function definition.
545 </dd>
546
Chris Lattnercfe6b372005-05-07 01:46:40 +0000547 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000548
549 <dd>Any calling convention may be specified by number, allowing
550 target-specific calling conventions to be used. Target specific calling
551 conventions start at 64.
552 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000553</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000554
555<p>More calling conventions can be added/defined on an as-needed basis, to
556support pascal conventions or any other well-known target-independent
557convention.</p>
558
559</div>
560
561<!-- ======================================================================= -->
562<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000563 <a name="visibility">Visibility Styles</a>
564</div>
565
566<div class="doc_text">
567
568<p>
569All Global Variables and Functions have one of the following visibility styles:
570</p>
571
572<dl>
573 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
574
575 <dd>On ELF, default visibility means that the declaration is visible to other
576 modules and, in shared libraries, means that the declared entity may be
577 overridden. On Darwin, default visibility means that the declaration is
578 visible to other modules. Default visibility corresponds to "external
579 linkage" in the language.
580 </dd>
581
582 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
583
584 <dd>Two declarations of an object with hidden visibility refer to the same
585 object if they are in the same shared object. Usually, hidden visibility
586 indicates that the symbol will not be placed into the dynamic symbol table,
587 so no other module (executable or shared library) can reference it
588 directly.
589 </dd>
590
591</dl>
592
593</div>
594
595<!-- ======================================================================= -->
596<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000597 <a name="globalvars">Global Variables</a>
598</div>
599
600<div class="doc_text">
601
Chris Lattner3689a342005-02-12 19:30:21 +0000602<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000603instead of run-time. Global variables may optionally be initialized, may have
604an explicit section to be placed in, and may
Chris Lattner2cbdc452005-11-06 08:02:57 +0000605have an optional explicit alignment specified. A
John Criswell0ec250c2005-10-24 16:17:18 +0000606variable may be defined as a global "constant," which indicates that the
Chris Lattner3689a342005-02-12 19:30:21 +0000607contents of the variable will <b>never</b> be modified (enabling better
608optimization, allowing the global data to be placed in the read-only section of
609an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000610cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000611
612<p>
613LLVM explicitly allows <em>declarations</em> of global variables to be marked
614constant, even if the final definition of the global is not. This capability
615can be used to enable slightly better optimization of the program, but requires
616the language definition to guarantee that optimizations based on the
617'constantness' are valid for the translation units that do not include the
618definition.
619</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000620
621<p>As SSA values, global variables define pointer values that are in
622scope (i.e. they dominate) all basic blocks in the program. Global
623variables always define a pointer to their "content" type because they
624describe a region of memory, and all memory objects in LLVM are
625accessed through pointers.</p>
626
Chris Lattner88f6c462005-11-12 00:45:07 +0000627<p>LLVM allows an explicit section to be specified for globals. If the target
628supports it, it will emit globals to the section specified.</p>
629
Chris Lattner2cbdc452005-11-06 08:02:57 +0000630<p>An explicit alignment may be specified for a global. If not present, or if
631the alignment is set to zero, the alignment of the global is set by the target
632to whatever it feels convenient. If an explicit alignment is specified, the
633global is forced to have at least that much alignment. All alignments must be
634a power of 2.</p>
635
Chris Lattner68027ea2007-01-14 00:27:09 +0000636<p>For example, the following defines a global with an initializer, section,
637 and alignment:</p>
638
639<pre>
640 %G = constant float 1.0, section "foo", align 4
641</pre>
642
Chris Lattnerfa730212004-12-09 16:11:40 +0000643</div>
644
645
646<!-- ======================================================================= -->
647<div class="doc_subsection">
648 <a name="functionstructure">Functions</a>
649</div>
650
651<div class="doc_text">
652
Reid Spencerca86e162006-12-31 07:07:53 +0000653<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
654an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000655<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000656<a href="#callingconv">calling convention</a>, a return type, an optional
657<a href="#paramattrs">parameter attribute</a> for the return type, a function
658name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000659<a href="#paramattrs">parameter attributes</a>), an optional section, an
660optional alignment, an opening curly brace, a list of basic blocks, and a
661closing curly brace.
662
663LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
664optional <a href="#linkage">linkage type</a>, an optional
665<a href="#visibility">visibility style</a>, an optional
666<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000667<a href="#paramattrs">parameter attribute</a> for the return type, a function
668name, a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000669
670<p>A function definition contains a list of basic blocks, forming the CFG for
671the function. Each basic block may optionally start with a label (giving the
672basic block a symbol table entry), contains a list of instructions, and ends
673with a <a href="#terminators">terminator</a> instruction (such as a branch or
674function return).</p>
675
John Criswelle4c57cc2005-05-12 16:52:32 +0000676<p>The first basic block in a program is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000677executed on entrance to the function, and it is not allowed to have predecessor
678basic blocks (i.e. there can not be any branches to the entry block of a
679function). Because the block can have no predecessors, it also cannot have any
680<a href="#i_phi">PHI nodes</a>.</p>
681
682<p>LLVM functions are identified by their name and type signature. Hence, two
683functions with the same name but different parameter lists or return values are
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000684considered different functions, and LLVM will resolve references to each
Chris Lattnerfa730212004-12-09 16:11:40 +0000685appropriately.</p>
686
Chris Lattner88f6c462005-11-12 00:45:07 +0000687<p>LLVM allows an explicit section to be specified for functions. If the target
688supports it, it will emit functions to the section specified.</p>
689
Chris Lattner2cbdc452005-11-06 08:02:57 +0000690<p>An explicit alignment may be specified for a function. If not present, or if
691the alignment is set to zero, the alignment of the function is set by the target
692to whatever it feels convenient. If an explicit alignment is specified, the
693function is forced to have at least that much alignment. All alignments must be
694a power of 2.</p>
695
Chris Lattnerfa730212004-12-09 16:11:40 +0000696</div>
697
Chris Lattner4e9aba72006-01-23 23:23:47 +0000698<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000699<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
700<div class="doc_text">
701 <p>The return type and each parameter of a function type may have a set of
702 <i>parameter attributes</i> associated with them. Parameter attributes are
703 used to communicate additional information about the result or parameters of
704 a function. Parameter attributes are considered to be part of the function
705 type so two functions types that differ only by the parameter attributes
706 are different function types.</p>
707
Reid Spencer950e9f82007-01-15 18:27:39 +0000708 <p>Parameter attributes are simple keywords that follow the type specified. If
709 multiple parameter attributes are needed, they are space separated. For
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000710 example:</p><pre>
Reid Spencer950e9f82007-01-15 18:27:39 +0000711 %someFunc = i16 (i8 sext %someParam) zext
712 %someFunc = i16 (i8 zext %someParam) zext</pre>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000713 <p>Note that the two function types above are unique because the parameter has
Reid Spencer950e9f82007-01-15 18:27:39 +0000714 a different attribute (sext in the first one, zext in the second). Also note
715 that the attribute for the function result (zext) comes immediately after the
716 argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000717
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000718 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000719 <dl>
Reid Spencer950e9f82007-01-15 18:27:39 +0000720 <dt><tt>zext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000721 <dd>This indicates that the parameter should be zero extended just before
722 a call to this function.</dd>
Reid Spencer950e9f82007-01-15 18:27:39 +0000723 <dt><tt>sext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000724 <dd>This indicates that the parameter should be sign extended just before
725 a call to this function.</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000726 <dt><tt>inreg</tt></dt>
727 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000728 possible) during assembling function call. Support for this attribute is
729 target-specific</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000730 <dt><tt>sret</tt></dt>
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000731 <dd>This indicates that the parameter specifies the address of a structure
Reid Spencer67606122007-03-22 02:02:11 +0000732 that is the return value of the function in the source program.</dd>
Reid Spencer2dc52012007-03-22 02:18:56 +0000733 <dt><tt>noreturn</tt></dt>
734 <dd>This function attribute indicates that the function never returns. This
735 indicates to LLVM that every call to this function should be treated as if
736 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Reid Spencer67606122007-03-22 02:02:11 +0000737 <dt><tt>nounwind</tt></dt>
738 <dd>This function attribute indicates that the function type does not use
739 the unwind instruction and does not allow stack unwinding to propagate
740 through it.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000741 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000742
Reid Spencerca86e162006-12-31 07:07:53 +0000743</div>
744
745<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000746<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000747 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000748</div>
749
750<div class="doc_text">
751<p>
752Modules may contain "module-level inline asm" blocks, which corresponds to the
753GCC "file scope inline asm" blocks. These blocks are internally concatenated by
754LLVM and treated as a single unit, but may be separated in the .ll file if
755desired. The syntax is very simple:
756</p>
757
758<div class="doc_code"><pre>
Chris Lattner52599e12006-01-24 00:37:20 +0000759 module asm "inline asm code goes here"
760 module asm "more can go here"
Chris Lattner4e9aba72006-01-23 23:23:47 +0000761</pre></div>
762
763<p>The strings can contain any character by escaping non-printable characters.
764 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
765 for the number.
766</p>
767
768<p>
769 The inline asm code is simply printed to the machine code .s file when
770 assembly code is generated.
771</p>
772</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000773
Reid Spencerde151942007-02-19 23:54:10 +0000774<!-- ======================================================================= -->
775<div class="doc_subsection">
776 <a name="datalayout">Data Layout</a>
777</div>
778
779<div class="doc_text">
780<p>A module may specify a target specific data layout string that specifies how
781data is to be laid out in memory. The syntax for the data layout is simply:<br/>
782<pre> target datalayout = "<i>layout specification</i>"
783</pre>
784The <i>layout specification</i> consists of a list of specifications separated
785by the minus sign character ('-'). Each specification starts with a letter
786and may include other information after the letter to define some aspect of the
787data layout. The specifications accepted are as follows: </p>
788<dl>
789 <dt><tt>E</tt></dt>
790 <dd>Specifies that the target lays out data in big-endian form. That is, the
791 bits with the most significance have the lowest address location.</dd>
792 <dt><tt>e</tt></dt>
793 <dd>Specifies that hte target lays out data in little-endian form. That is,
794 the bits with the least significance have the lowest address location.</dd>
795 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
796 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
797 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
798 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
799 too.</dd>
800 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
801 <dd>This specifies the alignment for an integer type of a given bit
802 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
803 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
804 <dd>This specifies the alignment for a vector type of a given bit
805 <i>size</i>.</dd>
806 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
807 <dd>This specifies the alignment for a floating point type of a given bit
808 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
809 (double).</dd>
810 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
811 <dd>This specifies the alignment for an aggregate type of a given bit
812 <i>size</i>.</dd>
813</dl>
814<p>When constructing the data layout for a given target, LLVM starts with a
815default set of specifications which are then (possibly) overriden by the
816specifications in the <tt>datalayout</tt> keyword. The default specifications
817are given in this list:</p>
818<ul>
819 <li><tt>E</tt> - big endian</li>
820 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
821 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
822 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
823 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
824 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
825 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
826 alignment of 64-bits</li>
827 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
828 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
829 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
830 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
831 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
832</ul>
833<p>When llvm is determining the alignment for a given type, it uses the
834following rules:
835<ol>
836 <li>If the type sought is an exact match for one of the specifications, that
837 specification is used.</li>
838 <li>If no match is found, and the type sought is an integer type, then the
839 smallest integer type that is larger than the bitwidth of the sought type is
840 used. If none of the specifications are larger than the bitwidth then the the
841 largest integer type is used. For example, given the default specifications
842 above, the i7 type will use the alignment of i8 (next largest) while both
843 i65 and i256 will use the alignment of i64 (largest specified).</li>
844 <li>If no match is found, and the type sought is a vector type, then the
845 largest vector type that is smaller than the sought vector type will be used
846 as a fall back. This happens because <128 x double> can be implemented in
847 terms of 64 <2 x double>, for example.</li>
848</ol>
849</div>
Reid Spencerc10f0af2007-03-28 02:46:29 +0000850<!-- ======================================================================= -->
851<div class="doc_subsection">
852 <a name="datalayout">Data Layout</a>
853</div>
854<div class="doc_text">
855 <p>At the top level, the keyword <tt>checkpoint</tt> may be used to force the
856 assembler to check point the types and values it has defined so far. Any
857 unresolved types or references will generate error messages. This is useful
858 as an assertion point or for debugging.</p>
859</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000860
Chris Lattner00950542001-06-06 20:29:01 +0000861<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000862<div class="doc_section"> <a name="typesystem">Type System</a> </div>
863<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000864
Misha Brukman9d0919f2003-11-08 01:05:38 +0000865<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000866
Misha Brukman9d0919f2003-11-08 01:05:38 +0000867<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000868intermediate representation. Being typed enables a number of
869optimizations to be performed on the IR directly, without having to do
870extra analyses on the side before the transformation. A strong type
871system makes it easier to read the generated code and enables novel
872analyses and transformations that are not feasible to perform on normal
873three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000874
875</div>
876
Chris Lattner00950542001-06-06 20:29:01 +0000877<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000878<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000879<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +0000880<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000881system. The current set of primitive types is as follows:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000882
Reid Spencerd3f876c2004-11-01 08:19:36 +0000883<table class="layout">
884 <tr class="layout">
885 <td class="left">
886 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000887 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000888 <tr><th>Type</th><th>Description</th></tr>
889 <tr><td><tt>void</tt></td><td>No value</td></tr>
Chris Lattner3b19d652007-01-15 01:54:13 +0000890 <tr><td><tt>i8</tt></td><td>8-bit value</td></tr>
891 <tr><td><tt>i32</tt></td><td>32-bit value</td></tr>
Misha Brukmancfa87bc2005-04-22 18:02:52 +0000892 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000893 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000894 </tbody>
895 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000896 </td>
897 <td class="right">
898 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000899 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000900 <tr><th>Type</th><th>Description</th></tr>
Reid Spencerc78f3372007-01-12 03:35:51 +0000901 <tr><td><tt>i1</tt></td><td>True or False value</td></tr>
Chris Lattner3b19d652007-01-15 01:54:13 +0000902 <tr><td><tt>i16</tt></td><td>16-bit value</td></tr>
903 <tr><td><tt>i64</tt></td><td>64-bit value</td></tr>
Reid Spencerca86e162006-12-31 07:07:53 +0000904 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000905 </tbody>
906 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000907 </td>
908 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000909</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000910</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000911
Chris Lattner00950542001-06-06 20:29:01 +0000912<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000913<div class="doc_subsubsection"> <a name="t_classifications">Type
914Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000915<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000916<p>These different primitive types fall into a few useful
917classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000918
919<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000920 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000921 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000922 <tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000923 <td><a name="t_integer">integer</a></td>
Chris Lattner3b19d652007-01-15 01:54:13 +0000924 <td><tt>i1, i8, i16, i32, i64</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000925 </tr>
926 <tr>
927 <td><a name="t_floating">floating point</a></td>
928 <td><tt>float, double</tt></td>
929 </tr>
930 <tr>
931 <td><a name="t_firstclass">first class</a></td>
Reid Spencerc78f3372007-01-12 03:35:51 +0000932 <td><tt>i1, i8, i16, i32, i64, float, double, <br/>
Reid Spencer485bad12007-02-15 03:07:05 +0000933 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
Reid Spencerca86e162006-12-31 07:07:53 +0000934 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000935 </tr>
936 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000937</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000938
Chris Lattner261efe92003-11-25 01:02:51 +0000939<p>The <a href="#t_firstclass">first class</a> types are perhaps the
940most important. Values of these types are the only ones which can be
941produced by instructions, passed as arguments, or used as operands to
942instructions. This means that all structures and arrays must be
943manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000944</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000945
Chris Lattner00950542001-06-06 20:29:01 +0000946<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000947<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000948
Misha Brukman9d0919f2003-11-08 01:05:38 +0000949<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000950
Chris Lattner261efe92003-11-25 01:02:51 +0000951<p>The real power in LLVM comes from the derived types in the system.
952This is what allows a programmer to represent arrays, functions,
953pointers, and other useful types. Note that these derived types may be
954recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000955
Misha Brukman9d0919f2003-11-08 01:05:38 +0000956</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000957
Chris Lattner00950542001-06-06 20:29:01 +0000958<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000959<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000960
Misha Brukman9d0919f2003-11-08 01:05:38 +0000961<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000962
Chris Lattner00950542001-06-06 20:29:01 +0000963<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000964
Misha Brukman9d0919f2003-11-08 01:05:38 +0000965<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +0000966sequentially in memory. The array type requires a size (number of
967elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000968
Chris Lattner7faa8832002-04-14 06:13:44 +0000969<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000970
971<pre>
972 [&lt;# elements&gt; x &lt;elementtype&gt;]
973</pre>
974
John Criswelle4c57cc2005-05-12 16:52:32 +0000975<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +0000976be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000977
Chris Lattner7faa8832002-04-14 06:13:44 +0000978<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000979<table class="layout">
980 <tr class="layout">
981 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000982 <tt>[40 x i32 ]</tt><br/>
983 <tt>[41 x i32 ]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +0000984 <tt>[40 x i8]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000985 </td>
986 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +0000987 Array of 40 32-bit integer values.<br/>
988 Array of 41 32-bit integer values.<br/>
989 Array of 40 8-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000990 </td>
991 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000992</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000993<p>Here are some examples of multidimensional arrays:</p>
994<table class="layout">
995 <tr class="layout">
996 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000997 <tt>[3 x [4 x i32]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000998 <tt>[12 x [10 x float]]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +0000999 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001000 </td>
1001 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +00001002 3x4 array of 32-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001003 12x10 array of single precision floating point values.<br/>
Reid Spencera5173382007-01-04 16:43:23 +00001004 2x3x4 array of 16-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001005 </td>
1006 </tr>
1007</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001008
John Criswell0ec250c2005-10-24 16:17:18 +00001009<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1010length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001011LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1012As a special case, however, zero length arrays are recognized to be variable
1013length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001014type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001015
Misha Brukman9d0919f2003-11-08 01:05:38 +00001016</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001017
Chris Lattner00950542001-06-06 20:29:01 +00001018<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001019<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001020<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001021<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001022<p>The function type can be thought of as a function signature. It
1023consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +00001024Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +00001025(which are structures of pointers to functions), for indirect function
1026calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +00001027<p>
1028The return type of a function type cannot be an aggregate type.
1029</p>
Chris Lattner00950542001-06-06 20:29:01 +00001030<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001031<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +00001032<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001033specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001034which indicates that the function takes a variable number of arguments.
1035Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +00001036 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001037<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001038<table class="layout">
1039 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001040 <td class="left"><tt>i32 (i32)</tt></td>
1041 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001042 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001043 </tr><tr class="layout">
Reid Spencer7bf214d2007-01-15 18:28:34 +00001044 <td class="left"><tt>float&nbsp;(i16&nbsp;sext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001045 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001046 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1047 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001048 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001049 <tt>float</tt>.
1050 </td>
1051 </tr><tr class="layout">
1052 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1053 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001054 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001055 which returns an integer. This is the signature for <tt>printf</tt> in
1056 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001057 </td>
1058 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001059</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001060
Misha Brukman9d0919f2003-11-08 01:05:38 +00001061</div>
Chris Lattner00950542001-06-06 20:29:01 +00001062<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001063<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001064<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001065<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001066<p>The structure type is used to represent a collection of data members
1067together in memory. The packing of the field types is defined to match
1068the ABI of the underlying processor. The elements of a structure may
1069be any type that has a size.</p>
1070<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1071and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1072field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1073instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001074<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001075<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001076<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001077<table class="layout">
1078 <tr class="layout">
1079 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001080 <tt>{ i32, i32, i32 }</tt><br/>
1081 <tt>{ float, i32 (i32) * }</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001082 </td>
1083 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001084 a triple of three <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001085 A pair, where the first element is a <tt>float</tt> and the second element
1086 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerca86e162006-12-31 07:07:53 +00001087 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001088 </td>
1089 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001090</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001091</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001092
Chris Lattner00950542001-06-06 20:29:01 +00001093<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001094<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1095</div>
1096<div class="doc_text">
1097<h5>Overview:</h5>
1098<p>The packed structure type is used to represent a collection of data members
1099together in memory. There is no padding between fields. Further, the alignment
1100of a packed structure is 1 byte. The elements of a packed structure may
1101be any type that has a size.</p>
1102<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1103and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1104field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1105instruction.</p>
1106<h5>Syntax:</h5>
1107<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1108<h5>Examples:</h5>
1109<table class="layout">
1110 <tr class="layout">
1111 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001112 <tt> &lt; { i32, i32, i32 } &gt; </tt><br/>
1113 <tt> &lt; { float, i32 (i32) * } &gt; </tt><br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001114 </td>
1115 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001116 a triple of three <tt>i32</tt> values<br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001117 A pair, where the first element is a <tt>float</tt> and the second element
1118 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerca86e162006-12-31 07:07:53 +00001119 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001120 </td>
1121 </tr>
1122</table>
1123</div>
1124
1125<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001126<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001127<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001128<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001129<p>As in many languages, the pointer type represents a pointer or
1130reference to another object, which must live in memory.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001131<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001132<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001133<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001134<table class="layout">
1135 <tr class="layout">
1136 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001137 <tt>[4x i32]*</tt><br/>
1138 <tt>i32 (i32 *) *</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001139 </td>
1140 <td class="left">
1141 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
Reid Spencerca86e162006-12-31 07:07:53 +00001142 four <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001143 A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001144 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1145 <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001146 </td>
1147 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001148</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001149</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001150
Chris Lattnera58561b2004-08-12 19:12:28 +00001151<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001152<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001153<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001154
Chris Lattnera58561b2004-08-12 19:12:28 +00001155<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001156
Reid Spencer485bad12007-02-15 03:07:05 +00001157<p>A vector type is a simple derived type that represents a vector
1158of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001159are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001160A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001161elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001162of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001163considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001164
Chris Lattnera58561b2004-08-12 19:12:28 +00001165<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001166
1167<pre>
1168 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1169</pre>
1170
John Criswellc1f786c2005-05-13 22:25:59 +00001171<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001172be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001173
Chris Lattnera58561b2004-08-12 19:12:28 +00001174<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001175
Reid Spencerd3f876c2004-11-01 08:19:36 +00001176<table class="layout">
1177 <tr class="layout">
1178 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001179 <tt>&lt;4 x i32&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001180 <tt>&lt;8 x float&gt;</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001181 <tt>&lt;2 x i64&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001182 </td>
1183 <td class="left">
Reid Spencer485bad12007-02-15 03:07:05 +00001184 Vector of 4 32-bit integer values.<br/>
1185 Vector of 8 floating-point values.<br/>
1186 Vector of 2 64-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001187 </td>
1188 </tr>
1189</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001190</div>
1191
Chris Lattner69c11bb2005-04-25 17:34:15 +00001192<!-- _______________________________________________________________________ -->
1193<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1194<div class="doc_text">
1195
1196<h5>Overview:</h5>
1197
1198<p>Opaque types are used to represent unknown types in the system. This
1199corresponds (for example) to the C notion of a foward declared structure type.
1200In LLVM, opaque types can eventually be resolved to any type (not just a
1201structure type).</p>
1202
1203<h5>Syntax:</h5>
1204
1205<pre>
1206 opaque
1207</pre>
1208
1209<h5>Examples:</h5>
1210
1211<table class="layout">
1212 <tr class="layout">
1213 <td class="left">
1214 <tt>opaque</tt>
1215 </td>
1216 <td class="left">
1217 An opaque type.<br/>
1218 </td>
1219 </tr>
1220</table>
1221</div>
1222
1223
Chris Lattnerc3f59762004-12-09 17:30:23 +00001224<!-- *********************************************************************** -->
1225<div class="doc_section"> <a name="constants">Constants</a> </div>
1226<!-- *********************************************************************** -->
1227
1228<div class="doc_text">
1229
1230<p>LLVM has several different basic types of constants. This section describes
1231them all and their syntax.</p>
1232
1233</div>
1234
1235<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001236<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001237
1238<div class="doc_text">
1239
1240<dl>
1241 <dt><b>Boolean constants</b></dt>
1242
1243 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001244 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001245 </dd>
1246
1247 <dt><b>Integer constants</b></dt>
1248
Reid Spencercc16dc32004-12-09 18:02:53 +00001249 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001250 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001251 integer types.
1252 </dd>
1253
1254 <dt><b>Floating point constants</b></dt>
1255
1256 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1257 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001258 notation (see below). Floating point constants must have a <a
1259 href="#t_floating">floating point</a> type. </dd>
1260
1261 <dt><b>Null pointer constants</b></dt>
1262
John Criswell9e2485c2004-12-10 15:51:16 +00001263 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001264 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1265
1266</dl>
1267
John Criswell9e2485c2004-12-10 15:51:16 +00001268<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001269of floating point constants. For example, the form '<tt>double
12700x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
12714.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001272(and the only time that they are generated by the disassembler) is when a
1273floating point constant must be emitted but it cannot be represented as a
1274decimal floating point number. For example, NaN's, infinities, and other
1275special values are represented in their IEEE hexadecimal format so that
1276assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001277
1278</div>
1279
1280<!-- ======================================================================= -->
1281<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1282</div>
1283
1284<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001285<p>Aggregate constants arise from aggregation of simple constants
1286and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001287
1288<dl>
1289 <dt><b>Structure constants</b></dt>
1290
1291 <dd>Structure constants are represented with notation similar to structure
1292 type definitions (a comma separated list of elements, surrounded by braces
Reid Spencerca86e162006-12-31 07:07:53 +00001293 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1294 where "<tt>%G</tt>" is declared as "<tt>%G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001295 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001296 types of elements must match those specified by the type.
1297 </dd>
1298
1299 <dt><b>Array constants</b></dt>
1300
1301 <dd>Array constants are represented with notation similar to array type
1302 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001303 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001304 constants must have <a href="#t_array">array type</a>, and the number and
1305 types of elements must match those specified by the type.
1306 </dd>
1307
Reid Spencer485bad12007-02-15 03:07:05 +00001308 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001309
Reid Spencer485bad12007-02-15 03:07:05 +00001310 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001311 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001312 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Reid Spencer485bad12007-02-15 03:07:05 +00001313 i32 11, i32 74, i32 100 &gt;</tt>". VEctor constants must have <a
1314 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001315 match those specified by the type.
1316 </dd>
1317
1318 <dt><b>Zero initialization</b></dt>
1319
1320 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1321 value to zero of <em>any</em> type, including scalar and aggregate types.
1322 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001323 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001324 initializers.
1325 </dd>
1326</dl>
1327
1328</div>
1329
1330<!-- ======================================================================= -->
1331<div class="doc_subsection">
1332 <a name="globalconstants">Global Variable and Function Addresses</a>
1333</div>
1334
1335<div class="doc_text">
1336
1337<p>The addresses of <a href="#globalvars">global variables</a> and <a
1338href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001339constants. These constants are explicitly referenced when the <a
1340href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001341href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1342file:</p>
1343
1344<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001345 %X = global i32 17
1346 %Y = global i32 42
1347 %Z = global [2 x i32*] [ i32* %X, i32* %Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001348</pre>
1349
1350</div>
1351
1352<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001353<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001354<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001355 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001356 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001357 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001358
Reid Spencer2dc45b82004-12-09 18:13:12 +00001359 <p>Undefined values indicate to the compiler that the program is well defined
1360 no matter what value is used, giving the compiler more freedom to optimize.
1361 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001362</div>
1363
1364<!-- ======================================================================= -->
1365<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1366</div>
1367
1368<div class="doc_text">
1369
1370<p>Constant expressions are used to allow expressions involving other constants
1371to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001372href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001373that does not have side effects (e.g. load and call are not supported). The
1374following is the syntax for constant expressions:</p>
1375
1376<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001377 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1378 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001379 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001380
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001381 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1382 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001383 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001384
1385 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1386 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001387 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001388
1389 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1390 <dd>Truncate a floating point constant to another floating point type. The
1391 size of CST must be larger than the size of TYPE. Both types must be
1392 floating point.</dd>
1393
1394 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1395 <dd>Floating point extend a constant to another type. The size of CST must be
1396 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1397
1398 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1399 <dd>Convert a floating point constant to the corresponding unsigned integer
1400 constant. TYPE must be an integer type. CST must be floating point. If the
1401 value won't fit in the integer type, the results are undefined.</dd>
1402
Reid Spencerd4448792006-11-09 23:03:26 +00001403 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001404 <dd>Convert a floating point constant to the corresponding signed integer
1405 constant. TYPE must be an integer type. CST must be floating point. If the
1406 value won't fit in the integer type, the results are undefined.</dd>
1407
Reid Spencerd4448792006-11-09 23:03:26 +00001408 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001409 <dd>Convert an unsigned integer constant to the corresponding floating point
1410 constant. TYPE must be floating point. CST must be of integer type. If the
1411 value won't fit in the floating point type, the results are undefined.</dd>
1412
Reid Spencerd4448792006-11-09 23:03:26 +00001413 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001414 <dd>Convert a signed integer constant to the corresponding floating point
1415 constant. TYPE must be floating point. CST must be of integer type. If the
1416 value won't fit in the floating point type, the results are undefined.</dd>
1417
Reid Spencer5c0ef472006-11-11 23:08:07 +00001418 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1419 <dd>Convert a pointer typed constant to the corresponding integer constant
1420 TYPE must be an integer type. CST must be of pointer type. The CST value is
1421 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1422
1423 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1424 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1425 pointer type. CST must be of integer type. The CST value is zero extended,
1426 truncated, or unchanged to make it fit in a pointer size. This one is
1427 <i>really</i> dangerous!</dd>
1428
1429 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001430 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1431 identical (same number of bits). The conversion is done as if the CST value
1432 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001433 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001434 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001435 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001436 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001437
1438 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1439
1440 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1441 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1442 instruction, the index list may have zero or more indexes, which are required
1443 to make sense for the type of "CSTPTR".</dd>
1444
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001445 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1446
1447 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001448 constants.</dd>
1449
1450 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1451 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1452
1453 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1454 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001455
1456 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1457
1458 <dd>Perform the <a href="#i_extractelement">extractelement
1459 operation</a> on constants.
1460
Robert Bocchino05ccd702006-01-15 20:48:27 +00001461 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1462
1463 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001464 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001465
Chris Lattnerc1989542006-04-08 00:13:41 +00001466
1467 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1468
1469 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001470 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001471
Chris Lattnerc3f59762004-12-09 17:30:23 +00001472 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1473
Reid Spencer2dc45b82004-12-09 18:13:12 +00001474 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1475 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001476 binary</a> operations. The constraints on operands are the same as those for
1477 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001478 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001479</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001480</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001481
Chris Lattner00950542001-06-06 20:29:01 +00001482<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001483<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1484<!-- *********************************************************************** -->
1485
1486<!-- ======================================================================= -->
1487<div class="doc_subsection">
1488<a name="inlineasm">Inline Assembler Expressions</a>
1489</div>
1490
1491<div class="doc_text">
1492
1493<p>
1494LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1495Module-Level Inline Assembly</a>) through the use of a special value. This
1496value represents the inline assembler as a string (containing the instructions
1497to emit), a list of operand constraints (stored as a string), and a flag that
1498indicates whether or not the inline asm expression has side effects. An example
1499inline assembler expression is:
1500</p>
1501
1502<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001503 i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001504</pre>
1505
1506<p>
1507Inline assembler expressions may <b>only</b> be used as the callee operand of
1508a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1509</p>
1510
1511<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001512 %X = call i32 asm "<a href="#i_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001513</pre>
1514
1515<p>
1516Inline asms with side effects not visible in the constraint list must be marked
1517as having side effects. This is done through the use of the
1518'<tt>sideeffect</tt>' keyword, like so:
1519</p>
1520
1521<pre>
1522 call void asm sideeffect "eieio", ""()
1523</pre>
1524
1525<p>TODO: The format of the asm and constraints string still need to be
1526documented here. Constraints on what can be done (e.g. duplication, moving, etc
1527need to be documented).
1528</p>
1529
1530</div>
1531
1532<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001533<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1534<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001535
Misha Brukman9d0919f2003-11-08 01:05:38 +00001536<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001537
Chris Lattner261efe92003-11-25 01:02:51 +00001538<p>The LLVM instruction set consists of several different
1539classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001540instructions</a>, <a href="#binaryops">binary instructions</a>,
1541<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001542 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1543instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001544
Misha Brukman9d0919f2003-11-08 01:05:38 +00001545</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001546
Chris Lattner00950542001-06-06 20:29:01 +00001547<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001548<div class="doc_subsection"> <a name="terminators">Terminator
1549Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001550
Misha Brukman9d0919f2003-11-08 01:05:38 +00001551<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001552
Chris Lattner261efe92003-11-25 01:02:51 +00001553<p>As mentioned <a href="#functionstructure">previously</a>, every
1554basic block in a program ends with a "Terminator" instruction, which
1555indicates which block should be executed after the current block is
1556finished. These terminator instructions typically yield a '<tt>void</tt>'
1557value: they produce control flow, not values (the one exception being
1558the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001559<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001560 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1561instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001562the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1563 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1564 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001565
Misha Brukman9d0919f2003-11-08 01:05:38 +00001566</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001567
Chris Lattner00950542001-06-06 20:29:01 +00001568<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001569<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1570Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001571<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001572<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001573<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001574 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001575</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001576<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001577<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001578value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001579<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001580returns a value and then causes control flow, and one that just causes
1581control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001582<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001583<p>The '<tt>ret</tt>' instruction may return any '<a
1584 href="#t_firstclass">first class</a>' type. Notice that a function is
1585not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1586instruction inside of the function that returns a value that does not
1587match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001588<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001589<p>When the '<tt>ret</tt>' instruction is executed, control flow
1590returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001591 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001592the instruction after the call. If the caller was an "<a
1593 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001594at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001595returns a value, that value shall set the call or invoke instruction's
1596return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001597<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001598<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001599 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001600</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001601</div>
Chris Lattner00950542001-06-06 20:29:01 +00001602<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001603<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001604<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001605<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001606<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001607</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001608<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001609<p>The '<tt>br</tt>' instruction is used to cause control flow to
1610transfer to a different basic block in the current function. There are
1611two forms of this instruction, corresponding to a conditional branch
1612and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001613<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001614<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001615single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001616unconditional form of the '<tt>br</tt>' instruction takes a single
1617'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001618<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001619<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001620argument is evaluated. If the value is <tt>true</tt>, control flows
1621to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1622control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001623<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001624<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001625 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001626</div>
Chris Lattner00950542001-06-06 20:29:01 +00001627<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001628<div class="doc_subsubsection">
1629 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1630</div>
1631
Misha Brukman9d0919f2003-11-08 01:05:38 +00001632<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001633<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001634
1635<pre>
1636 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1637</pre>
1638
Chris Lattner00950542001-06-06 20:29:01 +00001639<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001640
1641<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1642several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001643instruction, allowing a branch to occur to one of many possible
1644destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001645
1646
Chris Lattner00950542001-06-06 20:29:01 +00001647<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001648
1649<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1650comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1651an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1652table is not allowed to contain duplicate constant entries.</p>
1653
Chris Lattner00950542001-06-06 20:29:01 +00001654<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001655
Chris Lattner261efe92003-11-25 01:02:51 +00001656<p>The <tt>switch</tt> instruction specifies a table of values and
1657destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001658table is searched for the given value. If the value is found, control flow is
1659transfered to the corresponding destination; otherwise, control flow is
1660transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001661
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001662<h5>Implementation:</h5>
1663
1664<p>Depending on properties of the target machine and the particular
1665<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001666ways. For example, it could be generated as a series of chained conditional
1667branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001668
1669<h5>Example:</h5>
1670
1671<pre>
1672 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001673 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001674 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001675
1676 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001677 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001678
1679 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001680 switch i32 %val, label %otherwise [ i32 0, label %onzero
1681 i32 1, label %onone
1682 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001683</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001684</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001685
Chris Lattner00950542001-06-06 20:29:01 +00001686<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001687<div class="doc_subsubsection">
1688 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1689</div>
1690
Misha Brukman9d0919f2003-11-08 01:05:38 +00001691<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001692
Chris Lattner00950542001-06-06 20:29:01 +00001693<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001694
1695<pre>
1696 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001697 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001698</pre>
1699
Chris Lattner6536cfe2002-05-06 22:08:29 +00001700<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001701
1702<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1703function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001704'<tt>normal</tt>' label or the
1705'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001706"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1707"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001708href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1709continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001710
Chris Lattner00950542001-06-06 20:29:01 +00001711<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001712
Misha Brukman9d0919f2003-11-08 01:05:38 +00001713<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001714
Chris Lattner00950542001-06-06 20:29:01 +00001715<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001716 <li>
John Criswellc1f786c2005-05-13 22:25:59 +00001717 The optional "cconv" marker indicates which <a href="callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001718 convention</a> the call should use. If none is specified, the call defaults
1719 to using C calling conventions.
1720 </li>
1721 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1722 function value being invoked. In most cases, this is a direct function
1723 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1724 an arbitrary pointer to function value.
1725 </li>
1726
1727 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1728 function to be invoked. </li>
1729
1730 <li>'<tt>function args</tt>': argument list whose types match the function
1731 signature argument types. If the function signature indicates the function
1732 accepts a variable number of arguments, the extra arguments can be
1733 specified. </li>
1734
1735 <li>'<tt>normal label</tt>': the label reached when the called function
1736 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1737
1738 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1739 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1740
Chris Lattner00950542001-06-06 20:29:01 +00001741</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001742
Chris Lattner00950542001-06-06 20:29:01 +00001743<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001744
Misha Brukman9d0919f2003-11-08 01:05:38 +00001745<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001746href="#i_call">call</a></tt>' instruction in most regards. The primary
1747difference is that it establishes an association with a label, which is used by
1748the runtime library to unwind the stack.</p>
1749
1750<p>This instruction is used in languages with destructors to ensure that proper
1751cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1752exception. Additionally, this is important for implementation of
1753'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1754
Chris Lattner00950542001-06-06 20:29:01 +00001755<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001756<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001757 %retval = invoke i32 %Test(i32 15) to label %Continue
1758 unwind label %TestCleanup <i>; {i32}:retval set</i>
1759 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1760 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001761</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001762</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001763
1764
Chris Lattner27f71f22003-09-03 00:41:47 +00001765<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001766
Chris Lattner261efe92003-11-25 01:02:51 +00001767<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1768Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001769
Misha Brukman9d0919f2003-11-08 01:05:38 +00001770<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001771
Chris Lattner27f71f22003-09-03 00:41:47 +00001772<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001773<pre>
1774 unwind
1775</pre>
1776
Chris Lattner27f71f22003-09-03 00:41:47 +00001777<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001778
1779<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1780at the first callee in the dynamic call stack which used an <a
1781href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1782primarily used to implement exception handling.</p>
1783
Chris Lattner27f71f22003-09-03 00:41:47 +00001784<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001785
1786<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1787immediately halt. The dynamic call stack is then searched for the first <a
1788href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1789execution continues at the "exceptional" destination block specified by the
1790<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1791dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001792</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001793
1794<!-- _______________________________________________________________________ -->
1795
1796<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1797Instruction</a> </div>
1798
1799<div class="doc_text">
1800
1801<h5>Syntax:</h5>
1802<pre>
1803 unreachable
1804</pre>
1805
1806<h5>Overview:</h5>
1807
1808<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1809instruction is used to inform the optimizer that a particular portion of the
1810code is not reachable. This can be used to indicate that the code after a
1811no-return function cannot be reached, and other facts.</p>
1812
1813<h5>Semantics:</h5>
1814
1815<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1816</div>
1817
1818
1819
Chris Lattner00950542001-06-06 20:29:01 +00001820<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001821<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001822<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001823<p>Binary operators are used to do most of the computation in a
1824program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00001825produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00001826multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnera58561b2004-08-12 19:12:28 +00001827The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00001828necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001829<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001830</div>
Chris Lattner00950542001-06-06 20:29:01 +00001831<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001832<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1833Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001834<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001835<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001836<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001837</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001838<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001839<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001840<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001841<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00001842 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
Reid Spencer485bad12007-02-15 03:07:05 +00001843 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001844Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001845<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001846<p>The value produced is the integer or floating point sum of the two
1847operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001848<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001849<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001850</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001851</div>
Chris Lattner00950542001-06-06 20:29:01 +00001852<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001853<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1854Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001855<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001856<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001857<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001858</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001859<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001860<p>The '<tt>sub</tt>' instruction returns the difference of its two
1861operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001862<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1863instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001864<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001865<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001866 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001867values.
Reid Spencer485bad12007-02-15 03:07:05 +00001868This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001869Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001870<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001871<p>The value produced is the integer or floating point difference of
1872the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001873<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001874<pre> &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1875 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001876</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001877</div>
Chris Lattner00950542001-06-06 20:29:01 +00001878<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001879<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1880Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001881<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001882<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001883<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001884</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001885<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001886<p>The '<tt>mul</tt>' instruction returns the product of its two
1887operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001888<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001889<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001890 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001891values.
Reid Spencer485bad12007-02-15 03:07:05 +00001892This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001893Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001894<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001895<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00001896two operands.</p>
Reid Spencera5173382007-01-04 16:43:23 +00001897<p>Because the operands are the same width, the result of an integer
1898multiplication is the same whether the operands should be deemed unsigned or
1899signed.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001900<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001901<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001902</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001903</div>
Chris Lattner00950542001-06-06 20:29:01 +00001904<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00001905<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
1906</a></div>
1907<div class="doc_text">
1908<h5>Syntax:</h5>
1909<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1910</pre>
1911<h5>Overview:</h5>
1912<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
1913operands.</p>
1914<h5>Arguments:</h5>
1915<p>The two arguments to the '<tt>udiv</tt>' instruction must be
1916<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00001917types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00001918of the values in which case the elements must be integers.</p>
1919<h5>Semantics:</h5>
1920<p>The value produced is the unsigned integer quotient of the two operands. This
1921instruction always performs an unsigned division operation, regardless of
1922whether the arguments are unsigned or not.</p>
1923<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001924<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00001925</pre>
1926</div>
1927<!-- _______________________________________________________________________ -->
1928<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
1929</a> </div>
1930<div class="doc_text">
1931<h5>Syntax:</h5>
1932<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1933</pre>
1934<h5>Overview:</h5>
1935<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
1936operands.</p>
1937<h5>Arguments:</h5>
1938<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
1939<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00001940types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00001941of the values in which case the elements must be integers.</p>
1942<h5>Semantics:</h5>
1943<p>The value produced is the signed integer quotient of the two operands. This
1944instruction always performs a signed division operation, regardless of whether
1945the arguments are signed or not.</p>
1946<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001947<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00001948</pre>
1949</div>
1950<!-- _______________________________________________________________________ -->
1951<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001952Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001953<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001954<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001955<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001956</pre>
1957<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001958<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00001959operands.</p>
1960<h5>Arguments:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001961<p>The two arguments to the '<tt>div</tt>' instruction must be
1962<a href="#t_floating">floating point</a> values. Both arguments must have
Reid Spencer485bad12007-02-15 03:07:05 +00001963identical types. This instruction can also take <a href="#t_vector">vector</a>
Reid Spencer1628cec2006-10-26 06:15:43 +00001964versions of the values in which case the elements must be floating point.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001965<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001966<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001967<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001968<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001969</pre>
1970</div>
1971<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00001972<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
1973</div>
1974<div class="doc_text">
1975<h5>Syntax:</h5>
1976<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1977</pre>
1978<h5>Overview:</h5>
1979<p>The '<tt>urem</tt>' instruction returns the remainder from the
1980unsigned division of its two arguments.</p>
1981<h5>Arguments:</h5>
1982<p>The two arguments to the '<tt>urem</tt>' instruction must be
1983<a href="#t_integer">integer</a> values. Both arguments must have identical
1984types.</p>
1985<h5>Semantics:</h5>
1986<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
1987This instruction always performs an unsigned division to get the remainder,
1988regardless of whether the arguments are unsigned or not.</p>
1989<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001990<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00001991</pre>
1992
1993</div>
1994<!-- _______________________________________________________________________ -->
1995<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001996Instruction</a> </div>
1997<div class="doc_text">
1998<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001999<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002000</pre>
2001<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002002<p>The '<tt>srem</tt>' instruction returns the remainder from the
2003signed division of its two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002004<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002005<p>The two arguments to the '<tt>srem</tt>' instruction must be
2006<a href="#t_integer">integer</a> values. Both arguments must have identical
2007types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002008<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002009<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002010has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2011operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2012a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002013 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002014Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002015please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002016Wikipedia: modulo operation</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002017<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002018<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002019</pre>
2020
2021</div>
2022<!-- _______________________________________________________________________ -->
2023<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2024Instruction</a> </div>
2025<div class="doc_text">
2026<h5>Syntax:</h5>
2027<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2028</pre>
2029<h5>Overview:</h5>
2030<p>The '<tt>frem</tt>' instruction returns the remainder from the
2031division of its two operands.</p>
2032<h5>Arguments:</h5>
2033<p>The two arguments to the '<tt>frem</tt>' instruction must be
2034<a href="#t_floating">floating point</a> values. Both arguments must have
2035identical types.</p>
2036<h5>Semantics:</h5>
2037<p>This instruction returns the <i>remainder</i> of a division.</p>
2038<h5>Example:</h5>
2039<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002040</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002041</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002042
Reid Spencer8e11bf82007-02-02 13:57:07 +00002043<!-- ======================================================================= -->
2044<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2045Operations</a> </div>
2046<div class="doc_text">
2047<p>Bitwise binary operators are used to do various forms of
2048bit-twiddling in a program. They are generally very efficient
2049instructions and can commonly be strength reduced from other
2050instructions. They require two operands, execute an operation on them,
2051and produce a single value. The resulting value of the bitwise binary
2052operators is always the same type as its first operand.</p>
2053</div>
2054
Reid Spencer569f2fa2007-01-31 21:39:12 +00002055<!-- _______________________________________________________________________ -->
2056<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2057Instruction</a> </div>
2058<div class="doc_text">
2059<h5>Syntax:</h5>
2060<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2061</pre>
2062<h5>Overview:</h5>
2063<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2064the left a specified number of bits.</p>
2065<h5>Arguments:</h5>
2066<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2067 href="#t_integer">integer</a> type.</p>
2068<h5>Semantics:</h5>
2069<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2070<h5>Example:</h5><pre>
2071 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2072 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2073 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2074</pre>
2075</div>
2076<!-- _______________________________________________________________________ -->
2077<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2078Instruction</a> </div>
2079<div class="doc_text">
2080<h5>Syntax:</h5>
2081<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2082</pre>
2083
2084<h5>Overview:</h5>
2085<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2086operand shifted to the right a specified number of bits.</p>
2087
2088<h5>Arguments:</h5>
2089<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2090<a href="#t_integer">integer</a> type.</p>
2091
2092<h5>Semantics:</h5>
2093<p>This instruction always performs a logical shift right operation. The most
2094significant bits of the result will be filled with zero bits after the
2095shift.</p>
2096
2097<h5>Example:</h5>
2098<pre>
2099 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2100 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2101 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2102 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2103</pre>
2104</div>
2105
Reid Spencer8e11bf82007-02-02 13:57:07 +00002106<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002107<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2108Instruction</a> </div>
2109<div class="doc_text">
2110
2111<h5>Syntax:</h5>
2112<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2113</pre>
2114
2115<h5>Overview:</h5>
2116<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2117operand shifted to the right a specified number of bits.</p>
2118
2119<h5>Arguments:</h5>
2120<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2121<a href="#t_integer">integer</a> type.</p>
2122
2123<h5>Semantics:</h5>
2124<p>This instruction always performs an arithmetic shift right operation,
2125The most significant bits of the result will be filled with the sign bit
2126of <tt>var1</tt>.</p>
2127
2128<h5>Example:</h5>
2129<pre>
2130 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2131 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2132 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2133 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2134</pre>
2135</div>
2136
Chris Lattner00950542001-06-06 20:29:01 +00002137<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002138<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2139Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002140<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002141<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002142<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002143</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002144<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002145<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2146its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002147<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002148<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002149 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002150identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002151<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002152<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002153<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002154<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002155<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002156 <tbody>
2157 <tr>
2158 <td>In0</td>
2159 <td>In1</td>
2160 <td>Out</td>
2161 </tr>
2162 <tr>
2163 <td>0</td>
2164 <td>0</td>
2165 <td>0</td>
2166 </tr>
2167 <tr>
2168 <td>0</td>
2169 <td>1</td>
2170 <td>0</td>
2171 </tr>
2172 <tr>
2173 <td>1</td>
2174 <td>0</td>
2175 <td>0</td>
2176 </tr>
2177 <tr>
2178 <td>1</td>
2179 <td>1</td>
2180 <td>1</td>
2181 </tr>
2182 </tbody>
2183</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002184</div>
Chris Lattner00950542001-06-06 20:29:01 +00002185<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002186<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2187 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2188 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002189</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002190</div>
Chris Lattner00950542001-06-06 20:29:01 +00002191<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002192<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002193<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002194<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002195<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002196</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002197<h5>Overview:</h5>
2198<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2199or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002200<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002201<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002202 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002203identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002204<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002205<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002206<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002207<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002208<table border="1" cellspacing="0" cellpadding="4">
2209 <tbody>
2210 <tr>
2211 <td>In0</td>
2212 <td>In1</td>
2213 <td>Out</td>
2214 </tr>
2215 <tr>
2216 <td>0</td>
2217 <td>0</td>
2218 <td>0</td>
2219 </tr>
2220 <tr>
2221 <td>0</td>
2222 <td>1</td>
2223 <td>1</td>
2224 </tr>
2225 <tr>
2226 <td>1</td>
2227 <td>0</td>
2228 <td>1</td>
2229 </tr>
2230 <tr>
2231 <td>1</td>
2232 <td>1</td>
2233 <td>1</td>
2234 </tr>
2235 </tbody>
2236</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002237</div>
Chris Lattner00950542001-06-06 20:29:01 +00002238<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002239<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2240 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2241 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002242</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002243</div>
Chris Lattner00950542001-06-06 20:29:01 +00002244<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002245<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2246Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002247<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002248<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002249<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002250</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002251<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002252<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2253or of its two operands. The <tt>xor</tt> is used to implement the
2254"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002255<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002256<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002257 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002258identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002259<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002260<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002261<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002262<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002263<table border="1" cellspacing="0" cellpadding="4">
2264 <tbody>
2265 <tr>
2266 <td>In0</td>
2267 <td>In1</td>
2268 <td>Out</td>
2269 </tr>
2270 <tr>
2271 <td>0</td>
2272 <td>0</td>
2273 <td>0</td>
2274 </tr>
2275 <tr>
2276 <td>0</td>
2277 <td>1</td>
2278 <td>1</td>
2279 </tr>
2280 <tr>
2281 <td>1</td>
2282 <td>0</td>
2283 <td>1</td>
2284 </tr>
2285 <tr>
2286 <td>1</td>
2287 <td>1</td>
2288 <td>0</td>
2289 </tr>
2290 </tbody>
2291</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002292</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002293<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002294<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002295<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2296 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2297 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2298 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002299</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002300</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002301
Chris Lattner00950542001-06-06 20:29:01 +00002302<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002303<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002304 <a name="vectorops">Vector Operations</a>
2305</div>
2306
2307<div class="doc_text">
2308
2309<p>LLVM supports several instructions to represent vector operations in a
2310target-independent manner. This instructions cover the element-access and
2311vector-specific operations needed to process vectors effectively. While LLVM
2312does directly support these vector operations, many sophisticated algorithms
2313will want to use target-specific intrinsics to take full advantage of a specific
2314target.</p>
2315
2316</div>
2317
2318<!-- _______________________________________________________________________ -->
2319<div class="doc_subsubsection">
2320 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2321</div>
2322
2323<div class="doc_text">
2324
2325<h5>Syntax:</h5>
2326
2327<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002328 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002329</pre>
2330
2331<h5>Overview:</h5>
2332
2333<p>
2334The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002335element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002336</p>
2337
2338
2339<h5>Arguments:</h5>
2340
2341<p>
2342The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002343value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002344an index indicating the position from which to extract the element.
2345The index may be a variable.</p>
2346
2347<h5>Semantics:</h5>
2348
2349<p>
2350The result is a scalar of the same type as the element type of
2351<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2352<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2353results are undefined.
2354</p>
2355
2356<h5>Example:</h5>
2357
2358<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002359 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002360</pre>
2361</div>
2362
2363
2364<!-- _______________________________________________________________________ -->
2365<div class="doc_subsubsection">
2366 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2367</div>
2368
2369<div class="doc_text">
2370
2371<h5>Syntax:</h5>
2372
2373<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002374 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002375</pre>
2376
2377<h5>Overview:</h5>
2378
2379<p>
2380The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002381element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002382</p>
2383
2384
2385<h5>Arguments:</h5>
2386
2387<p>
2388The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002389value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002390scalar value whose type must equal the element type of the first
2391operand. The third operand is an index indicating the position at
2392which to insert the value. The index may be a variable.</p>
2393
2394<h5>Semantics:</h5>
2395
2396<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002397The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002398element values are those of <tt>val</tt> except at position
2399<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2400exceeds the length of <tt>val</tt>, the results are undefined.
2401</p>
2402
2403<h5>Example:</h5>
2404
2405<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002406 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002407</pre>
2408</div>
2409
2410<!-- _______________________________________________________________________ -->
2411<div class="doc_subsubsection">
2412 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2413</div>
2414
2415<div class="doc_text">
2416
2417<h5>Syntax:</h5>
2418
2419<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002420 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002421</pre>
2422
2423<h5>Overview:</h5>
2424
2425<p>
2426The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2427from two input vectors, returning a vector of the same type.
2428</p>
2429
2430<h5>Arguments:</h5>
2431
2432<p>
2433The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2434with types that match each other and types that match the result of the
2435instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002436of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002437</p>
2438
2439<p>
2440The shuffle mask operand is required to be a constant vector with either
2441constant integer or undef values.
2442</p>
2443
2444<h5>Semantics:</h5>
2445
2446<p>
2447The elements of the two input vectors are numbered from left to right across
2448both of the vectors. The shuffle mask operand specifies, for each element of
2449the result vector, which element of the two input registers the result element
2450gets. The element selector may be undef (meaning "don't care") and the second
2451operand may be undef if performing a shuffle from only one vector.
2452</p>
2453
2454<h5>Example:</h5>
2455
2456<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002457 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2458 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2459 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2460 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002461</pre>
2462</div>
2463
Tanya Lattner09474292006-04-14 19:24:33 +00002464
Chris Lattner3df241e2006-04-08 23:07:04 +00002465<!-- ======================================================================= -->
2466<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002467 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002468</div>
2469
Misha Brukman9d0919f2003-11-08 01:05:38 +00002470<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002471
Chris Lattner261efe92003-11-25 01:02:51 +00002472<p>A key design point of an SSA-based representation is how it
2473represents memory. In LLVM, no memory locations are in SSA form, which
2474makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002475allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002476
Misha Brukman9d0919f2003-11-08 01:05:38 +00002477</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002478
Chris Lattner00950542001-06-06 20:29:01 +00002479<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002480<div class="doc_subsubsection">
2481 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2482</div>
2483
Misha Brukman9d0919f2003-11-08 01:05:38 +00002484<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002485
Chris Lattner00950542001-06-06 20:29:01 +00002486<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002487
2488<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002489 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002490</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002491
Chris Lattner00950542001-06-06 20:29:01 +00002492<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002493
Chris Lattner261efe92003-11-25 01:02:51 +00002494<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2495heap and returns a pointer to it.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002496
Chris Lattner00950542001-06-06 20:29:01 +00002497<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002498
2499<p>The '<tt>malloc</tt>' instruction allocates
2500<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002501bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002502appropriate type to the program. If "NumElements" is specified, it is the
2503number of elements allocated. If an alignment is specified, the value result
2504of the allocation is guaranteed to be aligned to at least that boundary. If
2505not specified, or if zero, the target can choose to align the allocation on any
2506convenient boundary.</p>
2507
Misha Brukman9d0919f2003-11-08 01:05:38 +00002508<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002509
Chris Lattner00950542001-06-06 20:29:01 +00002510<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002511
Chris Lattner261efe92003-11-25 01:02:51 +00002512<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2513a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002514
Chris Lattner2cbdc452005-11-06 08:02:57 +00002515<h5>Example:</h5>
2516
2517<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002518 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002519
Reid Spencerca86e162006-12-31 07:07:53 +00002520 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2521 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2522 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2523 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2524 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002525</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002526</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002527
Chris Lattner00950542001-06-06 20:29:01 +00002528<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002529<div class="doc_subsubsection">
2530 <a name="i_free">'<tt>free</tt>' Instruction</a>
2531</div>
2532
Misha Brukman9d0919f2003-11-08 01:05:38 +00002533<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002534
Chris Lattner00950542001-06-06 20:29:01 +00002535<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002536
2537<pre>
2538 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002539</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002540
Chris Lattner00950542001-06-06 20:29:01 +00002541<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002542
Chris Lattner261efe92003-11-25 01:02:51 +00002543<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002544memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002545
Chris Lattner00950542001-06-06 20:29:01 +00002546<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002547
Chris Lattner261efe92003-11-25 01:02:51 +00002548<p>'<tt>value</tt>' shall be a pointer value that points to a value
2549that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2550instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002551
Chris Lattner00950542001-06-06 20:29:01 +00002552<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002553
John Criswell9e2485c2004-12-10 15:51:16 +00002554<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002555after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002556
Chris Lattner00950542001-06-06 20:29:01 +00002557<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002558
2559<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002560 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2561 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002562</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002563</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002564
Chris Lattner00950542001-06-06 20:29:01 +00002565<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002566<div class="doc_subsubsection">
2567 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2568</div>
2569
Misha Brukman9d0919f2003-11-08 01:05:38 +00002570<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002571
Chris Lattner00950542001-06-06 20:29:01 +00002572<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002573
2574<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002575 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002576</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002577
Chris Lattner00950542001-06-06 20:29:01 +00002578<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002579
Chris Lattner261efe92003-11-25 01:02:51 +00002580<p>The '<tt>alloca</tt>' instruction allocates memory on the current
2581stack frame of the procedure that is live until the current function
2582returns to its caller.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002583
Chris Lattner00950542001-06-06 20:29:01 +00002584<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002585
John Criswell9e2485c2004-12-10 15:51:16 +00002586<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002587bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002588appropriate type to the program. If "NumElements" is specified, it is the
2589number of elements allocated. If an alignment is specified, the value result
2590of the allocation is guaranteed to be aligned to at least that boundary. If
2591not specified, or if zero, the target can choose to align the allocation on any
2592convenient boundary.</p>
2593
Misha Brukman9d0919f2003-11-08 01:05:38 +00002594<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002595
Chris Lattner00950542001-06-06 20:29:01 +00002596<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002597
John Criswellc1f786c2005-05-13 22:25:59 +00002598<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002599memory is automatically released when the function returns. The '<tt>alloca</tt>'
2600instruction is commonly used to represent automatic variables that must
2601have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002602 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002603instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002604
Chris Lattner00950542001-06-06 20:29:01 +00002605<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002606
2607<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002608 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2609 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2610 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2611 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002612</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002613</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002614
Chris Lattner00950542001-06-06 20:29:01 +00002615<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002616<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2617Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002618<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002619<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002620<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002621<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002622<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002623<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002624<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002625address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002626 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002627marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002628the number or order of execution of this <tt>load</tt> with other
2629volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2630instructions. </p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002631<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002632<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002633<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002634<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002635 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002636 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2637 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002638</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002639</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002640<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002641<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2642Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002643<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002644<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002645<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattnerf0651072003-09-08 18:27:49 +00002646 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002647</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002648<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002649<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002650<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002651<p>There are two arguments to the '<tt>store</tt>' instruction: a value
John Criswell0ec250c2005-10-24 16:17:18 +00002652to store and an address in which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002653operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002654operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002655optimizer is not allowed to modify the number or order of execution of
2656this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2657 href="#i_store">store</a></tt> instructions.</p>
2658<h5>Semantics:</h5>
2659<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2660at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002661<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002662<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002663 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002664 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2665 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002666</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002667</div>
2668
Chris Lattner2b7d3202002-05-06 03:03:22 +00002669<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002670<div class="doc_subsubsection">
2671 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2672</div>
2673
Misha Brukman9d0919f2003-11-08 01:05:38 +00002674<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002675<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002676<pre>
2677 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2678</pre>
2679
Chris Lattner7faa8832002-04-14 06:13:44 +00002680<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002681
2682<p>
2683The '<tt>getelementptr</tt>' instruction is used to get the address of a
2684subelement of an aggregate data structure.</p>
2685
Chris Lattner7faa8832002-04-14 06:13:44 +00002686<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002687
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002688<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002689elements of the aggregate object to index to. The actual types of the arguments
2690provided depend on the type of the first pointer argument. The
2691'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002692levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00002693structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002694into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2695be sign extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002696
Chris Lattner261efe92003-11-25 01:02:51 +00002697<p>For example, let's consider a C code fragment and how it gets
2698compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002699
2700<pre>
2701 struct RT {
2702 char A;
Reid Spencerca86e162006-12-31 07:07:53 +00002703 i32 B[10][20];
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002704 char C;
2705 };
2706 struct ST {
Reid Spencerca86e162006-12-31 07:07:53 +00002707 i32 X;
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002708 double Y;
2709 struct RT Z;
2710 };
2711
Reid Spencerca86e162006-12-31 07:07:53 +00002712 define i32 *foo(struct ST *s) {
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002713 return &amp;s[1].Z.B[5][13];
2714 }
2715</pre>
2716
Misha Brukman9d0919f2003-11-08 01:05:38 +00002717<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002718
2719<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002720 %RT = type { i8 , [10 x [20 x i32]], i8 }
2721 %ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002722
Reid Spencerca86e162006-12-31 07:07:53 +00002723 define i32* %foo(%ST* %s) {
Brian Gaeke7283e7c2004-07-02 21:08:14 +00002724 entry:
Reid Spencerca86e162006-12-31 07:07:53 +00002725 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2726 ret i32* %reg
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002727 }
2728</pre>
2729
Chris Lattner7faa8832002-04-14 06:13:44 +00002730<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002731
2732<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002733on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002734and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00002735<a href="#t_integer">integer</a> type but the value will always be sign extended
Reid Spencerca86e162006-12-31 07:07:53 +00002736to 64-bits. <a href="#t_struct">Structure</a> types, require <tt>i32</tt>
Reid Spencer42ddd842006-12-03 16:53:48 +00002737<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002738
Misha Brukman9d0919f2003-11-08 01:05:38 +00002739<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00002740type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002741}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00002742the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2743i8 }</tt>' type, another structure. The third index indexes into the second
2744element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002745array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00002746'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2747to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002748
Chris Lattner261efe92003-11-25 01:02:51 +00002749<p>Note that it is perfectly legal to index partially through a
2750structure, returning a pointer to an inner element. Because of this,
2751the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002752
2753<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002754 define i32* %foo(%ST* %s) {
2755 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2756 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2757 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2758 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2759 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2760 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002761 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00002762</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00002763
2764<p>Note that it is undefined to access an array out of bounds: array and
2765pointer indexes must always be within the defined bounds of the array type.
2766The one exception for this rules is zero length arrays. These arrays are
2767defined to be accessible as variable length arrays, which requires access
2768beyond the zero'th element.</p>
2769
Chris Lattner884a9702006-08-15 00:45:58 +00002770<p>The getelementptr instruction is often confusing. For some more insight
2771into how it works, see <a href="GetElementPtr.html">the getelementptr
2772FAQ</a>.</p>
2773
Chris Lattner7faa8832002-04-14 06:13:44 +00002774<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00002775
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002776<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002777 <i>; yields [12 x i8]*:aptr</i>
2778 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002779</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002780</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00002781
Chris Lattner00950542001-06-06 20:29:01 +00002782<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00002783<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002784</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002785<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00002786<p>The instructions in this category are the conversion instructions (casting)
2787which all take a single operand and a type. They perform various bit conversions
2788on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002789</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002790
Chris Lattner6536cfe2002-05-06 22:08:29 +00002791<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00002792<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002793 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2794</div>
2795<div class="doc_text">
2796
2797<h5>Syntax:</h5>
2798<pre>
2799 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2800</pre>
2801
2802<h5>Overview:</h5>
2803<p>
2804The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2805</p>
2806
2807<h5>Arguments:</h5>
2808<p>
2809The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2810be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00002811and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00002812type. The bit size of <tt>value</tt> must be larger than the bit size of
2813<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002814
2815<h5>Semantics:</h5>
2816<p>
2817The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00002818and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2819larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2820It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002821
2822<h5>Example:</h5>
2823<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002824 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002825 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2826 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002827</pre>
2828</div>
2829
2830<!-- _______________________________________________________________________ -->
2831<div class="doc_subsubsection">
2832 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2833</div>
2834<div class="doc_text">
2835
2836<h5>Syntax:</h5>
2837<pre>
2838 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2839</pre>
2840
2841<h5>Overview:</h5>
2842<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2843<tt>ty2</tt>.</p>
2844
2845
2846<h5>Arguments:</h5>
2847<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00002848<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2849also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002850<tt>value</tt> must be smaller than the bit size of the destination type,
2851<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002852
2853<h5>Semantics:</h5>
2854<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2855bits until it reaches the size of the destination type, <tt>ty2</tt>. When the
2856the operand and the type are the same size, no bit filling is done and the
2857cast is considered a <i>no-op cast</i> because no bits change (only the type
2858changes).</p>
2859
Reid Spencerb5929522007-01-12 15:46:11 +00002860<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002861
2862<h5>Example:</h5>
2863<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002864 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002865 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002866</pre>
2867</div>
2868
2869<!-- _______________________________________________________________________ -->
2870<div class="doc_subsubsection">
2871 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2872</div>
2873<div class="doc_text">
2874
2875<h5>Syntax:</h5>
2876<pre>
2877 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2878</pre>
2879
2880<h5>Overview:</h5>
2881<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2882
2883<h5>Arguments:</h5>
2884<p>
2885The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00002886<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2887also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002888<tt>value</tt> must be smaller than the bit size of the destination type,
2889<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002890
2891<h5>Semantics:</h5>
2892<p>
2893The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2894bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2895the type <tt>ty2</tt>. When the the operand and the type are the same size,
2896no bit filling is done and the cast is considered a <i>no-op cast</i> because
2897no bits change (only the type changes).</p>
2898
Reid Spencerc78f3372007-01-12 03:35:51 +00002899<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002900
2901<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002902<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002903 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002904 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002905</pre>
2906</div>
2907
2908<!-- _______________________________________________________________________ -->
2909<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00002910 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
2911</div>
2912
2913<div class="doc_text">
2914
2915<h5>Syntax:</h5>
2916
2917<pre>
2918 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2919</pre>
2920
2921<h5>Overview:</h5>
2922<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
2923<tt>ty2</tt>.</p>
2924
2925
2926<h5>Arguments:</h5>
2927<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
2928 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
2929cast it to. The size of <tt>value</tt> must be larger than the size of
2930<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
2931<i>no-op cast</i>.</p>
2932
2933<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002934<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
2935<a href="#t_floating">floating point</a> type to a smaller
2936<a href="#t_floating">floating point</a> type. If the value cannot fit within
2937the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00002938
2939<h5>Example:</h5>
2940<pre>
2941 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
2942 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
2943</pre>
2944</div>
2945
2946<!-- _______________________________________________________________________ -->
2947<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002948 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
2949</div>
2950<div class="doc_text">
2951
2952<h5>Syntax:</h5>
2953<pre>
2954 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2955</pre>
2956
2957<h5>Overview:</h5>
2958<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
2959floating point value.</p>
2960
2961<h5>Arguments:</h5>
2962<p>The '<tt>fpext</tt>' instruction takes a
2963<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00002964and a <a href="#t_floating">floating point</a> type to cast it to. The source
2965type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002966
2967<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002968<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
2969<a href="t_floating">floating point</a> type to a larger
2970<a href="t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
2971used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00002972<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002973
2974<h5>Example:</h5>
2975<pre>
2976 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
2977 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
2978</pre>
2979</div>
2980
2981<!-- _______________________________________________________________________ -->
2982<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00002983 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002984</div>
2985<div class="doc_text">
2986
2987<h5>Syntax:</h5>
2988<pre>
2989 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2990</pre>
2991
2992<h5>Overview:</h5>
2993<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
2994unsigned integer equivalent of type <tt>ty2</tt>.
2995</p>
2996
2997<h5>Arguments:</h5>
2998<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
2999<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00003000must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003001
3002<h5>Semantics:</h5>
3003<p> The '<tt>fp2uint</tt>' instruction converts its
3004<a href="#t_floating">floating point</a> operand into the nearest (rounding
3005towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3006the results are undefined.</p>
3007
Reid Spencerc78f3372007-01-12 03:35:51 +00003008<p>When converting to i1, the conversion is done as a comparison against
3009zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3010If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003011
3012<h5>Example:</h5>
3013<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003014 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
3015 %Y = fp2uint float 1.0E+300 to i1 <i>; yields i1:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003016 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003017</pre>
3018</div>
3019
3020<!-- _______________________________________________________________________ -->
3021<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003022 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003023</div>
3024<div class="doc_text">
3025
3026<h5>Syntax:</h5>
3027<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003028 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003029</pre>
3030
3031<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003032<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003033<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003034</p>
3035
3036
Chris Lattner6536cfe2002-05-06 22:08:29 +00003037<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003038<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003039<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00003040must also be an <a href="#t_integer">integer</a> type.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003041
Chris Lattner6536cfe2002-05-06 22:08:29 +00003042<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003043<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003044<a href="#t_floating">floating point</a> operand into the nearest (rounding
3045towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3046the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003047
Reid Spencerc78f3372007-01-12 03:35:51 +00003048<p>When converting to i1, the conversion is done as a comparison against
3049zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3050If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003051
Chris Lattner33ba0d92001-07-09 00:26:23 +00003052<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003053<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003054 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3055 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003056 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003057</pre>
3058</div>
3059
3060<!-- _______________________________________________________________________ -->
3061<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003062 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003063</div>
3064<div class="doc_text">
3065
3066<h5>Syntax:</h5>
3067<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003068 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003069</pre>
3070
3071<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003072<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003073integer and converts that value to the <tt>ty2</tt> type.</p>
3074
3075
3076<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003077<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003078<a href="#t_integer">integer</a> value, and a type to cast it to, which must
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003079be a <a href="#t_floating">floating point</a> type.</p>
3080
3081<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003082<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003083integer quantity and converts it to the corresponding floating point value. If
3084the value cannot fit in the floating point value, the results are undefined.</p>
3085
3086
3087<h5>Example:</h5>
3088<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003089 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3090 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003091</pre>
3092</div>
3093
3094<!-- _______________________________________________________________________ -->
3095<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003096 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003097</div>
3098<div class="doc_text">
3099
3100<h5>Syntax:</h5>
3101<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003102 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003103</pre>
3104
3105<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003106<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003107integer and converts that value to the <tt>ty2</tt> type.</p>
3108
3109<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003110<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003111<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003112a <a href="#t_floating">floating point</a> type.</p>
3113
3114<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003115<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003116integer quantity and converts it to the corresponding floating point value. If
3117the value cannot fit in the floating point value, the results are undefined.</p>
3118
3119<h5>Example:</h5>
3120<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003121 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3122 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003123</pre>
3124</div>
3125
3126<!-- _______________________________________________________________________ -->
3127<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003128 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3129</div>
3130<div class="doc_text">
3131
3132<h5>Syntax:</h5>
3133<pre>
3134 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3135</pre>
3136
3137<h5>Overview:</h5>
3138<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3139the integer type <tt>ty2</tt>.</p>
3140
3141<h5>Arguments:</h5>
3142<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3143must be a <a href="t_pointer">pointer</a> value, and a type to cast it to
3144<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3145
3146<h5>Semantics:</h5>
3147<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3148<tt>ty2</tt> by interpreting the pointer value as an integer and either
3149truncating or zero extending that value to the size of the integer type. If
3150<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3151<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3152are the same size, then nothing is done (<i>no-op cast</i>).</p>
3153
3154<h5>Example:</h5>
3155<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003156 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit</i>
3157 %Y = ptrtoint i32* %x to i64 <i>; yields zero extend on 32-bit</i>
Reid Spencer72679252006-11-11 21:00:47 +00003158</pre>
3159</div>
3160
3161<!-- _______________________________________________________________________ -->
3162<div class="doc_subsubsection">
3163 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3164</div>
3165<div class="doc_text">
3166
3167<h5>Syntax:</h5>
3168<pre>
3169 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3170</pre>
3171
3172<h5>Overview:</h5>
3173<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3174a pointer type, <tt>ty2</tt>.</p>
3175
3176<h5>Arguments:</h5>
3177<p>The '<tt>inttoptr</tt>' instruction takes an <a href="i_integer">integer</a>
3178value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003179<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003180
3181<h5>Semantics:</h5>
3182<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3183<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3184the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3185size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3186the size of a pointer then a zero extension is done. If they are the same size,
3187nothing is done (<i>no-op cast</i>).</p>
3188
3189<h5>Example:</h5>
3190<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003191 %X = inttoptr i32 255 to i32* <i>; yields zero extend on 64-bit</i>
3192 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit </i>
3193 %Y = inttoptr i16 0 to i32* <i>; yields zero extend on 32-bit</i>
Reid Spencer72679252006-11-11 21:00:47 +00003194</pre>
3195</div>
3196
3197<!-- _______________________________________________________________________ -->
3198<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003199 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003200</div>
3201<div class="doc_text">
3202
3203<h5>Syntax:</h5>
3204<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003205 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003206</pre>
3207
3208<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003209<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003210<tt>ty2</tt> without changing any bits.</p>
3211
3212<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003213<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003214a first class value, and a type to cast it to, which must also be a <a
3215 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003216and the destination type, <tt>ty2</tt>, must be identical. If the source
3217type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003218
3219<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003220<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003221<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3222this conversion. The conversion is done as if the <tt>value</tt> had been
3223stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3224converted to other pointer types with this instruction. To convert pointers to
3225other types, use the <a href="#i_inttoptr">inttoptr</a> or
3226<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003227
3228<h5>Example:</h5>
3229<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003230 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3231 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3232 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003233</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003234</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003235
Reid Spencer2fd21e62006-11-08 01:18:52 +00003236<!-- ======================================================================= -->
3237<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3238<div class="doc_text">
3239<p>The instructions in this category are the "miscellaneous"
3240instructions, which defy better classification.</p>
3241</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003242
3243<!-- _______________________________________________________________________ -->
3244<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3245</div>
3246<div class="doc_text">
3247<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00003248<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;
3249<i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003250</pre>
3251<h5>Overview:</h5>
3252<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3253of its two integer operands.</p>
3254<h5>Arguments:</h5>
3255<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3256the condition code which indicates the kind of comparison to perform. It is not
3257a value, just a keyword. The possibilities for the condition code are:
3258<ol>
3259 <li><tt>eq</tt>: equal</li>
3260 <li><tt>ne</tt>: not equal </li>
3261 <li><tt>ugt</tt>: unsigned greater than</li>
3262 <li><tt>uge</tt>: unsigned greater or equal</li>
3263 <li><tt>ult</tt>: unsigned less than</li>
3264 <li><tt>ule</tt>: unsigned less or equal</li>
3265 <li><tt>sgt</tt>: signed greater than</li>
3266 <li><tt>sge</tt>: signed greater or equal</li>
3267 <li><tt>slt</tt>: signed less than</li>
3268 <li><tt>sle</tt>: signed less or equal</li>
3269</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003270<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003271<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003272<h5>Semantics:</h5>
3273<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3274the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003275yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003276<ol>
3277 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3278 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3279 </li>
3280 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3281 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3282 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3283 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3284 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3285 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3286 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3287 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3288 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3289 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3290 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3291 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3292 <li><tt>sge</tt>: interprets the operands as signed values and yields
3293 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3294 <li><tt>slt</tt>: interprets the operands as signed values and yields
3295 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3296 <li><tt>sle</tt>: interprets the operands as signed values and yields
3297 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003298</ol>
3299<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3300values are treated as integers and then compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003301
3302<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003303<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3304 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3305 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3306 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3307 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3308 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003309</pre>
3310</div>
3311
3312<!-- _______________________________________________________________________ -->
3313<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3314</div>
3315<div class="doc_text">
3316<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00003317<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;
3318<i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003319</pre>
3320<h5>Overview:</h5>
3321<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3322of its floating point operands.</p>
3323<h5>Arguments:</h5>
3324<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3325the condition code which indicates the kind of comparison to perform. It is not
3326a value, just a keyword. The possibilities for the condition code are:
3327<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003328 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003329 <li><tt>oeq</tt>: ordered and equal</li>
3330 <li><tt>ogt</tt>: ordered and greater than </li>
3331 <li><tt>oge</tt>: ordered and greater than or equal</li>
3332 <li><tt>olt</tt>: ordered and less than </li>
3333 <li><tt>ole</tt>: ordered and less than or equal</li>
3334 <li><tt>one</tt>: ordered and not equal</li>
3335 <li><tt>ord</tt>: ordered (no nans)</li>
3336 <li><tt>ueq</tt>: unordered or equal</li>
3337 <li><tt>ugt</tt>: unordered or greater than </li>
3338 <li><tt>uge</tt>: unordered or greater than or equal</li>
3339 <li><tt>ult</tt>: unordered or less than </li>
3340 <li><tt>ule</tt>: unordered or less than or equal</li>
3341 <li><tt>une</tt>: unordered or not equal</li>
3342 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003343 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003344</ol>
Reid Spencer93a49852006-12-06 07:08:07 +00003345<p>In the preceding, <i>ordered</i> means that neither operand is a QNAN while
3346<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003347<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3348<a href="#t_floating">floating point</a> typed. They must have identical
3349types.</p>
Reid Spencerb7f26282006-11-19 03:00:14 +00003350<p>In the foregoing, <i>ordered</i> means that neither operand is a QNAN and
3351<i>unordered</i> means that either operand is a QNAN.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003352<h5>Semantics:</h5>
3353<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3354the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003355yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003356<ol>
3357 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003358 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003359 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003360 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003361 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003362 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003363 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003364 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003365 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003366 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003367 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003368 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003369 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003370 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3371 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003372 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003373 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003374 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003375 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003376 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003377 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003378 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003379 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003380 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003381 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003382 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003383 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003384 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3385</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003386
3387<h5>Example:</h5>
3388<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3389 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3390 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3391 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3392</pre>
3393</div>
3394
Reid Spencer2fd21e62006-11-08 01:18:52 +00003395<!-- _______________________________________________________________________ -->
3396<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3397Instruction</a> </div>
3398<div class="doc_text">
3399<h5>Syntax:</h5>
3400<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3401<h5>Overview:</h5>
3402<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3403the SSA graph representing the function.</p>
3404<h5>Arguments:</h5>
3405<p>The type of the incoming values are specified with the first type
3406field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3407as arguments, with one pair for each predecessor basic block of the
3408current block. Only values of <a href="#t_firstclass">first class</a>
3409type may be used as the value arguments to the PHI node. Only labels
3410may be used as the label arguments.</p>
3411<p>There must be no non-phi instructions between the start of a basic
3412block and the PHI instructions: i.e. PHI instructions must be first in
3413a basic block.</p>
3414<h5>Semantics:</h5>
3415<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the
3416value specified by the parameter, depending on which basic block we
3417came from in the last <a href="#terminators">terminator</a> instruction.</p>
3418<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003419<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003420</div>
3421
Chris Lattnercc37aae2004-03-12 05:50:16 +00003422<!-- _______________________________________________________________________ -->
3423<div class="doc_subsubsection">
3424 <a name="i_select">'<tt>select</tt>' Instruction</a>
3425</div>
3426
3427<div class="doc_text">
3428
3429<h5>Syntax:</h5>
3430
3431<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003432 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003433</pre>
3434
3435<h5>Overview:</h5>
3436
3437<p>
3438The '<tt>select</tt>' instruction is used to choose one value based on a
3439condition, without branching.
3440</p>
3441
3442
3443<h5>Arguments:</h5>
3444
3445<p>
3446The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3447</p>
3448
3449<h5>Semantics:</h5>
3450
3451<p>
3452If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003453value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003454</p>
3455
3456<h5>Example:</h5>
3457
3458<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003459 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003460</pre>
3461</div>
3462
Robert Bocchino05ccd702006-01-15 20:48:27 +00003463
3464<!-- _______________________________________________________________________ -->
3465<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003466 <a name="i_call">'<tt>call</tt>' Instruction</a>
3467</div>
3468
Misha Brukman9d0919f2003-11-08 01:05:38 +00003469<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003470
Chris Lattner00950542001-06-06 20:29:01 +00003471<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003472<pre>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003473 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003474</pre>
3475
Chris Lattner00950542001-06-06 20:29:01 +00003476<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003477
Misha Brukman9d0919f2003-11-08 01:05:38 +00003478<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003479
Chris Lattner00950542001-06-06 20:29:01 +00003480<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003481
Misha Brukman9d0919f2003-11-08 01:05:38 +00003482<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003483
Chris Lattner6536cfe2002-05-06 22:08:29 +00003484<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003485 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003486 <p>The optional "tail" marker indicates whether the callee function accesses
3487 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003488 function call is eligible for tail call optimization. Note that calls may
3489 be marked "tail" even if they do not occur before a <a
3490 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003491 </li>
3492 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003493 <p>The optional "cconv" marker indicates which <a href="callingconv">calling
3494 convention</a> the call should use. If none is specified, the call defaults
3495 to using C calling conventions.
3496 </li>
3497 <li>
Chris Lattner2bff5242005-05-06 05:47:36 +00003498 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3499 being invoked. The argument types must match the types implied by this
John Criswellfc6b8952005-05-16 16:17:45 +00003500 signature. This type can be omitted if the function is not varargs and
3501 if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003502 </li>
3503 <li>
3504 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3505 be invoked. In most cases, this is a direct function invocation, but
3506 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003507 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003508 </li>
3509 <li>
3510 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003511 function signature argument types. All arguments must be of
3512 <a href="#t_firstclass">first class</a> type. If the function signature
3513 indicates the function accepts a variable number of arguments, the extra
3514 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003515 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003516</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003517
Chris Lattner00950542001-06-06 20:29:01 +00003518<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003519
Chris Lattner261efe92003-11-25 01:02:51 +00003520<p>The '<tt>call</tt>' instruction is used to cause control flow to
3521transfer to a specified function, with its incoming arguments bound to
3522the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3523instruction in the called function, control flow continues with the
3524instruction after the function call, and the return value of the
3525function is bound to the result argument. This is a simpler case of
3526the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003527
Chris Lattner00950542001-06-06 20:29:01 +00003528<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003529
3530<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003531 %retval = call i32 %test(i32 %argc)
3532 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3533 %X = tail call i32 %foo()
3534 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
Chris Lattner2bff5242005-05-06 05:47:36 +00003535</pre>
3536
Misha Brukman9d0919f2003-11-08 01:05:38 +00003537</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003538
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003539<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003540<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003541 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003542</div>
3543
Misha Brukman9d0919f2003-11-08 01:05:38 +00003544<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003545
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003546<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003547
3548<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003549 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003550</pre>
3551
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003552<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003553
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003554<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003555the "variable argument" area of a function call. It is used to implement the
3556<tt>va_arg</tt> macro in C.</p>
3557
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003558<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003559
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003560<p>This instruction takes a <tt>va_list*</tt> value and the type of
3561the argument. It returns a value of the specified argument type and
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003562increments the <tt>va_list</tt> to point to the next argument. Again, the
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003563actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003564
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003565<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003566
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003567<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3568type from the specified <tt>va_list</tt> and causes the
3569<tt>va_list</tt> to point to the next argument. For more information,
3570see the variable argument handling <a href="#int_varargs">Intrinsic
3571Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003572
3573<p>It is legal for this instruction to be called in a function which does not
3574take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003575function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003576
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003577<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003578href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003579argument.</p>
3580
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003581<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003582
3583<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3584
Misha Brukman9d0919f2003-11-08 01:05:38 +00003585</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003586
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003587<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003588<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3589<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003590
Misha Brukman9d0919f2003-11-08 01:05:38 +00003591<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003592
3593<p>LLVM supports the notion of an "intrinsic function". These functions have
John Criswellfc6b8952005-05-16 16:17:45 +00003594well known names and semantics and are required to follow certain
Chris Lattner33aec9e2004-02-12 17:01:32 +00003595restrictions. Overall, these instructions represent an extension mechanism for
3596the LLVM language that does not require changing all of the transformations in
3597LLVM to add to the language (or the bytecode reader/writer, the parser,
3598etc...).</p>
3599
John Criswellfc6b8952005-05-16 16:17:45 +00003600<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3601prefix is reserved in LLVM for intrinsic names; thus, functions may not be named
Chris Lattner33aec9e2004-02-12 17:01:32 +00003602this. Intrinsic functions must always be external functions: you cannot define
3603the body of intrinsic functions. Intrinsic functions may only be used in call
3604or invoke instructions: it is illegal to take the address of an intrinsic
3605function. Additionally, because intrinsic functions are part of the LLVM
3606language, it is required that they all be documented here if any are added.</p>
3607
3608
John Criswellfc6b8952005-05-16 16:17:45 +00003609<p>To learn how to add an intrinsic function, please see the <a
Chris Lattner590cff32005-05-11 03:35:57 +00003610href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003611</p>
3612
Misha Brukman9d0919f2003-11-08 01:05:38 +00003613</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003614
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003615<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003616<div class="doc_subsection">
3617 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3618</div>
3619
Misha Brukman9d0919f2003-11-08 01:05:38 +00003620<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003621
Misha Brukman9d0919f2003-11-08 01:05:38 +00003622<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003623 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003624intrinsic functions. These functions are related to the similarly
3625named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003626
Chris Lattner261efe92003-11-25 01:02:51 +00003627<p>All of these functions operate on arguments that use a
3628target-specific value type "<tt>va_list</tt>". The LLVM assembly
3629language reference manual does not define what this type is, so all
3630transformations should be prepared to handle intrinsics with any type
3631used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003632
Chris Lattner374ab302006-05-15 17:26:46 +00003633<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003634instruction and the variable argument handling intrinsic functions are
3635used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003636
Chris Lattner33aec9e2004-02-12 17:01:32 +00003637<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003638define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00003639 ; Initialize variable argument processing
Reid Spencerca86e162006-12-31 07:07:53 +00003640 %ap = alloca i8 *
Chris Lattnerb75137d2007-01-08 07:55:15 +00003641 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003642 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003643
3644 ; Read a single integer argument
Reid Spencerca86e162006-12-31 07:07:53 +00003645 %tmp = va_arg i8 ** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00003646
3647 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Reid Spencerca86e162006-12-31 07:07:53 +00003648 %aq = alloca i8 *
Chris Lattnerb75137d2007-01-08 07:55:15 +00003649 %aq2 = bitcast i8** %aq to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003650 call void @llvm.va_copy(i8 *%aq2, i8* %ap2)
3651 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003652
3653 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003654 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00003655 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00003656}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003657
3658declare void @llvm.va_start(i8*)
3659declare void @llvm.va_copy(i8*, i8*)
3660declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003661</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003662</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003663
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003664<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003665<div class="doc_subsubsection">
3666 <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3667</div>
3668
3669
Misha Brukman9d0919f2003-11-08 01:05:38 +00003670<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003671<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003672<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003673<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003674<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3675<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3676href="#i_va_arg">va_arg</a></tt>.</p>
3677
3678<h5>Arguments:</h5>
3679
3680<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3681
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003682<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003683
3684<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3685macro available in C. In a target-dependent way, it initializes the
3686<tt>va_list</tt> element the argument points to, so that the next call to
3687<tt>va_arg</tt> will produce the first variable argument passed to the function.
3688Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3689last argument of the function, the compiler can figure that out.</p>
3690
Misha Brukman9d0919f2003-11-08 01:05:38 +00003691</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003692
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003693<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003694<div class="doc_subsubsection">
3695 <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3696</div>
3697
Misha Brukman9d0919f2003-11-08 01:05:38 +00003698<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003699<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003700<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003701<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003702
Chris Lattner261efe92003-11-25 01:02:51 +00003703<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>&lt;arglist&gt;</tt>
3704which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt>
3705or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003706
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003707<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003708
Misha Brukman9d0919f2003-11-08 01:05:38 +00003709<p>The argument is a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003710
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003711<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003712
Misha Brukman9d0919f2003-11-08 01:05:38 +00003713<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003714macro available in C. In a target-dependent way, it destroys the <tt>va_list</tt>.
3715Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
3716 href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly
3717with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003718
Misha Brukman9d0919f2003-11-08 01:05:38 +00003719</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003720
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003721<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003722<div class="doc_subsubsection">
3723 <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3724</div>
3725
Misha Brukman9d0919f2003-11-08 01:05:38 +00003726<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003727
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003728<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003729
3730<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003731 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003732</pre>
3733
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003734<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003735
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003736<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
3737the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003738
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003739<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003740
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003741<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003742The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003743
Chris Lattnerd7923912004-05-23 21:06:01 +00003744
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003745<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003746
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003747<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
3748available in C. In a target-dependent way, it copies the source
3749<tt>va_list</tt> element into the destination list. This intrinsic is necessary
3750because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
Chris Lattnerd7923912004-05-23 21:06:01 +00003751arbitrarily complex and require memory allocation, for example.</p>
3752
Misha Brukman9d0919f2003-11-08 01:05:38 +00003753</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003754
Chris Lattner33aec9e2004-02-12 17:01:32 +00003755<!-- ======================================================================= -->
3756<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00003757 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3758</div>
3759
3760<div class="doc_text">
3761
3762<p>
3763LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3764Collection</a> requires the implementation and generation of these intrinsics.
3765These intrinsics allow identification of <a href="#i_gcroot">GC roots on the
3766stack</a>, as well as garbage collector implementations that require <a
3767href="#i_gcread">read</a> and <a href="#i_gcwrite">write</a> barriers.
3768Front-ends for type-safe garbage collected languages should generate these
3769intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3770href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3771</p>
3772</div>
3773
3774<!-- _______________________________________________________________________ -->
3775<div class="doc_subsubsection">
3776 <a name="i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3777</div>
3778
3779<div class="doc_text">
3780
3781<h5>Syntax:</h5>
3782
3783<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003784 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00003785</pre>
3786
3787<h5>Overview:</h5>
3788
John Criswell9e2485c2004-12-10 15:51:16 +00003789<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00003790the code generator, and allows some metadata to be associated with it.</p>
3791
3792<h5>Arguments:</h5>
3793
3794<p>The first argument specifies the address of a stack object that contains the
3795root pointer. The second pointer (which must be either a constant or a global
3796value address) contains the meta-data to be associated with the root.</p>
3797
3798<h5>Semantics:</h5>
3799
3800<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3801location. At compile-time, the code generator generates information to allow
3802the runtime to find the pointer at GC safe points.
3803</p>
3804
3805</div>
3806
3807
3808<!-- _______________________________________________________________________ -->
3809<div class="doc_subsubsection">
3810 <a name="i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3811</div>
3812
3813<div class="doc_text">
3814
3815<h5>Syntax:</h5>
3816
3817<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003818 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00003819</pre>
3820
3821<h5>Overview:</h5>
3822
3823<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3824locations, allowing garbage collector implementations that require read
3825barriers.</p>
3826
3827<h5>Arguments:</h5>
3828
Chris Lattner80626e92006-03-14 20:02:51 +00003829<p>The second argument is the address to read from, which should be an address
3830allocated from the garbage collector. The first object is a pointer to the
3831start of the referenced object, if needed by the language runtime (otherwise
3832null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003833
3834<h5>Semantics:</h5>
3835
3836<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3837instruction, but may be replaced with substantially more complex code by the
3838garbage collector runtime, as needed.</p>
3839
3840</div>
3841
3842
3843<!-- _______________________________________________________________________ -->
3844<div class="doc_subsubsection">
3845 <a name="i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3846</div>
3847
3848<div class="doc_text">
3849
3850<h5>Syntax:</h5>
3851
3852<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003853 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00003854</pre>
3855
3856<h5>Overview:</h5>
3857
3858<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3859locations, allowing garbage collector implementations that require write
3860barriers (such as generational or reference counting collectors).</p>
3861
3862<h5>Arguments:</h5>
3863
Chris Lattner80626e92006-03-14 20:02:51 +00003864<p>The first argument is the reference to store, the second is the start of the
3865object to store it to, and the third is the address of the field of Obj to
3866store to. If the runtime does not require a pointer to the object, Obj may be
3867null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003868
3869<h5>Semantics:</h5>
3870
3871<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3872instruction, but may be replaced with substantially more complex code by the
3873garbage collector runtime, as needed.</p>
3874
3875</div>
3876
3877
3878
3879<!-- ======================================================================= -->
3880<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00003881 <a name="int_codegen">Code Generator Intrinsics</a>
3882</div>
3883
3884<div class="doc_text">
3885<p>
3886These intrinsics are provided by LLVM to expose special features that may only
3887be implemented with code generator support.
3888</p>
3889
3890</div>
3891
3892<!-- _______________________________________________________________________ -->
3893<div class="doc_subsubsection">
3894 <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
3895</div>
3896
3897<div class="doc_text">
3898
3899<h5>Syntax:</h5>
3900<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003901 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003902</pre>
3903
3904<h5>Overview:</h5>
3905
3906<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003907The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
3908target-specific value indicating the return address of the current function
3909or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00003910</p>
3911
3912<h5>Arguments:</h5>
3913
3914<p>
3915The argument to this intrinsic indicates which function to return the address
3916for. Zero indicates the calling function, one indicates its caller, etc. The
3917argument is <b>required</b> to be a constant integer value.
3918</p>
3919
3920<h5>Semantics:</h5>
3921
3922<p>
3923The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
3924the return address of the specified call frame, or zero if it cannot be
3925identified. The value returned by this intrinsic is likely to be incorrect or 0
3926for arguments other than zero, so it should only be used for debugging purposes.
3927</p>
3928
3929<p>
3930Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003931aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003932source-language caller.
3933</p>
3934</div>
3935
3936
3937<!-- _______________________________________________________________________ -->
3938<div class="doc_subsubsection">
3939 <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
3940</div>
3941
3942<div class="doc_text">
3943
3944<h5>Syntax:</h5>
3945<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003946 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003947</pre>
3948
3949<h5>Overview:</h5>
3950
3951<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003952The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
3953target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00003954</p>
3955
3956<h5>Arguments:</h5>
3957
3958<p>
3959The argument to this intrinsic indicates which function to return the frame
3960pointer for. Zero indicates the calling function, one indicates its caller,
3961etc. The argument is <b>required</b> to be a constant integer value.
3962</p>
3963
3964<h5>Semantics:</h5>
3965
3966<p>
3967The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
3968the frame address of the specified call frame, or zero if it cannot be
3969identified. The value returned by this intrinsic is likely to be incorrect or 0
3970for arguments other than zero, so it should only be used for debugging purposes.
3971</p>
3972
3973<p>
3974Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003975aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003976source-language caller.
3977</p>
3978</div>
3979
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003980<!-- _______________________________________________________________________ -->
3981<div class="doc_subsubsection">
Chris Lattner57e1f392006-01-13 02:03:13 +00003982 <a name="i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
3983</div>
3984
3985<div class="doc_text">
3986
3987<h5>Syntax:</h5>
3988<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003989 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00003990</pre>
3991
3992<h5>Overview:</h5>
3993
3994<p>
3995The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
3996the function stack, for use with <a href="#i_stackrestore">
3997<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
3998features like scoped automatic variable sized arrays in C99.
3999</p>
4000
4001<h5>Semantics:</h5>
4002
4003<p>
4004This intrinsic returns a opaque pointer value that can be passed to <a
4005href="#i_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4006<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4007<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4008state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4009practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4010that were allocated after the <tt>llvm.stacksave</tt> was executed.
4011</p>
4012
4013</div>
4014
4015<!-- _______________________________________________________________________ -->
4016<div class="doc_subsubsection">
4017 <a name="i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4018</div>
4019
4020<div class="doc_text">
4021
4022<h5>Syntax:</h5>
4023<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004024 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004025</pre>
4026
4027<h5>Overview:</h5>
4028
4029<p>
4030The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4031the function stack to the state it was in when the corresponding <a
4032href="#llvm.stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4033useful for implementing language features like scoped automatic variable sized
4034arrays in C99.
4035</p>
4036
4037<h5>Semantics:</h5>
4038
4039<p>
4040See the description for <a href="#i_stacksave"><tt>llvm.stacksave</tt></a>.
4041</p>
4042
4043</div>
4044
4045
4046<!-- _______________________________________________________________________ -->
4047<div class="doc_subsubsection">
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004048 <a name="i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4049</div>
4050
4051<div class="doc_text">
4052
4053<h5>Syntax:</h5>
4054<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004055 declare void @llvm.prefetch(i8 * &lt;address&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004056 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004057</pre>
4058
4059<h5>Overview:</h5>
4060
4061
4062<p>
4063The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004064a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4065no
4066effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004067characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004068</p>
4069
4070<h5>Arguments:</h5>
4071
4072<p>
4073<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4074determining if the fetch should be for a read (0) or write (1), and
4075<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004076locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004077<tt>locality</tt> arguments must be constant integers.
4078</p>
4079
4080<h5>Semantics:</h5>
4081
4082<p>
4083This intrinsic does not modify the behavior of the program. In particular,
4084prefetches cannot trap and do not produce a value. On targets that support this
4085intrinsic, the prefetch can provide hints to the processor cache for better
4086performance.
4087</p>
4088
4089</div>
4090
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004091<!-- _______________________________________________________________________ -->
4092<div class="doc_subsubsection">
4093 <a name="i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4094</div>
4095
4096<div class="doc_text">
4097
4098<h5>Syntax:</h5>
4099<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004100 declare void @llvm.pcmarker( i32 &lt;id&gt; )
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004101</pre>
4102
4103<h5>Overview:</h5>
4104
4105
4106<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004107The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4108(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004109code to simulators and other tools. The method is target specific, but it is
4110expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004111The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004112after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004113optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004114correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004115</p>
4116
4117<h5>Arguments:</h5>
4118
4119<p>
4120<tt>id</tt> is a numerical id identifying the marker.
4121</p>
4122
4123<h5>Semantics:</h5>
4124
4125<p>
4126This intrinsic does not modify the behavior of the program. Backends that do not
4127support this intrinisic may ignore it.
4128</p>
4129
4130</div>
4131
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004132<!-- _______________________________________________________________________ -->
4133<div class="doc_subsubsection">
4134 <a name="i_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4135</div>
4136
4137<div class="doc_text">
4138
4139<h5>Syntax:</h5>
4140<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004141 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004142</pre>
4143
4144<h5>Overview:</h5>
4145
4146
4147<p>
4148The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4149counter register (or similar low latency, high accuracy clocks) on those targets
4150that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4151As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4152should only be used for small timings.
4153</p>
4154
4155<h5>Semantics:</h5>
4156
4157<p>
4158When directly supported, reading the cycle counter should not modify any memory.
4159Implementations are allowed to either return a application specific value or a
4160system wide value. On backends without support, this is lowered to a constant 0.
4161</p>
4162
4163</div>
4164
Chris Lattner10610642004-02-14 04:08:35 +00004165<!-- ======================================================================= -->
4166<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004167 <a name="int_libc">Standard C Library Intrinsics</a>
4168</div>
4169
4170<div class="doc_text">
4171<p>
Chris Lattner10610642004-02-14 04:08:35 +00004172LLVM provides intrinsics for a few important standard C library functions.
4173These intrinsics allow source-language front-ends to pass information about the
4174alignment of the pointer arguments to the code generator, providing opportunity
4175for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004176</p>
4177
4178</div>
4179
4180<!-- _______________________________________________________________________ -->
4181<div class="doc_subsubsection">
4182 <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4183</div>
4184
4185<div class="doc_text">
4186
4187<h5>Syntax:</h5>
4188<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004189 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004190 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004191 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004192 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004193</pre>
4194
4195<h5>Overview:</h5>
4196
4197<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004198The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004199location to the destination location.
4200</p>
4201
4202<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004203Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4204intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004205</p>
4206
4207<h5>Arguments:</h5>
4208
4209<p>
4210The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004211the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004212specifying the number of bytes to copy, and the fourth argument is the alignment
4213of the source and destination locations.
4214</p>
4215
Chris Lattner3301ced2004-02-12 21:18:15 +00004216<p>
4217If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004218the caller guarantees that both the source and destination pointers are aligned
4219to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004220</p>
4221
Chris Lattner33aec9e2004-02-12 17:01:32 +00004222<h5>Semantics:</h5>
4223
4224<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004225The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004226location to the destination location, which are not allowed to overlap. It
4227copies "len" bytes of memory over. If the argument is known to be aligned to
4228some boundary, this can be specified as the fourth argument, otherwise it should
4229be set to 0 or 1.
4230</p>
4231</div>
4232
4233
Chris Lattner0eb51b42004-02-12 18:10:10 +00004234<!-- _______________________________________________________________________ -->
4235<div class="doc_subsubsection">
4236 <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4237</div>
4238
4239<div class="doc_text">
4240
4241<h5>Syntax:</h5>
4242<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004243 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004244 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004245 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004246 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004247</pre>
4248
4249<h5>Overview:</h5>
4250
4251<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004252The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4253location to the destination location. It is similar to the
4254'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004255</p>
4256
4257<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004258Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4259intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004260</p>
4261
4262<h5>Arguments:</h5>
4263
4264<p>
4265The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004266the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004267specifying the number of bytes to copy, and the fourth argument is the alignment
4268of the source and destination locations.
4269</p>
4270
Chris Lattner3301ced2004-02-12 21:18:15 +00004271<p>
4272If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004273the caller guarantees that the source and destination pointers are aligned to
4274that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004275</p>
4276
Chris Lattner0eb51b42004-02-12 18:10:10 +00004277<h5>Semantics:</h5>
4278
4279<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004280The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004281location to the destination location, which may overlap. It
4282copies "len" bytes of memory over. If the argument is known to be aligned to
4283some boundary, this can be specified as the fourth argument, otherwise it should
4284be set to 0 or 1.
4285</p>
4286</div>
4287
Chris Lattner8ff75902004-01-06 05:31:32 +00004288
Chris Lattner10610642004-02-14 04:08:35 +00004289<!-- _______________________________________________________________________ -->
4290<div class="doc_subsubsection">
Chris Lattner5b310c32006-03-03 00:07:20 +00004291 <a name="i_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004292</div>
4293
4294<div class="doc_text">
4295
4296<h5>Syntax:</h5>
4297<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004298 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004299 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004300 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004301 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004302</pre>
4303
4304<h5>Overview:</h5>
4305
4306<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004307The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004308byte value.
4309</p>
4310
4311<p>
4312Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4313does not return a value, and takes an extra alignment argument.
4314</p>
4315
4316<h5>Arguments:</h5>
4317
4318<p>
4319The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004320byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004321argument specifying the number of bytes to fill, and the fourth argument is the
4322known alignment of destination location.
4323</p>
4324
4325<p>
4326If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004327the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004328</p>
4329
4330<h5>Semantics:</h5>
4331
4332<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004333The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4334the
Chris Lattner10610642004-02-14 04:08:35 +00004335destination location. If the argument is known to be aligned to some boundary,
4336this can be specified as the fourth argument, otherwise it should be set to 0 or
43371.
4338</p>
4339</div>
4340
4341
Chris Lattner32006282004-06-11 02:28:03 +00004342<!-- _______________________________________________________________________ -->
4343<div class="doc_subsubsection">
Chris Lattnerec6cb612006-01-16 22:38:59 +00004344 <a name="i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004345</div>
4346
4347<div class="doc_text">
4348
4349<h5>Syntax:</h5>
4350<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004351 declare float @llvm.sqrt.f32(float %Val)
4352 declare double @llvm.sqrt.f64(double %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004353</pre>
4354
4355<h5>Overview:</h5>
4356
4357<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004358The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattnera4d74142005-07-21 01:29:16 +00004359returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4360<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4361negative numbers (which allows for better optimization).
4362</p>
4363
4364<h5>Arguments:</h5>
4365
4366<p>
4367The argument and return value are floating point numbers of the same type.
4368</p>
4369
4370<h5>Semantics:</h5>
4371
4372<p>
4373This function returns the sqrt of the specified operand if it is a positive
4374floating point number.
4375</p>
4376</div>
4377
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004378<!-- _______________________________________________________________________ -->
4379<div class="doc_subsubsection">
4380 <a name="i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4381</div>
4382
4383<div class="doc_text">
4384
4385<h5>Syntax:</h5>
4386<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004387 declare float @llvm.powi.f32(float %Val, i32 %power)
4388 declare double @llvm.powi.f64(double %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004389</pre>
4390
4391<h5>Overview:</h5>
4392
4393<p>
4394The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4395specified (positive or negative) power. The order of evaluation of
4396multiplications is not defined.
4397</p>
4398
4399<h5>Arguments:</h5>
4400
4401<p>
4402The second argument is an integer power, and the first is a value to raise to
4403that power.
4404</p>
4405
4406<h5>Semantics:</h5>
4407
4408<p>
4409This function returns the first value raised to the second power with an
4410unspecified sequence of rounding operations.</p>
4411</div>
4412
4413
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004414<!-- ======================================================================= -->
4415<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004416 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004417</div>
4418
4419<div class="doc_text">
4420<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004421LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004422These allow efficient code generation for some algorithms.
4423</p>
4424
4425</div>
4426
4427<!-- _______________________________________________________________________ -->
4428<div class="doc_subsubsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004429 <a name="i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4430</div>
4431
4432<div class="doc_text">
4433
4434<h5>Syntax:</h5>
4435<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004436 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4437 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4438 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004439</pre>
4440
4441<h5>Overview:</h5>
4442
4443<p>
4444The '<tt>llvm.bwsap</tt>' family of intrinsics is used to byteswap a 16, 32 or
444564 bit quantity. These are useful for performing operations on data that is not
4446in the target's native byte order.
4447</p>
4448
4449<h5>Semantics:</h5>
4450
4451<p>
Reid Spencerca86e162006-12-31 07:07:53 +00004452The <tt>llvm.bswap.16</tt> intrinsic returns an i16 value that has the high
4453and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4454intrinsic returns an i32 value that has the four bytes of the input i32
4455swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4456i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i64</tt>
4457intrinsic extends this concept to 64 bits.
Nate Begeman7e36c472006-01-13 23:26:38 +00004458</p>
4459
4460</div>
4461
4462<!-- _______________________________________________________________________ -->
4463<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004464 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004465</div>
4466
4467<div class="doc_text">
4468
4469<h5>Syntax:</h5>
4470<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004471 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4472 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
4473 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4474 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004475</pre>
4476
4477<h5>Overview:</h5>
4478
4479<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004480The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4481value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004482</p>
4483
4484<h5>Arguments:</h5>
4485
4486<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004487The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004488integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004489</p>
4490
4491<h5>Semantics:</h5>
4492
4493<p>
4494The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4495</p>
4496</div>
4497
4498<!-- _______________________________________________________________________ -->
4499<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004500 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004501</div>
4502
4503<div class="doc_text">
4504
4505<h5>Syntax:</h5>
4506<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004507 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4508 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
4509 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4510 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004511</pre>
4512
4513<h5>Overview:</h5>
4514
4515<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004516The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4517leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004518</p>
4519
4520<h5>Arguments:</h5>
4521
4522<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004523The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004524integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004525</p>
4526
4527<h5>Semantics:</h5>
4528
4529<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004530The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4531in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00004532of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004533</p>
4534</div>
Chris Lattner32006282004-06-11 02:28:03 +00004535
4536
Chris Lattnereff29ab2005-05-15 19:39:26 +00004537
4538<!-- _______________________________________________________________________ -->
4539<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004540 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004541</div>
4542
4543<div class="doc_text">
4544
4545<h5>Syntax:</h5>
4546<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004547 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4548 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
4549 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4550 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004551</pre>
4552
4553<h5>Overview:</h5>
4554
4555<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004556The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4557trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004558</p>
4559
4560<h5>Arguments:</h5>
4561
4562<p>
4563The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004564integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004565</p>
4566
4567<h5>Semantics:</h5>
4568
4569<p>
4570The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4571in a variable. If the src == 0 then the result is the size in bits of the type
4572of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4573</p>
4574</div>
4575
Chris Lattner8ff75902004-01-06 05:31:32 +00004576<!-- ======================================================================= -->
4577<div class="doc_subsection">
4578 <a name="int_debugger">Debugger Intrinsics</a>
4579</div>
4580
4581<div class="doc_text">
4582<p>
4583The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4584are described in the <a
4585href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4586Debugging</a> document.
4587</p>
4588</div>
4589
4590
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00004591<!-- ======================================================================= -->
4592<div class="doc_subsection">
4593 <a name="int_eh">Exception Handling Intrinsics</a>
4594</div>
4595
4596<div class="doc_text">
4597<p> The LLVM exception handling intrinsics (which all start with
4598<tt>llvm.eh.</tt> prefix), are described in the <a
4599href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4600Handling</a> document. </p>
4601</div>
4602
4603
Chris Lattner00950542001-06-06 20:29:01 +00004604<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00004605<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004606<address>
4607 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4608 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4609 <a href="http://validator.w3.org/check/referer"><img
4610 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4611
4612 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00004613 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004614 Last modified: $Date$
4615</address>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004616</body>
4617</html>