blob: 5e030305b5efd7eb78902c44cc9712f40a079a8f [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000027 <li><a href="#paramattrs">Parameter Attributes</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000028 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000029 </ol>
30 </li>
Chris Lattner00950542001-06-06 20:29:01 +000031 <li><a href="#typesystem">Type System</a>
32 <ol>
Robert Bocchino7b81c752006-02-17 21:18:08 +000033 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000034 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000035 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000036 </ol>
37 </li>
Chris Lattner00950542001-06-06 20:29:01 +000038 <li><a href="#t_derived">Derived Types</a>
39 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000041 <li><a href="#t_function">Function Type</a></li>
42 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000044 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Chris Lattnera58561b2004-08-12 19:12:28 +000045 <li><a href="#t_packed">Packed Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000046 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000047 </ol>
48 </li>
49 </ol>
50 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000051 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000052 <ol>
53 <li><a href="#simpleconstants">Simple Constants</a>
54 <li><a href="#aggregateconstants">Aggregate Constants</a>
55 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
56 <li><a href="#undefvalues">Undefined Values</a>
57 <li><a href="#constantexprs">Constant Expressions</a>
58 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000059 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000060 <li><a href="#othervalues">Other Values</a>
61 <ol>
62 <li><a href="#inlineasm">Inline Assembler Expressions</a>
63 </ol>
64 </li>
Chris Lattner00950542001-06-06 20:29:01 +000065 <li><a href="#instref">Instruction Reference</a>
66 <ol>
67 <li><a href="#terminators">Terminator Instructions</a>
68 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000069 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
70 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000071 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
72 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000073 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000074 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#binaryops">Binary Operations</a>
78 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000079 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
80 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
81 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000082 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
83 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
84 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000085 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
86 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
87 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000088 </ol>
89 </li>
Chris Lattner00950542001-06-06 20:29:01 +000090 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
91 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000092 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000093 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000094 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
95 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
Reid Spencer3822ff52006-11-08 06:47:33 +000096 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
97 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 </ol>
99 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000100 <li><a href="#vectorops">Vector Operations</a>
101 <ol>
102 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
103 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
104 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000105 </ol>
106 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000107 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000108 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000109 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
110 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
111 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000112 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
113 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
114 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000115 </ol>
116 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000117 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000118 <ol>
119 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
120 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
121 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
122 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
123 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000124 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
126 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
127 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000128 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
129 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000130 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000131 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000132 <li><a href="#otherops">Other Operations</a>
133 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000134 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
135 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000137 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000138 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000139 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000140 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000141 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000142 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000143 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000144 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000145 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000146 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
147 <ol>
148 <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
149 <li><a href="#i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
150 <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
151 </ol>
152 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000153 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
154 <ol>
155 <li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
156 <li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
157 <li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
158 </ol>
159 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000160 <li><a href="#int_codegen">Code Generator Intrinsics</a>
161 <ol>
162 <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
163 <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
Chris Lattner57e1f392006-01-13 02:03:13 +0000164 <li><a href="#i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
165 <li><a href="#i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +0000166 <li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +0000167 <li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Andrew Lenharth51b8d542005-11-11 16:47:30 +0000168 <li><a href="#i_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000169 </ol>
170 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000171 <li><a href="#int_libc">Standard C Library Intrinsics</a>
172 <ol>
Chris Lattner5b310c32006-03-03 00:07:20 +0000173 <li><a href="#i_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
174 <li><a href="#i_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
175 <li><a href="#i_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
Chris Lattnerec6cb612006-01-16 22:38:59 +0000176 <li><a href="#i_isunordered">'<tt>llvm.isunordered.*</tt>' Intrinsic</a></li>
177 <li><a href="#i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
Chris Lattnerf4d252d2006-09-08 06:34:02 +0000178 <li><a href="#i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000179 </ol>
180 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000181 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000182 <ol>
Nate Begeman7e36c472006-01-13 23:26:38 +0000183 <li><a href="#i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000184 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
185 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000187 </ol>
188 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000189 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000190 </ol>
191 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000192</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000193
194<div class="doc_author">
195 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
196 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000197</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000198
Chris Lattner00950542001-06-06 20:29:01 +0000199<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000200<div class="doc_section"> <a name="abstract">Abstract </a></div>
201<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000202
Misha Brukman9d0919f2003-11-08 01:05:38 +0000203<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000204<p>This document is a reference manual for the LLVM assembly language.
205LLVM is an SSA based representation that provides type safety,
206low-level operations, flexibility, and the capability of representing
207'all' high-level languages cleanly. It is the common code
208representation used throughout all phases of the LLVM compilation
209strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000210</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000211
Chris Lattner00950542001-06-06 20:29:01 +0000212<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000213<div class="doc_section"> <a name="introduction">Introduction</a> </div>
214<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000215
Misha Brukman9d0919f2003-11-08 01:05:38 +0000216<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000217
Chris Lattner261efe92003-11-25 01:02:51 +0000218<p>The LLVM code representation is designed to be used in three
219different forms: as an in-memory compiler IR, as an on-disk bytecode
220representation (suitable for fast loading by a Just-In-Time compiler),
221and as a human readable assembly language representation. This allows
222LLVM to provide a powerful intermediate representation for efficient
223compiler transformations and analysis, while providing a natural means
224to debug and visualize the transformations. The three different forms
225of LLVM are all equivalent. This document describes the human readable
226representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000227
John Criswellc1f786c2005-05-13 22:25:59 +0000228<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000229while being expressive, typed, and extensible at the same time. It
230aims to be a "universal IR" of sorts, by being at a low enough level
231that high-level ideas may be cleanly mapped to it (similar to how
232microprocessors are "universal IR's", allowing many source languages to
233be mapped to them). By providing type information, LLVM can be used as
234the target of optimizations: for example, through pointer analysis, it
235can be proven that a C automatic variable is never accessed outside of
236the current function... allowing it to be promoted to a simple SSA
237value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000238
Misha Brukman9d0919f2003-11-08 01:05:38 +0000239</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000240
Chris Lattner00950542001-06-06 20:29:01 +0000241<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000242<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000243
Misha Brukman9d0919f2003-11-08 01:05:38 +0000244<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000245
Chris Lattner261efe92003-11-25 01:02:51 +0000246<p>It is important to note that this document describes 'well formed'
247LLVM assembly language. There is a difference between what the parser
248accepts and what is considered 'well formed'. For example, the
249following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000250
251<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000252 %x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000253</pre>
254
Chris Lattner261efe92003-11-25 01:02:51 +0000255<p>...because the definition of <tt>%x</tt> does not dominate all of
256its uses. The LLVM infrastructure provides a verification pass that may
257be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000258automatically run by the parser after parsing input assembly and by
Chris Lattner261efe92003-11-25 01:02:51 +0000259the optimizer before it outputs bytecode. The violations pointed out
260by the verifier pass indicate bugs in transformation passes or input to
261the parser.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000262
Chris Lattner261efe92003-11-25 01:02:51 +0000263<!-- Describe the typesetting conventions here. --> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000264
Chris Lattner00950542001-06-06 20:29:01 +0000265<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000266<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000267<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Misha Brukman9d0919f2003-11-08 01:05:38 +0000269<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Chris Lattner261efe92003-11-25 01:02:51 +0000271<p>LLVM uses three different forms of identifiers, for different
272purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000273
Chris Lattner00950542001-06-06 20:29:01 +0000274<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000275 <li>Named values are represented as a string of characters with a '%' prefix.
276 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
277 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
278 Identifiers which require other characters in their names can be surrounded
279 with quotes. In this way, anything except a <tt>"</tt> character can be used
280 in a name.</li>
281
282 <li>Unnamed values are represented as an unsigned numeric value with a '%'
283 prefix. For example, %12, %2, %44.</li>
284
Reid Spencercc16dc32004-12-09 18:02:53 +0000285 <li>Constants, which are described in a <a href="#constants">section about
286 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000287</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000288
289<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
290don't need to worry about name clashes with reserved words, and the set of
291reserved words may be expanded in the future without penalty. Additionally,
292unnamed identifiers allow a compiler to quickly come up with a temporary
293variable without having to avoid symbol table conflicts.</p>
294
Chris Lattner261efe92003-11-25 01:02:51 +0000295<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000296languages. There are keywords for different opcodes
297('<tt><a href="#i_add">add</a></tt>',
298 '<tt><a href="#i_bitcast">bitcast</a></tt>',
299 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000300href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000301and others. These reserved words cannot conflict with variable names, because
302none of them start with a '%' character.</p>
303
304<p>Here is an example of LLVM code to multiply the integer variable
305'<tt>%X</tt>' by 8:</p>
306
Misha Brukman9d0919f2003-11-08 01:05:38 +0000307<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000308
309<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000310 %result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000311</pre>
312
Misha Brukman9d0919f2003-11-08 01:05:38 +0000313<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000314
315<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000316 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000317</pre>
318
Misha Brukman9d0919f2003-11-08 01:05:38 +0000319<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000320
321<pre>
Reid Spencerca86e162006-12-31 07:07:53 +0000322 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
323 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
324 %result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000325</pre>
326
Chris Lattner261efe92003-11-25 01:02:51 +0000327<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
328important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000329
Chris Lattner00950542001-06-06 20:29:01 +0000330<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000331
332 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
333 line.</li>
334
335 <li>Unnamed temporaries are created when the result of a computation is not
336 assigned to a named value.</li>
337
Misha Brukman9d0919f2003-11-08 01:05:38 +0000338 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339
Misha Brukman9d0919f2003-11-08 01:05:38 +0000340</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000341
John Criswelle4c57cc2005-05-12 16:52:32 +0000342<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343demonstrating instructions, we will follow an instruction with a comment that
344defines the type and name of value produced. Comments are shown in italic
345text.</p>
346
Misha Brukman9d0919f2003-11-08 01:05:38 +0000347</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000348
349<!-- *********************************************************************** -->
350<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
351<!-- *********************************************************************** -->
352
353<!-- ======================================================================= -->
354<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
355</div>
356
357<div class="doc_text">
358
359<p>LLVM programs are composed of "Module"s, each of which is a
360translation unit of the input programs. Each module consists of
361functions, global variables, and symbol table entries. Modules may be
362combined together with the LLVM linker, which merges function (and
363global variable) definitions, resolves forward declarations, and merges
364symbol table entries. Here is an example of the "hello world" module:</p>
365
366<pre><i>; Declare the string constant as a global constant...</i>
367<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
Reid Spencerca86e162006-12-31 07:07:53 +0000368 href="#globalvars">constant</a> <a href="#t_array">[13 x i8 ]</a> c"hello world\0A\00" <i>; [13 x i8 ]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000369
370<i>; External declaration of the puts function</i>
Reid Spencerca86e162006-12-31 07:07:53 +0000371<a href="#functionstructure">declare</a> i32 %puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000372
Chris Lattner81c01f02006-06-13 03:05:47 +0000373<i>; Global variable / Function body section separator</i>
374implementation
375
Chris Lattnerfa730212004-12-09 16:11:40 +0000376<i>; Definition of main function</i>
Reid Spencerca86e162006-12-31 07:07:53 +0000377define i32 %main() { <i>; i32()* </i>
378 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000379 %cast210 = <a
Reid Spencerca86e162006-12-31 07:07:53 +0000380 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* %.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000381
382 <i>; Call puts function to write out the string to stdout...</i>
383 <a
Reid Spencerca86e162006-12-31 07:07:53 +0000384 href="#i_call">call</a> i32 %puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000385 <a
Reid Spencerca86e162006-12-31 07:07:53 +0000386 href="#i_ret">ret</a> i32 0<br>}<br></pre>
Chris Lattnerfa730212004-12-09 16:11:40 +0000387
388<p>This example is made up of a <a href="#globalvars">global variable</a>
389named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
390function, and a <a href="#functionstructure">function definition</a>
391for "<tt>main</tt>".</p>
392
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393<p>In general, a module is made up of a list of global values,
394where both functions and global variables are global values. Global values are
395represented by a pointer to a memory location (in this case, a pointer to an
396array of char, and a pointer to a function), and have one of the following <a
397href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000398
Chris Lattner81c01f02006-06-13 03:05:47 +0000399<p>Due to a limitation in the current LLVM assembly parser (it is limited by
400one-token lookahead), modules are split into two pieces by the "implementation"
401keyword. Global variable prototypes and definitions must occur before the
402keyword, and function definitions must occur after it. Function prototypes may
403occur either before or after it. In the future, the implementation keyword may
404become a noop, if the parser gets smarter.</p>
405
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406</div>
407
408<!-- ======================================================================= -->
409<div class="doc_subsection">
410 <a name="linkage">Linkage Types</a>
411</div>
412
413<div class="doc_text">
414
415<p>
416All Global Variables and Functions have one of the following types of linkage:
417</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000418
419<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000420
Chris Lattnerfa730212004-12-09 16:11:40 +0000421 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000422
423 <dd>Global values with internal linkage are only directly accessible by
424 objects in the current module. In particular, linking code into a module with
425 an internal global value may cause the internal to be renamed as necessary to
426 avoid collisions. Because the symbol is internal to the module, all
427 references can be updated. This corresponds to the notion of the
428 '<tt>static</tt>' keyword in C, or the idea of "anonymous namespaces" in C++.
Chris Lattnerfa730212004-12-09 16:11:40 +0000429 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000430
Chris Lattnerfa730212004-12-09 16:11:40 +0000431 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000432
433 <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> linkage, with
434 the twist that linking together two modules defining the same
435 <tt>linkonce</tt> globals will cause one of the globals to be discarded. This
436 is typically used to implement inline functions. Unreferenced
437 <tt>linkonce</tt> globals are allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000438 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000439
Chris Lattnerfa730212004-12-09 16:11:40 +0000440 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000441
442 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
443 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Reid Spencerca86e162006-12-31 07:07:53 +0000444 used to implement constructs in C such as "<tt>i32 X;</tt>" at global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000445 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000446
Chris Lattnerfa730212004-12-09 16:11:40 +0000447 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000448
449 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
450 pointer to array type. When two global variables with appending linkage are
451 linked together, the two global arrays are appended together. This is the
452 LLVM, typesafe, equivalent of having the system linker append together
453 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000454 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000455
Chris Lattnerfa730212004-12-09 16:11:40 +0000456 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000457
458 <dd>If none of the above identifiers are used, the global is externally
459 visible, meaning that it participates in linkage and can be used to resolve
460 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000461 </dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000462
463 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
464
465 <dd>"<tt>extern_weak</tt>" TBD
466 </dd>
467
468 <p>
469 The next two types of linkage are targeted for Microsoft Windows platform
470 only. They are designed to support importing (exporting) symbols from (to)
471 DLLs.
472 </p>
473
474 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
475
476 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
477 or variable via a global pointer to a pointer that is set up by the DLL
478 exporting the symbol. On Microsoft Windows targets, the pointer name is
479 formed by combining <code>_imp__</code> and the function or variable name.
480 </dd>
481
482 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
483
484 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
485 pointer to a pointer in a DLL, so that it can be referenced with the
486 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
487 name is formed by combining <code>_imp__</code> and the function or variable
488 name.
489 </dd>
490
Chris Lattnerfa730212004-12-09 16:11:40 +0000491</dl>
492
Chris Lattnerfa730212004-12-09 16:11:40 +0000493<p><a name="linkage_external">For example, since the "<tt>.LC0</tt>"
494variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
495variable and was linked with this one, one of the two would be renamed,
496preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
497external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000498outside of the current module.</p>
499<p>It is illegal for a function <i>declaration</i>
500to have any linkage type other than "externally visible", <tt>dllimport</tt>,
501or <tt>extern_weak</tt>.</a></p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000502
Chris Lattnerfa730212004-12-09 16:11:40 +0000503</div>
504
505<!-- ======================================================================= -->
506<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000507 <a name="callingconv">Calling Conventions</a>
508</div>
509
510<div class="doc_text">
511
512<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
513and <a href="#i_invoke">invokes</a> can all have an optional calling convention
514specified for the call. The calling convention of any pair of dynamic
515caller/callee must match, or the behavior of the program is undefined. The
516following calling conventions are supported by LLVM, and more may be added in
517the future:</p>
518
519<dl>
520 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
521
522 <dd>This calling convention (the default if no other calling convention is
523 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000524 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000525 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000526 </dd>
527
Chris Lattner5710ce92006-05-19 21:15:36 +0000528 <dt><b>"<tt>csretcc</tt>" - The C struct return calling convention</b>:</dt>
529
530 <dd>This calling convention matches the target C calling conventions, except
531 that functions with this convention are required to take a pointer as their
532 first argument, and the return type of the function must be void. This is
533 used for C functions that return aggregates by-value. In this case, the
534 function has been transformed to take a pointer to the struct as the first
535 argument to the function. For targets where the ABI specifies specific
536 behavior for structure-return calls, the calling convention can be used to
537 distinguish between struct return functions and other functions that take a
538 pointer to a struct as the first argument.
539 </dd>
540
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000541 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
542
543 <dd>This calling convention attempts to make calls as fast as possible
544 (e.g. by passing things in registers). This calling convention allows the
545 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000546 without having to conform to an externally specified ABI. Implementations of
547 this convention should allow arbitrary tail call optimization to be supported.
548 This calling convention does not support varargs and requires the prototype of
549 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000550 </dd>
551
552 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
553
554 <dd>This calling convention attempts to make code in the caller as efficient
555 as possible under the assumption that the call is not commonly executed. As
556 such, these calls often preserve all registers so that the call does not break
557 any live ranges in the caller side. This calling convention does not support
558 varargs and requires the prototype of all callees to exactly match the
559 prototype of the function definition.
560 </dd>
561
Chris Lattnercfe6b372005-05-07 01:46:40 +0000562 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000563
564 <dd>Any calling convention may be specified by number, allowing
565 target-specific calling conventions to be used. Target specific calling
566 conventions start at 64.
567 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000568</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000569
570<p>More calling conventions can be added/defined on an as-needed basis, to
571support pascal conventions or any other well-known target-independent
572convention.</p>
573
574</div>
575
576<!-- ======================================================================= -->
577<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000578 <a name="globalvars">Global Variables</a>
579</div>
580
581<div class="doc_text">
582
Chris Lattner3689a342005-02-12 19:30:21 +0000583<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000584instead of run-time. Global variables may optionally be initialized, may have
585an explicit section to be placed in, and may
Chris Lattner2cbdc452005-11-06 08:02:57 +0000586have an optional explicit alignment specified. A
John Criswell0ec250c2005-10-24 16:17:18 +0000587variable may be defined as a global "constant," which indicates that the
Chris Lattner3689a342005-02-12 19:30:21 +0000588contents of the variable will <b>never</b> be modified (enabling better
589optimization, allowing the global data to be placed in the read-only section of
590an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000591cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000592
593<p>
594LLVM explicitly allows <em>declarations</em> of global variables to be marked
595constant, even if the final definition of the global is not. This capability
596can be used to enable slightly better optimization of the program, but requires
597the language definition to guarantee that optimizations based on the
598'constantness' are valid for the translation units that do not include the
599definition.
600</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000601
602<p>As SSA values, global variables define pointer values that are in
603scope (i.e. they dominate) all basic blocks in the program. Global
604variables always define a pointer to their "content" type because they
605describe a region of memory, and all memory objects in LLVM are
606accessed through pointers.</p>
607
Chris Lattner88f6c462005-11-12 00:45:07 +0000608<p>LLVM allows an explicit section to be specified for globals. If the target
609supports it, it will emit globals to the section specified.</p>
610
Chris Lattner2cbdc452005-11-06 08:02:57 +0000611<p>An explicit alignment may be specified for a global. If not present, or if
612the alignment is set to zero, the alignment of the global is set by the target
613to whatever it feels convenient. If an explicit alignment is specified, the
614global is forced to have at least that much alignment. All alignments must be
615a power of 2.</p>
616
Chris Lattnerfa730212004-12-09 16:11:40 +0000617</div>
618
619
620<!-- ======================================================================= -->
621<div class="doc_subsection">
622 <a name="functionstructure">Functions</a>
623</div>
624
625<div class="doc_text">
626
Reid Spencerca86e162006-12-31 07:07:53 +0000627<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
628an optional <a href="#linkage">linkage type</a>, an optional
629<a href="#callingconv">calling convention</a>, a return type, an optional
630<a href="#paramattrs">parameter attribute</a> for the return type, a function
631name, a (possibly empty) argument list (each with optional
Reid Spencer92f82302006-12-31 07:18:34 +0000632<a href="#paramattrs">parameter attributes</a>), an optional section, an
633optional alignment, an opening curly brace, a list of basic blocks, and a
634closing curly brace. LLVM function declarations
635consist of the "<tt>declare</tt>" keyword, an optional <a
Reid Spencerca86e162006-12-31 07:07:53 +0000636 href="#callingconv">calling convention</a>, a return type, an optional
637<a href="#paramattrs">parameter attribute</a> for the return type, a function
638name, a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000639
640<p>A function definition contains a list of basic blocks, forming the CFG for
641the function. Each basic block may optionally start with a label (giving the
642basic block a symbol table entry), contains a list of instructions, and ends
643with a <a href="#terminators">terminator</a> instruction (such as a branch or
644function return).</p>
645
John Criswelle4c57cc2005-05-12 16:52:32 +0000646<p>The first basic block in a program is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000647executed on entrance to the function, and it is not allowed to have predecessor
648basic blocks (i.e. there can not be any branches to the entry block of a
649function). Because the block can have no predecessors, it also cannot have any
650<a href="#i_phi">PHI nodes</a>.</p>
651
652<p>LLVM functions are identified by their name and type signature. Hence, two
653functions with the same name but different parameter lists or return values are
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000654considered different functions, and LLVM will resolve references to each
Chris Lattnerfa730212004-12-09 16:11:40 +0000655appropriately.</p>
656
Chris Lattner88f6c462005-11-12 00:45:07 +0000657<p>LLVM allows an explicit section to be specified for functions. If the target
658supports it, it will emit functions to the section specified.</p>
659
Chris Lattner2cbdc452005-11-06 08:02:57 +0000660<p>An explicit alignment may be specified for a function. If not present, or if
661the alignment is set to zero, the alignment of the function is set by the target
662to whatever it feels convenient. If an explicit alignment is specified, the
663function is forced to have at least that much alignment. All alignments must be
664a power of 2.</p>
665
Chris Lattnerfa730212004-12-09 16:11:40 +0000666</div>
667
Chris Lattner4e9aba72006-01-23 23:23:47 +0000668<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000669<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
670<div class="doc_text">
671 <p>The return type and each parameter of a function type may have a set of
672 <i>parameter attributes</i> associated with them. Parameter attributes are
673 used to communicate additional information about the result or parameters of
674 a function. Parameter attributes are considered to be part of the function
675 type so two functions types that differ only by the parameter attributes
676 are different function types.</p>
677
Reid Spencer92f82302006-12-31 07:18:34 +0000678 <p>Parameter attributes consist of an at sign (@) followed by either a single
Reid Spencerca86e162006-12-31 07:07:53 +0000679 keyword or a comma separate list of keywords enclosed in parentheses. For
680 example:<pre>
681 %someFunc = i16 @zext (i8 @(sext) %someParam)
Reid Spencer92f82302006-12-31 07:18:34 +0000682 %someFunc = i16 @zext (i8 @zext %someParam)</pre>
683 Note that the two function types above are unique because the parameter
Reid Spencerca86e162006-12-31 07:07:53 +0000684 has a different attribute (@sext in the first one, @zext in the second).</p>
685
686 <p>Currently, only the following parameter attributes are defined:
687 <dl>
688 <dt><tt>@zext</tt></dt>
689 <dd>This indicates that the parameter should be zero extended just before
690 a call to this function.</dd>
691 <dt><tt>@sext</tt></dt>
692 <dd>This indicates that the parameter should be sign extended just before
693 a call to this function.</dd>
694 </dl></p>
695
696 <p>The current motivation for parameter attributes is to enable the sign and
697 zero extend information necessary for the C calling convention to be passed
698 from the front end to LLVM. The <tt>@zext</tt> and <tt>@sext</tt> attributes
699 are used by the code generator to perform the required extension. However,
700 parameter attributes are an orthogonal feature to calling conventions and
701 may be used for other purposes in the future.</p>
702</div>
703
704<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000705<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000706 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000707</div>
708
709<div class="doc_text">
710<p>
711Modules may contain "module-level inline asm" blocks, which corresponds to the
712GCC "file scope inline asm" blocks. These blocks are internally concatenated by
713LLVM and treated as a single unit, but may be separated in the .ll file if
714desired. The syntax is very simple:
715</p>
716
717<div class="doc_code"><pre>
Chris Lattner52599e12006-01-24 00:37:20 +0000718 module asm "inline asm code goes here"
719 module asm "more can go here"
Chris Lattner4e9aba72006-01-23 23:23:47 +0000720</pre></div>
721
722<p>The strings can contain any character by escaping non-printable characters.
723 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
724 for the number.
725</p>
726
727<p>
728 The inline asm code is simply printed to the machine code .s file when
729 assembly code is generated.
730</p>
731</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000732
733
Chris Lattner00950542001-06-06 20:29:01 +0000734<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000735<div class="doc_section"> <a name="typesystem">Type System</a> </div>
736<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000737
Misha Brukman9d0919f2003-11-08 01:05:38 +0000738<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000739
Misha Brukman9d0919f2003-11-08 01:05:38 +0000740<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000741intermediate representation. Being typed enables a number of
742optimizations to be performed on the IR directly, without having to do
743extra analyses on the side before the transformation. A strong type
744system makes it easier to read the generated code and enables novel
745analyses and transformations that are not feasible to perform on normal
746three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000747
748</div>
749
Chris Lattner00950542001-06-06 20:29:01 +0000750<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000751<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000752<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +0000753<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000754system. The current set of primitive types is as follows:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000755
Reid Spencerd3f876c2004-11-01 08:19:36 +0000756<table class="layout">
757 <tr class="layout">
758 <td class="left">
759 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000760 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000761 <tr><th>Type</th><th>Description</th></tr>
762 <tr><td><tt>void</tt></td><td>No value</td></tr>
Reid Spencerca86e162006-12-31 07:07:53 +0000763 <tr><td><tt>i8</tt></td><td>Signless 8-bit value</td></tr>
764 <tr><td><tt>i32</tt></td><td>Signless 32-bit value</td></tr>
Misha Brukmancfa87bc2005-04-22 18:02:52 +0000765 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000766 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000767 </tbody>
768 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000769 </td>
770 <td class="right">
771 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000772 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000773 <tr><th>Type</th><th>Description</th></tr>
774 <tr><td><tt>bool</tt></td><td>True or False value</td></tr>
Reid Spencerca86e162006-12-31 07:07:53 +0000775 <tr><td><tt>i16</tt></td><td>Signless 16-bit value</td></tr>
776 <tr><td><tt>i64</tt></td><td>Signless 64-bit value</td></tr>
777 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000778 </tbody>
779 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000780 </td>
781 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000782</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000783</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000784
Chris Lattner00950542001-06-06 20:29:01 +0000785<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000786<div class="doc_subsubsection"> <a name="t_classifications">Type
787Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000788<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000789<p>These different primitive types fall into a few useful
790classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000791
792<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000793 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000794 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000795 <tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000796 <td><a name="t_integer">integer</a></td>
Reid Spencerca86e162006-12-31 07:07:53 +0000797 <td><tt>i8, i16, i32, i64</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000798 </tr>
799 <tr>
800 <td><a name="t_integral">integral</a></td>
Reid Spencerca86e162006-12-31 07:07:53 +0000801 <td><tt>bool, i8, i16, i32, i64</tt>
Misha Brukmanc24b7582004-08-12 20:16:08 +0000802 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000803 </tr>
804 <tr>
805 <td><a name="t_floating">floating point</a></td>
806 <td><tt>float, double</tt></td>
807 </tr>
808 <tr>
809 <td><a name="t_firstclass">first class</a></td>
Reid Spencerca86e162006-12-31 07:07:53 +0000810 <td><tt>bool, i8, i16, i32, i64, float, double, <br/>
811 <a href="#t_pointer">pointer</a>,<a href="#t_packed">packed</a></tt>
812 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000813 </tr>
814 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000815</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000816
Chris Lattner261efe92003-11-25 01:02:51 +0000817<p>The <a href="#t_firstclass">first class</a> types are perhaps the
818most important. Values of these types are the only ones which can be
819produced by instructions, passed as arguments, or used as operands to
820instructions. This means that all structures and arrays must be
821manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000822</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000823
Chris Lattner00950542001-06-06 20:29:01 +0000824<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000825<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000826
Misha Brukman9d0919f2003-11-08 01:05:38 +0000827<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000828
Chris Lattner261efe92003-11-25 01:02:51 +0000829<p>The real power in LLVM comes from the derived types in the system.
830This is what allows a programmer to represent arrays, functions,
831pointers, and other useful types. Note that these derived types may be
832recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000833
Misha Brukman9d0919f2003-11-08 01:05:38 +0000834</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000835
Chris Lattner00950542001-06-06 20:29:01 +0000836<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000837<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000838
Misha Brukman9d0919f2003-11-08 01:05:38 +0000839<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000840
Chris Lattner00950542001-06-06 20:29:01 +0000841<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000842
Misha Brukman9d0919f2003-11-08 01:05:38 +0000843<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +0000844sequentially in memory. The array type requires a size (number of
845elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000846
Chris Lattner7faa8832002-04-14 06:13:44 +0000847<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000848
849<pre>
850 [&lt;# elements&gt; x &lt;elementtype&gt;]
851</pre>
852
John Criswelle4c57cc2005-05-12 16:52:32 +0000853<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +0000854be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000855
Chris Lattner7faa8832002-04-14 06:13:44 +0000856<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000857<table class="layout">
858 <tr class="layout">
859 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000860 <tt>[40 x i32 ]</tt><br/>
861 <tt>[41 x i32 ]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +0000862 <tt>[40 x i8]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000863 </td>
864 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +0000865 Array of 40 32-bit integer values.<br/>
866 Array of 41 32-bit integer values.<br/>
867 Array of 40 8-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000868 </td>
869 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000870</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000871<p>Here are some examples of multidimensional arrays:</p>
872<table class="layout">
873 <tr class="layout">
874 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000875 <tt>[3 x [4 x i32]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000876 <tt>[12 x [10 x float]]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +0000877 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000878 </td>
879 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +0000880 3x4 array of 32-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000881 12x10 array of single precision floating point values.<br/>
Reid Spencera5173382007-01-04 16:43:23 +0000882 2x3x4 array of 16-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000883 </td>
884 </tr>
885</table>
Chris Lattnere67a9512005-06-24 17:22:57 +0000886
John Criswell0ec250c2005-10-24 16:17:18 +0000887<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
888length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +0000889LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
890As a special case, however, zero length arrays are recognized to be variable
891length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +0000892type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +0000893
Misha Brukman9d0919f2003-11-08 01:05:38 +0000894</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000895
Chris Lattner00950542001-06-06 20:29:01 +0000896<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000897<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000898<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +0000899<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000900<p>The function type can be thought of as a function signature. It
901consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +0000902Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +0000903(which are structures of pointers to functions), for indirect function
904calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +0000905<p>
906The return type of a function type cannot be an aggregate type.
907</p>
Chris Lattner00950542001-06-06 20:29:01 +0000908<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000909<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +0000910<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +0000911specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +0000912which indicates that the function takes a variable number of arguments.
913Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +0000914 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +0000915<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000916<table class="layout">
917 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +0000918 <td class="left"><tt>i32 (i32)</tt></td>
919 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000920 </td>
Reid Spencer92f82302006-12-31 07:18:34 +0000921 </tr><tr class="layout">
Reid Spencerf17a0b72006-12-31 07:20:23 +0000922 <td class="left"><tt>float&nbsp;(i16&nbsp;@sext,&nbsp;i32&nbsp;*)&nbsp;*
923 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +0000924 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
925 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +0000926 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +0000927 <tt>float</tt>.
928 </td>
929 </tr><tr class="layout">
930 <td class="left"><tt>i32 (i8*, ...)</tt></td>
931 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +0000932 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +0000933 which returns an integer. This is the signature for <tt>printf</tt> in
934 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +0000935 </td>
936 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000937</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000938
Misha Brukman9d0919f2003-11-08 01:05:38 +0000939</div>
Chris Lattner00950542001-06-06 20:29:01 +0000940<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000941<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000942<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +0000943<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000944<p>The structure type is used to represent a collection of data members
945together in memory. The packing of the field types is defined to match
946the ABI of the underlying processor. The elements of a structure may
947be any type that has a size.</p>
948<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
949and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
950field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
951instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +0000952<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000953<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +0000954<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000955<table class="layout">
956 <tr class="layout">
957 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000958 <tt>{ i32, i32, i32 }</tt><br/>
959 <tt>{ float, i32 (i32) * }</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000960 </td>
961 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000962 a triple of three <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000963 A pair, where the first element is a <tt>float</tt> and the second element
964 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerca86e162006-12-31 07:07:53 +0000965 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000966 </td>
967 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000968</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000969</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000970
Chris Lattner00950542001-06-06 20:29:01 +0000971<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +0000972<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
973</div>
974<div class="doc_text">
975<h5>Overview:</h5>
976<p>The packed structure type is used to represent a collection of data members
977together in memory. There is no padding between fields. Further, the alignment
978of a packed structure is 1 byte. The elements of a packed structure may
979be any type that has a size.</p>
980<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
981and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
982field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
983instruction.</p>
984<h5>Syntax:</h5>
985<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
986<h5>Examples:</h5>
987<table class="layout">
988 <tr class="layout">
989 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000990 <tt> &lt; { i32, i32, i32 } &gt; </tt><br/>
991 <tt> &lt; { float, i32 (i32) * } &gt; </tt><br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +0000992 </td>
993 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +0000994 a triple of three <tt>i32</tt> values<br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +0000995 A pair, where the first element is a <tt>float</tt> and the second element
996 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerca86e162006-12-31 07:07:53 +0000997 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Andrew Lenharth75e10682006-12-08 17:13:00 +0000998 </td>
999 </tr>
1000</table>
1001</div>
1002
1003<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001004<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001005<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001006<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001007<p>As in many languages, the pointer type represents a pointer or
1008reference to another object, which must live in memory.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001009<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001010<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001011<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001012<table class="layout">
1013 <tr class="layout">
1014 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001015 <tt>[4x i32]*</tt><br/>
1016 <tt>i32 (i32 *) *</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001017 </td>
1018 <td class="left">
1019 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
Reid Spencerca86e162006-12-31 07:07:53 +00001020 four <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001021 A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001022 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1023 <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001024 </td>
1025 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001026</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001027</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001028
Chris Lattnera58561b2004-08-12 19:12:28 +00001029<!-- _______________________________________________________________________ -->
1030<div class="doc_subsubsection"> <a name="t_packed">Packed Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001031<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001032
Chris Lattnera58561b2004-08-12 19:12:28 +00001033<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001034
Chris Lattnera58561b2004-08-12 19:12:28 +00001035<p>A packed type is a simple derived type that represents a vector
1036of elements. Packed types are used when multiple primitive data
1037are operated in parallel using a single instruction (SIMD).
1038A packed type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001039elements) and an underlying primitive data type. Vectors must have a power
1040of two length (1, 2, 4, 8, 16 ...). Packed types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001041considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001042
Chris Lattnera58561b2004-08-12 19:12:28 +00001043<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001044
1045<pre>
1046 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1047</pre>
1048
John Criswellc1f786c2005-05-13 22:25:59 +00001049<p>The number of elements is a constant integer value; elementtype may
Chris Lattnera58561b2004-08-12 19:12:28 +00001050be any integral or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001051
Chris Lattnera58561b2004-08-12 19:12:28 +00001052<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001053
Reid Spencerd3f876c2004-11-01 08:19:36 +00001054<table class="layout">
1055 <tr class="layout">
1056 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001057 <tt>&lt;4 x i32&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001058 <tt>&lt;8 x float&gt;</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001059 <tt>&lt;2 x i64&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001060 </td>
1061 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +00001062 Packed vector of 4 32-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001063 Packed vector of 8 floating-point values.<br/>
Reid Spencera5173382007-01-04 16:43:23 +00001064 Packed vector of 2 64-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001065 </td>
1066 </tr>
1067</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001068</div>
1069
Chris Lattner69c11bb2005-04-25 17:34:15 +00001070<!-- _______________________________________________________________________ -->
1071<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1072<div class="doc_text">
1073
1074<h5>Overview:</h5>
1075
1076<p>Opaque types are used to represent unknown types in the system. This
1077corresponds (for example) to the C notion of a foward declared structure type.
1078In LLVM, opaque types can eventually be resolved to any type (not just a
1079structure type).</p>
1080
1081<h5>Syntax:</h5>
1082
1083<pre>
1084 opaque
1085</pre>
1086
1087<h5>Examples:</h5>
1088
1089<table class="layout">
1090 <tr class="layout">
1091 <td class="left">
1092 <tt>opaque</tt>
1093 </td>
1094 <td class="left">
1095 An opaque type.<br/>
1096 </td>
1097 </tr>
1098</table>
1099</div>
1100
1101
Chris Lattnerc3f59762004-12-09 17:30:23 +00001102<!-- *********************************************************************** -->
1103<div class="doc_section"> <a name="constants">Constants</a> </div>
1104<!-- *********************************************************************** -->
1105
1106<div class="doc_text">
1107
1108<p>LLVM has several different basic types of constants. This section describes
1109them all and their syntax.</p>
1110
1111</div>
1112
1113<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001114<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001115
1116<div class="doc_text">
1117
1118<dl>
1119 <dt><b>Boolean constants</b></dt>
1120
1121 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1122 constants of the <tt><a href="#t_primitive">bool</a></tt> type.
1123 </dd>
1124
1125 <dt><b>Integer constants</b></dt>
1126
Reid Spencercc16dc32004-12-09 18:02:53 +00001127 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001128 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001129 integer types.
1130 </dd>
1131
1132 <dt><b>Floating point constants</b></dt>
1133
1134 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1135 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001136 notation (see below). Floating point constants must have a <a
1137 href="#t_floating">floating point</a> type. </dd>
1138
1139 <dt><b>Null pointer constants</b></dt>
1140
John Criswell9e2485c2004-12-10 15:51:16 +00001141 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001142 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1143
1144</dl>
1145
John Criswell9e2485c2004-12-10 15:51:16 +00001146<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001147of floating point constants. For example, the form '<tt>double
11480x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
11494.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001150(and the only time that they are generated by the disassembler) is when a
1151floating point constant must be emitted but it cannot be represented as a
1152decimal floating point number. For example, NaN's, infinities, and other
1153special values are represented in their IEEE hexadecimal format so that
1154assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001155
1156</div>
1157
1158<!-- ======================================================================= -->
1159<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1160</div>
1161
1162<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001163<p>Aggregate constants arise from aggregation of simple constants
1164and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001165
1166<dl>
1167 <dt><b>Structure constants</b></dt>
1168
1169 <dd>Structure constants are represented with notation similar to structure
1170 type definitions (a comma separated list of elements, surrounded by braces
Reid Spencerca86e162006-12-31 07:07:53 +00001171 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1172 where "<tt>%G</tt>" is declared as "<tt>%G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001173 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001174 types of elements must match those specified by the type.
1175 </dd>
1176
1177 <dt><b>Array constants</b></dt>
1178
1179 <dd>Array constants are represented with notation similar to array type
1180 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001181 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001182 constants must have <a href="#t_array">array type</a>, and the number and
1183 types of elements must match those specified by the type.
1184 </dd>
1185
1186 <dt><b>Packed constants</b></dt>
1187
1188 <dd>Packed constants are represented with notation similar to packed type
1189 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001190 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1191 i32 11, i32 74, i32 100 &gt;</tt>". Packed constants must have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001192 href="#t_packed">packed type</a>, and the number and types of elements must
1193 match those specified by the type.
1194 </dd>
1195
1196 <dt><b>Zero initialization</b></dt>
1197
1198 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1199 value to zero of <em>any</em> type, including scalar and aggregate types.
1200 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001201 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001202 initializers.
1203 </dd>
1204</dl>
1205
1206</div>
1207
1208<!-- ======================================================================= -->
1209<div class="doc_subsection">
1210 <a name="globalconstants">Global Variable and Function Addresses</a>
1211</div>
1212
1213<div class="doc_text">
1214
1215<p>The addresses of <a href="#globalvars">global variables</a> and <a
1216href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001217constants. These constants are explicitly referenced when the <a
1218href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001219href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1220file:</p>
1221
1222<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001223 %X = global i32 17
1224 %Y = global i32 42
1225 %Z = global [2 x i32*] [ i32* %X, i32* %Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001226</pre>
1227
1228</div>
1229
1230<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001231<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001232<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001233 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001234 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001235 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001236
Reid Spencer2dc45b82004-12-09 18:13:12 +00001237 <p>Undefined values indicate to the compiler that the program is well defined
1238 no matter what value is used, giving the compiler more freedom to optimize.
1239 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001240</div>
1241
1242<!-- ======================================================================= -->
1243<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1244</div>
1245
1246<div class="doc_text">
1247
1248<p>Constant expressions are used to allow expressions involving other constants
1249to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001250href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001251that does not have side effects (e.g. load and call are not supported). The
1252following is the syntax for constant expressions:</p>
1253
1254<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001255 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1256 <dd>Truncate a constant to another type. The bit size of CST must be larger
1257 than the bit size of TYPE. Both types must be integral.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001258
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001259 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1260 <dd>Zero extend a constant to another type. The bit size of CST must be
1261 smaller or equal to the bit size of TYPE. Both types must be integral.</dd>
1262
1263 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1264 <dd>Sign extend a constant to another type. The bit size of CST must be
1265 smaller or equal to the bit size of TYPE. Both types must be integral.</dd>
1266
1267 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1268 <dd>Truncate a floating point constant to another floating point type. The
1269 size of CST must be larger than the size of TYPE. Both types must be
1270 floating point.</dd>
1271
1272 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1273 <dd>Floating point extend a constant to another type. The size of CST must be
1274 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1275
1276 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1277 <dd>Convert a floating point constant to the corresponding unsigned integer
1278 constant. TYPE must be an integer type. CST must be floating point. If the
1279 value won't fit in the integer type, the results are undefined.</dd>
1280
Reid Spencerd4448792006-11-09 23:03:26 +00001281 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001282 <dd>Convert a floating point constant to the corresponding signed integer
1283 constant. TYPE must be an integer type. CST must be floating point. If the
1284 value won't fit in the integer type, the results are undefined.</dd>
1285
Reid Spencerd4448792006-11-09 23:03:26 +00001286 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001287 <dd>Convert an unsigned integer constant to the corresponding floating point
1288 constant. TYPE must be floating point. CST must be of integer type. If the
1289 value won't fit in the floating point type, the results are undefined.</dd>
1290
Reid Spencerd4448792006-11-09 23:03:26 +00001291 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001292 <dd>Convert a signed integer constant to the corresponding floating point
1293 constant. TYPE must be floating point. CST must be of integer type. If the
1294 value won't fit in the floating point type, the results are undefined.</dd>
1295
Reid Spencer5c0ef472006-11-11 23:08:07 +00001296 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1297 <dd>Convert a pointer typed constant to the corresponding integer constant
1298 TYPE must be an integer type. CST must be of pointer type. The CST value is
1299 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1300
1301 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1302 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1303 pointer type. CST must be of integer type. The CST value is zero extended,
1304 truncated, or unchanged to make it fit in a pointer size. This one is
1305 <i>really</i> dangerous!</dd>
1306
1307 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001308 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1309 identical (same number of bits). The conversion is done as if the CST value
1310 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001311 with this operator, just the type. This can be used for conversion of
1312 packed types to any other type, as long as they have the same bit width. For
1313 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001314 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001315
1316 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1317
1318 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1319 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1320 instruction, the index list may have zero or more indexes, which are required
1321 to make sense for the type of "CSTPTR".</dd>
1322
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001323 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1324
1325 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001326 constants.</dd>
1327
1328 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1329 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1330
1331 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1332 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001333
1334 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1335
1336 <dd>Perform the <a href="#i_extractelement">extractelement
1337 operation</a> on constants.
1338
Robert Bocchino05ccd702006-01-15 20:48:27 +00001339 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1340
1341 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001342 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001343
Chris Lattnerc1989542006-04-08 00:13:41 +00001344
1345 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1346
1347 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001348 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001349
Chris Lattnerc3f59762004-12-09 17:30:23 +00001350 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1351
Reid Spencer2dc45b82004-12-09 18:13:12 +00001352 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1353 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001354 binary</a> operations. The constraints on operands are the same as those for
1355 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001356 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001357</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001358</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001359
Chris Lattner00950542001-06-06 20:29:01 +00001360<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001361<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1362<!-- *********************************************************************** -->
1363
1364<!-- ======================================================================= -->
1365<div class="doc_subsection">
1366<a name="inlineasm">Inline Assembler Expressions</a>
1367</div>
1368
1369<div class="doc_text">
1370
1371<p>
1372LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1373Module-Level Inline Assembly</a>) through the use of a special value. This
1374value represents the inline assembler as a string (containing the instructions
1375to emit), a list of operand constraints (stored as a string), and a flag that
1376indicates whether or not the inline asm expression has side effects. An example
1377inline assembler expression is:
1378</p>
1379
1380<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001381 i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001382</pre>
1383
1384<p>
1385Inline assembler expressions may <b>only</b> be used as the callee operand of
1386a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1387</p>
1388
1389<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001390 %X = call i32 asm "<a href="#i_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001391</pre>
1392
1393<p>
1394Inline asms with side effects not visible in the constraint list must be marked
1395as having side effects. This is done through the use of the
1396'<tt>sideeffect</tt>' keyword, like so:
1397</p>
1398
1399<pre>
1400 call void asm sideeffect "eieio", ""()
1401</pre>
1402
1403<p>TODO: The format of the asm and constraints string still need to be
1404documented here. Constraints on what can be done (e.g. duplication, moving, etc
1405need to be documented).
1406</p>
1407
1408</div>
1409
1410<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001411<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1412<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001413
Misha Brukman9d0919f2003-11-08 01:05:38 +00001414<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001415
Chris Lattner261efe92003-11-25 01:02:51 +00001416<p>The LLVM instruction set consists of several different
1417classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001418instructions</a>, <a href="#binaryops">binary instructions</a>,
1419<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001420 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1421instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001422
Misha Brukman9d0919f2003-11-08 01:05:38 +00001423</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001424
Chris Lattner00950542001-06-06 20:29:01 +00001425<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001426<div class="doc_subsection"> <a name="terminators">Terminator
1427Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001428
Misha Brukman9d0919f2003-11-08 01:05:38 +00001429<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001430
Chris Lattner261efe92003-11-25 01:02:51 +00001431<p>As mentioned <a href="#functionstructure">previously</a>, every
1432basic block in a program ends with a "Terminator" instruction, which
1433indicates which block should be executed after the current block is
1434finished. These terminator instructions typically yield a '<tt>void</tt>'
1435value: they produce control flow, not values (the one exception being
1436the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001437<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001438 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1439instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001440the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1441 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1442 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001443
Misha Brukman9d0919f2003-11-08 01:05:38 +00001444</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001445
Chris Lattner00950542001-06-06 20:29:01 +00001446<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001447<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1448Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001449<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001450<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001451<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001452 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001453</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001454<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001455<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001456value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001457<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001458returns a value and then causes control flow, and one that just causes
1459control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001460<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001461<p>The '<tt>ret</tt>' instruction may return any '<a
1462 href="#t_firstclass">first class</a>' type. Notice that a function is
1463not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1464instruction inside of the function that returns a value that does not
1465match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001466<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001467<p>When the '<tt>ret</tt>' instruction is executed, control flow
1468returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001469 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001470the instruction after the call. If the caller was an "<a
1471 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001472at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001473returns a value, that value shall set the call or invoke instruction's
1474return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001475<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001476<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001477 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001478</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001479</div>
Chris Lattner00950542001-06-06 20:29:01 +00001480<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001481<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001482<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001483<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001484<pre> br bool &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001485</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001486<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001487<p>The '<tt>br</tt>' instruction is used to cause control flow to
1488transfer to a different basic block in the current function. There are
1489two forms of this instruction, corresponding to a conditional branch
1490and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001491<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001492<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1493single '<tt>bool</tt>' value and two '<tt>label</tt>' values. The
1494unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>'
1495value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001496<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001497<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
1498argument is evaluated. If the value is <tt>true</tt>, control flows
1499to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1500control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001501<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001502<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br bool %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1503 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001504</div>
Chris Lattner00950542001-06-06 20:29:01 +00001505<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001506<div class="doc_subsubsection">
1507 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1508</div>
1509
Misha Brukman9d0919f2003-11-08 01:05:38 +00001510<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001511<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001512
1513<pre>
1514 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1515</pre>
1516
Chris Lattner00950542001-06-06 20:29:01 +00001517<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001518
1519<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1520several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001521instruction, allowing a branch to occur to one of many possible
1522destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001523
1524
Chris Lattner00950542001-06-06 20:29:01 +00001525<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001526
1527<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1528comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1529an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1530table is not allowed to contain duplicate constant entries.</p>
1531
Chris Lattner00950542001-06-06 20:29:01 +00001532<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001533
Chris Lattner261efe92003-11-25 01:02:51 +00001534<p>The <tt>switch</tt> instruction specifies a table of values and
1535destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001536table is searched for the given value. If the value is found, control flow is
1537transfered to the corresponding destination; otherwise, control flow is
1538transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001539
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001540<h5>Implementation:</h5>
1541
1542<p>Depending on properties of the target machine and the particular
1543<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001544ways. For example, it could be generated as a series of chained conditional
1545branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001546
1547<h5>Example:</h5>
1548
1549<pre>
1550 <i>; Emulate a conditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001551 %Val = <a href="#i_zext">zext</a> bool %value to i32
1552 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001553
1554 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001555 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001556
1557 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001558 switch i32 %val, label %otherwise [ i32 0, label %onzero
1559 i32 1, label %onone
1560 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001561</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001562</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001563
Chris Lattner00950542001-06-06 20:29:01 +00001564<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001565<div class="doc_subsubsection">
1566 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1567</div>
1568
Misha Brukman9d0919f2003-11-08 01:05:38 +00001569<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001570
Chris Lattner00950542001-06-06 20:29:01 +00001571<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001572
1573<pre>
1574 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001575 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001576</pre>
1577
Chris Lattner6536cfe2002-05-06 22:08:29 +00001578<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001579
1580<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1581function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001582'<tt>normal</tt>' label or the
1583'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001584"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1585"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001586href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1587continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001588
Chris Lattner00950542001-06-06 20:29:01 +00001589<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001590
Misha Brukman9d0919f2003-11-08 01:05:38 +00001591<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001592
Chris Lattner00950542001-06-06 20:29:01 +00001593<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001594 <li>
John Criswellc1f786c2005-05-13 22:25:59 +00001595 The optional "cconv" marker indicates which <a href="callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001596 convention</a> the call should use. If none is specified, the call defaults
1597 to using C calling conventions.
1598 </li>
1599 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1600 function value being invoked. In most cases, this is a direct function
1601 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1602 an arbitrary pointer to function value.
1603 </li>
1604
1605 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1606 function to be invoked. </li>
1607
1608 <li>'<tt>function args</tt>': argument list whose types match the function
1609 signature argument types. If the function signature indicates the function
1610 accepts a variable number of arguments, the extra arguments can be
1611 specified. </li>
1612
1613 <li>'<tt>normal label</tt>': the label reached when the called function
1614 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1615
1616 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1617 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1618
Chris Lattner00950542001-06-06 20:29:01 +00001619</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001620
Chris Lattner00950542001-06-06 20:29:01 +00001621<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001622
Misha Brukman9d0919f2003-11-08 01:05:38 +00001623<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001624href="#i_call">call</a></tt>' instruction in most regards. The primary
1625difference is that it establishes an association with a label, which is used by
1626the runtime library to unwind the stack.</p>
1627
1628<p>This instruction is used in languages with destructors to ensure that proper
1629cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1630exception. Additionally, this is important for implementation of
1631'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1632
Chris Lattner00950542001-06-06 20:29:01 +00001633<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001634<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00001635 %retval = invoke i32 %Test(i32 15) to label %Continue
1636 unwind label %TestCleanup <i>; {i32}:retval set</i>
1637 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1638 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001639</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001640</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001641
1642
Chris Lattner27f71f22003-09-03 00:41:47 +00001643<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001644
Chris Lattner261efe92003-11-25 01:02:51 +00001645<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1646Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001647
Misha Brukman9d0919f2003-11-08 01:05:38 +00001648<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001649
Chris Lattner27f71f22003-09-03 00:41:47 +00001650<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001651<pre>
1652 unwind
1653</pre>
1654
Chris Lattner27f71f22003-09-03 00:41:47 +00001655<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001656
1657<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1658at the first callee in the dynamic call stack which used an <a
1659href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1660primarily used to implement exception handling.</p>
1661
Chris Lattner27f71f22003-09-03 00:41:47 +00001662<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001663
1664<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1665immediately halt. The dynamic call stack is then searched for the first <a
1666href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1667execution continues at the "exceptional" destination block specified by the
1668<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1669dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001670</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001671
1672<!-- _______________________________________________________________________ -->
1673
1674<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1675Instruction</a> </div>
1676
1677<div class="doc_text">
1678
1679<h5>Syntax:</h5>
1680<pre>
1681 unreachable
1682</pre>
1683
1684<h5>Overview:</h5>
1685
1686<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1687instruction is used to inform the optimizer that a particular portion of the
1688code is not reachable. This can be used to indicate that the code after a
1689no-return function cannot be reached, and other facts.</p>
1690
1691<h5>Semantics:</h5>
1692
1693<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1694</div>
1695
1696
1697
Chris Lattner00950542001-06-06 20:29:01 +00001698<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001699<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001700<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001701<p>Binary operators are used to do most of the computation in a
1702program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00001703produce a single value. The operands might represent
Chris Lattnera58561b2004-08-12 19:12:28 +00001704multiple data, as is the case with the <a href="#t_packed">packed</a> data type.
1705The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00001706necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001707<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001708</div>
Chris Lattner00950542001-06-06 20:29:01 +00001709<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001710<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1711Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001712<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001713<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001714<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001715</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001716<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001717<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001718<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001719<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00001720 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1721 This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1722Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001723<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001724<p>The value produced is the integer or floating point sum of the two
1725operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001726<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001727<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001728</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001729</div>
Chris Lattner00950542001-06-06 20:29:01 +00001730<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001731<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1732Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001733<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001734<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001735<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001736</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001737<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001738<p>The '<tt>sub</tt>' instruction returns the difference of its two
1739operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001740<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1741instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001742<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001743<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001744 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001745values.
1746This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1747Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001748<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001749<p>The value produced is the integer or floating point difference of
1750the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001751<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001752<pre> &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1753 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001754</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001755</div>
Chris Lattner00950542001-06-06 20:29:01 +00001756<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001757<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1758Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001759<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001760<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001761<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001762</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001763<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001764<p>The '<tt>mul</tt>' instruction returns the product of its two
1765operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001766<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001767<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001768 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001769values.
1770This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1771Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001772<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001773<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00001774two operands.</p>
Reid Spencera5173382007-01-04 16:43:23 +00001775<p>Because the operands are the same width, the result of an integer
1776multiplication is the same whether the operands should be deemed unsigned or
1777signed.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001778<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001779<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001780</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001781</div>
Chris Lattner00950542001-06-06 20:29:01 +00001782<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00001783<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
1784</a></div>
1785<div class="doc_text">
1786<h5>Syntax:</h5>
1787<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1788</pre>
1789<h5>Overview:</h5>
1790<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
1791operands.</p>
1792<h5>Arguments:</h5>
1793<p>The two arguments to the '<tt>udiv</tt>' instruction must be
1794<a href="#t_integer">integer</a> values. Both arguments must have identical
1795types. This instruction can also take <a href="#t_packed">packed</a> versions
1796of the values in which case the elements must be integers.</p>
1797<h5>Semantics:</h5>
1798<p>The value produced is the unsigned integer quotient of the two operands. This
1799instruction always performs an unsigned division operation, regardless of
1800whether the arguments are unsigned or not.</p>
1801<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001802<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00001803</pre>
1804</div>
1805<!-- _______________________________________________________________________ -->
1806<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
1807</a> </div>
1808<div class="doc_text">
1809<h5>Syntax:</h5>
1810<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1811</pre>
1812<h5>Overview:</h5>
1813<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
1814operands.</p>
1815<h5>Arguments:</h5>
1816<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
1817<a href="#t_integer">integer</a> values. Both arguments must have identical
1818types. This instruction can also take <a href="#t_packed">packed</a> versions
1819of the values in which case the elements must be integers.</p>
1820<h5>Semantics:</h5>
1821<p>The value produced is the signed integer quotient of the two operands. This
1822instruction always performs a signed division operation, regardless of whether
1823the arguments are signed or not.</p>
1824<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001825<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00001826</pre>
1827</div>
1828<!-- _______________________________________________________________________ -->
1829<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001830Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001831<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001832<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001833<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001834</pre>
1835<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001836<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00001837operands.</p>
1838<h5>Arguments:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001839<p>The two arguments to the '<tt>div</tt>' instruction must be
1840<a href="#t_floating">floating point</a> values. Both arguments must have
1841identical types. This instruction can also take <a href="#t_packed">packed</a>
1842versions of the values in which case the elements must be floating point.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001843<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001844<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001845<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001846<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001847</pre>
1848</div>
1849<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00001850<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
1851</div>
1852<div class="doc_text">
1853<h5>Syntax:</h5>
1854<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1855</pre>
1856<h5>Overview:</h5>
1857<p>The '<tt>urem</tt>' instruction returns the remainder from the
1858unsigned division of its two arguments.</p>
1859<h5>Arguments:</h5>
1860<p>The two arguments to the '<tt>urem</tt>' instruction must be
1861<a href="#t_integer">integer</a> values. Both arguments must have identical
1862types.</p>
1863<h5>Semantics:</h5>
1864<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
1865This instruction always performs an unsigned division to get the remainder,
1866regardless of whether the arguments are unsigned or not.</p>
1867<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001868<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00001869</pre>
1870
1871</div>
1872<!-- _______________________________________________________________________ -->
1873<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001874Instruction</a> </div>
1875<div class="doc_text">
1876<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001877<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001878</pre>
1879<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001880<p>The '<tt>srem</tt>' instruction returns the remainder from the
1881signed division of its two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001882<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001883<p>The two arguments to the '<tt>srem</tt>' instruction must be
1884<a href="#t_integer">integer</a> values. Both arguments must have identical
1885types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001886<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001887<p>This instruction returns the <i>remainder</i> of a division (where the result
Chris Lattner261efe92003-11-25 01:02:51 +00001888has the same sign as the divisor), not the <i>modulus</i> (where the
1889result has the same sign as the dividend) of a value. For more
John Criswell0ec250c2005-10-24 16:17:18 +00001890information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00001891 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
1892Math Forum</a>.</p>
1893<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001894<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00001895</pre>
1896
1897</div>
1898<!-- _______________________________________________________________________ -->
1899<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
1900Instruction</a> </div>
1901<div class="doc_text">
1902<h5>Syntax:</h5>
1903<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1904</pre>
1905<h5>Overview:</h5>
1906<p>The '<tt>frem</tt>' instruction returns the remainder from the
1907division of its two operands.</p>
1908<h5>Arguments:</h5>
1909<p>The two arguments to the '<tt>frem</tt>' instruction must be
1910<a href="#t_floating">floating point</a> values. Both arguments must have
1911identical types.</p>
1912<h5>Semantics:</h5>
1913<p>This instruction returns the <i>remainder</i> of a division.</p>
1914<h5>Example:</h5>
1915<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001916</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001917</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00001918
Chris Lattner00950542001-06-06 20:29:01 +00001919<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001920<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
1921Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001922<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001923<p>Bitwise binary operators are used to do various forms of
1924bit-twiddling in a program. They are generally very efficient
John Criswell9e2485c2004-12-10 15:51:16 +00001925instructions and can commonly be strength reduced from other
Chris Lattner261efe92003-11-25 01:02:51 +00001926instructions. They require two operands, execute an operation on them,
1927and produce a single value. The resulting value of the bitwise binary
1928operators is always the same type as its first operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001929</div>
Chris Lattner00950542001-06-06 20:29:01 +00001930<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001931<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
1932Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001933<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001934<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001935<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001936</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001937<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001938<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
1939its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001940<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001941<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00001942 href="#t_integral">integral</a> values. Both arguments must have
1943identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001944<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001945<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001946<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001947<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00001948<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001949 <tbody>
1950 <tr>
1951 <td>In0</td>
1952 <td>In1</td>
1953 <td>Out</td>
1954 </tr>
1955 <tr>
1956 <td>0</td>
1957 <td>0</td>
1958 <td>0</td>
1959 </tr>
1960 <tr>
1961 <td>0</td>
1962 <td>1</td>
1963 <td>0</td>
1964 </tr>
1965 <tr>
1966 <td>1</td>
1967 <td>0</td>
1968 <td>0</td>
1969 </tr>
1970 <tr>
1971 <td>1</td>
1972 <td>1</td>
1973 <td>1</td>
1974 </tr>
1975 </tbody>
1976</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001977</div>
Chris Lattner00950542001-06-06 20:29:01 +00001978<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001979<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
1980 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
1981 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00001982</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001983</div>
Chris Lattner00950542001-06-06 20:29:01 +00001984<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001985<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001986<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001987<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001988<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001989</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001990<h5>Overview:</h5>
1991<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
1992or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001993<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001994<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00001995 href="#t_integral">integral</a> values. Both arguments must have
1996identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001997<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001998<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001999<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002000<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002001<table border="1" cellspacing="0" cellpadding="4">
2002 <tbody>
2003 <tr>
2004 <td>In0</td>
2005 <td>In1</td>
2006 <td>Out</td>
2007 </tr>
2008 <tr>
2009 <td>0</td>
2010 <td>0</td>
2011 <td>0</td>
2012 </tr>
2013 <tr>
2014 <td>0</td>
2015 <td>1</td>
2016 <td>1</td>
2017 </tr>
2018 <tr>
2019 <td>1</td>
2020 <td>0</td>
2021 <td>1</td>
2022 </tr>
2023 <tr>
2024 <td>1</td>
2025 <td>1</td>
2026 <td>1</td>
2027 </tr>
2028 </tbody>
2029</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002030</div>
Chris Lattner00950542001-06-06 20:29:01 +00002031<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002032<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2033 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2034 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002035</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002036</div>
Chris Lattner00950542001-06-06 20:29:01 +00002037<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002038<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2039Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002040<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002041<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002042<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002043</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002044<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002045<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2046or of its two operands. The <tt>xor</tt> is used to implement the
2047"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002048<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002049<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00002050 href="#t_integral">integral</a> values. Both arguments must have
2051identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002052<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002053<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002054<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002055<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002056<table border="1" cellspacing="0" cellpadding="4">
2057 <tbody>
2058 <tr>
2059 <td>In0</td>
2060 <td>In1</td>
2061 <td>Out</td>
2062 </tr>
2063 <tr>
2064 <td>0</td>
2065 <td>0</td>
2066 <td>0</td>
2067 </tr>
2068 <tr>
2069 <td>0</td>
2070 <td>1</td>
2071 <td>1</td>
2072 </tr>
2073 <tr>
2074 <td>1</td>
2075 <td>0</td>
2076 <td>1</td>
2077 </tr>
2078 <tr>
2079 <td>1</td>
2080 <td>1</td>
2081 <td>0</td>
2082 </tr>
2083 </tbody>
2084</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002085</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002086<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002087<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002088<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2089 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2090 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2091 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002092</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002093</div>
Chris Lattner00950542001-06-06 20:29:01 +00002094<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002095<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2096Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002097<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002098<h5>Syntax:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002099<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, i8 &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002100</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002101<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002102<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2103the left a specified number of bits.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002104<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002105<p>The first argument to the '<tt>shl</tt>' instruction must be an <a
Reid Spencerca86e162006-12-31 07:07:53 +00002106 href="#t_integer">integer</a> type. The second argument must be an '<tt>i8</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002107type.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002108<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002109<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002110<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002111<pre> &lt;result&gt; = shl i32 4, i8 %var <i>; yields {i32}:result = 4 &lt;&lt; %var</i>
2112 &lt;result&gt; = shl i32 4, i8 2 <i>; yields {i32}:result = 16</i>
2113 &lt;result&gt; = shl i32 1, i8 10 <i>; yields {i32}:result = 1024</i>
Chris Lattner00950542001-06-06 20:29:01 +00002114</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002115</div>
Chris Lattner00950542001-06-06 20:29:01 +00002116<!-- _______________________________________________________________________ -->
Reid Spencer3822ff52006-11-08 06:47:33 +00002117<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002118Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002119<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002120<h5>Syntax:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002121<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, i8 &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002122</pre>
Reid Spencer3822ff52006-11-08 06:47:33 +00002123
Chris Lattner00950542001-06-06 20:29:01 +00002124<h5>Overview:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002125<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2126operand shifted to the right a specified number of bits.</p>
2127
Chris Lattner00950542001-06-06 20:29:01 +00002128<h5>Arguments:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002129<p>The first argument to the '<tt>lshr</tt>' instruction must be an <a
Reid Spencerca86e162006-12-31 07:07:53 +00002130 href="#t_integer">integer</a> type. The second argument must be an '<tt>i8</tt>' type.</p>
Reid Spencer3822ff52006-11-08 06:47:33 +00002131
Chris Lattner00950542001-06-06 20:29:01 +00002132<h5>Semantics:</h5>
Reid Spencera5173382007-01-04 16:43:23 +00002133<p>This instruction always performs a logical shift right operation. The
2134<tt>var2</tt> most significant bits will be filled with zero bits after the
2135shift.</p>
Reid Spencer3822ff52006-11-08 06:47:33 +00002136
Chris Lattner00950542001-06-06 20:29:01 +00002137<h5>Example:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002138<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002139 &lt;result&gt; = lshr i32 4, i8 1 <i>; yields {i32}:result = 2</i>
2140 &lt;result&gt; = lshr i32 4, i8 2 <i>; yields {i32}:result = 1</i>
2141 &lt;result&gt; = lshr i8 4, i8 3 <i>; yields {i8 }:result = 0</i>
2142 &lt;result&gt; = lshr i8 -2, i8 1 <i>; yields {i8 }:result = 0x7FFFFFFF </i>
Reid Spencer3822ff52006-11-08 06:47:33 +00002143</pre>
2144</div>
2145
2146<!-- ======================================================================= -->
2147<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2148Instruction</a> </div>
2149<div class="doc_text">
2150
2151<h5>Syntax:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002152<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, i8 &lt;var2&gt; <i>; yields {ty}:result</i>
Reid Spencer3822ff52006-11-08 06:47:33 +00002153</pre>
2154
2155<h5>Overview:</h5>
2156<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2157operand shifted to the right a specified number of bits.</p>
2158
2159<h5>Arguments:</h5>
2160<p>The first argument to the '<tt>ashr</tt>' instruction must be an
2161<a href="#t_integer">integer</a> type. The second argument must be an
Reid Spencerca86e162006-12-31 07:07:53 +00002162'<tt>i8</tt>' type.</p>
Reid Spencer3822ff52006-11-08 06:47:33 +00002163
2164<h5>Semantics:</h5>
2165<p>This instruction always performs an arithmetic shift right operation,
2166regardless of whether the arguments are signed or not. The <tt>var2</tt> most
2167significant bits will be filled with the sign bit of <tt>var1</tt>.</p>
2168
2169<h5>Example:</h5>
2170<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002171 &lt;result&gt; = ashr i32 4, i8 1 <i>; yields {i32}:result = 2</i>
2172 &lt;result&gt; = ashr i32 4, i8 2 <i>; yields {i32}:result = 1</i>
2173 &lt;result&gt; = ashr i8 4, i8 3 <i>; yields {i8}:result = 0</i>
2174 &lt;result&gt; = ashr i8 -2, i8 1 <i>; yields {i8 }:result = -1</i>
Chris Lattner00950542001-06-06 20:29:01 +00002175</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002176</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002177
Chris Lattner00950542001-06-06 20:29:01 +00002178<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002179<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002180 <a name="vectorops">Vector Operations</a>
2181</div>
2182
2183<div class="doc_text">
2184
2185<p>LLVM supports several instructions to represent vector operations in a
2186target-independent manner. This instructions cover the element-access and
2187vector-specific operations needed to process vectors effectively. While LLVM
2188does directly support these vector operations, many sophisticated algorithms
2189will want to use target-specific intrinsics to take full advantage of a specific
2190target.</p>
2191
2192</div>
2193
2194<!-- _______________________________________________________________________ -->
2195<div class="doc_subsubsection">
2196 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2197</div>
2198
2199<div class="doc_text">
2200
2201<h5>Syntax:</h5>
2202
2203<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002204 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002205</pre>
2206
2207<h5>Overview:</h5>
2208
2209<p>
2210The '<tt>extractelement</tt>' instruction extracts a single scalar
2211element from a packed vector at a specified index.
2212</p>
2213
2214
2215<h5>Arguments:</h5>
2216
2217<p>
2218The first operand of an '<tt>extractelement</tt>' instruction is a
2219value of <a href="#t_packed">packed</a> type. The second operand is
2220an index indicating the position from which to extract the element.
2221The index may be a variable.</p>
2222
2223<h5>Semantics:</h5>
2224
2225<p>
2226The result is a scalar of the same type as the element type of
2227<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2228<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2229results are undefined.
2230</p>
2231
2232<h5>Example:</h5>
2233
2234<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002235 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002236</pre>
2237</div>
2238
2239
2240<!-- _______________________________________________________________________ -->
2241<div class="doc_subsubsection">
2242 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2243</div>
2244
2245<div class="doc_text">
2246
2247<h5>Syntax:</h5>
2248
2249<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002250 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002251</pre>
2252
2253<h5>Overview:</h5>
2254
2255<p>
2256The '<tt>insertelement</tt>' instruction inserts a scalar
2257element into a packed vector at a specified index.
2258</p>
2259
2260
2261<h5>Arguments:</h5>
2262
2263<p>
2264The first operand of an '<tt>insertelement</tt>' instruction is a
2265value of <a href="#t_packed">packed</a> type. The second operand is a
2266scalar value whose type must equal the element type of the first
2267operand. The third operand is an index indicating the position at
2268which to insert the value. The index may be a variable.</p>
2269
2270<h5>Semantics:</h5>
2271
2272<p>
2273The result is a packed vector of the same type as <tt>val</tt>. Its
2274element values are those of <tt>val</tt> except at position
2275<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2276exceeds the length of <tt>val</tt>, the results are undefined.
2277</p>
2278
2279<h5>Example:</h5>
2280
2281<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002282 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002283</pre>
2284</div>
2285
2286<!-- _______________________________________________________________________ -->
2287<div class="doc_subsubsection">
2288 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2289</div>
2290
2291<div class="doc_text">
2292
2293<h5>Syntax:</h5>
2294
2295<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002296 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002297</pre>
2298
2299<h5>Overview:</h5>
2300
2301<p>
2302The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2303from two input vectors, returning a vector of the same type.
2304</p>
2305
2306<h5>Arguments:</h5>
2307
2308<p>
2309The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2310with types that match each other and types that match the result of the
2311instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002312of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002313</p>
2314
2315<p>
2316The shuffle mask operand is required to be a constant vector with either
2317constant integer or undef values.
2318</p>
2319
2320<h5>Semantics:</h5>
2321
2322<p>
2323The elements of the two input vectors are numbered from left to right across
2324both of the vectors. The shuffle mask operand specifies, for each element of
2325the result vector, which element of the two input registers the result element
2326gets. The element selector may be undef (meaning "don't care") and the second
2327operand may be undef if performing a shuffle from only one vector.
2328</p>
2329
2330<h5>Example:</h5>
2331
2332<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002333 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2334 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2335 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2336 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002337</pre>
2338</div>
2339
Tanya Lattner09474292006-04-14 19:24:33 +00002340
Chris Lattner3df241e2006-04-08 23:07:04 +00002341<!-- ======================================================================= -->
2342<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002343 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002344</div>
2345
Misha Brukman9d0919f2003-11-08 01:05:38 +00002346<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002347
Chris Lattner261efe92003-11-25 01:02:51 +00002348<p>A key design point of an SSA-based representation is how it
2349represents memory. In LLVM, no memory locations are in SSA form, which
2350makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002351allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002352
Misha Brukman9d0919f2003-11-08 01:05:38 +00002353</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002354
Chris Lattner00950542001-06-06 20:29:01 +00002355<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002356<div class="doc_subsubsection">
2357 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2358</div>
2359
Misha Brukman9d0919f2003-11-08 01:05:38 +00002360<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002361
Chris Lattner00950542001-06-06 20:29:01 +00002362<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002363
2364<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002365 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002366</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002367
Chris Lattner00950542001-06-06 20:29:01 +00002368<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002369
Chris Lattner261efe92003-11-25 01:02:51 +00002370<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2371heap and returns a pointer to it.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002372
Chris Lattner00950542001-06-06 20:29:01 +00002373<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002374
2375<p>The '<tt>malloc</tt>' instruction allocates
2376<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002377bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002378appropriate type to the program. If "NumElements" is specified, it is the
2379number of elements allocated. If an alignment is specified, the value result
2380of the allocation is guaranteed to be aligned to at least that boundary. If
2381not specified, or if zero, the target can choose to align the allocation on any
2382convenient boundary.</p>
2383
Misha Brukman9d0919f2003-11-08 01:05:38 +00002384<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002385
Chris Lattner00950542001-06-06 20:29:01 +00002386<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002387
Chris Lattner261efe92003-11-25 01:02:51 +00002388<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2389a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002390
Chris Lattner2cbdc452005-11-06 08:02:57 +00002391<h5>Example:</h5>
2392
2393<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002394 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002395
Reid Spencerca86e162006-12-31 07:07:53 +00002396 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2397 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2398 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2399 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2400 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002401</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002402</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002403
Chris Lattner00950542001-06-06 20:29:01 +00002404<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002405<div class="doc_subsubsection">
2406 <a name="i_free">'<tt>free</tt>' Instruction</a>
2407</div>
2408
Misha Brukman9d0919f2003-11-08 01:05:38 +00002409<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002410
Chris Lattner00950542001-06-06 20:29:01 +00002411<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002412
2413<pre>
2414 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002415</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002416
Chris Lattner00950542001-06-06 20:29:01 +00002417<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002418
Chris Lattner261efe92003-11-25 01:02:51 +00002419<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002420memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002421
Chris Lattner00950542001-06-06 20:29:01 +00002422<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002423
Chris Lattner261efe92003-11-25 01:02:51 +00002424<p>'<tt>value</tt>' shall be a pointer value that points to a value
2425that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2426instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002427
Chris Lattner00950542001-06-06 20:29:01 +00002428<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002429
John Criswell9e2485c2004-12-10 15:51:16 +00002430<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002431after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002432
Chris Lattner00950542001-06-06 20:29:01 +00002433<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002434
2435<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002436 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2437 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002438</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002439</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002440
Chris Lattner00950542001-06-06 20:29:01 +00002441<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002442<div class="doc_subsubsection">
2443 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2444</div>
2445
Misha Brukman9d0919f2003-11-08 01:05:38 +00002446<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002447
Chris Lattner00950542001-06-06 20:29:01 +00002448<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002449
2450<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002451 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002452</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002453
Chris Lattner00950542001-06-06 20:29:01 +00002454<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002455
Chris Lattner261efe92003-11-25 01:02:51 +00002456<p>The '<tt>alloca</tt>' instruction allocates memory on the current
2457stack frame of the procedure that is live until the current function
2458returns to its caller.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002459
Chris Lattner00950542001-06-06 20:29:01 +00002460<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002461
John Criswell9e2485c2004-12-10 15:51:16 +00002462<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002463bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002464appropriate type to the program. If "NumElements" is specified, it is the
2465number of elements allocated. If an alignment is specified, the value result
2466of the allocation is guaranteed to be aligned to at least that boundary. If
2467not specified, or if zero, the target can choose to align the allocation on any
2468convenient boundary.</p>
2469
Misha Brukman9d0919f2003-11-08 01:05:38 +00002470<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002471
Chris Lattner00950542001-06-06 20:29:01 +00002472<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002473
John Criswellc1f786c2005-05-13 22:25:59 +00002474<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002475memory is automatically released when the function returns. The '<tt>alloca</tt>'
2476instruction is commonly used to represent automatic variables that must
2477have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002478 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002479instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002480
Chris Lattner00950542001-06-06 20:29:01 +00002481<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002482
2483<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002484 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2485 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2486 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2487 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002488</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002489</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002490
Chris Lattner00950542001-06-06 20:29:01 +00002491<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002492<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2493Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002495<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002496<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002497<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002498<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002499<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002500<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002501address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002502 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002503marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002504the number or order of execution of this <tt>load</tt> with other
2505volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2506instructions. </p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002507<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002508<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002509<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002510<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002511 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002512 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2513 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002514</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002515</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002516<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002517<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2518Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002519<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002520<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002521<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattnerf0651072003-09-08 18:27:49 +00002522 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002523</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002524<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002525<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002526<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002527<p>There are two arguments to the '<tt>store</tt>' instruction: a value
John Criswell0ec250c2005-10-24 16:17:18 +00002528to store and an address in which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002529operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002530operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002531optimizer is not allowed to modify the number or order of execution of
2532this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2533 href="#i_store">store</a></tt> instructions.</p>
2534<h5>Semantics:</h5>
2535<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2536at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002537<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002538<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002539 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002540 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2541 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002542</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002543</div>
2544
Chris Lattner2b7d3202002-05-06 03:03:22 +00002545<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002546<div class="doc_subsubsection">
2547 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2548</div>
2549
Misha Brukman9d0919f2003-11-08 01:05:38 +00002550<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002551<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002552<pre>
2553 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2554</pre>
2555
Chris Lattner7faa8832002-04-14 06:13:44 +00002556<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002557
2558<p>
2559The '<tt>getelementptr</tt>' instruction is used to get the address of a
2560subelement of an aggregate data structure.</p>
2561
Chris Lattner7faa8832002-04-14 06:13:44 +00002562<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002563
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002564<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002565elements of the aggregate object to index to. The actual types of the arguments
2566provided depend on the type of the first pointer argument. The
2567'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002568levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00002569structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002570into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2571be sign extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002572
Chris Lattner261efe92003-11-25 01:02:51 +00002573<p>For example, let's consider a C code fragment and how it gets
2574compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002575
2576<pre>
2577 struct RT {
2578 char A;
Reid Spencerca86e162006-12-31 07:07:53 +00002579 i32 B[10][20];
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002580 char C;
2581 };
2582 struct ST {
Reid Spencerca86e162006-12-31 07:07:53 +00002583 i32 X;
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002584 double Y;
2585 struct RT Z;
2586 };
2587
Reid Spencerca86e162006-12-31 07:07:53 +00002588 define i32 *foo(struct ST *s) {
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002589 return &amp;s[1].Z.B[5][13];
2590 }
2591</pre>
2592
Misha Brukman9d0919f2003-11-08 01:05:38 +00002593<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002594
2595<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002596 %RT = type { i8 , [10 x [20 x i32]], i8 }
2597 %ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002598
Brian Gaeke7283e7c2004-07-02 21:08:14 +00002599 implementation
2600
Reid Spencerca86e162006-12-31 07:07:53 +00002601 define i32* %foo(%ST* %s) {
Brian Gaeke7283e7c2004-07-02 21:08:14 +00002602 entry:
Reid Spencerca86e162006-12-31 07:07:53 +00002603 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2604 ret i32* %reg
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002605 }
2606</pre>
2607
Chris Lattner7faa8832002-04-14 06:13:44 +00002608<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002609
2610<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002611on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002612and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00002613<a href="#t_integer">integer</a> type but the value will always be sign extended
Reid Spencerca86e162006-12-31 07:07:53 +00002614to 64-bits. <a href="#t_struct">Structure</a> types, require <tt>i32</tt>
Reid Spencer42ddd842006-12-03 16:53:48 +00002615<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002616
Misha Brukman9d0919f2003-11-08 01:05:38 +00002617<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00002618type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002619}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00002620the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2621i8 }</tt>' type, another structure. The third index indexes into the second
2622element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002623array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00002624'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2625to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002626
Chris Lattner261efe92003-11-25 01:02:51 +00002627<p>Note that it is perfectly legal to index partially through a
2628structure, returning a pointer to an inner element. Because of this,
2629the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002630
2631<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002632 define i32* %foo(%ST* %s) {
2633 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2634 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2635 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2636 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2637 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2638 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002639 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00002640</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00002641
2642<p>Note that it is undefined to access an array out of bounds: array and
2643pointer indexes must always be within the defined bounds of the array type.
2644The one exception for this rules is zero length arrays. These arrays are
2645defined to be accessible as variable length arrays, which requires access
2646beyond the zero'th element.</p>
2647
Chris Lattner884a9702006-08-15 00:45:58 +00002648<p>The getelementptr instruction is often confusing. For some more insight
2649into how it works, see <a href="GetElementPtr.html">the getelementptr
2650FAQ</a>.</p>
2651
Chris Lattner7faa8832002-04-14 06:13:44 +00002652<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00002653
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002654<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002655 <i>; yields [12 x i8]*:aptr</i>
2656 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002657</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002658</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00002659
Chris Lattner00950542001-06-06 20:29:01 +00002660<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00002661<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002662</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002663<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00002664<p>The instructions in this category are the conversion instructions (casting)
2665which all take a single operand and a type. They perform various bit conversions
2666on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002667</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002668
Chris Lattner6536cfe2002-05-06 22:08:29 +00002669<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00002670<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002671 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2672</div>
2673<div class="doc_text">
2674
2675<h5>Syntax:</h5>
2676<pre>
2677 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2678</pre>
2679
2680<h5>Overview:</h5>
2681<p>
2682The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2683</p>
2684
2685<h5>Arguments:</h5>
2686<p>
2687The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2688be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2689and type of the result, which must be an <a href="#t_integral">integral</a>
Reid Spencerd4448792006-11-09 23:03:26 +00002690type. The bit size of <tt>value</tt> must be larger than the bit size of
2691<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002692
2693<h5>Semantics:</h5>
2694<p>
2695The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00002696and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2697larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2698It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002699
2700<h5>Example:</h5>
2701<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002702 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2703 %Y = trunc i32 123 to bool <i>; yields bool:true</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002704</pre>
2705</div>
2706
2707<!-- _______________________________________________________________________ -->
2708<div class="doc_subsubsection">
2709 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2710</div>
2711<div class="doc_text">
2712
2713<h5>Syntax:</h5>
2714<pre>
2715 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2716</pre>
2717
2718<h5>Overview:</h5>
2719<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2720<tt>ty2</tt>.</p>
2721
2722
2723<h5>Arguments:</h5>
2724<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2725<a href="#t_integral">integral</a> type, and a type to cast it to, which must
2726also be of <a href="#t_integral">integral</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002727<tt>value</tt> must be smaller than the bit size of the destination type,
2728<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002729
2730<h5>Semantics:</h5>
2731<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2732bits until it reaches the size of the destination type, <tt>ty2</tt>. When the
2733the operand and the type are the same size, no bit filling is done and the
2734cast is considered a <i>no-op cast</i> because no bits change (only the type
2735changes).</p>
2736
Reid Spencerd4448792006-11-09 23:03:26 +00002737<p>When zero extending from bool, the result will alwasy be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002738
2739<h5>Example:</h5>
2740<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002741 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2742 %Y = zext bool true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002743</pre>
2744</div>
2745
2746<!-- _______________________________________________________________________ -->
2747<div class="doc_subsubsection">
2748 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2749</div>
2750<div class="doc_text">
2751
2752<h5>Syntax:</h5>
2753<pre>
2754 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2755</pre>
2756
2757<h5>Overview:</h5>
2758<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2759
2760<h5>Arguments:</h5>
2761<p>
2762The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2763<a href="#t_integral">integral</a> type, and a type to cast it to, which must
Reid Spencerd4448792006-11-09 23:03:26 +00002764also be of <a href="#t_integral">integral</a> type. The bit size of the
2765<tt>value</tt> must be smaller than the bit size of the destination type,
2766<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002767
2768<h5>Semantics:</h5>
2769<p>
2770The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2771bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2772the type <tt>ty2</tt>. When the the operand and the type are the same size,
2773no bit filling is done and the cast is considered a <i>no-op cast</i> because
2774no bits change (only the type changes).</p>
2775
Reid Spencerd4448792006-11-09 23:03:26 +00002776<p>When sign extending from bool, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002777
2778<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002779<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002780 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
2781 %Y = sext bool true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002782</pre>
2783</div>
2784
2785<!-- _______________________________________________________________________ -->
2786<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00002787 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
2788</div>
2789
2790<div class="doc_text">
2791
2792<h5>Syntax:</h5>
2793
2794<pre>
2795 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2796</pre>
2797
2798<h5>Overview:</h5>
2799<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
2800<tt>ty2</tt>.</p>
2801
2802
2803<h5>Arguments:</h5>
2804<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
2805 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
2806cast it to. The size of <tt>value</tt> must be larger than the size of
2807<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
2808<i>no-op cast</i>.</p>
2809
2810<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002811<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
2812<a href="#t_floating">floating point</a> type to a smaller
2813<a href="#t_floating">floating point</a> type. If the value cannot fit within
2814the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00002815
2816<h5>Example:</h5>
2817<pre>
2818 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
2819 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
2820</pre>
2821</div>
2822
2823<!-- _______________________________________________________________________ -->
2824<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002825 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
2826</div>
2827<div class="doc_text">
2828
2829<h5>Syntax:</h5>
2830<pre>
2831 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2832</pre>
2833
2834<h5>Overview:</h5>
2835<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
2836floating point value.</p>
2837
2838<h5>Arguments:</h5>
2839<p>The '<tt>fpext</tt>' instruction takes a
2840<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00002841and a <a href="#t_floating">floating point</a> type to cast it to. The source
2842type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002843
2844<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002845<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
2846<a href="t_floating">floating point</a> type to a larger
2847<a href="t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
2848used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00002849<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002850
2851<h5>Example:</h5>
2852<pre>
2853 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
2854 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
2855</pre>
2856</div>
2857
2858<!-- _______________________________________________________________________ -->
2859<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002860 <a name="i_fp2uint">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002861</div>
2862<div class="doc_text">
2863
2864<h5>Syntax:</h5>
2865<pre>
2866 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2867</pre>
2868
2869<h5>Overview:</h5>
2870<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
2871unsigned integer equivalent of type <tt>ty2</tt>.
2872</p>
2873
2874<h5>Arguments:</h5>
2875<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
2876<a href="#t_floating">floating point</a> value, and a type to cast it to, which
2877must be an <a href="#t_integral">integral</a> type.</p>
2878
2879<h5>Semantics:</h5>
2880<p> The '<tt>fp2uint</tt>' instruction converts its
2881<a href="#t_floating">floating point</a> operand into the nearest (rounding
2882towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
2883the results are undefined.</p>
2884
2885<p>When converting to bool, the conversion is done as a comparison against
2886zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
2887If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
2888
2889<h5>Example:</h5>
2890<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002891 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002892 %Y = fp2uint float 1.0E+300 to bool <i>; yields bool:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002893 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002894</pre>
2895</div>
2896
2897<!-- _______________________________________________________________________ -->
2898<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002899 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002900</div>
2901<div class="doc_text">
2902
2903<h5>Syntax:</h5>
2904<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002905 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002906</pre>
2907
2908<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002909<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002910<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00002911</p>
2912
2913
Chris Lattner6536cfe2002-05-06 22:08:29 +00002914<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002915<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002916<a href="#t_floating">floating point</a> value, and a type to cast it to, which
2917must also be an <a href="#t_integral">integral</a> type.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002918
Chris Lattner6536cfe2002-05-06 22:08:29 +00002919<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002920<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002921<a href="#t_floating">floating point</a> operand into the nearest (rounding
2922towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
2923the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002924
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002925<p>When converting to bool, the conversion is done as a comparison against
2926zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
2927If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002928
Chris Lattner33ba0d92001-07-09 00:26:23 +00002929<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002930<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002931 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Reid Spencerd4448792006-11-09 23:03:26 +00002932 %Y = fptosi float 1.0E-247 to bool <i>; yields bool:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002933 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002934</pre>
2935</div>
2936
2937<!-- _______________________________________________________________________ -->
2938<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002939 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002940</div>
2941<div class="doc_text">
2942
2943<h5>Syntax:</h5>
2944<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002945 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002946</pre>
2947
2948<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002949<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002950integer and converts that value to the <tt>ty2</tt> type.</p>
2951
2952
2953<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002954<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002955<a href="#t_integral">integral</a> value, and a type to cast it to, which must
2956be a <a href="#t_floating">floating point</a> type.</p>
2957
2958<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002959<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002960integer quantity and converts it to the corresponding floating point value. If
2961the value cannot fit in the floating point value, the results are undefined.</p>
2962
2963
2964<h5>Example:</h5>
2965<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002966 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
2967 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002968</pre>
2969</div>
2970
2971<!-- _______________________________________________________________________ -->
2972<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002973 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002974</div>
2975<div class="doc_text">
2976
2977<h5>Syntax:</h5>
2978<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002979 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002980</pre>
2981
2982<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002983<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002984integer and converts that value to the <tt>ty2</tt> type.</p>
2985
2986<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002987<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002988<a href="#t_integral">integral</a> value, and a type to cast it to, which must be
2989a <a href="#t_floating">floating point</a> type.</p>
2990
2991<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002992<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002993integer quantity and converts it to the corresponding floating point value. If
2994the value cannot fit in the floating point value, the results are undefined.</p>
2995
2996<h5>Example:</h5>
2997<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002998 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
2999 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003000</pre>
3001</div>
3002
3003<!-- _______________________________________________________________________ -->
3004<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003005 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3006</div>
3007<div class="doc_text">
3008
3009<h5>Syntax:</h5>
3010<pre>
3011 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3012</pre>
3013
3014<h5>Overview:</h5>
3015<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3016the integer type <tt>ty2</tt>.</p>
3017
3018<h5>Arguments:</h5>
3019<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3020must be a <a href="t_pointer">pointer</a> value, and a type to cast it to
3021<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3022
3023<h5>Semantics:</h5>
3024<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3025<tt>ty2</tt> by interpreting the pointer value as an integer and either
3026truncating or zero extending that value to the size of the integer type. If
3027<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3028<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3029are the same size, then nothing is done (<i>no-op cast</i>).</p>
3030
3031<h5>Example:</h5>
3032<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003033 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit</i>
3034 %Y = ptrtoint i32* %x to i64 <i>; yields zero extend on 32-bit</i>
Reid Spencer72679252006-11-11 21:00:47 +00003035</pre>
3036</div>
3037
3038<!-- _______________________________________________________________________ -->
3039<div class="doc_subsubsection">
3040 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3041</div>
3042<div class="doc_text">
3043
3044<h5>Syntax:</h5>
3045<pre>
3046 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3047</pre>
3048
3049<h5>Overview:</h5>
3050<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3051a pointer type, <tt>ty2</tt>.</p>
3052
3053<h5>Arguments:</h5>
3054<p>The '<tt>inttoptr</tt>' instruction takes an <a href="i_integer">integer</a>
3055value to cast, and a type to cast it to, which must be a
3056<a href="#t_pointer">pointer</a> type. </tt>
3057
3058<h5>Semantics:</h5>
3059<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3060<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3061the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3062size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3063the size of a pointer then a zero extension is done. If they are the same size,
3064nothing is done (<i>no-op cast</i>).</p>
3065
3066<h5>Example:</h5>
3067<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003068 %X = inttoptr i32 255 to i32* <i>; yields zero extend on 64-bit</i>
3069 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit </i>
3070 %Y = inttoptr i16 0 to i32* <i>; yields zero extend on 32-bit</i>
Reid Spencer72679252006-11-11 21:00:47 +00003071</pre>
3072</div>
3073
3074<!-- _______________________________________________________________________ -->
3075<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003076 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003077</div>
3078<div class="doc_text">
3079
3080<h5>Syntax:</h5>
3081<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003082 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003083</pre>
3084
3085<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003086<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003087<tt>ty2</tt> without changing any bits.</p>
3088
3089<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003090<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003091a first class value, and a type to cast it to, which must also be a <a
3092 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3093and the destination type, <tt>ty2</tt>, must be identical.</p>
3094
3095<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003096<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003097<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3098this conversion. The conversion is done as if the <tt>value</tt> had been
3099stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3100converted to other pointer types with this instruction. To convert pointers to
3101other types, use the <a href="#i_inttoptr">inttoptr</a> or
3102<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003103
3104<h5>Example:</h5>
3105<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003106 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3107 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3108 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003109</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003110</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003111
Reid Spencer2fd21e62006-11-08 01:18:52 +00003112<!-- ======================================================================= -->
3113<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3114<div class="doc_text">
3115<p>The instructions in this category are the "miscellaneous"
3116instructions, which defy better classification.</p>
3117</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003118
3119<!-- _______________________________________________________________________ -->
3120<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3121</div>
3122<div class="doc_text">
3123<h5>Syntax:</h5>
3124<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
3125</pre>
3126<h5>Overview:</h5>
3127<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3128of its two integer operands.</p>
3129<h5>Arguments:</h5>
3130<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3131the condition code which indicates the kind of comparison to perform. It is not
3132a value, just a keyword. The possibilities for the condition code are:
3133<ol>
3134 <li><tt>eq</tt>: equal</li>
3135 <li><tt>ne</tt>: not equal </li>
3136 <li><tt>ugt</tt>: unsigned greater than</li>
3137 <li><tt>uge</tt>: unsigned greater or equal</li>
3138 <li><tt>ult</tt>: unsigned less than</li>
3139 <li><tt>ule</tt>: unsigned less or equal</li>
3140 <li><tt>sgt</tt>: signed greater than</li>
3141 <li><tt>sge</tt>: signed greater or equal</li>
3142 <li><tt>slt</tt>: signed less than</li>
3143 <li><tt>sle</tt>: signed less or equal</li>
3144</ol>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003145<p>The remaining two arguments must be <a href="#t_integral">integral</a> or
3146<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003147<h5>Semantics:</h5>
3148<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3149the condition code given as <tt>cond</tt>. The comparison performed always
3150yields a <a href="#t_bool">bool</a> result, as follows:
3151<ol>
3152 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3153 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3154 </li>
3155 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3156 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3157 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3158 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3159 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3160 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3161 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3162 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3163 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3164 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3165 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3166 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3167 <li><tt>sge</tt>: interprets the operands as signed values and yields
3168 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3169 <li><tt>slt</tt>: interprets the operands as signed values and yields
3170 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3171 <li><tt>sle</tt>: interprets the operands as signed values and yields
3172 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3173 </li>
3174</ol>
3175<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3176values are treated as integers and then compared.</p>
3177<p>If the operands are <a href="#t_packed">packed</a> typed, the elements of
Reid Spencerb7f26282006-11-19 03:00:14 +00003178the vector are compared in turn and the predicate must hold for all
3179elements.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003180
3181<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003182<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3183 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3184 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3185 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3186 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3187 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003188</pre>
3189</div>
3190
3191<!-- _______________________________________________________________________ -->
3192<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3193</div>
3194<div class="doc_text">
3195<h5>Syntax:</h5>
3196<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
3197</pre>
3198<h5>Overview:</h5>
3199<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3200of its floating point operands.</p>
3201<h5>Arguments:</h5>
3202<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3203the condition code which indicates the kind of comparison to perform. It is not
3204a value, just a keyword. The possibilities for the condition code are:
3205<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003206 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003207 <li><tt>oeq</tt>: ordered and equal</li>
3208 <li><tt>ogt</tt>: ordered and greater than </li>
3209 <li><tt>oge</tt>: ordered and greater than or equal</li>
3210 <li><tt>olt</tt>: ordered and less than </li>
3211 <li><tt>ole</tt>: ordered and less than or equal</li>
3212 <li><tt>one</tt>: ordered and not equal</li>
3213 <li><tt>ord</tt>: ordered (no nans)</li>
3214 <li><tt>ueq</tt>: unordered or equal</li>
3215 <li><tt>ugt</tt>: unordered or greater than </li>
3216 <li><tt>uge</tt>: unordered or greater than or equal</li>
3217 <li><tt>ult</tt>: unordered or less than </li>
3218 <li><tt>ule</tt>: unordered or less than or equal</li>
3219 <li><tt>une</tt>: unordered or not equal</li>
3220 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003221 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003222</ol>
Reid Spencer93a49852006-12-06 07:08:07 +00003223<p>In the preceding, <i>ordered</i> means that neither operand is a QNAN while
3224<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003225<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3226<a href="#t_floating">floating point</a> typed. They must have identical
3227types.</p>
Reid Spencerb7f26282006-11-19 03:00:14 +00003228<p>In the foregoing, <i>ordered</i> means that neither operand is a QNAN and
3229<i>unordered</i> means that either operand is a QNAN.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003230<h5>Semantics:</h5>
3231<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3232the condition code given as <tt>cond</tt>. The comparison performed always
3233yields a <a href="#t_bool">bool</a> result, as follows:
3234<ol>
3235 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003236 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003237 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003238 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003239 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003240 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003241 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003242 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003243 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003244 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003245 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003246 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003247 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003248 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3249 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003250 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003251 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003252 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003253 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003254 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003255 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003256 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003257 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003258 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003259 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003260 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003261 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003262 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3263</ol>
3264<p>If the operands are <a href="#t_packed">packed</a> typed, the elements of
3265the vector are compared in turn and the predicate must hold for all elements.
Reid Spencerb7f26282006-11-19 03:00:14 +00003266</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003267
3268<h5>Example:</h5>
3269<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3270 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3271 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3272 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3273</pre>
3274</div>
3275
Reid Spencer2fd21e62006-11-08 01:18:52 +00003276<!-- _______________________________________________________________________ -->
3277<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3278Instruction</a> </div>
3279<div class="doc_text">
3280<h5>Syntax:</h5>
3281<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3282<h5>Overview:</h5>
3283<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3284the SSA graph representing the function.</p>
3285<h5>Arguments:</h5>
3286<p>The type of the incoming values are specified with the first type
3287field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3288as arguments, with one pair for each predecessor basic block of the
3289current block. Only values of <a href="#t_firstclass">first class</a>
3290type may be used as the value arguments to the PHI node. Only labels
3291may be used as the label arguments.</p>
3292<p>There must be no non-phi instructions between the start of a basic
3293block and the PHI instructions: i.e. PHI instructions must be first in
3294a basic block.</p>
3295<h5>Semantics:</h5>
3296<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the
3297value specified by the parameter, depending on which basic block we
3298came from in the last <a href="#terminators">terminator</a> instruction.</p>
3299<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003300<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003301</div>
3302
Chris Lattnercc37aae2004-03-12 05:50:16 +00003303<!-- _______________________________________________________________________ -->
3304<div class="doc_subsubsection">
3305 <a name="i_select">'<tt>select</tt>' Instruction</a>
3306</div>
3307
3308<div class="doc_text">
3309
3310<h5>Syntax:</h5>
3311
3312<pre>
3313 &lt;result&gt; = select bool &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3314</pre>
3315
3316<h5>Overview:</h5>
3317
3318<p>
3319The '<tt>select</tt>' instruction is used to choose one value based on a
3320condition, without branching.
3321</p>
3322
3323
3324<h5>Arguments:</h5>
3325
3326<p>
3327The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3328</p>
3329
3330<h5>Semantics:</h5>
3331
3332<p>
3333If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003334value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003335</p>
3336
3337<h5>Example:</h5>
3338
3339<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003340 %X = select bool true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003341</pre>
3342</div>
3343
Robert Bocchino05ccd702006-01-15 20:48:27 +00003344
3345<!-- _______________________________________________________________________ -->
3346<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003347 <a name="i_call">'<tt>call</tt>' Instruction</a>
3348</div>
3349
Misha Brukman9d0919f2003-11-08 01:05:38 +00003350<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003351
Chris Lattner00950542001-06-06 20:29:01 +00003352<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003353<pre>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003354 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003355</pre>
3356
Chris Lattner00950542001-06-06 20:29:01 +00003357<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003358
Misha Brukman9d0919f2003-11-08 01:05:38 +00003359<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003360
Chris Lattner00950542001-06-06 20:29:01 +00003361<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003362
Misha Brukman9d0919f2003-11-08 01:05:38 +00003363<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003364
Chris Lattner6536cfe2002-05-06 22:08:29 +00003365<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003366 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003367 <p>The optional "tail" marker indicates whether the callee function accesses
3368 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003369 function call is eligible for tail call optimization. Note that calls may
3370 be marked "tail" even if they do not occur before a <a
3371 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003372 </li>
3373 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003374 <p>The optional "cconv" marker indicates which <a href="callingconv">calling
3375 convention</a> the call should use. If none is specified, the call defaults
3376 to using C calling conventions.
3377 </li>
3378 <li>
Chris Lattner2bff5242005-05-06 05:47:36 +00003379 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3380 being invoked. The argument types must match the types implied by this
John Criswellfc6b8952005-05-16 16:17:45 +00003381 signature. This type can be omitted if the function is not varargs and
3382 if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003383 </li>
3384 <li>
3385 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3386 be invoked. In most cases, this is a direct function invocation, but
3387 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003388 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003389 </li>
3390 <li>
3391 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003392 function signature argument types. All arguments must be of
3393 <a href="#t_firstclass">first class</a> type. If the function signature
3394 indicates the function accepts a variable number of arguments, the extra
3395 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003396 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003397</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003398
Chris Lattner00950542001-06-06 20:29:01 +00003399<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003400
Chris Lattner261efe92003-11-25 01:02:51 +00003401<p>The '<tt>call</tt>' instruction is used to cause control flow to
3402transfer to a specified function, with its incoming arguments bound to
3403the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3404instruction in the called function, control flow continues with the
3405instruction after the function call, and the return value of the
3406function is bound to the result argument. This is a simpler case of
3407the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003408
Chris Lattner00950542001-06-06 20:29:01 +00003409<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003410
3411<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003412 %retval = call i32 %test(i32 %argc)
3413 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3414 %X = tail call i32 %foo()
3415 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
Chris Lattner2bff5242005-05-06 05:47:36 +00003416</pre>
3417
Misha Brukman9d0919f2003-11-08 01:05:38 +00003418</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003419
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003420<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003421<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003422 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003423</div>
3424
Misha Brukman9d0919f2003-11-08 01:05:38 +00003425<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003426
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003427<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003428
3429<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003430 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003431</pre>
3432
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003433<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003434
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003435<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003436the "variable argument" area of a function call. It is used to implement the
3437<tt>va_arg</tt> macro in C.</p>
3438
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003439<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003440
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003441<p>This instruction takes a <tt>va_list*</tt> value and the type of
3442the argument. It returns a value of the specified argument type and
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003443increments the <tt>va_list</tt> to point to the next argument. Again, the
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003444actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003445
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003446<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003447
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003448<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3449type from the specified <tt>va_list</tt> and causes the
3450<tt>va_list</tt> to point to the next argument. For more information,
3451see the variable argument handling <a href="#int_varargs">Intrinsic
3452Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003453
3454<p>It is legal for this instruction to be called in a function which does not
3455take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003456function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003457
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003458<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003459href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003460argument.</p>
3461
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003462<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003463
3464<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3465
Misha Brukman9d0919f2003-11-08 01:05:38 +00003466</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003467
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003468<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003469<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3470<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003471
Misha Brukman9d0919f2003-11-08 01:05:38 +00003472<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003473
3474<p>LLVM supports the notion of an "intrinsic function". These functions have
John Criswellfc6b8952005-05-16 16:17:45 +00003475well known names and semantics and are required to follow certain
Chris Lattner33aec9e2004-02-12 17:01:32 +00003476restrictions. Overall, these instructions represent an extension mechanism for
3477the LLVM language that does not require changing all of the transformations in
3478LLVM to add to the language (or the bytecode reader/writer, the parser,
3479etc...).</p>
3480
John Criswellfc6b8952005-05-16 16:17:45 +00003481<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3482prefix is reserved in LLVM for intrinsic names; thus, functions may not be named
Chris Lattner33aec9e2004-02-12 17:01:32 +00003483this. Intrinsic functions must always be external functions: you cannot define
3484the body of intrinsic functions. Intrinsic functions may only be used in call
3485or invoke instructions: it is illegal to take the address of an intrinsic
3486function. Additionally, because intrinsic functions are part of the LLVM
3487language, it is required that they all be documented here if any are added.</p>
3488
3489
John Criswellfc6b8952005-05-16 16:17:45 +00003490<p>To learn how to add an intrinsic function, please see the <a
Chris Lattner590cff32005-05-11 03:35:57 +00003491href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003492</p>
3493
Misha Brukman9d0919f2003-11-08 01:05:38 +00003494</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003495
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003496<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003497<div class="doc_subsection">
3498 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3499</div>
3500
Misha Brukman9d0919f2003-11-08 01:05:38 +00003501<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003502
Misha Brukman9d0919f2003-11-08 01:05:38 +00003503<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003504 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003505intrinsic functions. These functions are related to the similarly
3506named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003507
Chris Lattner261efe92003-11-25 01:02:51 +00003508<p>All of these functions operate on arguments that use a
3509target-specific value type "<tt>va_list</tt>". The LLVM assembly
3510language reference manual does not define what this type is, so all
3511transformations should be prepared to handle intrinsics with any type
3512used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003513
Chris Lattner374ab302006-05-15 17:26:46 +00003514<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003515instruction and the variable argument handling intrinsic functions are
3516used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003517
Chris Lattner33aec9e2004-02-12 17:01:32 +00003518<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003519define i32 %test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00003520 ; Initialize variable argument processing
Reid Spencerca86e162006-12-31 07:07:53 +00003521 %ap = alloca i8 *
3522 call void %<a href="#i_va_start">llvm.va_start</a>(i8 ** %ap)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003523
3524 ; Read a single integer argument
Reid Spencerca86e162006-12-31 07:07:53 +00003525 %tmp = va_arg i8 ** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00003526
3527 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Reid Spencerca86e162006-12-31 07:07:53 +00003528 %aq = alloca i8 *
3529 call void %<a href="#i_va_copy">llvm.va_copy</a>(i8 ** %aq, i8 ** %ap)
3530 call void %<a href="#i_va_end">llvm.va_end</a>(i8 ** %aq)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003531
3532 ; Stop processing of arguments.
Reid Spencerca86e162006-12-31 07:07:53 +00003533 call void %<a href="#i_va_end">llvm.va_end</a>(i8 ** %ap)
3534 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00003535}
3536</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003537</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003538
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003539<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003540<div class="doc_subsubsection">
3541 <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3542</div>
3543
3544
Misha Brukman9d0919f2003-11-08 01:05:38 +00003545<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003546<h5>Syntax:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003547<pre> declare void %llvm.va_start(&lt;va_list&gt;* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003548<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003549<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3550<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3551href="#i_va_arg">va_arg</a></tt>.</p>
3552
3553<h5>Arguments:</h5>
3554
3555<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3556
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003557<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003558
3559<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3560macro available in C. In a target-dependent way, it initializes the
3561<tt>va_list</tt> element the argument points to, so that the next call to
3562<tt>va_arg</tt> will produce the first variable argument passed to the function.
3563Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3564last argument of the function, the compiler can figure that out.</p>
3565
Misha Brukman9d0919f2003-11-08 01:05:38 +00003566</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003567
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003568<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003569<div class="doc_subsubsection">
3570 <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3571</div>
3572
Misha Brukman9d0919f2003-11-08 01:05:38 +00003573<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003574<h5>Syntax:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003575<pre> declare void %llvm.va_end(&lt;va_list*&gt; &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003576<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003577<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>&lt;arglist&gt;</tt>
3578which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt>
3579or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003580<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003581<p>The argument is a <tt>va_list</tt> to destroy.</p>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003582<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003583<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003584macro available in C. In a target-dependent way, it destroys the <tt>va_list</tt>.
3585Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
3586 href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly
3587with calls to <tt>llvm.va_end</tt>.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003588</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003589
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003590<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003591<div class="doc_subsubsection">
3592 <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3593</div>
3594
Misha Brukman9d0919f2003-11-08 01:05:38 +00003595<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003596
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003597<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003598
3599<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003600 declare void %llvm.va_copy(&lt;va_list&gt;* &lt;destarglist&gt;,
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003601 &lt;va_list&gt;* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003602</pre>
3603
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003604<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003605
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003606<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
3607the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003608
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003609<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003610
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003611<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003612The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003613
Chris Lattnerd7923912004-05-23 21:06:01 +00003614
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003615<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003616
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003617<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
3618available in C. In a target-dependent way, it copies the source
3619<tt>va_list</tt> element into the destination list. This intrinsic is necessary
3620because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
Chris Lattnerd7923912004-05-23 21:06:01 +00003621arbitrarily complex and require memory allocation, for example.</p>
3622
Misha Brukman9d0919f2003-11-08 01:05:38 +00003623</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003624
Chris Lattner33aec9e2004-02-12 17:01:32 +00003625<!-- ======================================================================= -->
3626<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00003627 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3628</div>
3629
3630<div class="doc_text">
3631
3632<p>
3633LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3634Collection</a> requires the implementation and generation of these intrinsics.
3635These intrinsics allow identification of <a href="#i_gcroot">GC roots on the
3636stack</a>, as well as garbage collector implementations that require <a
3637href="#i_gcread">read</a> and <a href="#i_gcwrite">write</a> barriers.
3638Front-ends for type-safe garbage collected languages should generate these
3639intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3640href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3641</p>
3642</div>
3643
3644<!-- _______________________________________________________________________ -->
3645<div class="doc_subsubsection">
3646 <a name="i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3647</div>
3648
3649<div class="doc_text">
3650
3651<h5>Syntax:</h5>
3652
3653<pre>
Reid Spencera8d451e2005-04-26 20:50:44 +00003654 declare void %llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00003655</pre>
3656
3657<h5>Overview:</h5>
3658
John Criswell9e2485c2004-12-10 15:51:16 +00003659<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00003660the code generator, and allows some metadata to be associated with it.</p>
3661
3662<h5>Arguments:</h5>
3663
3664<p>The first argument specifies the address of a stack object that contains the
3665root pointer. The second pointer (which must be either a constant or a global
3666value address) contains the meta-data to be associated with the root.</p>
3667
3668<h5>Semantics:</h5>
3669
3670<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3671location. At compile-time, the code generator generates information to allow
3672the runtime to find the pointer at GC safe points.
3673</p>
3674
3675</div>
3676
3677
3678<!-- _______________________________________________________________________ -->
3679<div class="doc_subsubsection">
3680 <a name="i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3681</div>
3682
3683<div class="doc_text">
3684
3685<h5>Syntax:</h5>
3686
3687<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003688 declare i8 * %llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00003689</pre>
3690
3691<h5>Overview:</h5>
3692
3693<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3694locations, allowing garbage collector implementations that require read
3695barriers.</p>
3696
3697<h5>Arguments:</h5>
3698
Chris Lattner80626e92006-03-14 20:02:51 +00003699<p>The second argument is the address to read from, which should be an address
3700allocated from the garbage collector. The first object is a pointer to the
3701start of the referenced object, if needed by the language runtime (otherwise
3702null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003703
3704<h5>Semantics:</h5>
3705
3706<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3707instruction, but may be replaced with substantially more complex code by the
3708garbage collector runtime, as needed.</p>
3709
3710</div>
3711
3712
3713<!-- _______________________________________________________________________ -->
3714<div class="doc_subsubsection">
3715 <a name="i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3716</div>
3717
3718<div class="doc_text">
3719
3720<h5>Syntax:</h5>
3721
3722<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003723 declare void %llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00003724</pre>
3725
3726<h5>Overview:</h5>
3727
3728<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3729locations, allowing garbage collector implementations that require write
3730barriers (such as generational or reference counting collectors).</p>
3731
3732<h5>Arguments:</h5>
3733
Chris Lattner80626e92006-03-14 20:02:51 +00003734<p>The first argument is the reference to store, the second is the start of the
3735object to store it to, and the third is the address of the field of Obj to
3736store to. If the runtime does not require a pointer to the object, Obj may be
3737null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003738
3739<h5>Semantics:</h5>
3740
3741<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3742instruction, but may be replaced with substantially more complex code by the
3743garbage collector runtime, as needed.</p>
3744
3745</div>
3746
3747
3748
3749<!-- ======================================================================= -->
3750<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00003751 <a name="int_codegen">Code Generator Intrinsics</a>
3752</div>
3753
3754<div class="doc_text">
3755<p>
3756These intrinsics are provided by LLVM to expose special features that may only
3757be implemented with code generator support.
3758</p>
3759
3760</div>
3761
3762<!-- _______________________________________________________________________ -->
3763<div class="doc_subsubsection">
3764 <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
3765</div>
3766
3767<div class="doc_text">
3768
3769<h5>Syntax:</h5>
3770<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003771 declare i8 *%llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003772</pre>
3773
3774<h5>Overview:</h5>
3775
3776<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003777The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
3778target-specific value indicating the return address of the current function
3779or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00003780</p>
3781
3782<h5>Arguments:</h5>
3783
3784<p>
3785The argument to this intrinsic indicates which function to return the address
3786for. Zero indicates the calling function, one indicates its caller, etc. The
3787argument is <b>required</b> to be a constant integer value.
3788</p>
3789
3790<h5>Semantics:</h5>
3791
3792<p>
3793The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
3794the return address of the specified call frame, or zero if it cannot be
3795identified. The value returned by this intrinsic is likely to be incorrect or 0
3796for arguments other than zero, so it should only be used for debugging purposes.
3797</p>
3798
3799<p>
3800Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003801aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003802source-language caller.
3803</p>
3804</div>
3805
3806
3807<!-- _______________________________________________________________________ -->
3808<div class="doc_subsubsection">
3809 <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
3810</div>
3811
3812<div class="doc_text">
3813
3814<h5>Syntax:</h5>
3815<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003816 declare i8 *%llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003817</pre>
3818
3819<h5>Overview:</h5>
3820
3821<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003822The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
3823target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00003824</p>
3825
3826<h5>Arguments:</h5>
3827
3828<p>
3829The argument to this intrinsic indicates which function to return the frame
3830pointer for. Zero indicates the calling function, one indicates its caller,
3831etc. The argument is <b>required</b> to be a constant integer value.
3832</p>
3833
3834<h5>Semantics:</h5>
3835
3836<p>
3837The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
3838the frame address of the specified call frame, or zero if it cannot be
3839identified. The value returned by this intrinsic is likely to be incorrect or 0
3840for arguments other than zero, so it should only be used for debugging purposes.
3841</p>
3842
3843<p>
3844Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003845aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003846source-language caller.
3847</p>
3848</div>
3849
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003850<!-- _______________________________________________________________________ -->
3851<div class="doc_subsubsection">
Chris Lattner57e1f392006-01-13 02:03:13 +00003852 <a name="i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
3853</div>
3854
3855<div class="doc_text">
3856
3857<h5>Syntax:</h5>
3858<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003859 declare i8 *%llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00003860</pre>
3861
3862<h5>Overview:</h5>
3863
3864<p>
3865The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
3866the function stack, for use with <a href="#i_stackrestore">
3867<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
3868features like scoped automatic variable sized arrays in C99.
3869</p>
3870
3871<h5>Semantics:</h5>
3872
3873<p>
3874This intrinsic returns a opaque pointer value that can be passed to <a
3875href="#i_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
3876<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
3877<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
3878state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
3879practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
3880that were allocated after the <tt>llvm.stacksave</tt> was executed.
3881</p>
3882
3883</div>
3884
3885<!-- _______________________________________________________________________ -->
3886<div class="doc_subsubsection">
3887 <a name="i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
3888</div>
3889
3890<div class="doc_text">
3891
3892<h5>Syntax:</h5>
3893<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003894 declare void %llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00003895</pre>
3896
3897<h5>Overview:</h5>
3898
3899<p>
3900The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
3901the function stack to the state it was in when the corresponding <a
3902href="#llvm.stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
3903useful for implementing language features like scoped automatic variable sized
3904arrays in C99.
3905</p>
3906
3907<h5>Semantics:</h5>
3908
3909<p>
3910See the description for <a href="#i_stacksave"><tt>llvm.stacksave</tt></a>.
3911</p>
3912
3913</div>
3914
3915
3916<!-- _______________________________________________________________________ -->
3917<div class="doc_subsubsection">
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003918 <a name="i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
3919</div>
3920
3921<div class="doc_text">
3922
3923<h5>Syntax:</h5>
3924<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003925 declare void %llvm.prefetch(i8 * &lt;address&gt;,
3926 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003927</pre>
3928
3929<h5>Overview:</h5>
3930
3931
3932<p>
3933The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00003934a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
3935no
3936effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00003937characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003938</p>
3939
3940<h5>Arguments:</h5>
3941
3942<p>
3943<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
3944determining if the fetch should be for a read (0) or write (1), and
3945<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00003946locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003947<tt>locality</tt> arguments must be constant integers.
3948</p>
3949
3950<h5>Semantics:</h5>
3951
3952<p>
3953This intrinsic does not modify the behavior of the program. In particular,
3954prefetches cannot trap and do not produce a value. On targets that support this
3955intrinsic, the prefetch can provide hints to the processor cache for better
3956performance.
3957</p>
3958
3959</div>
3960
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003961<!-- _______________________________________________________________________ -->
3962<div class="doc_subsubsection">
3963 <a name="i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
3964</div>
3965
3966<div class="doc_text">
3967
3968<h5>Syntax:</h5>
3969<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003970 declare void %llvm.pcmarker( i32 &lt;id&gt; )
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003971</pre>
3972
3973<h5>Overview:</h5>
3974
3975
3976<p>
John Criswellfc6b8952005-05-16 16:17:45 +00003977The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
3978(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003979code to simulators and other tools. The method is target specific, but it is
3980expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003981The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00003982after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00003983optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00003984correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003985</p>
3986
3987<h5>Arguments:</h5>
3988
3989<p>
3990<tt>id</tt> is a numerical id identifying the marker.
3991</p>
3992
3993<h5>Semantics:</h5>
3994
3995<p>
3996This intrinsic does not modify the behavior of the program. Backends that do not
3997support this intrinisic may ignore it.
3998</p>
3999
4000</div>
4001
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004002<!-- _______________________________________________________________________ -->
4003<div class="doc_subsubsection">
4004 <a name="i_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4005</div>
4006
4007<div class="doc_text">
4008
4009<h5>Syntax:</h5>
4010<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004011 declare i64 %llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004012</pre>
4013
4014<h5>Overview:</h5>
4015
4016
4017<p>
4018The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4019counter register (or similar low latency, high accuracy clocks) on those targets
4020that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4021As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4022should only be used for small timings.
4023</p>
4024
4025<h5>Semantics:</h5>
4026
4027<p>
4028When directly supported, reading the cycle counter should not modify any memory.
4029Implementations are allowed to either return a application specific value or a
4030system wide value. On backends without support, this is lowered to a constant 0.
4031</p>
4032
4033</div>
4034
Chris Lattner10610642004-02-14 04:08:35 +00004035<!-- ======================================================================= -->
4036<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004037 <a name="int_libc">Standard C Library Intrinsics</a>
4038</div>
4039
4040<div class="doc_text">
4041<p>
Chris Lattner10610642004-02-14 04:08:35 +00004042LLVM provides intrinsics for a few important standard C library functions.
4043These intrinsics allow source-language front-ends to pass information about the
4044alignment of the pointer arguments to the code generator, providing opportunity
4045for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004046</p>
4047
4048</div>
4049
4050<!-- _______________________________________________________________________ -->
4051<div class="doc_subsubsection">
4052 <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4053</div>
4054
4055<div class="doc_text">
4056
4057<h5>Syntax:</h5>
4058<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004059 declare void %llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4060 i32 &lt;len&gt;, i32 &lt;align&gt;)
4061 declare void %llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4062 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004063</pre>
4064
4065<h5>Overview:</h5>
4066
4067<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004068The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004069location to the destination location.
4070</p>
4071
4072<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004073Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4074intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004075</p>
4076
4077<h5>Arguments:</h5>
4078
4079<p>
4080The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004081the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004082specifying the number of bytes to copy, and the fourth argument is the alignment
4083of the source and destination locations.
4084</p>
4085
Chris Lattner3301ced2004-02-12 21:18:15 +00004086<p>
4087If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004088the caller guarantees that both the source and destination pointers are aligned
4089to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004090</p>
4091
Chris Lattner33aec9e2004-02-12 17:01:32 +00004092<h5>Semantics:</h5>
4093
4094<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004095The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004096location to the destination location, which are not allowed to overlap. It
4097copies "len" bytes of memory over. If the argument is known to be aligned to
4098some boundary, this can be specified as the fourth argument, otherwise it should
4099be set to 0 or 1.
4100</p>
4101</div>
4102
4103
Chris Lattner0eb51b42004-02-12 18:10:10 +00004104<!-- _______________________________________________________________________ -->
4105<div class="doc_subsubsection">
4106 <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4107</div>
4108
4109<div class="doc_text">
4110
4111<h5>Syntax:</h5>
4112<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004113 declare void %llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4114 i32 &lt;len&gt;, i32 &lt;align&gt;)
4115 declare void %llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4116 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004117</pre>
4118
4119<h5>Overview:</h5>
4120
4121<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004122The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4123location to the destination location. It is similar to the
4124'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004125</p>
4126
4127<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004128Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4129intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004130</p>
4131
4132<h5>Arguments:</h5>
4133
4134<p>
4135The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004136the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004137specifying the number of bytes to copy, and the fourth argument is the alignment
4138of the source and destination locations.
4139</p>
4140
Chris Lattner3301ced2004-02-12 21:18:15 +00004141<p>
4142If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004143the caller guarantees that the source and destination pointers are aligned to
4144that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004145</p>
4146
Chris Lattner0eb51b42004-02-12 18:10:10 +00004147<h5>Semantics:</h5>
4148
4149<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004150The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004151location to the destination location, which may overlap. It
4152copies "len" bytes of memory over. If the argument is known to be aligned to
4153some boundary, this can be specified as the fourth argument, otherwise it should
4154be set to 0 or 1.
4155</p>
4156</div>
4157
Chris Lattner8ff75902004-01-06 05:31:32 +00004158
Chris Lattner10610642004-02-14 04:08:35 +00004159<!-- _______________________________________________________________________ -->
4160<div class="doc_subsubsection">
Chris Lattner5b310c32006-03-03 00:07:20 +00004161 <a name="i_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004162</div>
4163
4164<div class="doc_text">
4165
4166<h5>Syntax:</h5>
4167<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004168 declare void %llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4169 i32 &lt;len&gt;, i32 &lt;align&gt;)
4170 declare void %llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4171 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004172</pre>
4173
4174<h5>Overview:</h5>
4175
4176<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004177The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004178byte value.
4179</p>
4180
4181<p>
4182Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4183does not return a value, and takes an extra alignment argument.
4184</p>
4185
4186<h5>Arguments:</h5>
4187
4188<p>
4189The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004190byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004191argument specifying the number of bytes to fill, and the fourth argument is the
4192known alignment of destination location.
4193</p>
4194
4195<p>
4196If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004197the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004198</p>
4199
4200<h5>Semantics:</h5>
4201
4202<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004203The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4204the
Chris Lattner10610642004-02-14 04:08:35 +00004205destination location. If the argument is known to be aligned to some boundary,
4206this can be specified as the fourth argument, otherwise it should be set to 0 or
42071.
4208</p>
4209</div>
4210
4211
Chris Lattner32006282004-06-11 02:28:03 +00004212<!-- _______________________________________________________________________ -->
4213<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004214 <a name="i_isunordered">'<tt>llvm.isunordered.*</tt>' Intrinsic</a>
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004215</div>
4216
4217<div class="doc_text">
4218
4219<h5>Syntax:</h5>
4220<pre>
Reid Spencer0b118202006-01-16 21:12:35 +00004221 declare bool %llvm.isunordered.f32(float Val1, float Val2)
4222 declare bool %llvm.isunordered.f64(double Val1, double Val2)
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004223</pre>
4224
4225<h5>Overview:</h5>
4226
4227<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004228The '<tt>llvm.isunordered</tt>' intrinsics return true if either or both of the
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004229specified floating point values is a NAN.
4230</p>
4231
4232<h5>Arguments:</h5>
4233
4234<p>
4235The arguments are floating point numbers of the same type.
4236</p>
4237
4238<h5>Semantics:</h5>
4239
4240<p>
4241If either or both of the arguments is a SNAN or QNAN, it returns true, otherwise
4242false.
4243</p>
4244</div>
4245
4246
Chris Lattnera4d74142005-07-21 01:29:16 +00004247<!-- _______________________________________________________________________ -->
4248<div class="doc_subsubsection">
Chris Lattnerec6cb612006-01-16 22:38:59 +00004249 <a name="i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004250</div>
4251
4252<div class="doc_text">
4253
4254<h5>Syntax:</h5>
4255<pre>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004256 declare float %llvm.sqrt.f32(float %Val)
4257 declare double %llvm.sqrt.f64(double %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004258</pre>
4259
4260<h5>Overview:</h5>
4261
4262<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004263The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattnera4d74142005-07-21 01:29:16 +00004264returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4265<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4266negative numbers (which allows for better optimization).
4267</p>
4268
4269<h5>Arguments:</h5>
4270
4271<p>
4272The argument and return value are floating point numbers of the same type.
4273</p>
4274
4275<h5>Semantics:</h5>
4276
4277<p>
4278This function returns the sqrt of the specified operand if it is a positive
4279floating point number.
4280</p>
4281</div>
4282
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004283<!-- _______________________________________________________________________ -->
4284<div class="doc_subsubsection">
4285 <a name="i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4286</div>
4287
4288<div class="doc_text">
4289
4290<h5>Syntax:</h5>
4291<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004292 declare float %llvm.powi.f32(float %Val, i32 %power)
4293 declare double %llvm.powi.f64(double %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004294</pre>
4295
4296<h5>Overview:</h5>
4297
4298<p>
4299The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4300specified (positive or negative) power. The order of evaluation of
4301multiplications is not defined.
4302</p>
4303
4304<h5>Arguments:</h5>
4305
4306<p>
4307The second argument is an integer power, and the first is a value to raise to
4308that power.
4309</p>
4310
4311<h5>Semantics:</h5>
4312
4313<p>
4314This function returns the first value raised to the second power with an
4315unspecified sequence of rounding operations.</p>
4316</div>
4317
4318
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004319<!-- ======================================================================= -->
4320<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004321 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004322</div>
4323
4324<div class="doc_text">
4325<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004326LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004327These allow efficient code generation for some algorithms.
4328</p>
4329
4330</div>
4331
4332<!-- _______________________________________________________________________ -->
4333<div class="doc_subsubsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004334 <a name="i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4335</div>
4336
4337<div class="doc_text">
4338
4339<h5>Syntax:</h5>
4340<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004341 declare i16 %llvm.bswap.i16(i16 &lt;id&gt;)
4342 declare i32 %llvm.bswap.i32(i32 &lt;id&gt;)
4343 declare i64 %llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004344</pre>
4345
4346<h5>Overview:</h5>
4347
4348<p>
4349The '<tt>llvm.bwsap</tt>' family of intrinsics is used to byteswap a 16, 32 or
435064 bit quantity. These are useful for performing operations on data that is not
4351in the target's native byte order.
4352</p>
4353
4354<h5>Semantics:</h5>
4355
4356<p>
Reid Spencerca86e162006-12-31 07:07:53 +00004357The <tt>llvm.bswap.16</tt> intrinsic returns an i16 value that has the high
4358and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4359intrinsic returns an i32 value that has the four bytes of the input i32
4360swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4361i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i64</tt>
4362intrinsic extends this concept to 64 bits.
Nate Begeman7e36c472006-01-13 23:26:38 +00004363</p>
4364
4365</div>
4366
4367<!-- _______________________________________________________________________ -->
4368<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004369 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004370</div>
4371
4372<div class="doc_text">
4373
4374<h5>Syntax:</h5>
4375<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004376 declare i8 %llvm.ctpop.i8 (i8 &lt;src&gt;)
4377 declare i16 %llvm.ctpop.i16(i16 &lt;src&gt;)
4378 declare i32 %llvm.ctpop.i32(i32 &lt;src&gt;)
4379 declare i64 %llvm.ctpop.i64(i64 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004380</pre>
4381
4382<h5>Overview:</h5>
4383
4384<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004385The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4386value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004387</p>
4388
4389<h5>Arguments:</h5>
4390
4391<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004392The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004393integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004394</p>
4395
4396<h5>Semantics:</h5>
4397
4398<p>
4399The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4400</p>
4401</div>
4402
4403<!-- _______________________________________________________________________ -->
4404<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004405 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004406</div>
4407
4408<div class="doc_text">
4409
4410<h5>Syntax:</h5>
4411<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004412 declare i8 %llvm.ctlz.i8 (i8 &lt;src&gt;)
4413 declare i16 %llvm.ctlz.i16(i16 &lt;src&gt;)
4414 declare i32 %llvm.ctlz.i32(i32 &lt;src&gt;)
4415 declare i64 %llvm.ctlz.i64(i64 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004416</pre>
4417
4418<h5>Overview:</h5>
4419
4420<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004421The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4422leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004423</p>
4424
4425<h5>Arguments:</h5>
4426
4427<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004428The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004429integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004430</p>
4431
4432<h5>Semantics:</h5>
4433
4434<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004435The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4436in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00004437of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004438</p>
4439</div>
Chris Lattner32006282004-06-11 02:28:03 +00004440
4441
Chris Lattnereff29ab2005-05-15 19:39:26 +00004442
4443<!-- _______________________________________________________________________ -->
4444<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004445 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004446</div>
4447
4448<div class="doc_text">
4449
4450<h5>Syntax:</h5>
4451<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004452 declare i8 %llvm.cttz.i8 (i8 &lt;src&gt;)
4453 declare i16 %llvm.cttz.i16(i16 &lt;src&gt;)
4454 declare i32 %llvm.cttz.i32(i32 &lt;src&gt;)
4455 declare i64 %llvm.cttz.i64(i64 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004456</pre>
4457
4458<h5>Overview:</h5>
4459
4460<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004461The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4462trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004463</p>
4464
4465<h5>Arguments:</h5>
4466
4467<p>
4468The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004469integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004470</p>
4471
4472<h5>Semantics:</h5>
4473
4474<p>
4475The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4476in a variable. If the src == 0 then the result is the size in bits of the type
4477of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4478</p>
4479</div>
4480
Chris Lattner8ff75902004-01-06 05:31:32 +00004481<!-- ======================================================================= -->
4482<div class="doc_subsection">
4483 <a name="int_debugger">Debugger Intrinsics</a>
4484</div>
4485
4486<div class="doc_text">
4487<p>
4488The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4489are described in the <a
4490href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4491Debugging</a> document.
4492</p>
4493</div>
4494
4495
Chris Lattner00950542001-06-06 20:29:01 +00004496<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00004497<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004498<address>
4499 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4500 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4501 <a href="http://validator.w3.org/check/referer"><img
4502 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4503
4504 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00004505 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004506 Last modified: $Date$
4507</address>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004508</body>
4509</html>