blob: 8e010c39918d0408094ff9dce69cba711c8378a6 [file] [log] [blame]
Nate Begeman1d9d7422005-10-18 00:28:58 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman21e463b2005-10-16 05:39:50 +000010// This file implements the PPCISelLowering class.
Chris Lattner7c5a3d32005-08-16 17:14:42 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner16e71f22005-10-14 23:59:06 +000014#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
Chris Lattner59138102006-04-17 05:28:54 +000016#include "PPCPerfectShuffle.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000017#include "llvm/ADT/VectorExtras.h"
Evan Chengc4c62572006-03-13 23:20:37 +000018#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner8a2d3ca2005-08-26 21:23:58 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000022#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner7b738342005-09-13 19:33:40 +000023#include "llvm/CodeGen/SSARegMap.h"
Chris Lattner0b1e4e52005-08-26 17:36:52 +000024#include "llvm/Constants.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000025#include "llvm/Function.h"
Chris Lattner6d92cad2006-03-26 10:06:40 +000026#include "llvm/Intrinsics.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000027#include "llvm/Support/MathExtras.h"
Evan Chengd2ee2182006-02-18 00:08:58 +000028#include "llvm/Target/TargetOptions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000029using namespace llvm;
30
Nate Begeman21e463b2005-10-16 05:39:50 +000031PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
Chris Lattner7c5a3d32005-08-16 17:14:42 +000032 : TargetLowering(TM) {
33
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
Nate Begeman405e3ec2005-10-21 00:02:42 +000036 setPow2DivIsCheap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +000037
Chris Lattnerd145a612005-09-27 22:18:25 +000038 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
40
Chris Lattner7c5a3d32005-08-16 17:14:42 +000041 // Set up the register classes.
Nate Begeman1d9d7422005-10-18 00:28:58 +000042 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000045
Chris Lattnera54aa942006-01-29 06:26:08 +000046 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
Chris Lattner7c5a3d32005-08-16 17:14:42 +000049 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
61
62 // We don't support sin/cos/sqrt/fmod
63 setOperationAction(ISD::FSIN , MVT::f64, Expand);
64 setOperationAction(ISD::FCOS , MVT::f64, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000065 setOperationAction(ISD::FREM , MVT::f64, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000066 setOperationAction(ISD::FSIN , MVT::f32, Expand);
67 setOperationAction(ISD::FCOS , MVT::f32, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000068 setOperationAction(ISD::FREM , MVT::f32, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000069
70 // If we're enabling GP optimizations, use hardware square root
Chris Lattner1e9de3e2005-09-02 18:33:05 +000071 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +000072 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
74 }
75
Chris Lattner9601a862006-03-05 05:08:37 +000076 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
78
Nate Begemand88fc032006-01-14 03:14:10 +000079 // PowerPC does not have BSWAP, CTPOP or CTTZ
80 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000081 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
82 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
83
Nate Begeman35ef9132006-01-11 21:21:00 +000084 // PowerPC does not have ROTR
85 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
86
Chris Lattner7c5a3d32005-08-16 17:14:42 +000087 // PowerPC does not have Select
88 setOperationAction(ISD::SELECT, MVT::i32, Expand);
89 setOperationAction(ISD::SELECT, MVT::f32, Expand);
90 setOperationAction(ISD::SELECT, MVT::f64, Expand);
Chris Lattnere4bc9ea2005-08-26 00:52:45 +000091
Chris Lattner0b1e4e52005-08-26 17:36:52 +000092 // PowerPC wants to turn select_cc of FP into fsel when possible.
93 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
Nate Begeman44775902006-01-31 08:17:29 +000095
Nate Begeman750ac1b2006-02-01 07:19:44 +000096 // PowerPC wants to optimize integer setcc a bit
Nate Begeman44775902006-01-31 08:17:29 +000097 setOperationAction(ISD::SETCC, MVT::i32, Custom);
Chris Lattnereb9b62e2005-08-31 19:09:57 +000098
Nate Begeman81e80972006-03-17 01:40:33 +000099 // PowerPC does not have BRCOND which requires SetCC
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000101
Chris Lattnerf7605322005-08-31 21:09:52 +0000102 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000104
Jim Laskeyad23c9d2005-08-17 00:40:22 +0000105 // PowerPC does not have [U|S]INT_TO_FP
106 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
108
Chris Lattner53e88452005-12-23 05:13:35 +0000109 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
111
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000112 // PowerPC does not have truncstore for i1.
113 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
Chris Lattnerf73bae12005-11-29 06:16:21 +0000114
Chris Lattner25b8b8c2006-04-28 21:56:10 +0000115 // We cannot sextinreg(i1). Expand to shifts.
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
117
118
Jim Laskeyabf6d172006-01-05 01:25:28 +0000119 // Support label based line numbers.
Chris Lattnerf73bae12005-11-29 06:16:21 +0000120 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Jim Laskeye0bce712006-01-05 01:47:43 +0000121 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Jim Laskeyabf6d172006-01-05 01:25:28 +0000122 // FIXME - use subtarget debug flags
Jim Laskeye0bce712006-01-05 01:47:43 +0000123 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
Jim Laskeyabf6d172006-01-05 01:25:28 +0000124 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000125
Nate Begeman28a6b022005-12-10 02:36:00 +0000126 // We want to legalize GlobalAddress and ConstantPool nodes into the
127 // appropriate instructions to materialize the address.
Chris Lattner3eef4e32005-11-17 18:26:56 +0000128 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
Nate Begeman28a6b022005-12-10 02:36:00 +0000129 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
Nate Begeman37efe672006-04-22 18:53:45 +0000130 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
Chris Lattnerb99329e2006-01-13 02:42:53 +0000131
Nate Begemanee625572006-01-27 21:09:22 +0000132 // RET must be custom lowered, to meet ABI requirements
133 setOperationAction(ISD::RET , MVT::Other, Custom);
134
Nate Begemanacc398c2006-01-25 18:21:52 +0000135 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
136 setOperationAction(ISD::VASTART , MVT::Other, Custom);
137
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000138 // Use the default implementation.
Nate Begemanacc398c2006-01-25 18:21:52 +0000139 setOperationAction(ISD::VAARG , MVT::Other, Expand);
140 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
141 setOperationAction(ISD::VAEND , MVT::Other, Expand);
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000142 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
143 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
Chris Lattner860e8862005-11-17 07:30:41 +0000145
Chris Lattner6d92cad2006-03-26 10:06:40 +0000146 // We want to custom lower some of our intrinsics.
Chris Lattner48b61a72006-03-28 00:40:33 +0000147 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Chris Lattner6d92cad2006-03-26 10:06:40 +0000148
Nate Begemanc09eeec2005-09-06 22:03:27 +0000149 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Nate Begeman1d9d7422005-10-18 00:28:58 +0000150 // They also have instructions for converting between i64 and fp.
Nate Begemanc09eeec2005-09-06 22:03:27 +0000151 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
152 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
Chris Lattner7fbcef72006-03-24 07:53:47 +0000153
154 // FIXME: disable this lowered code. This generates 64-bit register values,
155 // and we don't model the fact that the top part is clobbered by calls. We
156 // need to flag these together so that the value isn't live across a call.
157 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
158
Nate Begemanae749a92005-10-25 23:48:36 +0000159 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
160 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
161 } else {
Chris Lattner860e8862005-11-17 07:30:41 +0000162 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
Nate Begemanae749a92005-10-25 23:48:36 +0000163 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
Nate Begeman9d2b8172005-10-18 00:56:42 +0000164 }
165
166 if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
167 // 64 bit PowerPC implementations can support i64 types directly
168 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000169 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
170 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000171 } else {
172 // 32 bit PowerPC wants to expand i64 shifts itself.
173 setOperationAction(ISD::SHL, MVT::i64, Custom);
174 setOperationAction(ISD::SRL, MVT::i64, Custom);
175 setOperationAction(ISD::SRA, MVT::i64, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000176 }
Evan Chengd30bf012006-03-01 01:11:20 +0000177
Nate Begeman425a9692005-11-29 08:17:20 +0000178 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000179 // First set operation action for all vector types to expand. Then we
180 // will selectively turn on ones that can be effectively codegen'd.
181 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
182 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000183 // add/sub are legal for all supported vector VT's.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000184 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
185 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000186
Chris Lattner7ff7e672006-04-04 17:25:31 +0000187 // We promote all shuffles to v16i8.
188 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000189 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
190
191 // We promote all non-typed operations to v4i32.
192 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
193 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
194 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
195 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
196 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
197 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
198 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
199 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
200 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
201 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
202 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
203 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000204
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000205 // No other operations are legal.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000206 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
207 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
208 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
209 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
210 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
211 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
212 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
213 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattner01cae072006-04-03 23:55:43 +0000214
215 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000216 }
217
Chris Lattner7ff7e672006-04-04 17:25:31 +0000218 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
219 // with merges, splats, etc.
220 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
221
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000222 setOperationAction(ISD::AND , MVT::v4i32, Legal);
223 setOperationAction(ISD::OR , MVT::v4i32, Legal);
224 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
225 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
226 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
227 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
228
Nate Begeman425a9692005-11-29 08:17:20 +0000229 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
Nate Begeman7fd1edd2005-12-19 23:25:09 +0000230 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
Chris Lattner8d052bc2006-03-25 07:39:07 +0000231 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
232 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
Chris Lattnerec4a0c72006-01-29 06:32:58 +0000233
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000234 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
Chris Lattnere7c768e2006-04-18 03:24:30 +0000235 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
Chris Lattner72dd9bd2006-04-18 03:43:48 +0000236 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
Chris Lattner19a81522006-04-18 03:57:35 +0000237 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000238
Chris Lattnerb2177b92006-03-19 06:55:52 +0000239 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
240 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000241
Chris Lattner541f91b2006-04-02 00:43:36 +0000242 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
243 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000244 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
245 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
Nate Begeman425a9692005-11-29 08:17:20 +0000246 }
247
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000248 setSetCCResultContents(ZeroOrOneSetCCResult);
Chris Lattnercadd7422006-01-13 17:52:03 +0000249 setStackPointerRegisterToSaveRestore(PPC::R1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000250
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000251 // We have target-specific dag combine patterns for the following nodes:
252 setTargetDAGCombine(ISD::SINT_TO_FP);
Chris Lattner51269842006-03-01 05:50:56 +0000253 setTargetDAGCombine(ISD::STORE);
Chris Lattner90564f22006-04-18 17:59:36 +0000254 setTargetDAGCombine(ISD::BR_CC);
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000255
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000256 computeRegisterProperties();
257}
258
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000259const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
260 switch (Opcode) {
261 default: return 0;
262 case PPCISD::FSEL: return "PPCISD::FSEL";
263 case PPCISD::FCFID: return "PPCISD::FCFID";
264 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
265 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
Chris Lattner51269842006-03-01 05:50:56 +0000266 case PPCISD::STFIWX: return "PPCISD::STFIWX";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000267 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
268 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000269 case PPCISD::VPERM: return "PPCISD::VPERM";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000270 case PPCISD::Hi: return "PPCISD::Hi";
271 case PPCISD::Lo: return "PPCISD::Lo";
272 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
273 case PPCISD::SRL: return "PPCISD::SRL";
274 case PPCISD::SRA: return "PPCISD::SRA";
275 case PPCISD::SHL: return "PPCISD::SHL";
Chris Lattnerecfe55e2006-03-22 05:30:33 +0000276 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
277 case PPCISD::STD_32: return "PPCISD::STD_32";
Chris Lattnere00ebf02006-01-28 07:33:03 +0000278 case PPCISD::CALL: return "PPCISD::CALL";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000279 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000280 case PPCISD::MFCR: return "PPCISD::MFCR";
Chris Lattnera17b1552006-03-31 05:13:27 +0000281 case PPCISD::VCMP: return "PPCISD::VCMP";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000282 case PPCISD::VCMPo: return "PPCISD::VCMPo";
Chris Lattnerf70f8d92006-04-18 18:05:58 +0000283 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000284 }
285}
286
Chris Lattner1a635d62006-04-14 06:01:58 +0000287//===----------------------------------------------------------------------===//
288// Node matching predicates, for use by the tblgen matching code.
289//===----------------------------------------------------------------------===//
290
Chris Lattner0b1e4e52005-08-26 17:36:52 +0000291/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
292static bool isFloatingPointZero(SDOperand Op) {
293 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
294 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
295 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
296 // Maybe this has already been legalized into the constant pool?
297 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
298 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
299 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
300 }
301 return false;
302}
303
Chris Lattnerddb739e2006-04-06 17:23:16 +0000304/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
305/// true if Op is undef or if it matches the specified value.
306static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
307 return Op.getOpcode() == ISD::UNDEF ||
308 cast<ConstantSDNode>(Op)->getValue() == Val;
309}
310
311/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
312/// VPKUHUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000313bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
314 if (!isUnary) {
315 for (unsigned i = 0; i != 16; ++i)
316 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
317 return false;
318 } else {
319 for (unsigned i = 0; i != 8; ++i)
320 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
321 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
322 return false;
323 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000324 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000325}
326
327/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
328/// VPKUWUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000329bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
330 if (!isUnary) {
331 for (unsigned i = 0; i != 16; i += 2)
332 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
333 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
334 return false;
335 } else {
336 for (unsigned i = 0; i != 8; i += 2)
337 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
338 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
339 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
340 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
341 return false;
342 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000343 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000344}
345
Chris Lattnercaad1632006-04-06 22:02:42 +0000346/// isVMerge - Common function, used to match vmrg* shuffles.
347///
348static bool isVMerge(SDNode *N, unsigned UnitSize,
349 unsigned LHSStart, unsigned RHSStart) {
Chris Lattner116cc482006-04-06 21:11:54 +0000350 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
351 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
352 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
353 "Unsupported merge size!");
354
355 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
356 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
357 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000358 LHSStart+j+i*UnitSize) ||
Chris Lattner116cc482006-04-06 21:11:54 +0000359 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000360 RHSStart+j+i*UnitSize))
Chris Lattner116cc482006-04-06 21:11:54 +0000361 return false;
362 }
Chris Lattnercaad1632006-04-06 22:02:42 +0000363 return true;
364}
365
366/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
367/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
368bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
369 if (!isUnary)
370 return isVMerge(N, UnitSize, 8, 24);
371 return isVMerge(N, UnitSize, 8, 8);
Chris Lattner116cc482006-04-06 21:11:54 +0000372}
373
374/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
375/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
Chris Lattnercaad1632006-04-06 22:02:42 +0000376bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
377 if (!isUnary)
378 return isVMerge(N, UnitSize, 0, 16);
379 return isVMerge(N, UnitSize, 0, 0);
Chris Lattner116cc482006-04-06 21:11:54 +0000380}
381
382
Chris Lattnerd0608e12006-04-06 18:26:28 +0000383/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
384/// amount, otherwise return -1.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000385int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
Chris Lattner116cc482006-04-06 21:11:54 +0000386 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
387 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
Chris Lattnerd0608e12006-04-06 18:26:28 +0000388 // Find the first non-undef value in the shuffle mask.
389 unsigned i;
390 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
391 /*search*/;
392
393 if (i == 16) return -1; // all undef.
394
395 // Otherwise, check to see if the rest of the elements are consequtively
396 // numbered from this value.
397 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
398 if (ShiftAmt < i) return -1;
399 ShiftAmt -= i;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000400
Chris Lattnerf24380e2006-04-06 22:28:36 +0000401 if (!isUnary) {
402 // Check the rest of the elements to see if they are consequtive.
403 for (++i; i != 16; ++i)
404 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
405 return -1;
406 } else {
407 // Check the rest of the elements to see if they are consequtive.
408 for (++i; i != 16; ++i)
409 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
410 return -1;
411 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000412
413 return ShiftAmt;
414}
Chris Lattneref819f82006-03-20 06:33:01 +0000415
416/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
417/// specifies a splat of a single element that is suitable for input to
418/// VSPLTB/VSPLTH/VSPLTW.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000419bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
420 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
421 N->getNumOperands() == 16 &&
422 (EltSize == 1 || EltSize == 2 || EltSize == 4));
Chris Lattnerdd4d2d02006-03-20 06:51:10 +0000423
Chris Lattner88a99ef2006-03-20 06:37:44 +0000424 // This is a splat operation if each element of the permute is the same, and
425 // if the value doesn't reference the second vector.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000426 unsigned ElementBase = 0;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000427 SDOperand Elt = N->getOperand(0);
Chris Lattner7ff7e672006-04-04 17:25:31 +0000428 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
429 ElementBase = EltV->getValue();
430 else
431 return false; // FIXME: Handle UNDEF elements too!
432
433 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
434 return false;
435
436 // Check that they are consequtive.
437 for (unsigned i = 1; i != EltSize; ++i) {
438 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
439 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
440 return false;
441 }
442
Chris Lattner88a99ef2006-03-20 06:37:44 +0000443 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000444 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
Chris Lattnerb097aa92006-04-14 23:19:08 +0000445 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000446 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
447 "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000448 for (unsigned j = 0; j != EltSize; ++j)
449 if (N->getOperand(i+j) != N->getOperand(j))
450 return false;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000451 }
452
Chris Lattner7ff7e672006-04-04 17:25:31 +0000453 return true;
Chris Lattneref819f82006-03-20 06:33:01 +0000454}
455
456/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
457/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000458unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
459 assert(isSplatShuffleMask(N, EltSize));
460 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
Chris Lattneref819f82006-03-20 06:33:01 +0000461}
462
Chris Lattnere87192a2006-04-12 17:37:20 +0000463/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
Chris Lattner140a58f2006-04-08 06:46:53 +0000464/// by using a vspltis[bhw] instruction of the specified element size, return
465/// the constant being splatted. The ByteSize field indicates the number of
466/// bytes of each element [124] -> [bhw].
Chris Lattnere87192a2006-04-12 17:37:20 +0000467SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000468 SDOperand OpVal(0, 0);
Chris Lattner79d9a882006-04-08 07:14:26 +0000469
470 // If ByteSize of the splat is bigger than the element size of the
471 // build_vector, then we have a case where we are checking for a splat where
472 // multiple elements of the buildvector are folded together into a single
473 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
474 unsigned EltSize = 16/N->getNumOperands();
475 if (EltSize < ByteSize) {
476 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
477 SDOperand UniquedVals[4];
478 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
479
480 // See if all of the elements in the buildvector agree across.
481 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
482 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
483 // If the element isn't a constant, bail fully out.
484 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
485
486
487 if (UniquedVals[i&(Multiple-1)].Val == 0)
488 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
489 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
490 return SDOperand(); // no match.
491 }
492
493 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
494 // either constant or undef values that are identical for each chunk. See
495 // if these chunks can form into a larger vspltis*.
496
497 // Check to see if all of the leading entries are either 0 or -1. If
498 // neither, then this won't fit into the immediate field.
499 bool LeadingZero = true;
500 bool LeadingOnes = true;
501 for (unsigned i = 0; i != Multiple-1; ++i) {
502 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
503
504 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
505 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
506 }
507 // Finally, check the least significant entry.
508 if (LeadingZero) {
509 if (UniquedVals[Multiple-1].Val == 0)
510 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
511 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
512 if (Val < 16)
513 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
514 }
515 if (LeadingOnes) {
516 if (UniquedVals[Multiple-1].Val == 0)
517 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
518 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
519 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
520 return DAG.getTargetConstant(Val, MVT::i32);
521 }
522
523 return SDOperand();
524 }
525
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000526 // Check to see if this buildvec has a single non-undef value in its elements.
527 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
528 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
529 if (OpVal.Val == 0)
530 OpVal = N->getOperand(i);
531 else if (OpVal != N->getOperand(i))
Chris Lattner140a58f2006-04-08 06:46:53 +0000532 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000533 }
534
Chris Lattner140a58f2006-04-08 06:46:53 +0000535 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000536
Nate Begeman98e70cc2006-03-28 04:15:58 +0000537 unsigned ValSizeInBytes = 0;
538 uint64_t Value = 0;
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000539 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
540 Value = CN->getValue();
541 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
542 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
543 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
544 Value = FloatToBits(CN->getValue());
545 ValSizeInBytes = 4;
546 }
547
548 // If the splat value is larger than the element value, then we can never do
549 // this splat. The only case that we could fit the replicated bits into our
550 // immediate field for would be zero, and we prefer to use vxor for it.
Chris Lattner140a58f2006-04-08 06:46:53 +0000551 if (ValSizeInBytes < ByteSize) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000552
553 // If the element value is larger than the splat value, cut it in half and
554 // check to see if the two halves are equal. Continue doing this until we
555 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
556 while (ValSizeInBytes > ByteSize) {
557 ValSizeInBytes >>= 1;
558
559 // If the top half equals the bottom half, we're still ok.
Chris Lattner9b42bdd2006-04-05 17:39:25 +0000560 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
561 (Value & ((1 << (8*ValSizeInBytes))-1)))
Chris Lattner140a58f2006-04-08 06:46:53 +0000562 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000563 }
564
565 // Properly sign extend the value.
566 int ShAmt = (4-ByteSize)*8;
567 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
568
Evan Cheng5b6a01b2006-03-26 09:52:32 +0000569 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
Chris Lattner140a58f2006-04-08 06:46:53 +0000570 if (MaskVal == 0) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000571
Chris Lattner140a58f2006-04-08 06:46:53 +0000572 // Finally, if this value fits in a 5 bit sext field, return it
573 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
574 return DAG.getTargetConstant(MaskVal, MVT::i32);
575 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000576}
577
Chris Lattner1a635d62006-04-14 06:01:58 +0000578//===----------------------------------------------------------------------===//
579// LowerOperation implementation
580//===----------------------------------------------------------------------===//
581
582static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
583 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
584 Constant *C = CP->get();
585 SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
586 SDOperand Zero = DAG.getConstant(0, MVT::i32);
587
588 const TargetMachine &TM = DAG.getTarget();
589
590 // If this is a non-darwin platform, we don't support non-static relo models
591 // yet.
592 if (TM.getRelocationModel() == Reloc::Static ||
593 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
594 // Generate non-pic code that has direct accesses to the constant pool.
595 // The address of the global is just (hi(&g)+lo(&g)).
596 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
597 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
598 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
599 }
600
601 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
602 if (TM.getRelocationModel() == Reloc::PIC) {
603 // With PIC, the first instruction is actually "GR+hi(&G)".
604 Hi = DAG.getNode(ISD::ADD, MVT::i32,
605 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
606 }
607
608 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
609 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
610 return Lo;
611}
612
Nate Begeman37efe672006-04-22 18:53:45 +0000613static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
614 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
615 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
616 SDOperand Zero = DAG.getConstant(0, MVT::i32);
617
618 const TargetMachine &TM = DAG.getTarget();
619
620 // If this is a non-darwin platform, we don't support non-static relo models
621 // yet.
622 if (TM.getRelocationModel() == Reloc::Static ||
623 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
624 // Generate non-pic code that has direct accesses to the constant pool.
625 // The address of the global is just (hi(&g)+lo(&g)).
626 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
627 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
628 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
629 }
630
631 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
632 if (TM.getRelocationModel() == Reloc::PIC) {
633 // With PIC, the first instruction is actually "GR+hi(&G)".
634 Hi = DAG.getNode(ISD::ADD, MVT::i32,
635 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
636 }
637
638 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
639 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
640 return Lo;
641}
642
Chris Lattner1a635d62006-04-14 06:01:58 +0000643static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
644 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
645 GlobalValue *GV = GSDN->getGlobal();
646 SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
647 SDOperand Zero = DAG.getConstant(0, MVT::i32);
648
649 const TargetMachine &TM = DAG.getTarget();
650
651 // If this is a non-darwin platform, we don't support non-static relo models
652 // yet.
653 if (TM.getRelocationModel() == Reloc::Static ||
654 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
655 // Generate non-pic code that has direct accesses to globals.
656 // The address of the global is just (hi(&g)+lo(&g)).
657 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
658 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
659 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
660 }
661
662 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
663 if (TM.getRelocationModel() == Reloc::PIC) {
664 // With PIC, the first instruction is actually "GR+hi(&G)".
665 Hi = DAG.getNode(ISD::ADD, MVT::i32,
666 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
667 }
668
669 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
670 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
671
672 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
673 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
674 return Lo;
675
676 // If the global is weak or external, we have to go through the lazy
677 // resolution stub.
678 return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
679}
680
681static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
682 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
683
684 // If we're comparing for equality to zero, expose the fact that this is
685 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
686 // fold the new nodes.
687 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
688 if (C->isNullValue() && CC == ISD::SETEQ) {
689 MVT::ValueType VT = Op.getOperand(0).getValueType();
690 SDOperand Zext = Op.getOperand(0);
691 if (VT < MVT::i32) {
692 VT = MVT::i32;
693 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
694 }
695 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
696 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
697 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
698 DAG.getConstant(Log2b, MVT::i32));
699 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
700 }
701 // Leave comparisons against 0 and -1 alone for now, since they're usually
702 // optimized. FIXME: revisit this when we can custom lower all setcc
703 // optimizations.
704 if (C->isAllOnesValue() || C->isNullValue())
705 return SDOperand();
706 }
707
708 // If we have an integer seteq/setne, turn it into a compare against zero
709 // by subtracting the rhs from the lhs, which is faster than setting a
710 // condition register, reading it back out, and masking the correct bit.
711 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
712 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
713 MVT::ValueType VT = Op.getValueType();
714 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
715 Op.getOperand(1));
716 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
717 }
718 return SDOperand();
719}
720
721static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
722 unsigned VarArgsFrameIndex) {
723 // vastart just stores the address of the VarArgsFrameIndex slot into the
724 // memory location argument.
725 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
726 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
727 Op.getOperand(1), Op.getOperand(2));
728}
729
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000730static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
731 int &VarArgsFrameIndex) {
732 // TODO: add description of PPC stack frame format, or at least some docs.
733 //
734 MachineFunction &MF = DAG.getMachineFunction();
735 MachineFrameInfo *MFI = MF.getFrameInfo();
736 SSARegMap *RegMap = MF.getSSARegMap();
737 std::vector<SDOperand> ArgValues;
738 SDOperand Root = Op.getOperand(0);
739
740 unsigned ArgOffset = 24;
741 unsigned GPR_remaining = 8;
742 unsigned FPR_remaining = 13;
743 unsigned VR_remaining = 12;
744 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
745 static const unsigned GPR[] = {
746 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
747 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
748 };
749 static const unsigned FPR[] = {
750 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
751 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
752 };
753 static const unsigned VR[] = {
754 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
755 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
756 };
757
758 // Add DAG nodes to load the arguments or copy them out of registers. On
759 // entry to a function on PPC, the arguments start at offset 24, although the
760 // first ones are often in registers.
761 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
762 SDOperand ArgVal;
763 bool needsLoad = false;
764 bool ArgLive = !Op.Val->hasNUsesOfValue(0, ArgNo);
765 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
766 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
767
768 switch (ObjectVT) {
769 default: assert(0 && "Unhandled argument type!");
770 case MVT::i32:
771 if (!ArgLive) break;
772 if (GPR_remaining > 0) {
773 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
774 MF.addLiveIn(GPR[GPR_idx], VReg);
775 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
776 } else {
777 needsLoad = true;
778 }
779 break;
780 case MVT::f32:
781 case MVT::f64:
782 if (!ArgLive) {
783 if (FPR_remaining > 0) {
784 --FPR_remaining;
785 ++FPR_idx;
786 }
787 break;
788 }
789 if (FPR_remaining > 0) {
790 unsigned VReg;
791 if (ObjectVT == MVT::f32)
792 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
793 else
794 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
795 MF.addLiveIn(FPR[FPR_idx], VReg);
796 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
797 --FPR_remaining;
798 ++FPR_idx;
799 } else {
800 needsLoad = true;
801 }
802 break;
803 case MVT::v4f32:
804 case MVT::v4i32:
805 case MVT::v8i16:
806 case MVT::v16i8:
807 if (!ArgLive) {
808 if (VR_remaining > 0) {
809 --VR_remaining;
810 ++VR_idx;
811 }
812 break;
813 }
814 if (VR_remaining > 0) {
815 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
816 MF.addLiveIn(VR[VR_idx], VReg);
817 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
818 --VR_remaining;
819 ++VR_idx;
820 } else {
821 // This should be simple, but requires getting 16-byte aligned stack
822 // values.
823 assert(0 && "Loading VR argument not implemented yet!");
824 needsLoad = true;
825 }
826 break;
827 }
828
829 // We need to load the argument to a virtual register if we determined above
830 // that we ran out of physical registers of the appropriate type
831 if (needsLoad) {
832 int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
833 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
834 ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
835 DAG.getSrcValue(NULL));
836 }
837
838 // Every 4 bytes of argument space consumes one of the GPRs available for
839 // argument passing.
840 if (GPR_remaining > 0) {
841 unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
842 GPR_remaining -= delta;
843 GPR_idx += delta;
844 }
845 ArgOffset += ObjSize;
846
847 if (ArgVal.Val == 0)
848 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
849 ArgValues.push_back(ArgVal);
850 }
851
852 // If the function takes variable number of arguments, make a frame index for
853 // the start of the first vararg value... for expansion of llvm.va_start.
854 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
855 if (isVarArg) {
856 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
857 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
858 // If this function is vararg, store any remaining integer argument regs
859 // to their spots on the stack so that they may be loaded by deferencing the
860 // result of va_next.
861 std::vector<SDOperand> MemOps;
862 for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
863 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
864 MF.addLiveIn(GPR[GPR_idx], VReg);
865 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
866 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
867 Val, FIN, DAG.getSrcValue(NULL));
868 MemOps.push_back(Store);
869 // Increment the address by four for the next argument to store
870 SDOperand PtrOff = DAG.getConstant(4, MVT::i32);
871 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
872 }
873 if (!MemOps.empty())
874 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
875 }
876
877 ArgValues.push_back(Root);
878
879 // Return the new list of results.
880 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
881 Op.Val->value_end());
882 return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
883}
884
Chris Lattner1a635d62006-04-14 06:01:58 +0000885static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
886 SDOperand Copy;
887 switch(Op.getNumOperands()) {
888 default:
889 assert(0 && "Do not know how to return this many arguments!");
890 abort();
891 case 1:
892 return SDOperand(); // ret void is legal
893 case 2: {
894 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
895 unsigned ArgReg;
896 if (MVT::isVector(ArgVT))
897 ArgReg = PPC::V2;
898 else if (MVT::isInteger(ArgVT))
899 ArgReg = PPC::R3;
900 else {
901 assert(MVT::isFloatingPoint(ArgVT));
902 ArgReg = PPC::F1;
903 }
904
905 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
906 SDOperand());
907
908 // If we haven't noted the R3/F1 are live out, do so now.
909 if (DAG.getMachineFunction().liveout_empty())
910 DAG.getMachineFunction().addLiveOut(ArgReg);
911 break;
912 }
913 case 3:
914 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
915 SDOperand());
916 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
917 // If we haven't noted the R3+R4 are live out, do so now.
918 if (DAG.getMachineFunction().liveout_empty()) {
919 DAG.getMachineFunction().addLiveOut(PPC::R3);
920 DAG.getMachineFunction().addLiveOut(PPC::R4);
921 }
922 break;
923 }
924 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
925}
926
927/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
928/// possible.
929static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
930 // Not FP? Not a fsel.
931 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
932 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
933 return SDOperand();
934
935 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
936
937 // Cannot handle SETEQ/SETNE.
938 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
939
940 MVT::ValueType ResVT = Op.getValueType();
941 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
942 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
943 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
944
945 // If the RHS of the comparison is a 0.0, we don't need to do the
946 // subtraction at all.
947 if (isFloatingPointZero(RHS))
948 switch (CC) {
949 default: break; // SETUO etc aren't handled by fsel.
950 case ISD::SETULT:
951 case ISD::SETLT:
952 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
953 case ISD::SETUGE:
954 case ISD::SETGE:
955 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
956 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
957 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
958 case ISD::SETUGT:
959 case ISD::SETGT:
960 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
961 case ISD::SETULE:
962 case ISD::SETLE:
963 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
964 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
965 return DAG.getNode(PPCISD::FSEL, ResVT,
966 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
967 }
968
969 SDOperand Cmp;
970 switch (CC) {
971 default: break; // SETUO etc aren't handled by fsel.
972 case ISD::SETULT:
973 case ISD::SETLT:
974 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
975 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
976 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
977 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
978 case ISD::SETUGE:
979 case ISD::SETGE:
980 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
981 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
982 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
983 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
984 case ISD::SETUGT:
985 case ISD::SETGT:
986 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
987 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
988 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
989 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
990 case ISD::SETULE:
991 case ISD::SETLE:
992 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
993 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
994 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
995 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
996 }
997 return SDOperand();
998}
999
1000static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1001 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1002 SDOperand Src = Op.getOperand(0);
1003 if (Src.getValueType() == MVT::f32)
1004 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1005
1006 SDOperand Tmp;
1007 switch (Op.getValueType()) {
1008 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1009 case MVT::i32:
1010 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1011 break;
1012 case MVT::i64:
1013 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1014 break;
1015 }
1016
1017 // Convert the FP value to an int value through memory.
1018 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1019 if (Op.getValueType() == MVT::i32)
1020 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1021 return Bits;
1022}
1023
1024static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1025 if (Op.getOperand(0).getValueType() == MVT::i64) {
1026 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1027 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1028 if (Op.getValueType() == MVT::f32)
1029 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1030 return FP;
1031 }
1032
1033 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1034 "Unhandled SINT_TO_FP type in custom expander!");
1035 // Since we only generate this in 64-bit mode, we can take advantage of
1036 // 64-bit registers. In particular, sign extend the input value into the
1037 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1038 // then lfd it and fcfid it.
1039 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1040 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1041 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1042
1043 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1044 Op.getOperand(0));
1045
1046 // STD the extended value into the stack slot.
1047 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1048 DAG.getEntryNode(), Ext64, FIdx,
1049 DAG.getSrcValue(NULL));
1050 // Load the value as a double.
1051 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
1052
1053 // FCFID it and return it.
1054 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1055 if (Op.getValueType() == MVT::f32)
1056 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1057 return FP;
1058}
1059
1060static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
1061 assert(Op.getValueType() == MVT::i64 &&
1062 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1063 // The generic code does a fine job expanding shift by a constant.
1064 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1065
1066 // Otherwise, expand into a bunch of logical ops. Note that these ops
1067 // depend on the PPC behavior for oversized shift amounts.
1068 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1069 DAG.getConstant(0, MVT::i32));
1070 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1071 DAG.getConstant(1, MVT::i32));
1072 SDOperand Amt = Op.getOperand(1);
1073
1074 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1075 DAG.getConstant(32, MVT::i32), Amt);
1076 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1077 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1078 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1079 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1080 DAG.getConstant(-32U, MVT::i32));
1081 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1082 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1083 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1084 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1085}
1086
1087static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
1088 assert(Op.getValueType() == MVT::i64 &&
1089 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1090 // The generic code does a fine job expanding shift by a constant.
1091 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1092
1093 // Otherwise, expand into a bunch of logical ops. Note that these ops
1094 // depend on the PPC behavior for oversized shift amounts.
1095 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1096 DAG.getConstant(0, MVT::i32));
1097 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1098 DAG.getConstant(1, MVT::i32));
1099 SDOperand Amt = Op.getOperand(1);
1100
1101 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1102 DAG.getConstant(32, MVT::i32), Amt);
1103 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1104 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1105 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1106 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1107 DAG.getConstant(-32U, MVT::i32));
1108 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1109 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1110 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1111 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1112}
1113
1114static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
1115 assert(Op.getValueType() == MVT::i64 &&
1116 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1117 // The generic code does a fine job expanding shift by a constant.
1118 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1119
1120 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1121 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1122 DAG.getConstant(0, MVT::i32));
1123 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1124 DAG.getConstant(1, MVT::i32));
1125 SDOperand Amt = Op.getOperand(1);
1126
1127 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1128 DAG.getConstant(32, MVT::i32), Amt);
1129 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1130 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1131 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1132 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1133 DAG.getConstant(-32U, MVT::i32));
1134 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1135 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1136 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1137 Tmp4, Tmp6, ISD::SETLE);
1138 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1139}
1140
1141//===----------------------------------------------------------------------===//
1142// Vector related lowering.
1143//
1144
Chris Lattnerac225ca2006-04-12 19:07:14 +00001145// If this is a vector of constants or undefs, get the bits. A bit in
1146// UndefBits is set if the corresponding element of the vector is an
1147// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1148// zero. Return true if this is not an array of constants, false if it is.
1149//
Chris Lattnerac225ca2006-04-12 19:07:14 +00001150static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1151 uint64_t UndefBits[2]) {
1152 // Start with zero'd results.
1153 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1154
1155 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1156 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1157 SDOperand OpVal = BV->getOperand(i);
1158
1159 unsigned PartNo = i >= e/2; // In the upper 128 bits?
Chris Lattnerb17f1672006-04-16 01:01:29 +00001160 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
Chris Lattnerac225ca2006-04-12 19:07:14 +00001161
1162 uint64_t EltBits = 0;
1163 if (OpVal.getOpcode() == ISD::UNDEF) {
1164 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1165 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1166 continue;
1167 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1168 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1169 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1170 assert(CN->getValueType(0) == MVT::f32 &&
1171 "Only one legal FP vector type!");
1172 EltBits = FloatToBits(CN->getValue());
1173 } else {
1174 // Nonconstant element.
1175 return true;
1176 }
1177
1178 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1179 }
1180
1181 //printf("%llx %llx %llx %llx\n",
1182 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1183 return false;
1184}
Chris Lattneref819f82006-03-20 06:33:01 +00001185
Chris Lattnerb17f1672006-04-16 01:01:29 +00001186// If this is a splat (repetition) of a value across the whole vector, return
1187// the smallest size that splats it. For example, "0x01010101010101..." is a
1188// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1189// SplatSize = 1 byte.
1190static bool isConstantSplat(const uint64_t Bits128[2],
1191 const uint64_t Undef128[2],
1192 unsigned &SplatBits, unsigned &SplatUndef,
1193 unsigned &SplatSize) {
1194
1195 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1196 // the same as the lower 64-bits, ignoring undefs.
1197 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1198 return false; // Can't be a splat if two pieces don't match.
1199
1200 uint64_t Bits64 = Bits128[0] | Bits128[1];
1201 uint64_t Undef64 = Undef128[0] & Undef128[1];
1202
1203 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1204 // undefs.
1205 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1206 return false; // Can't be a splat if two pieces don't match.
1207
1208 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1209 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1210
1211 // If the top 16-bits are different than the lower 16-bits, ignoring
1212 // undefs, we have an i32 splat.
1213 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1214 SplatBits = Bits32;
1215 SplatUndef = Undef32;
1216 SplatSize = 4;
1217 return true;
1218 }
1219
1220 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1221 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1222
1223 // If the top 8-bits are different than the lower 8-bits, ignoring
1224 // undefs, we have an i16 splat.
1225 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1226 SplatBits = Bits16;
1227 SplatUndef = Undef16;
1228 SplatSize = 2;
1229 return true;
1230 }
1231
1232 // Otherwise, we have an 8-bit splat.
1233 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1234 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1235 SplatSize = 1;
1236 return true;
1237}
1238
Chris Lattner4a998b92006-04-17 06:00:21 +00001239/// BuildSplatI - Build a canonical splati of Val with an element size of
1240/// SplatSize. Cast the result to VT.
1241static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1242 SelectionDAG &DAG) {
1243 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
Chris Lattner6876e662006-04-17 06:58:41 +00001244
1245 // Force vspltis[hw] -1 to vspltisb -1.
1246 if (Val == -1) SplatSize = 1;
1247
Chris Lattner4a998b92006-04-17 06:00:21 +00001248 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1249 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1250 };
1251 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1252
1253 // Build a canonical splat for this value.
1254 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1255 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1256 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1257 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1258}
1259
Chris Lattnere7c768e2006-04-18 03:24:30 +00001260/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
Chris Lattner6876e662006-04-17 06:58:41 +00001261/// specified intrinsic ID.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001262static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1263 SelectionDAG &DAG,
1264 MVT::ValueType DestVT = MVT::Other) {
1265 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1266 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
Chris Lattner6876e662006-04-17 06:58:41 +00001267 DAG.getConstant(IID, MVT::i32), LHS, RHS);
1268}
1269
Chris Lattnere7c768e2006-04-18 03:24:30 +00001270/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1271/// specified intrinsic ID.
1272static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1273 SDOperand Op2, SelectionDAG &DAG,
1274 MVT::ValueType DestVT = MVT::Other) {
1275 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1276 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1277 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1278}
1279
1280
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001281/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1282/// amount. The result has the specified value type.
1283static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1284 MVT::ValueType VT, SelectionDAG &DAG) {
1285 // Force LHS/RHS to be the right type.
1286 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1287 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1288
1289 std::vector<SDOperand> Ops;
1290 for (unsigned i = 0; i != 16; ++i)
1291 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1292 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1293 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1294 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1295}
1296
Chris Lattnerf1b47082006-04-14 05:19:18 +00001297// If this is a case we can't handle, return null and let the default
1298// expansion code take care of it. If we CAN select this case, and if it
1299// selects to a single instruction, return Op. Otherwise, if we can codegen
1300// this case more efficiently than a constant pool load, lower it to the
1301// sequence of ops that should be used.
1302static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1303 // If this is a vector of constants or undefs, get the bits. A bit in
1304 // UndefBits is set if the corresponding element of the vector is an
1305 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1306 // zero.
1307 uint64_t VectorBits[2];
1308 uint64_t UndefBits[2];
1309 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1310 return SDOperand(); // Not a constant vector.
1311
Chris Lattnerb17f1672006-04-16 01:01:29 +00001312 // If this is a splat (repetition) of a value across the whole vector, return
1313 // the smallest size that splats it. For example, "0x01010101010101..." is a
1314 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1315 // SplatSize = 1 byte.
1316 unsigned SplatBits, SplatUndef, SplatSize;
1317 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1318 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1319
1320 // First, handle single instruction cases.
1321
1322 // All zeros?
1323 if (SplatBits == 0) {
1324 // Canonicalize all zero vectors to be v4i32.
1325 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1326 SDOperand Z = DAG.getConstant(0, MVT::i32);
1327 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1328 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1329 }
1330 return Op;
Chris Lattnerf1b47082006-04-14 05:19:18 +00001331 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001332
1333 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1334 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
Chris Lattner4a998b92006-04-17 06:00:21 +00001335 if (SextVal >= -16 && SextVal <= 15)
1336 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
Chris Lattnerb17f1672006-04-16 01:01:29 +00001337
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001338
1339 // Two instruction sequences.
1340
Chris Lattner4a998b92006-04-17 06:00:21 +00001341 // If this value is in the range [-32,30] and is even, use:
1342 // tmp = VSPLTI[bhw], result = add tmp, tmp
1343 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1344 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1345 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1346 }
Chris Lattner6876e662006-04-17 06:58:41 +00001347
1348 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1349 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
1350 // for fneg/fabs.
1351 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1352 // Make -1 and vspltisw -1:
1353 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1354
1355 // Make the VSLW intrinsic, computing 0x8000_0000.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001356 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1357 OnesV, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001358
1359 // xor by OnesV to invert it.
1360 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1361 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1362 }
1363
1364 // Check to see if this is a wide variety of vsplti*, binop self cases.
1365 unsigned SplatBitSize = SplatSize*8;
1366 static const char SplatCsts[] = {
1367 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001368 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
Chris Lattner6876e662006-04-17 06:58:41 +00001369 };
1370 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1371 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1372 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
1373 int i = SplatCsts[idx];
1374
1375 // Figure out what shift amount will be used by altivec if shifted by i in
1376 // this splat size.
1377 unsigned TypeShiftAmt = i & (SplatBitSize-1);
1378
1379 // vsplti + shl self.
1380 if (SextVal == (i << (int)TypeShiftAmt)) {
1381 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1382 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1383 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1384 Intrinsic::ppc_altivec_vslw
1385 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001386 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001387 }
1388
1389 // vsplti + srl self.
1390 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1391 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1392 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1393 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1394 Intrinsic::ppc_altivec_vsrw
1395 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001396 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001397 }
1398
1399 // vsplti + sra self.
1400 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1401 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1402 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1403 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1404 Intrinsic::ppc_altivec_vsraw
1405 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001406 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001407 }
1408
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001409 // vsplti + rol self.
1410 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1411 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1412 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1413 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1414 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1415 Intrinsic::ppc_altivec_vrlw
1416 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001417 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001418 }
1419
1420 // t = vsplti c, result = vsldoi t, t, 1
1421 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1422 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1423 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1424 }
1425 // t = vsplti c, result = vsldoi t, t, 2
1426 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1427 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1428 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1429 }
1430 // t = vsplti c, result = vsldoi t, t, 3
1431 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1432 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1433 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1434 }
Chris Lattner6876e662006-04-17 06:58:41 +00001435 }
1436
Chris Lattner6876e662006-04-17 06:58:41 +00001437 // Three instruction sequences.
1438
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001439 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
1440 if (SextVal >= 0 && SextVal <= 31) {
1441 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1442 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1443 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1444 }
1445 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
1446 if (SextVal >= -31 && SextVal <= 0) {
1447 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1448 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
Chris Lattnerc4083822006-04-17 06:07:44 +00001449 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
Chris Lattnerf1b47082006-04-14 05:19:18 +00001450 }
1451 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001452
Chris Lattnerf1b47082006-04-14 05:19:18 +00001453 return SDOperand();
1454}
1455
Chris Lattner59138102006-04-17 05:28:54 +00001456/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1457/// the specified operations to build the shuffle.
1458static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1459 SDOperand RHS, SelectionDAG &DAG) {
1460 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1461 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1462 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1463
1464 enum {
Chris Lattner00402c72006-05-16 04:20:24 +00001465 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
Chris Lattner59138102006-04-17 05:28:54 +00001466 OP_VMRGHW,
1467 OP_VMRGLW,
1468 OP_VSPLTISW0,
1469 OP_VSPLTISW1,
1470 OP_VSPLTISW2,
1471 OP_VSPLTISW3,
1472 OP_VSLDOI4,
1473 OP_VSLDOI8,
1474 OP_VSLDOI12,
1475 };
1476
1477 if (OpNum == OP_COPY) {
1478 if (LHSID == (1*9+2)*9+3) return LHS;
1479 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1480 return RHS;
1481 }
1482
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001483 SDOperand OpLHS, OpRHS;
1484 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1485 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1486
Chris Lattner59138102006-04-17 05:28:54 +00001487 unsigned ShufIdxs[16];
1488 switch (OpNum) {
1489 default: assert(0 && "Unknown i32 permute!");
1490 case OP_VMRGHW:
1491 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1492 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1493 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1494 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1495 break;
1496 case OP_VMRGLW:
1497 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1498 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1499 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1500 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1501 break;
1502 case OP_VSPLTISW0:
1503 for (unsigned i = 0; i != 16; ++i)
1504 ShufIdxs[i] = (i&3)+0;
1505 break;
1506 case OP_VSPLTISW1:
1507 for (unsigned i = 0; i != 16; ++i)
1508 ShufIdxs[i] = (i&3)+4;
1509 break;
1510 case OP_VSPLTISW2:
1511 for (unsigned i = 0; i != 16; ++i)
1512 ShufIdxs[i] = (i&3)+8;
1513 break;
1514 case OP_VSPLTISW3:
1515 for (unsigned i = 0; i != 16; ++i)
1516 ShufIdxs[i] = (i&3)+12;
1517 break;
1518 case OP_VSLDOI4:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001519 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001520 case OP_VSLDOI8:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001521 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001522 case OP_VSLDOI12:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001523 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001524 }
1525 std::vector<SDOperand> Ops;
1526 for (unsigned i = 0; i != 16; ++i)
1527 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
Chris Lattner59138102006-04-17 05:28:54 +00001528
1529 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1530 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1531}
1532
Chris Lattnerf1b47082006-04-14 05:19:18 +00001533/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1534/// is a shuffle we can handle in a single instruction, return it. Otherwise,
1535/// return the code it can be lowered into. Worst case, it can always be
1536/// lowered into a vperm.
1537static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1538 SDOperand V1 = Op.getOperand(0);
1539 SDOperand V2 = Op.getOperand(1);
1540 SDOperand PermMask = Op.getOperand(2);
1541
1542 // Cases that are handled by instructions that take permute immediates
1543 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1544 // selected by the instruction selector.
1545 if (V2.getOpcode() == ISD::UNDEF) {
1546 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1547 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1548 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1549 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1550 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1551 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1552 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1553 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1554 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1555 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1556 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1557 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1558 return Op;
1559 }
1560 }
1561
1562 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1563 // and produce a fixed permutation. If any of these match, do not lower to
1564 // VPERM.
1565 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1566 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1567 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1568 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1569 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1570 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1571 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1572 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1573 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1574 return Op;
1575
Chris Lattner59138102006-04-17 05:28:54 +00001576 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1577 // perfect shuffle table to emit an optimal matching sequence.
1578 unsigned PFIndexes[4];
1579 bool isFourElementShuffle = true;
1580 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1581 unsigned EltNo = 8; // Start out undef.
1582 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1583 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1584 continue; // Undef, ignore it.
1585
1586 unsigned ByteSource =
1587 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1588 if ((ByteSource & 3) != j) {
1589 isFourElementShuffle = false;
1590 break;
1591 }
1592
1593 if (EltNo == 8) {
1594 EltNo = ByteSource/4;
1595 } else if (EltNo != ByteSource/4) {
1596 isFourElementShuffle = false;
1597 break;
1598 }
1599 }
1600 PFIndexes[i] = EltNo;
1601 }
1602
1603 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1604 // perfect shuffle vector to determine if it is cost effective to do this as
1605 // discrete instructions, or whether we should use a vperm.
1606 if (isFourElementShuffle) {
1607 // Compute the index in the perfect shuffle table.
1608 unsigned PFTableIndex =
1609 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1610
1611 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1612 unsigned Cost = (PFEntry >> 30);
1613
1614 // Determining when to avoid vperm is tricky. Many things affect the cost
1615 // of vperm, particularly how many times the perm mask needs to be computed.
1616 // For example, if the perm mask can be hoisted out of a loop or is already
1617 // used (perhaps because there are multiple permutes with the same shuffle
1618 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1619 // the loop requires an extra register.
1620 //
1621 // As a compromise, we only emit discrete instructions if the shuffle can be
1622 // generated in 3 or fewer operations. When we have loop information
1623 // available, if this block is within a loop, we should avoid using vperm
1624 // for 3-operation perms and use a constant pool load instead.
1625 if (Cost < 3)
1626 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1627 }
Chris Lattnerf1b47082006-04-14 05:19:18 +00001628
1629 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1630 // vector that will get spilled to the constant pool.
1631 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1632
1633 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1634 // that it is in input element units, not in bytes. Convert now.
1635 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1636 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1637
1638 std::vector<SDOperand> ResultMask;
1639 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
Chris Lattner730b4562006-04-15 23:48:05 +00001640 unsigned SrcElt;
1641 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1642 SrcElt = 0;
1643 else
1644 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
Chris Lattnerf1b47082006-04-14 05:19:18 +00001645
1646 for (unsigned j = 0; j != BytesPerElement; ++j)
1647 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1648 MVT::i8));
1649 }
1650
1651 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1652 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1653}
1654
Chris Lattner90564f22006-04-18 17:59:36 +00001655/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
1656/// altivec comparison. If it is, return true and fill in Opc/isDot with
1657/// information about the intrinsic.
1658static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
1659 bool &isDot) {
1660 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
1661 CompareOpc = -1;
1662 isDot = false;
1663 switch (IntrinsicID) {
1664 default: return false;
1665 // Comparison predicates.
Chris Lattner1a635d62006-04-14 06:01:58 +00001666 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
1667 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1668 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
1669 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
1670 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1671 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1672 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1673 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1674 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1675 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1676 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1677 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1678 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1679
1680 // Normal Comparisons.
1681 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
1682 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
1683 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
1684 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
1685 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
1686 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
1687 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
1688 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
1689 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
1690 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
1691 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
1692 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
1693 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
1694 }
Chris Lattner90564f22006-04-18 17:59:36 +00001695 return true;
1696}
1697
1698/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1699/// lower, do it, otherwise return null.
1700static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1701 // If this is a lowered altivec predicate compare, CompareOpc is set to the
1702 // opcode number of the comparison.
1703 int CompareOpc;
1704 bool isDot;
1705 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
1706 return SDOperand(); // Don't custom lower most intrinsics.
Chris Lattner1a635d62006-04-14 06:01:58 +00001707
Chris Lattner90564f22006-04-18 17:59:36 +00001708 // If this is a non-dot comparison, make the VCMP node and we are done.
Chris Lattner1a635d62006-04-14 06:01:58 +00001709 if (!isDot) {
1710 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1711 Op.getOperand(1), Op.getOperand(2),
1712 DAG.getConstant(CompareOpc, MVT::i32));
1713 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1714 }
1715
1716 // Create the PPCISD altivec 'dot' comparison node.
1717 std::vector<SDOperand> Ops;
1718 std::vector<MVT::ValueType> VTs;
1719 Ops.push_back(Op.getOperand(2)); // LHS
1720 Ops.push_back(Op.getOperand(3)); // RHS
1721 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1722 VTs.push_back(Op.getOperand(2).getValueType());
1723 VTs.push_back(MVT::Flag);
1724 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1725
1726 // Now that we have the comparison, emit a copy from the CR to a GPR.
1727 // This is flagged to the above dot comparison.
1728 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1729 DAG.getRegister(PPC::CR6, MVT::i32),
1730 CompNode.getValue(1));
1731
1732 // Unpack the result based on how the target uses it.
1733 unsigned BitNo; // Bit # of CR6.
1734 bool InvertBit; // Invert result?
1735 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1736 default: // Can't happen, don't crash on invalid number though.
1737 case 0: // Return the value of the EQ bit of CR6.
1738 BitNo = 0; InvertBit = false;
1739 break;
1740 case 1: // Return the inverted value of the EQ bit of CR6.
1741 BitNo = 0; InvertBit = true;
1742 break;
1743 case 2: // Return the value of the LT bit of CR6.
1744 BitNo = 2; InvertBit = false;
1745 break;
1746 case 3: // Return the inverted value of the LT bit of CR6.
1747 BitNo = 2; InvertBit = true;
1748 break;
1749 }
1750
1751 // Shift the bit into the low position.
1752 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1753 DAG.getConstant(8-(3-BitNo), MVT::i32));
1754 // Isolate the bit.
1755 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1756 DAG.getConstant(1, MVT::i32));
1757
1758 // If we are supposed to, toggle the bit.
1759 if (InvertBit)
1760 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1761 DAG.getConstant(1, MVT::i32));
1762 return Flags;
1763}
1764
1765static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1766 // Create a stack slot that is 16-byte aligned.
1767 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1768 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1769 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1770
1771 // Store the input value into Value#0 of the stack slot.
1772 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1773 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1774 // Load it out.
1775 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1776}
1777
Chris Lattnere7c768e2006-04-18 03:24:30 +00001778static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001779 if (Op.getValueType() == MVT::v4i32) {
1780 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1781
1782 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
1783 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1784
1785 SDOperand RHSSwap = // = vrlw RHS, 16
1786 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1787
1788 // Shrinkify inputs to v8i16.
1789 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1790 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1791 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1792
1793 // Low parts multiplied together, generating 32-bit results (we ignore the
1794 // top parts).
1795 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1796 LHS, RHS, DAG, MVT::v4i32);
1797
1798 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1799 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1800 // Shift the high parts up 16 bits.
1801 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1802 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1803 } else if (Op.getValueType() == MVT::v8i16) {
1804 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1805
Chris Lattnercea2aa72006-04-18 04:28:57 +00001806 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001807
Chris Lattnercea2aa72006-04-18 04:28:57 +00001808 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
1809 LHS, RHS, Zero, DAG);
Chris Lattner19a81522006-04-18 03:57:35 +00001810 } else if (Op.getValueType() == MVT::v16i8) {
1811 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1812
1813 // Multiply the even 8-bit parts, producing 16-bit sums.
1814 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
1815 LHS, RHS, DAG, MVT::v8i16);
1816 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
1817
1818 // Multiply the odd 8-bit parts, producing 16-bit sums.
1819 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
1820 LHS, RHS, DAG, MVT::v8i16);
1821 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
1822
1823 // Merge the results together.
1824 std::vector<SDOperand> Ops;
1825 for (unsigned i = 0; i != 8; ++i) {
1826 Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
1827 Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
1828 }
1829
1830 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
1831 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001832 } else {
1833 assert(0 && "Unknown mul to lower!");
1834 abort();
1835 }
Chris Lattnere7c768e2006-04-18 03:24:30 +00001836}
1837
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001838/// LowerOperation - Provide custom lowering hooks for some operations.
1839///
Nate Begeman21e463b2005-10-16 05:39:50 +00001840SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001841 switch (Op.getOpcode()) {
1842 default: assert(0 && "Wasn't expecting to be able to lower this!");
Chris Lattner1a635d62006-04-14 06:01:58 +00001843 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1844 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
Nate Begeman37efe672006-04-22 18:53:45 +00001845 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
Chris Lattner1a635d62006-04-14 06:01:58 +00001846 case ISD::SETCC: return LowerSETCC(Op, DAG);
1847 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
Chris Lattner8ab5fe52006-05-16 18:18:50 +00001848 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG,
1849 VarArgsFrameIndex);
Chris Lattner1a635d62006-04-14 06:01:58 +00001850 case ISD::RET: return LowerRET(Op, DAG);
Chris Lattner7c0d6642005-10-02 06:37:13 +00001851
Chris Lattner1a635d62006-04-14 06:01:58 +00001852 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
1853 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1854 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001855
Chris Lattner1a635d62006-04-14 06:01:58 +00001856 // Lower 64-bit shifts.
1857 case ISD::SHL: return LowerSHL(Op, DAG);
1858 case ISD::SRL: return LowerSRL(Op, DAG);
1859 case ISD::SRA: return LowerSRA(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001860
Chris Lattner1a635d62006-04-14 06:01:58 +00001861 // Vector-related lowering.
1862 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
1863 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
1864 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1865 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
Chris Lattnere7c768e2006-04-18 03:24:30 +00001866 case ISD::MUL: return LowerMUL(Op, DAG);
Chris Lattnerbc11c342005-08-31 20:23:54 +00001867 }
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001868 return SDOperand();
1869}
1870
Chris Lattner1a635d62006-04-14 06:01:58 +00001871//===----------------------------------------------------------------------===//
1872// Other Lowering Code
1873//===----------------------------------------------------------------------===//
1874
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001875std::pair<SDOperand, SDOperand>
Nate Begeman21e463b2005-10-16 05:39:50 +00001876PPCTargetLowering::LowerCallTo(SDOperand Chain,
1877 const Type *RetTy, bool isVarArg,
1878 unsigned CallingConv, bool isTailCall,
1879 SDOperand Callee, ArgListTy &Args,
1880 SelectionDAG &DAG) {
Chris Lattner281b55e2006-01-27 23:34:02 +00001881 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001882 // SelectExpr to use to put the arguments in the appropriate registers.
1883 std::vector<SDOperand> args_to_use;
1884
1885 // Count how many bytes are to be pushed on the stack, including the linkage
1886 // area, and parameter passing area.
1887 unsigned NumBytes = 24;
1888
1889 if (Args.empty()) {
Chris Lattner45b39762006-02-13 08:55:29 +00001890 Chain = DAG.getCALLSEQ_START(Chain,
1891 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001892 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001893 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001894 switch (getValueType(Args[i].second)) {
Chris Lattner915fb302005-08-30 00:19:00 +00001895 default: assert(0 && "Unknown value type!");
1896 case MVT::i1:
1897 case MVT::i8:
1898 case MVT::i16:
1899 case MVT::i32:
1900 case MVT::f32:
1901 NumBytes += 4;
1902 break;
1903 case MVT::i64:
1904 case MVT::f64:
1905 NumBytes += 8;
1906 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001907 }
Chris Lattner915fb302005-08-30 00:19:00 +00001908 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001909
Chris Lattner915fb302005-08-30 00:19:00 +00001910 // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1911 // plus 32 bytes of argument space in case any called code gets funky on us.
1912 // (Required by ABI to support var arg)
1913 if (NumBytes < 56) NumBytes = 56;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001914
1915 // Adjust the stack pointer for the new arguments...
1916 // These operations are automatically eliminated by the prolog/epilog pass
Chris Lattner45b39762006-02-13 08:55:29 +00001917 Chain = DAG.getCALLSEQ_START(Chain,
1918 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001919
1920 // Set up a copy of the stack pointer for use loading and storing any
1921 // arguments that may not fit in the registers available for argument
1922 // passing.
Chris Lattnera243db82006-01-11 19:55:07 +00001923 SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001924
1925 // Figure out which arguments are going to go in registers, and which in
1926 // memory. Also, if this is a vararg function, floating point operations
1927 // must be stored to our stack, and loaded into integer regs as well, if
1928 // any integer regs are available for argument passing.
1929 unsigned ArgOffset = 24;
1930 unsigned GPR_remaining = 8;
1931 unsigned FPR_remaining = 13;
1932
1933 std::vector<SDOperand> MemOps;
1934 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1935 // PtrOff will be used to store the current argument to the stack if a
1936 // register cannot be found for it.
1937 SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1938 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1939 MVT::ValueType ArgVT = getValueType(Args[i].second);
1940
1941 switch (ArgVT) {
Chris Lattner915fb302005-08-30 00:19:00 +00001942 default: assert(0 && "Unexpected ValueType for argument!");
1943 case MVT::i1:
1944 case MVT::i8:
1945 case MVT::i16:
1946 // Promote the integer to 32 bits. If the input type is signed use a
1947 // sign extend, otherwise use a zero extend.
1948 if (Args[i].second->isSigned())
1949 Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1950 else
1951 Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1952 // FALL THROUGH
1953 case MVT::i32:
1954 if (GPR_remaining > 0) {
1955 args_to_use.push_back(Args[i].first);
1956 --GPR_remaining;
1957 } else {
1958 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1959 Args[i].first, PtrOff,
1960 DAG.getSrcValue(NULL)));
1961 }
1962 ArgOffset += 4;
1963 break;
1964 case MVT::i64:
1965 // If we have one free GPR left, we can place the upper half of the i64
1966 // in it, and store the other half to the stack. If we have two or more
1967 // free GPRs, then we can pass both halves of the i64 in registers.
1968 if (GPR_remaining > 0) {
1969 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
Chris Lattner00402c72006-05-16 04:20:24 +00001970 Args[i].first, DAG.getConstant(1, MVT::i32));
Chris Lattner915fb302005-08-30 00:19:00 +00001971 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
Chris Lattner00402c72006-05-16 04:20:24 +00001972 Args[i].first, DAG.getConstant(0, MVT::i32));
Chris Lattner915fb302005-08-30 00:19:00 +00001973 args_to_use.push_back(Hi);
1974 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001975 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00001976 args_to_use.push_back(Lo);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001977 --GPR_remaining;
1978 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001979 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1980 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001981 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
Chris Lattner915fb302005-08-30 00:19:00 +00001982 Lo, PtrOff, DAG.getSrcValue(NULL)));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001983 }
Chris Lattner915fb302005-08-30 00:19:00 +00001984 } else {
1985 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1986 Args[i].first, PtrOff,
1987 DAG.getSrcValue(NULL)));
1988 }
1989 ArgOffset += 8;
1990 break;
1991 case MVT::f32:
1992 case MVT::f64:
1993 if (FPR_remaining > 0) {
1994 args_to_use.push_back(Args[i].first);
1995 --FPR_remaining;
1996 if (isVarArg) {
1997 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1998 Args[i].first, PtrOff,
1999 DAG.getSrcValue(NULL));
2000 MemOps.push_back(Store);
2001 // Float varargs are always shadowed in available integer registers
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002002 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00002003 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2004 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00002005 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00002006 args_to_use.push_back(Load);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002007 --GPR_remaining;
Chris Lattner915fb302005-08-30 00:19:00 +00002008 }
2009 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002010 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
2011 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner915fb302005-08-30 00:19:00 +00002012 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2013 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00002014 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00002015 args_to_use.push_back(Load);
2016 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002017 }
2018 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00002019 // If we have any FPRs remaining, we may also have GPRs remaining.
2020 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2021 // GPRs.
2022 if (GPR_remaining > 0) {
2023 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2024 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002025 }
Chris Lattner915fb302005-08-30 00:19:00 +00002026 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2027 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2028 --GPR_remaining;
2029 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002030 }
Chris Lattner915fb302005-08-30 00:19:00 +00002031 } else {
2032 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2033 Args[i].first, PtrOff,
2034 DAG.getSrcValue(NULL)));
2035 }
2036 ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
2037 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002038 }
2039 }
2040 if (!MemOps.empty())
2041 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
2042 }
2043
2044 std::vector<MVT::ValueType> RetVals;
2045 MVT::ValueType RetTyVT = getValueType(RetTy);
Chris Lattnerf5059492005-09-02 01:24:55 +00002046 MVT::ValueType ActualRetTyVT = RetTyVT;
2047 if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
2048 ActualRetTyVT = MVT::i32; // Promote result to i32.
2049
Chris Lattnere00ebf02006-01-28 07:33:03 +00002050 if (RetTyVT == MVT::i64) {
2051 RetVals.push_back(MVT::i32);
2052 RetVals.push_back(MVT::i32);
2053 } else if (RetTyVT != MVT::isVoid) {
Chris Lattnerf5059492005-09-02 01:24:55 +00002054 RetVals.push_back(ActualRetTyVT);
Chris Lattnere00ebf02006-01-28 07:33:03 +00002055 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002056 RetVals.push_back(MVT::Other);
2057
Chris Lattner2823b3e2005-11-17 05:56:14 +00002058 // If the callee is a GlobalAddress node (quite common, every direct call is)
2059 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2060 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2061 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
2062
Chris Lattner281b55e2006-01-27 23:34:02 +00002063 std::vector<SDOperand> Ops;
2064 Ops.push_back(Chain);
2065 Ops.push_back(Callee);
2066 Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
2067 SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
Chris Lattnere00ebf02006-01-28 07:33:03 +00002068 Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002069 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
2070 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattnerf5059492005-09-02 01:24:55 +00002071 SDOperand RetVal = TheCall;
2072
2073 // If the result is a small value, add a note so that we keep track of the
2074 // information about whether it is sign or zero extended.
2075 if (RetTyVT != ActualRetTyVT) {
2076 RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
2077 MVT::i32, RetVal, DAG.getValueType(RetTyVT));
2078 RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
Chris Lattnere00ebf02006-01-28 07:33:03 +00002079 } else if (RetTyVT == MVT::i64) {
2080 RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
Chris Lattnerf5059492005-09-02 01:24:55 +00002081 }
2082
2083 return std::make_pair(RetVal, Chain);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002084}
2085
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002086MachineBasicBlock *
Nate Begeman21e463b2005-10-16 05:39:50 +00002087PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2088 MachineBasicBlock *BB) {
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002089 assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
Chris Lattner919c0322005-10-01 01:35:02 +00002090 MI->getOpcode() == PPC::SELECT_CC_F4 ||
Chris Lattner710ff322006-04-08 22:45:08 +00002091 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2092 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002093 "Unexpected instr type to insert");
2094
2095 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2096 // control-flow pattern. The incoming instruction knows the destination vreg
2097 // to set, the condition code register to branch on, the true/false values to
2098 // select between, and a branch opcode to use.
2099 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2100 ilist<MachineBasicBlock>::iterator It = BB;
2101 ++It;
2102
2103 // thisMBB:
2104 // ...
2105 // TrueVal = ...
2106 // cmpTY ccX, r1, r2
2107 // bCC copy1MBB
2108 // fallthrough --> copy0MBB
2109 MachineBasicBlock *thisMBB = BB;
2110 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2111 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2112 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2113 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2114 MachineFunction *F = BB->getParent();
2115 F->getBasicBlockList().insert(It, copy0MBB);
2116 F->getBasicBlockList().insert(It, sinkMBB);
Nate Begemanf15485a2006-03-27 01:32:24 +00002117 // Update machine-CFG edges by first adding all successors of the current
2118 // block to the new block which will contain the Phi node for the select.
2119 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2120 e = BB->succ_end(); i != e; ++i)
2121 sinkMBB->addSuccessor(*i);
2122 // Next, remove all successors of the current block, and add the true
2123 // and fallthrough blocks as its successors.
2124 while(!BB->succ_empty())
2125 BB->removeSuccessor(BB->succ_begin());
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002126 BB->addSuccessor(copy0MBB);
2127 BB->addSuccessor(sinkMBB);
2128
2129 // copy0MBB:
2130 // %FalseValue = ...
2131 // # fallthrough to sinkMBB
2132 BB = copy0MBB;
2133
2134 // Update machine-CFG edges
2135 BB->addSuccessor(sinkMBB);
2136
2137 // sinkMBB:
2138 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2139 // ...
2140 BB = sinkMBB;
2141 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2142 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2143 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2144
2145 delete MI; // The pseudo instruction is gone now.
2146 return BB;
2147}
2148
Chris Lattner1a635d62006-04-14 06:01:58 +00002149//===----------------------------------------------------------------------===//
2150// Target Optimization Hooks
2151//===----------------------------------------------------------------------===//
2152
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002153SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2154 DAGCombinerInfo &DCI) const {
2155 TargetMachine &TM = getTargetMachine();
2156 SelectionDAG &DAG = DCI.DAG;
2157 switch (N->getOpcode()) {
2158 default: break;
2159 case ISD::SINT_TO_FP:
2160 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002161 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2162 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2163 // We allow the src/dst to be either f32/f64, but the intermediate
2164 // type must be i64.
2165 if (N->getOperand(0).getValueType() == MVT::i64) {
2166 SDOperand Val = N->getOperand(0).getOperand(0);
2167 if (Val.getValueType() == MVT::f32) {
2168 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2169 DCI.AddToWorklist(Val.Val);
2170 }
2171
2172 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002173 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002174 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002175 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002176 if (N->getValueType(0) == MVT::f32) {
2177 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2178 DCI.AddToWorklist(Val.Val);
2179 }
2180 return Val;
2181 } else if (N->getOperand(0).getValueType() == MVT::i32) {
2182 // If the intermediate type is i32, we can avoid the load/store here
2183 // too.
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002184 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002185 }
2186 }
2187 break;
Chris Lattner51269842006-03-01 05:50:56 +00002188 case ISD::STORE:
2189 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2190 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2191 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2192 N->getOperand(1).getValueType() == MVT::i32) {
2193 SDOperand Val = N->getOperand(1).getOperand(0);
2194 if (Val.getValueType() == MVT::f32) {
2195 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2196 DCI.AddToWorklist(Val.Val);
2197 }
2198 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2199 DCI.AddToWorklist(Val.Val);
2200
2201 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2202 N->getOperand(2), N->getOperand(3));
2203 DCI.AddToWorklist(Val.Val);
2204 return Val;
2205 }
2206 break;
Chris Lattner4468c222006-03-31 06:02:07 +00002207 case PPCISD::VCMP: {
2208 // If a VCMPo node already exists with exactly the same operands as this
2209 // node, use its result instead of this node (VCMPo computes both a CR6 and
2210 // a normal output).
2211 //
2212 if (!N->getOperand(0).hasOneUse() &&
2213 !N->getOperand(1).hasOneUse() &&
2214 !N->getOperand(2).hasOneUse()) {
2215
2216 // Scan all of the users of the LHS, looking for VCMPo's that match.
2217 SDNode *VCMPoNode = 0;
2218
2219 SDNode *LHSN = N->getOperand(0).Val;
2220 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2221 UI != E; ++UI)
2222 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2223 (*UI)->getOperand(1) == N->getOperand(1) &&
2224 (*UI)->getOperand(2) == N->getOperand(2) &&
2225 (*UI)->getOperand(0) == N->getOperand(0)) {
2226 VCMPoNode = *UI;
2227 break;
2228 }
2229
Chris Lattner00901202006-04-18 18:28:22 +00002230 // If there is no VCMPo node, or if the flag value has a single use, don't
2231 // transform this.
2232 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2233 break;
2234
2235 // Look at the (necessarily single) use of the flag value. If it has a
2236 // chain, this transformation is more complex. Note that multiple things
2237 // could use the value result, which we should ignore.
2238 SDNode *FlagUser = 0;
2239 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2240 FlagUser == 0; ++UI) {
2241 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2242 SDNode *User = *UI;
2243 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2244 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2245 FlagUser = User;
2246 break;
2247 }
2248 }
2249 }
2250
2251 // If the user is a MFCR instruction, we know this is safe. Otherwise we
2252 // give up for right now.
2253 if (FlagUser->getOpcode() == PPCISD::MFCR)
Chris Lattner4468c222006-03-31 06:02:07 +00002254 return SDOperand(VCMPoNode, 0);
2255 }
2256 break;
2257 }
Chris Lattner90564f22006-04-18 17:59:36 +00002258 case ISD::BR_CC: {
2259 // If this is a branch on an altivec predicate comparison, lower this so
2260 // that we don't have to do a MFCR: instead, branch directly on CR6. This
2261 // lowering is done pre-legalize, because the legalizer lowers the predicate
2262 // compare down to code that is difficult to reassemble.
2263 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2264 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2265 int CompareOpc;
2266 bool isDot;
2267
2268 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2269 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2270 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2271 assert(isDot && "Can't compare against a vector result!");
2272
2273 // If this is a comparison against something other than 0/1, then we know
2274 // that the condition is never/always true.
2275 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2276 if (Val != 0 && Val != 1) {
2277 if (CC == ISD::SETEQ) // Cond never true, remove branch.
2278 return N->getOperand(0);
2279 // Always !=, turn it into an unconditional branch.
2280 return DAG.getNode(ISD::BR, MVT::Other,
2281 N->getOperand(0), N->getOperand(4));
2282 }
2283
2284 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2285
2286 // Create the PPCISD altivec 'dot' comparison node.
2287 std::vector<SDOperand> Ops;
2288 std::vector<MVT::ValueType> VTs;
2289 Ops.push_back(LHS.getOperand(2)); // LHS of compare
2290 Ops.push_back(LHS.getOperand(3)); // RHS of compare
2291 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2292 VTs.push_back(LHS.getOperand(2).getValueType());
2293 VTs.push_back(MVT::Flag);
2294 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2295
2296 // Unpack the result based on how the target uses it.
2297 unsigned CompOpc;
2298 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2299 default: // Can't happen, don't crash on invalid number though.
2300 case 0: // Branch on the value of the EQ bit of CR6.
2301 CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2302 break;
2303 case 1: // Branch on the inverted value of the EQ bit of CR6.
2304 CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2305 break;
2306 case 2: // Branch on the value of the LT bit of CR6.
2307 CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2308 break;
2309 case 3: // Branch on the inverted value of the LT bit of CR6.
2310 CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2311 break;
2312 }
2313
2314 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2315 DAG.getRegister(PPC::CR6, MVT::i32),
2316 DAG.getConstant(CompOpc, MVT::i32),
2317 N->getOperand(4), CompNode.getValue(1));
2318 }
2319 break;
2320 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002321 }
2322
2323 return SDOperand();
2324}
2325
Chris Lattner1a635d62006-04-14 06:01:58 +00002326//===----------------------------------------------------------------------===//
2327// Inline Assembly Support
2328//===----------------------------------------------------------------------===//
2329
Chris Lattnerbbe77de2006-04-02 06:26:07 +00002330void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2331 uint64_t Mask,
2332 uint64_t &KnownZero,
2333 uint64_t &KnownOne,
2334 unsigned Depth) const {
2335 KnownZero = 0;
2336 KnownOne = 0;
2337 switch (Op.getOpcode()) {
2338 default: break;
2339 case ISD::INTRINSIC_WO_CHAIN: {
2340 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2341 default: break;
2342 case Intrinsic::ppc_altivec_vcmpbfp_p:
2343 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2344 case Intrinsic::ppc_altivec_vcmpequb_p:
2345 case Intrinsic::ppc_altivec_vcmpequh_p:
2346 case Intrinsic::ppc_altivec_vcmpequw_p:
2347 case Intrinsic::ppc_altivec_vcmpgefp_p:
2348 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2349 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2350 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2351 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2352 case Intrinsic::ppc_altivec_vcmpgtub_p:
2353 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2354 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2355 KnownZero = ~1U; // All bits but the low one are known to be zero.
2356 break;
2357 }
2358 }
2359 }
2360}
2361
2362
Chris Lattnerad3bc8d2006-02-07 20:16:30 +00002363/// getConstraintType - Given a constraint letter, return the type of
2364/// constraint it is for this target.
2365PPCTargetLowering::ConstraintType
2366PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2367 switch (ConstraintLetter) {
2368 default: break;
2369 case 'b':
2370 case 'r':
2371 case 'f':
2372 case 'v':
2373 case 'y':
2374 return C_RegisterClass;
2375 }
2376 return TargetLowering::getConstraintType(ConstraintLetter);
2377}
2378
2379
Chris Lattnerddc787d2006-01-31 19:20:21 +00002380std::vector<unsigned> PPCTargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00002381getRegClassForInlineAsmConstraint(const std::string &Constraint,
2382 MVT::ValueType VT) const {
Chris Lattnerddc787d2006-01-31 19:20:21 +00002383 if (Constraint.size() == 1) {
2384 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2385 default: break; // Unknown constriant letter
2386 case 'b':
2387 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2388 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2389 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2390 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2391 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2392 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2393 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2394 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2395 0);
2396 case 'r':
2397 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2398 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2399 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2400 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2401 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2402 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2403 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2404 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2405 0);
2406 case 'f':
2407 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2408 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2409 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2410 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2411 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2412 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2413 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2414 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2415 0);
2416 case 'v':
2417 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2418 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2419 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2420 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2421 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2422 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2423 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2424 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2425 0);
2426 case 'y':
2427 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2428 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2429 0);
2430 }
2431 }
2432
Chris Lattner1efa40f2006-02-22 00:56:39 +00002433 return std::vector<unsigned>();
Chris Lattnerddc787d2006-01-31 19:20:21 +00002434}
Chris Lattner763317d2006-02-07 00:47:13 +00002435
2436// isOperandValidForConstraint
2437bool PPCTargetLowering::
2438isOperandValidForConstraint(SDOperand Op, char Letter) {
2439 switch (Letter) {
2440 default: break;
2441 case 'I':
2442 case 'J':
2443 case 'K':
2444 case 'L':
2445 case 'M':
2446 case 'N':
2447 case 'O':
2448 case 'P': {
2449 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2450 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2451 switch (Letter) {
2452 default: assert(0 && "Unknown constraint letter!");
2453 case 'I': // "I" is a signed 16-bit constant.
2454 return (short)Value == (int)Value;
2455 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2456 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2457 return (short)Value == 0;
2458 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2459 return (Value >> 16) == 0;
2460 case 'M': // "M" is a constant that is greater than 31.
2461 return Value > 31;
2462 case 'N': // "N" is a positive constant that is an exact power of two.
2463 return (int)Value > 0 && isPowerOf2_32(Value);
2464 case 'O': // "O" is the constant zero.
2465 return Value == 0;
2466 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2467 return (short)-Value == (int)-Value;
2468 }
2469 break;
2470 }
2471 }
2472
2473 // Handle standard constraint letters.
2474 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2475}
Evan Chengc4c62572006-03-13 23:20:37 +00002476
2477/// isLegalAddressImmediate - Return true if the integer value can be used
2478/// as the offset of the target addressing mode.
2479bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2480 // PPC allows a sign-extended 16-bit immediate field.
2481 return (V > -(1 << 16) && V < (1 << 16)-1);
2482}