blob: b13023cdbe310ae162188dca2158d9f3d43665b8 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
Chris Lattner8b0f7a72010-02-11 07:06:31 +000026 // FIXME: This is just a stub.
27 fixup_1byte_imm = FirstTargetFixupKind,
28 fixup_2byte_imm,
29 fixup_4byte_imm,
30 fixup_8byte_imm
Chris Lattner5dccfad2010-02-10 06:52:12 +000031};
32}
33}
34
Chris Lattner45762472010-02-03 21:24:49 +000035namespace {
36class X86MCCodeEmitter : public MCCodeEmitter {
37 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
38 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000039 const TargetMachine &TM;
40 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000041 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000042public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000043 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000044 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000045 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000046 }
47
48 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000049
50 unsigned getNumFixupKinds() const {
Chris Lattner8b0f7a72010-02-11 07:06:31 +000051 return 4;
Daniel Dunbar73c55742010-02-09 22:59:55 +000052 }
53
54 MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
55 static MCFixupKindInfo Infos[] = {
Chris Lattner8b0f7a72010-02-11 07:06:31 +000056 { "fixup_1byte_imm", 0, 1 * 8 },
57 { "fixup_2byte_imm", 0, 2 * 8 },
58 { "fixup_4byte_imm", 0, 4 * 8 },
59 { "fixup_8byte_imm", 0, 8 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000060 };
61
62 assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
63 "Invalid kind!");
64 return Infos[Kind - FirstTargetFixupKind];
65 }
Chris Lattner45762472010-02-03 21:24:49 +000066
Chris Lattner28249d92010-02-05 01:53:19 +000067 static unsigned GetX86RegNum(const MCOperand &MO) {
68 return X86RegisterInfo::getX86RegNum(MO.getReg());
69 }
70
Chris Lattner37ce80e2010-02-10 06:41:02 +000071 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000072 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000074 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000075
Chris Lattner37ce80e2010-02-10 06:41:02 +000076 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
77 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000078 // Output the constant in little endian byte order.
79 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000080 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000081 Val >>= 8;
82 }
83 }
Chris Lattner0e73c392010-02-05 06:16:07 +000084
Chris Lattnera38c7072010-02-11 06:54:23 +000085 void EmitImmediate(const MCOperand &Disp, unsigned ImmSize,
86 unsigned &CurByte, raw_ostream &OS,
87 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000088
89 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
90 unsigned RM) {
91 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
92 return RM | (RegOpcode << 3) | (Mod << 6);
93 }
94
95 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 unsigned &CurByte, raw_ostream &OS) const {
97 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000098 }
99
Chris Lattner0e73c392010-02-05 06:16:07 +0000100 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000101 unsigned &CurByte, raw_ostream &OS) const {
102 // SIB byte is in the same format as the ModRMByte.
103 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000104 }
105
106
Chris Lattner1ac23b12010-02-05 02:18:40 +0000107 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000108 unsigned RegOpcodeField,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000109 unsigned &CurByte, raw_ostream &OS,
110 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000111
Daniel Dunbar73c55742010-02-09 22:59:55 +0000112 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
113 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000114
Chris Lattner45762472010-02-03 21:24:49 +0000115};
116
117} // end anonymous namespace
118
119
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000120MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
121 TargetMachine &TM) {
122 return new X86MCCodeEmitter(TM, false);
123}
124
125MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
126 TargetMachine &TM) {
127 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000128}
129
130
Chris Lattner1ac23b12010-02-05 02:18:40 +0000131/// isDisp8 - Return true if this signed displacement fits in a 8-bit
132/// sign-extended field.
133static bool isDisp8(int Value) {
134 return Value == (signed char)Value;
135}
136
Chris Lattner0e73c392010-02-05 06:16:07 +0000137void X86MCCodeEmitter::
Chris Lattnera38c7072010-02-11 06:54:23 +0000138EmitImmediate(const MCOperand &DispOp, unsigned Size,
139 unsigned &CurByte, raw_ostream &OS,
140 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000141 // If this is a simple integer displacement that doesn't require a relocation,
142 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000143 if (DispOp.isImm()) {
Chris Lattnera38c7072010-02-11 06:54:23 +0000144 EmitConstant(DispOp.getImm(), Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000145 return;
146 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000147
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000148 // FIXME: Pass in the relocation type, this is just a hack..
149 unsigned FixupKind;
150 if (Size == 1)
151 FixupKind = X86::fixup_1byte_imm;
152 else if (Size == 2)
153 FixupKind = X86::fixup_2byte_imm;
154 else if (Size == 4)
155 FixupKind = X86::fixup_4byte_imm;
156 else {
157 assert(Size == 8 && "Unknown immediate size");
158 FixupKind = X86::fixup_8byte_imm;
159 }
Chris Lattner5dccfad2010-02-10 06:52:12 +0000160
161 // Emit a symbolic constant as a fixup and 4 zeros.
162 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000163 MCFixupKind(FixupKind)));
Chris Lattnera38c7072010-02-11 06:54:23 +0000164 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000165}
166
167
Chris Lattner1ac23b12010-02-05 02:18:40 +0000168void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
169 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000170 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000171 raw_ostream &OS,
172 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000173 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000174 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000175 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000176 const MCOperand &IndexReg = MI.getOperand(Op+2);
177 unsigned BaseReg = Base.getReg();
178
Chris Lattnera8168ec2010-02-09 21:57:34 +0000179 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000180 // If no BaseReg, issue a RIP relative instruction only if the MCE can
181 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
182 // 2-7) and absolute references.
Chris Lattnera8168ec2010-02-09 21:57:34 +0000183 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000184 IndexReg.getReg() == 0 &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000185 // The SIB byte must be used if the base is ESP/RSP.
186 BaseReg != X86::ESP && BaseReg != X86::RSP &&
187 // If there is no base register and we're in 64-bit mode, we need a SIB
188 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
189 (!Is64BitMode || BaseReg != 0)) {
190
191 if (BaseReg == 0 || // [disp32] in X86-32 mode
192 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000193 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000194 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000195 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000196 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000197
198 unsigned BaseRegNo = GetX86RegNum(Base);
199
200 // If the base is not EBP/ESP and there is no displacement, use simple
201 // indirect register encoding, this handles addresses like [EAX]. The
202 // encoding for [EBP] with no displacement means [disp32] so we handle it
203 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000204 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000205 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000206 return;
207 }
208
209 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000210 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000211 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000212 EmitImmediate(Disp, 1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000213 return;
214 }
215
216 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000217 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000218 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000219 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000220 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000221
222 // We need a SIB byte, so start by outputting the ModR/M byte first
223 assert(IndexReg.getReg() != X86::ESP &&
224 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
225
226 bool ForceDisp32 = false;
227 bool ForceDisp8 = false;
228 if (BaseReg == 0) {
229 // If there is no base register, we emit the special case SIB byte with
230 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000231 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000232 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000233 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000234 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000235 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000236 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000237 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000238 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000239 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000240 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000241 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000242 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000243 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
244 } else {
245 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000246 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000247 }
248
249 // Calculate what the SS field value should be...
250 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
251 unsigned SS = SSTable[Scale.getImm()];
252
253 if (BaseReg == 0) {
254 // Handle the SIB byte for the case where there is no base, see Intel
255 // Manual 2A, table 2-7. The displacement has already been output.
256 unsigned IndexRegNo;
257 if (IndexReg.getReg())
258 IndexRegNo = GetX86RegNum(IndexReg);
259 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
260 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000261 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000262 } else {
263 unsigned IndexRegNo;
264 if (IndexReg.getReg())
265 IndexRegNo = GetX86RegNum(IndexReg);
266 else
267 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000268 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000269 }
270
271 // Do we need to output a displacement?
272 if (ForceDisp8)
Chris Lattnera38c7072010-02-11 06:54:23 +0000273 EmitImmediate(Disp, 1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000274 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnera38c7072010-02-11 06:54:23 +0000275 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000276}
277
Chris Lattner39a612e2010-02-05 22:10:22 +0000278/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
279/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
280/// size, and 3) use of X86-64 extended registers.
281static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
282 const TargetInstrDesc &Desc) {
283 unsigned REX = 0;
284
285 // Pseudo instructions do not need REX prefix byte.
286 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
287 return 0;
288 if (TSFlags & X86II::REX_W)
289 REX |= 1 << 3;
290
291 if (MI.getNumOperands() == 0) return REX;
292
293 unsigned NumOps = MI.getNumOperands();
294 // FIXME: MCInst should explicitize the two-addrness.
295 bool isTwoAddr = NumOps > 1 &&
296 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
297
298 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
299 unsigned i = isTwoAddr ? 1 : 0;
300 for (; i != NumOps; ++i) {
301 const MCOperand &MO = MI.getOperand(i);
302 if (!MO.isReg()) continue;
303 unsigned Reg = MO.getReg();
304 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000305 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
306 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000307 REX |= 0x40;
308 break;
309 }
310
311 switch (TSFlags & X86II::FormMask) {
312 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
313 case X86II::MRMSrcReg:
314 if (MI.getOperand(0).isReg() &&
315 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
316 REX |= 1 << 2;
317 i = isTwoAddr ? 2 : 1;
318 for (; i != NumOps; ++i) {
319 const MCOperand &MO = MI.getOperand(i);
320 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
321 REX |= 1 << 0;
322 }
323 break;
324 case X86II::MRMSrcMem: {
325 if (MI.getOperand(0).isReg() &&
326 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
327 REX |= 1 << 2;
328 unsigned Bit = 0;
329 i = isTwoAddr ? 2 : 1;
330 for (; i != NumOps; ++i) {
331 const MCOperand &MO = MI.getOperand(i);
332 if (MO.isReg()) {
333 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
334 REX |= 1 << Bit;
335 Bit++;
336 }
337 }
338 break;
339 }
340 case X86II::MRM0m: case X86II::MRM1m:
341 case X86II::MRM2m: case X86II::MRM3m:
342 case X86II::MRM4m: case X86II::MRM5m:
343 case X86II::MRM6m: case X86II::MRM7m:
344 case X86II::MRMDestMem: {
345 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
346 i = isTwoAddr ? 1 : 0;
347 if (NumOps > e && MI.getOperand(e).isReg() &&
348 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
349 REX |= 1 << 2;
350 unsigned Bit = 0;
351 for (; i != e; ++i) {
352 const MCOperand &MO = MI.getOperand(i);
353 if (MO.isReg()) {
354 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
355 REX |= 1 << Bit;
356 Bit++;
357 }
358 }
359 break;
360 }
361 default:
362 if (MI.getOperand(0).isReg() &&
363 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
364 REX |= 1 << 0;
365 i = isTwoAddr ? 2 : 1;
366 for (unsigned e = NumOps; i != e; ++i) {
367 const MCOperand &MO = MI.getOperand(i);
368 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
369 REX |= 1 << 2;
370 }
371 break;
372 }
373 return REX;
374}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000375
376void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000377EncodeInstruction(const MCInst &MI, raw_ostream &OS,
378 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000379 unsigned Opcode = MI.getOpcode();
380 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000381 unsigned TSFlags = Desc.TSFlags;
382
Chris Lattner37ce80e2010-02-10 06:41:02 +0000383 // Keep track of the current byte being emitted.
384 unsigned CurByte = 0;
385
Chris Lattner1e80f402010-02-03 21:57:59 +0000386 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
387 // in order to provide diffability.
388
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000389 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000390 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000391 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000392
393 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000394 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000395 default: assert(0 && "Invalid segment!");
396 case 0: break; // No segment override!
397 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000398 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000399 break;
400 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000401 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000402 break;
403 }
404
Chris Lattner1e80f402010-02-03 21:57:59 +0000405 // Emit the repeat opcode prefix as needed.
406 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000407 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000408
Chris Lattner1e80f402010-02-03 21:57:59 +0000409 // Emit the operand size opcode prefix as needed.
410 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000411 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000412
413 // Emit the address size opcode prefix as needed.
414 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000415 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000416
417 bool Need0FPrefix = false;
418 switch (TSFlags & X86II::Op0Mask) {
419 default: assert(0 && "Invalid prefix!");
420 case 0: break; // No prefix!
421 case X86II::REP: break; // already handled.
422 case X86II::TB: // Two-byte opcode prefix
423 case X86II::T8: // 0F 38
424 case X86II::TA: // 0F 3A
425 Need0FPrefix = true;
426 break;
427 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000428 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000429 Need0FPrefix = true;
430 break;
431 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000432 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000433 Need0FPrefix = true;
434 break;
435 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000436 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000437 Need0FPrefix = true;
438 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000439 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
440 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
441 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
442 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
443 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
444 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
445 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
446 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000447 }
448
449 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000450 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000451 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000452 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000453 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000454 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000455
456 // 0x0F escape code must be emitted just before the opcode.
457 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000458 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000459
460 // FIXME: Pull this up into previous switch if REX can be moved earlier.
461 switch (TSFlags & X86II::Op0Mask) {
462 case X86II::TF: // F2 0F 38
463 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000464 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000465 break;
466 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000467 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000468 break;
469 }
470
471 // If this is a two-address instruction, skip one of the register operands.
472 unsigned NumOps = Desc.getNumOperands();
473 unsigned CurOp = 0;
474 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
475 ++CurOp;
476 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
477 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
478 --NumOps;
479
Chris Lattner74a21512010-02-05 19:24:13 +0000480 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000481 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000482 case X86II::MRMInitReg:
483 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000484 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000485 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
486 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000487 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000488 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000489
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000490 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000491 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000492 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000493
494 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000495 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000496 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000497 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000498 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000499 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000500
501 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000502 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000503 EmitMemModRMByte(MI, CurOp,
504 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner1b670602010-02-11 06:49:52 +0000505 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000506 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000507 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000508
509 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000510 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000511 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000512 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000513 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000514 break;
515
516 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000517 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000518
519 // FIXME: Maybe lea should have its own form? This is a horrible hack.
520 int AddrOperands;
521 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
522 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
523 AddrOperands = X86AddrNumOperands - 1; // No segment register
524 else
525 AddrOperands = X86AddrNumOperands;
526
Chris Lattnerdaa45552010-02-05 19:04:37 +0000527 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner1b670602010-02-11 06:49:52 +0000528 CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000529 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000530 break;
531 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000532
533 case X86II::MRM0r: case X86II::MRM1r:
534 case X86II::MRM2r: case X86II::MRM3r:
535 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000536 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000537 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000538
539 // Special handling of lfence, mfence, monitor, and mwait.
540 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
541 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
542 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000543 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0),
544 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000545
546 switch (Opcode) {
547 default: break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000548 case X86::MONITOR: EmitByte(0xC8, CurByte, OS); break;
549 case X86::MWAIT: EmitByte(0xC9, CurByte, OS); break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000550 }
551 } else {
552 EmitRegModRMByte(MI.getOperand(CurOp++),
553 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000554 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000555 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000556 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000557 case X86II::MRM0m: case X86II::MRM1m:
558 case X86II::MRM2m: case X86II::MRM3m:
559 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000560 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000561 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000562 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner1b670602010-02-11 06:49:52 +0000563 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000564 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000565 break;
566 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000567
568 // If there is a remaining operand, it must be a trailing immediate. Emit it
569 // according to the right size for the instruction.
570 if (CurOp != NumOps)
571 EmitImmediate(MI.getOperand(CurOp++), X86II::getSizeOfImm(TSFlags),
572 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000573
574#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000575 // FIXME: Verify.
576 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000577 errs() << "Cannot encode all operands of: ";
578 MI.dump();
579 errs() << '\n';
580 abort();
581 }
582#endif
Chris Lattner45762472010-02-03 21:24:49 +0000583}