blob: 96920ec28d77b10401476e211e583a69e92a0323 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
90 /// runOnFunction - Top level implementation of instruction selection for
91 /// the entire function.
92 ///
93 bool runOnFunction(Function &Fn) {
94 // First pass over the function, lower any unknown intrinsic functions
95 // with the IntrinsicLowering class.
96 LowerUnknownIntrinsicFunctionCalls(Fn);
97
98 F = &MachineFunction::construct(&Fn, TM);
99
100 // Create all of the machine basic blocks for the function...
101 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
102 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
103
104 BB = &F->front();
105
106 // Set up a frame object for the return address. This is used by the
107 // llvm.returnaddress & llvm.frameaddress intrinisics.
108 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
109
110 // Copy incoming arguments off of the stack...
111 LoadArgumentsToVirtualRegs(Fn);
112
113 // Instruction select everything except PHI nodes
114 visit(Fn);
115
116 // Select the PHI nodes
117 SelectPHINodes();
118
119 RegMap.clear();
120 MBBMap.clear();
121 AllocaMap.clear();
122 F = 0;
123 // We always build a machine code representation for the function
124 return true;
125 }
126
127 virtual const char *getPassName() const {
128 return "PowerPC Simple Instruction Selection";
129 }
130
131 /// visitBasicBlock - This method is called when we are visiting a new basic
132 /// block. This simply creates a new MachineBasicBlock to emit code into
133 /// and adds it to the current MachineFunction. Subsequent visit* for
134 /// instructions will be invoked for all instructions in the basic block.
135 ///
136 void visitBasicBlock(BasicBlock &LLVM_BB) {
137 BB = MBBMap[&LLVM_BB];
138 }
139
140 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
141 /// function, lowering any calls to unknown intrinsic functions into the
142 /// equivalent LLVM code.
143 ///
144 void LowerUnknownIntrinsicFunctionCalls(Function &F);
145
146 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
147 /// from the stack into virtual registers.
148 ///
149 void LoadArgumentsToVirtualRegs(Function &F);
150
151 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
152 /// because we have to generate our sources into the source basic blocks,
153 /// not the current one.
154 ///
155 void SelectPHINodes();
156
157 // Visitation methods for various instructions. These methods simply emit
158 // fixed PowerPC code for each instruction.
159
160 // Control flow operators
161 void visitReturnInst(ReturnInst &RI);
162 void visitBranchInst(BranchInst &BI);
163
164 struct ValueRecord {
165 Value *Val;
166 unsigned Reg;
167 const Type *Ty;
168 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
169 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
170 };
171 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
172 const std::vector<ValueRecord> &Args);
173 void visitCallInst(CallInst &I);
174 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
175
176 // Arithmetic operators
177 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
178 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
179 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
180 void visitMul(BinaryOperator &B);
181
182 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
183 void visitRem(BinaryOperator &B) { visitDivRem(B); }
184 void visitDivRem(BinaryOperator &B);
185
186 // Bitwise operators
187 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
188 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
189 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
190
191 // Comparison operators...
192 void visitSetCondInst(SetCondInst &I);
193 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
194 MachineBasicBlock *MBB,
195 MachineBasicBlock::iterator MBBI);
196 void visitSelectInst(SelectInst &SI);
197
198
199 // Memory Instructions
200 void visitLoadInst(LoadInst &I);
201 void visitStoreInst(StoreInst &I);
202 void visitGetElementPtrInst(GetElementPtrInst &I);
203 void visitAllocaInst(AllocaInst &I);
204 void visitMallocInst(MallocInst &I);
205 void visitFreeInst(FreeInst &I);
206
207 // Other operators
208 void visitShiftInst(ShiftInst &I);
209 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
210 void visitCastInst(CastInst &I);
211 void visitVANextInst(VANextInst &I);
212 void visitVAArgInst(VAArgInst &I);
213
214 void visitInstruction(Instruction &I) {
215 std::cerr << "Cannot instruction select: " << I;
216 abort();
217 }
218
219 /// promote32 - Make a value 32-bits wide, and put it somewhere.
220 ///
221 void promote32(unsigned targetReg, const ValueRecord &VR);
222
223 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
224 /// constant expression GEP support.
225 ///
226 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
227 Value *Src, User::op_iterator IdxBegin,
228 User::op_iterator IdxEnd, unsigned TargetReg);
229
230 /// emitCastOperation - Common code shared between visitCastInst and
231 /// constant expression cast support.
232 ///
233 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
234 Value *Src, const Type *DestTy, unsigned TargetReg);
235
236 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
237 /// and constant expression support.
238 ///
239 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
240 MachineBasicBlock::iterator IP,
241 Value *Op0, Value *Op1,
242 unsigned OperatorClass, unsigned TargetReg);
243
244 /// emitBinaryFPOperation - This method handles emission of floating point
245 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
246 void emitBinaryFPOperation(MachineBasicBlock *BB,
247 MachineBasicBlock::iterator IP,
248 Value *Op0, Value *Op1,
249 unsigned OperatorClass, unsigned TargetReg);
250
251 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1, unsigned TargetReg);
253
254 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
255 unsigned DestReg, const Type *DestTy,
256 unsigned Op0Reg, unsigned Op1Reg);
257 void doMultiplyConst(MachineBasicBlock *MBB,
258 MachineBasicBlock::iterator MBBI,
259 unsigned DestReg, const Type *DestTy,
260 unsigned Op0Reg, unsigned Op1Val);
261
262 void emitDivRemOperation(MachineBasicBlock *BB,
263 MachineBasicBlock::iterator IP,
264 Value *Op0, Value *Op1, bool isDiv,
265 unsigned TargetReg);
266
267 /// emitSetCCOperation - Common code shared between visitSetCondInst and
268 /// constant expression support.
269 ///
270 void emitSetCCOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, unsigned Opcode,
273 unsigned TargetReg);
274
275 /// emitShiftOperation - Common code shared between visitShiftInst and
276 /// constant expression support.
277 ///
278 void emitShiftOperation(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator IP,
280 Value *Op, Value *ShiftAmount, bool isLeftShift,
281 const Type *ResultTy, unsigned DestReg);
282
283 /// emitSelectOperation - Common code shared between visitSelectInst and the
284 /// constant expression support.
285 void emitSelectOperation(MachineBasicBlock *MBB,
286 MachineBasicBlock::iterator IP,
287 Value *Cond, Value *TrueVal, Value *FalseVal,
288 unsigned DestReg);
289
290 /// copyConstantToRegister - Output the instructions required to put the
291 /// specified constant into the specified register.
292 ///
293 void copyConstantToRegister(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator MBBI,
295 Constant *C, unsigned Reg);
296
297 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
298 unsigned LHS, unsigned RHS);
299
300 /// makeAnotherReg - This method returns the next register number we haven't
301 /// yet used.
302 ///
303 /// Long values are handled somewhat specially. They are always allocated
304 /// as pairs of 32 bit integer values. The register number returned is the
305 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
306 /// of the long value.
307 ///
308 unsigned makeAnotherReg(const Type *Ty) {
309 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
310 "Current target doesn't have PPC reg info??");
311 const PowerPCRegisterInfo *MRI =
312 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
313 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
314 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
315 // Create the lower part
316 F->getSSARegMap()->createVirtualRegister(RC);
317 // Create the upper part.
318 return F->getSSARegMap()->createVirtualRegister(RC)-1;
319 }
320
321 // Add the mapping of regnumber => reg class to MachineFunction
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
323 return F->getSSARegMap()->createVirtualRegister(RC);
324 }
325
326 /// getReg - This method turns an LLVM value into a register number.
327 ///
328 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
329 unsigned getReg(Value *V) {
330 // Just append to the end of the current bb.
331 MachineBasicBlock::iterator It = BB->end();
332 return getReg(V, BB, It);
333 }
334 unsigned getReg(Value *V, MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator IPt);
336
337 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
338 /// that is to be statically allocated with the initial stack frame
339 /// adjustment.
340 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
341 };
342}
343
344/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
345/// instruction in the entry block, return it. Otherwise, return a null
346/// pointer.
347static AllocaInst *dyn_castFixedAlloca(Value *V) {
348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
349 BasicBlock *BB = AI->getParent();
350 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
351 return AI;
352 }
353 return 0;
354}
355
356/// getReg - This method turns an LLVM value into a register number.
357///
358unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
359 MachineBasicBlock::iterator IPt) {
360 // If this operand is a constant, emit the code to copy the constant into
361 // the register here...
362 //
363 if (Constant *C = dyn_cast<Constant>(V)) {
364 unsigned Reg = makeAnotherReg(V->getType());
365 copyConstantToRegister(MBB, IPt, C, Reg);
366 return Reg;
367 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
368 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000369 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000370 // Move the address of the global into the register
Misha Brukman911afde2004-06-25 14:50:41 +0000371 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0)
372 .addGlobalAddress(GV);
373 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)i
374 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000375 return Reg2;
376 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
377 // Do not emit noop casts at all.
378 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
379 return getReg(CI->getOperand(0), MBB, IPt);
380 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
381 unsigned Reg = makeAnotherReg(V->getType());
382 unsigned FI = getFixedSizedAllocaFI(AI);
383 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
384 return Reg;
385 }
386
387 unsigned &Reg = RegMap[V];
388 if (Reg == 0) {
389 Reg = makeAnotherReg(V->getType());
390 RegMap[V] = Reg;
391 }
392
393 return Reg;
394}
395
396/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
397/// that is to be statically allocated with the initial stack frame
398/// adjustment.
399unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
400 // Already computed this?
401 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
402 if (I != AllocaMap.end() && I->first == AI) return I->second;
403
404 const Type *Ty = AI->getAllocatedType();
405 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
406 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
407 TySize *= CUI->getValue(); // Get total allocated size...
408 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
409
410 // Create a new stack object using the frame manager...
411 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
412 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
413 return FrameIdx;
414}
415
416
417/// copyConstantToRegister - Output the instructions required to put the
418/// specified constant into the specified register.
419///
420void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
421 MachineBasicBlock::iterator IP,
422 Constant *C, unsigned R) {
423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
424 unsigned Class = 0;
425 switch (CE->getOpcode()) {
426 case Instruction::GetElementPtr:
427 emitGEPOperation(MBB, IP, CE->getOperand(0),
428 CE->op_begin()+1, CE->op_end(), R);
429 return;
430 case Instruction::Cast:
431 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
432 return;
433
434 case Instruction::Xor: ++Class; // FALL THROUGH
435 case Instruction::Or: ++Class; // FALL THROUGH
436 case Instruction::And: ++Class; // FALL THROUGH
437 case Instruction::Sub: ++Class; // FALL THROUGH
438 case Instruction::Add:
439 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
440 Class, R);
441 return;
442
443 case Instruction::Mul:
444 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
445 return;
446
447 case Instruction::Div:
448 case Instruction::Rem:
449 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
450 CE->getOpcode() == Instruction::Div, R);
451 return;
452
453 case Instruction::SetNE:
454 case Instruction::SetEQ:
455 case Instruction::SetLT:
456 case Instruction::SetGT:
457 case Instruction::SetLE:
458 case Instruction::SetGE:
459 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
460 CE->getOpcode(), R);
461 return;
462
463 case Instruction::Shl:
464 case Instruction::Shr:
465 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
466 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
467 return;
468
469 case Instruction::Select:
470 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
471 CE->getOperand(2), R);
472 return;
473
474 default:
475 std::cerr << "Offending expr: " << C << "\n";
476 assert(0 && "Constant expression not yet handled!\n");
477 }
478 }
479
480 if (C->getType()->isIntegral()) {
481 unsigned Class = getClassB(C->getType());
482
483 if (Class == cLong) {
484 // Copy the value into the register pair.
485 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000486 unsigned hiTmp = makeAnotherReg(Type::IntTy);
487 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000488 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
489 .addImm(Val >> 48);
490 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
491 .addImm((Val >> 32) & 0xFFFF);
492 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
493 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000494 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
495 return;
496 }
497
498 assert(Class <= cInt && "Type not handled yet!");
499
500 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000501 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
502 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503 } else if (Class == cByte || Class == cShort) {
504 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000505 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
506 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000507 } else {
508 ConstantInt *CI = cast<ConstantInt>(C);
509 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
510 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000511 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
512 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000513 } else {
514 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000515 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
516 .addImm(CI->getRawValue() >> 16);
517 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
518 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000519 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000520 }
521 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
522 // We need to spill the constant to memory...
523 MachineConstantPool *CP = F->getConstantPool();
524 unsigned CPI = CP->getConstantPoolIndex(CFP);
525 const Type *Ty = CFP->getType();
526
Misha Brukman911afde2004-06-25 14:50:41 +0000527 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000528 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
529 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
530 } else if (isa<ConstantPointerNull>(C)) {
531 // Copy zero (null pointer) to the register.
532 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
533 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000534 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
535 .addGlobalAddress(CPR->getValue());
536 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
537 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000538 } else {
539 std::cerr << "Offending constant: " << C << "\n";
540 assert(0 && "Type not handled yet!");
541 }
542}
543
544/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
545/// the stack into virtual registers.
546///
547/// FIXME: When we can calculate which args are coming in via registers
548/// source them from there instead.
549void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
550 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
551 unsigned GPR_remaining = 8;
552 unsigned FPR_remaining = 13;
553 unsigned GPR_idx = 3;
554 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000555
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000556 MachineFrameInfo *MFI = F->getFrameInfo();
557
558 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
559 bool ArgLive = !I->use_empty();
560 unsigned Reg = ArgLive ? getReg(*I) : 0;
561 int FI; // Frame object index
562
563 switch (getClassB(I->getType())) {
564 case cByte:
565 if (ArgLive) {
566 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000567 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000568 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
569 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000570 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000571 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000572 }
573 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000574 break;
575 case cShort:
576 if (ArgLive) {
577 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000578 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000579 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
580 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000581 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000582 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000583 }
584 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000585 break;
586 case cInt:
587 if (ArgLive) {
588 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000589 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000590 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
591 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000592 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000593 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000594 }
595 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000596 break;
597 case cLong:
598 if (ArgLive) {
599 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000600 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000601 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
602 .addReg(PPC32::R0+GPR_idx);
603 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
604 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000605 } else {
606 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
607 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
608 }
609 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000610 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000611 if (GPR_remaining > 1) {
612 GPR_remaining--; // uses up 2 GPRs
613 GPR_idx++;
614 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000615 break;
616 case cFP:
617 if (ArgLive) {
618 unsigned Opcode;
619 if (I->getType() == Type::FloatTy) {
620 Opcode = PPC32::LFS;
621 FI = MFI->CreateFixedObject(4, ArgOffset);
622 } else {
623 Opcode = PPC32::LFD;
624 FI = MFI->CreateFixedObject(8, ArgOffset);
625 }
Misha Brukman422791f2004-06-21 17:41:12 +0000626 if (FPR_remaining > 0) {
627 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
628 FPR_remaining--;
629 FPR_idx++;
630 } else {
631 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
632 }
633 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000634 if (I->getType() == Type::DoubleTy) {
635 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000636 if (GPR_remaining > 0) {
637 GPR_remaining--; // uses up 2 GPRs
638 GPR_idx++;
639 }
640 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000641 break;
642 default:
643 assert(0 && "Unhandled argument type!");
644 }
645 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000646 if (GPR_remaining > 0) {
647 GPR_remaining--; // uses up 2 GPRs
648 GPR_idx++;
649 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000650 }
651
652 // If the function takes variable number of arguments, add a frame offset for
653 // the start of the first vararg value... this is used to expand
654 // llvm.va_start.
655 if (Fn.getFunctionType()->isVarArg())
656 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
657}
658
659
660/// SelectPHINodes - Insert machine code to generate phis. This is tricky
661/// because we have to generate our sources into the source basic blocks, not
662/// the current one.
663///
664void ISel::SelectPHINodes() {
665 const TargetInstrInfo &TII = *TM.getInstrInfo();
666 const Function &LF = *F->getFunction(); // The LLVM function...
667 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
668 const BasicBlock *BB = I;
669 MachineBasicBlock &MBB = *MBBMap[I];
670
671 // Loop over all of the PHI nodes in the LLVM basic block...
672 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
673 for (BasicBlock::const_iterator I = BB->begin();
674 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
675
676 // Create a new machine instr PHI node, and insert it.
677 unsigned PHIReg = getReg(*PN);
678 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
679 PPC32::PHI, PN->getNumOperands(), PHIReg);
680
681 MachineInstr *LongPhiMI = 0;
682 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
683 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
684 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
685
686 // PHIValues - Map of blocks to incoming virtual registers. We use this
687 // so that we only initialize one incoming value for a particular block,
688 // even if the block has multiple entries in the PHI node.
689 //
690 std::map<MachineBasicBlock*, unsigned> PHIValues;
691
692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
693 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
694 unsigned ValReg;
695 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
696 PHIValues.lower_bound(PredMBB);
697
698 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
699 // We already inserted an initialization of the register for this
700 // predecessor. Recycle it.
701 ValReg = EntryIt->second;
702
703 } else {
704 // Get the incoming value into a virtual register.
705 //
706 Value *Val = PN->getIncomingValue(i);
707
708 // If this is a constant or GlobalValue, we may have to insert code
709 // into the basic block to compute it into a virtual register.
710 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
711 isa<GlobalValue>(Val)) {
712 // Simple constants get emitted at the end of the basic block,
713 // before any terminator instructions. We "know" that the code to
714 // move a constant into a register will never clobber any flags.
715 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
716 } else {
717 // Because we don't want to clobber any values which might be in
718 // physical registers with the computation of this constant (which
719 // might be arbitrarily complex if it is a constant expression),
720 // just insert the computation at the top of the basic block.
721 MachineBasicBlock::iterator PI = PredMBB->begin();
722
723 // Skip over any PHI nodes though!
724 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
725 ++PI;
726
727 ValReg = getReg(Val, PredMBB, PI);
728 }
729
730 // Remember that we inserted a value for this PHI for this predecessor
731 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
732 }
733
734 PhiMI->addRegOperand(ValReg);
735 PhiMI->addMachineBasicBlockOperand(PredMBB);
736 if (LongPhiMI) {
737 LongPhiMI->addRegOperand(ValReg+1);
738 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
739 }
740 }
741
742 // Now that we emitted all of the incoming values for the PHI node, make
743 // sure to reposition the InsertPoint after the PHI that we just added.
744 // This is needed because we might have inserted a constant into this
745 // block, right after the PHI's which is before the old insert point!
746 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
747 ++PHIInsertPoint;
748 }
749 }
750}
751
752
753// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
754// it into the conditional branch or select instruction which is the only user
755// of the cc instruction. This is the case if the conditional branch is the
756// only user of the setcc, and if the setcc is in the same basic block as the
757// conditional branch. We also don't handle long arguments below, so we reject
758// them here as well.
759//
760static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
761 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
762 if (SCI->hasOneUse()) {
763 Instruction *User = cast<Instruction>(SCI->use_back());
764 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
765 SCI->getParent() == User->getParent() &&
766 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
767 SCI->getOpcode() == Instruction::SetEQ ||
768 SCI->getOpcode() == Instruction::SetNE))
769 return SCI;
770 }
771 return 0;
772}
773
774// Return a fixed numbering for setcc instructions which does not depend on the
775// order of the opcodes.
776//
777static unsigned getSetCCNumber(unsigned Opcode) {
778 switch(Opcode) {
779 default: assert(0 && "Unknown setcc instruction!");
780 case Instruction::SetEQ: return 0;
781 case Instruction::SetNE: return 1;
782 case Instruction::SetLT: return 2;
783 case Instruction::SetGE: return 3;
784 case Instruction::SetGT: return 4;
785 case Instruction::SetLE: return 5;
786 }
787}
788
789/// emitUCOM - emits an unordered FP compare.
790void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
791 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000792 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000793}
794
795// EmitComparison - This function emits a comparison of the two operands,
796// returning the extended setcc code to use.
797unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
798 MachineBasicBlock *MBB,
799 MachineBasicBlock::iterator IP) {
800 // The arguments are already supposed to be of the same type.
801 const Type *CompTy = Op0->getType();
802 unsigned Class = getClassB(CompTy);
803 unsigned Op0r = getReg(Op0, MBB, IP);
804
805 // Special case handling of: cmp R, i
806 if (isa<ConstantPointerNull>(Op1)) {
807 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
808 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
809 if (Class == cByte || Class == cShort || Class == cInt) {
810 unsigned Op1v = CI->getRawValue();
811
812 // Mask off any upper bits of the constant, if there are any...
813 Op1v &= (1ULL << (8 << Class)) - 1;
814
Misha Brukman422791f2004-06-21 17:41:12 +0000815 // Compare immediate or promote to reg?
816 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000817 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
818 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000819 } else {
820 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000821 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
822 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000823 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000824 return OpNum;
825 } else {
826 assert(Class == cLong && "Unknown integer class!");
827 unsigned LowCst = CI->getRawValue();
828 unsigned HiCst = CI->getRawValue() >> 32;
829 if (OpNum < 2) { // seteq, setne
830 unsigned LoTmp = Op0r;
831 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000832 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000833 unsigned LoTmp = makeAnotherReg(Type::IntTy);
834 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000835 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
836 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000837 }
838 unsigned HiTmp = Op0r+1;
839 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000840 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000841 unsigned HiTmp = makeAnotherReg(Type::IntTy);
842 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000843 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
844 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000845 }
846 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
847 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
848 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
849 return OpNum;
850 } else {
851 // Emit a sequence of code which compares the high and low parts once
852 // each, then uses a conditional move to handle the overflow case. For
853 // example, a setlt for long would generate code like this:
854 //
855 // AL = lo(op1) < lo(op2) // Always unsigned comparison
856 // BL = hi(op1) < hi(op2) // Signedness depends on operands
857 // dest = hi(op1) == hi(op2) ? BL : AL;
858 //
859
860 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000861 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
862 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000863 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000864 }
865 }
866 }
867
868 unsigned Op1r = getReg(Op1, MBB, IP);
869 switch (Class) {
870 default: assert(0 && "Unknown type class!");
871 case cByte:
872 case cShort:
873 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000874 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
875 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000876 break;
877 case cFP:
878 emitUCOM(MBB, IP, Op0r, Op1r);
879 break;
880
881 case cLong:
882 if (OpNum < 2) { // seteq, setne
883 unsigned LoTmp = makeAnotherReg(Type::IntTy);
884 unsigned HiTmp = makeAnotherReg(Type::IntTy);
885 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
886 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
887 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
888 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
889 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
890 break; // Allow the sete or setne to be generated from flags set by OR
891 } else {
892 // Emit a sequence of code which compares the high and low parts once
893 // each, then uses a conditional move to handle the overflow case. For
894 // example, a setlt for long would generate code like this:
895 //
896 // AL = lo(op1) < lo(op2) // Signedness depends on operands
897 // BL = hi(op1) < hi(op2) // Always unsigned comparison
898 // dest = hi(op1) == hi(op2) ? BL : AL;
899 //
900
901 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000902 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
903 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000904 return OpNum;
905 }
906 }
907 return OpNum;
908}
909
910/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
911/// register, then move it to wherever the result should be.
912///
913void ISel::visitSetCondInst(SetCondInst &I) {
914 if (canFoldSetCCIntoBranchOrSelect(&I))
915 return; // Fold this into a branch or select.
916
917 unsigned DestReg = getReg(I);
918 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000919 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
920 DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000921}
922
923/// emitSetCCOperation - Common code shared between visitSetCondInst and
924/// constant expression support.
925///
926/// FIXME: this is wrong. we should figure out a way to guarantee
927/// TargetReg is a CR and then make it a no-op
928void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
929 MachineBasicBlock::iterator IP,
930 Value *Op0, Value *Op1, unsigned Opcode,
931 unsigned TargetReg) {
932 unsigned OpNum = getSetCCNumber(Opcode);
933 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
934
935 // The value is already in CR0 at this point, do nothing.
936}
937
938
939void ISel::visitSelectInst(SelectInst &SI) {
940 unsigned DestReg = getReg(SI);
941 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000942 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
943 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000944}
945
946/// emitSelect - Common code shared between visitSelectInst and the constant
947/// expression support.
948/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
949/// no select instruction. FSEL only works for comparisons against zero.
950void ISel::emitSelectOperation(MachineBasicBlock *MBB,
951 MachineBasicBlock::iterator IP,
952 Value *Cond, Value *TrueVal, Value *FalseVal,
953 unsigned DestReg) {
954 unsigned SelectClass = getClassB(TrueVal->getType());
955
956 unsigned TrueReg = getReg(TrueVal, MBB, IP);
957 unsigned FalseReg = getReg(FalseVal, MBB, IP);
958
959 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000960 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000961 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000962 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000963 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000964 }
965
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000966 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000967 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
968 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000969 return;
970 }
971
972 unsigned CondReg = getReg(Cond, MBB, IP);
973 unsigned numZeros = makeAnotherReg(Type::IntTy);
974 unsigned falseHi = makeAnotherReg(Type::IntTy);
975 unsigned falseAll = makeAnotherReg(Type::IntTy);
976 unsigned trueAll = makeAnotherReg(Type::IntTy);
977 unsigned Temp1 = makeAnotherReg(Type::IntTy);
978 unsigned Temp2 = makeAnotherReg(Type::IntTy);
979
980 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000981 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
982 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000983 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
984 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
985 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
986 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
987 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
988
989 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000990 unsigned Temp3 = makeAnotherReg(Type::IntTy);
991 unsigned Temp4 = makeAnotherReg(Type::IntTy);
992 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
993 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
994 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000995 }
996
997 return;
998}
999
1000
1001
1002/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1003/// operand, in the specified target register.
1004///
1005void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1006 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1007
1008 Value *Val = VR.Val;
1009 const Type *Ty = VR.Ty;
1010 if (Val) {
1011 if (Constant *C = dyn_cast<Constant>(Val)) {
1012 Val = ConstantExpr::getCast(C, Type::IntTy);
1013 Ty = Type::IntTy;
1014 }
1015
Misha Brukman2fec9902004-06-21 20:22:03 +00001016 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001017 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1018 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1019
1020 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001021 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1022 } else {
1023 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001024 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1025 .addImm(TheVal >> 16);
1026 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1027 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001028 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001029 return;
1030 }
1031 }
1032
1033 // Make sure we have the register number for this value...
1034 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1035
1036 switch (getClassB(Ty)) {
1037 case cByte:
1038 // Extend value into target register (8->32)
1039 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001040 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1041 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001042 else
1043 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1044 break;
1045 case cShort:
1046 // Extend value into target register (16->32)
1047 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001048 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1049 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001050 else
1051 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1052 break;
1053 case cInt:
1054 // Move value into target register (32->32)
1055 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
1056 break;
1057 default:
1058 assert(0 && "Unpromotable operand class in promote32");
1059 }
1060}
1061
Misha Brukman2fec9902004-06-21 20:22:03 +00001062/// visitReturnInst - implemented with BLR
1063///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001064void ISel::visitReturnInst(ReturnInst &I) {
1065 Value *RetVal = I.getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001066 switch (getClassB(RetVal->getType())) {
1067 case cByte: // integral return values: extend or move into r3 and return
1068 case cShort:
1069 case cInt:
1070 promote32(PPC32::R3, ValueRecord(RetVal));
1071 break;
1072 case cFP: { // Floats & Doubles: Return in f1
1073 unsigned RetReg = getReg(RetVal);
1074 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1075 break;
1076 }
1077 case cLong: {
1078 unsigned RetReg = getReg(RetVal);
1079 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1080 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1081 break;
1082 }
1083 default:
1084 visitInstruction(I);
1085 }
1086 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1087}
1088
1089// getBlockAfter - Return the basic block which occurs lexically after the
1090// specified one.
1091static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1092 Function::iterator I = BB; ++I; // Get iterator to next block
1093 return I != BB->getParent()->end() ? &*I : 0;
1094}
1095
1096/// visitBranchInst - Handle conditional and unconditional branches here. Note
1097/// that since code layout is frozen at this point, that if we are trying to
1098/// jump to a block that is the immediate successor of the current block, we can
1099/// just make a fall-through (but we don't currently).
1100///
1101void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001102 // Update machine-CFG edges
1103 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1104 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001105 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001106
1107 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1108
1109 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001110 if (BI.getSuccessor(0) != NextBB)
1111 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1112 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001113 }
1114
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001115 // See if we can fold the setcc into the branch itself...
1116 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1117 if (SCI == 0) {
1118 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1119 // computed some other way...
1120 unsigned condReg = getReg(BI.getCondition());
Misha Brukman2fec9902004-06-21 20:22:03 +00001121 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
1122 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001123 if (BI.getSuccessor(1) == NextBB) {
1124 if (BI.getSuccessor(0) != NextBB)
Misha Brukman2fec9902004-06-21 20:22:03 +00001125 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
1126 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001127 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001128 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
1129 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001130
1131 if (BI.getSuccessor(0) != NextBB)
1132 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1133 }
1134 return;
1135 }
1136
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001137 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1138 MachineBasicBlock::iterator MII = BB->end();
1139 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1140
1141 const Type *CompTy = SCI->getOperand(0)->getType();
1142 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1143
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001144 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1145 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1146 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1147 unsigned BIval = BITab[0];
1148
1149 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001150 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
1151 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001152 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001153 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001154 } else {
1155 // Change to the inverse condition...
1156 if (BI.getSuccessor(1) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001157 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
1158 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001159 }
1160 }
1161}
1162
1163
1164/// doCall - This emits an abstract call instruction, setting up the arguments
1165/// and the return value as appropriate. For the actual function call itself,
1166/// it inserts the specified CallMI instruction into the stream.
1167///
1168/// FIXME: See Documentation at the following URL for "correct" behavior
1169/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1170void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1171 const std::vector<ValueRecord> &Args) {
1172 // Count how many bytes are to be pushed on the stack...
1173 unsigned NumBytes = 0;
1174
1175 if (!Args.empty()) {
1176 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1177 switch (getClassB(Args[i].Ty)) {
1178 case cByte: case cShort: case cInt:
1179 NumBytes += 4; break;
1180 case cLong:
1181 NumBytes += 8; break;
1182 case cFP:
1183 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1184 break;
1185 default: assert(0 && "Unknown class!");
1186 }
1187
1188 // Adjust the stack pointer for the new arguments...
1189 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1190
1191 // Arguments go on the stack in reverse order, as specified by the ABI.
1192 unsigned ArgOffset = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001193 unsigned GPR_remaining = 8;
1194 unsigned FPR_remaining = 13;
1195 unsigned GPR_idx = 3;
1196 unsigned FPR_idx = 1;
1197
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001198 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1199 unsigned ArgReg;
1200 switch (getClassB(Args[i].Ty)) {
1201 case cByte:
1202 case cShort:
1203 // Promote arg to 32 bits wide into a temporary register...
1204 ArgReg = makeAnotherReg(Type::UIntTy);
1205 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001206
1207 // Reg or stack?
1208 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001209 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1210 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001211 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001212 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1213 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001214 }
1215 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001216 case cInt:
1217 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1218
Misha Brukman422791f2004-06-21 17:41:12 +00001219 // Reg or stack?
1220 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001221 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1222 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001223 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001224 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1225 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001226 }
1227 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001228 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001229 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001230
Misha Brukman422791f2004-06-21 17:41:12 +00001231 // Reg or stack?
1232 if (GPR_remaining > 1) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001233 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1234 .addReg(ArgReg);
1235 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1)
1236 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001237 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001238 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1239 .addReg(PPC32::R1);
1240 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1241 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001242 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001243
1244 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman422791f2004-06-21 17:41:12 +00001245 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001246 GPR_remaining -= 1; // uses up 2 GPRs
1247 GPR_idx += 1;
Misha Brukman422791f2004-06-21 17:41:12 +00001248 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001249 break;
1250 case cFP:
1251 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1252 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001253 // Reg or stack?
1254 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001255 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1256 FPR_remaining--;
1257 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001258 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001259 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1260 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001261 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001262 } else {
1263 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001264 // Reg or stack?
1265 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001266 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1267 FPR_remaining--;
1268 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001269 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001270 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1271 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001272 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001273
Misha Brukman1916bf92004-06-24 21:56:15 +00001274 ArgOffset += 4; // 8 byte entry, not 4.
1275 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001276 GPR_remaining--; // uses up 2 GPRs
1277 GPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001278 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001279 }
1280 break;
1281
1282 default: assert(0 && "Unknown class!");
1283 }
1284 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +00001285 if (GPR_remaining > 0) {
1286 GPR_remaining--; // uses up 2 GPRs
1287 GPR_idx++;
1288 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001289 }
1290 } else {
1291 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1292 }
1293
1294 BB->push_back(CallMI);
1295
1296 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1297
1298 // If there is a return value, scavenge the result from the location the call
1299 // leaves it in...
1300 //
1301 if (Ret.Ty != Type::VoidTy) {
1302 unsigned DestClass = getClassB(Ret.Ty);
1303 switch (DestClass) {
1304 case cByte:
1305 case cShort:
1306 case cInt:
1307 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001308 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001309 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001310 case cFP: // Floating-point return values live in f1
1311 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1312 break;
1313 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001314 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1315 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001316 break;
1317 default: assert(0 && "Unknown class!");
1318 }
1319 }
1320}
1321
1322
1323/// visitCallInst - Push args on stack and do a procedure call instruction.
1324void ISel::visitCallInst(CallInst &CI) {
1325 MachineInstr *TheCall;
1326 if (Function *F = CI.getCalledFunction()) {
1327 // Is it an intrinsic function call?
1328 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1329 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1330 return;
1331 }
1332
1333 // Emit a CALL instruction with PC-relative displacement.
1334 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1335 } else { // Emit an indirect call through the CTR
1336 unsigned Reg = getReg(CI.getCalledValue());
1337 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1338 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1339 }
1340
1341 std::vector<ValueRecord> Args;
1342 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1343 Args.push_back(ValueRecord(CI.getOperand(i)));
1344
1345 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1346 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1347}
1348
1349
1350/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1351///
1352static Value *dyncastIsNan(Value *V) {
1353 if (CallInst *CI = dyn_cast<CallInst>(V))
1354 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001355 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001356 return CI->getOperand(1);
1357 return 0;
1358}
1359
1360/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1361/// or's whos operands are all calls to the isnan predicate.
1362static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1363 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1364
1365 // Check all uses, which will be or's of isnans if this predicate is true.
1366 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1367 Instruction *I = cast<Instruction>(*UI);
1368 if (I->getOpcode() != Instruction::Or) return false;
1369 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1370 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1371 }
1372
1373 return true;
1374}
1375
1376/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1377/// function, lowering any calls to unknown intrinsic functions into the
1378/// equivalent LLVM code.
1379///
1380void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1381 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1382 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1383 if (CallInst *CI = dyn_cast<CallInst>(I++))
1384 if (Function *F = CI->getCalledFunction())
1385 switch (F->getIntrinsicID()) {
1386 case Intrinsic::not_intrinsic:
1387 case Intrinsic::vastart:
1388 case Intrinsic::vacopy:
1389 case Intrinsic::vaend:
1390 case Intrinsic::returnaddress:
1391 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001392 // FIXME: should lower this ourselves
1393 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001394 // We directly implement these intrinsics
1395 break;
1396 case Intrinsic::readio: {
1397 // On PPC, memory operations are in-order. Lower this intrinsic
1398 // into a volatile load.
1399 Instruction *Before = CI->getPrev();
1400 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1401 CI->replaceAllUsesWith(LI);
1402 BB->getInstList().erase(CI);
1403 break;
1404 }
1405 case Intrinsic::writeio: {
1406 // On PPC, memory operations are in-order. Lower this intrinsic
1407 // into a volatile store.
1408 Instruction *Before = CI->getPrev();
1409 StoreInst *LI = new StoreInst(CI->getOperand(1),
1410 CI->getOperand(2), true, CI);
1411 CI->replaceAllUsesWith(LI);
1412 BB->getInstList().erase(CI);
1413 break;
1414 }
1415 default:
1416 // All other intrinsic calls we must lower.
1417 Instruction *Before = CI->getPrev();
1418 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1419 if (Before) { // Move iterator to instruction after call
1420 I = Before; ++I;
1421 } else {
1422 I = BB->begin();
1423 }
1424 }
1425}
1426
1427void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1428 unsigned TmpReg1, TmpReg2, TmpReg3;
1429 switch (ID) {
1430 case Intrinsic::vastart:
1431 // Get the address of the first vararg value...
1432 TmpReg1 = getReg(CI);
1433 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1434 return;
1435
1436 case Intrinsic::vacopy:
1437 TmpReg1 = getReg(CI);
1438 TmpReg2 = getReg(CI.getOperand(1));
1439 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1440 return;
1441 case Intrinsic::vaend: return;
1442
1443 case Intrinsic::returnaddress:
1444 case Intrinsic::frameaddress:
1445 TmpReg1 = getReg(CI);
1446 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1447 if (ID == Intrinsic::returnaddress) {
1448 // Just load the return address
1449 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1450 ReturnAddressIndex);
1451 } else {
1452 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1453 ReturnAddressIndex, -4, false);
1454 }
1455 } else {
1456 // Values other than zero are not implemented yet.
1457 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1458 }
1459 return;
1460
Misha Brukmana2916ce2004-06-21 17:58:36 +00001461#if 0
1462 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001463 case Intrinsic::isnan:
1464 // If this is only used by 'isunordered' style comparisons, don't emit it.
1465 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1466 TmpReg1 = getReg(CI.getOperand(1));
1467 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001468 TmpReg2 = makeAnotherReg(Type::IntTy);
1469 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001470 TmpReg3 = getReg(CI);
1471 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1472 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001473#endif
1474
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001475 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1476 }
1477}
1478
1479/// visitSimpleBinary - Implement simple binary operators for integral types...
1480/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1481/// Xor.
1482///
1483void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1484 unsigned DestReg = getReg(B);
1485 MachineBasicBlock::iterator MI = BB->end();
1486 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1487 unsigned Class = getClassB(B.getType());
1488
1489 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1490}
1491
1492/// emitBinaryFPOperation - This method handles emission of floating point
1493/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1494void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1495 MachineBasicBlock::iterator IP,
1496 Value *Op0, Value *Op1,
1497 unsigned OperatorClass, unsigned DestReg) {
1498
1499 // Special case: op Reg, <const fp>
1500 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001501 // Create a constant pool entry for this constant.
1502 MachineConstantPool *CP = F->getConstantPool();
1503 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1504 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001505
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001506 static const unsigned OpcodeTab[][4] = {
1507 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1508 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1509 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001510
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001511 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1512 unsigned TempReg = makeAnotherReg(Ty);
1513 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1514 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001515
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001516 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1517 unsigned Op0r = getReg(Op0, BB, IP);
1518 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1519 return;
1520 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001521
1522 // Special case: R1 = op <const fp>, R2
1523 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1524 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1525 // -0.0 - X === -X
1526 unsigned op1Reg = getReg(Op1, BB, IP);
1527 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1528 return;
1529 } else {
1530 // R1 = op CST, R2 --> R1 = opr R2, CST
1531
1532 // Create a constant pool entry for this constant.
1533 MachineConstantPool *CP = F->getConstantPool();
1534 unsigned CPI = CP->getConstantPoolIndex(CFP);
1535 const Type *Ty = CFP->getType();
1536
1537 static const unsigned OpcodeTab[][4] = {
1538 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1539 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1540 };
1541
1542 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001543 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001544 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1545 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1546
1547 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1548 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001549 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001550 return;
1551 }
1552
1553 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001554 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001555 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1556 };
1557
1558 unsigned Opcode = OpcodeTab[OperatorClass];
1559 unsigned Op0r = getReg(Op0, BB, IP);
1560 unsigned Op1r = getReg(Op1, BB, IP);
1561 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1562}
1563
1564/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1565/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1566/// Or, 4 for Xor.
1567///
1568/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1569/// and constant expression support.
1570///
1571void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1572 MachineBasicBlock::iterator IP,
1573 Value *Op0, Value *Op1,
1574 unsigned OperatorClass, unsigned DestReg) {
1575 unsigned Class = getClassB(Op0->getType());
1576
Misha Brukman422791f2004-06-21 17:41:12 +00001577 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001578 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001579 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1580 };
1581 // Otherwise, code generate the full operation with a constant.
1582 static const unsigned BottomTab[] = {
1583 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1584 };
1585 static const unsigned TopTab[] = {
1586 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1587 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001588
1589 if (Class == cFP) {
1590 assert(OperatorClass < 2 && "No logical ops for FP!");
1591 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1592 return;
1593 }
1594
1595 if (Op0->getType() == Type::BoolTy) {
1596 if (OperatorClass == 3)
1597 // If this is an or of two isnan's, emit an FP comparison directly instead
1598 // of or'ing two isnan's together.
1599 if (Value *LHS = dyncastIsNan(Op0))
1600 if (Value *RHS = dyncastIsNan(Op1)) {
1601 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001602 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001603 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001604 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001605 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1606 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001607 return;
1608 }
1609 }
1610
1611 // sub 0, X -> neg X
1612 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1613 if (OperatorClass == 1 && CI->isNullValue()) {
1614 unsigned op1Reg = getReg(Op1, MBB, IP);
1615 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1616
1617 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001618 unsigned zeroes = makeAnotherReg(Type::IntTy);
1619 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001620 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001621 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001622 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1623 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001624 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1625 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001626 }
1627 return;
1628 }
1629
1630 // Special case: op Reg, <const int>
1631 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1632 unsigned Op0r = getReg(Op0, MBB, IP);
1633
1634 // xor X, -1 -> not X
1635 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1636 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1637 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001638 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1639 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001640 return;
1641 }
1642
1643 unsigned Opcode = OpcodeTab[OperatorClass];
1644 unsigned Op1r = getReg(Op1, MBB, IP);
1645
1646 if (Class != cLong) {
1647 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1648 return;
1649 }
1650
1651 // If the constant is zero in the low 32-bits, just copy the low part
1652 // across and apply the normal 32-bit operation to the high parts. There
1653 // will be no carry or borrow into the top.
1654 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1655 if (OperatorClass != 2) // All but and...
1656 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1657 else
1658 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001659 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001660 return;
1661 }
1662
1663 // If this is a long value and the high or low bits have a special
1664 // property, emit some special cases.
1665 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1666
1667 // If this is a logical operation and the top 32-bits are zero, just
1668 // operate on the lower 32.
1669 if (Op1h == 0 && OperatorClass > 1) {
1670 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1671 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001672 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001673 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001674 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001675 return;
1676 }
1677
1678 // TODO: We could handle lots of other special cases here, such as AND'ing
1679 // with 0xFFFFFFFF00000000 -> noop, etc.
1680
Misha Brukman2fec9902004-06-21 20:22:03 +00001681 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1682 .addImm(Op1r);
1683 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1684 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001685 return;
1686 }
1687
1688 unsigned Op0r = getReg(Op0, MBB, IP);
1689 unsigned Op1r = getReg(Op1, MBB, IP);
1690
1691 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001692 unsigned Opcode = OpcodeTab[OperatorClass];
1693 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001694 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001695 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1696 .addImm(Op1r);
1697 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1698 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001699 }
1700 return;
1701}
1702
1703/// doMultiply - Emit appropriate instructions to multiply together the
1704/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1705/// result should be given as DestTy.
1706///
1707void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1708 unsigned DestReg, const Type *DestTy,
1709 unsigned op0Reg, unsigned op1Reg) {
1710 unsigned Class = getClass(DestTy);
1711 switch (Class) {
1712 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001713 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1714 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001715 case cInt:
1716 case cShort:
1717 case cByte:
1718 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1719 return;
1720 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001721 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001722 }
1723}
1724
1725// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1726// returns zero when the input is not exactly a power of two.
1727static unsigned ExactLog2(unsigned Val) {
1728 if (Val == 0 || (Val & (Val-1))) return 0;
1729 unsigned Count = 0;
1730 while (Val != 1) {
1731 Val >>= 1;
1732 ++Count;
1733 }
1734 return Count+1;
1735}
1736
1737
1738/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1739/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001740///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001741void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1742 MachineBasicBlock::iterator IP,
1743 unsigned DestReg, const Type *DestTy,
1744 unsigned op0Reg, unsigned ConstRHS) {
1745 unsigned Class = getClass(DestTy);
1746 // Handle special cases here.
1747 switch (ConstRHS) {
1748 case 0:
1749 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1750 return;
1751 case 1:
1752 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1753 return;
1754 case 2:
1755 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1756 return;
1757 }
1758
1759 // If the element size is exactly a power of 2, use a shift to get it.
1760 if (unsigned Shift = ExactLog2(ConstRHS)) {
1761 switch (Class) {
1762 default: assert(0 && "Unknown class for this function!");
1763 case cByte:
1764 case cShort:
1765 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001766 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1767 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001768 return;
1769 }
1770 }
1771
1772 // Most general case, emit a normal multiply...
1773 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1774 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001775 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1776 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001777 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1778
1779 // Emit a MUL to multiply the register holding the index by
1780 // elementSize, putting the result in OffsetReg.
1781 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1782}
1783
1784void ISel::visitMul(BinaryOperator &I) {
1785 unsigned ResultReg = getReg(I);
1786
1787 Value *Op0 = I.getOperand(0);
1788 Value *Op1 = I.getOperand(1);
1789
1790 MachineBasicBlock::iterator IP = BB->end();
1791 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1792}
1793
1794void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1795 Value *Op0, Value *Op1, unsigned DestReg) {
1796 MachineBasicBlock &BB = *MBB;
1797 TypeClass Class = getClass(Op0->getType());
1798
1799 // Simple scalar multiply?
1800 unsigned Op0Reg = getReg(Op0, &BB, IP);
1801 switch (Class) {
1802 case cByte:
1803 case cShort:
1804 case cInt:
1805 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1806 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1807 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1808 } else {
1809 unsigned Op1Reg = getReg(Op1, &BB, IP);
1810 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1811 }
1812 return;
1813 case cFP:
1814 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1815 return;
1816 case cLong:
1817 break;
1818 }
1819
1820 // Long value. We have to do things the hard way...
1821 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1822 unsigned CLow = CI->getRawValue();
1823 unsigned CHi = CI->getRawValue() >> 32;
1824
1825 if (CLow == 0) {
1826 // If the low part of the constant is all zeros, things are simple.
1827 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1828 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1829 return;
1830 }
1831
1832 // Multiply the two low parts
1833 unsigned OverflowReg = 0;
1834 if (CLow == 1) {
1835 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1836 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001837 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001838 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1839 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001840 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1841 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001842 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1843 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001844 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1845 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001846 }
1847
1848 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1849 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1850
1851 unsigned AHBLplusOverflowReg;
1852 if (OverflowReg) {
1853 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1854 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1855 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1856 } else {
1857 AHBLplusOverflowReg = AHBLReg;
1858 }
1859
1860 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001861 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1862 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001863 } else {
1864 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1865 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1866
1867 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1868 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1869 }
1870 return;
1871 }
1872
1873 // General 64x64 multiply
1874
1875 unsigned Op1Reg = getReg(Op1, &BB, IP);
1876
1877 // Multiply the two low parts... capturing carry into EDX
1878 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL
1879
1880 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1881 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
1882
1883 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1884 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1885
1886 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1887 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1888 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1889
1890 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1891 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1892
1893 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1894 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1895}
1896
1897
1898/// visitDivRem - Handle division and remainder instructions... these
1899/// instruction both require the same instructions to be generated, they just
1900/// select the result from a different register. Note that both of these
1901/// instructions work differently for signed and unsigned operands.
1902///
1903void ISel::visitDivRem(BinaryOperator &I) {
1904 unsigned ResultReg = getReg(I);
1905 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1906
1907 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001908 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1909 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001910}
1911
1912void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1913 MachineBasicBlock::iterator IP,
1914 Value *Op0, Value *Op1, bool isDiv,
1915 unsigned ResultReg) {
1916 const Type *Ty = Op0->getType();
1917 unsigned Class = getClass(Ty);
1918 switch (Class) {
1919 case cFP: // Floating point divide
1920 if (isDiv) {
1921 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1922 return;
1923 } else { // Floating point remainder...
1924 unsigned Op0Reg = getReg(Op0, BB, IP);
1925 unsigned Op1Reg = getReg(Op1, BB, IP);
1926 MachineInstr *TheCall =
1927 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1928 std::vector<ValueRecord> Args;
1929 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1930 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1931 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1932 }
1933 return;
1934 case cLong: {
1935 static const char *FnName[] =
1936 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1937 unsigned Op0Reg = getReg(Op0, BB, IP);
1938 unsigned Op1Reg = getReg(Op1, BB, IP);
1939 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1940 MachineInstr *TheCall =
1941 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1942
1943 std::vector<ValueRecord> Args;
1944 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1945 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1946 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1947 return;
1948 }
1949 case cByte: case cShort: case cInt:
1950 break; // Small integrals, handled below...
1951 default: assert(0 && "Unknown class!");
1952 }
1953
1954 // Special case signed division by power of 2.
1955 if (isDiv)
1956 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1957 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1958 int V = CI->getValue();
1959
1960 if (V == 1) { // X /s 1 => X
1961 unsigned Op0Reg = getReg(Op0, BB, IP);
1962 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1963 return;
1964 }
1965
1966 if (V == -1) { // X /s -1 => -X
1967 unsigned Op0Reg = getReg(Op0, BB, IP);
1968 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1969 return;
1970 }
1971
1972 bool isNeg = false;
1973 if (V < 0) { // Not a positive power of 2?
1974 V = -V;
1975 isNeg = true; // Maybe it's a negative power of 2.
1976 }
1977 if (unsigned Log = ExactLog2(V)) {
1978 --Log;
1979 unsigned Op0Reg = getReg(Op0, BB, IP);
1980 unsigned TmpReg = makeAnotherReg(Op0->getType());
1981 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001982 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001983 else
1984 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1985
1986 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001987 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
1988 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001989
1990 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1991 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1992
1993 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
1994 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
1995
1996 if (isNeg)
1997 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
1998 return;
1999 }
2000 }
2001
2002 unsigned Op0Reg = getReg(Op0, BB, IP);
2003 unsigned Op1Reg = getReg(Op1, BB, IP);
2004
2005 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002006 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002007 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002008 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002009 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002010 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002011 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002012 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2013 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2014
2015 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002016 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002017 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002018 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002019 }
2020 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2021 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002022 }
2023}
2024
2025
2026/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2027/// for constant immediate shift values, and for constant immediate
2028/// shift values equal to 1. Even the general case is sort of special,
2029/// because the shift amount has to be in CL, not just any old register.
2030///
2031void ISel::visitShiftInst(ShiftInst &I) {
2032 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002033 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2034 I.getOpcode () == Instruction::Shl, I.getType (),
2035 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002036}
2037
2038/// emitShiftOperation - Common code shared between visitShiftInst and
2039/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002040///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002041void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2042 MachineBasicBlock::iterator IP,
2043 Value *Op, Value *ShiftAmount, bool isLeftShift,
2044 const Type *ResultTy, unsigned DestReg) {
2045 unsigned SrcReg = getReg (Op, MBB, IP);
2046 bool isSigned = ResultTy->isSigned ();
2047 unsigned Class = getClass (ResultTy);
2048
2049 // Longs, as usual, are handled specially...
2050 if (Class == cLong) {
2051 // If we have a constant shift, we can generate much more efficient code
2052 // than otherwise...
2053 //
2054 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2055 unsigned Amount = CUI->getValue();
2056 if (Amount < 32) {
2057 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002058 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002059 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2060 .addImm(Amount).addImm(0).addImm(31-Amount);
2061 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2062 .addImm(Amount).addImm(32-Amount).addImm(31);
2063 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2064 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002065 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002066 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002067 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2068 .addImm(32-Amount).addImm(Amount).addImm(31);
2069 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2070 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2071 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2072 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002073 }
2074 } else { // Shifting more than 32 bits
2075 Amount -= 32;
2076 if (isLeftShift) {
2077 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002078 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2079 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002080 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002081 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2082 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002083 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002084 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002085 } else {
2086 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002087 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002088 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2089 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002090 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002091 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2092 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002093 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002094 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2095 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002096 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002097 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002098 }
2099 }
2100 } else {
2101 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2102 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002103 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2104 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2105 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2106 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2107 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2108
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002109 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002110 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2111 .addImm(32);
2112 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2113 .addReg(ShiftAmountReg);
2114 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2115 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2116 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2117 .addImm(-32);
2118 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2119 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2120 .addReg(TmpReg6);
2121 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2122 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002123 } else {
2124 if (isSigned) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002125 // FIXME: Unimplmented
2126 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman422791f2004-06-21 17:41:12 +00002127 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002128 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2129 .addImm(32);
2130 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2131 .addReg(ShiftAmountReg);
2132 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2133 .addReg(TmpReg1);
2134 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2135 .addReg(TmpReg3);
2136 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2137 .addImm(-32);
2138 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2139 .addReg(TmpReg5);
2140 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2141 .addReg(TmpReg6);
2142 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2143 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002144 }
2145 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002146 }
2147 return;
2148 }
2149
2150 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2151 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2152 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2153 unsigned Amount = CUI->getValue();
2154
Misha Brukman422791f2004-06-21 17:41:12 +00002155 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002156 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2157 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002158 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002159 if (isSigned) {
2160 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2161 } else {
2162 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2163 .addImm(32-Amount).addImm(Amount).addImm(31);
2164 }
Misha Brukman422791f2004-06-21 17:41:12 +00002165 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002166 } else { // The shift amount is non-constant.
2167 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2168
Misha Brukman422791f2004-06-21 17:41:12 +00002169 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002170 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2171 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002172 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002173 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2174 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002175 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002176 }
2177}
2178
2179
2180/// visitLoadInst - Implement LLVM load instructions
2181///
2182void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002183 static const unsigned Opcodes[] = {
2184 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2185 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002186 unsigned Class = getClassB(I.getType());
2187 unsigned Opcode = Opcodes[Class];
2188 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2189
2190 unsigned DestReg = getReg(I);
2191
2192 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002193 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002194 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002195 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2196 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002197 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002198 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002199 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002200 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002201 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002202
2203 if (Class == cLong) {
2204 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2205 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2206 } else {
2207 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2208 }
2209 }
2210}
2211
2212/// visitStoreInst - Implement LLVM store instructions
2213///
2214void ISel::visitStoreInst(StoreInst &I) {
2215 unsigned ValReg = getReg(I.getOperand(0));
2216 unsigned AddressReg = getReg(I.getOperand(1));
2217
2218 const Type *ValTy = I.getOperand(0)->getType();
2219 unsigned Class = getClassB(ValTy);
2220
2221 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002222 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002223 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002224 return;
2225 }
2226
2227 static const unsigned Opcodes[] = {
2228 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2229 };
2230 unsigned Opcode = Opcodes[Class];
2231 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2232 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2233}
2234
2235
2236/// visitCastInst - Here we have various kinds of copying with or without sign
2237/// extension going on.
2238///
2239void ISel::visitCastInst(CastInst &CI) {
2240 Value *Op = CI.getOperand(0);
2241
2242 unsigned SrcClass = getClassB(Op->getType());
2243 unsigned DestClass = getClassB(CI.getType());
2244 // Noop casts are not emitted: getReg will return the source operand as the
2245 // register to use for any uses of the noop cast.
2246 if (DestClass == SrcClass)
2247 return;
2248
2249 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2250 // of the case are GEP instructions, then the cast does not need to be
2251 // generated explicitly, it will be folded into the GEP.
2252 if (DestClass == cLong && SrcClass == cInt) {
2253 bool AllUsesAreGEPs = true;
2254 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2255 if (!isa<GetElementPtrInst>(*I)) {
2256 AllUsesAreGEPs = false;
2257 break;
2258 }
2259
2260 // No need to codegen this cast if all users are getelementptr instrs...
2261 if (AllUsesAreGEPs) return;
2262 }
2263
2264 unsigned DestReg = getReg(CI);
2265 MachineBasicBlock::iterator MI = BB->end();
2266 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2267}
2268
2269/// emitCastOperation - Common code shared between visitCastInst and constant
2270/// expression cast support.
2271///
2272void ISel::emitCastOperation(MachineBasicBlock *BB,
2273 MachineBasicBlock::iterator IP,
2274 Value *Src, const Type *DestTy,
2275 unsigned DestReg) {
2276 const Type *SrcTy = Src->getType();
2277 unsigned SrcClass = getClassB(SrcTy);
2278 unsigned DestClass = getClassB(DestTy);
2279 unsigned SrcReg = getReg(Src, BB, IP);
2280
2281 // Implement casts to bool by using compare on the operand followed by set if
2282 // not zero on the result.
2283 if (DestTy == Type::BoolTy) {
2284 switch (SrcClass) {
2285 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002286 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002287 case cInt: {
2288 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002289 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2290 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002291 break;
2292 }
2293 case cLong: {
2294 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2295 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2296 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002297 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2298 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002299 break;
2300 }
2301 case cFP:
2302 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002303 // Load -0.0
2304 // Compare
2305 // move to CR1
2306 // Negate -0.0
2307 // Compare
2308 // CROR
2309 // MFCR
2310 // Left-align
2311 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002312 break;
2313 }
2314 return;
2315 }
2316
2317 // Implement casts between values of the same type class (as determined by
2318 // getClass) by using a register-to-register move.
2319 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002320 if (SrcClass <= cInt) {
2321 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2322 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002323 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2324 } else if (SrcClass == cFP) {
2325 if (SrcTy == Type::FloatTy) { // float -> double
2326 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2327 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2328 } else { // double -> float
2329 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2330 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002331 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002332 }
2333 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002334 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002335 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2336 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002337 } else {
2338 assert(0 && "Cannot handle this type of cast instruction!");
2339 abort();
2340 }
2341 return;
2342 }
2343
2344 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2345 // or zero extension, depending on whether the source type was signed.
2346 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2347 SrcClass < DestClass) {
2348 bool isLong = DestClass == cLong;
2349 if (isLong) DestClass = cInt;
2350
2351 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2352 if (SrcClass < cInt) {
2353 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002354 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002355 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2356 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002357 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002358 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2359 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002360 }
2361 } else {
2362 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2363 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002364
2365 if (isLong) { // Handle upper 32 bits as appropriate...
2366 if (isUnsigned) // Zero out top bits...
2367 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2368 else // Sign extend bottom half...
2369 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2370 }
2371 return;
2372 }
2373
2374 // Special case long -> int ...
2375 if (SrcClass == cLong && DestClass == cInt) {
2376 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2377 return;
2378 }
2379
2380 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2381 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2382 && SrcClass > DestClass) {
2383 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002384 if (isUnsigned) {
2385 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002386 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2387 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002388 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002389 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2390 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002391 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002392 return;
2393 }
2394
2395 // Handle casts from integer to floating point now...
2396 if (DestClass == cFP) {
2397
Misha Brukman422791f2004-06-21 17:41:12 +00002398 // Emit a library call for long to float conversion
2399 if (SrcClass == cLong) {
2400 std::vector<ValueRecord> Args;
2401 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002402 MachineInstr *TheCall =
2403 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002404 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2405 return;
2406 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002407
2408 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002409 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002410 case Type::BoolTyID:
2411 case Type::SByteTyID:
2412 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2413 break;
2414 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002415 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2416 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002417 break;
2418 case Type::ShortTyID:
2419 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2420 break;
2421 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002422 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2423 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002424 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002425 case Type::IntTyID:
2426 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2427 break;
2428 case Type::UIntTyID:
2429 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2430 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002431 default: // No promotion needed...
2432 break;
2433 }
2434
2435 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002436
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002437 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002438 // Also spill room for a special conversion constant
2439 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002440 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2441 int ValueFrameIdx =
2442 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2443
Misha Brukman422791f2004-06-21 17:41:12 +00002444 unsigned constantHi = makeAnotherReg(Type::IntTy);
2445 unsigned constantLo = makeAnotherReg(Type::IntTy);
2446 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2447 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2448
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002449 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002450 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2451 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002452 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002453 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2454 ConstantFrameIndex);
2455 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2456 ConstantFrameIndex, 4);
2457 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2458 ValueFrameIdx);
2459 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2460 ValueFrameIdx, 4);
2461 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2462 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002463 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2464 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2465 } else {
2466 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002467 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2468 .addImm(0x4330);
2469 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2470 .addImm(0x8000);
2471 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2472 ConstantFrameIndex);
2473 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2474 ConstantFrameIndex, 4);
2475 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2476 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002477 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002478 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2479 ValueFrameIdx, 4);
2480 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2481 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002482 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002483 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002484 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002485 return;
2486 }
2487
2488 // Handle casts from floating point to integer now...
2489 if (SrcClass == cFP) {
2490
Misha Brukman422791f2004-06-21 17:41:12 +00002491 // emit library call
2492 if (DestClass == cLong) {
2493 std::vector<ValueRecord> Args;
2494 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002495 MachineInstr *TheCall =
2496 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002497 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2498 return;
2499 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002500
2501 int ValueFrameIdx =
2502 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2503
Misha Brukman422791f2004-06-21 17:41:12 +00002504 // load into 32 bit value, and then truncate as necessary
2505 // FIXME: This is wrong for unsigned dest types
2506 //if (DestTy->isSigned()) {
2507 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2508 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002509 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2510 .addReg(TempReg), ValueFrameIdx);
2511 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2512 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002513 //} else {
2514 //}
2515
2516 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002517 return;
2518 }
2519
2520 // Anything we haven't handled already, we can't (yet) handle at all.
2521 assert(0 && "Unhandled cast instruction!");
2522 abort();
2523}
2524
2525/// visitVANextInst - Implement the va_next instruction...
2526///
2527void ISel::visitVANextInst(VANextInst &I) {
2528 unsigned VAList = getReg(I.getOperand(0));
2529 unsigned DestReg = getReg(I);
2530
2531 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002532 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002533 default:
2534 std::cerr << I;
2535 assert(0 && "Error: bad type for va_next instruction!");
2536 return;
2537 case Type::PointerTyID:
2538 case Type::UIntTyID:
2539 case Type::IntTyID:
2540 Size = 4;
2541 break;
2542 case Type::ULongTyID:
2543 case Type::LongTyID:
2544 case Type::DoubleTyID:
2545 Size = 8;
2546 break;
2547 }
2548
2549 // Increment the VAList pointer...
2550 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2551}
2552
2553void ISel::visitVAArgInst(VAArgInst &I) {
2554 unsigned VAList = getReg(I.getOperand(0));
2555 unsigned DestReg = getReg(I);
2556
Misha Brukman358829f2004-06-21 17:25:55 +00002557 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002558 default:
2559 std::cerr << I;
2560 assert(0 && "Error: bad type for va_next instruction!");
2561 return;
2562 case Type::PointerTyID:
2563 case Type::UIntTyID:
2564 case Type::IntTyID:
2565 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2566 break;
2567 case Type::ULongTyID:
2568 case Type::LongTyID:
2569 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2570 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2571 break;
2572 case Type::DoubleTyID:
2573 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2574 break;
2575 }
2576}
2577
2578/// visitGetElementPtrInst - instruction-select GEP instructions
2579///
2580void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2581 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002582 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2583 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002584}
2585
2586void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2587 MachineBasicBlock::iterator IP,
2588 Value *Src, User::op_iterator IdxBegin,
2589 User::op_iterator IdxEnd, unsigned TargetReg) {
2590 const TargetData &TD = TM.getTargetData();
2591 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2592 Src = CPR->getValue();
2593
2594 std::vector<Value*> GEPOps;
2595 GEPOps.resize(IdxEnd-IdxBegin+1);
2596 GEPOps[0] = Src;
2597 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2598
2599 std::vector<const Type*> GEPTypes;
2600 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2601 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2602
2603 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman98649d12004-06-24 21:54:47 +00002604 while (!GEPTypes.empty()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002605 // It's an array or pointer access: [ArraySize x ElementType].
2606 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2607 Value *idx = GEPOps.back();
2608 GEPOps.pop_back(); // Consume a GEP operand
2609 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002610
Misha Brukman2fec9902004-06-21 20:22:03 +00002611 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2612 // operand on X86. Handle this case directly now...
2613 if (CastInst *CI = dyn_cast<CastInst>(idx))
2614 if (CI->getOperand(0)->getType() == Type::IntTy ||
2615 CI->getOperand(0)->getType() == Type::UIntTy)
2616 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002617
Misha Brukman2fec9902004-06-21 20:22:03 +00002618 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2619 // must find the size of the pointed-to type (Not coincidentally, the next
2620 // type is the type of the elements in the array).
2621 const Type *ElTy = SqTy->getElementType();
2622 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002623
Misha Brukman2fec9902004-06-21 20:22:03 +00002624 if (elementSize == 1) {
2625 // If the element size is 1, we don't have to multiply, just add
2626 unsigned idxReg = getReg(idx, MBB, IP);
2627 unsigned Reg = makeAnotherReg(Type::UIntTy);
2628 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2629 --IP; // Insert the next instruction before this one.
2630 TargetReg = Reg; // Codegen the rest of the GEP into this
2631 } else {
2632 unsigned idxReg = getReg(idx, MBB, IP);
2633 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002634
Misha Brukman2fec9902004-06-21 20:22:03 +00002635 // Make sure we can back the iterator up to point to the first
2636 // instruction emitted.
2637 MachineBasicBlock::iterator BeforeIt = IP;
2638 if (IP == MBB->begin())
2639 BeforeIt = MBB->end();
2640 else
2641 --BeforeIt;
2642 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002643
Misha Brukman2fec9902004-06-21 20:22:03 +00002644 // Emit an ADD to add OffsetReg to the basePtr.
2645 unsigned Reg = makeAnotherReg(Type::UIntTy);
2646 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002647
Misha Brukman2fec9902004-06-21 20:22:03 +00002648 // Step to the first instruction of the multiply.
2649 if (BeforeIt == MBB->end())
2650 IP = MBB->begin();
2651 else
2652 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002653
Misha Brukman2fec9902004-06-21 20:22:03 +00002654 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002655 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002656 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002657}
2658
2659/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2660/// frame manager, otherwise do it the hard way.
2661///
2662void ISel::visitAllocaInst(AllocaInst &I) {
2663 // If this is a fixed size alloca in the entry block for the function, we
2664 // statically stack allocate the space, so we don't need to do anything here.
2665 //
2666 if (dyn_castFixedAlloca(&I)) return;
2667
2668 // Find the data size of the alloca inst's getAllocatedType.
2669 const Type *Ty = I.getAllocatedType();
2670 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2671
2672 // Create a register to hold the temporary result of multiplying the type size
2673 // constant by the variable amount.
2674 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2675 unsigned SrcReg1 = getReg(I.getArraySize());
2676
2677 // TotalSizeReg = mul <numelements>, <TypeSize>
2678 MachineBasicBlock::iterator MBBI = BB->end();
2679 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2680
2681 // AddedSize = add <TotalSizeReg>, 15
2682 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2683 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2684
2685 // AlignedSize = and <AddedSize>, ~15
2686 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002687 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2688 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002689
2690 // Subtract size from stack pointer, thereby allocating some space.
2691 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2692
2693 // Put a pointer to the space into the result register, by copying
2694 // the stack pointer.
2695 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2696
2697 // Inform the Frame Information that we have just allocated a variable-sized
2698 // object.
2699 F->getFrameInfo()->CreateVariableSizedObject();
2700}
2701
2702/// visitMallocInst - Malloc instructions are code generated into direct calls
2703/// to the library malloc.
2704///
2705void ISel::visitMallocInst(MallocInst &I) {
2706 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2707 unsigned Arg;
2708
2709 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2710 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2711 } else {
2712 Arg = makeAnotherReg(Type::UIntTy);
2713 unsigned Op0Reg = getReg(I.getOperand(0));
2714 MachineBasicBlock::iterator MBBI = BB->end();
2715 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2716 }
2717
2718 std::vector<ValueRecord> Args;
2719 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002720 MachineInstr *TheCall =
2721 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002722 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2723}
2724
2725
2726/// visitFreeInst - Free instructions are code gen'd to call the free libc
2727/// function.
2728///
2729void ISel::visitFreeInst(FreeInst &I) {
2730 std::vector<ValueRecord> Args;
2731 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002732 MachineInstr *TheCall =
2733 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002734 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2735}
2736
2737/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2738/// into a machine code representation is a very simple peep-hole fashion. The
2739/// generated code sucks but the implementation is nice and simple.
2740///
2741FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2742 return new ISel(TM);
2743}