blob: a7ea8e7c3ad3fcda5c94f156cee7fec29958914e [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Misha Brukman2a835f92009-01-08 15:50:22 +00009//
Evan Chengb1290a62008-10-02 18:29:27 +000010// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
Misha Brukman2a835f92009-01-08 15:50:22 +000015// code is inserted and the process repeated.
Evan Chengb1290a62008-10-02 18:29:27 +000016//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
Misha Brukmance07e992009-01-08 16:40:25 +000019// allocation, see the following papers:
Evan Chengb1290a62008-10-02 18:29:27 +000020//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
Misha Brukman2a835f92009-01-08 15:50:22 +000029//
Evan Chengb1290a62008-10-02 18:29:27 +000030//===----------------------------------------------------------------------===//
31
Evan Chengb1290a62008-10-02 18:29:27 +000032#define DEBUG_TYPE "regalloc"
33
Lang Hames6699fb22009-08-06 23:32:48 +000034#include "PBQP/HeuristicSolver.h"
Lang Hames030c4bf2010-01-26 04:49:58 +000035#include "PBQP/Graph.h"
Lang Hames6699fb22009-08-06 23:32:48 +000036#include "PBQP/Heuristics/Briggs.h"
Evan Chengb1290a62008-10-02 18:29:27 +000037#include "VirtRegMap.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000038#include "VirtRegRewriter.h"
Lang Hamesa937f222009-12-14 06:49:42 +000039#include "llvm/CodeGen/CalcSpillWeights.h"
Evan Chengb1290a62008-10-02 18:29:27 +000040#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Lang Hames27601ef2008-11-16 12:12:54 +000041#include "llvm/CodeGen/LiveStackAnalysis.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000042#include "llvm/CodeGen/MachineFunctionPass.h"
Evan Chengb1290a62008-10-02 18:29:27 +000043#include "llvm/CodeGen/MachineLoopInfo.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000044#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/RegAllocRegistry.h"
46#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Chengb1290a62008-10-02 18:29:27 +000047#include "llvm/Support/Debug.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000048#include "llvm/Support/raw_ostream.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000049#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include <limits>
Evan Chengb1290a62008-10-02 18:29:27 +000052#include <map>
Misha Brukman2a835f92009-01-08 15:50:22 +000053#include <memory>
Evan Chengb1290a62008-10-02 18:29:27 +000054#include <set>
55#include <vector>
Evan Chengb1290a62008-10-02 18:29:27 +000056
57using namespace llvm;
58
59static RegisterRegAlloc
Duncan Sands1aecd152010-02-18 14:10:41 +000060registerPBQPRepAlloc("pbqp", "PBQP register allocator",
Lang Hames030c4bf2010-01-26 04:49:58 +000061 llvm::createPBQPRegisterAllocator);
Evan Chengb1290a62008-10-02 18:29:27 +000062
Lang Hames8481e3b2009-08-19 01:36:14 +000063static cl::opt<bool>
64pbqpCoalescing("pbqp-coalescing",
Lang Hames030c4bf2010-01-26 04:49:58 +000065 cl::desc("Attempt coalescing during PBQP register allocation."),
66 cl::init(false), cl::Hidden);
Lang Hames8481e3b2009-08-19 01:36:14 +000067
Evan Chengb1290a62008-10-02 18:29:27 +000068namespace {
69
Lang Hames6699fb22009-08-06 23:32:48 +000070 ///
71 /// PBQP based allocators solve the register allocation problem by mapping
72 /// register allocation problems to Partitioned Boolean Quadratic
73 /// Programming problems.
Nick Lewycky6726b6d2009-10-25 06:33:48 +000074 class PBQPRegAlloc : public MachineFunctionPass {
Evan Chengb1290a62008-10-02 18:29:27 +000075 public:
76
77 static char ID;
Daniel Dunbara279bc32009-09-20 02:20:51 +000078
Lang Hames6699fb22009-08-06 23:32:48 +000079 /// Construct a PBQP register allocator.
Dan Gohman1b2d0b82009-08-11 15:15:10 +000080 PBQPRegAlloc() : MachineFunctionPass(&ID) {}
Evan Chengb1290a62008-10-02 18:29:27 +000081
Lang Hames6699fb22009-08-06 23:32:48 +000082 /// Return the pass name.
Dan Gohman00b0a242009-08-11 15:35:57 +000083 virtual const char* getPassName() const {
Evan Chengb1290a62008-10-02 18:29:27 +000084 return "PBQP Register Allocator";
85 }
86
Lang Hames6699fb22009-08-06 23:32:48 +000087 /// PBQP analysis usage.
88 virtual void getAnalysisUsage(AnalysisUsage &au) const {
Lang Hames233a60e2009-11-03 23:52:08 +000089 au.addRequired<SlotIndexes>();
90 au.addPreserved<SlotIndexes>();
Lang Hames6699fb22009-08-06 23:32:48 +000091 au.addRequired<LiveIntervals>();
92 //au.addRequiredID(SplitCriticalEdgesID);
Lang Hamesf7c553e2009-08-12 21:04:53 +000093 au.addRequired<RegisterCoalescer>();
Lang Hamesa937f222009-12-14 06:49:42 +000094 au.addRequired<CalculateSpillWeights>();
Lang Hames6699fb22009-08-06 23:32:48 +000095 au.addRequired<LiveStacks>();
96 au.addPreserved<LiveStacks>();
97 au.addRequired<MachineLoopInfo>();
98 au.addPreserved<MachineLoopInfo>();
99 au.addRequired<VirtRegMap>();
100 MachineFunctionPass::getAnalysisUsage(au);
Evan Chengb1290a62008-10-02 18:29:27 +0000101 }
102
Lang Hames6699fb22009-08-06 23:32:48 +0000103 /// Perform register allocation
Evan Chengb1290a62008-10-02 18:29:27 +0000104 virtual bool runOnMachineFunction(MachineFunction &MF);
105
106 private:
Lang Hamesd0f6f012010-07-17 06:31:41 +0000107
108 class LIOrdering {
109 public:
110 bool operator()(const LiveInterval *li1, const LiveInterval *li2) const {
111 return li1->reg < li2->reg;
112 }
113 };
114
115 typedef std::map<const LiveInterval*, unsigned, LIOrdering> LI2NodeMap;
Evan Chengb1290a62008-10-02 18:29:27 +0000116 typedef std::vector<const LiveInterval*> Node2LIMap;
117 typedef std::vector<unsigned> AllowedSet;
118 typedef std::vector<AllowedSet> AllowedSetMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000119 typedef std::set<unsigned> RegSet;
120 typedef std::pair<unsigned, unsigned> RegPair;
Lang Hames6699fb22009-08-06 23:32:48 +0000121 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000122
Lang Hamesd0f6f012010-07-17 06:31:41 +0000123 typedef std::set<LiveInterval*, LIOrdering> LiveIntervalSet;
Evan Chengb1290a62008-10-02 18:29:27 +0000124
Lang Hames030c4bf2010-01-26 04:49:58 +0000125 typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
126
Evan Chengb1290a62008-10-02 18:29:27 +0000127 MachineFunction *mf;
128 const TargetMachine *tm;
129 const TargetRegisterInfo *tri;
130 const TargetInstrInfo *tii;
131 const MachineLoopInfo *loopInfo;
132 MachineRegisterInfo *mri;
133
Lang Hames27601ef2008-11-16 12:12:54 +0000134 LiveIntervals *lis;
135 LiveStacks *lss;
Evan Chengb1290a62008-10-02 18:29:27 +0000136 VirtRegMap *vrm;
137
138 LI2NodeMap li2Node;
139 Node2LIMap node2LI;
140 AllowedSetMap allowedSets;
Lang Hames27601ef2008-11-16 12:12:54 +0000141 LiveIntervalSet vregIntervalsToAlloc,
142 emptyVRegIntervals;
Lang Hames030c4bf2010-01-26 04:49:58 +0000143 NodeVector problemNodes;
Evan Chengb1290a62008-10-02 18:29:27 +0000144
Misha Brukman2a835f92009-01-08 15:50:22 +0000145
Lang Hames6699fb22009-08-06 23:32:48 +0000146 /// Builds a PBQP cost vector.
Lang Hames27601ef2008-11-16 12:12:54 +0000147 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000148 PBQP::Vector buildCostVector(unsigned vReg,
149 const RegContainer &allowed,
150 const CoalesceMap &cealesces,
151 PBQP::PBQPNum spillCost) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000152
Lang Hames6699fb22009-08-06 23:32:48 +0000153 /// \brief Builds a PBQP interference matrix.
154 ///
155 /// @return Either a pointer to a non-zero PBQP matrix representing the
156 /// allocation option costs, or a null pointer for a zero matrix.
157 ///
158 /// Expects allowed sets for two interfering LiveIntervals. These allowed
159 /// sets should contain only allocable registers from the LiveInterval's
160 /// register class, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000161 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000162 PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
163 const RegContainer &allowed2) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000164
Lang Hames6699fb22009-08-06 23:32:48 +0000165 ///
166 /// Expects allowed sets for two potentially coalescable LiveIntervals,
167 /// and an estimated benefit due to coalescing. The allowed sets should
168 /// contain only allocable registers from the LiveInterval's register
169 /// classes, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000170 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000171 PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
172 const RegContainer &allowed2,
173 PBQP::PBQPNum cBenefit) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000174
Lang Hames6699fb22009-08-06 23:32:48 +0000175 /// \brief Finds coalescing opportunities and returns them as a map.
176 ///
177 /// Any entries in the map are guaranteed coalescable, even if their
178 /// corresponding live intervals overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000179 CoalesceMap findCoalesces();
Evan Chengb1290a62008-10-02 18:29:27 +0000180
Lang Hames6699fb22009-08-06 23:32:48 +0000181 /// \brief Finds the initial set of vreg intervals to allocate.
Lang Hames27601ef2008-11-16 12:12:54 +0000182 void findVRegIntervalsToAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000183
Lang Hames6699fb22009-08-06 23:32:48 +0000184 /// \brief Constructs a PBQP problem representation of the register
185 /// allocation problem for this function.
186 ///
187 /// @return a PBQP solver object for the register allocation problem.
Lang Hames030c4bf2010-01-26 04:49:58 +0000188 PBQP::Graph constructPBQPProblem();
Evan Chengb1290a62008-10-02 18:29:27 +0000189
Lang Hames6699fb22009-08-06 23:32:48 +0000190 /// \brief Adds a stack interval if the given live interval has been
191 /// spilled. Used to support stack slot coloring.
Evan Chengc781a242009-05-03 18:32:42 +0000192 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000193
Lang Hames6699fb22009-08-06 23:32:48 +0000194 /// \brief Given a solved PBQP problem maps this solution back to a register
195 /// assignment.
196 bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
Evan Chengb1290a62008-10-02 18:29:27 +0000197
Lang Hames6699fb22009-08-06 23:32:48 +0000198 /// \brief Postprocessing before final spilling. Sets basic block "live in"
199 /// variables.
Lang Hames27601ef2008-11-16 12:12:54 +0000200 void finalizeAlloc() const;
201
Evan Chengb1290a62008-10-02 18:29:27 +0000202 };
203
204 char PBQPRegAlloc::ID = 0;
205}
206
207
Lang Hames27601ef2008-11-16 12:12:54 +0000208template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000209PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
210 const RegContainer &allowed,
211 const CoalesceMap &coalesces,
212 PBQP::PBQPNum spillCost) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000213
Lang Hames27601ef2008-11-16 12:12:54 +0000214 typedef typename RegContainer::const_iterator AllowedItr;
215
Evan Chengb1290a62008-10-02 18:29:27 +0000216 // Allocate vector. Additional element (0th) used for spill option
Lang Hames6699fb22009-08-06 23:32:48 +0000217 PBQP::Vector v(allowed.size() + 1, 0);
Evan Chengb1290a62008-10-02 18:29:27 +0000218
Lang Hames6699fb22009-08-06 23:32:48 +0000219 v[0] = spillCost;
Evan Chengb1290a62008-10-02 18:29:27 +0000220
Lang Hames27601ef2008-11-16 12:12:54 +0000221 // Iterate over the allowed registers inserting coalesce benefits if there
222 // are any.
223 unsigned ai = 0;
224 for (AllowedItr itr = allowed.begin(), end = allowed.end();
225 itr != end; ++itr, ++ai) {
226
227 unsigned pReg = *itr;
228
229 CoalesceMap::const_iterator cmItr =
230 coalesces.find(RegPair(vReg, pReg));
231
232 // No coalesce - on to the next preg.
233 if (cmItr == coalesces.end())
234 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000235
236 // We have a coalesce - insert the benefit.
Lang Hames6699fb22009-08-06 23:32:48 +0000237 v[ai + 1] = -cmItr->second;
Lang Hames27601ef2008-11-16 12:12:54 +0000238 }
239
Evan Chengb1290a62008-10-02 18:29:27 +0000240 return v;
241}
242
Lang Hames27601ef2008-11-16 12:12:54 +0000243template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000244PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000245 const RegContainer &allowed1, const RegContainer &allowed2) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000246
Lang Hames27601ef2008-11-16 12:12:54 +0000247 typedef typename RegContainer::const_iterator RegContainerIterator;
Evan Chengb1290a62008-10-02 18:29:27 +0000248
249 // Construct a PBQP matrix representing the cost of allocation options. The
250 // rows and columns correspond to the allocation options for the two live
251 // intervals. Elements will be infinite where corresponding registers alias,
252 // since we cannot allocate aliasing registers to interfering live intervals.
253 // All other elements (non-aliasing combinations) will have zero cost. Note
254 // that the spill option (element 0,0) has zero cost, since we can allocate
255 // both intervals to memory safely (the cost for each individual allocation
256 // to memory is accounted for by the cost vectors for each live interval).
Lang Hames6699fb22009-08-06 23:32:48 +0000257 PBQP::Matrix *m =
258 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Misha Brukman2a835f92009-01-08 15:50:22 +0000259
Evan Chengb1290a62008-10-02 18:29:27 +0000260 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
261 // between interfering live ranges with non-overlapping register sets (e.g.
262 // non-overlapping reg classes, or disjoint sets of allowed regs within the
263 // same class). The term "overlapping" is used advisedly: sets which do not
264 // intersect, but contain registers which alias, will have non-zero matrices.
265 // We optimize zero matrices away to improve solver speed.
266 bool isZeroMatrix = true;
267
268
269 // Row index. Starts at 1, since the 0th row is for the spill option, which
270 // is always zero.
Misha Brukman2a835f92009-01-08 15:50:22 +0000271 unsigned ri = 1;
Evan Chengb1290a62008-10-02 18:29:27 +0000272
Misha Brukman2a835f92009-01-08 15:50:22 +0000273 // Iterate over allowed sets, insert infinities where required.
Lang Hames27601ef2008-11-16 12:12:54 +0000274 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000275 a1Itr != a1End; ++a1Itr) {
276
277 // Column index, starts at 1 as for row index.
278 unsigned ci = 1;
279 unsigned reg1 = *a1Itr;
280
Lang Hames27601ef2008-11-16 12:12:54 +0000281 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000282 a2Itr != a2End; ++a2Itr) {
283
284 unsigned reg2 = *a2Itr;
285
286 // If the row/column regs are identical or alias insert an infinity.
Lang Hames3f2f3f52009-09-03 02:52:02 +0000287 if (tri->regsOverlap(reg1, reg2)) {
Lang Hames6699fb22009-08-06 23:32:48 +0000288 (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
Evan Chengb1290a62008-10-02 18:29:27 +0000289 isZeroMatrix = false;
290 }
291
292 ++ci;
293 }
294
295 ++ri;
296 }
297
298 // If this turns out to be a zero matrix...
299 if (isZeroMatrix) {
300 // free it and return null.
301 delete m;
302 return 0;
303 }
304
305 // ...otherwise return the cost matrix.
306 return m;
307}
308
Lang Hames27601ef2008-11-16 12:12:54 +0000309template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000310PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000311 const RegContainer &allowed1, const RegContainer &allowed2,
Lang Hames6699fb22009-08-06 23:32:48 +0000312 PBQP::PBQPNum cBenefit) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000313
Lang Hames27601ef2008-11-16 12:12:54 +0000314 typedef typename RegContainer::const_iterator RegContainerIterator;
315
316 // Construct a PBQP Matrix representing the benefits of coalescing. As with
317 // interference matrices the rows and columns represent allowed registers
318 // for the LiveIntervals which are (potentially) to be coalesced. The amount
319 // -cBenefit will be placed in any element representing the same register
320 // for both intervals.
Lang Hames6699fb22009-08-06 23:32:48 +0000321 PBQP::Matrix *m =
322 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Lang Hames27601ef2008-11-16 12:12:54 +0000323
324 // Reset costs to zero.
325 m->reset(0);
326
327 // Assume the matrix is zero till proven otherwise. Zero matrices will be
328 // optimized away as in the interference case.
329 bool isZeroMatrix = true;
330
331 // Row index. Starts at 1, since the 0th row is for the spill option, which
332 // is always zero.
333 unsigned ri = 1;
334
335 // Iterate over the allowed sets, insert coalescing benefits where
336 // appropriate.
337 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
338 a1Itr != a1End; ++a1Itr) {
339
340 // Column index, starts at 1 as for row index.
341 unsigned ci = 1;
342 unsigned reg1 = *a1Itr;
343
344 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
345 a2Itr != a2End; ++a2Itr) {
346
347 // If the row and column represent the same register insert a beneficial
348 // cost to preference this allocation - it would allow us to eliminate a
Misha Brukman2a835f92009-01-08 15:50:22 +0000349 // move instruction.
Lang Hames27601ef2008-11-16 12:12:54 +0000350 if (reg1 == *a2Itr) {
351 (*m)[ri][ci] = -cBenefit;
352 isZeroMatrix = false;
353 }
354
355 ++ci;
356 }
357
358 ++ri;
359 }
360
361 // If this turns out to be a zero matrix...
362 if (isZeroMatrix) {
363 // ...free it and return null.
364 delete m;
365 return 0;
366 }
367
368 return m;
369}
370
371PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
372
373 typedef MachineFunction::const_iterator MFIterator;
374 typedef MachineBasicBlock::const_iterator MBBIterator;
375 typedef LiveInterval::const_vni_iterator VNIIterator;
Misha Brukman2a835f92009-01-08 15:50:22 +0000376
Lang Hames27601ef2008-11-16 12:12:54 +0000377 CoalesceMap coalescesFound;
378
379 // To find coalesces we need to iterate over the function looking for
380 // copy instructions.
381 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000382 bbItr != bbEnd; ++bbItr) {
383
384 const MachineBasicBlock *mbb = &*bbItr;
Evan Chengb1290a62008-10-02 18:29:27 +0000385
Lang Hames27601ef2008-11-16 12:12:54 +0000386 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
387 iItr != iEnd; ++iItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000388
389 const MachineInstr *instr = &*iItr;
390
Lang Hames27601ef2008-11-16 12:12:54 +0000391 // If this isn't a copy then continue to the next instruction.
Jakob Stoklund Olesen04c528a2010-07-16 04:45:42 +0000392 if (!instr->isCopy())
Lang Hames27601ef2008-11-16 12:12:54 +0000393 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000394
Jakob Stoklund Olesen04c528a2010-07-16 04:45:42 +0000395 unsigned srcReg = instr->getOperand(1).getReg();
396 unsigned dstReg = instr->getOperand(0).getReg();
397
Lang Hames27601ef2008-11-16 12:12:54 +0000398 // If the registers are already the same our job is nice and easy.
399 if (dstReg == srcReg)
400 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000401
Lang Hames27601ef2008-11-16 12:12:54 +0000402 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
403 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
404
405 // If both registers are physical then we can't coalesce.
406 if (srcRegIsPhysical && dstRegIsPhysical)
407 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000408
Rafael Espindolacbeb3db2010-07-12 01:45:38 +0000409 // If it's a copy that includes two virtual register but the source and
410 // destination classes differ then we can't coalesce.
411 if (!srcRegIsPhysical && !dstRegIsPhysical &&
412 mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
Lang Hames27601ef2008-11-16 12:12:54 +0000413 continue;
414
Rafael Espindolacbeb3db2010-07-12 01:45:38 +0000415 // If one is physical and one is virtual, check that the physical is
416 // allocatable in the class of the virtual.
417 if (srcRegIsPhysical && !dstRegIsPhysical) {
418 const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
Lang Hames0b23dc02010-02-09 00:50:27 +0000419 if (std::find(dstRegClass->allocation_order_begin(*mf),
420 dstRegClass->allocation_order_end(*mf), srcReg) ==
421 dstRegClass->allocation_order_end(*mf))
Evan Chengb1290a62008-10-02 18:29:27 +0000422 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000423 }
Rafael Espindolacbeb3db2010-07-12 01:45:38 +0000424 if (!srcRegIsPhysical && dstRegIsPhysical) {
425 const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
Lang Hames0b23dc02010-02-09 00:50:27 +0000426 if (std::find(srcRegClass->allocation_order_begin(*mf),
427 srcRegClass->allocation_order_end(*mf), dstReg) ==
428 srcRegClass->allocation_order_end(*mf))
Lang Hames27601ef2008-11-16 12:12:54 +0000429 continue;
430 }
431
432 // If we've made it here we have a copy with compatible register classes.
Misha Brukman2a835f92009-01-08 15:50:22 +0000433 // We can probably coalesce, but we need to consider overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000434 const LiveInterval *srcLI = &lis->getInterval(srcReg),
435 *dstLI = &lis->getInterval(dstReg);
436
437 if (srcLI->overlaps(*dstLI)) {
438 // Even in the case of an overlap we might still be able to coalesce,
439 // but we need to make sure that no definition of either range occurs
440 // while the other range is live.
441
442 // Otherwise start by assuming we're ok.
443 bool badDef = false;
444
445 // Test all defs of the source range.
Misha Brukman2a835f92009-01-08 15:50:22 +0000446 for (VNIIterator
Lang Hames27601ef2008-11-16 12:12:54 +0000447 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
448 vniItr != vniEnd; ++vniItr) {
449
Lang Hames0b23dc02010-02-09 00:50:27 +0000450 // If we find a poorly defined def we err on the side of caution.
451 if (!(*vniItr)->def.isValid()) {
452 badDef = true;
453 break;
454 }
455
Lang Hames27601ef2008-11-16 12:12:54 +0000456 // If we find a def that kills the coalescing opportunity then
457 // record it and break from the loop.
458 if (dstLI->liveAt((*vniItr)->def)) {
459 badDef = true;
460 break;
461 }
462 }
463
464 // If we have a bad def give up, continue to the next instruction.
465 if (badDef)
466 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000467
Lang Hames27601ef2008-11-16 12:12:54 +0000468 // Otherwise test definitions of the destination range.
469 for (VNIIterator
470 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
471 vniItr != vniEnd; ++vniItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000472
Lang Hames27601ef2008-11-16 12:12:54 +0000473 // We want to make sure we skip the copy instruction itself.
Lang Hames52c1afc2009-08-10 23:43:28 +0000474 if ((*vniItr)->getCopy() == instr)
Lang Hames27601ef2008-11-16 12:12:54 +0000475 continue;
476
Lang Hames0b23dc02010-02-09 00:50:27 +0000477 if (!(*vniItr)->def.isValid()) {
478 badDef = true;
479 break;
480 }
481
Lang Hames27601ef2008-11-16 12:12:54 +0000482 if (srcLI->liveAt((*vniItr)->def)) {
483 badDef = true;
484 break;
485 }
486 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000487
Lang Hames27601ef2008-11-16 12:12:54 +0000488 // As before a bad def we give up and continue to the next instr.
489 if (badDef)
490 continue;
491 }
492
493 // If we make it to here then either the ranges didn't overlap, or they
494 // did, but none of their definitions would prevent us from coalescing.
495 // We're good to go with the coalesce.
496
Chris Lattner87565c12010-05-15 17:10:24 +0000497 float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000498
Lang Hames27601ef2008-11-16 12:12:54 +0000499 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
500 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
Evan Chengb1290a62008-10-02 18:29:27 +0000501 }
502
503 }
504
Lang Hames27601ef2008-11-16 12:12:54 +0000505 return coalescesFound;
506}
507
508void PBQPRegAlloc::findVRegIntervalsToAlloc() {
509
510 // Iterate over all live ranges.
511 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
512 itr != end; ++itr) {
513
514 // Ignore physical ones.
515 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
516 continue;
517
518 LiveInterval *li = itr->second;
519
520 // If this live interval is non-empty we will use pbqp to allocate it.
521 // Empty intervals we allocate in a simple post-processing stage in
522 // finalizeAlloc.
523 if (!li->empty()) {
524 vregIntervalsToAlloc.insert(li);
525 }
526 else {
527 emptyVRegIntervals.insert(li);
528 }
529 }
Evan Chengb1290a62008-10-02 18:29:27 +0000530}
531
Lang Hames030c4bf2010-01-26 04:49:58 +0000532PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
Evan Chengb1290a62008-10-02 18:29:27 +0000533
534 typedef std::vector<const LiveInterval*> LIVector;
Lang Hames27601ef2008-11-16 12:12:54 +0000535 typedef std::vector<unsigned> RegVector;
Evan Chengb1290a62008-10-02 18:29:27 +0000536
Lang Hames27601ef2008-11-16 12:12:54 +0000537 // This will store the physical intervals for easy reference.
538 LIVector physIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000539
540 // Start by clearing the old node <-> live interval mappings & allowed sets
541 li2Node.clear();
542 node2LI.clear();
543 allowedSets.clear();
544
Lang Hames27601ef2008-11-16 12:12:54 +0000545 // Populate physIntervals, update preg use:
546 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000547 itr != end; ++itr) {
548
Evan Chengb1290a62008-10-02 18:29:27 +0000549 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
550 physIntervals.push_back(itr->second);
551 mri->setPhysRegUsed(itr->second->reg);
552 }
Evan Chengb1290a62008-10-02 18:29:27 +0000553 }
554
Lang Hames27601ef2008-11-16 12:12:54 +0000555 // Iterate over vreg intervals, construct live interval <-> node number
556 // mappings.
Misha Brukman2a835f92009-01-08 15:50:22 +0000557 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000558 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
559 itr != end; ++itr) {
560 const LiveInterval *li = *itr;
561
562 li2Node[li] = node2LI.size();
563 node2LI.push_back(li);
564 }
565
566 // Get the set of potential coalesces.
Lang Hames8481e3b2009-08-19 01:36:14 +0000567 CoalesceMap coalesces;
568
569 if (pbqpCoalescing) {
570 coalesces = findCoalesces();
571 }
Evan Chengb1290a62008-10-02 18:29:27 +0000572
573 // Construct a PBQP solver for this problem
Lang Hames030c4bf2010-01-26 04:49:58 +0000574 PBQP::Graph problem;
575 problemNodes.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000576
577 // Resize allowedSets container appropriately.
Lang Hames27601ef2008-11-16 12:12:54 +0000578 allowedSets.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000579
580 // Iterate over virtual register intervals to compute allowed sets...
581 for (unsigned node = 0; node < node2LI.size(); ++node) {
582
583 // Grab pointers to the interval and its register class.
584 const LiveInterval *li = node2LI[node];
585 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000586
Evan Chengb1290a62008-10-02 18:29:27 +0000587 // Start by assuming all allocable registers in the class are allowed...
Lang Hames27601ef2008-11-16 12:12:54 +0000588 RegVector liAllowed(liRC->allocation_order_begin(*mf),
589 liRC->allocation_order_end(*mf));
Evan Chengb1290a62008-10-02 18:29:27 +0000590
Lang Hames27601ef2008-11-16 12:12:54 +0000591 // Eliminate the physical registers which overlap with this range, along
592 // with all their aliases.
593 for (LIVector::iterator pItr = physIntervals.begin(),
594 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000595
Lang Hames27601ef2008-11-16 12:12:54 +0000596 if (!li->overlaps(**pItr))
597 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000598
Lang Hames27601ef2008-11-16 12:12:54 +0000599 unsigned pReg = (*pItr)->reg;
Evan Chengb1290a62008-10-02 18:29:27 +0000600
Lang Hames27601ef2008-11-16 12:12:54 +0000601 // If we get here then the live intervals overlap, but we're still ok
602 // if they're coalescable.
603 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
604 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000605
Lang Hames27601ef2008-11-16 12:12:54 +0000606 // If we get here then we have a genuine exclusion.
Evan Chengb1290a62008-10-02 18:29:27 +0000607
Lang Hames27601ef2008-11-16 12:12:54 +0000608 // Remove the overlapping reg...
609 RegVector::iterator eraseItr =
610 std::find(liAllowed.begin(), liAllowed.end(), pReg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000611
Lang Hames27601ef2008-11-16 12:12:54 +0000612 if (eraseItr != liAllowed.end())
613 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000614
Lang Hames27601ef2008-11-16 12:12:54 +0000615 const unsigned *aliasItr = tri->getAliasSet(pReg);
616
617 if (aliasItr != 0) {
618 // ...and its aliases.
619 for (; *aliasItr != 0; ++aliasItr) {
620 RegVector::iterator eraseItr =
621 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
Misha Brukman2a835f92009-01-08 15:50:22 +0000622
Lang Hames27601ef2008-11-16 12:12:54 +0000623 if (eraseItr != liAllowed.end()) {
624 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000625 }
Evan Chengb1290a62008-10-02 18:29:27 +0000626 }
Evan Chengb1290a62008-10-02 18:29:27 +0000627 }
Evan Chengb1290a62008-10-02 18:29:27 +0000628 }
629
630 // Copy the allowed set into a member vector for use when constructing cost
631 // vectors & matrices, and mapping PBQP solutions back to assignments.
632 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
633
634 // Set the spill cost to the interval weight, or epsilon if the
635 // interval weight is zero
Lang Hames6699fb22009-08-06 23:32:48 +0000636 PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
637 li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
Evan Chengb1290a62008-10-02 18:29:27 +0000638
639 // Build a cost vector for this interval.
Lang Hames6699fb22009-08-06 23:32:48 +0000640 problemNodes[node] =
641 problem.addNode(
642 buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
Evan Chengb1290a62008-10-02 18:29:27 +0000643
644 }
645
Lang Hames27601ef2008-11-16 12:12:54 +0000646
Evan Chengb1290a62008-10-02 18:29:27 +0000647 // Now add the cost matrices...
648 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
Evan Chengb1290a62008-10-02 18:29:27 +0000649 const LiveInterval *li = node2LI[node1];
650
Evan Chengb1290a62008-10-02 18:29:27 +0000651 // Test for live range overlaps and insert interference matrices.
652 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
653 const LiveInterval *li2 = node2LI[node2];
654
Lang Hames27601ef2008-11-16 12:12:54 +0000655 CoalesceMap::const_iterator cmItr =
656 coalesces.find(RegPair(li->reg, li2->reg));
Evan Chengb1290a62008-10-02 18:29:27 +0000657
Lang Hames6699fb22009-08-06 23:32:48 +0000658 PBQP::Matrix *m = 0;
Evan Chengb1290a62008-10-02 18:29:27 +0000659
Lang Hames27601ef2008-11-16 12:12:54 +0000660 if (cmItr != coalesces.end()) {
661 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
662 cmItr->second);
663 }
664 else if (li->overlaps(*li2)) {
665 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
666 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000667
Lang Hames27601ef2008-11-16 12:12:54 +0000668 if (m != 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000669 problem.addEdge(problemNodes[node1],
670 problemNodes[node2],
671 *m);
672
Lang Hames27601ef2008-11-16 12:12:54 +0000673 delete m;
Evan Chengb1290a62008-10-02 18:29:27 +0000674 }
675 }
676 }
677
Lang Hames6699fb22009-08-06 23:32:48 +0000678 assert(problem.getNumNodes() == allowedSets.size());
Lang Hames6699fb22009-08-06 23:32:48 +0000679/*
680 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
681 << problem.getNumEdges() << " edges.\n";
682
683 problem.printDot(std::cerr);
684*/
Evan Chengb1290a62008-10-02 18:29:27 +0000685 // We're done, PBQP problem constructed - return it.
Lang Hames6699fb22009-08-06 23:32:48 +0000686 return problem;
Evan Chengb1290a62008-10-02 18:29:27 +0000687}
688
Evan Chengc781a242009-05-03 18:32:42 +0000689void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
690 MachineRegisterInfo* mri) {
Lang Hames27601ef2008-11-16 12:12:54 +0000691 int stackSlot = vrm->getStackSlot(spilled->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000692
693 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
Lang Hames27601ef2008-11-16 12:12:54 +0000694 return;
695
Evan Chengc781a242009-05-03 18:32:42 +0000696 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
697 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
Lang Hames27601ef2008-11-16 12:12:54 +0000698
699 VNInfo *vni;
700 if (stackInterval.getNumValNums() != 0)
701 vni = stackInterval.getValNumInfo(0);
702 else
Lang Hames86511252009-09-04 20:41:11 +0000703 vni = stackInterval.getNextValue(
Lang Hames233a60e2009-11-03 23:52:08 +0000704 SlotIndex(), 0, false, lss->getVNInfoAllocator());
Lang Hames27601ef2008-11-16 12:12:54 +0000705
706 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
707 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
708}
709
Lang Hames6699fb22009-08-06 23:32:48 +0000710bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
Lang Hamese98b4b02009-11-15 04:39:51 +0000711
Evan Chengb1290a62008-10-02 18:29:27 +0000712 // Set to true if we have any spills
713 bool anotherRoundNeeded = false;
714
715 // Clear the existing allocation.
716 vrm->clearAllVirt();
Daniel Dunbara279bc32009-09-20 02:20:51 +0000717
Evan Chengb1290a62008-10-02 18:29:27 +0000718 // Iterate over the nodes mapping the PBQP solution to a register assignment.
719 for (unsigned node = 0; node < node2LI.size(); ++node) {
Lang Hames27601ef2008-11-16 12:12:54 +0000720 unsigned virtReg = node2LI[node]->reg,
Lang Hames030c4bf2010-01-26 04:49:58 +0000721 allocSelection = solution.getSelection(problemNodes[node]);
Lang Hames6699fb22009-08-06 23:32:48 +0000722
Evan Chengb1290a62008-10-02 18:29:27 +0000723
724 // If the PBQP solution is non-zero it's a physical register...
725 if (allocSelection != 0) {
726 // Get the physical reg, subtracting 1 to account for the spill option.
727 unsigned physReg = allowedSets[node][allocSelection - 1];
728
David Greene30931542010-01-05 01:25:43 +0000729 DEBUG(dbgs() << "VREG " << virtReg << " -> "
Lang Hames233fd9c2009-08-18 23:34:50 +0000730 << tri->getName(physReg) << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000731
732 assert(physReg != 0);
733
Evan Chengb1290a62008-10-02 18:29:27 +0000734 // Add to the virt reg map and update the used phys regs.
Lang Hames27601ef2008-11-16 12:12:54 +0000735 vrm->assignVirt2Phys(virtReg, physReg);
Evan Chengb1290a62008-10-02 18:29:27 +0000736 }
737 // ...Otherwise it's a spill.
738 else {
739
740 // Make sure we ignore this virtual reg on the next round
741 // of allocation
Lang Hames27601ef2008-11-16 12:12:54 +0000742 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
Evan Chengb1290a62008-10-02 18:29:27 +0000743
Evan Chengb1290a62008-10-02 18:29:27 +0000744 // Insert spill ranges for this live range
Lang Hames27601ef2008-11-16 12:12:54 +0000745 const LiveInterval *spillInterval = node2LI[node];
746 double oldSpillWeight = spillInterval->weight;
Evan Chengb1290a62008-10-02 18:29:27 +0000747 SmallVector<LiveInterval*, 8> spillIs;
748 std::vector<LiveInterval*> newSpills =
Evan Chengc781a242009-05-03 18:32:42 +0000749 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
750 addStackInterval(spillInterval, mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000751
Daniel Dunbarbc84ad92009-08-20 20:01:34 +0000752 (void) oldSpillWeight;
David Greene30931542010-01-05 01:25:43 +0000753 DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
Lang Hames233fd9c2009-08-18 23:34:50 +0000754 << oldSpillWeight << ", New vregs: ");
Lang Hames27601ef2008-11-16 12:12:54 +0000755
756 // Copy any newly inserted live intervals into the list of regs to
757 // allocate.
758 for (std::vector<LiveInterval*>::const_iterator
759 itr = newSpills.begin(), end = newSpills.end();
760 itr != end; ++itr) {
761
762 assert(!(*itr)->empty() && "Empty spill range.");
763
David Greene30931542010-01-05 01:25:43 +0000764 DEBUG(dbgs() << (*itr)->reg << " ");
Lang Hames27601ef2008-11-16 12:12:54 +0000765
766 vregIntervalsToAlloc.insert(*itr);
767 }
768
David Greene30931542010-01-05 01:25:43 +0000769 DEBUG(dbgs() << ")\n");
Evan Chengb1290a62008-10-02 18:29:27 +0000770
771 // We need another round if spill intervals were added.
772 anotherRoundNeeded |= !newSpills.empty();
773 }
774 }
775
776 return !anotherRoundNeeded;
777}
778
Lang Hames27601ef2008-11-16 12:12:54 +0000779void PBQPRegAlloc::finalizeAlloc() const {
780 typedef LiveIntervals::iterator LIIterator;
781 typedef LiveInterval::Ranges::const_iterator LRIterator;
782
783 // First allocate registers for the empty intervals.
Argyrios Kyrtzidis3713c0b2008-11-19 12:56:21 +0000784 for (LiveIntervalSet::const_iterator
Daniel Dunbara279bc32009-09-20 02:20:51 +0000785 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
Lang Hames27601ef2008-11-16 12:12:54 +0000786 itr != end; ++itr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000787 LiveInterval *li = *itr;
Lang Hames27601ef2008-11-16 12:12:54 +0000788
Evan Cheng90f95f82009-06-14 20:22:55 +0000789 unsigned physReg = vrm->getRegAllocPref(li->reg);
Lang Hames6699fb22009-08-06 23:32:48 +0000790
Lang Hames27601ef2008-11-16 12:12:54 +0000791 if (physReg == 0) {
792 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000793 physReg = *liRC->allocation_order_begin(*mf);
Lang Hames27601ef2008-11-16 12:12:54 +0000794 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000795
796 vrm->assignVirt2Phys(li->reg, physReg);
Lang Hames27601ef2008-11-16 12:12:54 +0000797 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000798
Lang Hames27601ef2008-11-16 12:12:54 +0000799 // Finally iterate over the basic blocks to compute and set the live-in sets.
800 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
801 MachineBasicBlock *entryMBB = &*mf->begin();
802
803 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
804 liItr != liEnd; ++liItr) {
805
806 const LiveInterval *li = liItr->second;
807 unsigned reg = 0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000808
Lang Hames27601ef2008-11-16 12:12:54 +0000809 // Get the physical register for this interval
810 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
811 reg = li->reg;
812 }
813 else if (vrm->isAssignedReg(li->reg)) {
814 reg = vrm->getPhys(li->reg);
815 }
816 else {
817 // Ranges which are assigned a stack slot only are ignored.
818 continue;
819 }
820
Lang Hamesb0e519f2009-05-17 23:50:36 +0000821 if (reg == 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000822 // Filter out zero regs - they're for intervals that were spilled.
Lang Hamesb0e519f2009-05-17 23:50:36 +0000823 continue;
824 }
825
Lang Hames27601ef2008-11-16 12:12:54 +0000826 // Iterate over the ranges of the current interval...
827 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
828 lrItr != lrEnd; ++lrItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000829
Lang Hames27601ef2008-11-16 12:12:54 +0000830 // Find the set of basic blocks which this range is live into...
831 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
832 // And add the physreg for this interval to their live-in sets.
833 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
834 if (liveInMBBs[i] != entryMBB) {
835 if (!liveInMBBs[i]->isLiveIn(reg)) {
836 liveInMBBs[i]->addLiveIn(reg);
837 }
838 }
839 }
840 liveInMBBs.clear();
841 }
842 }
843 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000844
Lang Hames27601ef2008-11-16 12:12:54 +0000845}
846
Evan Chengb1290a62008-10-02 18:29:27 +0000847bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
Lang Hames27601ef2008-11-16 12:12:54 +0000848
Evan Chengb1290a62008-10-02 18:29:27 +0000849 mf = &MF;
850 tm = &mf->getTarget();
851 tri = tm->getRegisterInfo();
Lang Hames27601ef2008-11-16 12:12:54 +0000852 tii = tm->getInstrInfo();
Lang Hames233a60e2009-11-03 23:52:08 +0000853 mri = &mf->getRegInfo();
Evan Chengb1290a62008-10-02 18:29:27 +0000854
Lang Hames27601ef2008-11-16 12:12:54 +0000855 lis = &getAnalysis<LiveIntervals>();
856 lss = &getAnalysis<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +0000857 loopInfo = &getAnalysis<MachineLoopInfo>();
858
Owen Anderson49c8aa02009-03-13 05:55:11 +0000859 vrm = &getAnalysis<VirtRegMap>();
Evan Chengb1290a62008-10-02 18:29:27 +0000860
Lang Hames030c4bf2010-01-26 04:49:58 +0000861 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000862
Evan Chengb1290a62008-10-02 18:29:27 +0000863 // Allocator main loop:
Misha Brukman2a835f92009-01-08 15:50:22 +0000864 //
Evan Chengb1290a62008-10-02 18:29:27 +0000865 // * Map current regalloc problem to a PBQP problem
866 // * Solve the PBQP problem
867 // * Map the solution back to a register allocation
868 // * Spill if necessary
Misha Brukman2a835f92009-01-08 15:50:22 +0000869 //
Evan Chengb1290a62008-10-02 18:29:27 +0000870 // This process is continued till no more spills are generated.
871
Lang Hames27601ef2008-11-16 12:12:54 +0000872 // Find the vreg intervals in need of allocation.
873 findVRegIntervalsToAlloc();
Misha Brukman2a835f92009-01-08 15:50:22 +0000874
Lang Hames27601ef2008-11-16 12:12:54 +0000875 // If there are non-empty intervals allocate them using pbqp.
876 if (!vregIntervalsToAlloc.empty()) {
Evan Chengb1290a62008-10-02 18:29:27 +0000877
Lang Hames27601ef2008-11-16 12:12:54 +0000878 bool pbqpAllocComplete = false;
879 unsigned round = 0;
880
881 while (!pbqpAllocComplete) {
David Greene30931542010-01-05 01:25:43 +0000882 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000883
Lang Hames030c4bf2010-01-26 04:49:58 +0000884 PBQP::Graph problem = constructPBQPProblem();
885 PBQP::Solution solution =
886 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
Lang Hames233fd9c2009-08-18 23:34:50 +0000887
Lang Hames6699fb22009-08-06 23:32:48 +0000888 pbqpAllocComplete = mapPBQPToRegAlloc(solution);
Lang Hames27601ef2008-11-16 12:12:54 +0000889
890 ++round;
891 }
Evan Chengb1290a62008-10-02 18:29:27 +0000892 }
893
Lang Hames27601ef2008-11-16 12:12:54 +0000894 // Finalise allocation, allocate empty ranges.
895 finalizeAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000896
Lang Hames27601ef2008-11-16 12:12:54 +0000897 vregIntervalsToAlloc.clear();
898 emptyVRegIntervals.clear();
899 li2Node.clear();
900 node2LI.clear();
901 allowedSets.clear();
Lang Hames030c4bf2010-01-26 04:49:58 +0000902 problemNodes.clear();
Lang Hames27601ef2008-11-16 12:12:54 +0000903
David Greene30931542010-01-05 01:25:43 +0000904 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000905
Lang Hames87e3bca2009-05-06 02:36:21 +0000906 // Run rewriter
907 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
908
909 rewriter->runOnMachineFunction(*mf, *vrm, lis);
Lang Hames27601ef2008-11-16 12:12:54 +0000910
Misha Brukman2a835f92009-01-08 15:50:22 +0000911 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000912}
913
914FunctionPass* llvm::createPBQPRegisterAllocator() {
915 return new PBQPRegAlloc();
916}
917
918
919#undef DEBUG_TYPE