blob: f3000394a51a7e35c0790a62aeee92f0d1898834 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000076#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000077#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000080#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000082#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include <ostream>
84#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085using namespace llvm;
86
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087STATISTIC(NumArrayLenItCounts,
88 "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90 "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92 "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94 "Number of loops with trip counts computed by force");
95
Dan Gohman089efff2008-05-13 00:00:25 +000096static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000097MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98 cl::desc("Maximum number of iterations SCEV will "
99 "symbolically execute a constant derived loop"),
100 cl::init(100));
101
Dan Gohman089efff2008-05-13 00:00:25 +0000102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107// SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000115 print(errs());
116 errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120 raw_os_ostream OS(o);
121 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122}
123
Dan Gohman7b560c42008-06-18 16:23:07 +0000124bool SCEV::isZero() const {
125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126 return SC->getValue()->isZero();
127 return false;
128}
129
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000130bool SCEV::isOne() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isOne();
133 return false;
134}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135
136SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanffd36ba2009-04-21 23:15:49 +0000137SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141 return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146 return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151 return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000156 const SCEVHandle &Conc,
157 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 return this;
159}
160
Dan Gohman13058cc2009-04-21 00:47:46 +0000161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166 return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value. Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177 SCEVConstants->erase(V);
178}
179
Dan Gohman89f85052007-10-22 18:31:58 +0000180SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000181 SCEVConstant *&R = (*SCEVConstants)[V];
182 if (R == 0) R = new SCEVConstant(V);
183 return R;
184}
185
Dan Gohman89f85052007-10-22 18:31:58 +0000186SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
187 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188}
189
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190const Type *SCEVConstant::getType() const { return V->getType(); }
191
Dan Gohman13058cc2009-04-21 00:47:46 +0000192void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 WriteAsOperand(OS, V, false);
194}
195
Dan Gohman2a381532009-04-21 01:25:57 +0000196SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197 const SCEVHandle &op, const Type *ty)
198 : SCEV(SCEVTy), Op(op), Ty(ty) {}
199
200SCEVCastExpr::~SCEVCastExpr() {}
201
202bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
203 return Op->dominates(BB, DT);
204}
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
207// particular input. Don't use a SCEVHandle here, or else the object will
208// never be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000209static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 SCEVTruncateExpr*> > SCEVTruncates;
211
212SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000213 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000214 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217}
218
219SCEVTruncateExpr::~SCEVTruncateExpr() {
220 SCEVTruncates->erase(std::make_pair(Op, Ty));
221}
222
Dan Gohman13058cc2009-04-21 00:47:46 +0000223void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000224 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input. Don't use a SCEVHandle here, or else the object will never
229// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000230static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000234 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000235 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
236 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
Dan Gohman13058cc2009-04-21 00:47:46 +0000244void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000245 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246}
247
248// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
249// particular input. Don't use a SCEVHandle here, or else the object will never
250// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000251static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 SCEVSignExtendExpr*> > SCEVSignExtends;
253
254SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000255 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000256 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
257 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000259}
260
261SCEVSignExtendExpr::~SCEVSignExtendExpr() {
262 SCEVSignExtends->erase(std::make_pair(Op, Ty));
263}
264
Dan Gohman13058cc2009-04-21 00:47:46 +0000265void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000266 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267}
268
269// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270// particular input. Don't use a SCEVHandle here, or else the object will never
271// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000272static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 SCEVCommutativeExpr*> > SCEVCommExprs;
274
275SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000276 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
277 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278}
279
Dan Gohman13058cc2009-04-21 00:47:46 +0000280void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
282 const char *OpStr = getOperationStr();
283 OS << "(" << *Operands[0];
284 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
285 OS << OpStr << *Operands[i];
286 OS << ")";
287}
288
289SCEVHandle SCEVCommutativeExpr::
290replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000291 const SCEVHandle &Conc,
292 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000294 SCEVHandle H =
295 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 if (H != getOperand(i)) {
297 std::vector<SCEVHandle> NewOps;
298 NewOps.reserve(getNumOperands());
299 for (unsigned j = 0; j != i; ++j)
300 NewOps.push_back(getOperand(j));
301 NewOps.push_back(H);
302 for (++i; i != e; ++i)
303 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000304 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305
306 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000307 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000309 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000310 else if (isa<SCEVSMaxExpr>(this))
311 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000312 else if (isa<SCEVUMaxExpr>(this))
313 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314 else
315 assert(0 && "Unknown commutative expr!");
316 }
317 }
318 return this;
319}
320
Dan Gohman72a8a022009-05-07 14:00:19 +0000321bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000322 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323 if (!getOperand(i)->dominates(BB, DT))
324 return false;
325 }
326 return true;
327}
328
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000330// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331// input. Don't use a SCEVHandle here, or else the object will never be
332// deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000333static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000334 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000336SCEVUDivExpr::~SCEVUDivExpr() {
337 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338}
339
Evan Cheng98c073b2009-02-17 00:13:06 +0000340bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
341 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
342}
343
Dan Gohman13058cc2009-04-21 00:47:46 +0000344void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000345 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346}
347
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000348const Type *SCEVUDivExpr::getType() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 return LHS->getType();
350}
351
352// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
353// particular input. Don't use a SCEVHandle here, or else the object will never
354// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000355static ManagedStatic<std::map<std::pair<const Loop *,
356 std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 SCEVAddRecExpr*> > SCEVAddRecExprs;
358
359SCEVAddRecExpr::~SCEVAddRecExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000360 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
361 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362}
363
364SCEVHandle SCEVAddRecExpr::
365replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000366 const SCEVHandle &Conc,
367 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000369 SCEVHandle H =
370 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371 if (H != getOperand(i)) {
372 std::vector<SCEVHandle> NewOps;
373 NewOps.reserve(getNumOperands());
374 for (unsigned j = 0; j != i; ++j)
375 NewOps.push_back(getOperand(j));
376 NewOps.push_back(H);
377 for (++i; i != e; ++i)
378 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000379 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380
Dan Gohman89f85052007-10-22 18:31:58 +0000381 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 }
383 }
384 return this;
385}
386
387
388bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
389 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
390 // contain L and if the start is invariant.
391 return !QueryLoop->contains(L->getHeader()) &&
392 getOperand(0)->isLoopInvariant(QueryLoop);
393}
394
395
Dan Gohman13058cc2009-04-21 00:47:46 +0000396void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 OS << "{" << *Operands[0];
398 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
399 OS << ",+," << *Operands[i];
400 OS << "}<" << L->getHeader()->getName() + ">";
401}
402
403// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
404// value. Don't use a SCEVHandle here, or else the object will never be
405// deleted!
406static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
407
408SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
409
410bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
411 // All non-instruction values are loop invariant. All instructions are loop
412 // invariant if they are not contained in the specified loop.
413 if (Instruction *I = dyn_cast<Instruction>(V))
414 return !L->contains(I->getParent());
415 return true;
416}
417
Evan Cheng98c073b2009-02-17 00:13:06 +0000418bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
419 if (Instruction *I = dyn_cast<Instruction>(getValue()))
420 return DT->dominates(I->getParent(), BB);
421 return true;
422}
423
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424const Type *SCEVUnknown::getType() const {
425 return V->getType();
426}
427
Dan Gohman13058cc2009-04-21 00:47:46 +0000428void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429 WriteAsOperand(OS, V, false);
430}
431
432//===----------------------------------------------------------------------===//
433// SCEV Utilities
434//===----------------------------------------------------------------------===//
435
436namespace {
437 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
438 /// than the complexity of the RHS. This comparator is used to canonicalize
439 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000440 class VISIBILITY_HIDDEN SCEVComplexityCompare {
441 LoopInfo *LI;
442 public:
443 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
444
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000445 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000446 // Primarily, sort the SCEVs by their getSCEVType().
447 if (LHS->getSCEVType() != RHS->getSCEVType())
448 return LHS->getSCEVType() < RHS->getSCEVType();
449
450 // Aside from the getSCEVType() ordering, the particular ordering
451 // isn't very important except that it's beneficial to be consistent,
452 // so that (a + b) and (b + a) don't end up as different expressions.
453
454 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
455 // not as complete as it could be.
456 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
457 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
458
459 // Compare getValueID values.
460 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
461 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
462
463 // Sort arguments by their position.
464 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
465 const Argument *RA = cast<Argument>(RU->getValue());
466 return LA->getArgNo() < RA->getArgNo();
467 }
468
469 // For instructions, compare their loop depth, and their opcode.
470 // This is pretty loose.
471 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
472 Instruction *RV = cast<Instruction>(RU->getValue());
473
474 // Compare loop depths.
475 if (LI->getLoopDepth(LV->getParent()) !=
476 LI->getLoopDepth(RV->getParent()))
477 return LI->getLoopDepth(LV->getParent()) <
478 LI->getLoopDepth(RV->getParent());
479
480 // Compare opcodes.
481 if (LV->getOpcode() != RV->getOpcode())
482 return LV->getOpcode() < RV->getOpcode();
483
484 // Compare the number of operands.
485 if (LV->getNumOperands() != RV->getNumOperands())
486 return LV->getNumOperands() < RV->getNumOperands();
487 }
488
489 return false;
490 }
491
492 // Constant sorting doesn't matter since they'll be folded.
493 if (isa<SCEVConstant>(LHS))
494 return false;
495
496 // Lexicographically compare n-ary expressions.
497 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
498 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
499 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
500 if (i >= RC->getNumOperands())
501 return false;
502 if (operator()(LC->getOperand(i), RC->getOperand(i)))
503 return true;
504 if (operator()(RC->getOperand(i), LC->getOperand(i)))
505 return false;
506 }
507 return LC->getNumOperands() < RC->getNumOperands();
508 }
509
Dan Gohman6e10db12009-05-07 19:23:21 +0000510 // Lexicographically compare udiv expressions.
511 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
512 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
513 if (operator()(LC->getLHS(), RC->getLHS()))
514 return true;
515 if (operator()(RC->getLHS(), LC->getLHS()))
516 return false;
517 if (operator()(LC->getRHS(), RC->getRHS()))
518 return true;
519 if (operator()(RC->getRHS(), LC->getRHS()))
520 return false;
521 return false;
522 }
523
Dan Gohman5d486452009-05-07 14:39:04 +0000524 // Compare cast expressions by operand.
525 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
526 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
527 return operator()(LC->getOperand(), RC->getOperand());
528 }
529
530 assert(0 && "Unknown SCEV kind!");
531 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000532 }
533 };
534}
535
536/// GroupByComplexity - Given a list of SCEV objects, order them by their
537/// complexity, and group objects of the same complexity together by value.
538/// When this routine is finished, we know that any duplicates in the vector are
539/// consecutive and that complexity is monotonically increasing.
540///
541/// Note that we go take special precautions to ensure that we get determinstic
542/// results from this routine. In other words, we don't want the results of
543/// this to depend on where the addresses of various SCEV objects happened to
544/// land in memory.
545///
Dan Gohman5d486452009-05-07 14:39:04 +0000546static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
547 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000548 if (Ops.size() < 2) return; // Noop
549 if (Ops.size() == 2) {
550 // This is the common case, which also happens to be trivially simple.
551 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000552 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000553 std::swap(Ops[0], Ops[1]);
554 return;
555 }
556
557 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000558 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000559
560 // Now that we are sorted by complexity, group elements of the same
561 // complexity. Note that this is, at worst, N^2, but the vector is likely to
562 // be extremely short in practice. Note that we take this approach because we
563 // do not want to depend on the addresses of the objects we are grouping.
564 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000565 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000566 unsigned Complexity = S->getSCEVType();
567
568 // If there are any objects of the same complexity and same value as this
569 // one, group them.
570 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571 if (Ops[j] == S) { // Found a duplicate.
572 // Move it to immediately after i'th element.
573 std::swap(Ops[i+1], Ops[j]);
574 ++i; // no need to rescan it.
575 if (i == e-2) return; // Done!
576 }
577 }
578 }
579}
580
581
582
583//===----------------------------------------------------------------------===//
584// Simple SCEV method implementations
585//===----------------------------------------------------------------------===//
586
Eli Friedman7489ec92008-08-04 23:49:06 +0000587/// BinomialCoefficient - Compute BC(It, K). The result has width W.
588// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000589static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000590 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000591 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000592 // Handle the simplest case efficiently.
593 if (K == 1)
594 return SE.getTruncateOrZeroExtend(It, ResultTy);
595
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000596 // We are using the following formula for BC(It, K):
597 //
598 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000600 // Suppose, W is the bitwidth of the return value. We must be prepared for
601 // overflow. Hence, we must assure that the result of our computation is
602 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
603 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000604 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000605 // However, this code doesn't use exactly that formula; the formula it uses
606 // is something like the following, where T is the number of factors of 2 in
607 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000609 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000610 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000611 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000612 // This formula is trivially equivalent to the previous formula. However,
613 // this formula can be implemented much more efficiently. The trick is that
614 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615 // arithmetic. To do exact division in modular arithmetic, all we have
616 // to do is multiply by the inverse. Therefore, this step can be done at
617 // width W.
618 //
619 // The next issue is how to safely do the division by 2^T. The way this
620 // is done is by doing the multiplication step at a width of at least W + T
621 // bits. This way, the bottom W+T bits of the product are accurate. Then,
622 // when we perform the division by 2^T (which is equivalent to a right shift
623 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
624 // truncated out after the division by 2^T.
625 //
626 // In comparison to just directly using the first formula, this technique
627 // is much more efficient; using the first formula requires W * K bits,
628 // but this formula less than W + K bits. Also, the first formula requires
629 // a division step, whereas this formula only requires multiplies and shifts.
630 //
631 // It doesn't matter whether the subtraction step is done in the calculation
632 // width or the input iteration count's width; if the subtraction overflows,
633 // the result must be zero anyway. We prefer here to do it in the width of
634 // the induction variable because it helps a lot for certain cases; CodeGen
635 // isn't smart enough to ignore the overflow, which leads to much less
636 // efficient code if the width of the subtraction is wider than the native
637 // register width.
638 //
639 // (It's possible to not widen at all by pulling out factors of 2 before
640 // the multiplication; for example, K=2 can be calculated as
641 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642 // extra arithmetic, so it's not an obvious win, and it gets
643 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000644
Eli Friedman7489ec92008-08-04 23:49:06 +0000645 // Protection from insane SCEVs; this bound is conservative,
646 // but it probably doesn't matter.
647 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000648 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000649
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000650 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000651
Eli Friedman7489ec92008-08-04 23:49:06 +0000652 // Calculate K! / 2^T and T; we divide out the factors of two before
653 // multiplying for calculating K! / 2^T to avoid overflow.
654 // Other overflow doesn't matter because we only care about the bottom
655 // W bits of the result.
656 APInt OddFactorial(W, 1);
657 unsigned T = 1;
658 for (unsigned i = 3; i <= K; ++i) {
659 APInt Mult(W, i);
660 unsigned TwoFactors = Mult.countTrailingZeros();
661 T += TwoFactors;
662 Mult = Mult.lshr(TwoFactors);
663 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000664 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000665
Eli Friedman7489ec92008-08-04 23:49:06 +0000666 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000667 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000668
669 // Calcuate 2^T, at width T+W.
670 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671
672 // Calculate the multiplicative inverse of K! / 2^T;
673 // this multiplication factor will perform the exact division by
674 // K! / 2^T.
675 APInt Mod = APInt::getSignedMinValue(W+1);
676 APInt MultiplyFactor = OddFactorial.zext(W+1);
677 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678 MultiplyFactor = MultiplyFactor.trunc(W);
679
680 // Calculate the product, at width T+W
681 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
682 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
683 for (unsigned i = 1; i != K; ++i) {
684 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
685 Dividend = SE.getMulExpr(Dividend,
686 SE.getTruncateOrZeroExtend(S, CalculationTy));
687 }
688
689 // Divide by 2^T
690 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
691
692 // Truncate the result, and divide by K! / 2^T.
693
694 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
695 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696}
697
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698/// evaluateAtIteration - Return the value of this chain of recurrences at
699/// the specified iteration number. We can evaluate this recurrence by
700/// multiplying each element in the chain by the binomial coefficient
701/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
702///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000703/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000705/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000706///
Dan Gohman89f85052007-10-22 18:31:58 +0000707SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
708 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000711 // The computation is correct in the face of overflow provided that the
712 // multiplication is performed _after_ the evaluation of the binomial
713 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000714 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000715 if (isa<SCEVCouldNotCompute>(Coeff))
716 return Coeff;
717
718 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 }
720 return Result;
721}
722
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723//===----------------------------------------------------------------------===//
724// SCEV Expression folder implementations
725//===----------------------------------------------------------------------===//
726
Dan Gohman9c8abcc2009-05-01 16:44:56 +0000727SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
728 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000729 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000730 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000731 assert(isSCEVable(Ty) &&
732 "This is not a conversion to a SCEVable type!");
733 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000734
Dan Gohmanc76b5452009-05-04 22:02:23 +0000735 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000736 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 ConstantExpr::getTrunc(SC->getValue(), Ty));
738
Dan Gohman1a5c4992009-04-22 16:20:48 +0000739 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000740 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000741 return getTruncateExpr(ST->getOperand(), Ty);
742
Nick Lewycky37d04642009-04-23 05:15:08 +0000743 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000744 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000745 return getTruncateOrSignExtend(SS->getOperand(), Ty);
746
747 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000748 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000749 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
750
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751 // If the input value is a chrec scev made out of constants, truncate
752 // all of the constants.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000753 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754 std::vector<SCEVHandle> Operands;
755 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000756 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
757 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 }
759
760 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
761 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
762 return Result;
763}
764
Dan Gohman36d40922009-04-16 19:25:55 +0000765SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
766 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000767 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000768 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000769 assert(isSCEVable(Ty) &&
770 "This is not a conversion to a SCEVable type!");
771 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000772
Dan Gohmanc76b5452009-05-04 22:02:23 +0000773 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000774 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000775 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
776 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
777 return getUnknown(C);
778 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779
Dan Gohman1a5c4992009-04-22 16:20:48 +0000780 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000781 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000782 return getZeroExtendExpr(SZ->getOperand(), Ty);
783
Dan Gohmana9dba962009-04-27 20:16:15 +0000784 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000786 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000788 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000789 if (AR->isAffine()) {
790 // Check whether the backedge-taken count is SCEVCouldNotCompute.
791 // Note that this serves two purposes: It filters out loops that are
792 // simply not analyzable, and it covers the case where this code is
793 // being called from within backedge-taken count analysis, such that
794 // attempting to ask for the backedge-taken count would likely result
795 // in infinite recursion. In the later case, the analysis code will
796 // cope with a conservative value, and it will take care to purge
797 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000798 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
799 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000800 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000801 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000802 SCEVHandle Start = AR->getStart();
803 SCEVHandle Step = AR->getStepRecurrence(*this);
804
805 // Check whether the backedge-taken count can be losslessly casted to
806 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000807 SCEVHandle CastedMaxBECount =
808 getTruncateOrZeroExtend(MaxBECount, Start->getType());
809 if (MaxBECount ==
810 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000811 const Type *WideTy =
812 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000813 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000814 SCEVHandle ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000815 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000816 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000817 SCEVHandle Add = getAddExpr(Start, ZMul);
818 if (getZeroExtendExpr(Add, WideTy) ==
819 getAddExpr(getZeroExtendExpr(Start, WideTy),
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000820 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohman3ded5b22009-04-29 22:28:28 +0000821 getZeroExtendExpr(Step, WideTy))))
822 // Return the expression with the addrec on the outside.
823 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
824 getZeroExtendExpr(Step, Ty),
825 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000826
827 // Similar to above, only this time treat the step value as signed.
828 // This covers loops that count down.
829 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000830 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000831 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000832 Add = getAddExpr(Start, SMul);
833 if (getZeroExtendExpr(Add, WideTy) ==
834 getAddExpr(getZeroExtendExpr(Start, WideTy),
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000835 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohman3ded5b22009-04-29 22:28:28 +0000836 getSignExtendExpr(Step, WideTy))))
837 // Return the expression with the addrec on the outside.
838 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
839 getSignExtendExpr(Step, Ty),
840 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000841 }
842 }
843 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844
845 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
846 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
847 return Result;
848}
849
Dan Gohmana9dba962009-04-27 20:16:15 +0000850SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
851 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000852 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000853 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000854 assert(isSCEVable(Ty) &&
855 "This is not a conversion to a SCEVable type!");
856 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000857
Dan Gohmanc76b5452009-05-04 22:02:23 +0000858 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000859 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000860 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
861 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
862 return getUnknown(C);
863 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000864
Dan Gohman1a5c4992009-04-22 16:20:48 +0000865 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000866 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000867 return getSignExtendExpr(SS->getOperand(), Ty);
868
Dan Gohmana9dba962009-04-27 20:16:15 +0000869 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000871 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000872 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000874 if (AR->isAffine()) {
875 // Check whether the backedge-taken count is SCEVCouldNotCompute.
876 // Note that this serves two purposes: It filters out loops that are
877 // simply not analyzable, and it covers the case where this code is
878 // being called from within backedge-taken count analysis, such that
879 // attempting to ask for the backedge-taken count would likely result
880 // in infinite recursion. In the later case, the analysis code will
881 // cope with a conservative value, and it will take care to purge
882 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000883 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
884 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000885 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000886 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000887 SCEVHandle Start = AR->getStart();
888 SCEVHandle Step = AR->getStepRecurrence(*this);
889
890 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000891 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000892 SCEVHandle CastedMaxBECount =
893 getTruncateOrZeroExtend(MaxBECount, Start->getType());
894 if (MaxBECount ==
895 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000896 const Type *WideTy =
897 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000898 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000899 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000900 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000901 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000902 SCEVHandle Add = getAddExpr(Start, SMul);
903 if (getSignExtendExpr(Add, WideTy) ==
904 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000905 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohman3ded5b22009-04-29 22:28:28 +0000906 getSignExtendExpr(Step, WideTy))))
907 // Return the expression with the addrec on the outside.
908 return getAddRecExpr(getSignExtendExpr(Start, Ty),
909 getSignExtendExpr(Step, Ty),
910 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000911 }
912 }
913 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914
915 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
916 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
917 return Result;
918}
919
920// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000921SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 assert(!Ops.empty() && "Cannot get empty add!");
923 if (Ops.size() == 1) return Ops[0];
924
925 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +0000926 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000927
928 // If there are any constants, fold them together.
929 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +0000930 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000931 ++Idx;
932 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +0000933 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000935 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
936 RHSC->getValue()->getValue());
937 Ops[0] = getConstant(Fold);
938 Ops.erase(Ops.begin()+1); // Erase the folded element
939 if (Ops.size() == 1) return Ops[0];
940 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000941 }
942
943 // If we are left with a constant zero being added, strip it off.
944 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
945 Ops.erase(Ops.begin());
946 --Idx;
947 }
948 }
949
950 if (Ops.size() == 1) return Ops[0];
951
952 // Okay, check to see if the same value occurs in the operand list twice. If
953 // so, merge them together into an multiply expression. Since we sorted the
954 // list, these values are required to be adjacent.
955 const Type *Ty = Ops[0]->getType();
956 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
957 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
958 // Found a match, merge the two values into a multiply, and add any
959 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000960 SCEVHandle Two = getIntegerSCEV(2, Ty);
961 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962 if (Ops.size() == 2)
963 return Mul;
964 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
965 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000966 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967 }
968
Dan Gohman45b3b542009-05-08 21:03:19 +0000969 // Check for truncates. If all the operands are truncated from the same
970 // type, see if factoring out the truncate would permit the result to be
971 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
972 // if the contents of the resulting outer trunc fold to something simple.
973 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
974 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
975 const Type *DstType = Trunc->getType();
976 const Type *SrcType = Trunc->getOperand()->getType();
977 std::vector<SCEVHandle> LargeOps;
978 bool Ok = true;
979 // Check all the operands to see if they can be represented in the
980 // source type of the truncate.
981 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
982 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
983 if (T->getOperand()->getType() != SrcType) {
984 Ok = false;
985 break;
986 }
987 LargeOps.push_back(T->getOperand());
988 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
989 // This could be either sign or zero extension, but sign extension
990 // is much more likely to be foldable here.
991 LargeOps.push_back(getSignExtendExpr(C, SrcType));
992 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
993 std::vector<SCEVHandle> LargeMulOps;
994 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
995 if (const SCEVTruncateExpr *T =
996 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
997 if (T->getOperand()->getType() != SrcType) {
998 Ok = false;
999 break;
1000 }
1001 LargeMulOps.push_back(T->getOperand());
1002 } else if (const SCEVConstant *C =
1003 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1004 // This could be either sign or zero extension, but sign extension
1005 // is much more likely to be foldable here.
1006 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1007 } else {
1008 Ok = false;
1009 break;
1010 }
1011 }
1012 if (Ok)
1013 LargeOps.push_back(getMulExpr(LargeMulOps));
1014 } else {
1015 Ok = false;
1016 break;
1017 }
1018 }
1019 if (Ok) {
1020 // Evaluate the expression in the larger type.
1021 SCEVHandle Fold = getAddExpr(LargeOps);
1022 // If it folds to something simple, use it. Otherwise, don't.
1023 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1024 return getTruncateExpr(Fold, DstType);
1025 }
1026 }
1027
1028 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1030 ++Idx;
1031
1032 // If there are add operands they would be next.
1033 if (Idx < Ops.size()) {
1034 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001035 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 // If we have an add, expand the add operands onto the end of the operands
1037 // list.
1038 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1039 Ops.erase(Ops.begin()+Idx);
1040 DeletedAdd = true;
1041 }
1042
1043 // If we deleted at least one add, we added operands to the end of the list,
1044 // and they are not necessarily sorted. Recurse to resort and resimplify
1045 // any operands we just aquired.
1046 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001047 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048 }
1049
1050 // Skip over the add expression until we get to a multiply.
1051 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1052 ++Idx;
1053
1054 // If we are adding something to a multiply expression, make sure the
1055 // something is not already an operand of the multiply. If so, merge it into
1056 // the multiply.
1057 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001058 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001060 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1062 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1063 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1064 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1065 if (Mul->getNumOperands() != 2) {
1066 // If the multiply has more than two operands, we must get the
1067 // Y*Z term.
1068 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1069 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001070 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001071 }
Dan Gohman89f85052007-10-22 18:31:58 +00001072 SCEVHandle One = getIntegerSCEV(1, Ty);
1073 SCEVHandle AddOne = getAddExpr(InnerMul, One);
1074 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 if (Ops.size() == 2) return OuterMul;
1076 if (AddOp < Idx) {
1077 Ops.erase(Ops.begin()+AddOp);
1078 Ops.erase(Ops.begin()+Idx-1);
1079 } else {
1080 Ops.erase(Ops.begin()+Idx);
1081 Ops.erase(Ops.begin()+AddOp-1);
1082 }
1083 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001084 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001085 }
1086
1087 // Check this multiply against other multiplies being added together.
1088 for (unsigned OtherMulIdx = Idx+1;
1089 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1090 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001091 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001092 // If MulOp occurs in OtherMul, we can fold the two multiplies
1093 // together.
1094 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1095 OMulOp != e; ++OMulOp)
1096 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1097 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1098 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1099 if (Mul->getNumOperands() != 2) {
1100 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1101 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001102 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 }
1104 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1105 if (OtherMul->getNumOperands() != 2) {
1106 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1107 OtherMul->op_end());
1108 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001109 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 }
Dan Gohman89f85052007-10-22 18:31:58 +00001111 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1112 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001113 if (Ops.size() == 2) return OuterMul;
1114 Ops.erase(Ops.begin()+Idx);
1115 Ops.erase(Ops.begin()+OtherMulIdx-1);
1116 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001117 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 }
1119 }
1120 }
1121 }
1122
1123 // If there are any add recurrences in the operands list, see if any other
1124 // added values are loop invariant. If so, we can fold them into the
1125 // recurrence.
1126 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1127 ++Idx;
1128
1129 // Scan over all recurrences, trying to fold loop invariants into them.
1130 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1131 // Scan all of the other operands to this add and add them to the vector if
1132 // they are loop invariant w.r.t. the recurrence.
1133 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001134 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1136 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1137 LIOps.push_back(Ops[i]);
1138 Ops.erase(Ops.begin()+i);
1139 --i; --e;
1140 }
1141
1142 // If we found some loop invariants, fold them into the recurrence.
1143 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001144 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001145 LIOps.push_back(AddRec->getStart());
1146
1147 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001148 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001149
Dan Gohman89f85052007-10-22 18:31:58 +00001150 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001151 // If all of the other operands were loop invariant, we are done.
1152 if (Ops.size() == 1) return NewRec;
1153
1154 // Otherwise, add the folded AddRec by the non-liv parts.
1155 for (unsigned i = 0;; ++i)
1156 if (Ops[i] == AddRec) {
1157 Ops[i] = NewRec;
1158 break;
1159 }
Dan Gohman89f85052007-10-22 18:31:58 +00001160 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001161 }
1162
1163 // Okay, if there weren't any loop invariants to be folded, check to see if
1164 // there are multiple AddRec's with the same loop induction variable being
1165 // added together. If so, we can fold them.
1166 for (unsigned OtherIdx = Idx+1;
1167 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1168 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001169 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001170 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1171 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1172 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1173 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1174 if (i >= NewOps.size()) {
1175 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1176 OtherAddRec->op_end());
1177 break;
1178 }
Dan Gohman89f85052007-10-22 18:31:58 +00001179 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 }
Dan Gohman89f85052007-10-22 18:31:58 +00001181 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001182
1183 if (Ops.size() == 2) return NewAddRec;
1184
1185 Ops.erase(Ops.begin()+Idx);
1186 Ops.erase(Ops.begin()+OtherIdx-1);
1187 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001188 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001189 }
1190 }
1191
1192 // Otherwise couldn't fold anything into this recurrence. Move onto the
1193 // next one.
1194 }
1195
1196 // Okay, it looks like we really DO need an add expr. Check to see if we
1197 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001198 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001199 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1200 SCEVOps)];
1201 if (Result == 0) Result = new SCEVAddExpr(Ops);
1202 return Result;
1203}
1204
1205
Dan Gohman89f85052007-10-22 18:31:58 +00001206SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001207 assert(!Ops.empty() && "Cannot get empty mul!");
1208
1209 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001210 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211
1212 // If there are any constants, fold them together.
1213 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001214 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001215
1216 // C1*(C2+V) -> C1*C2 + C1*V
1217 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001218 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001219 if (Add->getNumOperands() == 2 &&
1220 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001221 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1222 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223
1224
1225 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001226 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001228 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1229 RHSC->getValue()->getValue());
1230 Ops[0] = getConstant(Fold);
1231 Ops.erase(Ops.begin()+1); // Erase the folded element
1232 if (Ops.size() == 1) return Ops[0];
1233 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001234 }
1235
1236 // If we are left with a constant one being multiplied, strip it off.
1237 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1238 Ops.erase(Ops.begin());
1239 --Idx;
1240 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1241 // If we have a multiply of zero, it will always be zero.
1242 return Ops[0];
1243 }
1244 }
1245
1246 // Skip over the add expression until we get to a multiply.
1247 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1248 ++Idx;
1249
1250 if (Ops.size() == 1)
1251 return Ops[0];
1252
1253 // If there are mul operands inline them all into this expression.
1254 if (Idx < Ops.size()) {
1255 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001256 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257 // If we have an mul, expand the mul operands onto the end of the operands
1258 // list.
1259 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1260 Ops.erase(Ops.begin()+Idx);
1261 DeletedMul = true;
1262 }
1263
1264 // If we deleted at least one mul, we added operands to the end of the list,
1265 // and they are not necessarily sorted. Recurse to resort and resimplify
1266 // any operands we just aquired.
1267 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001268 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 }
1270
1271 // If there are any add recurrences in the operands list, see if any other
1272 // added values are loop invariant. If so, we can fold them into the
1273 // recurrence.
1274 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1275 ++Idx;
1276
1277 // Scan over all recurrences, trying to fold loop invariants into them.
1278 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1279 // Scan all of the other operands to this mul and add them to the vector if
1280 // they are loop invariant w.r.t. the recurrence.
1281 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001282 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001283 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1284 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1285 LIOps.push_back(Ops[i]);
1286 Ops.erase(Ops.begin()+i);
1287 --i; --e;
1288 }
1289
1290 // If we found some loop invariants, fold them into the recurrence.
1291 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001292 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001293 std::vector<SCEVHandle> NewOps;
1294 NewOps.reserve(AddRec->getNumOperands());
1295 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001296 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001298 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001299 } else {
1300 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1301 std::vector<SCEVHandle> MulOps(LIOps);
1302 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001303 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304 }
1305 }
1306
Dan Gohman89f85052007-10-22 18:31:58 +00001307 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001308
1309 // If all of the other operands were loop invariant, we are done.
1310 if (Ops.size() == 1) return NewRec;
1311
1312 // Otherwise, multiply the folded AddRec by the non-liv parts.
1313 for (unsigned i = 0;; ++i)
1314 if (Ops[i] == AddRec) {
1315 Ops[i] = NewRec;
1316 break;
1317 }
Dan Gohman89f85052007-10-22 18:31:58 +00001318 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001319 }
1320
1321 // Okay, if there weren't any loop invariants to be folded, check to see if
1322 // there are multiple AddRec's with the same loop induction variable being
1323 // multiplied together. If so, we can fold them.
1324 for (unsigned OtherIdx = Idx+1;
1325 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1326 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001327 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1329 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001330 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001331 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001332 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001333 SCEVHandle B = F->getStepRecurrence(*this);
1334 SCEVHandle D = G->getStepRecurrence(*this);
1335 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1336 getMulExpr(G, B),
1337 getMulExpr(B, D));
1338 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1339 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340 if (Ops.size() == 2) return NewAddRec;
1341
1342 Ops.erase(Ops.begin()+Idx);
1343 Ops.erase(Ops.begin()+OtherIdx-1);
1344 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001345 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001346 }
1347 }
1348
1349 // Otherwise couldn't fold anything into this recurrence. Move onto the
1350 // next one.
1351 }
1352
1353 // Okay, it looks like we really DO need an mul expr. Check to see if we
1354 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001355 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1357 SCEVOps)];
1358 if (Result == 0)
1359 Result = new SCEVMulExpr(Ops);
1360 return Result;
1361}
1362
Dan Gohman77841cd2009-05-04 22:23:18 +00001363SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1364 const SCEVHandle &RHS) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001365 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001366 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001367 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001368 if (RHSC->isZero())
1369 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001370
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001371 // Determine if the division can be folded into the operands of
1372 // its operands.
1373 // TODO: Generalize this to non-constants by using known-bits information.
1374 const Type *Ty = LHS->getType();
1375 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1376 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1377 // For non-power-of-two values, effectively round the value up to the
1378 // nearest power of two.
1379 if (!RHSC->getValue()->getValue().isPowerOf2())
1380 ++MaxShiftAmt;
1381 const IntegerType *ExtTy =
1382 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1383 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1384 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1385 if (const SCEVConstant *Step =
1386 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1387 if (!Step->getValue()->getValue()
1388 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001389 getZeroExtendExpr(AR, ExtTy) ==
1390 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1391 getZeroExtendExpr(Step, ExtTy),
1392 AR->getLoop())) {
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001393 std::vector<SCEVHandle> Operands;
1394 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1395 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1396 return getAddRecExpr(Operands, AR->getLoop());
1397 }
1398 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001399 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1400 std::vector<SCEVHandle> Operands;
1401 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1402 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1403 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001404 // Find an operand that's safely divisible.
1405 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1406 SCEVHandle Op = M->getOperand(i);
1407 SCEVHandle Div = getUDivExpr(Op, RHSC);
1408 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman14374d32009-05-08 23:11:16 +00001409 Operands = M->getOperands();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001410 Operands[i] = Div;
1411 return getMulExpr(Operands);
1412 }
1413 }
Dan Gohman14374d32009-05-08 23:11:16 +00001414 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001415 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001416 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1417 std::vector<SCEVHandle> Operands;
1418 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1419 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1420 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1421 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001422 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1423 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1424 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1425 break;
1426 Operands.push_back(Op);
1427 }
1428 if (Operands.size() == A->getNumOperands())
1429 return getAddExpr(Operands);
1430 }
Dan Gohman14374d32009-05-08 23:11:16 +00001431 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001432
1433 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001434 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001435 Constant *LHSCV = LHSC->getValue();
1436 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001437 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438 }
1439 }
1440
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001441 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1442 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001443 return Result;
1444}
1445
1446
1447/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1448/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001449SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450 const SCEVHandle &Step, const Loop *L) {
1451 std::vector<SCEVHandle> Operands;
1452 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001453 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454 if (StepChrec->getLoop() == L) {
1455 Operands.insert(Operands.end(), StepChrec->op_begin(),
1456 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001457 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001458 }
1459
1460 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001461 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001462}
1463
1464/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1465/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001466SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Nick Lewycky37d04642009-04-23 05:15:08 +00001467 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001468 if (Operands.size() == 1) return Operands[0];
1469
Dan Gohman7b560c42008-06-18 16:23:07 +00001470 if (Operands.back()->isZero()) {
1471 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001472 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001473 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001474
Dan Gohman42936882008-08-08 18:33:12 +00001475 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001476 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001477 const Loop* NestedLoop = NestedAR->getLoop();
1478 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1479 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1480 NestedAR->op_end());
1481 SCEVHandle NestedARHandle(NestedAR);
1482 Operands[0] = NestedAR->getStart();
1483 NestedOperands[0] = getAddRecExpr(Operands, L);
1484 return getAddRecExpr(NestedOperands, NestedLoop);
1485 }
1486 }
1487
Dan Gohmanbff6b582009-05-04 22:30:44 +00001488 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1489 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001490 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1491 return Result;
1492}
1493
Nick Lewycky711640a2007-11-25 22:41:31 +00001494SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1495 const SCEVHandle &RHS) {
1496 std::vector<SCEVHandle> Ops;
1497 Ops.push_back(LHS);
1498 Ops.push_back(RHS);
1499 return getSMaxExpr(Ops);
1500}
1501
1502SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1503 assert(!Ops.empty() && "Cannot get empty smax!");
1504 if (Ops.size() == 1) return Ops[0];
1505
1506 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001507 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001508
1509 // If there are any constants, fold them together.
1510 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001511 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001512 ++Idx;
1513 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001514 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001515 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001516 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001517 APIntOps::smax(LHSC->getValue()->getValue(),
1518 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001519 Ops[0] = getConstant(Fold);
1520 Ops.erase(Ops.begin()+1); // Erase the folded element
1521 if (Ops.size() == 1) return Ops[0];
1522 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001523 }
1524
1525 // If we are left with a constant -inf, strip it off.
1526 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1527 Ops.erase(Ops.begin());
1528 --Idx;
1529 }
1530 }
1531
1532 if (Ops.size() == 1) return Ops[0];
1533
1534 // Find the first SMax
1535 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1536 ++Idx;
1537
1538 // Check to see if one of the operands is an SMax. If so, expand its operands
1539 // onto our operand list, and recurse to simplify.
1540 if (Idx < Ops.size()) {
1541 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001542 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001543 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1544 Ops.erase(Ops.begin()+Idx);
1545 DeletedSMax = true;
1546 }
1547
1548 if (DeletedSMax)
1549 return getSMaxExpr(Ops);
1550 }
1551
1552 // Okay, check to see if the same value occurs in the operand list twice. If
1553 // so, delete one. Since we sorted the list, these values are required to
1554 // be adjacent.
1555 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1556 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1558 --i; --e;
1559 }
1560
1561 if (Ops.size() == 1) return Ops[0];
1562
1563 assert(!Ops.empty() && "Reduced smax down to nothing!");
1564
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001565 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001566 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001567 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewycky711640a2007-11-25 22:41:31 +00001568 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1569 SCEVOps)];
1570 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1571 return Result;
1572}
1573
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001574SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1575 const SCEVHandle &RHS) {
1576 std::vector<SCEVHandle> Ops;
1577 Ops.push_back(LHS);
1578 Ops.push_back(RHS);
1579 return getUMaxExpr(Ops);
1580}
1581
1582SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1583 assert(!Ops.empty() && "Cannot get empty umax!");
1584 if (Ops.size() == 1) return Ops[0];
1585
1586 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001587 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001588
1589 // If there are any constants, fold them together.
1590 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001591 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001592 ++Idx;
1593 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001594 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001595 // We found two constants, fold them together!
1596 ConstantInt *Fold = ConstantInt::get(
1597 APIntOps::umax(LHSC->getValue()->getValue(),
1598 RHSC->getValue()->getValue()));
1599 Ops[0] = getConstant(Fold);
1600 Ops.erase(Ops.begin()+1); // Erase the folded element
1601 if (Ops.size() == 1) return Ops[0];
1602 LHSC = cast<SCEVConstant>(Ops[0]);
1603 }
1604
1605 // If we are left with a constant zero, strip it off.
1606 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1607 Ops.erase(Ops.begin());
1608 --Idx;
1609 }
1610 }
1611
1612 if (Ops.size() == 1) return Ops[0];
1613
1614 // Find the first UMax
1615 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1616 ++Idx;
1617
1618 // Check to see if one of the operands is a UMax. If so, expand its operands
1619 // onto our operand list, and recurse to simplify.
1620 if (Idx < Ops.size()) {
1621 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001622 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001623 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1624 Ops.erase(Ops.begin()+Idx);
1625 DeletedUMax = true;
1626 }
1627
1628 if (DeletedUMax)
1629 return getUMaxExpr(Ops);
1630 }
1631
1632 // Okay, check to see if the same value occurs in the operand list twice. If
1633 // so, delete one. Since we sorted the list, these values are required to
1634 // be adjacent.
1635 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1636 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1637 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1638 --i; --e;
1639 }
1640
1641 if (Ops.size() == 1) return Ops[0];
1642
1643 assert(!Ops.empty() && "Reduced umax down to nothing!");
1644
1645 // Okay, it looks like we really DO need a umax expr. Check to see if we
1646 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001647 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001648 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1649 SCEVOps)];
1650 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1651 return Result;
1652}
1653
Dan Gohman89f85052007-10-22 18:31:58 +00001654SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001655 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001656 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001657 if (isa<ConstantPointerNull>(V))
1658 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001659 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1660 if (Result == 0) Result = new SCEVUnknown(V);
1661 return Result;
1662}
1663
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001664//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001665// Basic SCEV Analysis and PHI Idiom Recognition Code
1666//
1667
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001668/// isSCEVable - Test if values of the given type are analyzable within
1669/// the SCEV framework. This primarily includes integer types, and it
1670/// can optionally include pointer types if the ScalarEvolution class
1671/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001672bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001673 // Integers are always SCEVable.
1674 if (Ty->isInteger())
1675 return true;
1676
1677 // Pointers are SCEVable if TargetData information is available
1678 // to provide pointer size information.
1679 if (isa<PointerType>(Ty))
1680 return TD != NULL;
1681
1682 // Otherwise it's not SCEVable.
1683 return false;
1684}
1685
1686/// getTypeSizeInBits - Return the size in bits of the specified type,
1687/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001688uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001689 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1690
1691 // If we have a TargetData, use it!
1692 if (TD)
1693 return TD->getTypeSizeInBits(Ty);
1694
1695 // Otherwise, we support only integer types.
1696 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1697 return Ty->getPrimitiveSizeInBits();
1698}
1699
1700/// getEffectiveSCEVType - Return a type with the same bitwidth as
1701/// the given type and which represents how SCEV will treat the given
1702/// type, for which isSCEVable must return true. For pointer types,
1703/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001704const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001705 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1706
1707 if (Ty->isInteger())
1708 return Ty;
1709
1710 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1711 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001712}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001713
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001714SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohman0ad08b02009-04-18 17:58:19 +00001715 return UnknownValue;
1716}
1717
Dan Gohmand83d4af2009-05-04 22:20:30 +00001718/// hasSCEV - Return true if the SCEV for this value has already been
Edwin Török0e828d62009-05-01 08:33:47 +00001719/// computed.
1720bool ScalarEvolution::hasSCEV(Value *V) const {
1721 return Scalars.count(V);
1722}
1723
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001724/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1725/// expression and create a new one.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001726SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001727 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001728
Dan Gohmanbff6b582009-05-04 22:30:44 +00001729 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001730 if (I != Scalars.end()) return I->second;
1731 SCEVHandle S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00001732 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001733 return S;
1734}
1735
Dan Gohman01c2ee72009-04-16 03:18:22 +00001736/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1737/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001738SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1739 Ty = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001740 Constant *C;
1741 if (Val == 0)
1742 C = Constant::getNullValue(Ty);
1743 else if (Ty->isFloatingPoint())
1744 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1745 APFloat::IEEEdouble, Val));
1746 else
1747 C = ConstantInt::get(Ty, Val);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001748 return getUnknown(C);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001749}
1750
1751/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1752///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001753SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001754 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001755 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001756
1757 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001758 Ty = getEffectiveSCEVType(Ty);
1759 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001760}
1761
1762/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001763SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001764 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001765 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001766
1767 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001768 Ty = getEffectiveSCEVType(Ty);
1769 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001770 return getMinusSCEV(AllOnes, V);
1771}
1772
1773/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1774///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001775SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky37d04642009-04-23 05:15:08 +00001776 const SCEVHandle &RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001777 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001778 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001779}
1780
1781/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1782/// input value to the specified type. If the type must be extended, it is zero
1783/// extended.
1784SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001785ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001786 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001787 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001788 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1789 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001790 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001791 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001792 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001793 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001794 return getTruncateExpr(V, Ty);
1795 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001796}
1797
1798/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1799/// input value to the specified type. If the type must be extended, it is sign
1800/// extended.
1801SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001802ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001803 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001804 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001805 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1806 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001807 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001808 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001809 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001810 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001811 return getTruncateExpr(V, Ty);
1812 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001813}
1814
Dan Gohmanac959332009-05-13 03:46:30 +00001815/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1816/// input value to the specified type. If the type must be extended, it is zero
1817/// extended. The conversion must not be narrowing.
1818SCEVHandle
1819ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1820 const Type *SrcTy = V->getType();
1821 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1822 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1823 "Cannot noop or zero extend with non-integer arguments!");
1824 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1825 "getNoopOrZeroExtend cannot truncate!");
1826 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1827 return V; // No conversion
1828 return getZeroExtendExpr(V, Ty);
1829}
1830
1831/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1832/// input value to the specified type. If the type must be extended, it is sign
1833/// extended. The conversion must not be narrowing.
1834SCEVHandle
1835ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1836 const Type *SrcTy = V->getType();
1837 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1838 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1839 "Cannot noop or sign extend with non-integer arguments!");
1840 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1841 "getNoopOrSignExtend cannot truncate!");
1842 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1843 return V; // No conversion
1844 return getSignExtendExpr(V, Ty);
1845}
1846
1847/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1848/// input value to the specified type. The conversion must not be widening.
1849SCEVHandle
1850ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1851 const Type *SrcTy = V->getType();
1852 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1853 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1854 "Cannot truncate or noop with non-integer arguments!");
1855 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1856 "getTruncateOrNoop cannot extend!");
1857 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1858 return V; // No conversion
1859 return getTruncateExpr(V, Ty);
1860}
1861
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001862/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1863/// the specified instruction and replaces any references to the symbolic value
1864/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001865void ScalarEvolution::
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001866ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1867 const SCEVHandle &NewVal) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001868 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1869 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001870 if (SI == Scalars.end()) return;
1871
1872 SCEVHandle NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001873 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001874 if (NV == SI->second) return; // No change.
1875
1876 SI->second = NV; // Update the scalars map!
1877
1878 // Any instruction values that use this instruction might also need to be
1879 // updated!
1880 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1881 UI != E; ++UI)
1882 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1883}
1884
1885/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1886/// a loop header, making it a potential recurrence, or it doesn't.
1887///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001888SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001890 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001891 if (L->getHeader() == PN->getParent()) {
1892 // If it lives in the loop header, it has two incoming values, one
1893 // from outside the loop, and one from inside.
1894 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1895 unsigned BackEdge = IncomingEdge^1;
1896
1897 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001898 SCEVHandle SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001899 assert(Scalars.find(PN) == Scalars.end() &&
1900 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00001901 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001902
1903 // Using this symbolic name for the PHI, analyze the value coming around
1904 // the back-edge.
1905 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1906
1907 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1908 // has a special value for the first iteration of the loop.
1909
1910 // If the value coming around the backedge is an add with the symbolic
1911 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00001912 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001913 // If there is a single occurrence of the symbolic value, replace it
1914 // with a recurrence.
1915 unsigned FoundIndex = Add->getNumOperands();
1916 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1917 if (Add->getOperand(i) == SymbolicName)
1918 if (FoundIndex == e) {
1919 FoundIndex = i;
1920 break;
1921 }
1922
1923 if (FoundIndex != Add->getNumOperands()) {
1924 // Create an add with everything but the specified operand.
1925 std::vector<SCEVHandle> Ops;
1926 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1927 if (i != FoundIndex)
1928 Ops.push_back(Add->getOperand(i));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001929 SCEVHandle Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930
1931 // This is not a valid addrec if the step amount is varying each
1932 // loop iteration, but is not itself an addrec in this loop.
1933 if (Accum->isLoopInvariant(L) ||
1934 (isa<SCEVAddRecExpr>(Accum) &&
1935 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1936 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001937 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938
1939 // Okay, for the entire analysis of this edge we assumed the PHI
1940 // to be symbolic. We now need to go back and update all of the
1941 // entries for the scalars that use the PHI (except for the PHI
1942 // itself) to use the new analyzed value instead of the "symbolic"
1943 // value.
1944 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1945 return PHISCEV;
1946 }
1947 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00001948 } else if (const SCEVAddRecExpr *AddRec =
1949 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001950 // Otherwise, this could be a loop like this:
1951 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1952 // In this case, j = {1,+,1} and BEValue is j.
1953 // Because the other in-value of i (0) fits the evolution of BEValue
1954 // i really is an addrec evolution.
1955 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1956 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1957
1958 // If StartVal = j.start - j.stride, we can use StartVal as the
1959 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001960 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00001961 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001962 SCEVHandle PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001963 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001964
1965 // Okay, for the entire analysis of this edge we assumed the PHI
1966 // to be symbolic. We now need to go back and update all of the
1967 // entries for the scalars that use the PHI (except for the PHI
1968 // itself) to use the new analyzed value instead of the "symbolic"
1969 // value.
1970 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1971 return PHISCEV;
1972 }
1973 }
1974 }
1975
1976 return SymbolicName;
1977 }
1978
1979 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001980 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001981}
1982
Dan Gohman509cf4d2009-05-08 20:26:55 +00001983/// createNodeForGEP - Expand GEP instructions into add and multiply
1984/// operations. This allows them to be analyzed by regular SCEV code.
1985///
Dan Gohmanca5a39e2009-05-08 20:58:38 +00001986SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00001987
1988 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00001989 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00001990 // Don't attempt to analyze GEPs over unsized objects.
1991 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
1992 return getUnknown(GEP);
Dan Gohman509cf4d2009-05-08 20:26:55 +00001993 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00001994 gep_type_iterator GTI = gep_type_begin(GEP);
1995 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
1996 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00001997 I != E; ++I) {
1998 Value *Index = *I;
1999 // Compute the (potentially symbolic) offset in bytes for this index.
2000 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2001 // For a struct, add the member offset.
2002 const StructLayout &SL = *TD->getStructLayout(STy);
2003 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2004 uint64_t Offset = SL.getElementOffset(FieldNo);
2005 TotalOffset = getAddExpr(TotalOffset,
2006 getIntegerSCEV(Offset, IntPtrTy));
2007 } else {
2008 // For an array, add the element offset, explicitly scaled.
2009 SCEVHandle LocalOffset = getSCEV(Index);
2010 if (!isa<PointerType>(LocalOffset->getType()))
2011 // Getelementptr indicies are signed.
2012 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2013 IntPtrTy);
2014 LocalOffset =
2015 getMulExpr(LocalOffset,
Duncan Sandsec4f97d2009-05-09 07:06:46 +00002016 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman509cf4d2009-05-08 20:26:55 +00002017 IntPtrTy));
2018 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2019 }
2020 }
2021 return getAddExpr(getSCEV(Base), TotalOffset);
2022}
2023
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002024/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2025/// guaranteed to end in (at every loop iteration). It is, at the same time,
2026/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2027/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002028static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002029 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002030 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031
Dan Gohmanc76b5452009-05-04 22:02:23 +00002032 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002033 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2034 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002035
Dan Gohmanc76b5452009-05-04 22:02:23 +00002036 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002037 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2038 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002039 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002040 }
2041
Dan Gohmanc76b5452009-05-04 22:02:23 +00002042 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002043 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2044 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002045 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002046 }
2047
Dan Gohmanc76b5452009-05-04 22:02:23 +00002048 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002049 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002050 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002051 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002052 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002053 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002054 }
2055
Dan Gohmanc76b5452009-05-04 22:02:23 +00002056 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002057 // The result is the sum of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002058 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2059 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002060 for (unsigned i = 1, e = M->getNumOperands();
2061 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002062 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002063 BitWidth);
2064 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002066
Dan Gohmanc76b5452009-05-04 22:02:23 +00002067 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002068 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002069 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002070 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002071 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002072 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002073 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002074
Dan Gohmanc76b5452009-05-04 22:02:23 +00002075 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002076 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002077 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky711640a2007-11-25 22:41:31 +00002078 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002079 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky711640a2007-11-25 22:41:31 +00002080 return MinOpRes;
2081 }
2082
Dan Gohmanc76b5452009-05-04 22:02:23 +00002083 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002084 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002085 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002086 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002087 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002088 return MinOpRes;
2089 }
2090
Nick Lewycky35b56022009-01-13 09:18:58 +00002091 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002092 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002093}
2094
2095/// createSCEV - We know that there is no SCEV for the specified value.
2096/// Analyze the expression.
2097///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002098SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002099 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002100 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002101
Dan Gohman3996f472008-06-22 19:56:46 +00002102 unsigned Opcode = Instruction::UserOp1;
2103 if (Instruction *I = dyn_cast<Instruction>(V))
2104 Opcode = I->getOpcode();
2105 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2106 Opcode = CE->getOpcode();
2107 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002108 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002109
Dan Gohman3996f472008-06-22 19:56:46 +00002110 User *U = cast<User>(V);
2111 switch (Opcode) {
2112 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002113 return getAddExpr(getSCEV(U->getOperand(0)),
2114 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002115 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002116 return getMulExpr(getSCEV(U->getOperand(0)),
2117 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002118 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002119 return getUDivExpr(getSCEV(U->getOperand(0)),
2120 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002121 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002122 return getMinusSCEV(getSCEV(U->getOperand(0)),
2123 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002124 case Instruction::And:
2125 // For an expression like x&255 that merely masks off the high bits,
2126 // use zext(trunc(x)) as the SCEV expression.
2127 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002128 if (CI->isNullValue())
2129 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002130 if (CI->isAllOnesValue())
2131 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002132 const APInt &A = CI->getValue();
2133 unsigned Ones = A.countTrailingOnes();
2134 if (APIntOps::isMask(Ones, A))
2135 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002136 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2137 IntegerType::get(Ones)),
2138 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002139 }
2140 break;
Dan Gohman3996f472008-06-22 19:56:46 +00002141 case Instruction::Or:
2142 // If the RHS of the Or is a constant, we may have something like:
2143 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2144 // optimizations will transparently handle this case.
2145 //
2146 // In order for this transformation to be safe, the LHS must be of the
2147 // form X*(2^n) and the Or constant must be less than 2^n.
2148 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2149 SCEVHandle LHS = getSCEV(U->getOperand(0));
2150 const APInt &CIVal = CI->getValue();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002151 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002152 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002153 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002154 }
Dan Gohman3996f472008-06-22 19:56:46 +00002155 break;
2156 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002157 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002158 // If the RHS of the xor is a signbit, then this is just an add.
2159 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002160 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002161 return getAddExpr(getSCEV(U->getOperand(0)),
2162 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002163
2164 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman3996f472008-06-22 19:56:46 +00002165 else if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002166 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman3996f472008-06-22 19:56:46 +00002167 }
2168 break;
2169
2170 case Instruction::Shl:
2171 // Turn shift left of a constant amount into a multiply.
2172 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2173 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2174 Constant *X = ConstantInt::get(
2175 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002176 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002177 }
2178 break;
2179
Nick Lewycky7fd27892008-07-07 06:15:49 +00002180 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002181 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002182 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2183 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2184 Constant *X = ConstantInt::get(
2185 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002186 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002187 }
2188 break;
2189
Dan Gohman53bf64a2009-04-21 02:26:00 +00002190 case Instruction::AShr:
2191 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2192 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2193 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2194 if (L->getOpcode() == Instruction::Shl &&
2195 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002196 unsigned BitWidth = getTypeSizeInBits(U->getType());
2197 uint64_t Amt = BitWidth - CI->getZExtValue();
2198 if (Amt == BitWidth)
2199 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2200 if (Amt > BitWidth)
2201 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002202 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002203 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002204 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002205 U->getType());
2206 }
2207 break;
2208
Dan Gohman3996f472008-06-22 19:56:46 +00002209 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002210 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002211
2212 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002213 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002214
2215 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002216 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002217
2218 case Instruction::BitCast:
2219 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002220 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002221 return getSCEV(U->getOperand(0));
2222 break;
2223
Dan Gohman01c2ee72009-04-16 03:18:22 +00002224 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002225 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002226 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002227 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002228
2229 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002230 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002231 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2232 U->getType());
2233
Dan Gohman509cf4d2009-05-08 20:26:55 +00002234 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002235 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002236 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002237
Dan Gohman3996f472008-06-22 19:56:46 +00002238 case Instruction::PHI:
2239 return createNodeForPHI(cast<PHINode>(U));
2240
2241 case Instruction::Select:
2242 // This could be a smax or umax that was lowered earlier.
2243 // Try to recover it.
2244 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2245 Value *LHS = ICI->getOperand(0);
2246 Value *RHS = ICI->getOperand(1);
2247 switch (ICI->getPredicate()) {
2248 case ICmpInst::ICMP_SLT:
2249 case ICmpInst::ICMP_SLE:
2250 std::swap(LHS, RHS);
2251 // fall through
2252 case ICmpInst::ICMP_SGT:
2253 case ICmpInst::ICMP_SGE:
2254 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002255 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002256 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002257 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002258 return getNotSCEV(getSMaxExpr(
2259 getNotSCEV(getSCEV(LHS)),
2260 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002261 break;
2262 case ICmpInst::ICMP_ULT:
2263 case ICmpInst::ICMP_ULE:
2264 std::swap(LHS, RHS);
2265 // fall through
2266 case ICmpInst::ICMP_UGT:
2267 case ICmpInst::ICMP_UGE:
2268 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002269 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002270 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2271 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002272 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2273 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002274 break;
2275 default:
2276 break;
2277 }
2278 }
2279
2280 default: // We cannot analyze this expression.
2281 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002282 }
2283
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002284 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002285}
2286
2287
2288
2289//===----------------------------------------------------------------------===//
2290// Iteration Count Computation Code
2291//
2292
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002293/// getBackedgeTakenCount - If the specified loop has a predictable
2294/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2295/// object. The backedge-taken count is the number of times the loop header
2296/// will be branched to from within the loop. This is one less than the
2297/// trip count of the loop, since it doesn't count the first iteration,
2298/// when the header is branched to from outside the loop.
2299///
2300/// Note that it is not valid to call this method on a loop without a
2301/// loop-invariant backedge-taken count (see
2302/// hasLoopInvariantBackedgeTakenCount).
2303///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002304SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002305 return getBackedgeTakenInfo(L).Exact;
2306}
2307
2308/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2309/// return the least SCEV value that is known never to be less than the
2310/// actual backedge taken count.
2311SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2312 return getBackedgeTakenInfo(L).Max;
2313}
2314
2315const ScalarEvolution::BackedgeTakenInfo &
2316ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002317 // Initially insert a CouldNotCompute for this loop. If the insertion
2318 // succeeds, procede to actually compute a backedge-taken count and
2319 // update the value. The temporary CouldNotCompute value tells SCEV
2320 // code elsewhere that it shouldn't attempt to request a new
2321 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002322 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00002323 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2324 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002325 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2326 if (ItCount.Exact != UnknownValue) {
2327 assert(ItCount.Exact->isLoopInvariant(L) &&
2328 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002329 "Computed trip count isn't loop invariant for loop!");
2330 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002331
Dan Gohmana9dba962009-04-27 20:16:15 +00002332 // Update the value in the map.
2333 Pair.first->second = ItCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002334 } else if (isa<PHINode>(L->getHeader()->begin())) {
2335 // Only count loops that have phi nodes as not being computable.
2336 ++NumTripCountsNotComputed;
2337 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002338
2339 // Now that we know more about the trip count for this loop, forget any
2340 // existing SCEV values for PHI nodes in this loop since they are only
2341 // conservative estimates made without the benefit
2342 // of trip count information.
2343 if (ItCount.hasAnyInfo())
Dan Gohman94623022009-05-02 17:43:35 +00002344 forgetLoopPHIs(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002346 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002347}
2348
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002349/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002350/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002351/// ScalarEvolution's ability to compute a trip count, or if the loop
2352/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002353void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002354 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00002355 forgetLoopPHIs(L);
2356}
2357
2358/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2359/// PHI nodes in the given loop. This is used when the trip count of
2360/// the loop may have changed.
2361void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00002362 BasicBlock *Header = L->getHeader();
2363
Dan Gohman9fd4a002009-05-12 01:27:58 +00002364 // Push all Loop-header PHIs onto the Worklist stack, except those
2365 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2366 // a PHI either means that it has an unrecognized structure, or it's
2367 // a PHI that's in the progress of being computed by createNodeForPHI.
2368 // In the former case, additional loop trip count information isn't
2369 // going to change anything. In the later case, createNodeForPHI will
2370 // perform the necessary updates on its own when it gets to that point.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002371 SmallVector<Instruction *, 16> Worklist;
2372 for (BasicBlock::iterator I = Header->begin();
Dan Gohman9fd4a002009-05-12 01:27:58 +00002373 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2374 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2375 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2376 Worklist.push_back(PN);
2377 }
Dan Gohmanbff6b582009-05-04 22:30:44 +00002378
2379 while (!Worklist.empty()) {
2380 Instruction *I = Worklist.pop_back_val();
2381 if (Scalars.erase(I))
2382 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2383 UI != UE; ++UI)
2384 Worklist.push_back(cast<Instruction>(UI));
2385 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002386}
2387
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002388/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2389/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002390ScalarEvolution::BackedgeTakenInfo
2391ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00002393 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 L->getExitBlocks(ExitBlocks);
2395 if (ExitBlocks.size() != 1) return UnknownValue;
2396
2397 // Okay, there is one exit block. Try to find the condition that causes the
2398 // loop to be exited.
2399 BasicBlock *ExitBlock = ExitBlocks[0];
2400
2401 BasicBlock *ExitingBlock = 0;
2402 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2403 PI != E; ++PI)
2404 if (L->contains(*PI)) {
2405 if (ExitingBlock == 0)
2406 ExitingBlock = *PI;
2407 else
2408 return UnknownValue; // More than one block exiting!
2409 }
2410 assert(ExitingBlock && "No exits from loop, something is broken!");
2411
2412 // Okay, we've computed the exiting block. See what condition causes us to
2413 // exit.
2414 //
2415 // FIXME: we should be able to handle switch instructions (with a single exit)
2416 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2417 if (ExitBr == 0) return UnknownValue;
2418 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2419
2420 // At this point, we know we have a conditional branch that determines whether
2421 // the loop is exited. However, we don't know if the branch is executed each
2422 // time through the loop. If not, then the execution count of the branch will
2423 // not be equal to the trip count of the loop.
2424 //
2425 // Currently we check for this by checking to see if the Exit branch goes to
2426 // the loop header. If so, we know it will always execute the same number of
2427 // times as the loop. We also handle the case where the exit block *is* the
2428 // loop header. This is common for un-rotated loops. More extensive analysis
2429 // could be done to handle more cases here.
2430 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2431 ExitBr->getSuccessor(1) != L->getHeader() &&
2432 ExitBr->getParent() != L->getHeader())
2433 return UnknownValue;
2434
2435 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2436
Eli Friedman459d7292009-05-09 12:32:42 +00002437 // If it's not an integer or pointer comparison then compute it the hard way.
2438 if (ExitCond == 0)
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002439 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002440 ExitBr->getSuccessor(0) == ExitBlock);
2441
2442 // If the condition was exit on true, convert the condition to exit on false
2443 ICmpInst::Predicate Cond;
2444 if (ExitBr->getSuccessor(1) == ExitBlock)
2445 Cond = ExitCond->getPredicate();
2446 else
2447 Cond = ExitCond->getInversePredicate();
2448
2449 // Handle common loops like: for (X = "string"; *X; ++X)
2450 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2451 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2452 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002453 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2455 }
2456
2457 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2458 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2459
2460 // Try to evaluate any dependencies out of the loop.
2461 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2462 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2463 Tmp = getSCEVAtScope(RHS, L);
2464 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2465
2466 // At this point, we would like to compute how many iterations of the
2467 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002468 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2469 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470 std::swap(LHS, RHS);
2471 Cond = ICmpInst::getSwappedPredicate(Cond);
2472 }
2473
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474 // If we have a comparison of a chrec against a constant, try to use value
2475 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002476 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2477 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00002479 // Form the constant range.
2480 ConstantRange CompRange(
2481 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002482
Eli Friedman459d7292009-05-09 12:32:42 +00002483 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2484 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002485 }
2486
2487 switch (Cond) {
2488 case ICmpInst::ICMP_NE: { // while (X != Y)
2489 // Convert to: while (X-Y != 0)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002490 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002491 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2492 break;
2493 }
2494 case ICmpInst::ICMP_EQ: {
2495 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002496 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002497 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2498 break;
2499 }
2500 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002501 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2502 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002503 break;
2504 }
2505 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002506 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2507 getNotSCEV(RHS), L, true);
2508 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002509 break;
2510 }
2511 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002512 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2513 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002514 break;
2515 }
2516 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002517 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2518 getNotSCEV(RHS), L, false);
2519 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002520 break;
2521 }
2522 default:
2523#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002524 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002525 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00002526 errs() << "[unsigned] ";
2527 errs() << *LHS << " "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 << Instruction::getOpcodeName(Instruction::ICmp)
2529 << " " << *RHS << "\n";
2530#endif
2531 break;
2532 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002533 return
2534 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2535 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536}
2537
2538static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002539EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2540 ScalarEvolution &SE) {
2541 SCEVHandle InVal = SE.getConstant(C);
2542 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002543 assert(isa<SCEVConstant>(Val) &&
2544 "Evaluation of SCEV at constant didn't fold correctly?");
2545 return cast<SCEVConstant>(Val)->getValue();
2546}
2547
2548/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2549/// and a GEP expression (missing the pointer index) indexing into it, return
2550/// the addressed element of the initializer or null if the index expression is
2551/// invalid.
2552static Constant *
2553GetAddressedElementFromGlobal(GlobalVariable *GV,
2554 const std::vector<ConstantInt*> &Indices) {
2555 Constant *Init = GV->getInitializer();
2556 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2557 uint64_t Idx = Indices[i]->getZExtValue();
2558 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2559 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2560 Init = cast<Constant>(CS->getOperand(Idx));
2561 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2562 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2563 Init = cast<Constant>(CA->getOperand(Idx));
2564 } else if (isa<ConstantAggregateZero>(Init)) {
2565 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2566 assert(Idx < STy->getNumElements() && "Bad struct index!");
2567 Init = Constant::getNullValue(STy->getElementType(Idx));
2568 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2569 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2570 Init = Constant::getNullValue(ATy->getElementType());
2571 } else {
2572 assert(0 && "Unknown constant aggregate type!");
2573 }
2574 return 0;
2575 } else {
2576 return 0; // Unknown initializer type
2577 }
2578 }
2579 return Init;
2580}
2581
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002582/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2583/// 'icmp op load X, cst', try to see if we can compute the backedge
2584/// execution count.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002585SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002586ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2587 const Loop *L,
2588 ICmpInst::Predicate predicate) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002589 if (LI->isVolatile()) return UnknownValue;
2590
2591 // Check to see if the loaded pointer is a getelementptr of a global.
2592 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2593 if (!GEP) return UnknownValue;
2594
2595 // Make sure that it is really a constant global we are gepping, with an
2596 // initializer, and make sure the first IDX is really 0.
2597 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2598 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2599 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2600 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2601 return UnknownValue;
2602
2603 // Okay, we allow one non-constant index into the GEP instruction.
2604 Value *VarIdx = 0;
2605 std::vector<ConstantInt*> Indexes;
2606 unsigned VarIdxNum = 0;
2607 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2608 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2609 Indexes.push_back(CI);
2610 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2611 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2612 VarIdx = GEP->getOperand(i);
2613 VarIdxNum = i-2;
2614 Indexes.push_back(0);
2615 }
2616
2617 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2618 // Check to see if X is a loop variant variable value now.
2619 SCEVHandle Idx = getSCEV(VarIdx);
2620 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2621 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2622
2623 // We can only recognize very limited forms of loop index expressions, in
2624 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002625 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002626 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2627 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2628 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2629 return UnknownValue;
2630
2631 unsigned MaxSteps = MaxBruteForceIterations;
2632 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2633 ConstantInt *ItCst =
2634 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002635 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002636
2637 // Form the GEP offset.
2638 Indexes[VarIdxNum] = Val;
2639
2640 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2641 if (Result == 0) break; // Cannot compute!
2642
2643 // Evaluate the condition for this iteration.
2644 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2645 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2646 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2647#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002648 errs() << "\n***\n*** Computed loop count " << *ItCst
2649 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2650 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002651#endif
2652 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002653 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002654 }
2655 }
2656 return UnknownValue;
2657}
2658
2659
2660/// CanConstantFold - Return true if we can constant fold an instruction of the
2661/// specified type, assuming that all operands were constants.
2662static bool CanConstantFold(const Instruction *I) {
2663 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2664 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2665 return true;
2666
2667 if (const CallInst *CI = dyn_cast<CallInst>(I))
2668 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002669 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002670 return false;
2671}
2672
2673/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2674/// in the loop that V is derived from. We allow arbitrary operations along the
2675/// way, but the operands of an operation must either be constants or a value
2676/// derived from a constant PHI. If this expression does not fit with these
2677/// constraints, return null.
2678static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2679 // If this is not an instruction, or if this is an instruction outside of the
2680 // loop, it can't be derived from a loop PHI.
2681 Instruction *I = dyn_cast<Instruction>(V);
2682 if (I == 0 || !L->contains(I->getParent())) return 0;
2683
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002684 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002685 if (L->getHeader() == I->getParent())
2686 return PN;
2687 else
2688 // We don't currently keep track of the control flow needed to evaluate
2689 // PHIs, so we cannot handle PHIs inside of loops.
2690 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002691 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002692
2693 // If we won't be able to constant fold this expression even if the operands
2694 // are constants, return early.
2695 if (!CanConstantFold(I)) return 0;
2696
2697 // Otherwise, we can evaluate this instruction if all of its operands are
2698 // constant or derived from a PHI node themselves.
2699 PHINode *PHI = 0;
2700 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2701 if (!(isa<Constant>(I->getOperand(Op)) ||
2702 isa<GlobalValue>(I->getOperand(Op)))) {
2703 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2704 if (P == 0) return 0; // Not evolving from PHI
2705 if (PHI == 0)
2706 PHI = P;
2707 else if (PHI != P)
2708 return 0; // Evolving from multiple different PHIs.
2709 }
2710
2711 // This is a expression evolving from a constant PHI!
2712 return PHI;
2713}
2714
2715/// EvaluateExpression - Given an expression that passes the
2716/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2717/// in the loop has the value PHIVal. If we can't fold this expression for some
2718/// reason, return null.
2719static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2720 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002721 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002722 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002723 Instruction *I = cast<Instruction>(V);
2724
2725 std::vector<Constant*> Operands;
2726 Operands.resize(I->getNumOperands());
2727
2728 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2729 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2730 if (Operands[i] == 0) return 0;
2731 }
2732
Chris Lattnerd6e56912007-12-10 22:53:04 +00002733 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2734 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2735 &Operands[0], Operands.size());
2736 else
2737 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2738 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002739}
2740
2741/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2742/// in the header of its containing loop, we know the loop executes a
2743/// constant number of times, and the PHI node is just a recurrence
2744/// involving constants, fold it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002745Constant *ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002746getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002747 std::map<PHINode*, Constant*>::iterator I =
2748 ConstantEvolutionLoopExitValue.find(PN);
2749 if (I != ConstantEvolutionLoopExitValue.end())
2750 return I->second;
2751
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002752 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002753 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2754
2755 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2756
2757 // Since the loop is canonicalized, the PHI node must have two entries. One
2758 // entry must be a constant (coming in from outside of the loop), and the
2759 // second must be derived from the same PHI.
2760 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2761 Constant *StartCST =
2762 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2763 if (StartCST == 0)
2764 return RetVal = 0; // Must be a constant.
2765
2766 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2767 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2768 if (PN2 != PN)
2769 return RetVal = 0; // Not derived from same PHI.
2770
2771 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002772 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002773 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2774
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002775 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002776 unsigned IterationNum = 0;
2777 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2778 if (IterationNum == NumIterations)
2779 return RetVal = PHIVal; // Got exit value!
2780
2781 // Compute the value of the PHI node for the next iteration.
2782 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2783 if (NextPHI == PHIVal)
2784 return RetVal = NextPHI; // Stopped evolving!
2785 if (NextPHI == 0)
2786 return 0; // Couldn't evaluate!
2787 PHIVal = NextPHI;
2788 }
2789}
2790
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002791/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002792/// constant number of times (the condition evolves only from constants),
2793/// try to evaluate a few iterations of the loop until we get the exit
2794/// condition gets a value of ExitWhen (true or false). If we cannot
2795/// evaluate the trip count of the loop, return UnknownValue.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002796SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002797ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002798 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2799 if (PN == 0) return UnknownValue;
2800
2801 // Since the loop is canonicalized, the PHI node must have two entries. One
2802 // entry must be a constant (coming in from outside of the loop), and the
2803 // second must be derived from the same PHI.
2804 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2805 Constant *StartCST =
2806 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2807 if (StartCST == 0) return UnknownValue; // Must be a constant.
2808
2809 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2810 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2811 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2812
2813 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2814 // the loop symbolically to determine when the condition gets a value of
2815 // "ExitWhen".
2816 unsigned IterationNum = 0;
2817 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2818 for (Constant *PHIVal = StartCST;
2819 IterationNum != MaxIterations; ++IterationNum) {
2820 ConstantInt *CondVal =
2821 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2822
2823 // Couldn't symbolically evaluate.
2824 if (!CondVal) return UnknownValue;
2825
2826 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2827 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2828 ++NumBruteForceTripCountsComputed;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002829 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002830 }
2831
2832 // Compute the value of the PHI node for the next iteration.
2833 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2834 if (NextPHI == 0 || NextPHI == PHIVal)
2835 return UnknownValue; // Couldn't evaluate or not making progress...
2836 PHIVal = NextPHI;
2837 }
2838
2839 // Too many iterations were needed to evaluate.
2840 return UnknownValue;
2841}
2842
Dan Gohmandd40e9a2009-05-08 20:38:54 +00002843/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2844/// at the specified scope in the program. The L value specifies a loop
2845/// nest to evaluate the expression at, where null is the top-level or a
2846/// specified loop is immediately inside of the loop.
2847///
2848/// This method can be used to compute the exit value for a variable defined
2849/// in a loop by querying what the value will hold in the parent loop.
2850///
2851/// If this value is not computable at this scope, a SCEVCouldNotCompute
2852/// object is returned.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002853SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002854 // FIXME: this should be turned into a virtual method on SCEV!
2855
2856 if (isa<SCEVConstant>(V)) return V;
2857
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002858 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002860 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002861 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002862 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2864 if (PHINode *PN = dyn_cast<PHINode>(I))
2865 if (PN->getParent() == LI->getHeader()) {
2866 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002867 // to see if the loop that contains it has a known backedge-taken
2868 // count. If so, we may be able to force computation of the exit
2869 // value.
2870 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002871 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002872 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002873 // Okay, we know how many times the containing loop executes. If
2874 // this is a constant evolving PHI node, get the final value at
2875 // the specified iteration number.
2876 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002877 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002878 LI);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002879 if (RV) return getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002880 }
2881 }
2882
2883 // Okay, this is an expression that we cannot symbolically evaluate
2884 // into a SCEV. Check to see if it's possible to symbolically evaluate
2885 // the arguments into constants, and if so, try to constant propagate the
2886 // result. This is particularly useful for computing loop exit values.
2887 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00002888 // Check to see if we've folded this instruction at this loop before.
2889 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2890 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2891 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2892 if (!Pair.second)
2893 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2894
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002895 std::vector<Constant*> Operands;
2896 Operands.reserve(I->getNumOperands());
2897 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2898 Value *Op = I->getOperand(i);
2899 if (Constant *C = dyn_cast<Constant>(Op)) {
2900 Operands.push_back(C);
2901 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002902 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00002903 // non-integer and non-pointer, don't even try to analyze them
2904 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00002905 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00002906 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002907
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002908 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002910 Constant *C = SC->getValue();
2911 if (C->getType() != Op->getType())
2912 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2913 Op->getType(),
2914 false),
2915 C, Op->getType());
2916 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002917 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002918 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2919 if (C->getType() != Op->getType())
2920 C =
2921 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2922 Op->getType(),
2923 false),
2924 C, Op->getType());
2925 Operands.push_back(C);
2926 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002927 return V;
2928 } else {
2929 return V;
2930 }
2931 }
2932 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002933
2934 Constant *C;
2935 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2936 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2937 &Operands[0], Operands.size());
2938 else
2939 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2940 &Operands[0], Operands.size());
Dan Gohmanda0071e2009-05-08 20:47:27 +00002941 Pair.first->second = C;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002942 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002943 }
2944 }
2945
2946 // This is some other type of SCEVUnknown, just return it.
2947 return V;
2948 }
2949
Dan Gohmanc76b5452009-05-04 22:02:23 +00002950 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002951 // Avoid performing the look-up in the common case where the specified
2952 // expression has no loop-variant portions.
2953 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2954 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2955 if (OpAtScope != Comm->getOperand(i)) {
2956 if (OpAtScope == UnknownValue) return UnknownValue;
2957 // Okay, at least one of these operands is loop variant but might be
2958 // foldable. Build a new instance of the folded commutative expression.
2959 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2960 NewOps.push_back(OpAtScope);
2961
2962 for (++i; i != e; ++i) {
2963 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2964 if (OpAtScope == UnknownValue) return UnknownValue;
2965 NewOps.push_back(OpAtScope);
2966 }
2967 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002968 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002969 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002970 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002971 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002972 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002973 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002974 return getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002975 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002976 }
2977 }
2978 // If we got here, all operands are loop invariant.
2979 return Comm;
2980 }
2981
Dan Gohmanc76b5452009-05-04 22:02:23 +00002982 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky35b56022009-01-13 09:18:58 +00002983 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002984 if (LHS == UnknownValue) return LHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002985 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986 if (RHS == UnknownValue) return RHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002987 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2988 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002989 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002990 }
2991
2992 // If this is a loop recurrence for a loop that does not contain L, then we
2993 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002994 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002995 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2996 // To evaluate this recurrence, we need to know how many times the AddRec
2997 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002998 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2999 if (BackedgeTakenCount == UnknownValue) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003000
Eli Friedman7489ec92008-08-04 23:49:06 +00003001 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003002 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 }
3004 return UnknownValue;
3005 }
3006
Dan Gohmanc76b5452009-05-04 22:02:23 +00003007 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003008 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3009 if (Op == UnknownValue) return Op;
3010 if (Op == Cast->getOperand())
3011 return Cast; // must be loop invariant
3012 return getZeroExtendExpr(Op, Cast->getType());
3013 }
3014
Dan Gohmanc76b5452009-05-04 22:02:23 +00003015 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003016 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3017 if (Op == UnknownValue) return Op;
3018 if (Op == Cast->getOperand())
3019 return Cast; // must be loop invariant
3020 return getSignExtendExpr(Op, Cast->getType());
3021 }
3022
Dan Gohmanc76b5452009-05-04 22:02:23 +00003023 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003024 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3025 if (Op == UnknownValue) return Op;
3026 if (Op == Cast->getOperand())
3027 return Cast; // must be loop invariant
3028 return getTruncateExpr(Op, Cast->getType());
3029 }
3030
3031 assert(0 && "Unknown SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003032}
3033
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003034/// getSCEVAtScope - This is a convenience function which does
3035/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003036SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3037 return getSCEVAtScope(getSCEV(V), L);
3038}
3039
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003040/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3041/// following equation:
3042///
3043/// A * X = B (mod N)
3044///
3045/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3046/// A and B isn't important.
3047///
3048/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3049static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3050 ScalarEvolution &SE) {
3051 uint32_t BW = A.getBitWidth();
3052 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3053 assert(A != 0 && "A must be non-zero.");
3054
3055 // 1. D = gcd(A, N)
3056 //
3057 // The gcd of A and N may have only one prime factor: 2. The number of
3058 // trailing zeros in A is its multiplicity
3059 uint32_t Mult2 = A.countTrailingZeros();
3060 // D = 2^Mult2
3061
3062 // 2. Check if B is divisible by D.
3063 //
3064 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3065 // is not less than multiplicity of this prime factor for D.
3066 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003067 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003068
3069 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3070 // modulo (N / D).
3071 //
3072 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3073 // bit width during computations.
3074 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3075 APInt Mod(BW + 1, 0);
3076 Mod.set(BW - Mult2); // Mod = N / D
3077 APInt I = AD.multiplicativeInverse(Mod);
3078
3079 // 4. Compute the minimum unsigned root of the equation:
3080 // I * (B / D) mod (N / D)
3081 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3082
3083 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3084 // bits.
3085 return SE.getConstant(Result.trunc(BW));
3086}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003087
3088/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3089/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3090/// might be the same) or two SCEVCouldNotCompute objects.
3091///
3092static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00003093SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003094 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00003095 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3096 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3097 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003098
3099 // We currently can only solve this if the coefficients are constants.
3100 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003101 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003102 return std::make_pair(CNC, CNC);
3103 }
3104
3105 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3106 const APInt &L = LC->getValue()->getValue();
3107 const APInt &M = MC->getValue()->getValue();
3108 const APInt &N = NC->getValue()->getValue();
3109 APInt Two(BitWidth, 2);
3110 APInt Four(BitWidth, 4);
3111
3112 {
3113 using namespace APIntOps;
3114 const APInt& C = L;
3115 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3116 // The B coefficient is M-N/2
3117 APInt B(M);
3118 B -= sdiv(N,Two);
3119
3120 // The A coefficient is N/2
3121 APInt A(N.sdiv(Two));
3122
3123 // Compute the B^2-4ac term.
3124 APInt SqrtTerm(B);
3125 SqrtTerm *= B;
3126 SqrtTerm -= Four * (A * C);
3127
3128 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3129 // integer value or else APInt::sqrt() will assert.
3130 APInt SqrtVal(SqrtTerm.sqrt());
3131
3132 // Compute the two solutions for the quadratic formula.
3133 // The divisions must be performed as signed divisions.
3134 APInt NegB(-B);
3135 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00003136 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003137 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00003138 return std::make_pair(CNC, CNC);
3139 }
3140
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003141 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3142 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3143
Dan Gohman89f85052007-10-22 18:31:58 +00003144 return std::make_pair(SE.getConstant(Solution1),
3145 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003146 } // end APIntOps namespace
3147}
3148
3149/// HowFarToZero - Return the number of times a backedge comparing the specified
3150/// value to zero will execute. If not computable, return UnknownValue
Dan Gohmanbff6b582009-05-04 22:30:44 +00003151SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003152 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00003153 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003154 // If the value is already zero, the branch will execute zero times.
3155 if (C->getValue()->isZero()) return C;
3156 return UnknownValue; // Otherwise it will loop infinitely.
3157 }
3158
Dan Gohmanbff6b582009-05-04 22:30:44 +00003159 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003160 if (!AddRec || AddRec->getLoop() != L)
3161 return UnknownValue;
3162
3163 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003164 // If this is an affine expression, the execution count of this branch is
3165 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003166 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003167 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003168 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003169 // equivalent to:
3170 //
3171 // Step*N = -Start (mod 2^BW)
3172 //
3173 // where BW is the common bit width of Start and Step.
3174
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003175 // Get the initial value for the loop.
3176 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3177 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003178
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003179 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003180
Dan Gohmanc76b5452009-05-04 22:02:23 +00003181 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003182 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003183
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003184 // First, handle unitary steps.
3185 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003186 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003187 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3188 return Start; // N = Start (as unsigned)
3189
3190 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003191 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003192 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003193 -StartC->getValue()->getValue(),
3194 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003195 }
3196 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3197 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3198 // the quadratic equation to solve it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003199 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3200 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003201 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3202 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003203 if (R1) {
3204#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003205 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3206 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003207#endif
3208 // Pick the smallest positive root value.
3209 if (ConstantInt *CB =
3210 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3211 R1->getValue(), R2->getValue()))) {
3212 if (CB->getZExtValue() == false)
3213 std::swap(R1, R2); // R1 is the minimum root now.
3214
3215 // We can only use this value if the chrec ends up with an exact zero
3216 // value at this index. When solving for "X*X != 5", for example, we
3217 // should not accept a root of 2.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003218 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00003219 if (Val->isZero())
3220 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003221 }
3222 }
3223 }
3224
3225 return UnknownValue;
3226}
3227
3228/// HowFarToNonZero - Return the number of times a backedge checking the
3229/// specified value for nonzero will execute. If not computable, return
3230/// UnknownValue
Dan Gohmanbff6b582009-05-04 22:30:44 +00003231SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003232 // Loops that look like: while (X == 0) are very strange indeed. We don't
3233 // handle them yet except for the trivial case. This could be expanded in the
3234 // future as needed.
3235
3236 // If the value is a constant, check to see if it is known to be non-zero
3237 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003238 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00003239 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003240 return getIntegerSCEV(0, C->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003241 return UnknownValue; // Otherwise it will loop infinitely.
3242 }
3243
3244 // We could implement others, but I really doubt anyone writes loops like
3245 // this, and if they did, they would already be constant folded.
3246 return UnknownValue;
3247}
3248
Dan Gohmanab157b22009-05-18 15:36:09 +00003249/// getLoopPredecessor - If the given loop's header has exactly one unique
3250/// predecessor outside the loop, return it. Otherwise return null.
3251///
3252BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3253 BasicBlock *Header = L->getHeader();
3254 BasicBlock *Pred = 0;
3255 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3256 PI != E; ++PI)
3257 if (!L->contains(*PI)) {
3258 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3259 Pred = *PI;
3260 }
3261 return Pred;
3262}
3263
Dan Gohman1cddf972008-09-15 22:18:04 +00003264/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3265/// (which may not be an immediate predecessor) which has exactly one
3266/// successor from which BB is reachable, or null if no such block is
3267/// found.
3268///
3269BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003270ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00003271 // If the block has a unique predecessor, then there is no path from the
3272 // predecessor to the block that does not go through the direct edge
3273 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00003274 if (BasicBlock *Pred = BB->getSinglePredecessor())
3275 return Pred;
3276
3277 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00003278 // If the header has a unique predecessor outside the loop, it must be
3279 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003280 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00003281 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00003282
3283 return 0;
3284}
3285
Dan Gohmancacd2012009-02-12 22:19:27 +00003286/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman1116ea72009-04-30 20:48:53 +00003287/// a conditional between LHS and RHS. This is used to help avoid max
3288/// expressions in loop trip counts.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003289bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman1116ea72009-04-30 20:48:53 +00003290 ICmpInst::Predicate Pred,
Dan Gohmanbff6b582009-05-04 22:30:44 +00003291 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmanab157b22009-05-18 15:36:09 +00003292 BasicBlock *Predecessor = getLoopPredecessor(L);
3293 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003294
Dan Gohmanab157b22009-05-18 15:36:09 +00003295 // Starting at the loop predecessor, climb up the predecessor chain, as long
3296 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00003297 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00003298 for (; Predecessor;
3299 PredecessorDest = Predecessor,
3300 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00003301
3302 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00003303 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00003304 if (!LoopEntryPredicate ||
3305 LoopEntryPredicate->isUnconditional())
3306 continue;
3307
3308 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3309 if (!ICI) continue;
3310
3311 // Now that we found a conditional branch that dominates the loop, check to
3312 // see if it is the comparison we are looking for.
3313 Value *PreCondLHS = ICI->getOperand(0);
3314 Value *PreCondRHS = ICI->getOperand(1);
3315 ICmpInst::Predicate Cond;
Dan Gohmanab157b22009-05-18 15:36:09 +00003316 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
Dan Gohmanab678fb2008-08-12 20:17:31 +00003317 Cond = ICI->getPredicate();
3318 else
3319 Cond = ICI->getInversePredicate();
3320
Dan Gohmancacd2012009-02-12 22:19:27 +00003321 if (Cond == Pred)
3322 ; // An exact match.
3323 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3324 ; // The actual condition is beyond sufficient.
3325 else
3326 // Check a few special cases.
3327 switch (Cond) {
3328 case ICmpInst::ICMP_UGT:
3329 if (Pred == ICmpInst::ICMP_ULT) {
3330 std::swap(PreCondLHS, PreCondRHS);
3331 Cond = ICmpInst::ICMP_ULT;
3332 break;
3333 }
3334 continue;
3335 case ICmpInst::ICMP_SGT:
3336 if (Pred == ICmpInst::ICMP_SLT) {
3337 std::swap(PreCondLHS, PreCondRHS);
3338 Cond = ICmpInst::ICMP_SLT;
3339 break;
3340 }
3341 continue;
3342 case ICmpInst::ICMP_NE:
3343 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3344 // so check for this case by checking if the NE is comparing against
3345 // a minimum or maximum constant.
3346 if (!ICmpInst::isTrueWhenEqual(Pred))
3347 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3348 const APInt &A = CI->getValue();
3349 switch (Pred) {
3350 case ICmpInst::ICMP_SLT:
3351 if (A.isMaxSignedValue()) break;
3352 continue;
3353 case ICmpInst::ICMP_SGT:
3354 if (A.isMinSignedValue()) break;
3355 continue;
3356 case ICmpInst::ICMP_ULT:
3357 if (A.isMaxValue()) break;
3358 continue;
3359 case ICmpInst::ICMP_UGT:
3360 if (A.isMinValue()) break;
3361 continue;
3362 default:
3363 continue;
3364 }
3365 Cond = ICmpInst::ICMP_NE;
3366 // NE is symmetric but the original comparison may not be. Swap
3367 // the operands if necessary so that they match below.
3368 if (isa<SCEVConstant>(LHS))
3369 std::swap(PreCondLHS, PreCondRHS);
3370 break;
3371 }
3372 continue;
3373 default:
3374 // We weren't able to reconcile the condition.
3375 continue;
3376 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003377
3378 if (!PreCondLHS->getType()->isInteger()) continue;
3379
3380 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3381 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3382 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003383 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3384 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohmanab678fb2008-08-12 20:17:31 +00003385 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003386 }
3387
Dan Gohmanab678fb2008-08-12 20:17:31 +00003388 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003389}
3390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003391/// HowManyLessThans - Return the number of times a backedge containing the
3392/// specified less-than comparison will execute. If not computable, return
3393/// UnknownValue.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003394ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohmanbff6b582009-05-04 22:30:44 +00003395HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3396 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003397 // Only handle: "ADDREC < LoopInvariant".
3398 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3399
Dan Gohmanbff6b582009-05-04 22:30:44 +00003400 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003401 if (!AddRec || AddRec->getLoop() != L)
3402 return UnknownValue;
3403
3404 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003405 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003406 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3407 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3408 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3409
3410 // TODO: handle non-constant strides.
3411 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3412 if (!CStep || CStep->isZero())
3413 return UnknownValue;
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00003414 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003415 // With unit stride, the iteration never steps past the limit value.
3416 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3417 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3418 // Test whether a positive iteration iteration can step past the limit
3419 // value and past the maximum value for its type in a single step.
3420 if (isSigned) {
3421 APInt Max = APInt::getSignedMaxValue(BitWidth);
3422 if ((Max - CStep->getValue()->getValue())
3423 .slt(CLimit->getValue()->getValue()))
3424 return UnknownValue;
3425 } else {
3426 APInt Max = APInt::getMaxValue(BitWidth);
3427 if ((Max - CStep->getValue()->getValue())
3428 .ult(CLimit->getValue()->getValue()))
3429 return UnknownValue;
3430 }
3431 } else
3432 // TODO: handle non-constant limit values below.
3433 return UnknownValue;
3434 } else
3435 // TODO: handle negative strides below.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003436 return UnknownValue;
3437
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003438 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3439 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3440 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003441 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003442
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003443 // First, we get the value of the LHS in the first iteration: n
3444 SCEVHandle Start = AddRec->getOperand(0);
3445
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003446 // Determine the minimum constant start value.
3447 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3448 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3449 APInt::getMinValue(BitWidth));
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003450
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003451 // If we know that the condition is true in order to enter the loop,
3452 // then we know that it will run exactly (m-n)/s times. Otherwise, we
3453 // only know if will execute (max(m,n)-n)/s times. In both cases, the
3454 // division must round up.
3455 SCEVHandle End = RHS;
3456 if (!isLoopGuardedByCond(L,
3457 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3458 getMinusSCEV(Start, Step), RHS))
3459 End = isSigned ? getSMaxExpr(RHS, Start)
3460 : getUMaxExpr(RHS, Start);
3461
3462 // Determine the maximum constant end value.
3463 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3464 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3465 APInt::getMaxValue(BitWidth));
3466
3467 // Finally, we subtract these two values and divide, rounding up, to get
3468 // the number of times the backedge is executed.
3469 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3470 getAddExpr(Step, NegOne)),
3471 Step);
3472
3473 // The maximum backedge count is similar, except using the minimum start
3474 // value and the maximum end value.
3475 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3476 MinStart),
3477 getAddExpr(Step, NegOne)),
3478 Step);
3479
3480 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003481 }
3482
3483 return UnknownValue;
3484}
3485
3486/// getNumIterationsInRange - Return the number of iterations of this loop that
3487/// produce values in the specified constant range. Another way of looking at
3488/// this is that it returns the first iteration number where the value is not in
3489/// the condition, thus computing the exit count. If the iteration count can't
3490/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003491SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3492 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003493 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003494 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003495
3496 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003497 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003498 if (!SC->getValue()->isZero()) {
3499 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003500 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3501 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00003502 if (const SCEVAddRecExpr *ShiftedAddRec =
3503 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003504 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003505 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003506 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003507 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003508 }
3509
3510 // The only time we can solve this is when we have all constant indices.
3511 // Otherwise, we cannot determine the overflow conditions.
3512 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3513 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003514 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515
3516
3517 // Okay at this point we know that all elements of the chrec are constants and
3518 // that the start element is zero.
3519
3520 // First check to see if the range contains zero. If not, the first
3521 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00003522 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00003523 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003524 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003525
3526 if (isAffine()) {
3527 // If this is an affine expression then we have this situation:
3528 // Solve {0,+,A} in Range === Ax in Range
3529
3530 // We know that zero is in the range. If A is positive then we know that
3531 // the upper value of the range must be the first possible exit value.
3532 // If A is negative then the lower of the range is the last possible loop
3533 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003534 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003535 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3536 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3537
3538 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003539 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003540 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3541
3542 // Evaluate at the exit value. If we really did fall out of the valid
3543 // range, then we computed our trip count, otherwise wrap around or other
3544 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003545 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003546 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003547 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003548
3549 // Ensure that the previous value is in the range. This is a sanity check.
3550 assert(Range.contains(
3551 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003552 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003553 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003554 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003555 } else if (isQuadratic()) {
3556 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3557 // quadratic equation to solve it. To do this, we must frame our problem in
3558 // terms of figuring out when zero is crossed, instead of when
3559 // Range.getUpper() is crossed.
3560 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003561 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3562 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003563
3564 // Next, solve the constructed addrec
3565 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003566 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003567 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3568 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003569 if (R1) {
3570 // Pick the smallest positive root value.
3571 if (ConstantInt *CB =
3572 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3573 R1->getValue(), R2->getValue()))) {
3574 if (CB->getZExtValue() == false)
3575 std::swap(R1, R2); // R1 is the minimum root now.
3576
3577 // Make sure the root is not off by one. The returned iteration should
3578 // not be in the range, but the previous one should be. When solving
3579 // for "X*X < 5", for example, we should not return a root of 2.
3580 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003581 R1->getValue(),
3582 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003583 if (Range.contains(R1Val->getValue())) {
3584 // The next iteration must be out of the range...
3585 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3586
Dan Gohman89f85052007-10-22 18:31:58 +00003587 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003588 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003589 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00003590 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591 }
3592
3593 // If R1 was not in the range, then it is a good return value. Make
3594 // sure that R1-1 WAS in the range though, just in case.
3595 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003596 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003597 if (Range.contains(R1Val->getValue()))
3598 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00003599 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003600 }
3601 }
3602 }
3603
Dan Gohman0ad08b02009-04-18 17:58:19 +00003604 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003605}
3606
3607
3608
3609//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00003610// SCEVCallbackVH Class Implementation
3611//===----------------------------------------------------------------------===//
3612
3613void SCEVCallbackVH::deleted() {
3614 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3615 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3616 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003617 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3618 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003619 SE->Scalars.erase(getValPtr());
3620 // this now dangles!
3621}
3622
3623void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3624 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3625
3626 // Forget all the expressions associated with users of the old value,
3627 // so that future queries will recompute the expressions using the new
3628 // value.
3629 SmallVector<User *, 16> Worklist;
3630 Value *Old = getValPtr();
3631 bool DeleteOld = false;
3632 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3633 UI != UE; ++UI)
3634 Worklist.push_back(*UI);
3635 while (!Worklist.empty()) {
3636 User *U = Worklist.pop_back_val();
3637 // Deleting the Old value will cause this to dangle. Postpone
3638 // that until everything else is done.
3639 if (U == Old) {
3640 DeleteOld = true;
3641 continue;
3642 }
3643 if (PHINode *PN = dyn_cast<PHINode>(U))
3644 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003645 if (Instruction *I = dyn_cast<Instruction>(U))
3646 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003647 if (SE->Scalars.erase(U))
3648 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3649 UI != UE; ++UI)
3650 Worklist.push_back(*UI);
3651 }
3652 if (DeleteOld) {
3653 if (PHINode *PN = dyn_cast<PHINode>(Old))
3654 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003655 if (Instruction *I = dyn_cast<Instruction>(Old))
3656 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003657 SE->Scalars.erase(Old);
3658 // this now dangles!
3659 }
3660 // this may dangle!
3661}
3662
3663SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3664 : CallbackVH(V), SE(se) {}
3665
3666//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003667// ScalarEvolution Class Implementation
3668//===----------------------------------------------------------------------===//
3669
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003670ScalarEvolution::ScalarEvolution()
3671 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3672}
3673
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003674bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003675 this->F = &F;
3676 LI = &getAnalysis<LoopInfo>();
3677 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003678 return false;
3679}
3680
3681void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003682 Scalars.clear();
3683 BackedgeTakenCounts.clear();
3684 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00003685 ValuesAtScopes.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003686}
3687
3688void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3689 AU.setPreservesAll();
3690 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003691}
3692
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003693bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003694 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003695}
3696
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003697static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003698 const Loop *L) {
3699 // Print all inner loops first
3700 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3701 PrintLoopInfo(OS, SE, *I);
3702
Nick Lewyckye5da1912008-01-02 02:49:20 +00003703 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003704
Devang Patel02451fa2007-08-21 00:31:24 +00003705 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003706 L->getExitBlocks(ExitBlocks);
3707 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003708 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003709
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003710 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3711 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003712 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003713 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003714 }
3715
Nick Lewyckye5da1912008-01-02 02:49:20 +00003716 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003717}
3718
Dan Gohman13058cc2009-04-21 00:47:46 +00003719void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003720 // ScalarEvolution's implementaiton of the print method is to print
3721 // out SCEV values of all instructions that are interesting. Doing
3722 // this potentially causes it to create new SCEV objects though,
3723 // which technically conflicts with the const qualifier. This isn't
3724 // observable from outside the class though (the hasSCEV function
3725 // notwithstanding), so casting away the const isn't dangerous.
3726 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003727
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003728 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003729 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00003730 if (isSCEVable(I->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003731 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003732 OS << " --> ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003733 SCEVHandle SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003734 SV->print(OS);
3735 OS << "\t\t";
3736
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003737 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003738 OS << "Exits: ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003739 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003740 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3741 OS << "<<Unknown>>";
3742 } else {
3743 OS << *ExitValue;
3744 }
3745 }
3746
3747
3748 OS << "\n";
3749 }
3750
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003751 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3752 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3753 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003754}
Dan Gohman13058cc2009-04-21 00:47:46 +00003755
3756void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3757 raw_os_ostream OS(o);
3758 print(OS, M);
3759}