blob: 2002910dfc41ed93013af1c36a1fe1442b92e3d4 [file] [log] [blame]
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +00001//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
Evan Cheng559806f2006-01-27 08:10:46 +000018#include "X86Subtarget.h"
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000019#include "llvm/Target/TargetLowering.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21
22namespace llvm {
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000023 namespace X86ISD {
Evan Chengd9558e02006-01-06 00:43:03 +000024 // X86 Specific DAG Nodes
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000025 enum NodeType {
26 // Start the numbering where the builtin ops leave off.
Evan Cheng7df96d62005-12-17 01:21:05 +000027 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000028
Evan Chenge3413162006-01-09 18:33:28 +000029 /// SHLD, SHRD - Double shift instructions. These correspond to
30 /// X86::SHLDxx and X86::SHRDxx instructions.
31 SHLD,
32 SHRD,
33
Evan Chengef6ffb12006-01-31 03:14:29 +000034 /// FAND - Bitwise logical AND of floating point values. This corresponds
35 /// to X86::ANDPS or X86::ANDPD.
36 FAND,
37
Evan Cheng223547a2006-01-31 22:28:30 +000038 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
39 /// to X86::XORPS or X86::XORPD.
40 FXOR,
41
Evan Chenge3de85b2006-02-04 02:20:30 +000042 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
43 /// integer source in memory and FP reg result. This corresponds to the
44 /// X86::FILD*m instructions. It has three inputs (token chain, address,
45 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
46 /// also produces a flag).
Evan Chenga3195e82006-01-12 22:54:21 +000047 FILD,
Evan Chenge3de85b2006-02-04 02:20:30 +000048 FILD_FLAG,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000049
50 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
51 /// integer destination in memory and a FP reg source. This corresponds
52 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
Evan Chenga3195e82006-01-12 22:54:21 +000053 /// has two inputs (token chain and address) and two outputs (int value and
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000054 /// token chain).
55 FP_TO_INT16_IN_MEM,
56 FP_TO_INT32_IN_MEM,
57 FP_TO_INT64_IN_MEM,
58
Evan Chengb077b842005-12-21 02:39:21 +000059 /// FLD - This instruction implements an extending load to FP stack slots.
60 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
Evan Cheng38bcbaf2005-12-23 07:31:11 +000061 /// operand, ptr to load from, and a ValueType node indicating the type
62 /// to load to.
Evan Chengb077b842005-12-21 02:39:21 +000063 FLD,
64
Evan Chengd90eb7f2006-01-05 00:27:02 +000065 /// FST - This instruction implements a truncating store to FP stack
66 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
67 /// chain operand, value to store, address, and a ValueType to store it
68 /// as.
69 FST,
70
71 /// FP_SET_RESULT - This corresponds to FpGETRESULT pseudo instrcuction
72 /// which copies from ST(0) to the destination. It takes a chain and writes
73 /// a RFP result and a chain.
74 FP_GET_RESULT,
75
Evan Chengb077b842005-12-21 02:39:21 +000076 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instrcuction
77 /// which copies the source operand to ST(0). It takes a chain and writes
78 /// a chain and a flag.
79 FP_SET_RESULT,
80
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000081 /// CALL/TAILCALL - These operations represent an abstract X86 call
82 /// instruction, which includes a bunch of information. In particular the
83 /// operands of these node are:
84 ///
85 /// #0 - The incoming token chain
86 /// #1 - The callee
87 /// #2 - The number of arg bytes the caller pushes on the stack.
88 /// #3 - The number of arg bytes the callee pops off the stack.
89 /// #4 - The value to pass in AL/AX/EAX (optional)
90 /// #5 - The value to pass in DL/DX/EDX (optional)
91 ///
92 /// The result values of these nodes are:
93 ///
94 /// #0 - The outgoing token chain
95 /// #1 - The first register result value (optional)
96 /// #2 - The second register result value (optional)
97 ///
98 /// The CALL vs TAILCALL distinction boils down to whether the callee is
99 /// known not to modify the caller's stack frame, as is standard with
100 /// LLVM.
101 CALL,
102 TAILCALL,
Andrew Lenharthb873ff32005-11-20 21:41:10 +0000103
104 /// RDTSC_DAG - This operation implements the lowering for
105 /// readcyclecounter
106 RDTSC_DAG,
Evan Cheng7df96d62005-12-17 01:21:05 +0000107
108 /// X86 compare and logical compare instructions.
Evan Cheng6be2c582006-04-05 23:38:46 +0000109 CMP, TEST, COMI, UCOMI,
Evan Cheng7df96d62005-12-17 01:21:05 +0000110
Evan Chengd5781fc2005-12-21 20:21:51 +0000111 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
112 /// operand produced by a CMP instruction.
113 SETCC,
114
115 /// X86 conditional moves. Operand 1 and operand 2 are the two values
116 /// to select from (operand 1 is a R/W operand). Operand 3 is the condition
117 /// code, and operand 4 is the flag operand produced by a CMP or TEST
Evan Chenge3413162006-01-09 18:33:28 +0000118 /// instruction. It also writes a flag result.
Evan Cheng7df96d62005-12-17 01:21:05 +0000119 CMOV,
Evan Cheng898101c2005-12-19 23:12:38 +0000120
Evan Chengd5781fc2005-12-21 20:21:51 +0000121 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
122 /// is the block to branch if condition is true, operand 3 is the
123 /// condition code, and operand 4 is the flag operand produced by a CMP
124 /// or TEST instruction.
Evan Cheng898101c2005-12-19 23:12:38 +0000125 BRCOND,
Evan Chengb077b842005-12-21 02:39:21 +0000126
Evan Cheng67f92a72006-01-11 22:15:48 +0000127 /// Return with a flag operand. Operand 1 is the chain operand, operand
128 /// 2 is the number of bytes of stack to pop.
Evan Chengb077b842005-12-21 02:39:21 +0000129 RET_FLAG,
Evan Cheng67f92a72006-01-11 22:15:48 +0000130
131 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
132 REP_STOS,
133
134 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
135 REP_MOVS,
Evan Cheng223547a2006-01-31 22:28:30 +0000136
137 /// LOAD_PACK Load a 128-bit packed float / double value. It has the same
138 /// operands as a normal load.
139 LOAD_PACK,
Evan Cheng7ccced62006-02-18 00:15:05 +0000140
Evan Cheng206ee9d2006-07-07 08:33:52 +0000141 /// LOAD_UA Load an unaligned 128-bit value. It has the same operands as
142 /// a normal load.
143 LOAD_UA,
144
Evan Cheng7ccced62006-02-18 00:15:05 +0000145 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
146 /// at function entry, used for PIC code.
147 GlobalBaseReg,
Evan Chenga0ea0532006-02-23 02:43:52 +0000148
Evan Cheng020d2e82006-02-23 20:41:18 +0000149 /// TCPWrapper - A wrapper node for TargetConstantPool,
150 /// TargetExternalSymbol, and TargetGlobalAddress.
151 Wrapper,
Evan Cheng48090aa2006-03-21 23:01:21 +0000152
Evan Chengbc4832b2006-03-24 23:15:12 +0000153 /// S2VEC - X86 version of SCALAR_TO_VECTOR. The destination base does not
154 /// have to match the operand type.
155 S2VEC,
Evan Chengb9df0ca2006-03-22 02:53:00 +0000156
Evan Chengb067a1e2006-03-31 19:22:53 +0000157 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
Evan Cheng653159f2006-03-31 21:55:24 +0000158 /// i32, corresponds to X86::PEXTRW.
Evan Chengb067a1e2006-03-31 19:22:53 +0000159 PEXTRW,
Evan Cheng653159f2006-03-31 21:55:24 +0000160
161 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
162 /// corresponds to X86::PINSRW.
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000163 PINSRW
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000164 };
Evan Chengd9558e02006-01-06 00:43:03 +0000165
166 // X86 specific condition code. These correspond to X86_*_COND in
167 // X86InstrInfo.td. They must be kept in synch.
168 enum CondCode {
169 COND_A = 0,
170 COND_AE = 1,
171 COND_B = 2,
172 COND_BE = 3,
173 COND_E = 4,
174 COND_G = 5,
175 COND_GE = 6,
176 COND_L = 7,
177 COND_LE = 8,
178 COND_NE = 9,
179 COND_NO = 10,
180 COND_NP = 11,
181 COND_NS = 12,
182 COND_O = 13,
183 COND_P = 14,
184 COND_S = 15,
185 COND_INVALID
186 };
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000187 }
188
Evan Chengb9df0ca2006-03-22 02:53:00 +0000189 /// Define some predicates that are used for node matching.
190 namespace X86 {
Evan Cheng0188ecb2006-03-22 18:59:22 +0000191 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
192 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
193 bool isPSHUFDMask(SDNode *N);
194
Evan Cheng506d3df2006-03-29 23:07:14 +0000195 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
196 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
197 bool isPSHUFHWMask(SDNode *N);
198
199 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
200 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
201 bool isPSHUFLWMask(SDNode *N);
202
Evan Cheng14aed5e2006-03-24 01:18:28 +0000203 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
204 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
205 bool isSHUFPMask(SDNode *N);
206
Evan Cheng2c0dbd02006-03-24 02:58:06 +0000207 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
208 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
209 bool isMOVHLPSMask(SDNode *N);
210
Evan Cheng5ced1d82006-04-06 23:23:56 +0000211 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
212 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
213 bool isMOVLPMask(SDNode *N);
214
215 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
Evan Cheng533a0aa2006-04-19 20:35:22 +0000216 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
217 /// as well as MOVLHPS.
Evan Cheng5ced1d82006-04-06 23:23:56 +0000218 bool isMOVHPMask(SDNode *N);
219
Evan Cheng0038e592006-03-28 00:39:58 +0000220 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
221 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
Evan Cheng39623da2006-04-20 08:58:49 +0000222 bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false);
Evan Cheng0038e592006-03-28 00:39:58 +0000223
Evan Cheng4fcb9222006-03-28 02:43:26 +0000224 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
225 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
Evan Cheng39623da2006-04-20 08:58:49 +0000226 bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false);
Evan Cheng4fcb9222006-03-28 02:43:26 +0000227
Evan Cheng1d5a8cc2006-04-05 07:20:06 +0000228 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
229 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
230 /// <0, 0, 1, 1>
231 bool isUNPCKL_v_undef_Mask(SDNode *N);
232
Evan Cheng017dcc62006-04-21 01:05:10 +0000233 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
234 /// specifies a shuffle of elements that is suitable for input to MOVSS,
235 /// MOVSD, and MOVD, i.e. setting the lowest element.
236 bool isMOVLMask(SDNode *N);
Evan Chengd6d1cbd2006-04-11 00:19:04 +0000237
Evan Chengd9539472006-04-14 21:59:03 +0000238 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
239 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
240 bool isMOVSHDUPMask(SDNode *N);
241
242 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
243 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
244 bool isMOVSLDUPMask(SDNode *N);
245
Evan Chengb9df0ca2006-03-22 02:53:00 +0000246 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
247 /// specifies a splat of a single element.
248 bool isSplatMask(SDNode *N);
249
Evan Cheng63d33002006-03-22 08:01:21 +0000250 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
251 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
252 /// instructions.
253 unsigned getShuffleSHUFImmediate(SDNode *N);
Evan Cheng506d3df2006-03-29 23:07:14 +0000254
255 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
256 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
257 /// instructions.
258 unsigned getShufflePSHUFHWImmediate(SDNode *N);
259
260 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
261 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
262 /// instructions.
263 unsigned getShufflePSHUFLWImmediate(SDNode *N);
Evan Chengb9df0ca2006-03-22 02:53:00 +0000264 }
265
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000266 //===----------------------------------------------------------------------===//
267 // X86TargetLowering - X86 Implementation of the TargetLowering interface
268 class X86TargetLowering : public TargetLowering {
269 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
270 int ReturnAddrIndex; // FrameIndex for return slot.
271 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
272 int BytesCallerReserves; // Number of arg bytes caller makes.
273 public:
274 X86TargetLowering(TargetMachine &TM);
275
276 // Return the number of bytes that a function should pop when it returns (in
277 // addition to the space used by the return address).
278 //
279 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
280
281 // Return the number of bytes that the caller reserves for arguments passed
282 // to this function.
283 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
284
285 /// LowerOperation - Provide custom lowering hooks for some operations.
286 ///
287 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
288
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000289 virtual std::pair<SDOperand, SDOperand>
290 LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
291 SelectionDAG &DAG);
292
Evan Cheng206ee9d2006-07-07 08:33:52 +0000293 virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
294
Evan Cheng4a460802006-01-11 00:33:36 +0000295 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
296 MachineBasicBlock *MBB);
297
Evan Cheng72261582005-12-20 06:22:03 +0000298 /// getTargetNodeName - This method returns the name of a target specific
299 /// DAG node.
300 virtual const char *getTargetNodeName(unsigned Opcode) const;
301
Nate Begeman368e18d2006-02-16 21:11:51 +0000302 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
303 /// in Mask are known to be either zero or one and return them in the
304 /// KnownZero/KnownOne bitsets.
305 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
306 uint64_t Mask,
307 uint64_t &KnownZero,
308 uint64_t &KnownOne,
309 unsigned Depth = 0) const;
310
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000311 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
312
Chris Lattnerf4dff842006-07-11 02:54:03 +0000313 ConstraintType getConstraintType(char ConstraintLetter) const;
314
Chris Lattner259e97c2006-01-31 19:43:35 +0000315 std::vector<unsigned>
Chris Lattner1efa40f2006-02-22 00:56:39 +0000316 getRegClassForInlineAsmConstraint(const std::string &Constraint,
317 MVT::ValueType VT) const;
Evan Chengc4c62572006-03-13 23:20:37 +0000318
319 /// isLegalAddressImmediate - Return true if the integer value or
320 /// GlobalValue can be used as the offset of the target addressing mode.
321 virtual bool isLegalAddressImmediate(int64_t V) const;
322 virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
323
Evan Cheng0188ecb2006-03-22 18:59:22 +0000324 /// isShuffleMaskLegal - Targets can use this to indicate that they only
325 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
326 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
327 /// are assumed to be legal.
Evan Chengca6e8ea2006-03-22 22:07:06 +0000328 virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;
Evan Cheng39623da2006-04-20 08:58:49 +0000329
330 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
331 /// used by Targets can use this to indicate if there is a suitable
332 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
333 /// pool entry.
334 virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
335 MVT::ValueType EVT,
336 SelectionDAG &DAG) const;
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000337 private:
Evan Cheng0db9fe62006-04-25 20:13:52 +0000338 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
339 /// make the right decision when generating code for different targets.
340 const X86Subtarget *Subtarget;
341
342 /// X86ScalarSSE - Select between SSE2 or x87 floating point ops.
343 bool X86ScalarSSE;
344
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000345 // C Calling Convention implementation.
Evan Cheng25caf632006-05-23 21:06:34 +0000346 SDOperand LowerCCCArguments(SDOperand Op, SelectionDAG &DAG);
Evan Cheng32fe1032006-05-25 00:59:30 +0000347 SDOperand LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG);
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000348
349 // Fast Calling Convention implementation.
Evan Cheng32fe1032006-05-25 00:59:30 +0000350 SDOperand LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG);
351 SDOperand LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG);
Evan Cheng559806f2006-01-27 08:10:46 +0000352
Evan Cheng0db9fe62006-04-25 20:13:52 +0000353 SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG);
354 SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG);
355 SDOperand LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
356 SDOperand LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
357 SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG);
358 SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG);
359 SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG);
360 SDOperand LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG);
361 SDOperand LowerShift(SDOperand Op, SelectionDAG &DAG);
362 SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG);
363 SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG);
364 SDOperand LowerFABS(SDOperand Op, SelectionDAG &DAG);
365 SDOperand LowerFNEG(SDOperand Op, SelectionDAG &DAG);
366 SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG);
367 SDOperand LowerSELECT(SDOperand Op, SelectionDAG &DAG);
368 SDOperand LowerBRCOND(SDOperand Op, SelectionDAG &DAG);
369 SDOperand LowerMEMSET(SDOperand Op, SelectionDAG &DAG);
370 SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG);
371 SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG);
Evan Cheng32fe1032006-05-25 00:59:30 +0000372 SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG);
Evan Cheng0db9fe62006-04-25 20:13:52 +0000373 SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG);
Evan Cheng1bc78042006-04-26 01:20:17 +0000374 SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG);
Evan Cheng0db9fe62006-04-25 20:13:52 +0000375 SDOperand LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG);
376 SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG);
377 SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG);
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000378 };
379}
380
Evan Chengda08d2c2006-06-24 08:36:10 +0000381// FASTCC_NUM_INT_ARGS_INREGS - This is the max number of integer arguments
382// to pass in registers. 0 is none, 1 is is "use EAX", 2 is "use EAX and
383// EDX". Anything more is illegal.
384//
385// FIXME: The linscan register allocator currently has problem with
386// coalescing. At the time of this writing, whenever it decides to coalesce
387// a physreg with a virtreg, this increases the size of the physreg's live
388// range, and the live range cannot ever be reduced. This causes problems if
389// too many physregs are coaleced with virtregs, which can cause the register
390// allocator to wedge itself.
391//
392// This code triggers this problem more often if we pass args in registers,
393// so disable it until this is fixed.
394//
395#define FASTCC_NUM_INT_ARGS_INREGS 0
396
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000397#endif // X86ISELLOWERING_H