blob: 5f13885946fe61498ca119e28312f4bf4c275d39 [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner41efbfa2010-10-05 06:37:31 +000015//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
20 return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
Rafael Espindoladba81cf2010-10-13 13:31:20 +000023def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
25 return getI8Imm((uint8_t)N->getZExtValue());
26}]>;
27
Chris Lattner41efbfa2010-10-05 06:37:31 +000028
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
Chris Lattner8af88ef2010-10-05 06:10:16 +000032// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47 "#ADJCALLSTACKDOWN",
48 [(X86callseq_start timm:$amt)]>,
49 Requires<[In32BitMode]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[In32BitMode]>;
54}
55
56// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57// a stack adjustment and the codegen must know that they may modify the stack
58// pointer before prolog-epilog rewriting occurs.
59// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60// sub / add which can clobber EFLAGS.
61let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63 "#ADJCALLSTACKDOWN",
64 [(X86callseq_start timm:$amt)]>,
65 Requires<[In64BitMode]>;
66def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67 "#ADJCALLSTACKUP",
68 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69 Requires<[In64BitMode]>;
70}
71
72
73
74// x86-64 va_start lowering magic.
75let usesCustomInserter = 1 in {
76def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77 (outs),
78 (ins GR8:$al,
79 i64imm:$regsavefi, i64imm:$offset,
80 variable_ops),
81 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82 [(X86vastart_save_xmm_regs GR8:$al,
83 imm:$regsavefi,
84 imm:$offset)]>;
85
Dan Gohman320afb82010-10-12 18:00:49 +000086// The VAARG_64 pseudo-instruction takes the address of the va_list,
87// and places the address of the next argument into a register.
88let Defs = [EFLAGS] in
89def VAARG_64 : I<0, Pseudo,
90 (outs GR64:$dst),
91 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
92 "#VAARG_64 $dst, $ap, $size, $mode, $align",
93 [(set GR64:$dst,
94 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
95 (implicit EFLAGS)]>;
96
Chris Lattner8af88ef2010-10-05 06:10:16 +000097// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
98// to _alloca is needed to probe the stack when allocating more than 4k bytes in
99// one go. Touching the stack at 4K increments is necessary to ensure that the
100// guard pages used by the OS virtual memory manager are allocated in correct
101// sequence.
102// The main point of having separate instruction are extra unmodelled effects
103// (compared to ordinary calls) like stack pointer change.
104
105let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
106 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
107 "# dynamic stack allocation",
108 [(X86MingwAlloca)]>;
109}
110
111
Chris Lattner87be16a2010-10-05 06:04:14 +0000112
113//===----------------------------------------------------------------------===//
114// EH Pseudo Instructions
115//
116let isTerminator = 1, isReturn = 1, isBarrier = 1,
117 hasCtrlDep = 1, isCodeGenOnly = 1 in {
118def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
119 "ret\t#eh_return, addr: $addr",
120 [(X86ehret GR32:$addr)]>;
121
122}
123
124let isTerminator = 1, isReturn = 1, isBarrier = 1,
125 hasCtrlDep = 1, isCodeGenOnly = 1 in {
126def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
127 "ret\t#eh_return, addr: $addr",
128 [(X86ehret GR64:$addr)]>;
129
130}
131
Chris Lattner8af88ef2010-10-05 06:10:16 +0000132//===----------------------------------------------------------------------===//
133// Alias Instructions
134//===----------------------------------------------------------------------===//
135
136// Alias instructions that map movr0 to xor.
137// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
138// FIXME: Set encoding to pseudo.
139let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
140 isCodeGenOnly = 1 in {
141def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
142 [(set GR8:$dst, 0)]>;
143
144// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
145// encoding and avoids a partial-register update sometimes, but doing so
146// at isel time interferes with rematerialization in the current register
147// allocator. For now, this is rewritten when the instruction is lowered
148// to an MCInst.
149def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
150 "",
151 [(set GR16:$dst, 0)]>, OpSize;
152
153// FIXME: Set encoding to pseudo.
154def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
155 [(set GR32:$dst, 0)]>;
156}
157
Chris Lattner010496c2010-10-05 06:22:35 +0000158// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
159// smaller encoding, but doing so at isel time interferes with rematerialization
160// in the current register allocator. For now, this is rewritten when the
161// instruction is lowered to an MCInst.
162// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
163// when we have a better way to specify isel priority.
164let Defs = [EFLAGS],
165 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
166def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
167 [(set GR64:$dst, 0)]>;
168
169// Materialize i64 constant where top 32-bits are zero. This could theoretically
170// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
171// that would make it more difficult to rematerialize.
172let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
173def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
174 "", [(set GR64:$dst, i64immZExt32:$src)]>;
175
Chris Lattner35649fc2010-10-05 06:33:16 +0000176
Chris Lattner2c383d82010-10-05 21:18:04 +0000177// Use sbb to materialize carry bit.
178let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
179// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
Chris Lattner35649fc2010-10-05 06:33:16 +0000180// However, Pat<> can't replicate the destination reg into the inputs of the
181// result.
Chris Lattner2c383d82010-10-05 21:18:04 +0000182// FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
Chris Lattner35649fc2010-10-05 06:33:16 +0000183// X86CodeEmitter.
Chris Lattner2c383d82010-10-05 21:18:04 +0000184def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
185 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
186def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
187 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>,
188 OpSize;
189def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
190 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner35649fc2010-10-05 06:33:16 +0000191def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
192 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner2c383d82010-10-05 21:18:04 +0000193} // isCodeGenOnly
194
Chris Lattner35649fc2010-10-05 06:33:16 +0000195
196def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
197 (SETB_C64r)>;
198
Chris Lattner010496c2010-10-05 06:22:35 +0000199
Chris Lattnerd3f033d2010-10-05 06:27:48 +0000200//===----------------------------------------------------------------------===//
201// String Pseudo Instructions
202//
203let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
204def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
205 [(X86rep_movs i8)]>, REP;
206def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
207 [(X86rep_movs i16)]>, REP, OpSize;
208def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
209 [(X86rep_movs i32)]>, REP;
210}
211
212let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
213def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
214 [(X86rep_movs i64)]>, REP;
215
216
217// FIXME: Should use "(X86rep_stos AL)" as the pattern.
218let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
219def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
220 [(X86rep_stos i8)]>, REP;
221let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
222def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
223 [(X86rep_stos i16)]>, REP, OpSize;
224let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
225def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
226 [(X86rep_stos i32)]>, REP;
227
228let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
229def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
230 [(X86rep_stos i64)]>, REP;
Chris Lattner010496c2010-10-05 06:22:35 +0000231
232
Chris Lattner8af88ef2010-10-05 06:10:16 +0000233//===----------------------------------------------------------------------===//
234// Thread Local Storage Instructions
235//
236
237// ELF TLS Support
238// All calls clobber the non-callee saved registers. ESP is marked as
239// a use to prevent stack-pointer assignments that appear immediately
240// before calls from potentially appearing dead.
241let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
242 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
243 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
244 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
245 Uses = [ESP] in
246def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
247 "leal\t$sym, %eax; "
248 "call\t___tls_get_addr@PLT",
249 [(X86tlsaddr tls32addr:$sym)]>,
250 Requires<[In32BitMode]>;
251
252// All calls clobber the non-callee saved registers. RSP is marked as
253// a use to prevent stack-pointer assignments that appear immediately
254// before calls from potentially appearing dead.
255let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
256 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
257 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
258 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
259 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
260 Uses = [RSP] in
261def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
262 ".byte\t0x66; "
263 "leaq\t$sym(%rip), %rdi; "
264 ".word\t0x6666; "
265 "rex64; "
266 "call\t__tls_get_addr@PLT",
267 [(X86tlsaddr tls64addr:$sym)]>,
268 Requires<[In64BitMode]>;
269
270// Darwin TLS Support
271// For i386, the address of the thunk is passed on the stack, on return the
272// address of the variable is in %eax. %ecx is trashed during the function
273// call. All other registers are preserved.
274let Defs = [EAX, ECX],
275 Uses = [ESP],
276 usesCustomInserter = 1 in
277def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
278 "# TLSCall_32",
279 [(X86TLSCall addr:$sym)]>,
280 Requires<[In32BitMode]>;
281
282// For x86_64, the address of the thunk is passed in %rdi, on return
283// the address of the variable is in %rax. All other registers are preserved.
284let Defs = [RAX],
285 Uses = [RDI],
286 usesCustomInserter = 1 in
287def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
288 "# TLSCall_64",
289 [(X86TLSCall addr:$sym)]>,
290 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000291
Chris Lattner6dbbff92010-10-05 23:09:10 +0000292
293//===----------------------------------------------------------------------===//
294// Conditional Move Pseudo Instructions
295
296let Constraints = "$src1 = $dst" in {
297
298// Conditional moves
299let Uses = [EFLAGS] in {
300
301// X86 doesn't have 8-bit conditional moves. Use a customInserter to
302// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
303// however that requires promoting the operands, and can induce additional
304// i8 register pressure. Note that CMOV_GR8 is conservatively considered to
305// clobber EFLAGS, because if one of the operands is zero, the expansion
306// could involve an xor.
307let usesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] in {
308def CMOV_GR8 : I<0, Pseudo,
309 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
310 "#CMOV_GR8 PSEUDO!",
311 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
312 imm:$cond, EFLAGS))]>;
313
314let Predicates = [NoCMov] in {
315def CMOV_GR32 : I<0, Pseudo,
316 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
317 "#CMOV_GR32* PSEUDO!",
318 [(set GR32:$dst,
319 (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
320def CMOV_GR16 : I<0, Pseudo,
321 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
322 "#CMOV_GR16* PSEUDO!",
323 [(set GR16:$dst,
324 (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
325def CMOV_RFP32 : I<0, Pseudo,
326 (outs RFP32:$dst),
327 (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
328 "#CMOV_RFP32 PSEUDO!",
329 [(set RFP32:$dst,
330 (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
331 EFLAGS))]>;
332def CMOV_RFP64 : I<0, Pseudo,
333 (outs RFP64:$dst),
334 (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
335 "#CMOV_RFP64 PSEUDO!",
336 [(set RFP64:$dst,
337 (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
338 EFLAGS))]>;
339def CMOV_RFP80 : I<0, Pseudo,
340 (outs RFP80:$dst),
341 (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
342 "#CMOV_RFP80 PSEUDO!",
343 [(set RFP80:$dst,
344 (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
345 EFLAGS))]>;
346} // Predicates = [NoCMov]
347} // UsesCustomInserter = 1, Constraints = "", Defs = [EFLAGS]
348} // Uses = [EFLAGS]
349
350} // Constraints = "$src1 = $dst" in
351
352
Chris Lattner87be16a2010-10-05 06:04:14 +0000353//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000354// Atomic Instruction Pseudo Instructions
355//===----------------------------------------------------------------------===//
356
357// Atomic exchange, and, or, xor
358let Constraints = "$val = $dst", Defs = [EFLAGS],
359 usesCustomInserter = 1 in {
360
361def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
362 "#ATOMAND8 PSEUDO!",
363 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
364def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
365 "#ATOMOR8 PSEUDO!",
366 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
367def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
368 "#ATOMXOR8 PSEUDO!",
369 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
370def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
371 "#ATOMNAND8 PSEUDO!",
372 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
373
374def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
375 "#ATOMAND16 PSEUDO!",
376 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
377def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
378 "#ATOMOR16 PSEUDO!",
379 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
380def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
381 "#ATOMXOR16 PSEUDO!",
382 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
383def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
384 "#ATOMNAND16 PSEUDO!",
385 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
386def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
387 "#ATOMMIN16 PSEUDO!",
388 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
389def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
390 "#ATOMMAX16 PSEUDO!",
391 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
392def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
393 "#ATOMUMIN16 PSEUDO!",
394 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
395def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
396 "#ATOMUMAX16 PSEUDO!",
397 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
398
399
400def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
401 "#ATOMAND32 PSEUDO!",
402 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
403def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
404 "#ATOMOR32 PSEUDO!",
405 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
406def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
407 "#ATOMXOR32 PSEUDO!",
408 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
409def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
410 "#ATOMNAND32 PSEUDO!",
411 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
412def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
413 "#ATOMMIN32 PSEUDO!",
414 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
415def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
416 "#ATOMMAX32 PSEUDO!",
417 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
418def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
419 "#ATOMUMIN32 PSEUDO!",
420 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
421def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
422 "#ATOMUMAX32 PSEUDO!",
423 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
424
425
426
427def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
428 "#ATOMAND64 PSEUDO!",
429 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
430def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
431 "#ATOMOR64 PSEUDO!",
432 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
433def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
434 "#ATOMXOR64 PSEUDO!",
435 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
436def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
437 "#ATOMNAND64 PSEUDO!",
438 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
439def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
440 "#ATOMMIN64 PSEUDO!",
441 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
442def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
443 "#ATOMMAX64 PSEUDO!",
444 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
445def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
446 "#ATOMUMIN64 PSEUDO!",
447 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
448def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
449 "#ATOMUMAX64 PSEUDO!",
450 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
451}
452
453let Constraints = "$val1 = $dst1, $val2 = $dst2",
454 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
455 Uses = [EAX, EBX, ECX, EDX],
456 mayLoad = 1, mayStore = 1,
457 usesCustomInserter = 1 in {
458def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
459 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
460 "#ATOMAND6432 PSEUDO!", []>;
461def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
462 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
463 "#ATOMOR6432 PSEUDO!", []>;
464def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
465 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
466 "#ATOMXOR6432 PSEUDO!", []>;
467def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
468 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
469 "#ATOMNAND6432 PSEUDO!", []>;
470def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
471 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
472 "#ATOMADD6432 PSEUDO!", []>;
473def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
474 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
475 "#ATOMSUB6432 PSEUDO!", []>;
476def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
477 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
478 "#ATOMSWAP6432 PSEUDO!", []>;
479}
480
481//===----------------------------------------------------------------------===//
482// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
483//===----------------------------------------------------------------------===//
484
485// FIXME: Use normal instructions and add lock prefix dynamically.
486
487// Memory barriers
488
489// TODO: Get this to fold the constant into the instruction.
490def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
491 "lock\n\t"
492 "or{l}\t{$zero, $dst|$dst, $zero}",
493 []>, Requires<[In32BitMode]>, LOCK;
494
495let hasSideEffects = 1 in
496def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
497 "#MEMBARRIER",
498 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
499
500// TODO: Get this to fold the constant into the instruction.
501let hasSideEffects = 1, Defs = [ESP] in
502def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
503 "lock\n\t"
504 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
505 [(X86MemBarrierNoSSE GR64:$zero)]>,
506 Requires<[In64BitMode]>, LOCK;
507
508
509// Optimized codegen when the non-memory output is not used.
510let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
511def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
512 "lock\n\t"
513 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
514def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
515 "lock\n\t"
516 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
517def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
518 "lock\n\t"
519 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
520def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
521 "lock\n\t"
522 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
523
524def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
525 "lock\n\t"
526 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
527def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
528 "lock\n\t"
529 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
530def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
531 "lock\n\t"
532 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
533def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
534 (ins i64mem:$dst, i64i32imm :$src2),
535 "lock\n\t"
536 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
537
538def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
539 "lock\n\t"
540 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
541def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
542 "lock\n\t"
543 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
544def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
545 (ins i64mem:$dst, i64i8imm :$src2),
546 "lock\n\t"
547 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
548
549def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
550 "lock\n\t"
551 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
552def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
553 "lock\n\t"
554 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
555def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
556 "lock\n\t"
557 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
558def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
559 "lock\n\t"
560 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
561
562
563def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
564 "lock\n\t"
565 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
566def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
567 "lock\n\t"
568 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
569def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
570 "lock\n\t"
571 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
572def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
573 (ins i64mem:$dst, i64i32imm:$src2),
574 "lock\n\t"
575 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
576
577
578def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
579 "lock\n\t"
580 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
581def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
582 "lock\n\t"
583 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
584def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
585 (ins i64mem:$dst, i64i8imm :$src2),
586 "lock\n\t"
587 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
588
589def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
590 "lock\n\t"
591 "inc{b}\t$dst", []>, LOCK;
592def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
593 "lock\n\t"
594 "inc{w}\t$dst", []>, OpSize, LOCK;
595def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
596 "lock\n\t"
597 "inc{l}\t$dst", []>, LOCK;
598def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
599 "lock\n\t"
600 "inc{q}\t$dst", []>, LOCK;
601
602def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
603 "lock\n\t"
604 "dec{b}\t$dst", []>, LOCK;
605def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
606 "lock\n\t"
607 "dec{w}\t$dst", []>, OpSize, LOCK;
608def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
609 "lock\n\t"
610 "dec{l}\t$dst", []>, LOCK;
611def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
612 "lock\n\t"
613 "dec{q}\t$dst", []>, LOCK;
614}
615
616// Atomic compare and swap.
617let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
618def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
619 "lock\n\t"
620 "cmpxchg8b\t$ptr",
621 [(X86cas8 addr:$ptr)]>, TB, LOCK;
622}
623let Defs = [AL, EFLAGS], Uses = [AL] in {
624def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
625 "lock\n\t"
626 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
627 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
628}
629
630let Defs = [AX, EFLAGS], Uses = [AX] in {
631def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
632 "lock\n\t"
633 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
634 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
635}
636
637let Defs = [EAX, EFLAGS], Uses = [EAX] in {
638def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
639 "lock\n\t"
640 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
641 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
642}
643
644let Defs = [RAX, EFLAGS], Uses = [RAX] in {
645def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
646 "lock\n\t"
647 "cmpxchgq\t$swap,$ptr",
648 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
649}
650
651// Atomic exchange and add
652let Constraints = "$val = $dst", Defs = [EFLAGS] in {
653def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
654 "lock\n\t"
655 "xadd{b}\t{$val, $ptr|$ptr, $val}",
656 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
657 TB, LOCK;
658def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
659 "lock\n\t"
660 "xadd{w}\t{$val, $ptr|$ptr, $val}",
661 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
662 TB, OpSize, LOCK;
663def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
664 "lock\n\t"
665 "xadd{l}\t{$val, $ptr|$ptr, $val}",
666 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
667 TB, LOCK;
668def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
669 "lock\n\t"
670 "xadd\t$val, $ptr",
671 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
672 TB, LOCK;
673}
674
Chris Lattner5673e1d2010-10-05 06:41:40 +0000675//===----------------------------------------------------------------------===//
676// Conditional Move Pseudo Instructions.
677//===----------------------------------------------------------------------===//
678
679
680// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
681// instruction selection into a branch sequence.
682let Uses = [EFLAGS], usesCustomInserter = 1 in {
683 def CMOV_FR32 : I<0, Pseudo,
684 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
685 "#CMOV_FR32 PSEUDO!",
686 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
687 EFLAGS))]>;
688 def CMOV_FR64 : I<0, Pseudo,
689 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
690 "#CMOV_FR64 PSEUDO!",
691 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
692 EFLAGS))]>;
693 def CMOV_V4F32 : I<0, Pseudo,
694 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
695 "#CMOV_V4F32 PSEUDO!",
696 [(set VR128:$dst,
697 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
698 EFLAGS)))]>;
699 def CMOV_V2F64 : I<0, Pseudo,
700 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
701 "#CMOV_V2F64 PSEUDO!",
702 [(set VR128:$dst,
703 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
704 EFLAGS)))]>;
705 def CMOV_V2I64 : I<0, Pseudo,
706 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
707 "#CMOV_V2I64 PSEUDO!",
708 [(set VR128:$dst,
709 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
710 EFLAGS)))]>;
711}
712
Chris Lattner010496c2010-10-05 06:22:35 +0000713
714//===----------------------------------------------------------------------===//
715// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000716//===----------------------------------------------------------------------===//
717
718// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
719def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
720def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
721def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
722def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
723def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
724def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
725
726def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
727 (ADD32ri GR32:$src1, tconstpool:$src2)>;
728def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
729 (ADD32ri GR32:$src1, tjumptable:$src2)>;
730def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
731 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
732def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
733 (ADD32ri GR32:$src1, texternalsym:$src2)>;
734def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
735 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
736
737def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
738 (MOV32mi addr:$dst, tglobaladdr:$src)>;
739def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
740 (MOV32mi addr:$dst, texternalsym:$src)>;
741def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
742 (MOV32mi addr:$dst, tblockaddress:$src)>;
743
744
745
746// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
747// code model mode, should use 'movabs'. FIXME: This is really a hack, the
748// 'movabs' predicate should handle this sort of thing.
749def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
750 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
751def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
752 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
753def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
754 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
755def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
756 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
757def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
758 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
759
760// In static codegen with small code model, we can get the address of a label
761// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
762// the MOV64ri64i32 should accept these.
763def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
764 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
765def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
766 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
767def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
768 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
769def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
770 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
771def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
772 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
773
774// In kernel code model, we can get the address of a label
775// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
776// the MOV64ri32 should accept these.
777def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
778 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
779def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
780 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
781def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
782 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
783def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
784 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
785def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
786 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
787
788// If we have small model and -static mode, it is safe to store global addresses
789// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
790// for MOV64mi32 should handle this sort of thing.
791def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
792 (MOV64mi32 addr:$dst, tconstpool:$src)>,
793 Requires<[NearData, IsStatic]>;
794def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
795 (MOV64mi32 addr:$dst, tjumptable:$src)>,
796 Requires<[NearData, IsStatic]>;
797def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
798 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
799 Requires<[NearData, IsStatic]>;
800def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
801 (MOV64mi32 addr:$dst, texternalsym:$src)>,
802 Requires<[NearData, IsStatic]>;
803def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
804 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
805 Requires<[NearData, IsStatic]>;
806
807
808
809// Calls
810
811// tls has some funny stuff here...
812// This corresponds to movabs $foo@tpoff, %rax
813def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
814 (MOV64ri tglobaltlsaddr :$dst)>;
815// This corresponds to add $foo@tpoff, %rax
816def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
817 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
818// This corresponds to mov foo@tpoff(%rbx), %eax
819def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
820 (MOV64rm tglobaltlsaddr :$dst)>;
821
822
823// Direct PC relative function call for small code model. 32-bit displacement
824// sign extended to 64-bit.
825def : Pat<(X86call (i64 tglobaladdr:$dst)),
826 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
827def : Pat<(X86call (i64 texternalsym:$dst)),
828 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
829
830def : Pat<(X86call (i64 tglobaladdr:$dst)),
831 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
832def : Pat<(X86call (i64 texternalsym:$dst)),
833 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
834
835// tailcall stuff
836def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
837 (TCRETURNri GR32_TC:$dst, imm:$off)>,
838 Requires<[In32BitMode]>;
839
840// FIXME: This is disabled for 32-bit PIC mode because the global base
841// register which is part of the address mode may be assigned a
842// callee-saved register.
843def : Pat<(X86tcret (load addr:$dst), imm:$off),
844 (TCRETURNmi addr:$dst, imm:$off)>,
845 Requires<[In32BitMode, IsNotPIC]>;
846
847def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
848 (TCRETURNdi texternalsym:$dst, imm:$off)>,
849 Requires<[In32BitMode]>;
850
851def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
852 (TCRETURNdi texternalsym:$dst, imm:$off)>,
853 Requires<[In32BitMode]>;
854
855def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
856 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
857 Requires<[In64BitMode]>;
858
859def : Pat<(X86tcret (load addr:$dst), imm:$off),
860 (TCRETURNmi64 addr:$dst, imm:$off)>,
861 Requires<[In64BitMode]>;
862
863def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
864 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
865 Requires<[In64BitMode]>;
866
867def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
868 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
869 Requires<[In64BitMode]>;
870
871// Normal calls, with various flavors of addresses.
872def : Pat<(X86call (i32 tglobaladdr:$dst)),
873 (CALLpcrel32 tglobaladdr:$dst)>;
874def : Pat<(X86call (i32 texternalsym:$dst)),
875 (CALLpcrel32 texternalsym:$dst)>;
876def : Pat<(X86call (i32 imm:$dst)),
877 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
878
879// X86 specific add which produces a flag.
880def : Pat<(addc GR32:$src1, GR32:$src2),
881 (ADD32rr GR32:$src1, GR32:$src2)>;
882def : Pat<(addc GR32:$src1, (load addr:$src2)),
883 (ADD32rm GR32:$src1, addr:$src2)>;
884def : Pat<(addc GR32:$src1, imm:$src2),
885 (ADD32ri GR32:$src1, imm:$src2)>;
886def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
887 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
888
889def : Pat<(addc GR64:$src1, GR64:$src2),
890 (ADD64rr GR64:$src1, GR64:$src2)>;
891def : Pat<(addc GR64:$src1, (load addr:$src2)),
892 (ADD64rm GR64:$src1, addr:$src2)>;
893def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
894 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
895def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
896 (ADD64ri32 GR64:$src1, imm:$src2)>;
897
898def : Pat<(subc GR32:$src1, GR32:$src2),
899 (SUB32rr GR32:$src1, GR32:$src2)>;
900def : Pat<(subc GR32:$src1, (load addr:$src2)),
901 (SUB32rm GR32:$src1, addr:$src2)>;
902def : Pat<(subc GR32:$src1, imm:$src2),
903 (SUB32ri GR32:$src1, imm:$src2)>;
904def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
905 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
906
907def : Pat<(subc GR64:$src1, GR64:$src2),
908 (SUB64rr GR64:$src1, GR64:$src2)>;
909def : Pat<(subc GR64:$src1, (load addr:$src2)),
910 (SUB64rm GR64:$src1, addr:$src2)>;
911def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
912 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
913def : Pat<(subc GR64:$src1, imm:$src2),
914 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
915
916// Comparisons.
917
918// TEST R,R is smaller than CMP R,0
919def : Pat<(X86cmp GR8:$src1, 0),
920 (TEST8rr GR8:$src1, GR8:$src1)>;
921def : Pat<(X86cmp GR16:$src1, 0),
922 (TEST16rr GR16:$src1, GR16:$src1)>;
923def : Pat<(X86cmp GR32:$src1, 0),
924 (TEST32rr GR32:$src1, GR32:$src1)>;
925def : Pat<(X86cmp GR64:$src1, 0),
926 (TEST64rr GR64:$src1, GR64:$src1)>;
927
928// Conditional moves with folded loads with operands swapped and conditions
929// inverted.
Chris Lattner286997c2010-10-05 22:42:54 +0000930multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
931 Instruction Inst64> {
932 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
933 (Inst16 GR16:$src2, addr:$src1)>;
934 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
935 (Inst32 GR32:$src2, addr:$src1)>;
936 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
937 (Inst64 GR64:$src2, addr:$src1)>;
938}
Chris Lattner87be16a2010-10-05 06:04:14 +0000939
Chris Lattnerdf72eae2010-10-05 22:51:56 +0000940defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
941defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
942defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
943defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
944defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
Chris Lattner25cbf502010-10-05 23:00:14 +0000945defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
Chris Lattnerdf72eae2010-10-05 22:51:56 +0000946defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
947defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
948defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
949defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
950defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
951defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
952defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
953defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
954defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
955defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000956
957// zextload bool -> zextload byte
958def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
959def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
960def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
961def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
962
963// extload bool -> extload byte
964// When extloading from 16-bit and smaller memory locations into 64-bit
965// registers, use zero-extending loads so that the entire 64-bit register is
966// defined, avoiding partial-register updates.
967
968def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
969def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
970def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
971def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
972def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
973def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
974
975def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
976def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
977def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
978// For other extloads, use subregs, since the high contents of the register are
979// defined after an extload.
980def : Pat<(extloadi64i32 addr:$src),
981 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
982 sub_32bit)>;
983
984// anyext. Define these to do an explicit zero-extend to
985// avoid partial-register updates.
986def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
987def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
988
989// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
990def : Pat<(i32 (anyext GR16:$src)),
991 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
992
993def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
994def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
995def : Pat<(i64 (anyext GR32:$src)),
996 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
997
Chris Lattnerd8cc2722010-10-05 06:47:35 +0000998
999// Any instruction that defines a 32-bit result leaves the high half of the
1000// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1001// be copying from a truncate. And x86's cmov doesn't do anything if the
1002// condition is false. But any other 32-bit operation will zero-extend
1003// up to 64 bits.
1004def def32 : PatLeaf<(i32 GR32:$src), [{
1005 return N->getOpcode() != ISD::TRUNCATE &&
1006 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1007 N->getOpcode() != ISD::CopyFromReg &&
1008 N->getOpcode() != X86ISD::CMOV;
1009}]>;
1010
1011// In the case of a 32-bit def that is known to implicitly zero-extend,
1012// we can use a SUBREG_TO_REG.
1013def : Pat<(i64 (zext def32:$src)),
1014 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1015
Chris Lattner87be16a2010-10-05 06:04:14 +00001016//===----------------------------------------------------------------------===//
Chris Lattner99ae6652010-10-08 03:54:52 +00001017// Pattern match OR as ADD
1018//===----------------------------------------------------------------------===//
1019
1020// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1021// 3-addressified into an LEA instruction to avoid copies. However, we also
1022// want to finally emit these instructions as an or at the end of the code
1023// generator to make the generated code easier to read. To do this, we select
1024// into "disjoint bits" pseudo ops.
1025
1026// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1027def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1028 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1029 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1030
1031 unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
1032 APInt Mask = APInt::getAllOnesValue(BitWidth);
1033 APInt KnownZero0, KnownOne0;
1034 CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0);
1035 APInt KnownZero1, KnownOne1;
1036 CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0);
1037 return (~KnownZero0 & ~KnownZero1) == 0;
1038}]>;
1039
1040
1041// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1042let AddedComplexity = 5 in { // Try this before the selecting to OR
1043
1044let isCommutable = 1, isConvertibleToThreeAddress = 1,
1045 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1046def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1047 "", // orw/addw REG, REG
1048 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1049def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1050 "", // orl/addl REG, REG
1051 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1052def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1053 "", // orq/addq REG, REG
1054 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
Chris Lattner15df55d2010-10-08 03:57:25 +00001055
1056
1057def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1058 "", // orw/addw REG, imm
1059 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1060def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1061 "", // orl/addl REG, imm
1062 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1063def ADD64ri32_DB : I<0, Pseudo,
1064 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1065 "", // orq/addq REG, imm
1066 [(set GR64:$dst, (or_is_add GR64:$src1,
1067 i64immSExt32:$src2))]>;
1068
1069def ADD16ri8_DB : I<0, Pseudo,
1070 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1071 "", // orw/addw REG, imm8
1072 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1073def ADD32ri8_DB : I<0, Pseudo,
1074 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1075 "", // orl/addl REG, imm8
1076 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1077def ADD64ri8_DB : I<0, Pseudo,
1078 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1079 "", // orq/addq REG, imm8
1080 [(set GR64:$dst, (or_is_add GR64:$src1,
1081 i64immSExt8:$src2))]>;
Chris Lattner99ae6652010-10-08 03:54:52 +00001082}
Chris Lattner99ae6652010-10-08 03:54:52 +00001083} // AddedComplexity
1084
1085
1086//===----------------------------------------------------------------------===//
Chris Lattner87be16a2010-10-05 06:04:14 +00001087// Some peepholes
1088//===----------------------------------------------------------------------===//
1089
1090// Odd encoding trick: -128 fits into an 8-bit immediate field while
1091// +128 doesn't, so in this special case use a sub instead of an add.
1092def : Pat<(add GR16:$src1, 128),
1093 (SUB16ri8 GR16:$src1, -128)>;
1094def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1095 (SUB16mi8 addr:$dst, -128)>;
1096
1097def : Pat<(add GR32:$src1, 128),
1098 (SUB32ri8 GR32:$src1, -128)>;
1099def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1100 (SUB32mi8 addr:$dst, -128)>;
1101
1102def : Pat<(add GR64:$src1, 128),
1103 (SUB64ri8 GR64:$src1, -128)>;
1104def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1105 (SUB64mi8 addr:$dst, -128)>;
1106
1107// The same trick applies for 32-bit immediate fields in 64-bit
1108// instructions.
1109def : Pat<(add GR64:$src1, 0x0000000080000000),
1110 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1111def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1112 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1113
Rafael Espindoladba81cf2010-10-13 13:31:20 +00001114// To avoid needing to materialize an immediate in a register, use a 32-bit and
1115// with implicit zero-extension instead of a 64-bit and if the immediate has at
1116// least 32 bits of leading zeros. If in addition the last 32 bits can be
1117// represented with a sign extension of a 8 bit constant, use that.
1118
1119def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1120 (SUBREG_TO_REG
1121 (i64 0),
1122 (AND32ri8
1123 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1124 (i32 (GetLo8XForm imm:$imm))),
1125 sub_32bit)>;
1126
Chris Lattner87be16a2010-10-05 06:04:14 +00001127def : Pat<(and GR64:$src, i64immZExt32:$imm),
1128 (SUBREG_TO_REG
1129 (i64 0),
1130 (AND32ri
1131 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1132 (i32 (GetLo32XForm imm:$imm))),
1133 sub_32bit)>;
1134
1135
1136// r & (2^16-1) ==> movz
1137def : Pat<(and GR32:$src1, 0xffff),
1138 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1139// r & (2^8-1) ==> movz
1140def : Pat<(and GR32:$src1, 0xff),
1141 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1142 GR32_ABCD)),
1143 sub_8bit))>,
1144 Requires<[In32BitMode]>;
1145// r & (2^8-1) ==> movz
1146def : Pat<(and GR16:$src1, 0xff),
1147 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
1148 GR16_ABCD)),
1149 sub_8bit))>,
1150 Requires<[In32BitMode]>;
1151
1152// r & (2^32-1) ==> movz
1153def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1154 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1155// r & (2^16-1) ==> movz
1156def : Pat<(and GR64:$src, 0xffff),
1157 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1158// r & (2^8-1) ==> movz
1159def : Pat<(and GR64:$src, 0xff),
1160 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1161// r & (2^8-1) ==> movz
1162def : Pat<(and GR32:$src1, 0xff),
1163 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1164 Requires<[In64BitMode]>;
1165// r & (2^8-1) ==> movz
1166def : Pat<(and GR16:$src1, 0xff),
1167 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
1168 Requires<[In64BitMode]>;
1169
1170
1171// sext_inreg patterns
1172def : Pat<(sext_inreg GR32:$src, i16),
1173 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1174def : Pat<(sext_inreg GR32:$src, i8),
1175 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1176 GR32_ABCD)),
1177 sub_8bit))>,
1178 Requires<[In32BitMode]>;
1179def : Pat<(sext_inreg GR16:$src, i8),
1180 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1181 GR16_ABCD)),
1182 sub_8bit))>,
1183 Requires<[In32BitMode]>;
1184
1185def : Pat<(sext_inreg GR64:$src, i32),
1186 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1187def : Pat<(sext_inreg GR64:$src, i16),
1188 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1189def : Pat<(sext_inreg GR64:$src, i8),
1190 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1191def : Pat<(sext_inreg GR32:$src, i8),
1192 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1193 Requires<[In64BitMode]>;
1194def : Pat<(sext_inreg GR16:$src, i8),
1195 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1196 Requires<[In64BitMode]>;
1197
1198
1199// trunc patterns
1200def : Pat<(i16 (trunc GR32:$src)),
1201 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1202def : Pat<(i8 (trunc GR32:$src)),
1203 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1204 sub_8bit)>,
1205 Requires<[In32BitMode]>;
1206def : Pat<(i8 (trunc GR16:$src)),
1207 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1208 sub_8bit)>,
1209 Requires<[In32BitMode]>;
1210def : Pat<(i32 (trunc GR64:$src)),
1211 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1212def : Pat<(i16 (trunc GR64:$src)),
1213 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1214def : Pat<(i8 (trunc GR64:$src)),
1215 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1216def : Pat<(i8 (trunc GR32:$src)),
1217 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1218 Requires<[In64BitMode]>;
1219def : Pat<(i8 (trunc GR16:$src)),
1220 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1221 Requires<[In64BitMode]>;
1222
1223// h-register tricks
1224def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1225 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1226 sub_8bit_hi)>,
1227 Requires<[In32BitMode]>;
1228def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1229 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1230 sub_8bit_hi)>,
1231 Requires<[In32BitMode]>;
1232def : Pat<(srl GR16:$src, (i8 8)),
1233 (EXTRACT_SUBREG
1234 (MOVZX32rr8
1235 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1236 sub_8bit_hi)),
1237 sub_16bit)>,
1238 Requires<[In32BitMode]>;
1239def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1240 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1241 GR16_ABCD)),
1242 sub_8bit_hi))>,
1243 Requires<[In32BitMode]>;
1244def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1245 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1246 GR16_ABCD)),
1247 sub_8bit_hi))>,
1248 Requires<[In32BitMode]>;
1249def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1250 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1251 GR32_ABCD)),
1252 sub_8bit_hi))>,
1253 Requires<[In32BitMode]>;
1254def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1255 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1256 GR32_ABCD)),
1257 sub_8bit_hi))>,
1258 Requires<[In32BitMode]>;
1259
1260// h-register tricks.
1261// For now, be conservative on x86-64 and use an h-register extract only if the
1262// value is immediately zero-extended or stored, which are somewhat common
1263// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1264// from being allocated in the same instruction as the h register, as there's
1265// currently no way to describe this requirement to the register allocator.
1266
1267// h-register extract and zero-extend.
1268def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1269 (SUBREG_TO_REG
1270 (i64 0),
1271 (MOVZX32_NOREXrr8
1272 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1273 sub_8bit_hi)),
1274 sub_32bit)>;
1275def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1276 (MOVZX32_NOREXrr8
1277 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1278 sub_8bit_hi))>,
1279 Requires<[In64BitMode]>;
1280def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1281 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1282 GR32_ABCD)),
1283 sub_8bit_hi))>,
1284 Requires<[In64BitMode]>;
1285def : Pat<(srl GR16:$src, (i8 8)),
1286 (EXTRACT_SUBREG
1287 (MOVZX32_NOREXrr8
1288 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1289 sub_8bit_hi)),
1290 sub_16bit)>,
1291 Requires<[In64BitMode]>;
1292def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1293 (MOVZX32_NOREXrr8
1294 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1295 sub_8bit_hi))>,
1296 Requires<[In64BitMode]>;
1297def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1298 (MOVZX32_NOREXrr8
1299 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1300 sub_8bit_hi))>,
1301 Requires<[In64BitMode]>;
1302def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1303 (SUBREG_TO_REG
1304 (i64 0),
1305 (MOVZX32_NOREXrr8
1306 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1307 sub_8bit_hi)),
1308 sub_32bit)>;
1309def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1310 (SUBREG_TO_REG
1311 (i64 0),
1312 (MOVZX32_NOREXrr8
1313 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1314 sub_8bit_hi)),
1315 sub_32bit)>;
1316
1317// h-register extract and store.
1318def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1319 (MOV8mr_NOREX
1320 addr:$dst,
1321 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1322 sub_8bit_hi))>;
1323def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1324 (MOV8mr_NOREX
1325 addr:$dst,
1326 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1327 sub_8bit_hi))>,
1328 Requires<[In64BitMode]>;
1329def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1330 (MOV8mr_NOREX
1331 addr:$dst,
1332 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1333 sub_8bit_hi))>,
1334 Requires<[In64BitMode]>;
1335
1336
1337// (shl x, 1) ==> (add x, x)
1338def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1339def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1340def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1341def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1342
1343// (shl x (and y, 31)) ==> (shl x, y)
1344def : Pat<(shl GR8:$src1, (and CL, 31)),
1345 (SHL8rCL GR8:$src1)>;
1346def : Pat<(shl GR16:$src1, (and CL, 31)),
1347 (SHL16rCL GR16:$src1)>;
1348def : Pat<(shl GR32:$src1, (and CL, 31)),
1349 (SHL32rCL GR32:$src1)>;
1350def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1351 (SHL8mCL addr:$dst)>;
1352def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1353 (SHL16mCL addr:$dst)>;
1354def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1355 (SHL32mCL addr:$dst)>;
1356
1357def : Pat<(srl GR8:$src1, (and CL, 31)),
1358 (SHR8rCL GR8:$src1)>;
1359def : Pat<(srl GR16:$src1, (and CL, 31)),
1360 (SHR16rCL GR16:$src1)>;
1361def : Pat<(srl GR32:$src1, (and CL, 31)),
1362 (SHR32rCL GR32:$src1)>;
1363def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1364 (SHR8mCL addr:$dst)>;
1365def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1366 (SHR16mCL addr:$dst)>;
1367def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1368 (SHR32mCL addr:$dst)>;
1369
1370def : Pat<(sra GR8:$src1, (and CL, 31)),
1371 (SAR8rCL GR8:$src1)>;
1372def : Pat<(sra GR16:$src1, (and CL, 31)),
1373 (SAR16rCL GR16:$src1)>;
1374def : Pat<(sra GR32:$src1, (and CL, 31)),
1375 (SAR32rCL GR32:$src1)>;
1376def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1377 (SAR8mCL addr:$dst)>;
1378def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1379 (SAR16mCL addr:$dst)>;
1380def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1381 (SAR32mCL addr:$dst)>;
1382
1383// (shl x (and y, 63)) ==> (shl x, y)
1384def : Pat<(shl GR64:$src1, (and CL, 63)),
1385 (SHL64rCL GR64:$src1)>;
1386def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1387 (SHL64mCL addr:$dst)>;
1388
1389def : Pat<(srl GR64:$src1, (and CL, 63)),
1390 (SHR64rCL GR64:$src1)>;
1391def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1392 (SHR64mCL addr:$dst)>;
1393
1394def : Pat<(sra GR64:$src1, (and CL, 63)),
1395 (SAR64rCL GR64:$src1)>;
1396def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1397 (SAR64mCL addr:$dst)>;
1398
1399
1400// (anyext (setcc_carry)) -> (setcc_carry)
1401def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1402 (SETB_C16r)>;
1403def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1404 (SETB_C32r)>;
1405def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1406 (SETB_C32r)>;
1407
Chris Lattner99ae6652010-10-08 03:54:52 +00001408
1409
Chris Lattner87be16a2010-10-05 06:04:14 +00001410
1411//===----------------------------------------------------------------------===//
1412// EFLAGS-defining Patterns
1413//===----------------------------------------------------------------------===//
1414
1415// add reg, reg
1416def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1417def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1418def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1419
1420// add reg, mem
1421def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1422 (ADD8rm GR8:$src1, addr:$src2)>;
1423def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1424 (ADD16rm GR16:$src1, addr:$src2)>;
1425def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1426 (ADD32rm GR32:$src1, addr:$src2)>;
1427
1428// add reg, imm
1429def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1430def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1431def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1432def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1433 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1434def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1435 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1436
1437// sub reg, reg
1438def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1439def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1440def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1441
1442// sub reg, mem
1443def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1444 (SUB8rm GR8:$src1, addr:$src2)>;
1445def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1446 (SUB16rm GR16:$src1, addr:$src2)>;
1447def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1448 (SUB32rm GR32:$src1, addr:$src2)>;
1449
1450// sub reg, imm
1451def : Pat<(sub GR8:$src1, imm:$src2),
1452 (SUB8ri GR8:$src1, imm:$src2)>;
1453def : Pat<(sub GR16:$src1, imm:$src2),
1454 (SUB16ri GR16:$src1, imm:$src2)>;
1455def : Pat<(sub GR32:$src1, imm:$src2),
1456 (SUB32ri GR32:$src1, imm:$src2)>;
1457def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1458 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1459def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1460 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1461
1462// mul reg, reg
1463def : Pat<(mul GR16:$src1, GR16:$src2),
1464 (IMUL16rr GR16:$src1, GR16:$src2)>;
1465def : Pat<(mul GR32:$src1, GR32:$src2),
1466 (IMUL32rr GR32:$src1, GR32:$src2)>;
1467
1468// mul reg, mem
1469def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1470 (IMUL16rm GR16:$src1, addr:$src2)>;
1471def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1472 (IMUL32rm GR32:$src1, addr:$src2)>;
1473
1474// mul reg, imm
1475def : Pat<(mul GR16:$src1, imm:$src2),
1476 (IMUL16rri GR16:$src1, imm:$src2)>;
1477def : Pat<(mul GR32:$src1, imm:$src2),
1478 (IMUL32rri GR32:$src1, imm:$src2)>;
1479def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1480 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1481def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1482 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1483
1484// reg = mul mem, imm
1485def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1486 (IMUL16rmi addr:$src1, imm:$src2)>;
1487def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1488 (IMUL32rmi addr:$src1, imm:$src2)>;
1489def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1490 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1491def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1492 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1493
1494// Optimize multiply by 2 with EFLAGS result.
1495let AddedComplexity = 2 in {
1496def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1497def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1498}
1499
1500// Patterns for nodes that do not produce flags, for instructions that do.
1501
1502// addition
1503def : Pat<(add GR64:$src1, GR64:$src2),
1504 (ADD64rr GR64:$src1, GR64:$src2)>;
1505def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1506 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1507def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1508 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1509def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1510 (ADD64rm GR64:$src1, addr:$src2)>;
1511
1512// subtraction
1513def : Pat<(sub GR64:$src1, GR64:$src2),
1514 (SUB64rr GR64:$src1, GR64:$src2)>;
1515def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1516 (SUB64rm GR64:$src1, addr:$src2)>;
1517def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1518 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1519def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1520 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1521
1522// Multiply
1523def : Pat<(mul GR64:$src1, GR64:$src2),
1524 (IMUL64rr GR64:$src1, GR64:$src2)>;
1525def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1526 (IMUL64rm GR64:$src1, addr:$src2)>;
1527def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1528 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1529def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1530 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1531def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1532 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1533def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1534 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1535
1536// Increment reg.
1537def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1538def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1539def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1540def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1541def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1542def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1543
1544// Decrement reg.
1545def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1546def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1547def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1548def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1549def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1550def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1551
1552// or reg/reg.
1553def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1554def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1555def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1556def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1557
1558// or reg/mem
1559def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1560 (OR8rm GR8:$src1, addr:$src2)>;
1561def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1562 (OR16rm GR16:$src1, addr:$src2)>;
1563def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1564 (OR32rm GR32:$src1, addr:$src2)>;
1565def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1566 (OR64rm GR64:$src1, addr:$src2)>;
1567
1568// or reg/imm
1569def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1570def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1571def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1572def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1573 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1574def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1575 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1576def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1577 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1578def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1579 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1580
1581// xor reg/reg
1582def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1583def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1584def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1585def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1586
1587// xor reg/mem
1588def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1589 (XOR8rm GR8:$src1, addr:$src2)>;
1590def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1591 (XOR16rm GR16:$src1, addr:$src2)>;
1592def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1593 (XOR32rm GR32:$src1, addr:$src2)>;
1594def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1595 (XOR64rm GR64:$src1, addr:$src2)>;
1596
1597// xor reg/imm
1598def : Pat<(xor GR8:$src1, imm:$src2),
1599 (XOR8ri GR8:$src1, imm:$src2)>;
1600def : Pat<(xor GR16:$src1, imm:$src2),
1601 (XOR16ri GR16:$src1, imm:$src2)>;
1602def : Pat<(xor GR32:$src1, imm:$src2),
1603 (XOR32ri GR32:$src1, imm:$src2)>;
1604def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1605 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1606def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1607 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1608def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1609 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1610def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1611 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1612
1613// and reg/reg
1614def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1615def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1616def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1617def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1618
1619// and reg/mem
1620def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1621 (AND8rm GR8:$src1, addr:$src2)>;
1622def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1623 (AND16rm GR16:$src1, addr:$src2)>;
1624def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1625 (AND32rm GR32:$src1, addr:$src2)>;
1626def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1627 (AND64rm GR64:$src1, addr:$src2)>;
1628
1629// and reg/imm
1630def : Pat<(and GR8:$src1, imm:$src2),
1631 (AND8ri GR8:$src1, imm:$src2)>;
1632def : Pat<(and GR16:$src1, imm:$src2),
1633 (AND16ri GR16:$src1, imm:$src2)>;
1634def : Pat<(and GR32:$src1, imm:$src2),
1635 (AND32ri GR32:$src1, imm:$src2)>;
1636def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1637 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1638def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1639 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1640def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1641 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1642def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1643 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001644