blob: 0482dad4aae9b0c3571a13a4f1f4747e3516e574 [file] [log] [blame]
Arnold Schwaighofera70fe792007-10-12 21:53:12 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000035#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000039#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040using namespace llvm;
41
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43 : TargetLowering(TM) {
44 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000045 X86ScalarSSEf64 = Subtarget->hasSSE2();
46 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000048
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049
50 RegInfo = TM.getRegisterInfo();
51
52 // Set up the TargetLowering object.
53
54 // X86 is weird, it always uses i8 for shift amounts and setcc results.
55 setShiftAmountType(MVT::i8);
56 setSetCCResultType(MVT::i8);
57 setSetCCResultContents(ZeroOrOneSetCCResult);
58 setSchedulingPreference(SchedulingForRegPressure);
59 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
60 setStackPointerRegisterToSaveRestore(X86StackPtr);
61
62 if (Subtarget->isTargetDarwin()) {
63 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
64 setUseUnderscoreSetJmp(false);
65 setUseUnderscoreLongJmp(false);
66 } else if (Subtarget->isTargetMingw()) {
67 // MS runtime is weird: it exports _setjmp, but longjmp!
68 setUseUnderscoreSetJmp(true);
69 setUseUnderscoreLongJmp(false);
70 } else {
71 setUseUnderscoreSetJmp(true);
72 setUseUnderscoreLongJmp(true);
73 }
74
75 // Set up the register classes.
76 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
77 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
78 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
79 if (Subtarget->is64Bit())
80 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
81
82 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
83
84 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
85 // operation.
86 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
87 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
89
90 if (Subtarget->is64Bit()) {
91 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
92 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
93 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000094 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000095 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
96 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
97 else
98 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
99 }
100
101 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
102 // this operation.
103 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
104 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
105 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000106 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000108 // f32 and f64 cases are Legal, f80 case is not
109 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
110 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000111 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
112 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
113 }
114
Dale Johannesen958b08b2007-09-19 23:55:34 +0000115 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
116 // are Legal, f80 is custom lowered.
117 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
118 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119
120 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
121 // this operation.
122 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
123 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
124
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000125 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000127 // f32 and f64 cases are Legal, f80 case is not
128 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129 } else {
130 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
131 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
132 }
133
134 // Handle FP_TO_UINT by promoting the destination to a larger signed
135 // conversion.
136 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
137 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
139
140 if (Subtarget->is64Bit()) {
141 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
142 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
143 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000144 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 // Expand FP_TO_UINT into a select.
146 // FIXME: We would like to use a Custom expander here eventually to do
147 // the optimal thing for SSE vs. the default expansion in the legalizer.
148 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
149 else
150 // With SSE3 we can use fisttpll to convert to a signed i64.
151 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
152 }
153
154 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000155 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
157 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
158 }
159
Dan Gohman5a199552007-10-08 18:33:35 +0000160 // Scalar integer multiply, multiply-high, divide, and remainder are
161 // lowered to use operations that produce two results, to match the
162 // available instructions. This exposes the two-result form to trivial
163 // CSE, which is able to combine x/y and x%y into a single instruction,
164 // for example. The single-result multiply instructions are introduced
165 // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
166 // is not needed.
167 setOperationAction(ISD::MUL , MVT::i8 , Expand);
168 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
169 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
170 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
171 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
172 setOperationAction(ISD::SREM , MVT::i8 , Expand);
173 setOperationAction(ISD::UREM , MVT::i8 , Expand);
174 setOperationAction(ISD::MUL , MVT::i16 , Expand);
175 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
176 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
177 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
178 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
179 setOperationAction(ISD::SREM , MVT::i16 , Expand);
180 setOperationAction(ISD::UREM , MVT::i16 , Expand);
181 setOperationAction(ISD::MUL , MVT::i32 , Expand);
182 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
183 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
184 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
185 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
186 setOperationAction(ISD::SREM , MVT::i32 , Expand);
187 setOperationAction(ISD::UREM , MVT::i32 , Expand);
188 setOperationAction(ISD::MUL , MVT::i64 , Expand);
189 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
190 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
191 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
192 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
193 setOperationAction(ISD::SREM , MVT::i64 , Expand);
194 setOperationAction(ISD::UREM , MVT::i64 , Expand);
Dan Gohman242a5ba2007-09-25 18:23:27 +0000195
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
197 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
198 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
199 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
200 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
201 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
206 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
207 setOperationAction(ISD::FREM , MVT::f64 , Expand);
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +0000208 setOperationAction(ISD::FLT_ROUNDS , MVT::i32 , Custom);
209
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
211 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
212 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
213 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
214 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
215 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
216 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
217 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
218 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
219 if (Subtarget->is64Bit()) {
220 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
221 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
222 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
223 }
224
225 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
226 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
227
228 // These should be promoted to a larger select which is supported.
229 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
230 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
231 // X86 wants to expand cmov itself.
232 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
233 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
234 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
235 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000236 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
238 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
239 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
240 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
241 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000242 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 if (Subtarget->is64Bit()) {
244 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
245 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
246 }
247 // X86 ret instruction may pop stack.
248 setOperationAction(ISD::RET , MVT::Other, Custom);
249 if (!Subtarget->is64Bit())
250 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
251
252 // Darwin ABI issue.
253 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
254 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
255 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
256 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
257 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
258 if (Subtarget->is64Bit()) {
259 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
260 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
261 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
262 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
263 }
264 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
265 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
266 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
267 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
268 // X86 wants to expand memset / memcpy itself.
269 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
270 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
271
Dan Gohman21442852007-09-25 15:10:49 +0000272 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 // FIXME - use subtarget debug flags
275 if (!Subtarget->isTargetDarwin() &&
276 !Subtarget->isTargetELF() &&
277 !Subtarget->isTargetCygMing())
278 setOperationAction(ISD::LABEL, MVT::Other, Expand);
279
280 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
281 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
282 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
283 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
284 if (Subtarget->is64Bit()) {
285 // FIXME: Verify
286 setExceptionPointerRegister(X86::RAX);
287 setExceptionSelectorRegister(X86::RDX);
288 } else {
289 setExceptionPointerRegister(X86::EAX);
290 setExceptionSelectorRegister(X86::EDX);
291 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000292 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293
Duncan Sands7407a9f2007-09-11 14:10:23 +0000294 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000295
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
297 setOperationAction(ISD::VASTART , MVT::Other, Custom);
298 setOperationAction(ISD::VAARG , MVT::Other, Expand);
299 setOperationAction(ISD::VAEND , MVT::Other, Expand);
300 if (Subtarget->is64Bit())
301 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
302 else
303 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
304
305 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
306 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
307 if (Subtarget->is64Bit())
308 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
309 if (Subtarget->isTargetCygMing())
310 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
311 else
312 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
313
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000314 if (X86ScalarSSEf64) {
315 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316 // Set up the FP register classes.
317 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
318 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
319
320 // Use ANDPD to simulate FABS.
321 setOperationAction(ISD::FABS , MVT::f64, Custom);
322 setOperationAction(ISD::FABS , MVT::f32, Custom);
323
324 // Use XORP to simulate FNEG.
325 setOperationAction(ISD::FNEG , MVT::f64, Custom);
326 setOperationAction(ISD::FNEG , MVT::f32, Custom);
327
328 // Use ANDPD and ORPD to simulate FCOPYSIGN.
329 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
330 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
331
332 // We don't support sin/cos/fmod
333 setOperationAction(ISD::FSIN , MVT::f64, Expand);
334 setOperationAction(ISD::FCOS , MVT::f64, Expand);
335 setOperationAction(ISD::FREM , MVT::f64, Expand);
336 setOperationAction(ISD::FSIN , MVT::f32, Expand);
337 setOperationAction(ISD::FCOS , MVT::f32, Expand);
338 setOperationAction(ISD::FREM , MVT::f32, Expand);
339
340 // Expand FP immediates into loads from the stack, except for the special
341 // cases we handle.
342 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
343 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000344 addLegalFPImmediate(APFloat(+0.0)); // xorpd
345 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000346
347 // Conversions to long double (in X87) go through memory.
348 setConvertAction(MVT::f32, MVT::f80, Expand);
349 setConvertAction(MVT::f64, MVT::f80, Expand);
350
351 // Conversions from long double (in X87) go through memory.
352 setConvertAction(MVT::f80, MVT::f32, Expand);
353 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000354 } else if (X86ScalarSSEf32) {
355 // Use SSE for f32, x87 for f64.
356 // Set up the FP register classes.
357 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
358 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
359
360 // Use ANDPS to simulate FABS.
361 setOperationAction(ISD::FABS , MVT::f32, Custom);
362
363 // Use XORP to simulate FNEG.
364 setOperationAction(ISD::FNEG , MVT::f32, Custom);
365
366 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
367
368 // Use ANDPS and ORPS to simulate FCOPYSIGN.
369 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
370 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
371
372 // We don't support sin/cos/fmod
373 setOperationAction(ISD::FSIN , MVT::f32, Expand);
374 setOperationAction(ISD::FCOS , MVT::f32, Expand);
375 setOperationAction(ISD::FREM , MVT::f32, Expand);
376
377 // Expand FP immediates into loads from the stack, except for the special
378 // cases we handle.
379 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
380 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
381 addLegalFPImmediate(APFloat(+0.0f)); // xorps
382 addLegalFPImmediate(APFloat(+0.0)); // FLD0
383 addLegalFPImmediate(APFloat(+1.0)); // FLD1
384 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
385 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
386
387 // SSE->x87 conversions go through memory.
388 setConvertAction(MVT::f32, MVT::f64, Expand);
389 setConvertAction(MVT::f32, MVT::f80, Expand);
390
391 // x87->SSE truncations need to go through memory.
392 setConvertAction(MVT::f80, MVT::f32, Expand);
393 setConvertAction(MVT::f64, MVT::f32, Expand);
394 // And x87->x87 truncations also.
395 setConvertAction(MVT::f80, MVT::f64, Expand);
396
397 if (!UnsafeFPMath) {
398 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
399 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
400 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000401 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000402 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403 // Set up the FP register classes.
404 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
405 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
406
407 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
408 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
409 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
410 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000411
412 // Floating truncations need to go through memory.
413 setConvertAction(MVT::f80, MVT::f32, Expand);
414 setConvertAction(MVT::f64, MVT::f32, Expand);
415 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000416
417 if (!UnsafeFPMath) {
418 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
419 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
420 }
421
422 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
423 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000424 addLegalFPImmediate(APFloat(+0.0)); // FLD0
425 addLegalFPImmediate(APFloat(+1.0)); // FLD1
426 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
427 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000428 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
429 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
430 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
431 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 }
433
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000434 // Long double always uses X87.
435 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000436 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
437 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
438 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000439 if (!UnsafeFPMath) {
440 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
441 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
442 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000443
Dan Gohman2f7b1982007-10-11 23:21:31 +0000444 // Always use a library call for pow.
445 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
446 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
447 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
448
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 // First set operation action for all vector types to expand. Then we
450 // will selectively turn on ones that can be effectively codegen'd.
451 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
452 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
453 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
454 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
455 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
456 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
457 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
458 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
459 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
460 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
461 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
462 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
463 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
464 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
465 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
466 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
467 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
468 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
469 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
470 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
471 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
472 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
473 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
474 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
475 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
Dan Gohman5a199552007-10-08 18:33:35 +0000476 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
477 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
478 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
479 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000480 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
Dan Gohman1d2dc2c2007-10-12 14:09:42 +0000481 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
482 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
483 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000484 }
485
486 if (Subtarget->hasMMX()) {
487 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
488 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
489 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
490 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
491
492 // FIXME: add MMX packed arithmetics
493
494 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
495 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
496 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
497 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
498
499 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
500 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
501 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
Dale Johannesen6b65c332007-10-30 01:18:38 +0000502 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000503
504 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
505 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
506
507 setOperationAction(ISD::AND, MVT::v8i8, Promote);
508 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
509 setOperationAction(ISD::AND, MVT::v4i16, Promote);
510 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
511 setOperationAction(ISD::AND, MVT::v2i32, Promote);
512 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
513 setOperationAction(ISD::AND, MVT::v1i64, Legal);
514
515 setOperationAction(ISD::OR, MVT::v8i8, Promote);
516 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
517 setOperationAction(ISD::OR, MVT::v4i16, Promote);
518 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
519 setOperationAction(ISD::OR, MVT::v2i32, Promote);
520 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
521 setOperationAction(ISD::OR, MVT::v1i64, Legal);
522
523 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
524 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
525 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
526 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
527 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
528 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
529 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
530
531 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
532 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
533 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
534 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
535 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
536 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
537 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
538
539 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
540 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
541 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
542 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
543
544 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
545 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
546 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
547 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
548
549 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
550 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
551 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
552 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
553 }
554
555 if (Subtarget->hasSSE1()) {
556 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
557
558 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
559 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
560 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
561 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
562 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
563 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000564 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
565 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
566 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
567 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
568 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
569 }
570
571 if (Subtarget->hasSSE2()) {
572 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
573 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
574 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
575 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
576 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
577
578 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
579 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
580 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
581 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
582 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
583 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
584 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
585 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
586 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
587 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
588 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
589 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
590 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
591 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
592 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000593
594 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
595 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
596 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
597 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
598 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
599 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
600
601 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
602 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
603 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
604 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
605 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
606 }
607 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
608 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
609 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
610 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
611 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
Dale Johannesen2ff963d2007-10-31 00:32:36 +0000612 if (Subtarget->is64Bit())
613 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000614
615 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
616 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
617 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
618 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
619 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
620 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
621 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
622 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
623 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
624 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
625 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
626 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
627 }
628
629 // Custom lower v2i64 and v2f64 selects.
630 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
631 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
632 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
633 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
634 }
635
636 // We want to custom lower some of our intrinsics.
637 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
638
639 // We have target-specific dag combine patterns for the following nodes:
640 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
641 setTargetDAGCombine(ISD::SELECT);
642
643 computeRegisterProperties();
644
645 // FIXME: These should be based on subtarget info. Plus, the values should
646 // be smaller when we are in optimizing for size mode.
647 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
648 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
649 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
650 allowUnalignedMemoryAccesses = true; // x86 supports it!
651}
652
653
Evan Cheng6fb06762007-11-09 01:32:10 +0000654/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
655/// jumptable.
656SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
657 SelectionDAG &DAG) const {
658 if (usesGlobalOffsetTable())
659 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
660 if (!Subtarget->isPICStyleRIPRel())
661 return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
662 return Table;
663}
664
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000665//===----------------------------------------------------------------------===//
666// Return Value Calling Convention Implementation
667//===----------------------------------------------------------------------===//
668
669#include "X86GenCallingConv.inc"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000670
671/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
672/// exists skip possible ISD:TokenFactor.
673static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
674 if (Chain.getOpcode()==X86ISD::TAILCALL) {
675 return Chain;
676 } else if (Chain.getOpcode()==ISD::TokenFactor) {
677 if (Chain.getNumOperands() &&
678 Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
679 return Chain.getOperand(0);
680 }
681 return Chain;
682}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683
684/// LowerRET - Lower an ISD::RET node.
685SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
686 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
687
688 SmallVector<CCValAssign, 16> RVLocs;
689 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
690 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
691 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
692 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000693
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694 // If this is the first return lowered for this function, add the regs to the
695 // liveout set for the function.
696 if (DAG.getMachineFunction().liveout_empty()) {
697 for (unsigned i = 0; i != RVLocs.size(); ++i)
698 if (RVLocs[i].isRegLoc())
699 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
700 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701 SDOperand Chain = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000702
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000703 // Handle tail call return.
704 Chain = GetPossiblePreceedingTailCall(Chain);
705 if (Chain.getOpcode() == X86ISD::TAILCALL) {
706 SDOperand TailCall = Chain;
707 SDOperand TargetAddress = TailCall.getOperand(1);
708 SDOperand StackAdjustment = TailCall.getOperand(2);
709 assert ( ((TargetAddress.getOpcode() == ISD::Register &&
710 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
711 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
712 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
713 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
714 "Expecting an global address, external symbol, or register");
715 assert( StackAdjustment.getOpcode() == ISD::Constant &&
716 "Expecting a const value");
717
718 SmallVector<SDOperand,8> Operands;
719 Operands.push_back(Chain.getOperand(0));
720 Operands.push_back(TargetAddress);
721 Operands.push_back(StackAdjustment);
722 // Copy registers used by the call. Last operand is a flag so it is not
723 // copied.
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000724 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000725 Operands.push_back(Chain.getOperand(i));
726 }
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000727 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
728 Operands.size());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000729 }
730
731 // Regular return.
732 SDOperand Flag;
733
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 // Copy the result values into the output registers.
735 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
736 RVLocs[0].getLocReg() != X86::ST0) {
737 for (unsigned i = 0; i != RVLocs.size(); ++i) {
738 CCValAssign &VA = RVLocs[i];
739 assert(VA.isRegLoc() && "Can only return in registers!");
740 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
741 Flag);
742 Flag = Chain.getValue(1);
743 }
744 } else {
745 // We need to handle a destination of ST0 specially, because it isn't really
746 // a register.
747 SDOperand Value = Op.getOperand(1);
748
749 // If this is an FP return with ScalarSSE, we need to move the value from
750 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000751 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
752 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753 SDOperand MemLoc;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000754
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 // If this is a load into a scalarsse value, don't store the loaded value
756 // back to the stack, only to reload it: just replace the scalar-sse load.
757 if (ISD::isNON_EXTLoad(Value.Val) &&
758 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
759 Chain = Value.getOperand(0);
760 MemLoc = Value.getOperand(1);
761 } else {
762 // Spill the value to memory and reload it into top of stack.
763 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
764 MachineFunction &MF = DAG.getMachineFunction();
765 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
766 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
767 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
768 }
769 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
770 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
771 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
772 Chain = Value.getValue(1);
773 }
774
775 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
776 SDOperand Ops[] = { Chain, Value };
777 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
778 Flag = Chain.getValue(1);
779 }
780
781 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
782 if (Flag.Val)
783 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
784 else
785 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
786}
787
788
789/// LowerCallResult - Lower the result values of an ISD::CALL into the
790/// appropriate copies out of appropriate physical registers. This assumes that
791/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
792/// being lowered. The returns a SDNode with the same number of values as the
793/// ISD::CALL.
794SDNode *X86TargetLowering::
795LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
796 unsigned CallingConv, SelectionDAG &DAG) {
797
798 // Assign locations to each value returned by this call.
799 SmallVector<CCValAssign, 16> RVLocs;
800 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
801 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
802 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
803
804
805 SmallVector<SDOperand, 8> ResultVals;
806
807 // Copy all of the result registers out of their specified physreg.
808 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
809 for (unsigned i = 0; i != RVLocs.size(); ++i) {
810 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
811 RVLocs[i].getValVT(), InFlag).getValue(1);
812 InFlag = Chain.getValue(2);
813 ResultVals.push_back(Chain.getValue(0));
814 }
815 } else {
816 // Copies from the FP stack are special, as ST0 isn't a valid register
817 // before the fp stackifier runs.
818
819 // Copy ST0 into an RFP register with FP_GET_RESULT.
820 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
821 SDOperand GROps[] = { Chain, InFlag };
822 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
823 Chain = RetVal.getValue(1);
824 InFlag = RetVal.getValue(2);
825
826 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
827 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000828 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
829 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
831 // shouldn't be necessary except that RFP cannot be live across
832 // multiple blocks. When stackifier is fixed, they can be uncoupled.
833 MachineFunction &MF = DAG.getMachineFunction();
834 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
835 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
836 SDOperand Ops[] = {
837 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
838 };
839 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
840 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
841 Chain = RetVal.getValue(1);
842 }
843 ResultVals.push_back(RetVal);
844 }
845
846 // Merge everything together with a MERGE_VALUES node.
847 ResultVals.push_back(Chain);
848 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
849 &ResultVals[0], ResultVals.size()).Val;
850}
851
852
853//===----------------------------------------------------------------------===//
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000854// C & StdCall & Fast Calling Convention implementation
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000855//===----------------------------------------------------------------------===//
856// StdCall calling convention seems to be standard for many Windows' API
857// routines and around. It differs from C calling convention just a little:
858// callee should clean up the stack, not caller. Symbols should be also
859// decorated in some fancy way :) It doesn't support any vector arguments.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000860// For info on fast calling convention see Fast Calling Convention (tail call)
861// implementation LowerX86_32FastCCCallTo.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000862
863/// AddLiveIn - This helper function adds the specified physical register to the
864/// MachineFunction as a live in value. It also creates a corresponding virtual
865/// register for it.
866static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
867 const TargetRegisterClass *RC) {
868 assert(RC->contains(PReg) && "Not the correct regclass!");
869 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
870 MF.addLiveIn(PReg, VReg);
871 return VReg;
872}
873
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000874// align stack arguments according to platform alignment needed for tail calls
875unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
876
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000877SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
878 const CCValAssign &VA,
879 MachineFrameInfo *MFI,
880 SDOperand Root, unsigned i) {
881 // Create the nodes corresponding to a load from this parameter slot.
882 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
883 VA.getLocMemOffset());
884 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
885
886 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
887
888 if (Flags & ISD::ParamFlags::ByVal)
889 return FIN;
890 else
891 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
892}
893
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
895 bool isStdCall) {
896 unsigned NumArgs = Op.Val->getNumValues() - 1;
897 MachineFunction &MF = DAG.getMachineFunction();
898 MachineFrameInfo *MFI = MF.getFrameInfo();
899 SDOperand Root = Op.getOperand(0);
900 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000901 unsigned CC = MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000902 // Assign locations to all of the incoming arguments.
903 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000904 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000905 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000906 // Check for possible tail call calling convention.
907 if (CC == CallingConv::Fast && PerformTailCallOpt)
908 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
909 else
910 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
911
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000912 SmallVector<SDOperand, 8> ArgValues;
913 unsigned LastVal = ~0U;
914 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
915 CCValAssign &VA = ArgLocs[i];
916 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
917 // places.
918 assert(VA.getValNo() != LastVal &&
919 "Don't support value assigned to multiple locs yet");
920 LastVal = VA.getValNo();
921
922 if (VA.isRegLoc()) {
923 MVT::ValueType RegVT = VA.getLocVT();
924 TargetRegisterClass *RC;
925 if (RegVT == MVT::i32)
926 RC = X86::GR32RegisterClass;
927 else {
928 assert(MVT::isVector(RegVT));
929 RC = X86::VR128RegisterClass;
930 }
931
932 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
933 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
934
935 // If this is an 8 or 16-bit value, it is really passed promoted to 32
936 // bits. Insert an assert[sz]ext to capture this, then truncate to the
937 // right size.
938 if (VA.getLocInfo() == CCValAssign::SExt)
939 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
940 DAG.getValueType(VA.getValVT()));
941 else if (VA.getLocInfo() == CCValAssign::ZExt)
942 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
943 DAG.getValueType(VA.getValVT()));
944
945 if (VA.getLocInfo() != CCValAssign::Full)
946 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
947
948 ArgValues.push_back(ArgValue);
949 } else {
950 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000951 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000952 }
953 }
954
955 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000956 // align stack specially for tail calls
957 if (CC==CallingConv::Fast)
958 StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959
960 ArgValues.push_back(Root);
961
962 // If the function takes variable number of arguments, make a frame index for
963 // the start of the first vararg value... for expansion of llvm.va_start.
964 if (isVarArg)
965 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
966
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000967 // Tail call calling convention (CallingConv::Fast) does not support varargs.
968 assert( !(isVarArg && CC == CallingConv::Fast) &&
969 "CallingConv::Fast does not support varargs.");
970
971 if (isStdCall && !isVarArg &&
972 (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973 BytesToPopOnReturn = StackSize; // Callee pops everything..
974 BytesCallerReserves = 0;
975 } else {
976 BytesToPopOnReturn = 0; // Callee pops nothing.
977
978 // If this is an sret function, the return should pop the hidden pointer.
979 if (NumArgs &&
980 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
981 ISD::ParamFlags::StructReturn))
982 BytesToPopOnReturn = 4;
983
984 BytesCallerReserves = StackSize;
985 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000986
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000987 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988
Anton Korobeynikove844e472007-08-15 17:12:32 +0000989 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
990 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991
992 // Return the new list of results.
993 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
994 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
995}
996
997SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
998 unsigned CC) {
999 SDOperand Chain = Op.getOperand(0);
1000 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 SDOperand Callee = Op.getOperand(4);
1002 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001003
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004 // Analyze operands of the call, assigning locations to each operand.
1005 SmallVector<CCValAssign, 16> ArgLocs;
1006 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001007 if(CC==CallingConv::Fast && PerformTailCallOpt)
1008 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1009 else
1010 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011
1012 // Get a count of how many bytes are to be pushed on the stack.
1013 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001014 if (CC==CallingConv::Fast)
1015 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016
1017 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1018
1019 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1020 SmallVector<SDOperand, 8> MemOpChains;
1021
1022 SDOperand StackPtr;
1023
1024 // Walk the register/memloc assignments, inserting copies/loads.
1025 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1026 CCValAssign &VA = ArgLocs[i];
1027 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1028
1029 // Promote the value if needed.
1030 switch (VA.getLocInfo()) {
1031 default: assert(0 && "Unknown loc info!");
1032 case CCValAssign::Full: break;
1033 case CCValAssign::SExt:
1034 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1035 break;
1036 case CCValAssign::ZExt:
1037 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1038 break;
1039 case CCValAssign::AExt:
1040 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1041 break;
1042 }
1043
1044 if (VA.isRegLoc()) {
1045 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1046 } else {
1047 assert(VA.isMemLoc());
1048 if (StackPtr.Val == 0)
1049 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001050
1051 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1052 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 }
1054 }
1055
1056 // If the first argument is an sret pointer, remember it.
1057 bool isSRet = NumOps &&
1058 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1059 ISD::ParamFlags::StructReturn);
1060
1061 if (!MemOpChains.empty())
1062 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1063 &MemOpChains[0], MemOpChains.size());
1064
1065 // Build a sequence of copy-to-reg nodes chained together with token chain
1066 // and flag operands which copy the outgoing args into registers.
1067 SDOperand InFlag;
1068 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1069 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1070 InFlag);
1071 InFlag = Chain.getValue(1);
1072 }
1073
1074 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1075 // GOT pointer.
1076 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1077 Subtarget->isPICStyleGOT()) {
1078 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1079 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1080 InFlag);
1081 InFlag = Chain.getValue(1);
1082 }
1083
1084 // If the callee is a GlobalAddress node (quite common, every direct call is)
1085 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1086 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1087 // We should use extra load for direct calls to dllimported functions in
1088 // non-JIT mode.
1089 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1090 getTargetMachine(), true))
1091 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1092 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1093 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1094
1095 // Returns a chain & a flag for retval copy to use.
1096 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1097 SmallVector<SDOperand, 8> Ops;
1098 Ops.push_back(Chain);
1099 Ops.push_back(Callee);
1100
1101 // Add argument registers to the end of the list so that they are known live
1102 // into the call.
1103 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1104 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1105 RegsToPass[i].second.getValueType()));
1106
1107 // Add an implicit use GOT pointer in EBX.
1108 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1109 Subtarget->isPICStyleGOT())
1110 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1111
1112 if (InFlag.Val)
1113 Ops.push_back(InFlag);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001114
1115 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116 InFlag = Chain.getValue(1);
1117
1118 // Create the CALLSEQ_END node.
1119 unsigned NumBytesForCalleeToPush = 0;
1120
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001121 if (CC == CallingConv::X86_StdCall ||
1122 (CC == CallingConv::Fast && PerformTailCallOpt)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001123 if (isVarArg)
1124 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1125 else
1126 NumBytesForCalleeToPush = NumBytes;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001127 assert(!(isVarArg && CC==CallingConv::Fast) &&
1128 "CallingConv::Fast does not support varargs.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001129 } else {
1130 // If this is is a call to a struct-return function, the callee
1131 // pops the hidden struct pointer, so we have to push it back.
1132 // This is common for Darwin/X86, Linux & Mingw32 targets.
1133 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1134 }
Bill Wendling22f8deb2007-11-13 00:44:25 +00001135
1136 Chain = DAG.getCALLSEQ_END(Chain,
1137 DAG.getConstant(NumBytes, getPointerTy()),
1138 DAG.getConstant(NumBytesForCalleeToPush,
1139 getPointerTy()),
1140 InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001141 InFlag = Chain.getValue(1);
1142
1143 // Handle result values, copying them out of physregs into vregs that we
1144 // return.
1145 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1146}
1147
1148
1149//===----------------------------------------------------------------------===//
1150// FastCall Calling Convention implementation
1151//===----------------------------------------------------------------------===//
1152//
1153// The X86 'fastcall' calling convention passes up to two integer arguments in
1154// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1155// and requires that the callee pop its arguments off the stack (allowing proper
1156// tail calls), and has the same return value conventions as C calling convs.
1157//
1158// This calling convention always arranges for the callee pop value to be 8n+4
1159// bytes, which is needed for tail recursion elimination and stack alignment
1160// reasons.
1161SDOperand
1162X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1163 MachineFunction &MF = DAG.getMachineFunction();
1164 MachineFrameInfo *MFI = MF.getFrameInfo();
1165 SDOperand Root = Op.getOperand(0);
1166 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1167
1168 // Assign locations to all of the incoming arguments.
1169 SmallVector<CCValAssign, 16> ArgLocs;
1170 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1171 getTargetMachine(), ArgLocs);
1172 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1173
1174 SmallVector<SDOperand, 8> ArgValues;
1175 unsigned LastVal = ~0U;
1176 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1177 CCValAssign &VA = ArgLocs[i];
1178 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1179 // places.
1180 assert(VA.getValNo() != LastVal &&
1181 "Don't support value assigned to multiple locs yet");
1182 LastVal = VA.getValNo();
1183
1184 if (VA.isRegLoc()) {
1185 MVT::ValueType RegVT = VA.getLocVT();
1186 TargetRegisterClass *RC;
1187 if (RegVT == MVT::i32)
1188 RC = X86::GR32RegisterClass;
1189 else {
1190 assert(MVT::isVector(RegVT));
1191 RC = X86::VR128RegisterClass;
1192 }
1193
1194 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1195 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1196
1197 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1198 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1199 // right size.
1200 if (VA.getLocInfo() == CCValAssign::SExt)
1201 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1202 DAG.getValueType(VA.getValVT()));
1203 else if (VA.getLocInfo() == CCValAssign::ZExt)
1204 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1205 DAG.getValueType(VA.getValVT()));
1206
1207 if (VA.getLocInfo() != CCValAssign::Full)
1208 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1209
1210 ArgValues.push_back(ArgValue);
1211 } else {
1212 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001213 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001214 }
1215 }
1216
1217 ArgValues.push_back(Root);
1218
1219 unsigned StackSize = CCInfo.getNextStackOffset();
1220
1221 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1222 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001223 // arguments and the arguments after the retaddr has been pushed are
1224 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225 if ((StackSize & 7) == 0)
1226 StackSize += 4;
1227 }
1228
1229 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1230 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1232 BytesCallerReserves = 0;
1233
Anton Korobeynikove844e472007-08-15 17:12:32 +00001234 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1235 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001236
1237 // Return the new list of results.
1238 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1239 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1240}
1241
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001242SDOperand
1243X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1244 const SDOperand &StackPtr,
1245 const CCValAssign &VA,
1246 SDOperand Chain,
1247 SDOperand Arg) {
1248 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1249 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1250 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1251 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1252 if (Flags & ISD::ParamFlags::ByVal) {
1253 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1254 ISD::ParamFlags::ByValAlignOffs);
1255
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001256 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1257 ISD::ParamFlags::ByValSizeOffs;
1258
1259 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1260 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00001261 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001262
Rafael Espindola80825902007-10-19 10:41:11 +00001263 return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1264 AlwaysInline);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001265 } else {
1266 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1267 }
1268}
1269
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001270SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1271 unsigned CC) {
1272 SDOperand Chain = Op.getOperand(0);
1273 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1274 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1275 SDOperand Callee = Op.getOperand(4);
1276
1277 // Analyze operands of the call, assigning locations to each operand.
1278 SmallVector<CCValAssign, 16> ArgLocs;
1279 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1280 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1281
1282 // Get a count of how many bytes are to be pushed on the stack.
1283 unsigned NumBytes = CCInfo.getNextStackOffset();
1284
1285 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1286 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001287 // arguments and the arguments after the retaddr has been pushed are
1288 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001289 if ((NumBytes & 7) == 0)
1290 NumBytes += 4;
1291 }
1292
1293 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1294
1295 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1296 SmallVector<SDOperand, 8> MemOpChains;
1297
1298 SDOperand StackPtr;
1299
1300 // Walk the register/memloc assignments, inserting copies/loads.
1301 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1302 CCValAssign &VA = ArgLocs[i];
1303 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1304
1305 // Promote the value if needed.
1306 switch (VA.getLocInfo()) {
1307 default: assert(0 && "Unknown loc info!");
1308 case CCValAssign::Full: break;
1309 case CCValAssign::SExt:
1310 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1311 break;
1312 case CCValAssign::ZExt:
1313 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1314 break;
1315 case CCValAssign::AExt:
1316 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1317 break;
1318 }
1319
1320 if (VA.isRegLoc()) {
1321 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1322 } else {
1323 assert(VA.isMemLoc());
1324 if (StackPtr.Val == 0)
1325 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001326
1327 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1328 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001329 }
1330 }
1331
1332 if (!MemOpChains.empty())
1333 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1334 &MemOpChains[0], MemOpChains.size());
1335
1336 // Build a sequence of copy-to-reg nodes chained together with token chain
1337 // and flag operands which copy the outgoing args into registers.
1338 SDOperand InFlag;
1339 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1340 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1341 InFlag);
1342 InFlag = Chain.getValue(1);
1343 }
1344
1345 // If the callee is a GlobalAddress node (quite common, every direct call is)
1346 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1347 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1348 // We should use extra load for direct calls to dllimported functions in
1349 // non-JIT mode.
1350 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1351 getTargetMachine(), true))
1352 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1353 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1354 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1355
1356 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1357 // GOT pointer.
1358 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1359 Subtarget->isPICStyleGOT()) {
1360 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1361 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1362 InFlag);
1363 InFlag = Chain.getValue(1);
1364 }
1365
1366 // Returns a chain & a flag for retval copy to use.
1367 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1368 SmallVector<SDOperand, 8> Ops;
1369 Ops.push_back(Chain);
1370 Ops.push_back(Callee);
1371
1372 // Add argument registers to the end of the list so that they are known live
1373 // into the call.
1374 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1375 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1376 RegsToPass[i].second.getValueType()));
1377
1378 // Add an implicit use GOT pointer in EBX.
1379 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1380 Subtarget->isPICStyleGOT())
1381 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1382
1383 if (InFlag.Val)
1384 Ops.push_back(InFlag);
1385
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001386 assert(isTailCall==false && "no tail call here");
1387 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001388 NodeTys, &Ops[0], Ops.size());
1389 InFlag = Chain.getValue(1);
1390
1391 // Returns a flag for retval copy to use.
1392 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1393 Ops.clear();
1394 Ops.push_back(Chain);
1395 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1396 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1397 Ops.push_back(InFlag);
1398 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1399 InFlag = Chain.getValue(1);
1400
1401 // Handle result values, copying them out of physregs into vregs that we
1402 // return.
1403 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1404}
1405
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001406//===----------------------------------------------------------------------===//
1407// Fast Calling Convention (tail call) implementation
1408//===----------------------------------------------------------------------===//
1409
1410// Like std call, callee cleans arguments, convention except that ECX is
1411// reserved for storing the tail called function address. Only 2 registers are
1412// free for argument passing (inreg). Tail call optimization is performed
1413// provided:
1414// * tailcallopt is enabled
1415// * caller/callee are fastcc
1416// * elf/pic is disabled OR
1417// * elf/pic enabled + callee is in module + callee has
1418// visibility protected or hidden
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001419// To keep the stack aligned according to platform abi the function
1420// GetAlignedArgumentStackSize ensures that argument delta is always multiples
1421// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001422// If a tail called function callee has more arguments than the caller the
1423// caller needs to make sure that there is room to move the RETADDR to. This is
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001424// achieved by reserving an area the size of the argument delta right after the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001425// original REtADDR, but before the saved framepointer or the spilled registers
1426// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1427// stack layout:
1428// arg1
1429// arg2
1430// RETADDR
1431// [ new RETADDR
1432// move area ]
1433// (possible EBP)
1434// ESI
1435// EDI
1436// local1 ..
1437
1438/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1439/// for a 16 byte align requirement.
1440unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1441 SelectionDAG& DAG) {
1442 if (PerformTailCallOpt) {
1443 MachineFunction &MF = DAG.getMachineFunction();
1444 const TargetMachine &TM = MF.getTarget();
1445 const TargetFrameInfo &TFI = *TM.getFrameInfo();
1446 unsigned StackAlignment = TFI.getStackAlignment();
1447 uint64_t AlignMask = StackAlignment - 1;
1448 int64_t Offset = StackSize;
1449 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1450 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1451 // Number smaller than 12 so just add the difference.
1452 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1453 } else {
1454 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1455 Offset = ((~AlignMask) & Offset) + StackAlignment +
1456 (StackAlignment-SlotSize);
1457 }
1458 StackSize = Offset;
1459 }
1460 return StackSize;
1461}
1462
1463/// IsEligibleForTailCallElimination - Check to see whether the next instruction
Evan Chenge7a87392007-11-02 01:26:22 +00001464/// following the call is a return. A function is eligible if caller/callee
1465/// calling conventions match, currently only fastcc supports tail calls, and
1466/// the function CALL is immediatly followed by a RET.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001467bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1468 SDOperand Ret,
1469 SelectionDAG& DAG) const {
Evan Chenge7a87392007-11-02 01:26:22 +00001470 if (!PerformTailCallOpt)
1471 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001472
1473 // Check whether CALL node immediatly preceeds the RET node and whether the
1474 // return uses the result of the node or is a void return.
Evan Chenge7a87392007-11-02 01:26:22 +00001475 unsigned NumOps = Ret.getNumOperands();
1476 if ((NumOps == 1 &&
1477 (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1478 Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
Evan Cheng26c0e982007-11-02 17:45:40 +00001479 (NumOps > 1 &&
Evan Chenge7a87392007-11-02 01:26:22 +00001480 Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1481 Ret.getOperand(1) == SDOperand(Call.Val,0))) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001482 MachineFunction &MF = DAG.getMachineFunction();
1483 unsigned CallerCC = MF.getFunction()->getCallingConv();
1484 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1485 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1486 SDOperand Callee = Call.getOperand(4);
1487 // On elf/pic %ebx needs to be livein.
Evan Chenge7a87392007-11-02 01:26:22 +00001488 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1489 !Subtarget->isPICStyleGOT())
1490 return true;
1491
1492 // Can only do local tail calls with PIC.
1493 GlobalValue * GV = 0;
1494 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1495 if(G != 0 &&
1496 (GV = G->getGlobal()) &&
1497 (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1498 return true;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001499 }
1500 }
Evan Chenge7a87392007-11-02 01:26:22 +00001501
1502 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001503}
1504
1505SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1506 SelectionDAG &DAG,
1507 unsigned CC) {
1508 SDOperand Chain = Op.getOperand(0);
1509 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1510 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1511 SDOperand Callee = Op.getOperand(4);
1512 bool is64Bit = Subtarget->is64Bit();
1513
1514 assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1515
1516 // Analyze operands of the call, assigning locations to each operand.
1517 SmallVector<CCValAssign, 16> ArgLocs;
1518 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1519 if (is64Bit)
1520 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1521 else
1522 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1523
1524
1525 // Lower arguments at fp - stackoffset + fpdiff.
1526 MachineFunction &MF = DAG.getMachineFunction();
1527
1528 unsigned NumBytesToBePushed =
1529 GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1530
1531 unsigned NumBytesCallerPushed =
1532 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1533 int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1534
1535 // Set the delta of movement of the returnaddr stackslot.
1536 // But only set if delta is greater than previous delta.
1537 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1538 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1539
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001540 Chain = DAG.
1541 getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1542
1543 // Adjust the Return address stack slot.
1544 SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001545 if (FPDiff) {
1546 MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001547 RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1548 // Load the "old" Return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001549 RetAddrFrIdx =
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001550 DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1551 // Calculate the new stack slot for the return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001552 int SlotSize = is64Bit ? 8 : 4;
1553 int NewReturnAddrFI =
1554 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001555 NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1556 Chain = SDOperand(RetAddrFrIdx.Val, 1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001557 }
1558
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001559 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1560 SmallVector<SDOperand, 8> MemOpChains;
1561 SmallVector<SDOperand, 8> MemOpChains2;
1562 SDOperand FramePtr, StackPtr;
1563 SDOperand PtrOff;
1564 SDOperand FIN;
1565 int FI = 0;
1566
1567 // Walk the register/memloc assignments, inserting copies/loads. Lower
1568 // arguments first to the stack slot where they would normally - in case of a
1569 // normal function call - be.
1570 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1571 CCValAssign &VA = ArgLocs[i];
1572 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1573
1574 // Promote the value if needed.
1575 switch (VA.getLocInfo()) {
1576 default: assert(0 && "Unknown loc info!");
1577 case CCValAssign::Full: break;
1578 case CCValAssign::SExt:
1579 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1580 break;
1581 case CCValAssign::ZExt:
1582 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1583 break;
1584 case CCValAssign::AExt:
1585 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1586 break;
1587 }
1588
1589 if (VA.isRegLoc()) {
1590 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1591 } else {
1592 assert(VA.isMemLoc());
1593 if (StackPtr.Val == 0)
1594 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1595
1596 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1597 Arg));
1598 }
1599 }
1600
1601 if (!MemOpChains.empty())
1602 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1603 &MemOpChains[0], MemOpChains.size());
1604
1605 // Build a sequence of copy-to-reg nodes chained together with token chain
1606 // and flag operands which copy the outgoing args into registers.
1607 SDOperand InFlag;
1608 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1609 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1610 InFlag);
1611 InFlag = Chain.getValue(1);
1612 }
1613 InFlag = SDOperand();
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001614
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001615 // Copy from stack slots to stack slot of a tail called function. This needs
1616 // to be done because if we would lower the arguments directly to their real
1617 // stack slot we might end up overwriting each other.
1618 // TODO: To make this more efficient (sometimes saving a store/load) we could
1619 // analyse the arguments and emit this store/load/store sequence only for
1620 // arguments which would be overwritten otherwise.
1621 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1622 CCValAssign &VA = ArgLocs[i];
1623 if (!VA.isRegLoc()) {
1624 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1625 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1626
1627 // Get source stack slot.
1628 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1629 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1630 // Create frame index.
1631 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1632 uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1633 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1634 FIN = DAG.getFrameIndex(FI, MVT::i32);
1635 if (Flags & ISD::ParamFlags::ByVal) {
1636 // Copy relative to framepointer.
1637 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1638 ISD::ParamFlags::ByValAlignOffs);
1639
1640 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1641 ISD::ParamFlags::ByValSizeOffs;
1642
1643 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1644 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Arnold Schwaighofer97794942007-11-10 10:48:01 +00001645 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
1646
1647 MemOpChains2.push_back(DAG.getMemcpy(Chain, FIN, PtrOff, SizeNode,
1648 AlignNode,AlwaysInline));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001649 } else {
1650 SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1651 // Store relative to framepointer.
1652 MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1653 }
1654 }
1655 }
1656
1657 if (!MemOpChains2.empty())
1658 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1659 &MemOpChains2[0], MemOpChains.size());
1660
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001661 // Store the return address to the appropriate stack slot.
1662 if (FPDiff)
1663 Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1664
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001665 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1666 // GOT pointer.
1667 // Does not work with tail call since ebx is not restored correctly by
1668 // tailcaller. TODO: at least for x86 - verify for x86-64
1669
1670 // If the callee is a GlobalAddress node (quite common, every direct call is)
1671 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1672 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1673 // We should use extra load for direct calls to dllimported functions in
1674 // non-JIT mode.
1675 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1676 getTargetMachine(), true))
1677 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1678 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1679 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1680 else {
1681 assert(Callee.getOpcode() == ISD::LOAD &&
1682 "Function destination must be loaded into virtual register");
1683 unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1684
1685 Chain = DAG.getCopyToReg(Chain,
1686 DAG.getRegister(Opc, getPointerTy()) ,
1687 Callee,InFlag);
1688 Callee = DAG.getRegister(Opc, getPointerTy());
1689 // Add register as live out.
1690 DAG.getMachineFunction().addLiveOut(Opc);
1691 }
1692
1693 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1694 SmallVector<SDOperand, 8> Ops;
1695
1696 Ops.push_back(Chain);
1697 Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1698 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1699 if (InFlag.Val)
1700 Ops.push_back(InFlag);
1701 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1702 InFlag = Chain.getValue(1);
1703
1704 // Returns a chain & a flag for retval copy to use.
1705 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1706 Ops.clear();
1707 Ops.push_back(Chain);
1708 Ops.push_back(Callee);
1709 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1710 // Add argument registers to the end of the list so that they are known live
1711 // into the call.
1712 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1713 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1714 RegsToPass[i].second.getValueType()));
1715 if (InFlag.Val)
1716 Ops.push_back(InFlag);
1717 assert(InFlag.Val &&
1718 "Flag must be set. Depend on flag being set in LowerRET");
1719 Chain = DAG.getNode(X86ISD::TAILCALL,
1720 Op.Val->getVTList(), &Ops[0], Ops.size());
1721
1722 return SDOperand(Chain.Val, Op.ResNo);
1723}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001724
1725//===----------------------------------------------------------------------===//
1726// X86-64 C Calling Convention implementation
1727//===----------------------------------------------------------------------===//
1728
1729SDOperand
1730X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1731 MachineFunction &MF = DAG.getMachineFunction();
1732 MachineFrameInfo *MFI = MF.getFrameInfo();
1733 SDOperand Root = Op.getOperand(0);
1734 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001735 unsigned CC= MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001736
1737 static const unsigned GPR64ArgRegs[] = {
1738 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1739 };
1740 static const unsigned XMMArgRegs[] = {
1741 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1742 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1743 };
1744
1745
1746 // Assign locations to all of the incoming arguments.
1747 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001748 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001750 if (CC == CallingConv::Fast && PerformTailCallOpt)
1751 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1752 else
1753 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754
1755 SmallVector<SDOperand, 8> ArgValues;
1756 unsigned LastVal = ~0U;
1757 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1758 CCValAssign &VA = ArgLocs[i];
1759 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1760 // places.
1761 assert(VA.getValNo() != LastVal &&
1762 "Don't support value assigned to multiple locs yet");
1763 LastVal = VA.getValNo();
1764
1765 if (VA.isRegLoc()) {
1766 MVT::ValueType RegVT = VA.getLocVT();
1767 TargetRegisterClass *RC;
1768 if (RegVT == MVT::i32)
1769 RC = X86::GR32RegisterClass;
1770 else if (RegVT == MVT::i64)
1771 RC = X86::GR64RegisterClass;
1772 else if (RegVT == MVT::f32)
1773 RC = X86::FR32RegisterClass;
1774 else if (RegVT == MVT::f64)
1775 RC = X86::FR64RegisterClass;
1776 else {
1777 assert(MVT::isVector(RegVT));
1778 if (MVT::getSizeInBits(RegVT) == 64) {
1779 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1780 RegVT = MVT::i64;
1781 } else
1782 RC = X86::VR128RegisterClass;
1783 }
1784
1785 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1786 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1787
1788 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1789 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1790 // right size.
1791 if (VA.getLocInfo() == CCValAssign::SExt)
1792 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1793 DAG.getValueType(VA.getValVT()));
1794 else if (VA.getLocInfo() == CCValAssign::ZExt)
1795 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1796 DAG.getValueType(VA.getValVT()));
1797
1798 if (VA.getLocInfo() != CCValAssign::Full)
1799 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1800
1801 // Handle MMX values passed in GPRs.
1802 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1803 MVT::getSizeInBits(RegVT) == 64)
1804 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1805
1806 ArgValues.push_back(ArgValue);
1807 } else {
1808 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001809 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 }
1811 }
1812
1813 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001814 if (CC==CallingConv::Fast)
1815 StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001816
1817 // If the function takes variable number of arguments, make a frame index for
1818 // the start of the first vararg value... for expansion of llvm.va_start.
1819 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001820 assert(CC!=CallingConv::Fast
1821 && "Var arg not supported with calling convention fastcc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001822 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1823 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1824
1825 // For X86-64, if there are vararg parameters that are passed via
1826 // registers, then we must store them to their spots on the stack so they
1827 // may be loaded by deferencing the result of va_next.
1828 VarArgsGPOffset = NumIntRegs * 8;
1829 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1830 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1831 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1832
1833 // Store the integer parameter registers.
1834 SmallVector<SDOperand, 8> MemOps;
1835 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1836 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1837 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1838 for (; NumIntRegs != 6; ++NumIntRegs) {
1839 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1840 X86::GR64RegisterClass);
1841 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1842 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1843 MemOps.push_back(Store);
1844 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1845 DAG.getConstant(8, getPointerTy()));
1846 }
1847
1848 // Now store the XMM (fp + vector) parameter registers.
1849 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1850 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1851 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1852 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1853 X86::VR128RegisterClass);
1854 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1855 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1856 MemOps.push_back(Store);
1857 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1858 DAG.getConstant(16, getPointerTy()));
1859 }
1860 if (!MemOps.empty())
1861 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1862 &MemOps[0], MemOps.size());
1863 }
1864
1865 ArgValues.push_back(Root);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001866 // Tail call convention (fastcc) needs callee pop.
Evan Cheng778fa0f2007-10-14 10:09:39 +00001867 if (CC == CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001868 BytesToPopOnReturn = StackSize; // Callee pops everything.
1869 BytesCallerReserves = 0;
1870 } else {
1871 BytesToPopOnReturn = 0; // Callee pops nothing.
1872 BytesCallerReserves = StackSize;
1873 }
Anton Korobeynikove844e472007-08-15 17:12:32 +00001874 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1875 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1876
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 // Return the new list of results.
1878 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1879 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1880}
1881
1882SDOperand
1883X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1884 unsigned CC) {
1885 SDOperand Chain = Op.getOperand(0);
1886 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887 SDOperand Callee = Op.getOperand(4);
1888
1889 // Analyze operands of the call, assigning locations to each operand.
1890 SmallVector<CCValAssign, 16> ArgLocs;
1891 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Evan Cheng778fa0f2007-10-14 10:09:39 +00001892 if (CC==CallingConv::Fast && PerformTailCallOpt)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001893 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1894 else
1895 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896
1897 // Get a count of how many bytes are to be pushed on the stack.
1898 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001899 if (CC == CallingConv::Fast)
1900 NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1901
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001902 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1903
1904 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1905 SmallVector<SDOperand, 8> MemOpChains;
1906
1907 SDOperand StackPtr;
1908
1909 // Walk the register/memloc assignments, inserting copies/loads.
1910 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1911 CCValAssign &VA = ArgLocs[i];
1912 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1913
1914 // Promote the value if needed.
1915 switch (VA.getLocInfo()) {
1916 default: assert(0 && "Unknown loc info!");
1917 case CCValAssign::Full: break;
1918 case CCValAssign::SExt:
1919 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1920 break;
1921 case CCValAssign::ZExt:
1922 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1923 break;
1924 case CCValAssign::AExt:
1925 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1926 break;
1927 }
1928
1929 if (VA.isRegLoc()) {
1930 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1931 } else {
1932 assert(VA.isMemLoc());
1933 if (StackPtr.Val == 0)
1934 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001935
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001936 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1937 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938 }
1939 }
1940
1941 if (!MemOpChains.empty())
1942 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1943 &MemOpChains[0], MemOpChains.size());
1944
1945 // Build a sequence of copy-to-reg nodes chained together with token chain
1946 // and flag operands which copy the outgoing args into registers.
1947 SDOperand InFlag;
1948 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1949 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1950 InFlag);
1951 InFlag = Chain.getValue(1);
1952 }
1953
1954 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001955 assert ( CallingConv::Fast != CC &&
1956 "Var args not supported with calling convention fastcc");
1957
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001958 // From AMD64 ABI document:
1959 // For calls that may call functions that use varargs or stdargs
1960 // (prototype-less calls or calls to functions containing ellipsis (...) in
1961 // the declaration) %al is used as hidden argument to specify the number
1962 // of SSE registers used. The contents of %al do not need to match exactly
1963 // the number of registers, but must be an ubound on the number of SSE
1964 // registers used and is in the range 0 - 8 inclusive.
1965
1966 // Count the number of XMM registers allocated.
1967 static const unsigned XMMArgRegs[] = {
1968 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1969 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1970 };
1971 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1972
1973 Chain = DAG.getCopyToReg(Chain, X86::AL,
1974 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1975 InFlag = Chain.getValue(1);
1976 }
1977
1978 // If the callee is a GlobalAddress node (quite common, every direct call is)
1979 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1980 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1981 // We should use extra load for direct calls to dllimported functions in
1982 // non-JIT mode.
1983 if (getTargetMachine().getCodeModel() != CodeModel::Large
1984 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1985 getTargetMachine(), true))
1986 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1987 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1988 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1989 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1990
1991 // Returns a chain & a flag for retval copy to use.
1992 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1993 SmallVector<SDOperand, 8> Ops;
1994 Ops.push_back(Chain);
1995 Ops.push_back(Callee);
1996
1997 // Add argument registers to the end of the list so that they are known live
1998 // into the call.
1999 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2000 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2001 RegsToPass[i].second.getValueType()));
2002
2003 if (InFlag.Val)
2004 Ops.push_back(InFlag);
2005
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002006 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002007 NodeTys, &Ops[0], Ops.size());
2008 InFlag = Chain.getValue(1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002009 int NumBytesForCalleeToPush = 0;
Evan Cheng778fa0f2007-10-14 10:09:39 +00002010 if (CC==CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002011 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002012 } else {
2013 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2014 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002015 // Returns a flag for retval copy to use.
2016 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2017 Ops.clear();
2018 Ops.push_back(Chain);
2019 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002020 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002021 Ops.push_back(InFlag);
2022 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2023 InFlag = Chain.getValue(1);
2024
2025 // Handle result values, copying them out of physregs into vregs that we
2026 // return.
2027 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2028}
2029
2030
2031//===----------------------------------------------------------------------===//
2032// Other Lowering Hooks
2033//===----------------------------------------------------------------------===//
2034
2035
2036SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00002037 MachineFunction &MF = DAG.getMachineFunction();
2038 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2039 int ReturnAddrIndex = FuncInfo->getRAIndex();
2040
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002041 if (ReturnAddrIndex == 0) {
2042 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002043 if (Subtarget->is64Bit())
2044 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2045 else
2046 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00002047
2048 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002049 }
2050
2051 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2052}
2053
2054
2055
2056/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2057/// specific condition code. It returns a false if it cannot do a direct
2058/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
2059/// needed.
2060static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2061 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2062 SelectionDAG &DAG) {
2063 X86CC = X86::COND_INVALID;
2064 if (!isFP) {
2065 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2066 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2067 // X > -1 -> X == 0, jump !sign.
2068 RHS = DAG.getConstant(0, RHS.getValueType());
2069 X86CC = X86::COND_NS;
2070 return true;
2071 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2072 // X < 0 -> X == 0, jump on sign.
2073 X86CC = X86::COND_S;
2074 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00002075 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2076 // X < 1 -> X <= 0
2077 RHS = DAG.getConstant(0, RHS.getValueType());
2078 X86CC = X86::COND_LE;
2079 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002080 }
2081 }
2082
2083 switch (SetCCOpcode) {
2084 default: break;
2085 case ISD::SETEQ: X86CC = X86::COND_E; break;
2086 case ISD::SETGT: X86CC = X86::COND_G; break;
2087 case ISD::SETGE: X86CC = X86::COND_GE; break;
2088 case ISD::SETLT: X86CC = X86::COND_L; break;
2089 case ISD::SETLE: X86CC = X86::COND_LE; break;
2090 case ISD::SETNE: X86CC = X86::COND_NE; break;
2091 case ISD::SETULT: X86CC = X86::COND_B; break;
2092 case ISD::SETUGT: X86CC = X86::COND_A; break;
2093 case ISD::SETULE: X86CC = X86::COND_BE; break;
2094 case ISD::SETUGE: X86CC = X86::COND_AE; break;
2095 }
2096 } else {
2097 // On a floating point condition, the flags are set as follows:
2098 // ZF PF CF op
2099 // 0 | 0 | 0 | X > Y
2100 // 0 | 0 | 1 | X < Y
2101 // 1 | 0 | 0 | X == Y
2102 // 1 | 1 | 1 | unordered
2103 bool Flip = false;
2104 switch (SetCCOpcode) {
2105 default: break;
2106 case ISD::SETUEQ:
2107 case ISD::SETEQ: X86CC = X86::COND_E; break;
2108 case ISD::SETOLT: Flip = true; // Fallthrough
2109 case ISD::SETOGT:
2110 case ISD::SETGT: X86CC = X86::COND_A; break;
2111 case ISD::SETOLE: Flip = true; // Fallthrough
2112 case ISD::SETOGE:
2113 case ISD::SETGE: X86CC = X86::COND_AE; break;
2114 case ISD::SETUGT: Flip = true; // Fallthrough
2115 case ISD::SETULT:
2116 case ISD::SETLT: X86CC = X86::COND_B; break;
2117 case ISD::SETUGE: Flip = true; // Fallthrough
2118 case ISD::SETULE:
2119 case ISD::SETLE: X86CC = X86::COND_BE; break;
2120 case ISD::SETONE:
2121 case ISD::SETNE: X86CC = X86::COND_NE; break;
2122 case ISD::SETUO: X86CC = X86::COND_P; break;
2123 case ISD::SETO: X86CC = X86::COND_NP; break;
2124 }
2125 if (Flip)
2126 std::swap(LHS, RHS);
2127 }
2128
2129 return X86CC != X86::COND_INVALID;
2130}
2131
2132/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2133/// code. Current x86 isa includes the following FP cmov instructions:
2134/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2135static bool hasFPCMov(unsigned X86CC) {
2136 switch (X86CC) {
2137 default:
2138 return false;
2139 case X86::COND_B:
2140 case X86::COND_BE:
2141 case X86::COND_E:
2142 case X86::COND_P:
2143 case X86::COND_A:
2144 case X86::COND_AE:
2145 case X86::COND_NE:
2146 case X86::COND_NP:
2147 return true;
2148 }
2149}
2150
2151/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
2152/// true if Op is undef or if its value falls within the specified range (L, H].
2153static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2154 if (Op.getOpcode() == ISD::UNDEF)
2155 return true;
2156
2157 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2158 return (Val >= Low && Val < Hi);
2159}
2160
2161/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
2162/// true if Op is undef or if its value equal to the specified value.
2163static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2164 if (Op.getOpcode() == ISD::UNDEF)
2165 return true;
2166 return cast<ConstantSDNode>(Op)->getValue() == Val;
2167}
2168
2169/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2170/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2171bool X86::isPSHUFDMask(SDNode *N) {
2172 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2173
Dan Gohman7dc19012007-08-02 21:17:01 +00002174 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002175 return false;
2176
2177 // Check if the value doesn't reference the second vector.
2178 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2179 SDOperand Arg = N->getOperand(i);
2180 if (Arg.getOpcode() == ISD::UNDEF) continue;
2181 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00002182 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002183 return false;
2184 }
2185
2186 return true;
2187}
2188
2189/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2190/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2191bool X86::isPSHUFHWMask(SDNode *N) {
2192 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2193
2194 if (N->getNumOperands() != 8)
2195 return false;
2196
2197 // Lower quadword copied in order.
2198 for (unsigned i = 0; i != 4; ++i) {
2199 SDOperand Arg = N->getOperand(i);
2200 if (Arg.getOpcode() == ISD::UNDEF) continue;
2201 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2202 if (cast<ConstantSDNode>(Arg)->getValue() != i)
2203 return false;
2204 }
2205
2206 // Upper quadword shuffled.
2207 for (unsigned i = 4; i != 8; ++i) {
2208 SDOperand Arg = N->getOperand(i);
2209 if (Arg.getOpcode() == ISD::UNDEF) continue;
2210 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2211 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2212 if (Val < 4 || Val > 7)
2213 return false;
2214 }
2215
2216 return true;
2217}
2218
2219/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2220/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2221bool X86::isPSHUFLWMask(SDNode *N) {
2222 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2223
2224 if (N->getNumOperands() != 8)
2225 return false;
2226
2227 // Upper quadword copied in order.
2228 for (unsigned i = 4; i != 8; ++i)
2229 if (!isUndefOrEqual(N->getOperand(i), i))
2230 return false;
2231
2232 // Lower quadword shuffled.
2233 for (unsigned i = 0; i != 4; ++i)
2234 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2235 return false;
2236
2237 return true;
2238}
2239
2240/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2241/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2242static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2243 if (NumElems != 2 && NumElems != 4) return false;
2244
2245 unsigned Half = NumElems / 2;
2246 for (unsigned i = 0; i < Half; ++i)
2247 if (!isUndefOrInRange(Elems[i], 0, NumElems))
2248 return false;
2249 for (unsigned i = Half; i < NumElems; ++i)
2250 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2251 return false;
2252
2253 return true;
2254}
2255
2256bool X86::isSHUFPMask(SDNode *N) {
2257 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2258 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2259}
2260
2261/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2262/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2263/// half elements to come from vector 1 (which would equal the dest.) and
2264/// the upper half to come from vector 2.
2265static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2266 if (NumOps != 2 && NumOps != 4) return false;
2267
2268 unsigned Half = NumOps / 2;
2269 for (unsigned i = 0; i < Half; ++i)
2270 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2271 return false;
2272 for (unsigned i = Half; i < NumOps; ++i)
2273 if (!isUndefOrInRange(Ops[i], 0, NumOps))
2274 return false;
2275 return true;
2276}
2277
2278static bool isCommutedSHUFP(SDNode *N) {
2279 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2280 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2281}
2282
2283/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2284/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2285bool X86::isMOVHLPSMask(SDNode *N) {
2286 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2287
2288 if (N->getNumOperands() != 4)
2289 return false;
2290
2291 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2292 return isUndefOrEqual(N->getOperand(0), 6) &&
2293 isUndefOrEqual(N->getOperand(1), 7) &&
2294 isUndefOrEqual(N->getOperand(2), 2) &&
2295 isUndefOrEqual(N->getOperand(3), 3);
2296}
2297
2298/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2299/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2300/// <2, 3, 2, 3>
2301bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2302 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2303
2304 if (N->getNumOperands() != 4)
2305 return false;
2306
2307 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2308 return isUndefOrEqual(N->getOperand(0), 2) &&
2309 isUndefOrEqual(N->getOperand(1), 3) &&
2310 isUndefOrEqual(N->getOperand(2), 2) &&
2311 isUndefOrEqual(N->getOperand(3), 3);
2312}
2313
2314/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2315/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2316bool X86::isMOVLPMask(SDNode *N) {
2317 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2318
2319 unsigned NumElems = N->getNumOperands();
2320 if (NumElems != 2 && NumElems != 4)
2321 return false;
2322
2323 for (unsigned i = 0; i < NumElems/2; ++i)
2324 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2325 return false;
2326
2327 for (unsigned i = NumElems/2; i < NumElems; ++i)
2328 if (!isUndefOrEqual(N->getOperand(i), i))
2329 return false;
2330
2331 return true;
2332}
2333
2334/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2335/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2336/// and MOVLHPS.
2337bool X86::isMOVHPMask(SDNode *N) {
2338 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2339
2340 unsigned NumElems = N->getNumOperands();
2341 if (NumElems != 2 && NumElems != 4)
2342 return false;
2343
2344 for (unsigned i = 0; i < NumElems/2; ++i)
2345 if (!isUndefOrEqual(N->getOperand(i), i))
2346 return false;
2347
2348 for (unsigned i = 0; i < NumElems/2; ++i) {
2349 SDOperand Arg = N->getOperand(i + NumElems/2);
2350 if (!isUndefOrEqual(Arg, i + NumElems))
2351 return false;
2352 }
2353
2354 return true;
2355}
2356
2357/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2358/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2359bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2360 bool V2IsSplat = false) {
2361 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2362 return false;
2363
2364 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2365 SDOperand BitI = Elts[i];
2366 SDOperand BitI1 = Elts[i+1];
2367 if (!isUndefOrEqual(BitI, j))
2368 return false;
2369 if (V2IsSplat) {
2370 if (isUndefOrEqual(BitI1, NumElts))
2371 return false;
2372 } else {
2373 if (!isUndefOrEqual(BitI1, j + NumElts))
2374 return false;
2375 }
2376 }
2377
2378 return true;
2379}
2380
2381bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2382 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2383 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2384}
2385
2386/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2387/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2388bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2389 bool V2IsSplat = false) {
2390 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2391 return false;
2392
2393 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2394 SDOperand BitI = Elts[i];
2395 SDOperand BitI1 = Elts[i+1];
2396 if (!isUndefOrEqual(BitI, j + NumElts/2))
2397 return false;
2398 if (V2IsSplat) {
2399 if (isUndefOrEqual(BitI1, NumElts))
2400 return false;
2401 } else {
2402 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2403 return false;
2404 }
2405 }
2406
2407 return true;
2408}
2409
2410bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2411 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2412 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2413}
2414
2415/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2416/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2417/// <0, 0, 1, 1>
2418bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2419 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2420
2421 unsigned NumElems = N->getNumOperands();
2422 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2423 return false;
2424
2425 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2426 SDOperand BitI = N->getOperand(i);
2427 SDOperand BitI1 = N->getOperand(i+1);
2428
2429 if (!isUndefOrEqual(BitI, j))
2430 return false;
2431 if (!isUndefOrEqual(BitI1, j))
2432 return false;
2433 }
2434
2435 return true;
2436}
2437
2438/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2439/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2440/// <2, 2, 3, 3>
2441bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2442 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2443
2444 unsigned NumElems = N->getNumOperands();
2445 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2446 return false;
2447
2448 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2449 SDOperand BitI = N->getOperand(i);
2450 SDOperand BitI1 = N->getOperand(i + 1);
2451
2452 if (!isUndefOrEqual(BitI, j))
2453 return false;
2454 if (!isUndefOrEqual(BitI1, j))
2455 return false;
2456 }
2457
2458 return true;
2459}
2460
2461/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2462/// specifies a shuffle of elements that is suitable for input to MOVSS,
2463/// MOVSD, and MOVD, i.e. setting the lowest element.
2464static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2465 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2466 return false;
2467
2468 if (!isUndefOrEqual(Elts[0], NumElts))
2469 return false;
2470
2471 for (unsigned i = 1; i < NumElts; ++i) {
2472 if (!isUndefOrEqual(Elts[i], i))
2473 return false;
2474 }
2475
2476 return true;
2477}
2478
2479bool X86::isMOVLMask(SDNode *N) {
2480 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2481 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2482}
2483
2484/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2485/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2486/// element of vector 2 and the other elements to come from vector 1 in order.
2487static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2488 bool V2IsSplat = false,
2489 bool V2IsUndef = false) {
2490 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2491 return false;
2492
2493 if (!isUndefOrEqual(Ops[0], 0))
2494 return false;
2495
2496 for (unsigned i = 1; i < NumOps; ++i) {
2497 SDOperand Arg = Ops[i];
2498 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2499 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2500 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2501 return false;
2502 }
2503
2504 return true;
2505}
2506
2507static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2508 bool V2IsUndef = false) {
2509 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2510 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2511 V2IsSplat, V2IsUndef);
2512}
2513
2514/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2515/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2516bool X86::isMOVSHDUPMask(SDNode *N) {
2517 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2518
2519 if (N->getNumOperands() != 4)
2520 return false;
2521
2522 // Expect 1, 1, 3, 3
2523 for (unsigned i = 0; i < 2; ++i) {
2524 SDOperand Arg = N->getOperand(i);
2525 if (Arg.getOpcode() == ISD::UNDEF) continue;
2526 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2527 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2528 if (Val != 1) return false;
2529 }
2530
2531 bool HasHi = false;
2532 for (unsigned i = 2; i < 4; ++i) {
2533 SDOperand Arg = N->getOperand(i);
2534 if (Arg.getOpcode() == ISD::UNDEF) continue;
2535 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2536 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2537 if (Val != 3) return false;
2538 HasHi = true;
2539 }
2540
2541 // Don't use movshdup if it can be done with a shufps.
2542 return HasHi;
2543}
2544
2545/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2546/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2547bool X86::isMOVSLDUPMask(SDNode *N) {
2548 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2549
2550 if (N->getNumOperands() != 4)
2551 return false;
2552
2553 // Expect 0, 0, 2, 2
2554 for (unsigned i = 0; i < 2; ++i) {
2555 SDOperand Arg = N->getOperand(i);
2556 if (Arg.getOpcode() == ISD::UNDEF) continue;
2557 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2558 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2559 if (Val != 0) return false;
2560 }
2561
2562 bool HasHi = false;
2563 for (unsigned i = 2; i < 4; ++i) {
2564 SDOperand Arg = N->getOperand(i);
2565 if (Arg.getOpcode() == ISD::UNDEF) continue;
2566 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2567 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2568 if (Val != 2) return false;
2569 HasHi = true;
2570 }
2571
2572 // Don't use movshdup if it can be done with a shufps.
2573 return HasHi;
2574}
2575
2576/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2577/// specifies a identity operation on the LHS or RHS.
2578static bool isIdentityMask(SDNode *N, bool RHS = false) {
2579 unsigned NumElems = N->getNumOperands();
2580 for (unsigned i = 0; i < NumElems; ++i)
2581 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2582 return false;
2583 return true;
2584}
2585
2586/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2587/// a splat of a single element.
2588static bool isSplatMask(SDNode *N) {
2589 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2590
2591 // This is a splat operation if each element of the permute is the same, and
2592 // if the value doesn't reference the second vector.
2593 unsigned NumElems = N->getNumOperands();
2594 SDOperand ElementBase;
2595 unsigned i = 0;
2596 for (; i != NumElems; ++i) {
2597 SDOperand Elt = N->getOperand(i);
2598 if (isa<ConstantSDNode>(Elt)) {
2599 ElementBase = Elt;
2600 break;
2601 }
2602 }
2603
2604 if (!ElementBase.Val)
2605 return false;
2606
2607 for (; i != NumElems; ++i) {
2608 SDOperand Arg = N->getOperand(i);
2609 if (Arg.getOpcode() == ISD::UNDEF) continue;
2610 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2611 if (Arg != ElementBase) return false;
2612 }
2613
2614 // Make sure it is a splat of the first vector operand.
2615 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2616}
2617
2618/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2619/// a splat of a single element and it's a 2 or 4 element mask.
2620bool X86::isSplatMask(SDNode *N) {
2621 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2622
2623 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2624 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2625 return false;
2626 return ::isSplatMask(N);
2627}
2628
2629/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2630/// specifies a splat of zero element.
2631bool X86::isSplatLoMask(SDNode *N) {
2632 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2633
2634 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2635 if (!isUndefOrEqual(N->getOperand(i), 0))
2636 return false;
2637 return true;
2638}
2639
2640/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2641/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2642/// instructions.
2643unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2644 unsigned NumOperands = N->getNumOperands();
2645 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2646 unsigned Mask = 0;
2647 for (unsigned i = 0; i < NumOperands; ++i) {
2648 unsigned Val = 0;
2649 SDOperand Arg = N->getOperand(NumOperands-i-1);
2650 if (Arg.getOpcode() != ISD::UNDEF)
2651 Val = cast<ConstantSDNode>(Arg)->getValue();
2652 if (Val >= NumOperands) Val -= NumOperands;
2653 Mask |= Val;
2654 if (i != NumOperands - 1)
2655 Mask <<= Shift;
2656 }
2657
2658 return Mask;
2659}
2660
2661/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2662/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2663/// instructions.
2664unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2665 unsigned Mask = 0;
2666 // 8 nodes, but we only care about the last 4.
2667 for (unsigned i = 7; i >= 4; --i) {
2668 unsigned Val = 0;
2669 SDOperand Arg = N->getOperand(i);
2670 if (Arg.getOpcode() != ISD::UNDEF)
2671 Val = cast<ConstantSDNode>(Arg)->getValue();
2672 Mask |= (Val - 4);
2673 if (i != 4)
2674 Mask <<= 2;
2675 }
2676
2677 return Mask;
2678}
2679
2680/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2681/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2682/// instructions.
2683unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2684 unsigned Mask = 0;
2685 // 8 nodes, but we only care about the first 4.
2686 for (int i = 3; i >= 0; --i) {
2687 unsigned Val = 0;
2688 SDOperand Arg = N->getOperand(i);
2689 if (Arg.getOpcode() != ISD::UNDEF)
2690 Val = cast<ConstantSDNode>(Arg)->getValue();
2691 Mask |= Val;
2692 if (i != 0)
2693 Mask <<= 2;
2694 }
2695
2696 return Mask;
2697}
2698
2699/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2700/// specifies a 8 element shuffle that can be broken into a pair of
2701/// PSHUFHW and PSHUFLW.
2702static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2703 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2704
2705 if (N->getNumOperands() != 8)
2706 return false;
2707
2708 // Lower quadword shuffled.
2709 for (unsigned i = 0; i != 4; ++i) {
2710 SDOperand Arg = N->getOperand(i);
2711 if (Arg.getOpcode() == ISD::UNDEF) continue;
2712 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2713 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2714 if (Val > 4)
2715 return false;
2716 }
2717
2718 // Upper quadword shuffled.
2719 for (unsigned i = 4; i != 8; ++i) {
2720 SDOperand Arg = N->getOperand(i);
2721 if (Arg.getOpcode() == ISD::UNDEF) continue;
2722 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2723 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2724 if (Val < 4 || Val > 7)
2725 return false;
2726 }
2727
2728 return true;
2729}
2730
2731/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2732/// values in ther permute mask.
2733static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2734 SDOperand &V2, SDOperand &Mask,
2735 SelectionDAG &DAG) {
2736 MVT::ValueType VT = Op.getValueType();
2737 MVT::ValueType MaskVT = Mask.getValueType();
2738 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2739 unsigned NumElems = Mask.getNumOperands();
2740 SmallVector<SDOperand, 8> MaskVec;
2741
2742 for (unsigned i = 0; i != NumElems; ++i) {
2743 SDOperand Arg = Mask.getOperand(i);
2744 if (Arg.getOpcode() == ISD::UNDEF) {
2745 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2746 continue;
2747 }
2748 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2749 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2750 if (Val < NumElems)
2751 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2752 else
2753 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2754 }
2755
2756 std::swap(V1, V2);
2757 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2758 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2759}
2760
2761/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2762/// match movhlps. The lower half elements should come from upper half of
2763/// V1 (and in order), and the upper half elements should come from the upper
2764/// half of V2 (and in order).
2765static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2766 unsigned NumElems = Mask->getNumOperands();
2767 if (NumElems != 4)
2768 return false;
2769 for (unsigned i = 0, e = 2; i != e; ++i)
2770 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2771 return false;
2772 for (unsigned i = 2; i != 4; ++i)
2773 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2774 return false;
2775 return true;
2776}
2777
2778/// isScalarLoadToVector - Returns true if the node is a scalar load that
2779/// is promoted to a vector.
2780static inline bool isScalarLoadToVector(SDNode *N) {
2781 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2782 N = N->getOperand(0).Val;
2783 return ISD::isNON_EXTLoad(N);
2784 }
2785 return false;
2786}
2787
2788/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2789/// match movlp{s|d}. The lower half elements should come from lower half of
2790/// V1 (and in order), and the upper half elements should come from the upper
2791/// half of V2 (and in order). And since V1 will become the source of the
2792/// MOVLP, it must be either a vector load or a scalar load to vector.
2793static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2794 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2795 return false;
2796 // Is V2 is a vector load, don't do this transformation. We will try to use
2797 // load folding shufps op.
2798 if (ISD::isNON_EXTLoad(V2))
2799 return false;
2800
2801 unsigned NumElems = Mask->getNumOperands();
2802 if (NumElems != 2 && NumElems != 4)
2803 return false;
2804 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2805 if (!isUndefOrEqual(Mask->getOperand(i), i))
2806 return false;
2807 for (unsigned i = NumElems/2; i != NumElems; ++i)
2808 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2809 return false;
2810 return true;
2811}
2812
2813/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2814/// all the same.
2815static bool isSplatVector(SDNode *N) {
2816 if (N->getOpcode() != ISD::BUILD_VECTOR)
2817 return false;
2818
2819 SDOperand SplatValue = N->getOperand(0);
2820 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2821 if (N->getOperand(i) != SplatValue)
2822 return false;
2823 return true;
2824}
2825
2826/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2827/// to an undef.
2828static bool isUndefShuffle(SDNode *N) {
2829 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2830 return false;
2831
2832 SDOperand V1 = N->getOperand(0);
2833 SDOperand V2 = N->getOperand(1);
2834 SDOperand Mask = N->getOperand(2);
2835 unsigned NumElems = Mask.getNumOperands();
2836 for (unsigned i = 0; i != NumElems; ++i) {
2837 SDOperand Arg = Mask.getOperand(i);
2838 if (Arg.getOpcode() != ISD::UNDEF) {
2839 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2840 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2841 return false;
2842 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2843 return false;
2844 }
2845 }
2846 return true;
2847}
2848
2849/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2850/// constant +0.0.
2851static inline bool isZeroNode(SDOperand Elt) {
2852 return ((isa<ConstantSDNode>(Elt) &&
2853 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2854 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002855 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002856}
2857
2858/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2859/// to an zero vector.
2860static bool isZeroShuffle(SDNode *N) {
2861 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2862 return false;
2863
2864 SDOperand V1 = N->getOperand(0);
2865 SDOperand V2 = N->getOperand(1);
2866 SDOperand Mask = N->getOperand(2);
2867 unsigned NumElems = Mask.getNumOperands();
2868 for (unsigned i = 0; i != NumElems; ++i) {
2869 SDOperand Arg = Mask.getOperand(i);
2870 if (Arg.getOpcode() != ISD::UNDEF) {
2871 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2872 if (Idx < NumElems) {
2873 unsigned Opc = V1.Val->getOpcode();
2874 if (Opc == ISD::UNDEF)
2875 continue;
2876 if (Opc != ISD::BUILD_VECTOR ||
2877 !isZeroNode(V1.Val->getOperand(Idx)))
2878 return false;
2879 } else if (Idx >= NumElems) {
2880 unsigned Opc = V2.Val->getOpcode();
2881 if (Opc == ISD::UNDEF)
2882 continue;
2883 if (Opc != ISD::BUILD_VECTOR ||
2884 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2885 return false;
2886 }
2887 }
2888 }
2889 return true;
2890}
2891
2892/// getZeroVector - Returns a vector of specified type with all zero elements.
2893///
2894static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2895 assert(MVT::isVector(VT) && "Expected a vector type");
2896 unsigned NumElems = MVT::getVectorNumElements(VT);
2897 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2898 bool isFP = MVT::isFloatingPoint(EVT);
2899 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2900 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2901 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2902}
2903
2904/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2905/// that point to V2 points to its first element.
2906static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2907 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2908
2909 bool Changed = false;
2910 SmallVector<SDOperand, 8> MaskVec;
2911 unsigned NumElems = Mask.getNumOperands();
2912 for (unsigned i = 0; i != NumElems; ++i) {
2913 SDOperand Arg = Mask.getOperand(i);
2914 if (Arg.getOpcode() != ISD::UNDEF) {
2915 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2916 if (Val > NumElems) {
2917 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2918 Changed = true;
2919 }
2920 }
2921 MaskVec.push_back(Arg);
2922 }
2923
2924 if (Changed)
2925 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2926 &MaskVec[0], MaskVec.size());
2927 return Mask;
2928}
2929
2930/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2931/// operation of specified width.
2932static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2933 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2934 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2935
2936 SmallVector<SDOperand, 8> MaskVec;
2937 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2938 for (unsigned i = 1; i != NumElems; ++i)
2939 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2940 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2941}
2942
2943/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2944/// of specified width.
2945static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2946 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2947 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2948 SmallVector<SDOperand, 8> MaskVec;
2949 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2950 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2951 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2952 }
2953 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2954}
2955
2956/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2957/// of specified width.
2958static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2959 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2960 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2961 unsigned Half = NumElems/2;
2962 SmallVector<SDOperand, 8> MaskVec;
2963 for (unsigned i = 0; i != Half; ++i) {
2964 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2965 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2966 }
2967 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2968}
2969
2970/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2971///
2972static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2973 SDOperand V1 = Op.getOperand(0);
2974 SDOperand Mask = Op.getOperand(2);
2975 MVT::ValueType VT = Op.getValueType();
2976 unsigned NumElems = Mask.getNumOperands();
2977 Mask = getUnpacklMask(NumElems, DAG);
2978 while (NumElems != 4) {
2979 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2980 NumElems >>= 1;
2981 }
2982 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2983
2984 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2985 Mask = getZeroVector(MaskVT, DAG);
2986 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2987 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2988 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2989}
2990
2991/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2992/// vector of zero or undef vector.
2993static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2994 unsigned NumElems, unsigned Idx,
2995 bool isZero, SelectionDAG &DAG) {
2996 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2997 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2998 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2999 SDOperand Zero = DAG.getConstant(0, EVT);
3000 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
3001 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
3002 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3003 &MaskVec[0], MaskVec.size());
3004 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3005}
3006
3007/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3008///
3009static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3010 unsigned NumNonZero, unsigned NumZero,
3011 SelectionDAG &DAG, TargetLowering &TLI) {
3012 if (NumNonZero > 8)
3013 return SDOperand();
3014
3015 SDOperand V(0, 0);
3016 bool First = true;
3017 for (unsigned i = 0; i < 16; ++i) {
3018 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3019 if (ThisIsNonZero && First) {
3020 if (NumZero)
3021 V = getZeroVector(MVT::v8i16, DAG);
3022 else
3023 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3024 First = false;
3025 }
3026
3027 if ((i & 1) != 0) {
3028 SDOperand ThisElt(0, 0), LastElt(0, 0);
3029 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3030 if (LastIsNonZero) {
3031 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3032 }
3033 if (ThisIsNonZero) {
3034 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3035 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3036 ThisElt, DAG.getConstant(8, MVT::i8));
3037 if (LastIsNonZero)
3038 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3039 } else
3040 ThisElt = LastElt;
3041
3042 if (ThisElt.Val)
3043 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3044 DAG.getConstant(i/2, TLI.getPointerTy()));
3045 }
3046 }
3047
3048 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3049}
3050
3051/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3052///
3053static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3054 unsigned NumNonZero, unsigned NumZero,
3055 SelectionDAG &DAG, TargetLowering &TLI) {
3056 if (NumNonZero > 4)
3057 return SDOperand();
3058
3059 SDOperand V(0, 0);
3060 bool First = true;
3061 for (unsigned i = 0; i < 8; ++i) {
3062 bool isNonZero = (NonZeros & (1 << i)) != 0;
3063 if (isNonZero) {
3064 if (First) {
3065 if (NumZero)
3066 V = getZeroVector(MVT::v8i16, DAG);
3067 else
3068 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3069 First = false;
3070 }
3071 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3072 DAG.getConstant(i, TLI.getPointerTy()));
3073 }
3074 }
3075
3076 return V;
3077}
3078
3079SDOperand
3080X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3081 // All zero's are handled with pxor.
3082 if (ISD::isBuildVectorAllZeros(Op.Val))
3083 return Op;
3084
3085 // All one's are handled with pcmpeqd.
3086 if (ISD::isBuildVectorAllOnes(Op.Val))
3087 return Op;
3088
3089 MVT::ValueType VT = Op.getValueType();
3090 MVT::ValueType EVT = MVT::getVectorElementType(VT);
3091 unsigned EVTBits = MVT::getSizeInBits(EVT);
3092
3093 unsigned NumElems = Op.getNumOperands();
3094 unsigned NumZero = 0;
3095 unsigned NumNonZero = 0;
3096 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00003097 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003098 std::set<SDOperand> Values;
3099 for (unsigned i = 0; i < NumElems; ++i) {
3100 SDOperand Elt = Op.getOperand(i);
3101 if (Elt.getOpcode() != ISD::UNDEF) {
3102 Values.insert(Elt);
3103 if (isZeroNode(Elt))
3104 NumZero++;
3105 else {
3106 NonZeros |= (1 << i);
3107 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00003108 if (Elt.getOpcode() == ISD::Constant ||
3109 Elt.getOpcode() == ISD::ConstantFP)
3110 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003111 }
3112 }
3113 }
3114
3115 if (NumNonZero == 0) {
3116 if (NumZero == 0)
3117 // All undef vector. Return an UNDEF.
3118 return DAG.getNode(ISD::UNDEF, VT);
3119 else
3120 // A mix of zero and undef. Return a zero vector.
3121 return getZeroVector(VT, DAG);
3122 }
3123
3124 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3125 if (Values.size() == 1)
3126 return SDOperand();
3127
3128 // Special case for single non-zero element.
3129 if (NumNonZero == 1) {
3130 unsigned Idx = CountTrailingZeros_32(NonZeros);
3131 SDOperand Item = Op.getOperand(Idx);
3132 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3133 if (Idx == 0)
3134 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3135 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3136 NumZero > 0, DAG);
3137
3138 if (EVTBits == 32) {
3139 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3140 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3141 DAG);
3142 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3143 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3144 SmallVector<SDOperand, 8> MaskVec;
3145 for (unsigned i = 0; i < NumElems; i++)
3146 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3147 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3148 &MaskVec[0], MaskVec.size());
3149 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3150 DAG.getNode(ISD::UNDEF, VT), Mask);
3151 }
3152 }
3153
Dan Gohman21463242007-07-24 22:55:08 +00003154 // A vector full of immediates; various special cases are already
3155 // handled, so this is best done with a single constant-pool load.
3156 if (NumNonZero == NumNonZeroImms)
3157 return SDOperand();
3158
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003159 // Let legalizer expand 2-wide build_vectors.
3160 if (EVTBits == 64)
3161 return SDOperand();
3162
3163 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3164 if (EVTBits == 8 && NumElems == 16) {
3165 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3166 *this);
3167 if (V.Val) return V;
3168 }
3169
3170 if (EVTBits == 16 && NumElems == 8) {
3171 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3172 *this);
3173 if (V.Val) return V;
3174 }
3175
3176 // If element VT is == 32 bits, turn it into a number of shuffles.
3177 SmallVector<SDOperand, 8> V;
3178 V.resize(NumElems);
3179 if (NumElems == 4 && NumZero > 0) {
3180 for (unsigned i = 0; i < 4; ++i) {
3181 bool isZero = !(NonZeros & (1 << i));
3182 if (isZero)
3183 V[i] = getZeroVector(VT, DAG);
3184 else
3185 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3186 }
3187
3188 for (unsigned i = 0; i < 2; ++i) {
3189 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3190 default: break;
3191 case 0:
3192 V[i] = V[i*2]; // Must be a zero vector.
3193 break;
3194 case 1:
3195 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3196 getMOVLMask(NumElems, DAG));
3197 break;
3198 case 2:
3199 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3200 getMOVLMask(NumElems, DAG));
3201 break;
3202 case 3:
3203 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3204 getUnpacklMask(NumElems, DAG));
3205 break;
3206 }
3207 }
3208
3209 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3210 // clears the upper bits.
3211 // FIXME: we can do the same for v4f32 case when we know both parts of
3212 // the lower half come from scalar_to_vector (loadf32). We should do
3213 // that in post legalizer dag combiner with target specific hooks.
3214 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3215 return V[0];
3216 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3217 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3218 SmallVector<SDOperand, 8> MaskVec;
3219 bool Reverse = (NonZeros & 0x3) == 2;
3220 for (unsigned i = 0; i < 2; ++i)
3221 if (Reverse)
3222 MaskVec.push_back(DAG.getConstant(1-i, EVT));
3223 else
3224 MaskVec.push_back(DAG.getConstant(i, EVT));
3225 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3226 for (unsigned i = 0; i < 2; ++i)
3227 if (Reverse)
3228 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3229 else
3230 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3231 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3232 &MaskVec[0], MaskVec.size());
3233 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3234 }
3235
3236 if (Values.size() > 2) {
3237 // Expand into a number of unpckl*.
3238 // e.g. for v4f32
3239 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3240 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3241 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3242 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3243 for (unsigned i = 0; i < NumElems; ++i)
3244 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3245 NumElems >>= 1;
3246 while (NumElems != 0) {
3247 for (unsigned i = 0; i < NumElems; ++i)
3248 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3249 UnpckMask);
3250 NumElems >>= 1;
3251 }
3252 return V[0];
3253 }
3254
3255 return SDOperand();
3256}
3257
3258SDOperand
3259X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3260 SDOperand V1 = Op.getOperand(0);
3261 SDOperand V2 = Op.getOperand(1);
3262 SDOperand PermMask = Op.getOperand(2);
3263 MVT::ValueType VT = Op.getValueType();
3264 unsigned NumElems = PermMask.getNumOperands();
3265 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3266 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3267 bool V1IsSplat = false;
3268 bool V2IsSplat = false;
3269
3270 if (isUndefShuffle(Op.Val))
3271 return DAG.getNode(ISD::UNDEF, VT);
3272
3273 if (isZeroShuffle(Op.Val))
3274 return getZeroVector(VT, DAG);
3275
3276 if (isIdentityMask(PermMask.Val))
3277 return V1;
3278 else if (isIdentityMask(PermMask.Val, true))
3279 return V2;
3280
3281 if (isSplatMask(PermMask.Val)) {
3282 if (NumElems <= 4) return Op;
3283 // Promote it to a v4i32 splat.
3284 return PromoteSplat(Op, DAG);
3285 }
3286
3287 if (X86::isMOVLMask(PermMask.Val))
3288 return (V1IsUndef) ? V2 : Op;
3289
3290 if (X86::isMOVSHDUPMask(PermMask.Val) ||
3291 X86::isMOVSLDUPMask(PermMask.Val) ||
3292 X86::isMOVHLPSMask(PermMask.Val) ||
3293 X86::isMOVHPMask(PermMask.Val) ||
3294 X86::isMOVLPMask(PermMask.Val))
3295 return Op;
3296
3297 if (ShouldXformToMOVHLPS(PermMask.Val) ||
3298 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3299 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3300
3301 bool Commuted = false;
3302 V1IsSplat = isSplatVector(V1.Val);
3303 V2IsSplat = isSplatVector(V2.Val);
3304 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3305 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3306 std::swap(V1IsSplat, V2IsSplat);
3307 std::swap(V1IsUndef, V2IsUndef);
3308 Commuted = true;
3309 }
3310
3311 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3312 if (V2IsUndef) return V1;
3313 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3314 if (V2IsSplat) {
3315 // V2 is a splat, so the mask may be malformed. That is, it may point
3316 // to any V2 element. The instruction selectior won't like this. Get
3317 // a corrected mask and commute to form a proper MOVS{S|D}.
3318 SDOperand NewMask = getMOVLMask(NumElems, DAG);
3319 if (NewMask.Val != PermMask.Val)
3320 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3321 }
3322 return Op;
3323 }
3324
3325 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3326 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3327 X86::isUNPCKLMask(PermMask.Val) ||
3328 X86::isUNPCKHMask(PermMask.Val))
3329 return Op;
3330
3331 if (V2IsSplat) {
3332 // Normalize mask so all entries that point to V2 points to its first
3333 // element then try to match unpck{h|l} again. If match, return a
3334 // new vector_shuffle with the corrected mask.
3335 SDOperand NewMask = NormalizeMask(PermMask, DAG);
3336 if (NewMask.Val != PermMask.Val) {
3337 if (X86::isUNPCKLMask(PermMask.Val, true)) {
3338 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3339 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3340 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3341 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3342 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3343 }
3344 }
3345 }
3346
3347 // Normalize the node to match x86 shuffle ops if needed
3348 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3349 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3350
3351 if (Commuted) {
3352 // Commute is back and try unpck* again.
3353 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3354 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3355 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3356 X86::isUNPCKLMask(PermMask.Val) ||
3357 X86::isUNPCKHMask(PermMask.Val))
3358 return Op;
3359 }
3360
3361 // If VT is integer, try PSHUF* first, then SHUFP*.
3362 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00003363 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3364 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3365 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3366 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003367 X86::isPSHUFHWMask(PermMask.Val) ||
3368 X86::isPSHUFLWMask(PermMask.Val)) {
3369 if (V2.getOpcode() != ISD::UNDEF)
3370 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3371 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3372 return Op;
3373 }
3374
3375 if (X86::isSHUFPMask(PermMask.Val) &&
3376 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
3377 return Op;
3378
3379 // Handle v8i16 shuffle high / low shuffle node pair.
3380 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3381 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3382 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3383 SmallVector<SDOperand, 8> MaskVec;
3384 for (unsigned i = 0; i != 4; ++i)
3385 MaskVec.push_back(PermMask.getOperand(i));
3386 for (unsigned i = 4; i != 8; ++i)
3387 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3388 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3389 &MaskVec[0], MaskVec.size());
3390 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3391 MaskVec.clear();
3392 for (unsigned i = 0; i != 4; ++i)
3393 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3394 for (unsigned i = 4; i != 8; ++i)
3395 MaskVec.push_back(PermMask.getOperand(i));
3396 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3397 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3398 }
3399 } else {
3400 // Floating point cases in the other order.
3401 if (X86::isSHUFPMask(PermMask.Val))
3402 return Op;
3403 if (X86::isPSHUFDMask(PermMask.Val) ||
3404 X86::isPSHUFHWMask(PermMask.Val) ||
3405 X86::isPSHUFLWMask(PermMask.Val)) {
3406 if (V2.getOpcode() != ISD::UNDEF)
3407 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3408 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3409 return Op;
3410 }
3411 }
3412
3413 if (NumElems == 4 &&
3414 // Don't do this for MMX.
3415 MVT::getSizeInBits(VT) != 64) {
3416 MVT::ValueType MaskVT = PermMask.getValueType();
3417 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3418 SmallVector<std::pair<int, int>, 8> Locs;
3419 Locs.reserve(NumElems);
3420 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3421 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3422 unsigned NumHi = 0;
3423 unsigned NumLo = 0;
3424 // If no more than two elements come from either vector. This can be
3425 // implemented with two shuffles. First shuffle gather the elements.
3426 // The second shuffle, which takes the first shuffle as both of its
3427 // vector operands, put the elements into the right order.
3428 for (unsigned i = 0; i != NumElems; ++i) {
3429 SDOperand Elt = PermMask.getOperand(i);
3430 if (Elt.getOpcode() == ISD::UNDEF) {
3431 Locs[i] = std::make_pair(-1, -1);
3432 } else {
3433 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3434 if (Val < NumElems) {
3435 Locs[i] = std::make_pair(0, NumLo);
3436 Mask1[NumLo] = Elt;
3437 NumLo++;
3438 } else {
3439 Locs[i] = std::make_pair(1, NumHi);
3440 if (2+NumHi < NumElems)
3441 Mask1[2+NumHi] = Elt;
3442 NumHi++;
3443 }
3444 }
3445 }
3446 if (NumLo <= 2 && NumHi <= 2) {
3447 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3448 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3449 &Mask1[0], Mask1.size()));
3450 for (unsigned i = 0; i != NumElems; ++i) {
3451 if (Locs[i].first == -1)
3452 continue;
3453 else {
3454 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3455 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3456 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3457 }
3458 }
3459
3460 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3461 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3462 &Mask2[0], Mask2.size()));
3463 }
3464
3465 // Break it into (shuffle shuffle_hi, shuffle_lo).
3466 Locs.clear();
3467 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3468 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3469 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3470 unsigned MaskIdx = 0;
3471 unsigned LoIdx = 0;
3472 unsigned HiIdx = NumElems/2;
3473 for (unsigned i = 0; i != NumElems; ++i) {
3474 if (i == NumElems/2) {
3475 MaskPtr = &HiMask;
3476 MaskIdx = 1;
3477 LoIdx = 0;
3478 HiIdx = NumElems/2;
3479 }
3480 SDOperand Elt = PermMask.getOperand(i);
3481 if (Elt.getOpcode() == ISD::UNDEF) {
3482 Locs[i] = std::make_pair(-1, -1);
3483 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3484 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3485 (*MaskPtr)[LoIdx] = Elt;
3486 LoIdx++;
3487 } else {
3488 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3489 (*MaskPtr)[HiIdx] = Elt;
3490 HiIdx++;
3491 }
3492 }
3493
3494 SDOperand LoShuffle =
3495 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3496 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3497 &LoMask[0], LoMask.size()));
3498 SDOperand HiShuffle =
3499 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3500 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3501 &HiMask[0], HiMask.size()));
3502 SmallVector<SDOperand, 8> MaskOps;
3503 for (unsigned i = 0; i != NumElems; ++i) {
3504 if (Locs[i].first == -1) {
3505 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3506 } else {
3507 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3508 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3509 }
3510 }
3511 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3512 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3513 &MaskOps[0], MaskOps.size()));
3514 }
3515
3516 return SDOperand();
3517}
3518
3519SDOperand
3520X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3521 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3522 return SDOperand();
3523
3524 MVT::ValueType VT = Op.getValueType();
3525 // TODO: handle v16i8.
3526 if (MVT::getSizeInBits(VT) == 16) {
3527 // Transform it so it match pextrw which produces a 32-bit result.
3528 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3529 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3530 Op.getOperand(0), Op.getOperand(1));
3531 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3532 DAG.getValueType(VT));
3533 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3534 } else if (MVT::getSizeInBits(VT) == 32) {
3535 SDOperand Vec = Op.getOperand(0);
3536 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3537 if (Idx == 0)
3538 return Op;
3539 // SHUFPS the element to the lowest double word, then movss.
3540 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3541 SmallVector<SDOperand, 8> IdxVec;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003542 IdxVec.
3543 push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3544 IdxVec.
3545 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3546 IdxVec.
3547 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3548 IdxVec.
3549 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003550 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3551 &IdxVec[0], IdxVec.size());
3552 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3553 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3554 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3555 DAG.getConstant(0, getPointerTy()));
3556 } else if (MVT::getSizeInBits(VT) == 64) {
3557 SDOperand Vec = Op.getOperand(0);
3558 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3559 if (Idx == 0)
3560 return Op;
3561
3562 // UNPCKHPD the element to the lowest double word, then movsd.
3563 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3564 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3565 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3566 SmallVector<SDOperand, 8> IdxVec;
3567 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003568 IdxVec.
3569 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003570 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3571 &IdxVec[0], IdxVec.size());
3572 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3573 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3574 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3575 DAG.getConstant(0, getPointerTy()));
3576 }
3577
3578 return SDOperand();
3579}
3580
3581SDOperand
3582X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3583 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3584 // as its second argument.
3585 MVT::ValueType VT = Op.getValueType();
3586 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3587 SDOperand N0 = Op.getOperand(0);
3588 SDOperand N1 = Op.getOperand(1);
3589 SDOperand N2 = Op.getOperand(2);
3590 if (MVT::getSizeInBits(BaseVT) == 16) {
3591 if (N1.getValueType() != MVT::i32)
3592 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3593 if (N2.getValueType() != MVT::i32)
3594 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3595 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3596 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3597 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3598 if (Idx == 0) {
3599 // Use a movss.
3600 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3601 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3602 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3603 SmallVector<SDOperand, 8> MaskVec;
3604 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3605 for (unsigned i = 1; i <= 3; ++i)
3606 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3607 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3608 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3609 &MaskVec[0], MaskVec.size()));
3610 } else {
3611 // Use two pinsrw instructions to insert a 32 bit value.
3612 Idx <<= 1;
3613 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003614 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3615 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3616 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3617 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003618 }
3619 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3620 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3621 DAG.getConstant(Idx, getPointerTy()));
3622 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3623 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3624 DAG.getConstant(Idx+1, getPointerTy()));
3625 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3626 }
3627 }
3628
3629 return SDOperand();
3630}
3631
3632SDOperand
3633X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3634 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3635 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3636}
3637
3638// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3639// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3640// one of the above mentioned nodes. It has to be wrapped because otherwise
3641// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3642// be used to form addressing mode. These wrapped nodes will be selected
3643// into MOV32ri.
3644SDOperand
3645X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3646 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3647 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3648 getPointerTy(),
3649 CP->getAlignment());
3650 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3651 // With PIC, the address is actually $g + Offset.
3652 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3653 !Subtarget->isPICStyleRIPRel()) {
3654 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3655 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3656 Result);
3657 }
3658
3659 return Result;
3660}
3661
3662SDOperand
3663X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3664 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3665 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3666 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3667 // With PIC, the address is actually $g + Offset.
3668 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3669 !Subtarget->isPICStyleRIPRel()) {
3670 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3671 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3672 Result);
3673 }
3674
3675 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3676 // load the value at address GV, not the value of GV itself. This means that
3677 // the GlobalAddress must be in the base or index register of the address, not
3678 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3679 // The same applies for external symbols during PIC codegen
3680 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3681 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3682
3683 return Result;
3684}
3685
3686// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3687static SDOperand
3688LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3689 const MVT::ValueType PtrVT) {
3690 SDOperand InFlag;
3691 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3692 DAG.getNode(X86ISD::GlobalBaseReg,
3693 PtrVT), InFlag);
3694 InFlag = Chain.getValue(1);
3695
3696 // emit leal symbol@TLSGD(,%ebx,1), %eax
3697 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3698 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3699 GA->getValueType(0),
3700 GA->getOffset());
3701 SDOperand Ops[] = { Chain, TGA, InFlag };
3702 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3703 InFlag = Result.getValue(2);
3704 Chain = Result.getValue(1);
3705
3706 // call ___tls_get_addr. This function receives its argument in
3707 // the register EAX.
3708 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3709 InFlag = Chain.getValue(1);
3710
3711 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3712 SDOperand Ops1[] = { Chain,
3713 DAG.getTargetExternalSymbol("___tls_get_addr",
3714 PtrVT),
3715 DAG.getRegister(X86::EAX, PtrVT),
3716 DAG.getRegister(X86::EBX, PtrVT),
3717 InFlag };
3718 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3719 InFlag = Chain.getValue(1);
3720
3721 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3722}
3723
3724// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3725// "local exec" model.
3726static SDOperand
3727LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3728 const MVT::ValueType PtrVT) {
3729 // Get the Thread Pointer
3730 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3731 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3732 // exec)
3733 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3734 GA->getValueType(0),
3735 GA->getOffset());
3736 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3737
3738 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3739 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3740
3741 // The address of the thread local variable is the add of the thread
3742 // pointer with the offset of the variable.
3743 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3744}
3745
3746SDOperand
3747X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3748 // TODO: implement the "local dynamic" model
3749 // TODO: implement the "initial exec"model for pic executables
3750 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3751 "TLS not implemented for non-ELF and 64-bit targets");
3752 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3753 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3754 // otherwise use the "Local Exec"TLS Model
3755 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3756 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3757 else
3758 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3759}
3760
3761SDOperand
3762X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3763 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3764 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3765 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3766 // With PIC, the address is actually $g + Offset.
3767 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3768 !Subtarget->isPICStyleRIPRel()) {
3769 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3770 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3771 Result);
3772 }
3773
3774 return Result;
3775}
3776
3777SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3778 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3779 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3780 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3781 // With PIC, the address is actually $g + Offset.
3782 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3783 !Subtarget->isPICStyleRIPRel()) {
3784 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3785 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3786 Result);
3787 }
3788
3789 return Result;
3790}
3791
Chris Lattner62814a32007-10-17 06:02:13 +00003792/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
3793/// take a 2 x i32 value to shift plus a shift amount.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner62814a32007-10-17 06:02:13 +00003795 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3796 "Not an i64 shift!");
3797 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3798 SDOperand ShOpLo = Op.getOperand(0);
3799 SDOperand ShOpHi = Op.getOperand(1);
3800 SDOperand ShAmt = Op.getOperand(2);
3801 SDOperand Tmp1 = isSRA ?
3802 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3803 DAG.getConstant(0, MVT::i32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003804
Chris Lattner62814a32007-10-17 06:02:13 +00003805 SDOperand Tmp2, Tmp3;
3806 if (Op.getOpcode() == ISD::SHL_PARTS) {
3807 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3808 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3809 } else {
3810 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3811 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3812 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003813
Chris Lattner62814a32007-10-17 06:02:13 +00003814 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3815 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3816 DAG.getConstant(32, MVT::i8));
3817 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3818 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003819
Chris Lattner62814a32007-10-17 06:02:13 +00003820 SDOperand Hi, Lo;
3821 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3822 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3823 SmallVector<SDOperand, 4> Ops;
3824 if (Op.getOpcode() == ISD::SHL_PARTS) {
3825 Ops.push_back(Tmp2);
3826 Ops.push_back(Tmp3);
3827 Ops.push_back(CC);
3828 Ops.push_back(Cond);
3829 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003830
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003831 Ops.clear();
Chris Lattner62814a32007-10-17 06:02:13 +00003832 Ops.push_back(Tmp3);
3833 Ops.push_back(Tmp1);
3834 Ops.push_back(CC);
3835 Ops.push_back(Cond);
3836 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3837 } else {
3838 Ops.push_back(Tmp2);
3839 Ops.push_back(Tmp3);
3840 Ops.push_back(CC);
3841 Ops.push_back(Cond);
3842 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3843
3844 Ops.clear();
3845 Ops.push_back(Tmp3);
3846 Ops.push_back(Tmp1);
3847 Ops.push_back(CC);
3848 Ops.push_back(Cond);
3849 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3850 }
3851
3852 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3853 Ops.clear();
3854 Ops.push_back(Lo);
3855 Ops.push_back(Hi);
3856 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003857}
3858
3859SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3860 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3861 Op.getOperand(0).getValueType() >= MVT::i16 &&
3862 "Unknown SINT_TO_FP to lower!");
3863
3864 SDOperand Result;
3865 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3866 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3867 MachineFunction &MF = DAG.getMachineFunction();
3868 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3869 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3870 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3871 StackSlot, NULL, 0);
3872
Dale Johannesen2fc20782007-09-14 22:26:36 +00003873 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003874 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3875 return Result;
3876 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003877 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003878 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3879 Subtarget->is64Bit())
3880 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003881
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003882 // Build the FILD
3883 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003884 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3885 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003886 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3888 else
3889 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3890 SmallVector<SDOperand, 8> Ops;
3891 Ops.push_back(Chain);
3892 Ops.push_back(StackSlot);
3893 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003894 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 Tys, &Ops[0], Ops.size());
3896
Dale Johannesen2fc20782007-09-14 22:26:36 +00003897 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003898 Chain = Result.getValue(1);
3899 SDOperand InFlag = Result.getValue(2);
3900
3901 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3902 // shouldn't be necessary except that RFP cannot be live across
3903 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3904 MachineFunction &MF = DAG.getMachineFunction();
3905 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3906 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3907 Tys = DAG.getVTList(MVT::Other);
3908 SmallVector<SDOperand, 8> Ops;
3909 Ops.push_back(Chain);
3910 Ops.push_back(Result);
3911 Ops.push_back(StackSlot);
3912 Ops.push_back(DAG.getValueType(Op.getValueType()));
3913 Ops.push_back(InFlag);
3914 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3915 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3916 }
3917
3918 return Result;
3919}
3920
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003921std::pair<SDOperand,SDOperand> X86TargetLowering::
3922FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003923 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3924 "Unknown FP_TO_SINT to lower!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003925
Dale Johannesen2fc20782007-09-14 22:26:36 +00003926 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003927 if (Op.getValueType() == MVT::i32 &&
3928 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003929 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003930 if (Op.getValueType() == MVT::i32 &&
3931 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003932 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesen958b08b2007-09-19 23:55:34 +00003933 if (Subtarget->is64Bit() &&
3934 Op.getValueType() == MVT::i64 &&
3935 Op.getOperand(0).getValueType() != MVT::f80)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003936 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesen2fc20782007-09-14 22:26:36 +00003937
Evan Cheng05441e62007-10-15 20:11:21 +00003938 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3939 // stack slot.
3940 MachineFunction &MF = DAG.getMachineFunction();
3941 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3942 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3943 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003944 unsigned Opc;
3945 switch (Op.getValueType()) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003946 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3947 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3948 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3949 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003950 }
3951
3952 SDOperand Chain = DAG.getEntryNode();
3953 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003954 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3955 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003956 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3957 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3958 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3959 SDOperand Ops[] = {
3960 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3961 };
3962 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3963 Chain = Value.getValue(1);
3964 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3965 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3966 }
3967
3968 // Build the FP_TO_INT*_IN_MEM
3969 SDOperand Ops[] = { Chain, Value, StackSlot };
3970 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3971
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003972 return std::make_pair(FIST, StackSlot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003973}
3974
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003975SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3976 assert((Op.getValueType() != MVT::i64 || Subtarget->is64Bit()) &&
3977 "This FP_TO_SINT must be expanded!");
3978
3979 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
3980 SDOperand FIST = Vals.first, StackSlot = Vals.second;
3981 if (FIST.Val == 0) return SDOperand();
3982
3983 // Load the result.
3984 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3985}
3986
3987SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
3988 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
3989 SDOperand FIST = Vals.first, StackSlot = Vals.second;
3990 if (FIST.Val == 0) return 0;
3991
3992 // Return an i64 load from the stack slot.
3993 SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
3994
3995 // Use a MERGE_VALUES node to drop the chain result value.
3996 return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
3997}
3998
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003999SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4000 MVT::ValueType VT = Op.getValueType();
4001 MVT::ValueType EltVT = VT;
4002 if (MVT::isVector(VT))
4003 EltVT = MVT::getVectorElementType(VT);
4004 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
4005 std::vector<Constant*> CV;
4006 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004007 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004008 CV.push_back(C);
4009 CV.push_back(C);
4010 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004011 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004012 CV.push_back(C);
4013 CV.push_back(C);
4014 CV.push_back(C);
4015 CV.push_back(C);
4016 }
Dan Gohman11821702007-07-27 17:16:43 +00004017 Constant *C = ConstantVector::get(CV);
4018 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4019 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4020 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004021 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4022}
4023
4024SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4025 MVT::ValueType VT = Op.getValueType();
4026 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00004027 unsigned EltNum = 1;
4028 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004029 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00004030 EltNum = MVT::getVectorNumElements(VT);
4031 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004032 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
4033 std::vector<Constant*> CV;
4034 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004035 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004036 CV.push_back(C);
4037 CV.push_back(C);
4038 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004039 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004040 CV.push_back(C);
4041 CV.push_back(C);
4042 CV.push_back(C);
4043 CV.push_back(C);
4044 }
Dan Gohman11821702007-07-27 17:16:43 +00004045 Constant *C = ConstantVector::get(CV);
4046 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4047 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4048 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00004049 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00004050 return DAG.getNode(ISD::BIT_CONVERT, VT,
4051 DAG.getNode(ISD::XOR, MVT::v2i64,
4052 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4053 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4054 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00004055 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4056 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004057}
4058
4059SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4060 SDOperand Op0 = Op.getOperand(0);
4061 SDOperand Op1 = Op.getOperand(1);
4062 MVT::ValueType VT = Op.getValueType();
4063 MVT::ValueType SrcVT = Op1.getValueType();
4064 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
4065
4066 // If second operand is smaller, extend it first.
4067 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4068 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4069 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00004070 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004071 }
Dale Johannesenfb0fa912007-10-21 01:07:44 +00004072 // And if it is bigger, shrink it first.
4073 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4074 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4075 SrcVT = VT;
4076 SrcTy = MVT::getTypeForValueType(SrcVT);
4077 }
4078
4079 // At this point the operands and the result should have the same
4080 // type, and that won't be f80 since that is not custom lowered.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004081
4082 // First get the sign bit of second operand.
4083 std::vector<Constant*> CV;
4084 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004085 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4086 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004087 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004088 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4089 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4090 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4091 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004092 }
Dan Gohman11821702007-07-27 17:16:43 +00004093 Constant *C = ConstantVector::get(CV);
4094 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4095 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4096 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004097 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4098
4099 // Shift sign bit right or left if the two operands have different types.
4100 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4101 // Op0 is MVT::f32, Op1 is MVT::f64.
4102 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4103 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4104 DAG.getConstant(32, MVT::i32));
4105 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4106 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4107 DAG.getConstant(0, getPointerTy()));
4108 }
4109
4110 // Clear first operand sign bit.
4111 CV.clear();
4112 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004113 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4114 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004115 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004116 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4117 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4118 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4119 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004120 }
Dan Gohman11821702007-07-27 17:16:43 +00004121 C = ConstantVector::get(CV);
4122 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4123 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4124 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004125 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4126
4127 // Or the value with the sign bit.
4128 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4129}
4130
Evan Cheng621216e2007-09-29 00:00:36 +00004131SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00004132 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00004133 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00004134 SDOperand Op0 = Op.getOperand(0);
4135 SDOperand Op1 = Op.getOperand(1);
4136 SDOperand CC = Op.getOperand(2);
4137 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4138 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4139 unsigned X86CC;
4140
Evan Cheng950aac02007-09-25 01:57:46 +00004141 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00004142 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00004143 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4144 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004145 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00004146 }
Evan Cheng950aac02007-09-25 01:57:46 +00004147
4148 assert(isFP && "Illegal integer SetCC!");
4149
Evan Cheng621216e2007-09-29 00:00:36 +00004150 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00004151 switch (SetCCOpcode) {
4152 default: assert(false && "Illegal floating point SetCC!");
4153 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004154 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004155 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004156 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004157 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4158 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4159 }
4160 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004161 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004162 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004163 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004164 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4165 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4166 }
4167 }
4168}
4169
4170
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004171SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4172 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004173 SDOperand Cond = Op.getOperand(0);
4174 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004175
4176 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004177 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004178
Evan Cheng50d37ab2007-10-08 22:16:29 +00004179 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4180 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004181 if (Cond.getOpcode() == X86ISD::SETCC) {
4182 CC = Cond.getOperand(0);
4183
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004184 SDOperand Cmp = Cond.getOperand(1);
4185 unsigned Opc = Cmp.getOpcode();
Evan Cheng50d37ab2007-10-08 22:16:29 +00004186 MVT::ValueType VT = Op.getValueType();
4187 bool IllegalFPCMov = false;
4188 if (VT == MVT::f32 && !X86ScalarSSEf32)
4189 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4190 else if (VT == MVT::f64 && !X86ScalarSSEf64)
4191 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Dale Johannesen3b955db2007-10-16 18:09:08 +00004192 else if (VT == MVT::f80)
4193 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00004194 if ((Opc == X86ISD::CMP ||
4195 Opc == X86ISD::COMI ||
4196 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004197 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004198 addTest = false;
4199 }
4200 }
4201
4202 if (addTest) {
4203 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng50d37ab2007-10-08 22:16:29 +00004204 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004205 }
4206
4207 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4208 MVT::Flag);
4209 SmallVector<SDOperand, 4> Ops;
4210 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4211 // condition is true.
4212 Ops.push_back(Op.getOperand(2));
4213 Ops.push_back(Op.getOperand(1));
4214 Ops.push_back(CC);
4215 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004216 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00004217}
4218
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004219SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4220 bool addTest = true;
4221 SDOperand Chain = Op.getOperand(0);
4222 SDOperand Cond = Op.getOperand(1);
4223 SDOperand Dest = Op.getOperand(2);
4224 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004225
4226 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004227 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004228
Evan Cheng50d37ab2007-10-08 22:16:29 +00004229 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4230 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004231 if (Cond.getOpcode() == X86ISD::SETCC) {
4232 CC = Cond.getOperand(0);
4233
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004234 SDOperand Cmp = Cond.getOperand(1);
4235 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00004236 if (Opc == X86ISD::CMP ||
4237 Opc == X86ISD::COMI ||
4238 Opc == X86ISD::UCOMI) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004239 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004240 addTest = false;
4241 }
4242 }
4243
4244 if (addTest) {
4245 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00004246 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004247 }
Evan Cheng621216e2007-09-29 00:00:36 +00004248 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00004249 Chain, Op.getOperand(2), CC, Cond);
4250}
4251
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004252SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004253 unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4254 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004255
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004256 if (Subtarget->is64Bit())
4257 if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4258 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4259 else
4260 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004261 else
4262 switch (CallingConv) {
4263 default:
4264 assert(0 && "Unsupported calling convention");
4265 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004266 if (isTailCall && PerformTailCallOpt)
4267 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4268 else
4269 return LowerCCCCallTo(Op,DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004270 case CallingConv::C:
4271 case CallingConv::X86_StdCall:
4272 return LowerCCCCallTo(Op, DAG, CallingConv);
4273 case CallingConv::X86_FastCall:
4274 return LowerFastCCCallTo(Op, DAG, CallingConv);
4275 }
4276}
4277
4278
4279// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4280// Calls to _alloca is needed to probe the stack when allocating more than 4k
4281// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4282// that the guard pages used by the OS virtual memory manager are allocated in
4283// correct sequence.
4284SDOperand
4285X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4286 SelectionDAG &DAG) {
4287 assert(Subtarget->isTargetCygMing() &&
4288 "This should be used only on Cygwin/Mingw targets");
4289
4290 // Get the inputs.
4291 SDOperand Chain = Op.getOperand(0);
4292 SDOperand Size = Op.getOperand(1);
4293 // FIXME: Ensure alignment here
4294
4295 SDOperand Flag;
4296
4297 MVT::ValueType IntPtr = getPointerTy();
4298 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4299
4300 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4301 Flag = Chain.getValue(1);
4302
4303 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4304 SDOperand Ops[] = { Chain,
4305 DAG.getTargetExternalSymbol("_alloca", IntPtr),
4306 DAG.getRegister(X86::EAX, IntPtr),
4307 Flag };
4308 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4309 Flag = Chain.getValue(1);
4310
4311 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4312
4313 std::vector<MVT::ValueType> Tys;
4314 Tys.push_back(SPTy);
4315 Tys.push_back(MVT::Other);
4316 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4317 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4318}
4319
4320SDOperand
4321X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4322 MachineFunction &MF = DAG.getMachineFunction();
4323 const Function* Fn = MF.getFunction();
4324 if (Fn->hasExternalLinkage() &&
4325 Subtarget->isTargetCygMing() &&
4326 Fn->getName() == "main")
4327 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4328
4329 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4330 if (Subtarget->is64Bit())
4331 return LowerX86_64CCCArguments(Op, DAG);
4332 else
4333 switch(CC) {
4334 default:
4335 assert(0 && "Unsupported calling convention");
4336 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004337 return LowerCCCArguments(Op,DAG, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004338 // Falls through
4339 case CallingConv::C:
4340 return LowerCCCArguments(Op, DAG);
4341 case CallingConv::X86_StdCall:
4342 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4343 return LowerCCCArguments(Op, DAG, true);
4344 case CallingConv::X86_FastCall:
4345 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4346 return LowerFastCCArguments(Op, DAG);
4347 }
4348}
4349
4350SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4351 SDOperand InFlag(0, 0);
4352 SDOperand Chain = Op.getOperand(0);
4353 unsigned Align =
4354 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4355 if (Align == 0) Align = 1;
4356
4357 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004358 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004359 // The libc version is likely to be faster for these cases. It can use the
4360 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004361 if ((Align & 3) != 0 ||
Rafael Espindola7afa9b12007-10-31 11:52:06 +00004362 (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004363 MVT::ValueType IntPtr = getPointerTy();
4364 const Type *IntPtrTy = getTargetData()->getIntPtrType();
4365 TargetLowering::ArgListTy Args;
4366 TargetLowering::ArgListEntry Entry;
4367 Entry.Node = Op.getOperand(1);
4368 Entry.Ty = IntPtrTy;
4369 Args.push_back(Entry);
4370 // Extend the unsigned i8 argument to be an int value for the call.
4371 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4372 Entry.Ty = IntPtrTy;
4373 Args.push_back(Entry);
4374 Entry.Node = Op.getOperand(3);
4375 Args.push_back(Entry);
4376 std::pair<SDOperand,SDOperand> CallResult =
4377 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4378 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4379 return CallResult.second;
4380 }
4381
4382 MVT::ValueType AVT;
4383 SDOperand Count;
4384 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4385 unsigned BytesLeft = 0;
4386 bool TwoRepStos = false;
4387 if (ValC) {
4388 unsigned ValReg;
4389 uint64_t Val = ValC->getValue() & 255;
4390
4391 // If the value is a constant, then we can potentially use larger sets.
4392 switch (Align & 3) {
4393 case 2: // WORD aligned
4394 AVT = MVT::i16;
4395 ValReg = X86::AX;
4396 Val = (Val << 8) | Val;
4397 break;
4398 case 0: // DWORD aligned
4399 AVT = MVT::i32;
4400 ValReg = X86::EAX;
4401 Val = (Val << 8) | Val;
4402 Val = (Val << 16) | Val;
4403 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
4404 AVT = MVT::i64;
4405 ValReg = X86::RAX;
4406 Val = (Val << 32) | Val;
4407 }
4408 break;
4409 default: // Byte aligned
4410 AVT = MVT::i8;
4411 ValReg = X86::AL;
4412 Count = Op.getOperand(3);
4413 break;
4414 }
4415
4416 if (AVT > MVT::i8) {
4417 if (I) {
4418 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4419 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4420 BytesLeft = I->getValue() % UBytes;
4421 } else {
4422 assert(AVT >= MVT::i32 &&
4423 "Do not use rep;stos if not at least DWORD aligned");
4424 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4425 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4426 TwoRepStos = true;
4427 }
4428 }
4429
4430 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4431 InFlag);
4432 InFlag = Chain.getValue(1);
4433 } else {
4434 AVT = MVT::i8;
4435 Count = Op.getOperand(3);
4436 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4437 InFlag = Chain.getValue(1);
4438 }
4439
4440 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4441 Count, InFlag);
4442 InFlag = Chain.getValue(1);
4443 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4444 Op.getOperand(1), InFlag);
4445 InFlag = Chain.getValue(1);
4446
4447 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4448 SmallVector<SDOperand, 8> Ops;
4449 Ops.push_back(Chain);
4450 Ops.push_back(DAG.getValueType(AVT));
4451 Ops.push_back(InFlag);
4452 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4453
4454 if (TwoRepStos) {
4455 InFlag = Chain.getValue(1);
4456 Count = Op.getOperand(3);
4457 MVT::ValueType CVT = Count.getValueType();
4458 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4459 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4460 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4461 Left, InFlag);
4462 InFlag = Chain.getValue(1);
4463 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4464 Ops.clear();
4465 Ops.push_back(Chain);
4466 Ops.push_back(DAG.getValueType(MVT::i8));
4467 Ops.push_back(InFlag);
4468 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4469 } else if (BytesLeft) {
4470 // Issue stores for the last 1 - 7 bytes.
4471 SDOperand Value;
4472 unsigned Val = ValC->getValue() & 255;
4473 unsigned Offset = I->getValue() - BytesLeft;
4474 SDOperand DstAddr = Op.getOperand(1);
4475 MVT::ValueType AddrVT = DstAddr.getValueType();
4476 if (BytesLeft >= 4) {
4477 Val = (Val << 8) | Val;
4478 Val = (Val << 16) | Val;
4479 Value = DAG.getConstant(Val, MVT::i32);
4480 Chain = DAG.getStore(Chain, Value,
4481 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4482 DAG.getConstant(Offset, AddrVT)),
4483 NULL, 0);
4484 BytesLeft -= 4;
4485 Offset += 4;
4486 }
4487 if (BytesLeft >= 2) {
4488 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4489 Chain = DAG.getStore(Chain, Value,
4490 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4491 DAG.getConstant(Offset, AddrVT)),
4492 NULL, 0);
4493 BytesLeft -= 2;
4494 Offset += 2;
4495 }
4496 if (BytesLeft == 1) {
4497 Value = DAG.getConstant(Val, MVT::i8);
4498 Chain = DAG.getStore(Chain, Value,
4499 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4500 DAG.getConstant(Offset, AddrVT)),
4501 NULL, 0);
4502 }
4503 }
4504
4505 return Chain;
4506}
4507
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004508SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4509 SDOperand Dest,
4510 SDOperand Source,
4511 unsigned Size,
4512 unsigned Align,
4513 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004514 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004515 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004516 switch (Align & 3) {
4517 case 2: // WORD aligned
4518 AVT = MVT::i16;
4519 break;
4520 case 0: // DWORD aligned
4521 AVT = MVT::i32;
4522 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4523 AVT = MVT::i64;
4524 break;
4525 default: // Byte aligned
4526 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004527 break;
4528 }
4529
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004530 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4531 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4532 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004533
4534 SDOperand InFlag(0, 0);
4535 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4536 Count, InFlag);
4537 InFlag = Chain.getValue(1);
4538 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004539 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004540 InFlag = Chain.getValue(1);
4541 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004542 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004543 InFlag = Chain.getValue(1);
4544
4545 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4546 SmallVector<SDOperand, 8> Ops;
4547 Ops.push_back(Chain);
4548 Ops.push_back(DAG.getValueType(AVT));
4549 Ops.push_back(InFlag);
4550 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4551
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004552 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004553 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004554 unsigned Offset = Size - BytesLeft;
4555 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004556 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004557 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004558 MVT::ValueType SrcVT = SrcAddr.getValueType();
4559 SDOperand Value;
4560 if (BytesLeft >= 4) {
4561 Value = DAG.getLoad(MVT::i32, Chain,
4562 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4563 DAG.getConstant(Offset, SrcVT)),
4564 NULL, 0);
4565 Chain = Value.getValue(1);
4566 Chain = DAG.getStore(Chain, Value,
4567 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4568 DAG.getConstant(Offset, DstVT)),
4569 NULL, 0);
4570 BytesLeft -= 4;
4571 Offset += 4;
4572 }
4573 if (BytesLeft >= 2) {
4574 Value = DAG.getLoad(MVT::i16, Chain,
4575 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4576 DAG.getConstant(Offset, SrcVT)),
4577 NULL, 0);
4578 Chain = Value.getValue(1);
4579 Chain = DAG.getStore(Chain, Value,
4580 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4581 DAG.getConstant(Offset, DstVT)),
4582 NULL, 0);
4583 BytesLeft -= 2;
4584 Offset += 2;
4585 }
4586
4587 if (BytesLeft == 1) {
4588 Value = DAG.getLoad(MVT::i8, Chain,
4589 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4590 DAG.getConstant(Offset, SrcVT)),
4591 NULL, 0);
4592 Chain = Value.getValue(1);
4593 Chain = DAG.getStore(Chain, Value,
4594 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4595 DAG.getConstant(Offset, DstVT)),
4596 NULL, 0);
4597 }
4598 }
4599
4600 return Chain;
4601}
4602
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004603/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4604SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004605 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004606 SDOperand TheChain = N->getOperand(0);
4607 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004608 if (Subtarget->is64Bit()) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004609 SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4610 SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4611 MVT::i64, rax.getValue(2));
4612 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004613 DAG.getConstant(32, MVT::i8));
4614 SDOperand Ops[] = {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004615 DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004616 };
4617
4618 Tys = DAG.getVTList(MVT::i64, MVT::Other);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004619 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004620 }
4621
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004622 SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4623 SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4624 MVT::i32, eax.getValue(2));
4625 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4626 SDOperand Ops[] = { eax, edx };
4627 Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4628
4629 // Use a MERGE_VALUES to return the value and chain.
4630 Ops[1] = edx.getValue(1);
4631 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4632 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004633}
4634
4635SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4636 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4637
4638 if (!Subtarget->is64Bit()) {
4639 // vastart just stores the address of the VarArgsFrameIndex slot into the
4640 // memory location argument.
4641 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4642 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4643 SV->getOffset());
4644 }
4645
4646 // __va_list_tag:
4647 // gp_offset (0 - 6 * 8)
4648 // fp_offset (48 - 48 + 8 * 16)
4649 // overflow_arg_area (point to parameters coming in memory).
4650 // reg_save_area
4651 SmallVector<SDOperand, 8> MemOps;
4652 SDOperand FIN = Op.getOperand(1);
4653 // Store gp_offset
4654 SDOperand Store = DAG.getStore(Op.getOperand(0),
4655 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4656 FIN, SV->getValue(), SV->getOffset());
4657 MemOps.push_back(Store);
4658
4659 // Store fp_offset
4660 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4661 DAG.getConstant(4, getPointerTy()));
4662 Store = DAG.getStore(Op.getOperand(0),
4663 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4664 FIN, SV->getValue(), SV->getOffset());
4665 MemOps.push_back(Store);
4666
4667 // Store ptr to overflow_arg_area
4668 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4669 DAG.getConstant(4, getPointerTy()));
4670 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4671 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4672 SV->getOffset());
4673 MemOps.push_back(Store);
4674
4675 // Store ptr to reg_save_area.
4676 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4677 DAG.getConstant(8, getPointerTy()));
4678 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4679 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4680 SV->getOffset());
4681 MemOps.push_back(Store);
4682 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4683}
4684
4685SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4686 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4687 SDOperand Chain = Op.getOperand(0);
4688 SDOperand DstPtr = Op.getOperand(1);
4689 SDOperand SrcPtr = Op.getOperand(2);
4690 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4691 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4692
4693 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4694 SrcSV->getValue(), SrcSV->getOffset());
4695 Chain = SrcPtr.getValue(1);
4696 for (unsigned i = 0; i < 3; ++i) {
4697 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4698 SrcSV->getValue(), SrcSV->getOffset());
4699 Chain = Val.getValue(1);
4700 Chain = DAG.getStore(Chain, Val, DstPtr,
4701 DstSV->getValue(), DstSV->getOffset());
4702 if (i == 2)
4703 break;
4704 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4705 DAG.getConstant(8, getPointerTy()));
4706 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4707 DAG.getConstant(8, getPointerTy()));
4708 }
4709 return Chain;
4710}
4711
4712SDOperand
4713X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4714 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4715 switch (IntNo) {
4716 default: return SDOperand(); // Don't custom lower most intrinsics.
4717 // Comparison intrinsics.
4718 case Intrinsic::x86_sse_comieq_ss:
4719 case Intrinsic::x86_sse_comilt_ss:
4720 case Intrinsic::x86_sse_comile_ss:
4721 case Intrinsic::x86_sse_comigt_ss:
4722 case Intrinsic::x86_sse_comige_ss:
4723 case Intrinsic::x86_sse_comineq_ss:
4724 case Intrinsic::x86_sse_ucomieq_ss:
4725 case Intrinsic::x86_sse_ucomilt_ss:
4726 case Intrinsic::x86_sse_ucomile_ss:
4727 case Intrinsic::x86_sse_ucomigt_ss:
4728 case Intrinsic::x86_sse_ucomige_ss:
4729 case Intrinsic::x86_sse_ucomineq_ss:
4730 case Intrinsic::x86_sse2_comieq_sd:
4731 case Intrinsic::x86_sse2_comilt_sd:
4732 case Intrinsic::x86_sse2_comile_sd:
4733 case Intrinsic::x86_sse2_comigt_sd:
4734 case Intrinsic::x86_sse2_comige_sd:
4735 case Intrinsic::x86_sse2_comineq_sd:
4736 case Intrinsic::x86_sse2_ucomieq_sd:
4737 case Intrinsic::x86_sse2_ucomilt_sd:
4738 case Intrinsic::x86_sse2_ucomile_sd:
4739 case Intrinsic::x86_sse2_ucomigt_sd:
4740 case Intrinsic::x86_sse2_ucomige_sd:
4741 case Intrinsic::x86_sse2_ucomineq_sd: {
4742 unsigned Opc = 0;
4743 ISD::CondCode CC = ISD::SETCC_INVALID;
4744 switch (IntNo) {
4745 default: break;
4746 case Intrinsic::x86_sse_comieq_ss:
4747 case Intrinsic::x86_sse2_comieq_sd:
4748 Opc = X86ISD::COMI;
4749 CC = ISD::SETEQ;
4750 break;
4751 case Intrinsic::x86_sse_comilt_ss:
4752 case Intrinsic::x86_sse2_comilt_sd:
4753 Opc = X86ISD::COMI;
4754 CC = ISD::SETLT;
4755 break;
4756 case Intrinsic::x86_sse_comile_ss:
4757 case Intrinsic::x86_sse2_comile_sd:
4758 Opc = X86ISD::COMI;
4759 CC = ISD::SETLE;
4760 break;
4761 case Intrinsic::x86_sse_comigt_ss:
4762 case Intrinsic::x86_sse2_comigt_sd:
4763 Opc = X86ISD::COMI;
4764 CC = ISD::SETGT;
4765 break;
4766 case Intrinsic::x86_sse_comige_ss:
4767 case Intrinsic::x86_sse2_comige_sd:
4768 Opc = X86ISD::COMI;
4769 CC = ISD::SETGE;
4770 break;
4771 case Intrinsic::x86_sse_comineq_ss:
4772 case Intrinsic::x86_sse2_comineq_sd:
4773 Opc = X86ISD::COMI;
4774 CC = ISD::SETNE;
4775 break;
4776 case Intrinsic::x86_sse_ucomieq_ss:
4777 case Intrinsic::x86_sse2_ucomieq_sd:
4778 Opc = X86ISD::UCOMI;
4779 CC = ISD::SETEQ;
4780 break;
4781 case Intrinsic::x86_sse_ucomilt_ss:
4782 case Intrinsic::x86_sse2_ucomilt_sd:
4783 Opc = X86ISD::UCOMI;
4784 CC = ISD::SETLT;
4785 break;
4786 case Intrinsic::x86_sse_ucomile_ss:
4787 case Intrinsic::x86_sse2_ucomile_sd:
4788 Opc = X86ISD::UCOMI;
4789 CC = ISD::SETLE;
4790 break;
4791 case Intrinsic::x86_sse_ucomigt_ss:
4792 case Intrinsic::x86_sse2_ucomigt_sd:
4793 Opc = X86ISD::UCOMI;
4794 CC = ISD::SETGT;
4795 break;
4796 case Intrinsic::x86_sse_ucomige_ss:
4797 case Intrinsic::x86_sse2_ucomige_sd:
4798 Opc = X86ISD::UCOMI;
4799 CC = ISD::SETGE;
4800 break;
4801 case Intrinsic::x86_sse_ucomineq_ss:
4802 case Intrinsic::x86_sse2_ucomineq_sd:
4803 Opc = X86ISD::UCOMI;
4804 CC = ISD::SETNE;
4805 break;
4806 }
4807
4808 unsigned X86CC;
4809 SDOperand LHS = Op.getOperand(1);
4810 SDOperand RHS = Op.getOperand(2);
4811 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4812
Evan Cheng621216e2007-09-29 00:00:36 +00004813 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4814 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4815 DAG.getConstant(X86CC, MVT::i8), Cond);
4816 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004817 }
4818 }
4819}
4820
4821SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4822 // Depths > 0 not supported yet!
4823 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4824 return SDOperand();
4825
4826 // Just load the return address
4827 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4828 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4829}
4830
4831SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4832 // Depths > 0 not supported yet!
4833 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4834 return SDOperand();
4835
4836 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4837 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4838 DAG.getConstant(4, getPointerTy()));
4839}
4840
4841SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4842 SelectionDAG &DAG) {
4843 // Is not yet supported on x86-64
4844 if (Subtarget->is64Bit())
4845 return SDOperand();
4846
4847 return DAG.getConstant(8, getPointerTy());
4848}
4849
4850SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4851{
4852 assert(!Subtarget->is64Bit() &&
4853 "Lowering of eh_return builtin is not supported yet on x86-64");
4854
4855 MachineFunction &MF = DAG.getMachineFunction();
4856 SDOperand Chain = Op.getOperand(0);
4857 SDOperand Offset = Op.getOperand(1);
4858 SDOperand Handler = Op.getOperand(2);
4859
4860 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4861 getPointerTy());
4862
4863 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4864 DAG.getConstant(-4UL, getPointerTy()));
4865 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4866 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4867 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4868 MF.addLiveOut(X86::ECX);
4869
4870 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4871 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4872}
4873
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004874SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4875 SelectionDAG &DAG) {
4876 SDOperand Root = Op.getOperand(0);
4877 SDOperand Trmp = Op.getOperand(1); // trampoline
4878 SDOperand FPtr = Op.getOperand(2); // nested function
4879 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4880
4881 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4882
4883 if (Subtarget->is64Bit()) {
4884 return SDOperand(); // not yet supported
4885 } else {
4886 Function *Func = (Function *)
4887 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4888 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004889 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004890
4891 switch (CC) {
4892 default:
4893 assert(0 && "Unsupported calling convention");
4894 case CallingConv::C:
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004895 case CallingConv::X86_StdCall: {
4896 // Pass 'nest' parameter in ECX.
4897 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004898 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004899
4900 // Check that ECX wasn't needed by an 'inreg' parameter.
4901 const FunctionType *FTy = Func->getFunctionType();
4902 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4903
4904 if (Attrs && !Func->isVarArg()) {
4905 unsigned InRegCount = 0;
4906 unsigned Idx = 1;
4907
4908 for (FunctionType::param_iterator I = FTy->param_begin(),
4909 E = FTy->param_end(); I != E; ++I, ++Idx)
4910 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4911 // FIXME: should only count parameters that are lowered to integers.
4912 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4913
4914 if (InRegCount > 2) {
4915 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4916 abort();
4917 }
4918 }
4919 break;
4920 }
4921 case CallingConv::X86_FastCall:
4922 // Pass 'nest' parameter in EAX.
4923 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004924 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004925 break;
4926 }
4927
Duncan Sands466eadd2007-08-29 19:01:20 +00004928 const X86InstrInfo *TII =
4929 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4930
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004931 SDOperand OutChains[4];
4932 SDOperand Addr, Disp;
4933
4934 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4935 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4936
Duncan Sands466eadd2007-08-29 19:01:20 +00004937 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4938 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4939 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004940 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4941
4942 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4943 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4944 TrmpSV->getOffset() + 1, false, 1);
4945
Duncan Sands466eadd2007-08-29 19:01:20 +00004946 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004947 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4948 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4949 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4950
4951 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4952 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4953 TrmpSV->getOffset() + 6, false, 1);
4954
Duncan Sands7407a9f2007-09-11 14:10:23 +00004955 SDOperand Ops[] =
4956 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4957 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004958 }
4959}
4960
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00004961SDOperand X86TargetLowering::LowerFLT_ROUNDS(SDOperand Op, SelectionDAG &DAG) {
4962 /*
4963 The rounding mode is in bits 11:10 of FPSR, and has the following
4964 settings:
4965 00 Round to nearest
4966 01 Round to -inf
4967 10 Round to +inf
4968 11 Round to 0
4969
4970 FLT_ROUNDS, on the other hand, expects the following:
4971 -1 Undefined
4972 0 Round to 0
4973 1 Round to nearest
4974 2 Round to +inf
4975 3 Round to -inf
4976
4977 To perform the conversion, we do:
4978 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
4979 */
4980
4981 MachineFunction &MF = DAG.getMachineFunction();
4982 const TargetMachine &TM = MF.getTarget();
4983 const TargetFrameInfo &TFI = *TM.getFrameInfo();
4984 unsigned StackAlignment = TFI.getStackAlignment();
4985 MVT::ValueType VT = Op.getValueType();
4986
4987 // Save FP Control Word to stack slot
4988 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
4989 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4990
4991 SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
4992 DAG.getEntryNode(), StackSlot);
4993
4994 // Load FP Control Word from stack slot
4995 SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
4996
4997 // Transform as necessary
4998 SDOperand CWD1 =
4999 DAG.getNode(ISD::SRL, MVT::i16,
5000 DAG.getNode(ISD::AND, MVT::i16,
5001 CWD, DAG.getConstant(0x800, MVT::i16)),
5002 DAG.getConstant(11, MVT::i8));
5003 SDOperand CWD2 =
5004 DAG.getNode(ISD::SRL, MVT::i16,
5005 DAG.getNode(ISD::AND, MVT::i16,
5006 CWD, DAG.getConstant(0x400, MVT::i16)),
5007 DAG.getConstant(9, MVT::i8));
5008
5009 SDOperand RetVal =
5010 DAG.getNode(ISD::AND, MVT::i16,
5011 DAG.getNode(ISD::ADD, MVT::i16,
5012 DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5013 DAG.getConstant(1, MVT::i16)),
5014 DAG.getConstant(3, MVT::i16));
5015
5016
5017 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5018 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5019}
5020
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005021/// LowerOperation - Provide custom lowering hooks for some operations.
5022///
5023SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5024 switch (Op.getOpcode()) {
5025 default: assert(0 && "Should not custom lower this!");
5026 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
5027 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5028 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5029 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5030 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
5031 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
5032 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
5033 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5034 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
5035 case ISD::SHL_PARTS:
5036 case ISD::SRA_PARTS:
5037 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
5038 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
5039 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
5040 case ISD::FABS: return LowerFABS(Op, DAG);
5041 case ISD::FNEG: return LowerFNEG(Op, DAG);
5042 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00005043 case ISD::SETCC: return LowerSETCC(Op, DAG);
5044 case ISD::SELECT: return LowerSELECT(Op, DAG);
5045 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005046 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
5047 case ISD::CALL: return LowerCALL(Op, DAG);
5048 case ISD::RET: return LowerRET(Op, DAG);
5049 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
5050 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
5051 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005052 case ISD::VASTART: return LowerVASTART(Op, DAG);
5053 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
5054 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5055 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5056 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5057 case ISD::FRAME_TO_ARGS_OFFSET:
5058 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5059 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5060 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005061 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00005062 case ISD::FLT_ROUNDS: return LowerFLT_ROUNDS(Op, DAG);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005063
5064
5065 // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5066 case ISD::READCYCLECOUNTER:
5067 return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005068 }
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005069}
5070
5071/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5072SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5073 switch (N->getOpcode()) {
5074 default: assert(0 && "Should not custom lower this!");
5075 case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG);
5076 case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG);
5077 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005078}
5079
5080const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5081 switch (Opcode) {
5082 default: return NULL;
5083 case X86ISD::SHLD: return "X86ISD::SHLD";
5084 case X86ISD::SHRD: return "X86ISD::SHRD";
5085 case X86ISD::FAND: return "X86ISD::FAND";
5086 case X86ISD::FOR: return "X86ISD::FOR";
5087 case X86ISD::FXOR: return "X86ISD::FXOR";
5088 case X86ISD::FSRL: return "X86ISD::FSRL";
5089 case X86ISD::FILD: return "X86ISD::FILD";
5090 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
5091 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5092 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5093 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5094 case X86ISD::FLD: return "X86ISD::FLD";
5095 case X86ISD::FST: return "X86ISD::FST";
5096 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
5097 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
5098 case X86ISD::CALL: return "X86ISD::CALL";
5099 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
5100 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
5101 case X86ISD::CMP: return "X86ISD::CMP";
5102 case X86ISD::COMI: return "X86ISD::COMI";
5103 case X86ISD::UCOMI: return "X86ISD::UCOMI";
5104 case X86ISD::SETCC: return "X86ISD::SETCC";
5105 case X86ISD::CMOV: return "X86ISD::CMOV";
5106 case X86ISD::BRCOND: return "X86ISD::BRCOND";
5107 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
5108 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
5109 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005110 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
5111 case X86ISD::Wrapper: return "X86ISD::Wrapper";
5112 case X86ISD::S2VEC: return "X86ISD::S2VEC";
5113 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
5114 case X86ISD::PINSRW: return "X86ISD::PINSRW";
5115 case X86ISD::FMAX: return "X86ISD::FMAX";
5116 case X86ISD::FMIN: return "X86ISD::FMIN";
5117 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
5118 case X86ISD::FRCP: return "X86ISD::FRCP";
5119 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
5120 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
5121 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005122 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00005123 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005124 }
5125}
5126
5127// isLegalAddressingMode - Return true if the addressing mode represented
5128// by AM is legal for this target, for a load/store of the specified type.
5129bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5130 const Type *Ty) const {
5131 // X86 supports extremely general addressing modes.
5132
5133 // X86 allows a sign-extended 32-bit immediate field as a displacement.
5134 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5135 return false;
5136
5137 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005138 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005139 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5140 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005141
5142 // X86-64 only supports addr of globals in small code model.
5143 if (Subtarget->is64Bit()) {
5144 if (getTargetMachine().getCodeModel() != CodeModel::Small)
5145 return false;
5146 // If lower 4G is not available, then we must use rip-relative addressing.
5147 if (AM.BaseOffs || AM.Scale > 1)
5148 return false;
5149 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005150 }
5151
5152 switch (AM.Scale) {
5153 case 0:
5154 case 1:
5155 case 2:
5156 case 4:
5157 case 8:
5158 // These scales always work.
5159 break;
5160 case 3:
5161 case 5:
5162 case 9:
5163 // These scales are formed with basereg+scalereg. Only accept if there is
5164 // no basereg yet.
5165 if (AM.HasBaseReg)
5166 return false;
5167 break;
5168 default: // Other stuff never works.
5169 return false;
5170 }
5171
5172 return true;
5173}
5174
5175
Evan Cheng27a820a2007-10-26 01:56:11 +00005176bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5177 if (!Ty1->isInteger() || !Ty2->isInteger())
5178 return false;
Evan Cheng7f152602007-10-29 07:57:50 +00005179 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5180 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5181 if (NumBits1 <= NumBits2)
5182 return false;
5183 return Subtarget->is64Bit() || NumBits1 < 64;
Evan Cheng27a820a2007-10-26 01:56:11 +00005184}
5185
Evan Cheng9decb332007-10-29 19:58:20 +00005186bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5187 MVT::ValueType VT2) const {
5188 if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5189 return false;
5190 unsigned NumBits1 = MVT::getSizeInBits(VT1);
5191 unsigned NumBits2 = MVT::getSizeInBits(VT2);
5192 if (NumBits1 <= NumBits2)
5193 return false;
5194 return Subtarget->is64Bit() || NumBits1 < 64;
5195}
Evan Cheng27a820a2007-10-26 01:56:11 +00005196
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005197/// isShuffleMaskLegal - Targets can use this to indicate that they only
5198/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5199/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5200/// are assumed to be legal.
5201bool
5202X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5203 // Only do shuffles on 128-bit vector types for now.
5204 if (MVT::getSizeInBits(VT) == 64) return false;
5205 return (Mask.Val->getNumOperands() <= 4 ||
5206 isIdentityMask(Mask.Val) ||
5207 isIdentityMask(Mask.Val, true) ||
5208 isSplatMask(Mask.Val) ||
5209 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5210 X86::isUNPCKLMask(Mask.Val) ||
5211 X86::isUNPCKHMask(Mask.Val) ||
5212 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5213 X86::isUNPCKH_v_undef_Mask(Mask.Val));
5214}
5215
5216bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5217 MVT::ValueType EVT,
5218 SelectionDAG &DAG) const {
5219 unsigned NumElts = BVOps.size();
5220 // Only do shuffles on 128-bit vector types for now.
5221 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5222 if (NumElts == 2) return true;
5223 if (NumElts == 4) {
5224 return (isMOVLMask(&BVOps[0], 4) ||
5225 isCommutedMOVL(&BVOps[0], 4, true) ||
5226 isSHUFPMask(&BVOps[0], 4) ||
5227 isCommutedSHUFP(&BVOps[0], 4));
5228 }
5229 return false;
5230}
5231
5232//===----------------------------------------------------------------------===//
5233// X86 Scheduler Hooks
5234//===----------------------------------------------------------------------===//
5235
5236MachineBasicBlock *
5237X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5238 MachineBasicBlock *BB) {
5239 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5240 switch (MI->getOpcode()) {
5241 default: assert(false && "Unexpected instr type to insert");
5242 case X86::CMOV_FR32:
5243 case X86::CMOV_FR64:
5244 case X86::CMOV_V4F32:
5245 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00005246 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005247 // To "insert" a SELECT_CC instruction, we actually have to insert the
5248 // diamond control-flow pattern. The incoming instruction knows the
5249 // destination vreg to set, the condition code register to branch on, the
5250 // true/false values to select between, and a branch opcode to use.
5251 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5252 ilist<MachineBasicBlock>::iterator It = BB;
5253 ++It;
5254
5255 // thisMBB:
5256 // ...
5257 // TrueVal = ...
5258 // cmpTY ccX, r1, r2
5259 // bCC copy1MBB
5260 // fallthrough --> copy0MBB
5261 MachineBasicBlock *thisMBB = BB;
5262 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5263 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5264 unsigned Opc =
5265 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5266 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5267 MachineFunction *F = BB->getParent();
5268 F->getBasicBlockList().insert(It, copy0MBB);
5269 F->getBasicBlockList().insert(It, sinkMBB);
5270 // Update machine-CFG edges by first adding all successors of the current
5271 // block to the new block which will contain the Phi node for the select.
5272 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5273 e = BB->succ_end(); i != e; ++i)
5274 sinkMBB->addSuccessor(*i);
5275 // Next, remove all successors of the current block, and add the true
5276 // and fallthrough blocks as its successors.
5277 while(!BB->succ_empty())
5278 BB->removeSuccessor(BB->succ_begin());
5279 BB->addSuccessor(copy0MBB);
5280 BB->addSuccessor(sinkMBB);
5281
5282 // copy0MBB:
5283 // %FalseValue = ...
5284 // # fallthrough to sinkMBB
5285 BB = copy0MBB;
5286
5287 // Update machine-CFG edges
5288 BB->addSuccessor(sinkMBB);
5289
5290 // sinkMBB:
5291 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5292 // ...
5293 BB = sinkMBB;
5294 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5295 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5296 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5297
5298 delete MI; // The pseudo instruction is gone now.
5299 return BB;
5300 }
5301
5302 case X86::FP32_TO_INT16_IN_MEM:
5303 case X86::FP32_TO_INT32_IN_MEM:
5304 case X86::FP32_TO_INT64_IN_MEM:
5305 case X86::FP64_TO_INT16_IN_MEM:
5306 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005307 case X86::FP64_TO_INT64_IN_MEM:
5308 case X86::FP80_TO_INT16_IN_MEM:
5309 case X86::FP80_TO_INT32_IN_MEM:
5310 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005311 // Change the floating point control register to use "round towards zero"
5312 // mode when truncating to an integer value.
5313 MachineFunction *F = BB->getParent();
5314 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5315 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5316
5317 // Load the old value of the high byte of the control word...
5318 unsigned OldCW =
5319 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5320 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5321
5322 // Set the high part to be round to zero...
5323 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5324 .addImm(0xC7F);
5325
5326 // Reload the modified control word now...
5327 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5328
5329 // Restore the memory image of control word to original value
5330 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5331 .addReg(OldCW);
5332
5333 // Get the X86 opcode to use.
5334 unsigned Opc;
5335 switch (MI->getOpcode()) {
5336 default: assert(0 && "illegal opcode!");
5337 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5338 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5339 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5340 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5341 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5342 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005343 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5344 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5345 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005346 }
5347
5348 X86AddressMode AM;
5349 MachineOperand &Op = MI->getOperand(0);
5350 if (Op.isRegister()) {
5351 AM.BaseType = X86AddressMode::RegBase;
5352 AM.Base.Reg = Op.getReg();
5353 } else {
5354 AM.BaseType = X86AddressMode::FrameIndexBase;
5355 AM.Base.FrameIndex = Op.getFrameIndex();
5356 }
5357 Op = MI->getOperand(1);
5358 if (Op.isImmediate())
5359 AM.Scale = Op.getImm();
5360 Op = MI->getOperand(2);
5361 if (Op.isImmediate())
5362 AM.IndexReg = Op.getImm();
5363 Op = MI->getOperand(3);
5364 if (Op.isGlobalAddress()) {
5365 AM.GV = Op.getGlobal();
5366 } else {
5367 AM.Disp = Op.getImm();
5368 }
5369 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5370 .addReg(MI->getOperand(4).getReg());
5371
5372 // Reload the original control word now.
5373 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5374
5375 delete MI; // The pseudo instruction is gone now.
5376 return BB;
5377 }
5378 }
5379}
5380
5381//===----------------------------------------------------------------------===//
5382// X86 Optimization Hooks
5383//===----------------------------------------------------------------------===//
5384
5385void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5386 uint64_t Mask,
5387 uint64_t &KnownZero,
5388 uint64_t &KnownOne,
5389 const SelectionDAG &DAG,
5390 unsigned Depth) const {
5391 unsigned Opc = Op.getOpcode();
5392 assert((Opc >= ISD::BUILTIN_OP_END ||
5393 Opc == ISD::INTRINSIC_WO_CHAIN ||
5394 Opc == ISD::INTRINSIC_W_CHAIN ||
5395 Opc == ISD::INTRINSIC_VOID) &&
5396 "Should use MaskedValueIsZero if you don't know whether Op"
5397 " is a target node!");
5398
5399 KnownZero = KnownOne = 0; // Don't know anything.
5400 switch (Opc) {
5401 default: break;
5402 case X86ISD::SETCC:
5403 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5404 break;
5405 }
5406}
5407
5408/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5409/// element of the result of the vector shuffle.
5410static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5411 MVT::ValueType VT = N->getValueType(0);
5412 SDOperand PermMask = N->getOperand(2);
5413 unsigned NumElems = PermMask.getNumOperands();
5414 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5415 i %= NumElems;
5416 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5417 return (i == 0)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005418 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005419 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5420 SDOperand Idx = PermMask.getOperand(i);
5421 if (Idx.getOpcode() == ISD::UNDEF)
5422 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5423 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5424 }
5425 return SDOperand();
5426}
5427
5428/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5429/// node is a GlobalAddress + an offset.
5430static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5431 unsigned Opc = N->getOpcode();
5432 if (Opc == X86ISD::Wrapper) {
5433 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5434 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5435 return true;
5436 }
5437 } else if (Opc == ISD::ADD) {
5438 SDOperand N1 = N->getOperand(0);
5439 SDOperand N2 = N->getOperand(1);
5440 if (isGAPlusOffset(N1.Val, GA, Offset)) {
5441 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5442 if (V) {
5443 Offset += V->getSignExtended();
5444 return true;
5445 }
5446 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5447 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5448 if (V) {
5449 Offset += V->getSignExtended();
5450 return true;
5451 }
5452 }
5453 }
5454 return false;
5455}
5456
5457/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5458/// + Dist * Size.
5459static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5460 MachineFrameInfo *MFI) {
5461 if (N->getOperand(0).Val != Base->getOperand(0).Val)
5462 return false;
5463
5464 SDOperand Loc = N->getOperand(1);
5465 SDOperand BaseLoc = Base->getOperand(1);
5466 if (Loc.getOpcode() == ISD::FrameIndex) {
5467 if (BaseLoc.getOpcode() != ISD::FrameIndex)
5468 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00005469 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
5470 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005471 int FS = MFI->getObjectSize(FI);
5472 int BFS = MFI->getObjectSize(BFI);
5473 if (FS != BFS || FS != Size) return false;
5474 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5475 } else {
5476 GlobalValue *GV1 = NULL;
5477 GlobalValue *GV2 = NULL;
5478 int64_t Offset1 = 0;
5479 int64_t Offset2 = 0;
5480 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5481 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5482 if (isGA1 && isGA2 && GV1 == GV2)
5483 return Offset1 == (Offset2 + Dist*Size);
5484 }
5485
5486 return false;
5487}
5488
5489static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5490 const X86Subtarget *Subtarget) {
5491 GlobalValue *GV;
5492 int64_t Offset;
5493 if (isGAPlusOffset(Base, GV, Offset))
5494 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5495 else {
5496 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00005497 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005498 if (BFI < 0)
5499 // Fixed objects do not specify alignment, however the offsets are known.
5500 return ((Subtarget->getStackAlignment() % 16) == 0 &&
5501 (MFI->getObjectOffset(BFI) % 16) == 0);
5502 else
5503 return MFI->getObjectAlignment(BFI) >= 16;
5504 }
5505 return false;
5506}
5507
5508
5509/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5510/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5511/// if the load addresses are consecutive, non-overlapping, and in the right
5512/// order.
5513static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5514 const X86Subtarget *Subtarget) {
5515 MachineFunction &MF = DAG.getMachineFunction();
5516 MachineFrameInfo *MFI = MF.getFrameInfo();
5517 MVT::ValueType VT = N->getValueType(0);
5518 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5519 SDOperand PermMask = N->getOperand(2);
5520 int NumElems = (int)PermMask.getNumOperands();
5521 SDNode *Base = NULL;
5522 for (int i = 0; i < NumElems; ++i) {
5523 SDOperand Idx = PermMask.getOperand(i);
5524 if (Idx.getOpcode() == ISD::UNDEF) {
5525 if (!Base) return SDOperand();
5526 } else {
5527 SDOperand Arg =
5528 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5529 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5530 return SDOperand();
5531 if (!Base)
5532 Base = Arg.Val;
5533 else if (!isConsecutiveLoad(Arg.Val, Base,
5534 i, MVT::getSizeInBits(EVT)/8,MFI))
5535 return SDOperand();
5536 }
5537 }
5538
5539 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00005540 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005541 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005542 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00005543 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005544 } else {
Dan Gohman11821702007-07-27 17:16:43 +00005545 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5546 LD->getSrcValueOffset(), LD->isVolatile(),
5547 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005548 }
5549}
5550
5551/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5552static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5553 const X86Subtarget *Subtarget) {
5554 SDOperand Cond = N->getOperand(0);
5555
5556 // If we have SSE[12] support, try to form min/max nodes.
5557 if (Subtarget->hasSSE2() &&
5558 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5559 if (Cond.getOpcode() == ISD::SETCC) {
5560 // Get the LHS/RHS of the select.
5561 SDOperand LHS = N->getOperand(1);
5562 SDOperand RHS = N->getOperand(2);
5563 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5564
5565 unsigned Opcode = 0;
5566 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5567 switch (CC) {
5568 default: break;
5569 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5570 case ISD::SETULE:
5571 case ISD::SETLE:
5572 if (!UnsafeFPMath) break;
5573 // FALL THROUGH.
5574 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5575 case ISD::SETLT:
5576 Opcode = X86ISD::FMIN;
5577 break;
5578
5579 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5580 case ISD::SETUGT:
5581 case ISD::SETGT:
5582 if (!UnsafeFPMath) break;
5583 // FALL THROUGH.
5584 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5585 case ISD::SETGE:
5586 Opcode = X86ISD::FMAX;
5587 break;
5588 }
5589 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5590 switch (CC) {
5591 default: break;
5592 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5593 case ISD::SETUGT:
5594 case ISD::SETGT:
5595 if (!UnsafeFPMath) break;
5596 // FALL THROUGH.
5597 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5598 case ISD::SETGE:
5599 Opcode = X86ISD::FMIN;
5600 break;
5601
5602 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5603 case ISD::SETULE:
5604 case ISD::SETLE:
5605 if (!UnsafeFPMath) break;
5606 // FALL THROUGH.
5607 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5608 case ISD::SETLT:
5609 Opcode = X86ISD::FMAX;
5610 break;
5611 }
5612 }
5613
5614 if (Opcode)
5615 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5616 }
5617
5618 }
5619
5620 return SDOperand();
5621}
5622
5623
5624SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5625 DAGCombinerInfo &DCI) const {
5626 SelectionDAG &DAG = DCI.DAG;
5627 switch (N->getOpcode()) {
5628 default: break;
5629 case ISD::VECTOR_SHUFFLE:
5630 return PerformShuffleCombine(N, DAG, Subtarget);
5631 case ISD::SELECT:
5632 return PerformSELECTCombine(N, DAG, Subtarget);
5633 }
5634
5635 return SDOperand();
5636}
5637
5638//===----------------------------------------------------------------------===//
5639// X86 Inline Assembly Support
5640//===----------------------------------------------------------------------===//
5641
5642/// getConstraintType - Given a constraint letter, return the type of
5643/// constraint it is for this target.
5644X86TargetLowering::ConstraintType
5645X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5646 if (Constraint.size() == 1) {
5647 switch (Constraint[0]) {
5648 case 'A':
5649 case 'r':
5650 case 'R':
5651 case 'l':
5652 case 'q':
5653 case 'Q':
5654 case 'x':
5655 case 'Y':
5656 return C_RegisterClass;
5657 default:
5658 break;
5659 }
5660 }
5661 return TargetLowering::getConstraintType(Constraint);
5662}
5663
Chris Lattnera531abc2007-08-25 00:47:38 +00005664/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5665/// vector. If it is invalid, don't add anything to Ops.
5666void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5667 char Constraint,
5668 std::vector<SDOperand>&Ops,
5669 SelectionDAG &DAG) {
5670 SDOperand Result(0, 0);
5671
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005672 switch (Constraint) {
5673 default: break;
5674 case 'I':
5675 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005676 if (C->getValue() <= 31) {
5677 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5678 break;
5679 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005680 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005681 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005682 case 'N':
5683 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005684 if (C->getValue() <= 255) {
5685 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5686 break;
5687 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005688 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005689 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005690 case 'i': {
5691 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005692 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5693 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5694 break;
5695 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005696
5697 // If we are in non-pic codegen mode, we allow the address of a global (with
5698 // an optional displacement) to be used with 'i'.
5699 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5700 int64_t Offset = 0;
5701
5702 // Match either (GA) or (GA+C)
5703 if (GA) {
5704 Offset = GA->getOffset();
5705 } else if (Op.getOpcode() == ISD::ADD) {
5706 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5707 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5708 if (C && GA) {
5709 Offset = GA->getOffset()+C->getValue();
5710 } else {
5711 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5712 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5713 if (C && GA)
5714 Offset = GA->getOffset()+C->getValue();
5715 else
5716 C = 0, GA = 0;
5717 }
5718 }
5719
5720 if (GA) {
5721 // If addressing this global requires a load (e.g. in PIC mode), we can't
5722 // match.
5723 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5724 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005725 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005726
5727 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5728 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005729 Result = Op;
5730 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005731 }
5732
5733 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005734 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005735 }
5736 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005737
5738 if (Result.Val) {
5739 Ops.push_back(Result);
5740 return;
5741 }
5742 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005743}
5744
5745std::vector<unsigned> X86TargetLowering::
5746getRegClassForInlineAsmConstraint(const std::string &Constraint,
5747 MVT::ValueType VT) const {
5748 if (Constraint.size() == 1) {
5749 // FIXME: not handling fp-stack yet!
5750 switch (Constraint[0]) { // GCC X86 Constraint Letters
5751 default: break; // Unknown constraint letter
5752 case 'A': // EAX/EDX
5753 if (VT == MVT::i32 || VT == MVT::i64)
5754 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5755 break;
5756 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5757 case 'Q': // Q_REGS
5758 if (VT == MVT::i32)
5759 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5760 else if (VT == MVT::i16)
5761 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5762 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005763 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Chris Lattner35032592007-11-04 06:51:12 +00005764 else if (VT == MVT::i64)
5765 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
5766 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005767 }
5768 }
5769
5770 return std::vector<unsigned>();
5771}
5772
5773std::pair<unsigned, const TargetRegisterClass*>
5774X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5775 MVT::ValueType VT) const {
5776 // First, see if this is a constraint that directly corresponds to an LLVM
5777 // register class.
5778 if (Constraint.size() == 1) {
5779 // GCC Constraint Letters
5780 switch (Constraint[0]) {
5781 default: break;
5782 case 'r': // GENERAL_REGS
5783 case 'R': // LEGACY_REGS
5784 case 'l': // INDEX_REGS
5785 if (VT == MVT::i64 && Subtarget->is64Bit())
5786 return std::make_pair(0U, X86::GR64RegisterClass);
5787 if (VT == MVT::i32)
5788 return std::make_pair(0U, X86::GR32RegisterClass);
5789 else if (VT == MVT::i16)
5790 return std::make_pair(0U, X86::GR16RegisterClass);
5791 else if (VT == MVT::i8)
5792 return std::make_pair(0U, X86::GR8RegisterClass);
5793 break;
5794 case 'y': // MMX_REGS if MMX allowed.
5795 if (!Subtarget->hasMMX()) break;
5796 return std::make_pair(0U, X86::VR64RegisterClass);
5797 break;
5798 case 'Y': // SSE_REGS if SSE2 allowed
5799 if (!Subtarget->hasSSE2()) break;
5800 // FALL THROUGH.
5801 case 'x': // SSE_REGS if SSE1 allowed
5802 if (!Subtarget->hasSSE1()) break;
5803
5804 switch (VT) {
5805 default: break;
5806 // Scalar SSE types.
5807 case MVT::f32:
5808 case MVT::i32:
5809 return std::make_pair(0U, X86::FR32RegisterClass);
5810 case MVT::f64:
5811 case MVT::i64:
5812 return std::make_pair(0U, X86::FR64RegisterClass);
5813 // Vector types.
5814 case MVT::v16i8:
5815 case MVT::v8i16:
5816 case MVT::v4i32:
5817 case MVT::v2i64:
5818 case MVT::v4f32:
5819 case MVT::v2f64:
5820 return std::make_pair(0U, X86::VR128RegisterClass);
5821 }
5822 break;
5823 }
5824 }
5825
5826 // Use the default implementation in TargetLowering to convert the register
5827 // constraint into a member of a register class.
5828 std::pair<unsigned, const TargetRegisterClass*> Res;
5829 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5830
5831 // Not found as a standard register?
5832 if (Res.second == 0) {
5833 // GCC calls "st(0)" just plain "st".
5834 if (StringsEqualNoCase("{st}", Constraint)) {
5835 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00005836 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005837 }
5838
5839 return Res;
5840 }
5841
5842 // Otherwise, check to see if this is a register class of the wrong value
5843 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5844 // turn into {ax},{dx}.
5845 if (Res.second->hasType(VT))
5846 return Res; // Correct type already, nothing to do.
5847
5848 // All of the single-register GCC register classes map their values onto
5849 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5850 // really want an 8-bit or 32-bit register, map to the appropriate register
5851 // class and return the appropriate register.
5852 if (Res.second != X86::GR16RegisterClass)
5853 return Res;
5854
5855 if (VT == MVT::i8) {
5856 unsigned DestReg = 0;
5857 switch (Res.first) {
5858 default: break;
5859 case X86::AX: DestReg = X86::AL; break;
5860 case X86::DX: DestReg = X86::DL; break;
5861 case X86::CX: DestReg = X86::CL; break;
5862 case X86::BX: DestReg = X86::BL; break;
5863 }
5864 if (DestReg) {
5865 Res.first = DestReg;
5866 Res.second = Res.second = X86::GR8RegisterClass;
5867 }
5868 } else if (VT == MVT::i32) {
5869 unsigned DestReg = 0;
5870 switch (Res.first) {
5871 default: break;
5872 case X86::AX: DestReg = X86::EAX; break;
5873 case X86::DX: DestReg = X86::EDX; break;
5874 case X86::CX: DestReg = X86::ECX; break;
5875 case X86::BX: DestReg = X86::EBX; break;
5876 case X86::SI: DestReg = X86::ESI; break;
5877 case X86::DI: DestReg = X86::EDI; break;
5878 case X86::BP: DestReg = X86::EBP; break;
5879 case X86::SP: DestReg = X86::ESP; break;
5880 }
5881 if (DestReg) {
5882 Res.first = DestReg;
5883 Res.second = Res.second = X86::GR32RegisterClass;
5884 }
5885 } else if (VT == MVT::i64) {
5886 unsigned DestReg = 0;
5887 switch (Res.first) {
5888 default: break;
5889 case X86::AX: DestReg = X86::RAX; break;
5890 case X86::DX: DestReg = X86::RDX; break;
5891 case X86::CX: DestReg = X86::RCX; break;
5892 case X86::BX: DestReg = X86::RBX; break;
5893 case X86::SI: DestReg = X86::RSI; break;
5894 case X86::DI: DestReg = X86::RDI; break;
5895 case X86::BP: DestReg = X86::RBP; break;
5896 case X86::SP: DestReg = X86::RSP; break;
5897 }
5898 if (DestReg) {
5899 Res.first = DestReg;
5900 Res.second = Res.second = X86::GR64RegisterClass;
5901 }
5902 }
5903
5904 return Res;
5905}