blob: 0d44a3f593cc3c9828caa27b8d638b2f9341185f [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
508 if (LHS->getSCEVType() != RHS->getSCEVType())
509 return LHS->getSCEVType() < RHS->getSCEVType();
510
511 // Aside from the getSCEVType() ordering, the particular ordering
512 // isn't very important except that it's beneficial to be consistent,
513 // so that (a + b) and (b + a) don't end up as different expressions.
514
515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516 // not as complete as it could be.
517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
Dan Gohman5be18e82009-05-19 02:15:55 +0000520 // Order pointer values after integer values. This helps SCEVExpander
521 // form GEPs.
Duncan Sands1df98592010-02-16 11:11:14 +0000522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000523 return false;
Duncan Sands1df98592010-02-16 11:11:14 +0000524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000525 return true;
526
Dan Gohman72861302009-05-07 14:39:04 +0000527 // Compare getValueID values.
528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531 // Sort arguments by their position.
532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533 const Argument *RA = cast<Argument>(RU->getValue());
534 return LA->getArgNo() < RA->getArgNo();
535 }
536
537 // For instructions, compare their loop depth, and their opcode.
538 // This is pretty loose.
539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540 Instruction *RV = cast<Instruction>(RU->getValue());
541
542 // Compare loop depths.
543 if (LI->getLoopDepth(LV->getParent()) !=
544 LI->getLoopDepth(RV->getParent()))
545 return LI->getLoopDepth(LV->getParent()) <
546 LI->getLoopDepth(RV->getParent());
547
548 // Compare opcodes.
549 if (LV->getOpcode() != RV->getOpcode())
550 return LV->getOpcode() < RV->getOpcode();
551
552 // Compare the number of operands.
553 if (LV->getNumOperands() != RV->getNumOperands())
554 return LV->getNumOperands() < RV->getNumOperands();
555 }
556
557 return false;
558 }
559
Dan Gohman4dfad292009-06-14 22:51:25 +0000560 // Compare constant values.
561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000565 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566 }
567
568 // Compare addrec loop depths.
569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573 }
Dan Gohman72861302009-05-07 14:39:04 +0000574
575 // Lexicographically compare n-ary expressions.
576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579 if (i >= RC->getNumOperands())
580 return false;
581 if (operator()(LC->getOperand(i), RC->getOperand(i)))
582 return true;
583 if (operator()(RC->getOperand(i), LC->getOperand(i)))
584 return false;
585 }
586 return LC->getNumOperands() < RC->getNumOperands();
587 }
588
Dan Gohmana6b35e22009-05-07 19:23:21 +0000589 // Lexicographically compare udiv expressions.
590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592 if (operator()(LC->getLHS(), RC->getLHS()))
593 return true;
594 if (operator()(RC->getLHS(), LC->getLHS()))
595 return false;
596 if (operator()(LC->getRHS(), RC->getRHS()))
597 return true;
598 if (operator()(RC->getRHS(), LC->getRHS()))
599 return false;
600 return false;
601 }
602
Dan Gohman72861302009-05-07 14:39:04 +0000603 // Compare cast expressions by operand.
604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606 return operator()(LC->getOperand(), RC->getOperand());
607 }
608
Torok Edwinc23197a2009-07-14 16:55:14 +0000609 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000610 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000620/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000621/// results from this routine. In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000626 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000627 if (Ops.size() < 2) return; // Noop
628 if (Ops.size() == 2) {
629 // This is the common case, which also happens to be trivially simple.
630 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 std::swap(Ops[0], Ops[1]);
633 return;
634 }
635
636 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000638
639 // Now that we are sorted by complexity, group elements of the same
640 // complexity. Note that this is, at worst, N^2, but the vector is likely to
641 // be extremely short in practice. Note that we take this approach because we
642 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000644 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000645 unsigned Complexity = S->getSCEVType();
646
647 // If there are any objects of the same complexity and same value as this
648 // one, group them.
649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650 if (Ops[j] == S) { // Found a duplicate.
651 // Move it to immediately after i'th element.
652 std::swap(Ops[i+1], Ops[j]);
653 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000654 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000655 }
656 }
657 }
658}
659
Chris Lattner53e677a2004-04-02 20:23:17 +0000660
Chris Lattner53e677a2004-04-02 20:23:17 +0000661
662//===----------------------------------------------------------------------===//
663// Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000667/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000669 ScalarEvolution &SE,
670 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // Handle the simplest case efficiently.
672 if (K == 1)
673 return SE.getTruncateOrZeroExtend(It, ResultTy);
674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 // We are using the following formula for BC(It, K):
676 //
677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // Suppose, W is the bitwidth of the return value. We must be prepared for
680 // overflow. Hence, we must assure that the result of our computation is
681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
682 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000685 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // This formula is trivially equivalent to the previous formula. However,
692 // this formula can be implemented much more efficiently. The trick is that
693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694 // arithmetic. To do exact division in modular arithmetic, all we have
695 // to do is multiply by the inverse. Therefore, this step can be done at
696 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // The next issue is how to safely do the division by 2^T. The way this
699 // is done is by doing the multiplication step at a width of at least W + T
700 // bits. This way, the bottom W+T bits of the product are accurate. Then,
701 // when we perform the division by 2^T (which is equivalent to a right shift
702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
703 // truncated out after the division by 2^T.
704 //
705 // In comparison to just directly using the first formula, this technique
706 // is much more efficient; using the first formula requires W * K bits,
707 // but this formula less than W + K bits. Also, the first formula requires
708 // a division step, whereas this formula only requires multiplies and shifts.
709 //
710 // It doesn't matter whether the subtraction step is done in the calculation
711 // width or the input iteration count's width; if the subtraction overflows,
712 // the result must be zero anyway. We prefer here to do it in the width of
713 // the induction variable because it helps a lot for certain cases; CodeGen
714 // isn't smart enough to ignore the overflow, which leads to much less
715 // efficient code if the width of the subtraction is wider than the native
716 // register width.
717 //
718 // (It's possible to not widen at all by pulling out factors of 2 before
719 // the multiplication; for example, K=2 can be calculated as
720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721 // extra arithmetic, so it's not an obvious win, and it gets
722 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Protection from insane SCEVs; this bound is conservative,
725 // but it probably doesn't matter.
726 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000727 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000729 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000730
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 // Calculate K! / 2^T and T; we divide out the factors of two before
732 // multiplying for calculating K! / 2^T to avoid overflow.
733 // Other overflow doesn't matter because we only care about the bottom
734 // W bits of the result.
735 APInt OddFactorial(W, 1);
736 unsigned T = 1;
737 for (unsigned i = 3; i <= K; ++i) {
738 APInt Mult(W, i);
739 unsigned TwoFactors = Mult.countTrailingZeros();
740 T += TwoFactors;
741 Mult = Mult.lshr(TwoFactors);
742 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000743 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000744
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000746 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000748 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751 // Calculate the multiplicative inverse of K! / 2^T;
752 // this multiplication factor will perform the exact division by
753 // K! / 2^T.
754 APInt Mod = APInt::getSignedMinValue(W+1);
755 APInt MultiplyFactor = OddFactorial.zext(W+1);
756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757 MultiplyFactor = MultiplyFactor.trunc(W);
758
759 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 for (unsigned i = 1; i != K; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000764 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 Dividend = SE.getMulExpr(Dividend,
766 SE.getTruncateOrZeroExtend(S, CalculationTy));
767 }
768
769 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771
772 // Truncate the result, and divide by K! / 2^T.
773
774 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Chris Lattner53e677a2004-04-02 20:23:17 +0000778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number. We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000785/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000786///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000788 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791 // The computation is correct in the face of overflow provided that the
792 // multiplication is performed _after_ the evaluation of the binomial
793 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000795 if (isa<SCEVCouldNotCompute>(Coeff))
796 return Coeff;
797
798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
800 return Result;
801}
802
Chris Lattner53e677a2004-04-02 20:23:17 +0000803//===----------------------------------------------------------------------===//
804// SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
Dan Gohman0bba49c2009-07-07 17:06:11 +0000807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000808 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000810 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000811 assert(isSCEVable(Ty) &&
812 "This is not a conversion to a SCEVable type!");
813 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814
Dan Gohmanc050fd92009-07-13 20:50:19 +0000815 FoldingSetNodeID ID;
816 ID.AddInteger(scTruncate);
817 ID.AddPointer(Op);
818 ID.AddPointer(Ty);
819 void *IP = 0;
820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000822 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000824 return getConstant(
825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000826
Dan Gohman20900ca2009-04-22 16:20:48 +0000827 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000828 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000829 return getTruncateExpr(ST->getOperand(), Ty);
830
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000833 return getTruncateOrSignExtend(SS->getOperand(), Ty);
834
835 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
838
Dan Gohman6864db62009-06-18 16:24:47 +0000839 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000841 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000842 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000843 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
844 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000845 }
846
Dan Gohmanc050fd92009-07-13 20:50:19 +0000847 // The cast wasn't folded; create an explicit cast node.
848 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000849 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000850 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
851 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000852 UniqueSCEVs.InsertNode(S, IP);
853 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000854}
855
Dan Gohman0bba49c2009-07-07 17:06:11 +0000856const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000857 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000858 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000859 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000860 assert(isSCEVable(Ty) &&
861 "This is not a conversion to a SCEVable type!");
862 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000863
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000864 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000865 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000866 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000867 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
868 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000869 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000870 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000871
Dan Gohman20900ca2009-04-22 16:20:48 +0000872 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000873 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000874 return getZeroExtendExpr(SZ->getOperand(), Ty);
875
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000876 // Before doing any expensive analysis, check to see if we've already
877 // computed a SCEV for this Op and Ty.
878 FoldingSetNodeID ID;
879 ID.AddInteger(scZeroExtend);
880 ID.AddPointer(Op);
881 ID.AddPointer(Ty);
882 void *IP = 0;
883 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
884
Dan Gohman01ecca22009-04-27 20:16:15 +0000885 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000887 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000888 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000890 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000891 const SCEV *Start = AR->getStart();
892 const SCEV *Step = AR->getStepRecurrence(*this);
893 unsigned BitWidth = getTypeSizeInBits(AR->getType());
894 const Loop *L = AR->getLoop();
895
Dan Gohmaneb490a72009-07-25 01:22:26 +0000896 // If we have special knowledge that this addrec won't overflow,
897 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000898 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000899 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
900 getZeroExtendExpr(Step, Ty),
901 L);
902
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 // Check whether the backedge-taken count is SCEVCouldNotCompute.
904 // Note that this serves two purposes: It filters out loops that are
905 // simply not analyzable, and it covers the case where this code is
906 // being called from within backedge-taken count analysis, such that
907 // attempting to ask for the backedge-taken count would likely result
908 // in infinite recursion. In the later case, the analysis code will
909 // cope with a conservative value, and it will take care to purge
910 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000911 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000912 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000913 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000914 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000915
916 // Check whether the backedge-taken count can be losslessly casted to
917 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000919 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000920 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000921 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
922 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000923 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000924 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000925 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000926 const SCEV *Add = getAddExpr(Start, ZMul);
927 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000928 getAddExpr(getZeroExtendExpr(Start, WideTy),
929 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
930 getZeroExtendExpr(Step, WideTy)));
931 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000932 // Return the expression with the addrec on the outside.
933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000935 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000936
937 // Similar to above, only this time treat the step value as signed.
938 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000939 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000940 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000941 OperandExtendedAdd =
942 getAddExpr(getZeroExtendExpr(Start, WideTy),
943 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944 getSignExtendExpr(Step, WideTy)));
945 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000946 // Return the expression with the addrec on the outside.
947 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
948 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 L);
950 }
951
952 // If the backedge is guarded by a comparison with the pre-inc value
953 // the addrec is safe. Also, if the entry is guarded by a comparison
954 // with the start value and the backedge is guarded by a comparison
955 // with the post-inc value, the addrec is safe.
956 if (isKnownPositive(Step)) {
957 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
958 getUnsignedRange(Step).getUnsignedMax());
959 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000960 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000961 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
962 AR->getPostIncExpr(*this), N)))
963 // Return the expression with the addrec on the outside.
964 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965 getZeroExtendExpr(Step, Ty),
966 L);
967 } else if (isKnownNegative(Step)) {
968 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
969 getSignedRange(Step).getSignedMin());
970 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
Dan Gohman3948d0b2010-04-11 19:27:13 +0000971 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
Dan Gohman85b05a22009-07-13 21:35:55 +0000972 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
973 AR->getPostIncExpr(*this), N)))
974 // Return the expression with the addrec on the outside.
975 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
976 getSignExtendExpr(Step, Ty),
977 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000978 }
979 }
980 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000981
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000982 // The cast wasn't folded; create an explicit cast node.
983 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000984 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000985 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
986 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000987 UniqueSCEVs.InsertNode(S, IP);
988 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000989}
990
Dan Gohman0bba49c2009-07-07 17:06:11 +0000991const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000992 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000993 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000994 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000995 assert(isSCEVable(Ty) &&
996 "This is not a conversion to a SCEVable type!");
997 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000998
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000999 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001000 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001001 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001002 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1003 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001004 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +00001005 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001006
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001008 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001009 return getSignExtendExpr(SS->getOperand(), Ty);
1010
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001011 // Before doing any expensive analysis, check to see if we've already
1012 // computed a SCEV for this Op and Ty.
1013 FoldingSetNodeID ID;
1014 ID.AddInteger(scSignExtend);
1015 ID.AddPointer(Op);
1016 ID.AddPointer(Ty);
1017 void *IP = 0;
1018 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1019
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001021 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001022 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001023 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001024 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001026 const SCEV *Start = AR->getStart();
1027 const SCEV *Step = AR->getStepRecurrence(*this);
1028 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1029 const Loop *L = AR->getLoop();
1030
Dan Gohmaneb490a72009-07-25 01:22:26 +00001031 // If we have special knowledge that this addrec won't overflow,
1032 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001033 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001034 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
1036 L);
1037
Dan Gohman01ecca22009-04-27 20:16:15 +00001038 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1039 // Note that this serves two purposes: It filters out loops that are
1040 // simply not analyzable, and it covers the case where this code is
1041 // being called from within backedge-taken count analysis, such that
1042 // attempting to ask for the backedge-taken count would likely result
1043 // in infinite recursion. In the later case, the analysis code will
1044 // cope with a conservative value, and it will take care to purge
1045 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001046 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001047 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001048 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001049 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001050
1051 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001052 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001053 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001054 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001055 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001056 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1057 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001058 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001059 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001060 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001061 const SCEV *Add = getAddExpr(Start, SMul);
1062 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001063 getAddExpr(getSignExtendExpr(Start, WideTy),
1064 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065 getSignExtendExpr(Step, WideTy)));
1066 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001067 // Return the expression with the addrec on the outside.
1068 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001070 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001071
1072 // Similar to above, only this time treat the step value as unsigned.
1073 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001074 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001075 Add = getAddExpr(Start, UMul);
1076 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001077 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001078 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001080 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001081 // Return the expression with the addrec on the outside.
1082 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083 getZeroExtendExpr(Step, Ty),
1084 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001085 }
1086
1087 // If the backedge is guarded by a comparison with the pre-inc value
1088 // the addrec is safe. Also, if the entry is guarded by a comparison
1089 // with the start value and the backedge is guarded by a comparison
1090 // with the post-inc value, the addrec is safe.
1091 if (isKnownPositive(Step)) {
1092 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1093 getSignedRange(Step).getSignedMax());
1094 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001095 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001096 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1097 AR->getPostIncExpr(*this), N)))
1098 // Return the expression with the addrec on the outside.
1099 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1100 getSignExtendExpr(Step, Ty),
1101 L);
1102 } else if (isKnownNegative(Step)) {
1103 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1104 getSignedRange(Step).getSignedMin());
1105 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001106 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001107 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1108 AR->getPostIncExpr(*this), N)))
1109 // Return the expression with the addrec on the outside.
1110 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111 getSignExtendExpr(Step, Ty),
1112 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001113 }
1114 }
1115 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001116
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001117 // The cast wasn't folded; create an explicit cast node.
1118 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001119 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001120 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1121 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001122 UniqueSCEVs.InsertNode(S, IP);
1123 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001124}
1125
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001126/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1127/// unspecified bits out to the given type.
1128///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001129const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001130 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001131 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1132 "This is not an extending conversion!");
1133 assert(isSCEVable(Ty) &&
1134 "This is not a conversion to a SCEVable type!");
1135 Ty = getEffectiveSCEVType(Ty);
1136
1137 // Sign-extend negative constants.
1138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1139 if (SC->getValue()->getValue().isNegative())
1140 return getSignExtendExpr(Op, Ty);
1141
1142 // Peel off a truncate cast.
1143 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001144 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001145 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1146 return getAnyExtendExpr(NewOp, Ty);
1147 return getTruncateOrNoop(NewOp, Ty);
1148 }
1149
1150 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001151 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001152 if (!isa<SCEVZeroExtendExpr>(ZExt))
1153 return ZExt;
1154
1155 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001156 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001157 if (!isa<SCEVSignExtendExpr>(SExt))
1158 return SExt;
1159
Dan Gohmana10756e2010-01-21 02:09:26 +00001160 // Force the cast to be folded into the operands of an addrec.
1161 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1162 SmallVector<const SCEV *, 4> Ops;
1163 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1164 I != E; ++I)
1165 Ops.push_back(getAnyExtendExpr(*I, Ty));
1166 return getAddRecExpr(Ops, AR->getLoop());
1167 }
1168
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001169 // If the expression is obviously signed, use the sext cast value.
1170 if (isa<SCEVSMaxExpr>(Op))
1171 return SExt;
1172
1173 // Absent any other information, use the zext cast value.
1174 return ZExt;
1175}
1176
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001177/// CollectAddOperandsWithScales - Process the given Ops list, which is
1178/// a list of operands to be added under the given scale, update the given
1179/// map. This is a helper function for getAddRecExpr. As an example of
1180/// what it does, given a sequence of operands that would form an add
1181/// expression like this:
1182///
1183/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1184///
1185/// where A and B are constants, update the map with these values:
1186///
1187/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1188///
1189/// and add 13 + A*B*29 to AccumulatedConstant.
1190/// This will allow getAddRecExpr to produce this:
1191///
1192/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1193///
1194/// This form often exposes folding opportunities that are hidden in
1195/// the original operand list.
1196///
1197/// Return true iff it appears that any interesting folding opportunities
1198/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1199/// the common case where no interesting opportunities are present, and
1200/// is also used as a check to avoid infinite recursion.
1201///
1202static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001203CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1204 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001205 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001206 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001207 const APInt &Scale,
1208 ScalarEvolution &SE) {
1209 bool Interesting = false;
1210
1211 // Iterate over the add operands.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001212 for (unsigned i = 0, e = NumOperands; i != e; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001213 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1214 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1215 APInt NewScale =
1216 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1217 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1218 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001219 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001220 Interesting |=
1221 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001222 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001223 NewScale, SE);
1224 } else {
1225 // A multiplication of a constant with some other value. Update
1226 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001227 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1228 const SCEV *Key = SE.getMulExpr(MulOps);
1229 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001230 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001231 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001232 NewOps.push_back(Pair.first->first);
1233 } else {
1234 Pair.first->second += NewScale;
1235 // The map already had an entry for this value, which may indicate
1236 // a folding opportunity.
1237 Interesting = true;
1238 }
1239 }
1240 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1241 // Pull a buried constant out to the outside.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001242 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001243 Interesting = true;
1244 AccumulatedConstant += Scale * C->getValue()->getValue();
1245 } else {
1246 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001247 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001248 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001249 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001250 NewOps.push_back(Pair.first->first);
1251 } else {
1252 Pair.first->second += Scale;
1253 // The map already had an entry for this value, which may indicate
1254 // a folding opportunity.
1255 Interesting = true;
1256 }
1257 }
1258 }
1259
1260 return Interesting;
1261}
1262
1263namespace {
1264 struct APIntCompare {
1265 bool operator()(const APInt &LHS, const APInt &RHS) const {
1266 return LHS.ult(RHS);
1267 }
1268 };
1269}
1270
Dan Gohman6c0866c2009-05-24 23:45:28 +00001271/// getAddExpr - Get a canonical add expression, or something simpler if
1272/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001273const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1274 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001275 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001276 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001277#ifndef NDEBUG
1278 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1279 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1280 getEffectiveSCEVType(Ops[0]->getType()) &&
1281 "SCEVAddExpr operand types don't match!");
1282#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001283
Dan Gohmana10756e2010-01-21 02:09:26 +00001284 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1285 if (!HasNUW && HasNSW) {
1286 bool All = true;
1287 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1288 if (!isKnownNonNegative(Ops[i])) {
1289 All = false;
1290 break;
1291 }
1292 if (All) HasNUW = true;
1293 }
1294
Chris Lattner53e677a2004-04-02 20:23:17 +00001295 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001296 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001297
1298 // If there are any constants, fold them together.
1299 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001300 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001302 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001305 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001307 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001308 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001309 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 }
1311
1312 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001313 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 Ops.erase(Ops.begin());
1315 --Idx;
1316 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001317
Dan Gohmanbca091d2010-04-12 23:08:18 +00001318 if (Ops.size() == 1) return Ops[0];
1319 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001320
Chris Lattner53e677a2004-04-02 20:23:17 +00001321 // Okay, check to see if the same value occurs in the operand list twice. If
1322 // so, merge them together into an multiply expression. Since we sorted the
1323 // list, these values are required to be adjacent.
1324 const Type *Ty = Ops[0]->getType();
1325 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1326 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1327 // Found a match, merge the two values into a multiply, and add any
1328 // remaining values to the result.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001329 const SCEV *Two = getIntegerSCEV(2, Ty);
1330 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001331 if (Ops.size() == 2)
1332 return Mul;
1333 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1334 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001335 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 }
1337
Dan Gohman728c7f32009-05-08 21:03:19 +00001338 // Check for truncates. If all the operands are truncated from the same
1339 // type, see if factoring out the truncate would permit the result to be
1340 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1341 // if the contents of the resulting outer trunc fold to something simple.
1342 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1343 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1344 const Type *DstType = Trunc->getType();
1345 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001346 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001347 bool Ok = true;
1348 // Check all the operands to see if they can be represented in the
1349 // source type of the truncate.
1350 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1351 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1352 if (T->getOperand()->getType() != SrcType) {
1353 Ok = false;
1354 break;
1355 }
1356 LargeOps.push_back(T->getOperand());
1357 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001358 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001359 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001360 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001361 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362 if (const SCEVTruncateExpr *T =
1363 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364 if (T->getOperand()->getType() != SrcType) {
1365 Ok = false;
1366 break;
1367 }
1368 LargeMulOps.push_back(T->getOperand());
1369 } else if (const SCEVConstant *C =
1370 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001371 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001372 } else {
1373 Ok = false;
1374 break;
1375 }
1376 }
1377 if (Ok)
1378 LargeOps.push_back(getMulExpr(LargeMulOps));
1379 } else {
1380 Ok = false;
1381 break;
1382 }
1383 }
1384 if (Ok) {
1385 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001386 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001387 // If it folds to something simple, use it. Otherwise, don't.
1388 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1389 return getTruncateExpr(Fold, DstType);
1390 }
1391 }
1392
1393 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001394 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1395 ++Idx;
1396
1397 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 if (Idx < Ops.size()) {
1399 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001400 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 // If we have an add, expand the add operands onto the end of the operands
1402 // list.
1403 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1404 Ops.erase(Ops.begin()+Idx);
1405 DeletedAdd = true;
1406 }
1407
1408 // If we deleted at least one add, we added operands to the end of the list,
1409 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001410 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001411 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001412 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 }
1414
1415 // Skip over the add expression until we get to a multiply.
1416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1417 ++Idx;
1418
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001419 // Check to see if there are any folding opportunities present with
1420 // operands multiplied by constant values.
1421 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1422 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 DenseMap<const SCEV *, APInt> M;
1424 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 APInt AccumulatedConstant(BitWidth, 0);
1426 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001427 Ops.data(), Ops.size(),
1428 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001429 // Some interesting folding opportunity is present, so its worthwhile to
1430 // re-generate the operands list. Group the operands by constant scale,
1431 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001432 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1433 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 E = NewOps.end(); I != E; ++I)
1435 MulOpLists[M.find(*I)->second].push_back(*I);
1436 // Re-generate the operands list.
1437 Ops.clear();
1438 if (AccumulatedConstant != 0)
1439 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001440 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1441 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001442 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001443 Ops.push_back(getMulExpr(getConstant(I->first),
1444 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001445 if (Ops.empty())
1446 return getIntegerSCEV(0, Ty);
1447 if (Ops.size() == 1)
1448 return Ops[0];
1449 return getAddExpr(Ops);
1450 }
1451 }
1452
Chris Lattner53e677a2004-04-02 20:23:17 +00001453 // If we are adding something to a multiply expression, make sure the
1454 // something is not already an operand of the multiply. If so, merge it into
1455 // the multiply.
1456 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001457 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001458 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001459 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001461 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001463 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 if (Mul->getNumOperands() != 2) {
1465 // If the multiply has more than two operands, we must get the
1466 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001467 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001469 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001471 const SCEV *One = getIntegerSCEV(1, Ty);
1472 const SCEV *AddOne = getAddExpr(InnerMul, One);
1473 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 if (Ops.size() == 2) return OuterMul;
1475 if (AddOp < Idx) {
1476 Ops.erase(Ops.begin()+AddOp);
1477 Ops.erase(Ops.begin()+Idx-1);
1478 } else {
1479 Ops.erase(Ops.begin()+Idx);
1480 Ops.erase(Ops.begin()+AddOp-1);
1481 }
1482 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001483 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001485
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 // Check this multiply against other multiplies being added together.
1487 for (unsigned OtherMulIdx = Idx+1;
1488 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1489 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001490 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 // If MulOp occurs in OtherMul, we can fold the two multiplies
1492 // together.
1493 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1494 OMulOp != e; ++OMulOp)
1495 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1496 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001497 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001499 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1500 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001502 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001504 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001506 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1507 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001509 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001511 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1512 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 if (Ops.size() == 2) return OuterMul;
1514 Ops.erase(Ops.begin()+Idx);
1515 Ops.erase(Ops.begin()+OtherMulIdx-1);
1516 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001517 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 }
1519 }
1520 }
1521 }
1522
1523 // If there are any add recurrences in the operands list, see if any other
1524 // added values are loop invariant. If so, we can fold them into the
1525 // recurrence.
1526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1527 ++Idx;
1528
1529 // Scan over all recurrences, trying to fold loop invariants into them.
1530 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1531 // Scan all of the other operands to this add and add them to the vector if
1532 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001533 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001534 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001535 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001536 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001537 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 LIOps.push_back(Ops[i]);
1539 Ops.erase(Ops.begin()+i);
1540 --i; --e;
1541 }
1542
1543 // If we found some loop invariants, fold them into the recurrence.
1544 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001545 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 LIOps.push_back(AddRec->getStart());
1547
Dan Gohman0bba49c2009-07-07 17:06:11 +00001548 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001549 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001550 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001551
Dan Gohman355b4f32009-12-19 01:46:34 +00001552 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001553 // is not associative so this isn't necessarily safe.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001554 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
Dan Gohman59de33e2009-12-18 18:45:31 +00001555
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 // If all of the other operands were loop invariant, we are done.
1557 if (Ops.size() == 1) return NewRec;
1558
1559 // Otherwise, add the folded AddRec by the non-liv parts.
1560 for (unsigned i = 0;; ++i)
1561 if (Ops[i] == AddRec) {
1562 Ops[i] = NewRec;
1563 break;
1564 }
Dan Gohman246b2562007-10-22 18:31:58 +00001565 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 }
1567
1568 // Okay, if there weren't any loop invariants to be folded, check to see if
1569 // there are multiple AddRec's with the same loop induction variable being
1570 // added together. If so, we can fold them.
1571 for (unsigned OtherIdx = Idx+1;
1572 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1573 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001574 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001575 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001576 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001577 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1578 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1580 if (i >= NewOps.size()) {
1581 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1582 OtherAddRec->op_end());
1583 break;
1584 }
Dan Gohman246b2562007-10-22 18:31:58 +00001585 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001586 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001587 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001588
1589 if (Ops.size() == 2) return NewAddRec;
1590
1591 Ops.erase(Ops.begin()+Idx);
1592 Ops.erase(Ops.begin()+OtherIdx-1);
1593 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001594 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 }
1596 }
1597
1598 // Otherwise couldn't fold anything into this recurrence. Move onto the
1599 // next one.
1600 }
1601
1602 // Okay, it looks like we really DO need an add expr. Check to see if we
1603 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001604 FoldingSetNodeID ID;
1605 ID.AddInteger(scAddExpr);
1606 ID.AddInteger(Ops.size());
1607 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1608 ID.AddPointer(Ops[i]);
1609 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001610 SCEVAddExpr *S =
1611 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1612 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001613 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1614 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001615 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1616 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001617 UniqueSCEVs.InsertNode(S, IP);
1618 }
Dan Gohman3645b012009-10-09 00:10:36 +00001619 if (HasNUW) S->setHasNoUnsignedWrap(true);
1620 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001621 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001622}
1623
Dan Gohman6c0866c2009-05-24 23:45:28 +00001624/// getMulExpr - Get a canonical multiply expression, or something simpler if
1625/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001626const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1627 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001628 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001629 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001630#ifndef NDEBUG
1631 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1632 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1633 getEffectiveSCEVType(Ops[0]->getType()) &&
1634 "SCEVMulExpr operand types don't match!");
1635#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001636
Dan Gohmana10756e2010-01-21 02:09:26 +00001637 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1638 if (!HasNUW && HasNSW) {
1639 bool All = true;
1640 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1641 if (!isKnownNonNegative(Ops[i])) {
1642 All = false;
1643 break;
1644 }
1645 if (All) HasNUW = true;
1646 }
1647
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001649 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001650
1651 // If there are any constants, fold them together.
1652 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001653 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001654
1655 // C1*(C2+V) -> C1*C2 + C1*V
1656 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001657 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 if (Add->getNumOperands() == 2 &&
1659 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1661 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001664 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001666 ConstantInt *Fold = ConstantInt::get(getContext(),
1667 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001668 RHSC->getValue()->getValue());
1669 Ops[0] = getConstant(Fold);
1670 Ops.erase(Ops.begin()+1); // Erase the folded element
1671 if (Ops.size() == 1) return Ops[0];
1672 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 }
1674
1675 // If we are left with a constant one being multiplied, strip it off.
1676 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1677 Ops.erase(Ops.begin());
1678 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001679 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 // If we have a multiply of zero, it will always be zero.
1681 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001682 } else if (Ops[0]->isAllOnesValue()) {
1683 // If we have a mul by -1 of an add, try distributing the -1 among the
1684 // add operands.
1685 if (Ops.size() == 2)
1686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1687 SmallVector<const SCEV *, 4> NewOps;
1688 bool AnyFolded = false;
1689 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1690 I != E; ++I) {
1691 const SCEV *Mul = getMulExpr(Ops[0], *I);
1692 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1693 NewOps.push_back(Mul);
1694 }
1695 if (AnyFolded)
1696 return getAddExpr(NewOps);
1697 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001699
1700 if (Ops.size() == 1)
1701 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 }
1703
1704 // Skip over the add expression until we get to a multiply.
1705 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1706 ++Idx;
1707
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 // If there are mul operands inline them all into this expression.
1709 if (Idx < Ops.size()) {
1710 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001711 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 // If we have an mul, expand the mul operands onto the end of the operands
1713 // list.
1714 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1715 Ops.erase(Ops.begin()+Idx);
1716 DeletedMul = true;
1717 }
1718
1719 // If we deleted at least one mul, we added operands to the end of the list,
1720 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001721 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001723 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001724 }
1725
1726 // If there are any add recurrences in the operands list, see if any other
1727 // added values are loop invariant. If so, we can fold them into the
1728 // recurrence.
1729 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1730 ++Idx;
1731
1732 // Scan over all recurrences, trying to fold loop invariants into them.
1733 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1734 // Scan all of the other operands to this mul and add them to the vector if
1735 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001736 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001737 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001738 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1739 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1740 LIOps.push_back(Ops[i]);
1741 Ops.erase(Ops.begin()+i);
1742 --i; --e;
1743 }
1744
1745 // If we found some loop invariants, fold them into the recurrence.
1746 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001747 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001748 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001749 NewOps.reserve(AddRec->getNumOperands());
1750 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001751 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001752 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001753 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001754 } else {
1755 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001756 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001758 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 }
1760 }
1761
Dan Gohman355b4f32009-12-19 01:46:34 +00001762 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001763 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001764 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1765 HasNUW && AddRec->hasNoUnsignedWrap(),
1766 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001767
1768 // If all of the other operands were loop invariant, we are done.
1769 if (Ops.size() == 1) return NewRec;
1770
1771 // Otherwise, multiply the folded AddRec by the non-liv parts.
1772 for (unsigned i = 0;; ++i)
1773 if (Ops[i] == AddRec) {
1774 Ops[i] = NewRec;
1775 break;
1776 }
Dan Gohman246b2562007-10-22 18:31:58 +00001777 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001778 }
1779
1780 // Okay, if there weren't any loop invariants to be folded, check to see if
1781 // there are multiple AddRec's with the same loop induction variable being
1782 // multiplied together. If so, we can fold them.
1783 for (unsigned OtherIdx = Idx+1;
1784 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1785 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001786 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001787 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1788 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001789 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001790 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001792 const SCEV *B = F->getStepRecurrence(*this);
1793 const SCEV *D = G->getStepRecurrence(*this);
1794 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001795 getMulExpr(G, B),
1796 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001797 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001798 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 if (Ops.size() == 2) return NewAddRec;
1800
1801 Ops.erase(Ops.begin()+Idx);
1802 Ops.erase(Ops.begin()+OtherIdx-1);
1803 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001804 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001805 }
1806 }
1807
1808 // Otherwise couldn't fold anything into this recurrence. Move onto the
1809 // next one.
1810 }
1811
1812 // Okay, it looks like we really DO need an mul expr. Check to see if we
1813 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001814 FoldingSetNodeID ID;
1815 ID.AddInteger(scMulExpr);
1816 ID.AddInteger(Ops.size());
1817 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1818 ID.AddPointer(Ops[i]);
1819 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001820 SCEVMulExpr *S =
1821 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1822 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001823 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1824 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001825 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1826 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 UniqueSCEVs.InsertNode(S, IP);
1828 }
Dan Gohman3645b012009-10-09 00:10:36 +00001829 if (HasNUW) S->setHasNoUnsignedWrap(true);
1830 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001831 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001832}
1833
Andreas Bolka8a11c982009-08-07 22:55:26 +00001834/// getUDivExpr - Get a canonical unsigned division expression, or something
1835/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001836const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1837 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001838 assert(getEffectiveSCEVType(LHS->getType()) ==
1839 getEffectiveSCEVType(RHS->getType()) &&
1840 "SCEVUDivExpr operand types don't match!");
1841
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001843 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001844 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001845 // If the denominator is zero, the result of the udiv is undefined. Don't
1846 // try to analyze it, because the resolution chosen here may differ from
1847 // the resolution chosen in other parts of the compiler.
1848 if (!RHSC->getValue()->isZero()) {
1849 // Determine if the division can be folded into the operands of
1850 // its operands.
1851 // TODO: Generalize this to non-constants by using known-bits information.
1852 const Type *Ty = LHS->getType();
1853 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1854 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1855 // For non-power-of-two values, effectively round the value up to the
1856 // nearest power of two.
1857 if (!RHSC->getValue()->getValue().isPowerOf2())
1858 ++MaxShiftAmt;
1859 const IntegerType *ExtTy =
1860 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1861 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1863 if (const SCEVConstant *Step =
1864 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1865 if (!Step->getValue()->getValue()
1866 .urem(RHSC->getValue()->getValue()) &&
1867 getZeroExtendExpr(AR, ExtTy) ==
1868 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1869 getZeroExtendExpr(Step, ExtTy),
1870 AR->getLoop())) {
1871 SmallVector<const SCEV *, 4> Operands;
1872 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1873 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1874 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001875 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001876 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1877 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1878 SmallVector<const SCEV *, 4> Operands;
1879 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1880 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1881 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1882 // Find an operand that's safely divisible.
1883 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1884 const SCEV *Op = M->getOperand(i);
1885 const SCEV *Div = getUDivExpr(Op, RHSC);
1886 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1887 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1888 M->op_end());
1889 Operands[i] = Div;
1890 return getMulExpr(Operands);
1891 }
1892 }
Dan Gohman185cf032009-05-08 20:18:49 +00001893 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001894 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1895 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1896 SmallVector<const SCEV *, 4> Operands;
1897 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1898 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1899 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1900 Operands.clear();
1901 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1902 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1903 if (isa<SCEVUDivExpr>(Op) ||
1904 getMulExpr(Op, RHS) != A->getOperand(i))
1905 break;
1906 Operands.push_back(Op);
1907 }
1908 if (Operands.size() == A->getNumOperands())
1909 return getAddExpr(Operands);
1910 }
1911 }
Dan Gohman185cf032009-05-08 20:18:49 +00001912
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001913 // Fold if both operands are constant.
1914 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1915 Constant *LHSCV = LHSC->getValue();
1916 Constant *RHSCV = RHSC->getValue();
1917 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1918 RHSCV)));
1919 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001920 }
1921 }
1922
Dan Gohman1c343752009-06-27 21:21:31 +00001923 FoldingSetNodeID ID;
1924 ID.AddInteger(scUDivExpr);
1925 ID.AddPointer(LHS);
1926 ID.AddPointer(RHS);
1927 void *IP = 0;
1928 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001929 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1930 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001931 UniqueSCEVs.InsertNode(S, IP);
1932 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001933}
1934
1935
Dan Gohman6c0866c2009-05-24 23:45:28 +00001936/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1937/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001938const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001939 const SCEV *Step, const Loop *L,
1940 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001941 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001942 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001943 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001944 if (StepChrec->getLoop() == L) {
1945 Operands.insert(Operands.end(), StepChrec->op_begin(),
1946 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001947 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001948 }
1949
1950 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001951 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001952}
1953
Dan Gohman6c0866c2009-05-24 23:45:28 +00001954/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1955/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001956const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001957ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001958 const Loop *L,
1959 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001960 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001961#ifndef NDEBUG
1962 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1963 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1964 getEffectiveSCEVType(Operands[0]->getType()) &&
1965 "SCEVAddRecExpr operand types don't match!");
1966#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001967
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001968 if (Operands.back()->isZero()) {
1969 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001970 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001971 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001972
Dan Gohmanbc028532010-02-19 18:49:22 +00001973 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1974 // use that information to infer NUW and NSW flags. However, computing a
1975 // BE count requires calling getAddRecExpr, so we may not yet have a
1976 // meaningful BE count at this point (and if we don't, we'd be stuck
1977 // with a SCEVCouldNotCompute as the cached BE count).
1978
Dan Gohmana10756e2010-01-21 02:09:26 +00001979 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1980 if (!HasNUW && HasNSW) {
1981 bool All = true;
1982 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1983 if (!isKnownNonNegative(Operands[i])) {
1984 All = false;
1985 break;
1986 }
1987 if (All) HasNUW = true;
1988 }
1989
Dan Gohmand9cc7492008-08-08 18:33:12 +00001990 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001991 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001992 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001993 if (L->contains(NestedLoop->getHeader()) ?
1994 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1995 (!NestedLoop->contains(L->getHeader()) &&
1996 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001997 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001998 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001999 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002000 // AddRecs require their operands be loop-invariant with respect to their
2001 // loops. Don't perform this transformation if it would break this
2002 // requirement.
2003 bool AllInvariant = true;
2004 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2005 if (!Operands[i]->isLoopInvariant(L)) {
2006 AllInvariant = false;
2007 break;
2008 }
2009 if (AllInvariant) {
2010 NestedOperands[0] = getAddRecExpr(Operands, L);
2011 AllInvariant = true;
2012 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2013 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2014 AllInvariant = false;
2015 break;
2016 }
2017 if (AllInvariant)
2018 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002019 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002020 }
2021 // Reset Operands to its original state.
2022 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002023 }
2024 }
2025
Dan Gohman67847532010-01-19 22:27:22 +00002026 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2027 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002028 FoldingSetNodeID ID;
2029 ID.AddInteger(scAddRecExpr);
2030 ID.AddInteger(Operands.size());
2031 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2032 ID.AddPointer(Operands[i]);
2033 ID.AddPointer(L);
2034 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002035 SCEVAddRecExpr *S =
2036 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2037 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002038 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2039 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002040 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2041 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002042 UniqueSCEVs.InsertNode(S, IP);
2043 }
Dan Gohman3645b012009-10-09 00:10:36 +00002044 if (HasNUW) S->setHasNoUnsignedWrap(true);
2045 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002046 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002047}
2048
Dan Gohman9311ef62009-06-24 14:49:00 +00002049const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2050 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002051 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002052 Ops.push_back(LHS);
2053 Ops.push_back(RHS);
2054 return getSMaxExpr(Ops);
2055}
2056
Dan Gohman0bba49c2009-07-07 17:06:11 +00002057const SCEV *
2058ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002059 assert(!Ops.empty() && "Cannot get empty smax!");
2060 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002061#ifndef NDEBUG
2062 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2063 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2064 getEffectiveSCEVType(Ops[0]->getType()) &&
2065 "SCEVSMaxExpr operand types don't match!");
2066#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002067
2068 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002069 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002070
2071 // If there are any constants, fold them together.
2072 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002073 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002074 ++Idx;
2075 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002076 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002077 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002078 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079 APIntOps::smax(LHSC->getValue()->getValue(),
2080 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002081 Ops[0] = getConstant(Fold);
2082 Ops.erase(Ops.begin()+1); // Erase the folded element
2083 if (Ops.size() == 1) return Ops[0];
2084 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002085 }
2086
Dan Gohmane5aceed2009-06-24 14:46:22 +00002087 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002088 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2089 Ops.erase(Ops.begin());
2090 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002091 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2092 // If we have an smax with a constant maximum-int, it will always be
2093 // maximum-int.
2094 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002095 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002096
Dan Gohman3ab13122010-04-13 16:49:23 +00002097 if (Ops.size() == 1) return Ops[0];
2098 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002099
2100 // Find the first SMax
2101 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2102 ++Idx;
2103
2104 // Check to see if one of the operands is an SMax. If so, expand its operands
2105 // onto our operand list, and recurse to simplify.
2106 if (Idx < Ops.size()) {
2107 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002108 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002109 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2110 Ops.erase(Ops.begin()+Idx);
2111 DeletedSMax = true;
2112 }
2113
2114 if (DeletedSMax)
2115 return getSMaxExpr(Ops);
2116 }
2117
2118 // Okay, check to see if the same value occurs in the operand list twice. If
2119 // so, delete one. Since we sorted the list, these values are required to
2120 // be adjacent.
2121 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002122 // X smax Y smax Y --> X smax Y
2123 // X smax Y --> X, if X is always greater than Y
2124 if (Ops[i] == Ops[i+1] ||
2125 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2126 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2127 --i; --e;
2128 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002129 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2130 --i; --e;
2131 }
2132
2133 if (Ops.size() == 1) return Ops[0];
2134
2135 assert(!Ops.empty() && "Reduced smax down to nothing!");
2136
Nick Lewycky3e630762008-02-20 06:48:22 +00002137 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002138 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002139 FoldingSetNodeID ID;
2140 ID.AddInteger(scSMaxExpr);
2141 ID.AddInteger(Ops.size());
2142 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2143 ID.AddPointer(Ops[i]);
2144 void *IP = 0;
2145 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002146 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2147 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002148 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2149 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002150 UniqueSCEVs.InsertNode(S, IP);
2151 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002152}
2153
Dan Gohman9311ef62009-06-24 14:49:00 +00002154const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2155 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002156 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002157 Ops.push_back(LHS);
2158 Ops.push_back(RHS);
2159 return getUMaxExpr(Ops);
2160}
2161
Dan Gohman0bba49c2009-07-07 17:06:11 +00002162const SCEV *
2163ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002164 assert(!Ops.empty() && "Cannot get empty umax!");
2165 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002166#ifndef NDEBUG
2167 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2168 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2169 getEffectiveSCEVType(Ops[0]->getType()) &&
2170 "SCEVUMaxExpr operand types don't match!");
2171#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002172
2173 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002174 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002175
2176 // If there are any constants, fold them together.
2177 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002178 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002179 ++Idx;
2180 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002181 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002182 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002183 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002184 APIntOps::umax(LHSC->getValue()->getValue(),
2185 RHSC->getValue()->getValue()));
2186 Ops[0] = getConstant(Fold);
2187 Ops.erase(Ops.begin()+1); // Erase the folded element
2188 if (Ops.size() == 1) return Ops[0];
2189 LHSC = cast<SCEVConstant>(Ops[0]);
2190 }
2191
Dan Gohmane5aceed2009-06-24 14:46:22 +00002192 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002193 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2194 Ops.erase(Ops.begin());
2195 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002196 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2197 // If we have an umax with a constant maximum-int, it will always be
2198 // maximum-int.
2199 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002200 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002201
Dan Gohman3ab13122010-04-13 16:49:23 +00002202 if (Ops.size() == 1) return Ops[0];
2203 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002204
2205 // Find the first UMax
2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2207 ++Idx;
2208
2209 // Check to see if one of the operands is a UMax. If so, expand its operands
2210 // onto our operand list, and recurse to simplify.
2211 if (Idx < Ops.size()) {
2212 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002213 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002214 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2215 Ops.erase(Ops.begin()+Idx);
2216 DeletedUMax = true;
2217 }
2218
2219 if (DeletedUMax)
2220 return getUMaxExpr(Ops);
2221 }
2222
2223 // Okay, check to see if the same value occurs in the operand list twice. If
2224 // so, delete one. Since we sorted the list, these values are required to
2225 // be adjacent.
2226 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002227 // X umax Y umax Y --> X umax Y
2228 // X umax Y --> X, if X is always greater than Y
2229 if (Ops[i] == Ops[i+1] ||
2230 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2231 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2232 --i; --e;
2233 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002234 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2235 --i; --e;
2236 }
2237
2238 if (Ops.size() == 1) return Ops[0];
2239
2240 assert(!Ops.empty() && "Reduced umax down to nothing!");
2241
2242 // Okay, it looks like we really DO need a umax expr. Check to see if we
2243 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002244 FoldingSetNodeID ID;
2245 ID.AddInteger(scUMaxExpr);
2246 ID.AddInteger(Ops.size());
2247 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2248 ID.AddPointer(Ops[i]);
2249 void *IP = 0;
2250 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002251 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2252 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002253 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2254 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002255 UniqueSCEVs.InsertNode(S, IP);
2256 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002257}
2258
Dan Gohman9311ef62009-06-24 14:49:00 +00002259const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2260 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002261 // ~smax(~x, ~y) == smin(x, y).
2262 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2263}
2264
Dan Gohman9311ef62009-06-24 14:49:00 +00002265const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2266 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002267 // ~umax(~x, ~y) == umin(x, y)
2268 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2269}
2270
Dan Gohman4f8eea82010-02-01 18:27:38 +00002271const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002272 // If we have TargetData, we can bypass creating a target-independent
2273 // constant expression and then folding it back into a ConstantInt.
2274 // This is just a compile-time optimization.
2275 if (TD)
2276 return getConstant(TD->getIntPtrType(getContext()),
2277 TD->getTypeAllocSize(AllocTy));
2278
Dan Gohman4f8eea82010-02-01 18:27:38 +00002279 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2281 C = ConstantFoldConstantExpression(CE, TD);
2282 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2283 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2284}
2285
2286const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2287 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2288 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2289 C = ConstantFoldConstantExpression(CE, TD);
2290 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2291 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2292}
2293
2294const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2295 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002296 // If we have TargetData, we can bypass creating a target-independent
2297 // constant expression and then folding it back into a ConstantInt.
2298 // This is just a compile-time optimization.
2299 if (TD)
2300 return getConstant(TD->getIntPtrType(getContext()),
2301 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2302
Dan Gohman0f5efe52010-01-28 02:15:55 +00002303 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2304 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2305 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002306 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002307 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002308}
2309
Dan Gohman4f8eea82010-02-01 18:27:38 +00002310const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2311 Constant *FieldNo) {
2312 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002313 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2314 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohman4f8eea82010-02-01 18:27:38 +00002315 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002316 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002317}
2318
Dan Gohman0bba49c2009-07-07 17:06:11 +00002319const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002320 // Don't attempt to do anything other than create a SCEVUnknown object
2321 // here. createSCEV only calls getUnknown after checking for all other
2322 // interesting possibilities, and any other code that calls getUnknown
2323 // is doing so in order to hide a value from SCEV canonicalization.
2324
Dan Gohman1c343752009-06-27 21:21:31 +00002325 FoldingSetNodeID ID;
2326 ID.AddInteger(scUnknown);
2327 ID.AddPointer(V);
2328 void *IP = 0;
2329 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002330 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002331 UniqueSCEVs.InsertNode(S, IP);
2332 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002333}
2334
Chris Lattner53e677a2004-04-02 20:23:17 +00002335//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002336// Basic SCEV Analysis and PHI Idiom Recognition Code
2337//
2338
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002339/// isSCEVable - Test if values of the given type are analyzable within
2340/// the SCEV framework. This primarily includes integer types, and it
2341/// can optionally include pointer types if the ScalarEvolution class
2342/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002343bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002344 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002345 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002346}
2347
2348/// getTypeSizeInBits - Return the size in bits of the specified type,
2349/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002350uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002351 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2352
2353 // If we have a TargetData, use it!
2354 if (TD)
2355 return TD->getTypeSizeInBits(Ty);
2356
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002357 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002358 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002359 return Ty->getPrimitiveSizeInBits();
2360
2361 // The only other support type is pointer. Without TargetData, conservatively
2362 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002363 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002364 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002365}
2366
2367/// getEffectiveSCEVType - Return a type with the same bitwidth as
2368/// the given type and which represents how SCEV will treat the given
2369/// type, for which isSCEVable must return true. For pointer types,
2370/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002371const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002372 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2373
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002374 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002375 return Ty;
2376
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002377 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002378 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002379 if (TD) return TD->getIntPtrType(getContext());
2380
2381 // Without TargetData, conservatively assume pointers are 64-bit.
2382 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002383}
Chris Lattner53e677a2004-04-02 20:23:17 +00002384
Dan Gohman0bba49c2009-07-07 17:06:11 +00002385const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002386 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002387}
2388
Chris Lattner53e677a2004-04-02 20:23:17 +00002389/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2390/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002391const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002392 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002393
Dan Gohman0bba49c2009-07-07 17:06:11 +00002394 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002395 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002396 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002397 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002398 return S;
2399}
2400
Dan Gohman6bbcba12009-06-24 00:54:57 +00002401/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002402/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002403const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002404 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002405 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002406}
2407
2408/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2409///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002410const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002411 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002412 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002413 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002414
2415 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002416 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002417 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002418 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002419}
2420
2421/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002422const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002423 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002424 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002425 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002426
2427 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002428 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002429 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002430 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002431 return getMinusSCEV(AllOnes, V);
2432}
2433
2434/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2435///
Dan Gohman9311ef62009-06-24 14:49:00 +00002436const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2437 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002438 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002439 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002440}
2441
2442/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2443/// input value to the specified type. If the type must be extended, it is zero
2444/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002445const SCEV *
2446ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002447 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002448 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002449 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2450 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002451 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002452 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002453 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002454 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002455 return getTruncateExpr(V, Ty);
2456 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002457}
2458
2459/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2460/// input value to the specified type. If the type must be extended, it is sign
2461/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002462const SCEV *
2463ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002464 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002465 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002466 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2467 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002468 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002469 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002470 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002471 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002472 return getTruncateExpr(V, Ty);
2473 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002474}
2475
Dan Gohman467c4302009-05-13 03:46:30 +00002476/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2477/// input value to the specified type. If the type must be extended, it is zero
2478/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002479const SCEV *
2480ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002481 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002482 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2483 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002484 "Cannot noop or zero extend with non-integer arguments!");
2485 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2486 "getNoopOrZeroExtend cannot truncate!");
2487 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2488 return V; // No conversion
2489 return getZeroExtendExpr(V, Ty);
2490}
2491
2492/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2493/// input value to the specified type. If the type must be extended, it is sign
2494/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002495const SCEV *
2496ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002497 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002498 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2499 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002500 "Cannot noop or sign extend with non-integer arguments!");
2501 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2502 "getNoopOrSignExtend cannot truncate!");
2503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2504 return V; // No conversion
2505 return getSignExtendExpr(V, Ty);
2506}
2507
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002508/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2509/// the input value to the specified type. If the type must be extended,
2510/// it is extended with unspecified bits. The conversion must not be
2511/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002512const SCEV *
2513ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002514 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002515 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2516 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002517 "Cannot noop or any extend with non-integer arguments!");
2518 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2519 "getNoopOrAnyExtend cannot truncate!");
2520 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2521 return V; // No conversion
2522 return getAnyExtendExpr(V, Ty);
2523}
2524
Dan Gohman467c4302009-05-13 03:46:30 +00002525/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2526/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002527const SCEV *
2528ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002529 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002530 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2531 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002532 "Cannot truncate or noop with non-integer arguments!");
2533 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2534 "getTruncateOrNoop cannot extend!");
2535 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2536 return V; // No conversion
2537 return getTruncateExpr(V, Ty);
2538}
2539
Dan Gohmana334aa72009-06-22 00:31:57 +00002540/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2541/// the types using zero-extension, and then perform a umax operation
2542/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002543const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2544 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002545 const SCEV *PromotedLHS = LHS;
2546 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002547
2548 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2549 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2550 else
2551 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2552
2553 return getUMaxExpr(PromotedLHS, PromotedRHS);
2554}
2555
Dan Gohmanc9759e82009-06-22 15:03:27 +00002556/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2557/// the types using zero-extension, and then perform a umin operation
2558/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002559const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2560 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002561 const SCEV *PromotedLHS = LHS;
2562 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002563
2564 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2565 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2566 else
2567 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2568
2569 return getUMinExpr(PromotedLHS, PromotedRHS);
2570}
2571
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002572/// PushDefUseChildren - Push users of the given Instruction
2573/// onto the given Worklist.
2574static void
2575PushDefUseChildren(Instruction *I,
2576 SmallVectorImpl<Instruction *> &Worklist) {
2577 // Push the def-use children onto the Worklist stack.
2578 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2579 UI != UE; ++UI)
2580 Worklist.push_back(cast<Instruction>(UI));
2581}
2582
2583/// ForgetSymbolicValue - This looks up computed SCEV values for all
2584/// instructions that depend on the given instruction and removes them from
2585/// the Scalars map if they reference SymName. This is used during PHI
2586/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002587void
Dan Gohman85669632010-02-25 06:57:05 +00002588ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002589 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002590 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002591
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002592 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002593 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002594 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002595 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002596 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002597
Dan Gohman5d984912009-12-18 01:14:11 +00002598 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002599 Scalars.find(static_cast<Value *>(I));
2600 if (It != Scalars.end()) {
2601 // Short-circuit the def-use traversal if the symbolic name
2602 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002603 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002604 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002605
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002606 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002607 // structure, it's a PHI that's in the progress of being computed
2608 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2609 // additional loop trip count information isn't going to change anything.
2610 // In the second case, createNodeForPHI will perform the necessary
2611 // updates on its own when it gets to that point. In the third, we do
2612 // want to forget the SCEVUnknown.
2613 if (!isa<PHINode>(I) ||
2614 !isa<SCEVUnknown>(It->second) ||
2615 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002616 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002617 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002618 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002619 }
2620
2621 PushDefUseChildren(I, Worklist);
2622 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002623}
Chris Lattner53e677a2004-04-02 20:23:17 +00002624
2625/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2626/// a loop header, making it a potential recurrence, or it doesn't.
2627///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002628const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002629 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2630 if (L->getHeader() == PN->getParent()) {
2631 // The loop may have multiple entrances or multiple exits; we can analyze
2632 // this phi as an addrec if it has a unique entry value and a unique
2633 // backedge value.
2634 Value *BEValueV = 0, *StartValueV = 0;
2635 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2636 Value *V = PN->getIncomingValue(i);
2637 if (L->contains(PN->getIncomingBlock(i))) {
2638 if (!BEValueV) {
2639 BEValueV = V;
2640 } else if (BEValueV != V) {
2641 BEValueV = 0;
2642 break;
2643 }
2644 } else if (!StartValueV) {
2645 StartValueV = V;
2646 } else if (StartValueV != V) {
2647 StartValueV = 0;
2648 break;
2649 }
2650 }
2651 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002652 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002653 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002654 assert(Scalars.find(PN) == Scalars.end() &&
2655 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002656 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002657
2658 // Using this symbolic name for the PHI, analyze the value coming around
2659 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002660 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002661
2662 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2663 // has a special value for the first iteration of the loop.
2664
2665 // If the value coming around the backedge is an add with the symbolic
2666 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002667 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002668 // If there is a single occurrence of the symbolic value, replace it
2669 // with a recurrence.
2670 unsigned FoundIndex = Add->getNumOperands();
2671 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2672 if (Add->getOperand(i) == SymbolicName)
2673 if (FoundIndex == e) {
2674 FoundIndex = i;
2675 break;
2676 }
2677
2678 if (FoundIndex != Add->getNumOperands()) {
2679 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002680 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002681 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2682 if (i != FoundIndex)
2683 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002684 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002685
2686 // This is not a valid addrec if the step amount is varying each
2687 // loop iteration, but is not itself an addrec in this loop.
2688 if (Accum->isLoopInvariant(L) ||
2689 (isa<SCEVAddRecExpr>(Accum) &&
2690 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002691 bool HasNUW = false;
2692 bool HasNSW = false;
2693
2694 // If the increment doesn't overflow, then neither the addrec nor
2695 // the post-increment will overflow.
2696 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2697 if (OBO->hasNoUnsignedWrap())
2698 HasNUW = true;
2699 if (OBO->hasNoSignedWrap())
2700 HasNSW = true;
2701 }
2702
Dan Gohman27dead42010-04-12 07:49:36 +00002703 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002704 const SCEV *PHISCEV =
2705 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002706
Dan Gohmana10756e2010-01-21 02:09:26 +00002707 // Since the no-wrap flags are on the increment, they apply to the
2708 // post-incremented value as well.
2709 if (Accum->isLoopInvariant(L))
2710 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2711 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002712
2713 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002714 // to be symbolic. We now need to go back and purge all of the
2715 // entries for the scalars that use the symbolic expression.
2716 ForgetSymbolicName(PN, SymbolicName);
2717 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002718 return PHISCEV;
2719 }
2720 }
Dan Gohman622ed672009-05-04 22:02:23 +00002721 } else if (const SCEVAddRecExpr *AddRec =
2722 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002723 // Otherwise, this could be a loop like this:
2724 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2725 // In this case, j = {1,+,1} and BEValue is j.
2726 // Because the other in-value of i (0) fits the evolution of BEValue
2727 // i really is an addrec evolution.
2728 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002729 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002730
2731 // If StartVal = j.start - j.stride, we can use StartVal as the
2732 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002733 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002734 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002735 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002736 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002737
2738 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002739 // to be symbolic. We now need to go back and purge all of the
2740 // entries for the scalars that use the symbolic expression.
2741 ForgetSymbolicName(PN, SymbolicName);
2742 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002743 return PHISCEV;
2744 }
2745 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002746 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002747 }
Dan Gohman27dead42010-04-12 07:49:36 +00002748 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002749
Dan Gohman85669632010-02-25 06:57:05 +00002750 // If the PHI has a single incoming value, follow that value, unless the
2751 // PHI's incoming blocks are in a different loop, in which case doing so
2752 // risks breaking LCSSA form. Instcombine would normally zap these, but
2753 // it doesn't have DominatorTree information, so it may miss cases.
2754 if (Value *V = PN->hasConstantValue(DT)) {
2755 bool AllSameLoop = true;
2756 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2757 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2758 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2759 AllSameLoop = false;
2760 break;
2761 }
2762 if (AllSameLoop)
2763 return getSCEV(V);
2764 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002765
Chris Lattner53e677a2004-04-02 20:23:17 +00002766 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002767 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002768}
2769
Dan Gohman26466c02009-05-08 20:26:55 +00002770/// createNodeForGEP - Expand GEP instructions into add and multiply
2771/// operations. This allows them to be analyzed by regular SCEV code.
2772///
Dan Gohmand281ed22009-12-18 02:09:29 +00002773const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002774
Dan Gohmand281ed22009-12-18 02:09:29 +00002775 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002776 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002777 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002778 // Don't attempt to analyze GEPs over unsized objects.
2779 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2780 return getUnknown(GEP);
Dan Gohman0bba49c2009-07-07 17:06:11 +00002781 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002782 gep_type_iterator GTI = gep_type_begin(GEP);
2783 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2784 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002785 I != E; ++I) {
2786 Value *Index = *I;
2787 // Compute the (potentially symbolic) offset in bytes for this index.
2788 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2789 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002790 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002791 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002792 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002793 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002794 } else {
2795 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002796 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002797 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002798 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002799 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002800 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002801 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2802 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2803 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002804 }
2805 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002806 return getAddExpr(getSCEV(Base), TotalOffset,
2807 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002808}
2809
Nick Lewycky83bb0052007-11-22 07:59:40 +00002810/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2811/// guaranteed to end in (at every loop iteration). It is, at the same time,
2812/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2813/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002814uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002815ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002816 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002817 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002818
Dan Gohman622ed672009-05-04 22:02:23 +00002819 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002820 return std::min(GetMinTrailingZeros(T->getOperand()),
2821 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002822
Dan Gohman622ed672009-05-04 22:02:23 +00002823 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002824 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2825 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2826 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002827 }
2828
Dan Gohman622ed672009-05-04 22:02:23 +00002829 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002830 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2831 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2832 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002833 }
2834
Dan Gohman622ed672009-05-04 22:02:23 +00002835 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002836 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002837 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002838 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002839 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002840 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002841 }
2842
Dan Gohman622ed672009-05-04 22:02:23 +00002843 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002844 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002845 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2846 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002847 for (unsigned i = 1, e = M->getNumOperands();
2848 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002849 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002850 BitWidth);
2851 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002852 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002853
Dan Gohman622ed672009-05-04 22:02:23 +00002854 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002855 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002856 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002857 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002858 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002859 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002860 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002861
Dan Gohman622ed672009-05-04 22:02:23 +00002862 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002863 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002864 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002865 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002866 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002867 return MinOpRes;
2868 }
2869
Dan Gohman622ed672009-05-04 22:02:23 +00002870 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002871 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002872 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002873 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002874 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002875 return MinOpRes;
2876 }
2877
Dan Gohman2c364ad2009-06-19 23:29:04 +00002878 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2879 // For a SCEVUnknown, ask ValueTracking.
2880 unsigned BitWidth = getTypeSizeInBits(U->getType());
2881 APInt Mask = APInt::getAllOnesValue(BitWidth);
2882 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2883 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2884 return Zeros.countTrailingOnes();
2885 }
2886
2887 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002888 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002889}
Chris Lattner53e677a2004-04-02 20:23:17 +00002890
Dan Gohman85b05a22009-07-13 21:35:55 +00002891/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2892///
2893ConstantRange
2894ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002895
2896 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002897 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002898
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002899 unsigned BitWidth = getTypeSizeInBits(S->getType());
2900 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2901
2902 // If the value has known zeros, the maximum unsigned value will have those
2903 // known zeros as well.
2904 uint32_t TZ = GetMinTrailingZeros(S);
2905 if (TZ != 0)
2906 ConservativeResult =
2907 ConstantRange(APInt::getMinValue(BitWidth),
2908 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2909
Dan Gohman85b05a22009-07-13 21:35:55 +00002910 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2911 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2912 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2913 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002914 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002915 }
2916
2917 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2918 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2919 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2920 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002921 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002922 }
2923
2924 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2925 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2926 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2927 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002928 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002929 }
2930
2931 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2932 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2933 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2934 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002935 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002936 }
2937
2938 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2939 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2940 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002941 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002942 }
2943
2944 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2945 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002946 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002947 }
2948
2949 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2950 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002951 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002952 }
2953
2954 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2955 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002956 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002957 }
2958
Dan Gohman85b05a22009-07-13 21:35:55 +00002959 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002960 // If there's no unsigned wrap, the value will never be less than its
2961 // initial value.
2962 if (AddRec->hasNoUnsignedWrap())
2963 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002964 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002965 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002966 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002967
2968 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002969 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002970 const Type *Ty = AddRec->getType();
2971 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002972 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2973 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002974 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2975
2976 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002977 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002978
2979 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002980 ConstantRange StepRange = getSignedRange(Step);
2981 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2982 ConstantRange EndRange =
2983 StartRange.add(MaxBECountRange.multiply(StepRange));
2984
2985 // Check for overflow. This must be done with ConstantRange arithmetic
2986 // because we could be called from within the ScalarEvolution overflow
2987 // checking code.
2988 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2989 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2990 ConstantRange ExtMaxBECountRange =
2991 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2992 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2993 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2994 ExtEndRange)
2995 return ConservativeResult;
2996
Dan Gohman85b05a22009-07-13 21:35:55 +00002997 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2998 EndRange.getUnsignedMin());
2999 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3000 EndRange.getUnsignedMax());
3001 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003002 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003003 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003004 }
3005 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003006
3007 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003008 }
3009
3010 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3011 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003012 APInt Mask = APInt::getAllOnesValue(BitWidth);
3013 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3014 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003015 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003016 return ConservativeResult;
3017 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003018 }
3019
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003020 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003021}
3022
Dan Gohman85b05a22009-07-13 21:35:55 +00003023/// getSignedRange - Determine the signed range for a particular SCEV.
3024///
3025ConstantRange
3026ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003027
Dan Gohman85b05a22009-07-13 21:35:55 +00003028 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3029 return ConstantRange(C->getValue()->getValue());
3030
Dan Gohman52fddd32010-01-26 04:40:18 +00003031 unsigned BitWidth = getTypeSizeInBits(S->getType());
3032 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3033
3034 // If the value has known zeros, the maximum signed value will have those
3035 // known zeros as well.
3036 uint32_t TZ = GetMinTrailingZeros(S);
3037 if (TZ != 0)
3038 ConservativeResult =
3039 ConstantRange(APInt::getSignedMinValue(BitWidth),
3040 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3041
Dan Gohman85b05a22009-07-13 21:35:55 +00003042 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3043 ConstantRange X = getSignedRange(Add->getOperand(0));
3044 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3045 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003046 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003047 }
3048
Dan Gohman85b05a22009-07-13 21:35:55 +00003049 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3050 ConstantRange X = getSignedRange(Mul->getOperand(0));
3051 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3052 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003053 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003054 }
3055
Dan Gohman85b05a22009-07-13 21:35:55 +00003056 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3057 ConstantRange X = getSignedRange(SMax->getOperand(0));
3058 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3059 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003060 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 }
Dan Gohman62849c02009-06-24 01:05:09 +00003062
Dan Gohman85b05a22009-07-13 21:35:55 +00003063 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3064 ConstantRange X = getSignedRange(UMax->getOperand(0));
3065 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3066 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003067 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003068 }
Dan Gohman62849c02009-06-24 01:05:09 +00003069
Dan Gohman85b05a22009-07-13 21:35:55 +00003070 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3071 ConstantRange X = getSignedRange(UDiv->getLHS());
3072 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003073 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 }
Dan Gohman62849c02009-06-24 01:05:09 +00003075
Dan Gohman85b05a22009-07-13 21:35:55 +00003076 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3077 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003078 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003079 }
3080
3081 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3082 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003083 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003084 }
3085
3086 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3087 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003088 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003089 }
3090
Dan Gohman85b05a22009-07-13 21:35:55 +00003091 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003092 // If there's no signed wrap, and all the operands have the same sign or
3093 // zero, the value won't ever change sign.
3094 if (AddRec->hasNoSignedWrap()) {
3095 bool AllNonNeg = true;
3096 bool AllNonPos = true;
3097 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3098 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3099 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3100 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003101 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003102 ConservativeResult = ConservativeResult.intersectWith(
3103 ConstantRange(APInt(BitWidth, 0),
3104 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003105 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003106 ConservativeResult = ConservativeResult.intersectWith(
3107 ConstantRange(APInt::getSignedMinValue(BitWidth),
3108 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003109 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003110
3111 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003112 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003113 const Type *Ty = AddRec->getType();
3114 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003115 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3116 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003117 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3118
3119 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003120 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003121
3122 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003123 ConstantRange StepRange = getSignedRange(Step);
3124 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3125 ConstantRange EndRange =
3126 StartRange.add(MaxBECountRange.multiply(StepRange));
3127
3128 // Check for overflow. This must be done with ConstantRange arithmetic
3129 // because we could be called from within the ScalarEvolution overflow
3130 // checking code.
3131 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3132 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3133 ConstantRange ExtMaxBECountRange =
3134 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3135 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3136 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3137 ExtEndRange)
3138 return ConservativeResult;
3139
Dan Gohman85b05a22009-07-13 21:35:55 +00003140 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3141 EndRange.getSignedMin());
3142 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3143 EndRange.getSignedMax());
3144 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003145 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003146 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003147 }
Dan Gohman62849c02009-06-24 01:05:09 +00003148 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003149
3150 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003151 }
3152
Dan Gohman2c364ad2009-06-19 23:29:04 +00003153 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3154 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003155 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003156 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003157 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3158 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003159 return ConservativeResult;
3160 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003161 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003162 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003163 }
3164
Dan Gohman52fddd32010-01-26 04:40:18 +00003165 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003166}
3167
Chris Lattner53e677a2004-04-02 20:23:17 +00003168/// createSCEV - We know that there is no SCEV for the specified value.
3169/// Analyze the expression.
3170///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003171const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003172 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003173 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003174
Dan Gohman6c459a22008-06-22 19:56:46 +00003175 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003176 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003177 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003178
3179 // Don't attempt to analyze instructions in blocks that aren't
3180 // reachable. Such instructions don't matter, and they aren't required
3181 // to obey basic rules for definitions dominating uses which this
3182 // analysis depends on.
3183 if (!DT->isReachableFromEntry(I->getParent()))
3184 return getUnknown(V);
3185 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003186 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003187 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3188 return getConstant(CI);
3189 else if (isa<ConstantPointerNull>(V))
3190 return getIntegerSCEV(0, V->getType());
Dan Gohman26812322009-08-25 17:49:57 +00003191 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3192 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003193 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003194 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003195
Dan Gohmanca178902009-07-17 20:47:02 +00003196 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003197 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003198 case Instruction::Add:
3199 // Don't transfer the NSW and NUW bits from the Add instruction to the
3200 // Add expression, because the Instruction may be guarded by control
3201 // flow and the no-overflow bits may not be valid for the expression in
3202 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003203 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003204 getSCEV(U->getOperand(1)));
3205 case Instruction::Mul:
3206 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3207 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003208 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003209 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003210 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003211 return getUDivExpr(getSCEV(U->getOperand(0)),
3212 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003213 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003214 return getMinusSCEV(getSCEV(U->getOperand(0)),
3215 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003216 case Instruction::And:
3217 // For an expression like x&255 that merely masks off the high bits,
3218 // use zext(trunc(x)) as the SCEV expression.
3219 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003220 if (CI->isNullValue())
3221 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003222 if (CI->isAllOnesValue())
3223 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003224 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003225
3226 // Instcombine's ShrinkDemandedConstant may strip bits out of
3227 // constants, obscuring what would otherwise be a low-bits mask.
3228 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3229 // knew about to reconstruct a low-bits mask value.
3230 unsigned LZ = A.countLeadingZeros();
3231 unsigned BitWidth = A.getBitWidth();
3232 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3233 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3234 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3235
3236 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3237
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003238 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003239 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003240 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003241 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003242 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003243 }
3244 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003245
Dan Gohman6c459a22008-06-22 19:56:46 +00003246 case Instruction::Or:
3247 // If the RHS of the Or is a constant, we may have something like:
3248 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3249 // optimizations will transparently handle this case.
3250 //
3251 // In order for this transformation to be safe, the LHS must be of the
3252 // form X*(2^n) and the Or constant must be less than 2^n.
3253 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003254 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003255 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003256 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003257 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3258 // Build a plain add SCEV.
3259 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3260 // If the LHS of the add was an addrec and it has no-wrap flags,
3261 // transfer the no-wrap flags, since an or won't introduce a wrap.
3262 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3263 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3264 if (OldAR->hasNoUnsignedWrap())
3265 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3266 if (OldAR->hasNoSignedWrap())
3267 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3268 }
3269 return S;
3270 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003271 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003272 break;
3273 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003274 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003275 // If the RHS of the xor is a signbit, then this is just an add.
3276 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003277 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003278 return getAddExpr(getSCEV(U->getOperand(0)),
3279 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003280
3281 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003282 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003283 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003284
3285 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3286 // This is a variant of the check for xor with -1, and it handles
3287 // the case where instcombine has trimmed non-demanded bits out
3288 // of an xor with -1.
3289 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3290 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3291 if (BO->getOpcode() == Instruction::And &&
3292 LCI->getValue() == CI->getValue())
3293 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003294 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003295 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003296 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003297 const Type *Z0Ty = Z0->getType();
3298 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3299
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003300 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003301 // mask off the high bits. Complement the operand and
3302 // re-apply the zext.
3303 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3304 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3305
3306 // If C is a single bit, it may be in the sign-bit position
3307 // before the zero-extend. In this case, represent the xor
3308 // using an add, which is equivalent, and re-apply the zext.
3309 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3310 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3311 Trunc.isSignBit())
3312 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3313 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003314 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003315 }
3316 break;
3317
3318 case Instruction::Shl:
3319 // Turn shift left of a constant amount into a multiply.
3320 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003321 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003322
3323 // If the shift count is not less than the bitwidth, the result of
3324 // the shift is undefined. Don't try to analyze it, because the
3325 // resolution chosen here may differ from the resolution chosen in
3326 // other parts of the compiler.
3327 if (SA->getValue().uge(BitWidth))
3328 break;
3329
Owen Andersoneed707b2009-07-24 23:12:02 +00003330 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003331 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003332 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003333 }
3334 break;
3335
Nick Lewycky01eaf802008-07-07 06:15:49 +00003336 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003337 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003338 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003339 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003340
3341 // If the shift count is not less than the bitwidth, the result of
3342 // the shift is undefined. Don't try to analyze it, because the
3343 // resolution chosen here may differ from the resolution chosen in
3344 // other parts of the compiler.
3345 if (SA->getValue().uge(BitWidth))
3346 break;
3347
Owen Andersoneed707b2009-07-24 23:12:02 +00003348 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003349 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003350 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003351 }
3352 break;
3353
Dan Gohman4ee29af2009-04-21 02:26:00 +00003354 case Instruction::AShr:
3355 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3356 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003357 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003358 if (L->getOpcode() == Instruction::Shl &&
3359 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003360 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3361
3362 // If the shift count is not less than the bitwidth, the result of
3363 // the shift is undefined. Don't try to analyze it, because the
3364 // resolution chosen here may differ from the resolution chosen in
3365 // other parts of the compiler.
3366 if (CI->getValue().uge(BitWidth))
3367 break;
3368
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003369 uint64_t Amt = BitWidth - CI->getZExtValue();
3370 if (Amt == BitWidth)
3371 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003372 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003373 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003374 IntegerType::get(getContext(),
3375 Amt)),
3376 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003377 }
3378 break;
3379
Dan Gohman6c459a22008-06-22 19:56:46 +00003380 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003381 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003382
3383 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003384 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003385
3386 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003387 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003388
3389 case Instruction::BitCast:
3390 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003391 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003392 return getSCEV(U->getOperand(0));
3393 break;
3394
Dan Gohman4f8eea82010-02-01 18:27:38 +00003395 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3396 // lead to pointer expressions which cannot safely be expanded to GEPs,
3397 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3398 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003399
Dan Gohman26466c02009-05-08 20:26:55 +00003400 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003401 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003402
Dan Gohman6c459a22008-06-22 19:56:46 +00003403 case Instruction::PHI:
3404 return createNodeForPHI(cast<PHINode>(U));
3405
3406 case Instruction::Select:
3407 // This could be a smax or umax that was lowered earlier.
3408 // Try to recover it.
3409 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3410 Value *LHS = ICI->getOperand(0);
3411 Value *RHS = ICI->getOperand(1);
3412 switch (ICI->getPredicate()) {
3413 case ICmpInst::ICMP_SLT:
3414 case ICmpInst::ICMP_SLE:
3415 std::swap(LHS, RHS);
3416 // fall through
3417 case ICmpInst::ICMP_SGT:
3418 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003419 // a >s b ? a+x : b+x -> smax(a, b)+x
3420 // a >s b ? b+x : a+x -> smin(a, b)+x
3421 if (LHS->getType() == U->getType()) {
3422 const SCEV *LS = getSCEV(LHS);
3423 const SCEV *RS = getSCEV(RHS);
3424 const SCEV *LA = getSCEV(U->getOperand(1));
3425 const SCEV *RA = getSCEV(U->getOperand(2));
3426 const SCEV *LDiff = getMinusSCEV(LA, LS);
3427 const SCEV *RDiff = getMinusSCEV(RA, RS);
3428 if (LDiff == RDiff)
3429 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3430 LDiff = getMinusSCEV(LA, RS);
3431 RDiff = getMinusSCEV(RA, LS);
3432 if (LDiff == RDiff)
3433 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3434 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003435 break;
3436 case ICmpInst::ICMP_ULT:
3437 case ICmpInst::ICMP_ULE:
3438 std::swap(LHS, RHS);
3439 // fall through
3440 case ICmpInst::ICMP_UGT:
3441 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003442 // a >u b ? a+x : b+x -> umax(a, b)+x
3443 // a >u b ? b+x : a+x -> umin(a, b)+x
3444 if (LHS->getType() == U->getType()) {
3445 const SCEV *LS = getSCEV(LHS);
3446 const SCEV *RS = getSCEV(RHS);
3447 const SCEV *LA = getSCEV(U->getOperand(1));
3448 const SCEV *RA = getSCEV(U->getOperand(2));
3449 const SCEV *LDiff = getMinusSCEV(LA, LS);
3450 const SCEV *RDiff = getMinusSCEV(RA, RS);
3451 if (LDiff == RDiff)
3452 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3453 LDiff = getMinusSCEV(LA, RS);
3454 RDiff = getMinusSCEV(RA, LS);
3455 if (LDiff == RDiff)
3456 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3457 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003458 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003459 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003460 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3461 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003462 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003463 cast<ConstantInt>(RHS)->isZero()) {
3464 const SCEV *One = getConstant(LHS->getType(), 1);
3465 const SCEV *LS = getSCEV(LHS);
3466 const SCEV *LA = getSCEV(U->getOperand(1));
3467 const SCEV *RA = getSCEV(U->getOperand(2));
3468 const SCEV *LDiff = getMinusSCEV(LA, LS);
3469 const SCEV *RDiff = getMinusSCEV(RA, One);
3470 if (LDiff == RDiff)
3471 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3472 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003473 break;
3474 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003475 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3476 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003477 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003478 cast<ConstantInt>(RHS)->isZero()) {
3479 const SCEV *One = getConstant(LHS->getType(), 1);
3480 const SCEV *LS = getSCEV(LHS);
3481 const SCEV *LA = getSCEV(U->getOperand(1));
3482 const SCEV *RA = getSCEV(U->getOperand(2));
3483 const SCEV *LDiff = getMinusSCEV(LA, One);
3484 const SCEV *RDiff = getMinusSCEV(RA, LS);
3485 if (LDiff == RDiff)
3486 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3487 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003488 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003489 default:
3490 break;
3491 }
3492 }
3493
3494 default: // We cannot analyze this expression.
3495 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003496 }
3497
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003498 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003499}
3500
3501
3502
3503//===----------------------------------------------------------------------===//
3504// Iteration Count Computation Code
3505//
3506
Dan Gohman46bdfb02009-02-24 18:55:53 +00003507/// getBackedgeTakenCount - If the specified loop has a predictable
3508/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3509/// object. The backedge-taken count is the number of times the loop header
3510/// will be branched to from within the loop. This is one less than the
3511/// trip count of the loop, since it doesn't count the first iteration,
3512/// when the header is branched to from outside the loop.
3513///
3514/// Note that it is not valid to call this method on a loop without a
3515/// loop-invariant backedge-taken count (see
3516/// hasLoopInvariantBackedgeTakenCount).
3517///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003518const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003519 return getBackedgeTakenInfo(L).Exact;
3520}
3521
3522/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3523/// return the least SCEV value that is known never to be less than the
3524/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003525const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003526 return getBackedgeTakenInfo(L).Max;
3527}
3528
Dan Gohman59ae6b92009-07-08 19:23:34 +00003529/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3530/// onto the given Worklist.
3531static void
3532PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3533 BasicBlock *Header = L->getHeader();
3534
3535 // Push all Loop-header PHIs onto the Worklist stack.
3536 for (BasicBlock::iterator I = Header->begin();
3537 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3538 Worklist.push_back(PN);
3539}
3540
Dan Gohmana1af7572009-04-30 20:47:05 +00003541const ScalarEvolution::BackedgeTakenInfo &
3542ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003543 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003544 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003545 // update the value. The temporary CouldNotCompute value tells SCEV
3546 // code elsewhere that it shouldn't attempt to request a new
3547 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003548 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003549 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3550 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003551 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3552 if (BECount.Exact != getCouldNotCompute()) {
3553 assert(BECount.Exact->isLoopInvariant(L) &&
3554 BECount.Max->isLoopInvariant(L) &&
3555 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003556 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003557
Dan Gohman01ecca22009-04-27 20:16:15 +00003558 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003559 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003560 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003561 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003562 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003563 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003564 if (isa<PHINode>(L->getHeader()->begin()))
3565 // Only count loops that have phi nodes as not being computable.
3566 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003567 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003568
3569 // Now that we know more about the trip count for this loop, forget any
3570 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003571 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003572 // information. This is similar to the code in forgetLoop, except that
3573 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003574 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003575 SmallVector<Instruction *, 16> Worklist;
3576 PushLoopPHIs(L, Worklist);
3577
3578 SmallPtrSet<Instruction *, 8> Visited;
3579 while (!Worklist.empty()) {
3580 Instruction *I = Worklist.pop_back_val();
3581 if (!Visited.insert(I)) continue;
3582
Dan Gohman5d984912009-12-18 01:14:11 +00003583 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003584 Scalars.find(static_cast<Value *>(I));
3585 if (It != Scalars.end()) {
3586 // SCEVUnknown for a PHI either means that it has an unrecognized
3587 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003588 // by createNodeForPHI. In the former case, additional loop trip
3589 // count information isn't going to change anything. In the later
3590 // case, createNodeForPHI will perform the necessary updates on its
3591 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003592 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3593 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003594 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003595 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003596 if (PHINode *PN = dyn_cast<PHINode>(I))
3597 ConstantEvolutionLoopExitValue.erase(PN);
3598 }
3599
3600 PushDefUseChildren(I, Worklist);
3601 }
3602 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003603 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003604 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003605}
3606
Dan Gohman4c7279a2009-10-31 15:04:55 +00003607/// forgetLoop - This method should be called by the client when it has
3608/// changed a loop in a way that may effect ScalarEvolution's ability to
3609/// compute a trip count, or if the loop is deleted.
3610void ScalarEvolution::forgetLoop(const Loop *L) {
3611 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003612 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003613
Dan Gohman4c7279a2009-10-31 15:04:55 +00003614 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003615 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003616 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003617
Dan Gohman59ae6b92009-07-08 19:23:34 +00003618 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003619 while (!Worklist.empty()) {
3620 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003621 if (!Visited.insert(I)) continue;
3622
Dan Gohman5d984912009-12-18 01:14:11 +00003623 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003624 Scalars.find(static_cast<Value *>(I));
3625 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003626 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003627 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003628 if (PHINode *PN = dyn_cast<PHINode>(I))
3629 ConstantEvolutionLoopExitValue.erase(PN);
3630 }
3631
3632 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003633 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003634}
3635
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003636/// forgetValue - This method should be called by the client when it has
3637/// changed a value in a way that may effect its value, or which may
3638/// disconnect it from a def-use chain linking it to a loop.
3639void ScalarEvolution::forgetValue(Value *V) {
3640 Instruction *I = dyn_cast<Instruction>(V);
3641 if (!I) return;
3642
3643 // Drop information about expressions based on loop-header PHIs.
3644 SmallVector<Instruction *, 16> Worklist;
3645 Worklist.push_back(I);
3646
3647 SmallPtrSet<Instruction *, 8> Visited;
3648 while (!Worklist.empty()) {
3649 I = Worklist.pop_back_val();
3650 if (!Visited.insert(I)) continue;
3651
3652 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3653 Scalars.find(static_cast<Value *>(I));
3654 if (It != Scalars.end()) {
3655 ValuesAtScopes.erase(It->second);
3656 Scalars.erase(It);
3657 if (PHINode *PN = dyn_cast<PHINode>(I))
3658 ConstantEvolutionLoopExitValue.erase(PN);
3659 }
3660
3661 PushDefUseChildren(I, Worklist);
3662 }
3663}
3664
Dan Gohman46bdfb02009-02-24 18:55:53 +00003665/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3666/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003667ScalarEvolution::BackedgeTakenInfo
3668ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003669 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003670 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003671
Dan Gohmana334aa72009-06-22 00:31:57 +00003672 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003673 const SCEV *BECount = getCouldNotCompute();
3674 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003675 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003676 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3677 BackedgeTakenInfo NewBTI =
3678 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003679
Dan Gohman1c343752009-06-27 21:21:31 +00003680 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003681 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003682 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003683 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003684 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003685 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003686 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003687 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003688 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003689 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003690 }
Dan Gohman1c343752009-06-27 21:21:31 +00003691 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003692 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003693 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003694 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003695 }
3696
3697 return BackedgeTakenInfo(BECount, MaxBECount);
3698}
3699
3700/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3701/// of the specified loop will execute if it exits via the specified block.
3702ScalarEvolution::BackedgeTakenInfo
3703ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3704 BasicBlock *ExitingBlock) {
3705
3706 // Okay, we've chosen an exiting block. See what condition causes us to
3707 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003708 //
3709 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003710 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003711 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003712 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003713
Chris Lattner8b0e3602007-01-07 02:24:26 +00003714 // At this point, we know we have a conditional branch that determines whether
3715 // the loop is exited. However, we don't know if the branch is executed each
3716 // time through the loop. If not, then the execution count of the branch will
3717 // not be equal to the trip count of the loop.
3718 //
3719 // Currently we check for this by checking to see if the Exit branch goes to
3720 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003721 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003722 // loop header. This is common for un-rotated loops.
3723 //
3724 // If both of those tests fail, walk up the unique predecessor chain to the
3725 // header, stopping if there is an edge that doesn't exit the loop. If the
3726 // header is reached, the execution count of the branch will be equal to the
3727 // trip count of the loop.
3728 //
3729 // More extensive analysis could be done to handle more cases here.
3730 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003731 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003732 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003733 ExitBr->getParent() != L->getHeader()) {
3734 // The simple checks failed, try climbing the unique predecessor chain
3735 // up to the header.
3736 bool Ok = false;
3737 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3738 BasicBlock *Pred = BB->getUniquePredecessor();
3739 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003740 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003741 TerminatorInst *PredTerm = Pred->getTerminator();
3742 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3743 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3744 if (PredSucc == BB)
3745 continue;
3746 // If the predecessor has a successor that isn't BB and isn't
3747 // outside the loop, assume the worst.
3748 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003749 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003750 }
3751 if (Pred == L->getHeader()) {
3752 Ok = true;
3753 break;
3754 }
3755 BB = Pred;
3756 }
3757 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003758 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003759 }
3760
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003761 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003762 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3763 ExitBr->getSuccessor(0),
3764 ExitBr->getSuccessor(1));
3765}
3766
3767/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3768/// backedge of the specified loop will execute if its exit condition
3769/// were a conditional branch of ExitCond, TBB, and FBB.
3770ScalarEvolution::BackedgeTakenInfo
3771ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3772 Value *ExitCond,
3773 BasicBlock *TBB,
3774 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003775 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003776 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3777 if (BO->getOpcode() == Instruction::And) {
3778 // Recurse on the operands of the and.
3779 BackedgeTakenInfo BTI0 =
3780 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3781 BackedgeTakenInfo BTI1 =
3782 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003783 const SCEV *BECount = getCouldNotCompute();
3784 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003785 if (L->contains(TBB)) {
3786 // Both conditions must be true for the loop to continue executing.
3787 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003788 if (BTI0.Exact == getCouldNotCompute() ||
3789 BTI1.Exact == getCouldNotCompute())
3790 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003791 else
3792 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003793 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003794 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003795 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003796 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003797 else
3798 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003799 } else {
3800 // Both conditions must be true for the loop to exit.
3801 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003802 if (BTI0.Exact != getCouldNotCompute() &&
3803 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003804 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003805 if (BTI0.Max != getCouldNotCompute() &&
3806 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003807 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3808 }
3809
3810 return BackedgeTakenInfo(BECount, MaxBECount);
3811 }
3812 if (BO->getOpcode() == Instruction::Or) {
3813 // Recurse on the operands of the or.
3814 BackedgeTakenInfo BTI0 =
3815 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3816 BackedgeTakenInfo BTI1 =
3817 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003818 const SCEV *BECount = getCouldNotCompute();
3819 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 if (L->contains(FBB)) {
3821 // Both conditions must be false for the loop to continue executing.
3822 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003823 if (BTI0.Exact == getCouldNotCompute() ||
3824 BTI1.Exact == getCouldNotCompute())
3825 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003826 else
3827 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003828 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003830 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003831 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003832 else
3833 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003834 } else {
3835 // Both conditions must be false for the loop to exit.
3836 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003837 if (BTI0.Exact != getCouldNotCompute() &&
3838 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003839 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003840 if (BTI0.Max != getCouldNotCompute() &&
3841 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003842 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3843 }
3844
3845 return BackedgeTakenInfo(BECount, MaxBECount);
3846 }
3847 }
3848
3849 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003850 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003851 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3852 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003853
Dan Gohman00cb5b72010-02-19 18:12:07 +00003854 // Check for a constant condition. These are normally stripped out by
3855 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3856 // preserve the CFG and is temporarily leaving constant conditions
3857 // in place.
3858 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3859 if (L->contains(FBB) == !CI->getZExtValue())
3860 // The backedge is always taken.
3861 return getCouldNotCompute();
3862 else
3863 // The backedge is never taken.
3864 return getIntegerSCEV(0, CI->getType());
3865 }
3866
Eli Friedman361e54d2009-05-09 12:32:42 +00003867 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003868 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3869}
3870
3871/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3872/// backedge of the specified loop will execute if its exit condition
3873/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3874ScalarEvolution::BackedgeTakenInfo
3875ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3876 ICmpInst *ExitCond,
3877 BasicBlock *TBB,
3878 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003879
Reid Spencere4d87aa2006-12-23 06:05:41 +00003880 // If the condition was exit on true, convert the condition to exit on false
3881 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003882 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003883 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003884 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003885 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003886
3887 // Handle common loops like: for (X = "string"; *X; ++X)
3888 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3889 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003890 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003891 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003892 if (ItCnt.hasAnyInfo())
3893 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003894 }
3895
Dan Gohman0bba49c2009-07-07 17:06:11 +00003896 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3897 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003898
3899 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003900 LHS = getSCEVAtScope(LHS, L);
3901 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003902
Dan Gohman64a845e2009-06-24 04:48:43 +00003903 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003904 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003905 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3906 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003907 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003908 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003909 }
3910
Dan Gohman03557dc2010-05-03 16:35:17 +00003911 // Simplify the operands before analyzing them.
3912 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3913
Chris Lattner53e677a2004-04-02 20:23:17 +00003914 // If we have a comparison of a chrec against a constant, try to use value
3915 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003916 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3917 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003918 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003919 // Form the constant range.
3920 ConstantRange CompRange(
3921 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003922
Dan Gohman0bba49c2009-07-07 17:06:11 +00003923 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003924 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003925 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003926
Chris Lattner53e677a2004-04-02 20:23:17 +00003927 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003928 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003929 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003930 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3931 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003932 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003933 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003934 case ICmpInst::ICMP_EQ: { // while (X == Y)
3935 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003936 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3937 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003938 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003939 }
3940 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003941 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3942 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003943 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003944 }
3945 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003946 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3947 getNotSCEV(RHS), L, true);
3948 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003949 break;
3950 }
3951 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003952 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3953 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003954 break;
3955 }
3956 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003957 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3958 getNotSCEV(RHS), L, false);
3959 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003960 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003961 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003962 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003963#if 0
David Greene25e0e872009-12-23 22:18:14 +00003964 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003965 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003966 dbgs() << "[unsigned] ";
3967 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003968 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003969 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003970#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003971 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003972 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003973 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003974 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003975}
3976
Chris Lattner673e02b2004-10-12 01:49:27 +00003977static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003978EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3979 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003980 const SCEV *InVal = SE.getConstant(C);
3981 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003982 assert(isa<SCEVConstant>(Val) &&
3983 "Evaluation of SCEV at constant didn't fold correctly?");
3984 return cast<SCEVConstant>(Val)->getValue();
3985}
3986
3987/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3988/// and a GEP expression (missing the pointer index) indexing into it, return
3989/// the addressed element of the initializer or null if the index expression is
3990/// invalid.
3991static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003992GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003993 const std::vector<ConstantInt*> &Indices) {
3994 Constant *Init = GV->getInitializer();
3995 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003996 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003997 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3998 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3999 Init = cast<Constant>(CS->getOperand(Idx));
4000 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4001 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4002 Init = cast<Constant>(CA->getOperand(Idx));
4003 } else if (isa<ConstantAggregateZero>(Init)) {
4004 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4005 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004006 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004007 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4008 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004009 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004010 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004011 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004012 }
4013 return 0;
4014 } else {
4015 return 0; // Unknown initializer type
4016 }
4017 }
4018 return Init;
4019}
4020
Dan Gohman46bdfb02009-02-24 18:55:53 +00004021/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4022/// 'icmp op load X, cst', try to see if we can compute the backedge
4023/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004024ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004025ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4026 LoadInst *LI,
4027 Constant *RHS,
4028 const Loop *L,
4029 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004030 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004031
4032 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004033 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004034 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004035 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004036
4037 // Make sure that it is really a constant global we are gepping, with an
4038 // initializer, and make sure the first IDX is really 0.
4039 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004040 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004041 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4042 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004043 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004044
4045 // Okay, we allow one non-constant index into the GEP instruction.
4046 Value *VarIdx = 0;
4047 std::vector<ConstantInt*> Indexes;
4048 unsigned VarIdxNum = 0;
4049 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4050 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4051 Indexes.push_back(CI);
4052 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004053 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004054 VarIdx = GEP->getOperand(i);
4055 VarIdxNum = i-2;
4056 Indexes.push_back(0);
4057 }
4058
4059 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4060 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004061 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004062 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004063
4064 // We can only recognize very limited forms of loop index expressions, in
4065 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004066 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004067 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4068 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4069 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004070 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004071
4072 unsigned MaxSteps = MaxBruteForceIterations;
4073 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004074 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004075 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004076 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004077
4078 // Form the GEP offset.
4079 Indexes[VarIdxNum] = Val;
4080
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004081 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004082 if (Result == 0) break; // Cannot compute!
4083
4084 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004085 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004086 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004087 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004088#if 0
David Greene25e0e872009-12-23 22:18:14 +00004089 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004090 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4091 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004092#endif
4093 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004094 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004095 }
4096 }
Dan Gohman1c343752009-06-27 21:21:31 +00004097 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004098}
4099
4100
Chris Lattner3221ad02004-04-17 22:58:41 +00004101/// CanConstantFold - Return true if we can constant fold an instruction of the
4102/// specified type, assuming that all operands were constants.
4103static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004104 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004105 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4106 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004107
Chris Lattner3221ad02004-04-17 22:58:41 +00004108 if (const CallInst *CI = dyn_cast<CallInst>(I))
4109 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004110 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004111 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004112}
4113
Chris Lattner3221ad02004-04-17 22:58:41 +00004114/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4115/// in the loop that V is derived from. We allow arbitrary operations along the
4116/// way, but the operands of an operation must either be constants or a value
4117/// derived from a constant PHI. If this expression does not fit with these
4118/// constraints, return null.
4119static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4120 // If this is not an instruction, or if this is an instruction outside of the
4121 // loop, it can't be derived from a loop PHI.
4122 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004123 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004124
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004125 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004126 if (L->getHeader() == I->getParent())
4127 return PN;
4128 else
4129 // We don't currently keep track of the control flow needed to evaluate
4130 // PHIs, so we cannot handle PHIs inside of loops.
4131 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004132 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004133
4134 // If we won't be able to constant fold this expression even if the operands
4135 // are constants, return early.
4136 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004137
Chris Lattner3221ad02004-04-17 22:58:41 +00004138 // Otherwise, we can evaluate this instruction if all of its operands are
4139 // constant or derived from a PHI node themselves.
4140 PHINode *PHI = 0;
4141 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4142 if (!(isa<Constant>(I->getOperand(Op)) ||
4143 isa<GlobalValue>(I->getOperand(Op)))) {
4144 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4145 if (P == 0) return 0; // Not evolving from PHI
4146 if (PHI == 0)
4147 PHI = P;
4148 else if (PHI != P)
4149 return 0; // Evolving from multiple different PHIs.
4150 }
4151
4152 // This is a expression evolving from a constant PHI!
4153 return PHI;
4154}
4155
4156/// EvaluateExpression - Given an expression that passes the
4157/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4158/// in the loop has the value PHIVal. If we can't fold this expression for some
4159/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004160static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4161 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004162 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004163 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004164 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004165 Instruction *I = cast<Instruction>(V);
4166
4167 std::vector<Constant*> Operands;
4168 Operands.resize(I->getNumOperands());
4169
4170 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004171 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004172 if (Operands[i] == 0) return 0;
4173 }
4174
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004175 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004176 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004177 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004178 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004179 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004180}
4181
4182/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4183/// in the header of its containing loop, we know the loop executes a
4184/// constant number of times, and the PHI node is just a recurrence
4185/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004186Constant *
4187ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004188 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004189 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004190 std::map<PHINode*, Constant*>::iterator I =
4191 ConstantEvolutionLoopExitValue.find(PN);
4192 if (I != ConstantEvolutionLoopExitValue.end())
4193 return I->second;
4194
Dan Gohmane0567812010-04-08 23:03:40 +00004195 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004196 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4197
4198 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4199
4200 // Since the loop is canonicalized, the PHI node must have two entries. One
4201 // entry must be a constant (coming in from outside of the loop), and the
4202 // second must be derived from the same PHI.
4203 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4204 Constant *StartCST =
4205 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4206 if (StartCST == 0)
4207 return RetVal = 0; // Must be a constant.
4208
4209 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4210 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4211 if (PN2 != PN)
4212 return RetVal = 0; // Not derived from same PHI.
4213
4214 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004215 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004216 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004217
Dan Gohman46bdfb02009-02-24 18:55:53 +00004218 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004219 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004220 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4221 if (IterationNum == NumIterations)
4222 return RetVal = PHIVal; // Got exit value!
4223
4224 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004225 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004226 if (NextPHI == PHIVal)
4227 return RetVal = NextPHI; // Stopped evolving!
4228 if (NextPHI == 0)
4229 return 0; // Couldn't evaluate!
4230 PHIVal = NextPHI;
4231 }
4232}
4233
Dan Gohman07ad19b2009-07-27 16:09:48 +00004234/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004235/// constant number of times (the condition evolves only from constants),
4236/// try to evaluate a few iterations of the loop until we get the exit
4237/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004238/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004239const SCEV *
4240ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4241 Value *Cond,
4242 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004243 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004244 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004245
4246 // Since the loop is canonicalized, the PHI node must have two entries. One
4247 // entry must be a constant (coming in from outside of the loop), and the
4248 // second must be derived from the same PHI.
4249 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4250 Constant *StartCST =
4251 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004252 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004253
4254 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4255 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004256 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004257
4258 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4259 // the loop symbolically to determine when the condition gets a value of
4260 // "ExitWhen".
4261 unsigned IterationNum = 0;
4262 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4263 for (Constant *PHIVal = StartCST;
4264 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004265 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004266 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004267
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004268 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004269 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004270
Reid Spencere8019bb2007-03-01 07:25:48 +00004271 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004272 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004273 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004274 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004275
Chris Lattner3221ad02004-04-17 22:58:41 +00004276 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004277 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004278 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004279 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004280 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004281 }
4282
4283 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004284 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004285}
4286
Dan Gohmane7125f42009-09-03 15:00:26 +00004287/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004288/// at the specified scope in the program. The L value specifies a loop
4289/// nest to evaluate the expression at, where null is the top-level or a
4290/// specified loop is immediately inside of the loop.
4291///
4292/// This method can be used to compute the exit value for a variable defined
4293/// in a loop by querying what the value will hold in the parent loop.
4294///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004295/// In the case that a relevant loop exit value cannot be computed, the
4296/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004297const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004298 // Check to see if we've folded this expression at this loop before.
4299 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4300 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4301 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4302 if (!Pair.second)
4303 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004304
Dan Gohman42214892009-08-31 21:15:23 +00004305 // Otherwise compute it.
4306 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004307 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004308 return C;
4309}
4310
4311const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004312 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004313
Nick Lewycky3e630762008-02-20 06:48:22 +00004314 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004315 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004316 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004317 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004318 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004319 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4320 if (PHINode *PN = dyn_cast<PHINode>(I))
4321 if (PN->getParent() == LI->getHeader()) {
4322 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004323 // to see if the loop that contains it has a known backedge-taken
4324 // count. If so, we may be able to force computation of the exit
4325 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004326 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004327 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004328 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004329 // Okay, we know how many times the containing loop executes. If
4330 // this is a constant evolving PHI node, get the final value at
4331 // the specified iteration number.
4332 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004333 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004334 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004335 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 }
4337 }
4338
Reid Spencer09906f32006-12-04 21:33:23 +00004339 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004340 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004341 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004342 // result. This is particularly useful for computing loop exit values.
4343 if (CanConstantFold(I)) {
4344 std::vector<Constant*> Operands;
4345 Operands.reserve(I->getNumOperands());
4346 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4347 Value *Op = I->getOperand(i);
4348 if (Constant *C = dyn_cast<Constant>(Op)) {
4349 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004350 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004351 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004352 // non-integer and non-pointer, don't even try to analyze them
4353 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004354 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004355 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004356
Dan Gohman5d984912009-12-18 01:14:11 +00004357 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004358 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004359 Constant *C = SC->getValue();
4360 if (C->getType() != Op->getType())
4361 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4362 Op->getType(),
4363 false),
4364 C, Op->getType());
4365 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004366 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004367 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4368 if (C->getType() != Op->getType())
4369 C =
4370 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4371 Op->getType(),
4372 false),
4373 C, Op->getType());
4374 Operands.push_back(C);
4375 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004376 return V;
4377 } else {
4378 return V;
4379 }
4380 }
4381 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004382
Dan Gohmane177c9a2010-02-24 19:31:47 +00004383 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004384 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4385 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004386 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004387 else
4388 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004389 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004390 if (C)
4391 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004392 }
4393 }
4394
4395 // This is some other type of SCEVUnknown, just return it.
4396 return V;
4397 }
4398
Dan Gohman622ed672009-05-04 22:02:23 +00004399 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004400 // Avoid performing the look-up in the common case where the specified
4401 // expression has no loop-variant portions.
4402 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004403 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004404 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004405 // Okay, at least one of these operands is loop variant but might be
4406 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004407 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4408 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004409 NewOps.push_back(OpAtScope);
4410
4411 for (++i; i != e; ++i) {
4412 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004413 NewOps.push_back(OpAtScope);
4414 }
4415 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004416 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004417 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004418 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004419 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004420 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004421 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004422 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004423 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004424 }
4425 }
4426 // If we got here, all operands are loop invariant.
4427 return Comm;
4428 }
4429
Dan Gohman622ed672009-05-04 22:02:23 +00004430 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004431 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4432 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004433 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4434 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004435 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004436 }
4437
4438 // If this is a loop recurrence for a loop that does not contain L, then we
4439 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004440 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004441 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004442 // To evaluate this recurrence, we need to know how many times the AddRec
4443 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004444 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004445 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004446
Eli Friedmanb42a6262008-08-04 23:49:06 +00004447 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004448 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004449 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004450 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004451 }
4452
Dan Gohman622ed672009-05-04 22:02:23 +00004453 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004454 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004455 if (Op == Cast->getOperand())
4456 return Cast; // must be loop invariant
4457 return getZeroExtendExpr(Op, Cast->getType());
4458 }
4459
Dan Gohman622ed672009-05-04 22:02:23 +00004460 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004461 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004462 if (Op == Cast->getOperand())
4463 return Cast; // must be loop invariant
4464 return getSignExtendExpr(Op, Cast->getType());
4465 }
4466
Dan Gohman622ed672009-05-04 22:02:23 +00004467 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004468 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004469 if (Op == Cast->getOperand())
4470 return Cast; // must be loop invariant
4471 return getTruncateExpr(Op, Cast->getType());
4472 }
4473
Torok Edwinc23197a2009-07-14 16:55:14 +00004474 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004475 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004476}
4477
Dan Gohman66a7e852009-05-08 20:38:54 +00004478/// getSCEVAtScope - This is a convenience function which does
4479/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004480const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004481 return getSCEVAtScope(getSCEV(V), L);
4482}
4483
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004484/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4485/// following equation:
4486///
4487/// A * X = B (mod N)
4488///
4489/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4490/// A and B isn't important.
4491///
4492/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004493static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004494 ScalarEvolution &SE) {
4495 uint32_t BW = A.getBitWidth();
4496 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4497 assert(A != 0 && "A must be non-zero.");
4498
4499 // 1. D = gcd(A, N)
4500 //
4501 // The gcd of A and N may have only one prime factor: 2. The number of
4502 // trailing zeros in A is its multiplicity
4503 uint32_t Mult2 = A.countTrailingZeros();
4504 // D = 2^Mult2
4505
4506 // 2. Check if B is divisible by D.
4507 //
4508 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4509 // is not less than multiplicity of this prime factor for D.
4510 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004511 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004512
4513 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4514 // modulo (N / D).
4515 //
4516 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4517 // bit width during computations.
4518 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4519 APInt Mod(BW + 1, 0);
4520 Mod.set(BW - Mult2); // Mod = N / D
4521 APInt I = AD.multiplicativeInverse(Mod);
4522
4523 // 4. Compute the minimum unsigned root of the equation:
4524 // I * (B / D) mod (N / D)
4525 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4526
4527 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4528 // bits.
4529 return SE.getConstant(Result.trunc(BW));
4530}
Chris Lattner53e677a2004-04-02 20:23:17 +00004531
4532/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4533/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4534/// might be the same) or two SCEVCouldNotCompute objects.
4535///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004536static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004537SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004538 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004539 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4540 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4541 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004542
Chris Lattner53e677a2004-04-02 20:23:17 +00004543 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004544 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004545 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004546 return std::make_pair(CNC, CNC);
4547 }
4548
Reid Spencere8019bb2007-03-01 07:25:48 +00004549 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004550 const APInt &L = LC->getValue()->getValue();
4551 const APInt &M = MC->getValue()->getValue();
4552 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004553 APInt Two(BitWidth, 2);
4554 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004555
Dan Gohman64a845e2009-06-24 04:48:43 +00004556 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004557 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004558 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004559 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4560 // The B coefficient is M-N/2
4561 APInt B(M);
4562 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004563
Reid Spencere8019bb2007-03-01 07:25:48 +00004564 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004565 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004566
Reid Spencere8019bb2007-03-01 07:25:48 +00004567 // Compute the B^2-4ac term.
4568 APInt SqrtTerm(B);
4569 SqrtTerm *= B;
4570 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004571
Reid Spencere8019bb2007-03-01 07:25:48 +00004572 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4573 // integer value or else APInt::sqrt() will assert.
4574 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004575
Dan Gohman64a845e2009-06-24 04:48:43 +00004576 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004577 // The divisions must be performed as signed divisions.
4578 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004579 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004580 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004581 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004582 return std::make_pair(CNC, CNC);
4583 }
4584
Owen Andersone922c022009-07-22 00:24:57 +00004585 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004586
4587 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004588 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004589 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004590 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004591
Dan Gohman64a845e2009-06-24 04:48:43 +00004592 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004593 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004594 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004595}
4596
4597/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004598/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004599ScalarEvolution::BackedgeTakenInfo
4600ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004601 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004602 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004603 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004604 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004605 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004606 }
4607
Dan Gohman35738ac2009-05-04 22:30:44 +00004608 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004610 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004611
4612 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004613 // If this is an affine expression, the execution count of this branch is
4614 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004615 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004616 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004617 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004618 // equivalent to:
4619 //
4620 // Step*N = -Start (mod 2^BW)
4621 //
4622 // where BW is the common bit width of Start and Step.
4623
Chris Lattner53e677a2004-04-02 20:23:17 +00004624 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004625 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4626 L->getParentLoop());
4627 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4628 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004629
Dan Gohman622ed672009-05-04 22:02:23 +00004630 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004631 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004632
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004633 // First, handle unitary steps.
4634 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004635 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004636 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4637 return Start; // N = Start (as unsigned)
4638
4639 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004640 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004641 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004642 -StartC->getValue()->getValue(),
4643 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004644 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004645 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004646 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4647 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004648 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004649 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004650 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4651 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004652 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004653#if 0
David Greene25e0e872009-12-23 22:18:14 +00004654 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004655 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004656#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004657 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004658 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004659 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004660 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004661 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004662 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004663
Chris Lattner53e677a2004-04-02 20:23:17 +00004664 // We can only use this value if the chrec ends up with an exact zero
4665 // value at this index. When solving for "X*X != 5", for example, we
4666 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004667 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004668 if (Val->isZero())
4669 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004670 }
4671 }
4672 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004673
Dan Gohman1c343752009-06-27 21:21:31 +00004674 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004675}
4676
4677/// HowFarToNonZero - Return the number of times a backedge checking the
4678/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004679/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004680ScalarEvolution::BackedgeTakenInfo
4681ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004682 // Loops that look like: while (X == 0) are very strange indeed. We don't
4683 // handle them yet except for the trivial case. This could be expanded in the
4684 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004685
Chris Lattner53e677a2004-04-02 20:23:17 +00004686 // If the value is a constant, check to see if it is known to be non-zero
4687 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004688 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004689 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004690 return getIntegerSCEV(0, C->getType());
Dan Gohman1c343752009-06-27 21:21:31 +00004691 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004692 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004693
Chris Lattner53e677a2004-04-02 20:23:17 +00004694 // We could implement others, but I really doubt anyone writes loops like
4695 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004696 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004697}
4698
Dan Gohman859b4822009-05-18 15:36:09 +00004699/// getLoopPredecessor - If the given loop's header has exactly one unique
4700/// predecessor outside the loop, return it. Otherwise return null.
Dan Gohman2c93e392010-04-14 16:08:56 +00004701/// This is less strict that the loop "preheader" concept, which requires
4702/// the predecessor to have only one single successor.
Dan Gohman859b4822009-05-18 15:36:09 +00004703///
4704BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4705 BasicBlock *Header = L->getHeader();
4706 BasicBlock *Pred = 0;
4707 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4708 PI != E; ++PI)
4709 if (!L->contains(*PI)) {
4710 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4711 Pred = *PI;
4712 }
4713 return Pred;
4714}
4715
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004716/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4717/// (which may not be an immediate predecessor) which has exactly one
4718/// successor from which BB is reachable, or null if no such block is
4719/// found.
4720///
Dan Gohman005752b2010-04-15 16:19:08 +00004721std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004722ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004723 // If the block has a unique predecessor, then there is no path from the
4724 // predecessor to the block that does not go through the direct edge
4725 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004726 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004727 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004728
4729 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004730 // If the header has a unique predecessor outside the loop, it must be
4731 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004732 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman005752b2010-04-15 16:19:08 +00004733 return std::make_pair(getLoopPredecessor(L), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004734
Dan Gohman005752b2010-04-15 16:19:08 +00004735 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004736}
4737
Dan Gohman763bad12009-06-20 00:35:32 +00004738/// HasSameValue - SCEV structural equivalence is usually sufficient for
4739/// testing whether two expressions are equal, however for the purposes of
4740/// looking for a condition guarding a loop, it can be useful to be a little
4741/// more general, since a front-end may have replicated the controlling
4742/// expression.
4743///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004744static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004745 // Quick check to see if they are the same SCEV.
4746 if (A == B) return true;
4747
4748 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4749 // two different instructions with the same value. Check for this case.
4750 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4751 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4752 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4753 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004754 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004755 return true;
4756
4757 // Otherwise assume they may have a different value.
4758 return false;
4759}
4760
Dan Gohmane9796502010-04-24 01:28:42 +00004761/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4762/// predicate Pred. Return true iff any changes were made.
4763///
4764bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4765 const SCEV *&LHS, const SCEV *&RHS) {
4766 bool Changed = false;
4767
4768 // Canonicalize a constant to the right side.
4769 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4770 // Check for both operands constant.
4771 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4772 if (ConstantExpr::getICmp(Pred,
4773 LHSC->getValue(),
4774 RHSC->getValue())->isNullValue())
4775 goto trivially_false;
4776 else
4777 goto trivially_true;
4778 }
4779 // Otherwise swap the operands to put the constant on the right.
4780 std::swap(LHS, RHS);
4781 Pred = ICmpInst::getSwappedPredicate(Pred);
4782 Changed = true;
4783 }
4784
4785 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004786 // addrec's loop, put the addrec on the left. Also make a dominance check,
4787 // as both operands could be addrecs loop-invariant in each other's loop.
4788 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4789 const Loop *L = AR->getLoop();
4790 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004791 std::swap(LHS, RHS);
4792 Pred = ICmpInst::getSwappedPredicate(Pred);
4793 Changed = true;
4794 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004795 }
Dan Gohmane9796502010-04-24 01:28:42 +00004796
4797 // If there's a constant operand, canonicalize comparisons with boundary
4798 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4799 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4800 const APInt &RA = RC->getValue()->getValue();
4801 switch (Pred) {
4802 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4803 case ICmpInst::ICMP_EQ:
4804 case ICmpInst::ICMP_NE:
4805 break;
4806 case ICmpInst::ICMP_UGE:
4807 if ((RA - 1).isMinValue()) {
4808 Pred = ICmpInst::ICMP_NE;
4809 RHS = getConstant(RA - 1);
4810 Changed = true;
4811 break;
4812 }
4813 if (RA.isMaxValue()) {
4814 Pred = ICmpInst::ICMP_EQ;
4815 Changed = true;
4816 break;
4817 }
4818 if (RA.isMinValue()) goto trivially_true;
4819
4820 Pred = ICmpInst::ICMP_UGT;
4821 RHS = getConstant(RA - 1);
4822 Changed = true;
4823 break;
4824 case ICmpInst::ICMP_ULE:
4825 if ((RA + 1).isMaxValue()) {
4826 Pred = ICmpInst::ICMP_NE;
4827 RHS = getConstant(RA + 1);
4828 Changed = true;
4829 break;
4830 }
4831 if (RA.isMinValue()) {
4832 Pred = ICmpInst::ICMP_EQ;
4833 Changed = true;
4834 break;
4835 }
4836 if (RA.isMaxValue()) goto trivially_true;
4837
4838 Pred = ICmpInst::ICMP_ULT;
4839 RHS = getConstant(RA + 1);
4840 Changed = true;
4841 break;
4842 case ICmpInst::ICMP_SGE:
4843 if ((RA - 1).isMinSignedValue()) {
4844 Pred = ICmpInst::ICMP_NE;
4845 RHS = getConstant(RA - 1);
4846 Changed = true;
4847 break;
4848 }
4849 if (RA.isMaxSignedValue()) {
4850 Pred = ICmpInst::ICMP_EQ;
4851 Changed = true;
4852 break;
4853 }
4854 if (RA.isMinSignedValue()) goto trivially_true;
4855
4856 Pred = ICmpInst::ICMP_SGT;
4857 RHS = getConstant(RA - 1);
4858 Changed = true;
4859 break;
4860 case ICmpInst::ICMP_SLE:
4861 if ((RA + 1).isMaxSignedValue()) {
4862 Pred = ICmpInst::ICMP_NE;
4863 RHS = getConstant(RA + 1);
4864 Changed = true;
4865 break;
4866 }
4867 if (RA.isMinSignedValue()) {
4868 Pred = ICmpInst::ICMP_EQ;
4869 Changed = true;
4870 break;
4871 }
4872 if (RA.isMaxSignedValue()) goto trivially_true;
4873
4874 Pred = ICmpInst::ICMP_SLT;
4875 RHS = getConstant(RA + 1);
4876 Changed = true;
4877 break;
4878 case ICmpInst::ICMP_UGT:
4879 if (RA.isMinValue()) {
4880 Pred = ICmpInst::ICMP_NE;
4881 Changed = true;
4882 break;
4883 }
4884 if ((RA + 1).isMaxValue()) {
4885 Pred = ICmpInst::ICMP_EQ;
4886 RHS = getConstant(RA + 1);
4887 Changed = true;
4888 break;
4889 }
4890 if (RA.isMaxValue()) goto trivially_false;
4891 break;
4892 case ICmpInst::ICMP_ULT:
4893 if (RA.isMaxValue()) {
4894 Pred = ICmpInst::ICMP_NE;
4895 Changed = true;
4896 break;
4897 }
4898 if ((RA - 1).isMinValue()) {
4899 Pred = ICmpInst::ICMP_EQ;
4900 RHS = getConstant(RA - 1);
4901 Changed = true;
4902 break;
4903 }
4904 if (RA.isMinValue()) goto trivially_false;
4905 break;
4906 case ICmpInst::ICMP_SGT:
4907 if (RA.isMinSignedValue()) {
4908 Pred = ICmpInst::ICMP_NE;
4909 Changed = true;
4910 break;
4911 }
4912 if ((RA + 1).isMaxSignedValue()) {
4913 Pred = ICmpInst::ICMP_EQ;
4914 RHS = getConstant(RA + 1);
4915 Changed = true;
4916 break;
4917 }
4918 if (RA.isMaxSignedValue()) goto trivially_false;
4919 break;
4920 case ICmpInst::ICMP_SLT:
4921 if (RA.isMaxSignedValue()) {
4922 Pred = ICmpInst::ICMP_NE;
4923 Changed = true;
4924 break;
4925 }
4926 if ((RA - 1).isMinSignedValue()) {
4927 Pred = ICmpInst::ICMP_EQ;
4928 RHS = getConstant(RA - 1);
4929 Changed = true;
4930 break;
4931 }
4932 if (RA.isMinSignedValue()) goto trivially_false;
4933 break;
4934 }
4935 }
4936
4937 // Check for obvious equality.
4938 if (HasSameValue(LHS, RHS)) {
4939 if (ICmpInst::isTrueWhenEqual(Pred))
4940 goto trivially_true;
4941 if (ICmpInst::isFalseWhenEqual(Pred))
4942 goto trivially_false;
4943 }
4944
Dan Gohman03557dc2010-05-03 16:35:17 +00004945 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4946 // adding or subtracting 1 from one of the operands.
4947 switch (Pred) {
4948 case ICmpInst::ICMP_SLE:
4949 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4950 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4951 /*HasNUW=*/false, /*HasNSW=*/true);
4952 Pred = ICmpInst::ICMP_SLT;
4953 Changed = true;
4954 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004955 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004956 /*HasNUW=*/false, /*HasNSW=*/true);
4957 Pred = ICmpInst::ICMP_SLT;
4958 Changed = true;
4959 }
4960 break;
4961 case ICmpInst::ICMP_SGE:
4962 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004963 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004964 /*HasNUW=*/false, /*HasNSW=*/true);
4965 Pred = ICmpInst::ICMP_SGT;
4966 Changed = true;
4967 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4968 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4969 /*HasNUW=*/false, /*HasNSW=*/true);
4970 Pred = ICmpInst::ICMP_SGT;
4971 Changed = true;
4972 }
4973 break;
4974 case ICmpInst::ICMP_ULE:
4975 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004976 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004977 /*HasNUW=*/true, /*HasNSW=*/false);
4978 Pred = ICmpInst::ICMP_ULT;
4979 Changed = true;
4980 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004981 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004982 /*HasNUW=*/true, /*HasNSW=*/false);
4983 Pred = ICmpInst::ICMP_ULT;
4984 Changed = true;
4985 }
4986 break;
4987 case ICmpInst::ICMP_UGE:
4988 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004989 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004990 /*HasNUW=*/true, /*HasNSW=*/false);
4991 Pred = ICmpInst::ICMP_UGT;
4992 Changed = true;
4993 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004994 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004995 /*HasNUW=*/true, /*HasNSW=*/false);
4996 Pred = ICmpInst::ICMP_UGT;
4997 Changed = true;
4998 }
4999 break;
5000 default:
5001 break;
5002 }
5003
Dan Gohmane9796502010-04-24 01:28:42 +00005004 // TODO: More simplifications are possible here.
5005
5006 return Changed;
5007
5008trivially_true:
5009 // Return 0 == 0.
5010 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5011 Pred = ICmpInst::ICMP_EQ;
5012 return true;
5013
5014trivially_false:
5015 // Return 0 != 0.
5016 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5017 Pred = ICmpInst::ICMP_NE;
5018 return true;
5019}
5020
Dan Gohman85b05a22009-07-13 21:35:55 +00005021bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5022 return getSignedRange(S).getSignedMax().isNegative();
5023}
5024
5025bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5026 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5027}
5028
5029bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5030 return !getSignedRange(S).getSignedMin().isNegative();
5031}
5032
5033bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5034 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5035}
5036
5037bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5038 return isKnownNegative(S) || isKnownPositive(S);
5039}
5040
5041bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5042 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005043 // Canonicalize the inputs first.
5044 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5045
Dan Gohman53c66ea2010-04-11 22:16:48 +00005046 // If LHS or RHS is an addrec, check to see if the condition is true in
5047 // every iteration of the loop.
5048 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5049 if (isLoopEntryGuardedByCond(
5050 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5051 isLoopBackedgeGuardedByCond(
5052 AR->getLoop(), Pred,
5053 getAddExpr(AR, AR->getStepRecurrence(*this)), RHS))
5054 return true;
5055 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5056 if (isLoopEntryGuardedByCond(
5057 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5058 isLoopBackedgeGuardedByCond(
5059 AR->getLoop(), Pred,
5060 LHS, getAddExpr(AR, AR->getStepRecurrence(*this))))
5061 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005062
Dan Gohman53c66ea2010-04-11 22:16:48 +00005063 // Otherwise see what can be done with known constant ranges.
5064 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5065}
5066
5067bool
5068ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5069 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005070 if (HasSameValue(LHS, RHS))
5071 return ICmpInst::isTrueWhenEqual(Pred);
5072
Dan Gohman53c66ea2010-04-11 22:16:48 +00005073 // This code is split out from isKnownPredicate because it is called from
5074 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005075 switch (Pred) {
5076 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005077 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005078 break;
5079 case ICmpInst::ICMP_SGT:
5080 Pred = ICmpInst::ICMP_SLT;
5081 std::swap(LHS, RHS);
5082 case ICmpInst::ICMP_SLT: {
5083 ConstantRange LHSRange = getSignedRange(LHS);
5084 ConstantRange RHSRange = getSignedRange(RHS);
5085 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5086 return true;
5087 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5088 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005089 break;
5090 }
5091 case ICmpInst::ICMP_SGE:
5092 Pred = ICmpInst::ICMP_SLE;
5093 std::swap(LHS, RHS);
5094 case ICmpInst::ICMP_SLE: {
5095 ConstantRange LHSRange = getSignedRange(LHS);
5096 ConstantRange RHSRange = getSignedRange(RHS);
5097 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5098 return true;
5099 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5100 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005101 break;
5102 }
5103 case ICmpInst::ICMP_UGT:
5104 Pred = ICmpInst::ICMP_ULT;
5105 std::swap(LHS, RHS);
5106 case ICmpInst::ICMP_ULT: {
5107 ConstantRange LHSRange = getUnsignedRange(LHS);
5108 ConstantRange RHSRange = getUnsignedRange(RHS);
5109 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5110 return true;
5111 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5112 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005113 break;
5114 }
5115 case ICmpInst::ICMP_UGE:
5116 Pred = ICmpInst::ICMP_ULE;
5117 std::swap(LHS, RHS);
5118 case ICmpInst::ICMP_ULE: {
5119 ConstantRange LHSRange = getUnsignedRange(LHS);
5120 ConstantRange RHSRange = getUnsignedRange(RHS);
5121 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5122 return true;
5123 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5124 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005125 break;
5126 }
5127 case ICmpInst::ICMP_NE: {
5128 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5129 return true;
5130 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5131 return true;
5132
5133 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5134 if (isKnownNonZero(Diff))
5135 return true;
5136 break;
5137 }
5138 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005139 // The check at the top of the function catches the case where
5140 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005141 break;
5142 }
5143 return false;
5144}
5145
5146/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5147/// protected by a conditional between LHS and RHS. This is used to
5148/// to eliminate casts.
5149bool
5150ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5151 ICmpInst::Predicate Pred,
5152 const SCEV *LHS, const SCEV *RHS) {
5153 // Interpret a null as meaning no loop, where there is obviously no guard
5154 // (interprocedural conditions notwithstanding).
5155 if (!L) return true;
5156
5157 BasicBlock *Latch = L->getLoopLatch();
5158 if (!Latch)
5159 return false;
5160
5161 BranchInst *LoopContinuePredicate =
5162 dyn_cast<BranchInst>(Latch->getTerminator());
5163 if (!LoopContinuePredicate ||
5164 LoopContinuePredicate->isUnconditional())
5165 return false;
5166
Dan Gohman0f4b2852009-07-21 23:03:19 +00005167 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5168 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005169}
5170
Dan Gohman3948d0b2010-04-11 19:27:13 +00005171/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005172/// by a conditional between LHS and RHS. This is used to help avoid max
5173/// expressions in loop trip counts, and to eliminate casts.
5174bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005175ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5176 ICmpInst::Predicate Pred,
5177 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005178 // Interpret a null as meaning no loop, where there is obviously no guard
5179 // (interprocedural conditions notwithstanding).
5180 if (!L) return false;
5181
Dan Gohman859b4822009-05-18 15:36:09 +00005182 // Starting at the loop predecessor, climb up the predecessor chain, as long
5183 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005184 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005185 for (std::pair<BasicBlock *, BasicBlock *>
5186 Pair(getLoopPredecessor(L), L->getHeader());
5187 Pair.first;
5188 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005189
5190 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005191 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005192 if (!LoopEntryPredicate ||
5193 LoopEntryPredicate->isUnconditional())
5194 continue;
5195
Dan Gohman0f4b2852009-07-21 23:03:19 +00005196 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005197 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005198 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005199 }
5200
Dan Gohman38372182008-08-12 20:17:31 +00005201 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005202}
5203
Dan Gohman0f4b2852009-07-21 23:03:19 +00005204/// isImpliedCond - Test whether the condition described by Pred, LHS,
5205/// and RHS is true whenever the given Cond value evaluates to true.
5206bool ScalarEvolution::isImpliedCond(Value *CondValue,
5207 ICmpInst::Predicate Pred,
5208 const SCEV *LHS, const SCEV *RHS,
5209 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005210 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005211 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5212 if (BO->getOpcode() == Instruction::And) {
5213 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005214 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5215 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005216 } else if (BO->getOpcode() == Instruction::Or) {
5217 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005218 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5219 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005220 }
5221 }
5222
5223 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5224 if (!ICI) return false;
5225
Dan Gohman85b05a22009-07-13 21:35:55 +00005226 // Bail if the ICmp's operands' types are wider than the needed type
5227 // before attempting to call getSCEV on them. This avoids infinite
5228 // recursion, since the analysis of widening casts can require loop
5229 // exit condition information for overflow checking, which would
5230 // lead back here.
5231 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005232 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005233 return false;
5234
Dan Gohman0f4b2852009-07-21 23:03:19 +00005235 // Now that we found a conditional branch that dominates the loop, check to
5236 // see if it is the comparison we are looking for.
5237 ICmpInst::Predicate FoundPred;
5238 if (Inverse)
5239 FoundPred = ICI->getInversePredicate();
5240 else
5241 FoundPred = ICI->getPredicate();
5242
5243 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5244 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005245
5246 // Balance the types. The case where FoundLHS' type is wider than
5247 // LHS' type is checked for above.
5248 if (getTypeSizeInBits(LHS->getType()) >
5249 getTypeSizeInBits(FoundLHS->getType())) {
5250 if (CmpInst::isSigned(Pred)) {
5251 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5252 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5253 } else {
5254 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5255 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5256 }
5257 }
5258
Dan Gohman0f4b2852009-07-21 23:03:19 +00005259 // Canonicalize the query to match the way instcombine will have
5260 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005261 if (SimplifyICmpOperands(Pred, LHS, RHS))
5262 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005263 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005264 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5265 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005266 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005267
5268 // Check to see if we can make the LHS or RHS match.
5269 if (LHS == FoundRHS || RHS == FoundLHS) {
5270 if (isa<SCEVConstant>(RHS)) {
5271 std::swap(FoundLHS, FoundRHS);
5272 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5273 } else {
5274 std::swap(LHS, RHS);
5275 Pred = ICmpInst::getSwappedPredicate(Pred);
5276 }
5277 }
5278
5279 // Check whether the found predicate is the same as the desired predicate.
5280 if (FoundPred == Pred)
5281 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5282
5283 // Check whether swapping the found predicate makes it the same as the
5284 // desired predicate.
5285 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5286 if (isa<SCEVConstant>(RHS))
5287 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5288 else
5289 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5290 RHS, LHS, FoundLHS, FoundRHS);
5291 }
5292
5293 // Check whether the actual condition is beyond sufficient.
5294 if (FoundPred == ICmpInst::ICMP_EQ)
5295 if (ICmpInst::isTrueWhenEqual(Pred))
5296 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5297 return true;
5298 if (Pred == ICmpInst::ICMP_NE)
5299 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5300 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5301 return true;
5302
5303 // Otherwise assume the worst.
5304 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005305}
5306
Dan Gohman0f4b2852009-07-21 23:03:19 +00005307/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005308/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005309/// and FoundRHS is true.
5310bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5311 const SCEV *LHS, const SCEV *RHS,
5312 const SCEV *FoundLHS,
5313 const SCEV *FoundRHS) {
5314 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5315 FoundLHS, FoundRHS) ||
5316 // ~x < ~y --> x > y
5317 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5318 getNotSCEV(FoundRHS),
5319 getNotSCEV(FoundLHS));
5320}
5321
5322/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005323/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005324/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005325bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005326ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5327 const SCEV *LHS, const SCEV *RHS,
5328 const SCEV *FoundLHS,
5329 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005330 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005331 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5332 case ICmpInst::ICMP_EQ:
5333 case ICmpInst::ICMP_NE:
5334 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5335 return true;
5336 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005337 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005338 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005339 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5340 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005341 return true;
5342 break;
5343 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005344 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005345 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5346 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005347 return true;
5348 break;
5349 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005350 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005351 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5352 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005353 return true;
5354 break;
5355 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005356 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005357 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5358 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005359 return true;
5360 break;
5361 }
5362
5363 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005364}
5365
Dan Gohman51f53b72009-06-21 23:46:38 +00005366/// getBECount - Subtract the end and start values and divide by the step,
5367/// rounding up, to get the number of times the backedge is executed. Return
5368/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005369const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005370 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005371 const SCEV *Step,
5372 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005373 assert(!isKnownNegative(Step) &&
5374 "This code doesn't handle negative strides yet!");
5375
Dan Gohman51f53b72009-06-21 23:46:38 +00005376 const Type *Ty = Start->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00005377 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
5378 const SCEV *Diff = getMinusSCEV(End, Start);
5379 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005380
5381 // Add an adjustment to the difference between End and Start so that
5382 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005383 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005384
Dan Gohman1f96e672009-09-17 18:05:20 +00005385 if (!NoWrap) {
5386 // Check Add for unsigned overflow.
5387 // TODO: More sophisticated things could be done here.
5388 const Type *WideTy = IntegerType::get(getContext(),
5389 getTypeSizeInBits(Ty) + 1);
5390 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5391 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5392 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5393 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5394 return getCouldNotCompute();
5395 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005396
5397 return getUDivExpr(Add, Step);
5398}
5399
Chris Lattnerdb25de42005-08-15 23:33:51 +00005400/// HowManyLessThans - Return the number of times a backedge containing the
5401/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005402/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005403ScalarEvolution::BackedgeTakenInfo
5404ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5405 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005406 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005407 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005408
Dan Gohman35738ac2009-05-04 22:30:44 +00005409 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005410 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005411 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005412
Dan Gohman1f96e672009-09-17 18:05:20 +00005413 // Check to see if we have a flag which makes analysis easy.
5414 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5415 AddRec->hasNoUnsignedWrap();
5416
Chris Lattnerdb25de42005-08-15 23:33:51 +00005417 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005418 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005419 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005420
Dan Gohman52fddd32010-01-26 04:40:18 +00005421 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005422 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005423 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005424 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005425 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005426 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005427 // value and past the maximum value for its type in a single step.
5428 // Note that it's not sufficient to check NoWrap here, because even
5429 // though the value after a wrap is undefined, it's not undefined
5430 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005431 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005432 // iterate at least until the iteration where the wrapping occurs.
5433 const SCEV *One = getIntegerSCEV(1, Step->getType());
5434 if (isSigned) {
5435 APInt Max = APInt::getSignedMaxValue(BitWidth);
5436 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5437 .slt(getSignedRange(RHS).getSignedMax()))
5438 return getCouldNotCompute();
5439 } else {
5440 APInt Max = APInt::getMaxValue(BitWidth);
5441 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5442 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5443 return getCouldNotCompute();
5444 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005445 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005446 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005447 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005448
Dan Gohmana1af7572009-04-30 20:47:05 +00005449 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5450 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5451 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005452 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005453
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005454 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005455 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005456
Dan Gohmana1af7572009-04-30 20:47:05 +00005457 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005458 const SCEV *MinStart = getConstant(isSigned ?
5459 getSignedRange(Start).getSignedMin() :
5460 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005461
Dan Gohmana1af7572009-04-30 20:47:05 +00005462 // If we know that the condition is true in order to enter the loop,
5463 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005464 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5465 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005466 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005467 if (!isLoopEntryGuardedByCond(L,
5468 isSigned ? ICmpInst::ICMP_SLT :
5469 ICmpInst::ICMP_ULT,
5470 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005471 End = isSigned ? getSMaxExpr(RHS, Start)
5472 : getUMaxExpr(RHS, Start);
5473
5474 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005475 const SCEV *MaxEnd = getConstant(isSigned ?
5476 getSignedRange(End).getSignedMax() :
5477 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005478
Dan Gohman52fddd32010-01-26 04:40:18 +00005479 // If MaxEnd is within a step of the maximum integer value in its type,
5480 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005481 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005482 // compute the correct value.
5483 const SCEV *StepMinusOne = getMinusSCEV(Step,
5484 getIntegerSCEV(1, Step->getType()));
5485 MaxEnd = isSigned ?
5486 getSMinExpr(MaxEnd,
5487 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5488 StepMinusOne)) :
5489 getUMinExpr(MaxEnd,
5490 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5491 StepMinusOne));
5492
Dan Gohmana1af7572009-04-30 20:47:05 +00005493 // Finally, we subtract these two values and divide, rounding up, to get
5494 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005495 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005496
5497 // The maximum backedge count is similar, except using the minimum start
5498 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005499 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005500
5501 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005502 }
5503
Dan Gohman1c343752009-06-27 21:21:31 +00005504 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005505}
5506
Chris Lattner53e677a2004-04-02 20:23:17 +00005507/// getNumIterationsInRange - Return the number of iterations of this loop that
5508/// produce values in the specified constant range. Another way of looking at
5509/// this is that it returns the first iteration number where the value is not in
5510/// the condition, thus computing the exit count. If the iteration count can't
5511/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005512const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005513 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005514 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005515 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005516
5517 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005518 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005519 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005520 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005521 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005522 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005523 if (const SCEVAddRecExpr *ShiftedAddRec =
5524 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005525 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005526 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005527 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005528 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005529 }
5530
5531 // The only time we can solve this is when we have all constant indices.
5532 // Otherwise, we cannot determine the overflow conditions.
5533 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5534 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005535 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005536
5537
5538 // Okay at this point we know that all elements of the chrec are constants and
5539 // that the start element is zero.
5540
5541 // First check to see if the range contains zero. If not, the first
5542 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005543 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005544 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00005545 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005546
Chris Lattner53e677a2004-04-02 20:23:17 +00005547 if (isAffine()) {
5548 // If this is an affine expression then we have this situation:
5549 // Solve {0,+,A} in Range === Ax in Range
5550
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005551 // We know that zero is in the range. If A is positive then we know that
5552 // the upper value of the range must be the first possible exit value.
5553 // If A is negative then the lower of the range is the last possible loop
5554 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005555 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005556 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5557 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005558
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005559 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005560 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005561 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005562
5563 // Evaluate at the exit value. If we really did fall out of the valid
5564 // range, then we computed our trip count, otherwise wrap around or other
5565 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005566 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005567 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005568 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005569
5570 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005571 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005572 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005573 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005574 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005575 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005576 } else if (isQuadratic()) {
5577 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5578 // quadratic equation to solve it. To do this, we must frame our problem in
5579 // terms of figuring out when zero is crossed, instead of when
5580 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005581 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005582 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005583 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005584
5585 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005586 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005587 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005588 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5589 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005590 if (R1) {
5591 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005592 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005593 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005594 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005595 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005596 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005597
Chris Lattner53e677a2004-04-02 20:23:17 +00005598 // Make sure the root is not off by one. The returned iteration should
5599 // not be in the range, but the previous one should be. When solving
5600 // for "X*X < 5", for example, we should not return a root of 2.
5601 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005602 R1->getValue(),
5603 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005604 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005605 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005606 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005607 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005608
Dan Gohman246b2562007-10-22 18:31:58 +00005609 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005610 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005611 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005612 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005613 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005614
Chris Lattner53e677a2004-04-02 20:23:17 +00005615 // If R1 was not in the range, then it is a good return value. Make
5616 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005617 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005618 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005619 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005620 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005621 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005622 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005623 }
5624 }
5625 }
5626
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005627 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005628}
5629
5630
5631
5632//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005633// SCEVCallbackVH Class Implementation
5634//===----------------------------------------------------------------------===//
5635
Dan Gohman1959b752009-05-19 19:22:47 +00005636void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005637 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005638 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5639 SE->ConstantEvolutionLoopExitValue.erase(PN);
5640 SE->Scalars.erase(getValPtr());
5641 // this now dangles!
5642}
5643
Dan Gohman1959b752009-05-19 19:22:47 +00005644void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005645 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005646
5647 // Forget all the expressions associated with users of the old value,
5648 // so that future queries will recompute the expressions using the new
5649 // value.
5650 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005651 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005652 Value *Old = getValPtr();
5653 bool DeleteOld = false;
5654 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5655 UI != UE; ++UI)
5656 Worklist.push_back(*UI);
5657 while (!Worklist.empty()) {
5658 User *U = Worklist.pop_back_val();
5659 // Deleting the Old value will cause this to dangle. Postpone
5660 // that until everything else is done.
5661 if (U == Old) {
5662 DeleteOld = true;
5663 continue;
5664 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005665 if (!Visited.insert(U))
5666 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005667 if (PHINode *PN = dyn_cast<PHINode>(U))
5668 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005669 SE->Scalars.erase(U);
5670 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5671 UI != UE; ++UI)
5672 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005673 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005674 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005675 if (DeleteOld) {
5676 if (PHINode *PN = dyn_cast<PHINode>(Old))
5677 SE->ConstantEvolutionLoopExitValue.erase(PN);
5678 SE->Scalars.erase(Old);
5679 // this now dangles!
5680 }
5681 // this may dangle!
5682}
5683
Dan Gohman1959b752009-05-19 19:22:47 +00005684ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005685 : CallbackVH(V), SE(se) {}
5686
5687//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005688// ScalarEvolution Class Implementation
5689//===----------------------------------------------------------------------===//
5690
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005691ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005692 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005693}
5694
Chris Lattner53e677a2004-04-02 20:23:17 +00005695bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005696 this->F = &F;
5697 LI = &getAnalysis<LoopInfo>();
5698 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005699 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005700 return false;
5701}
5702
5703void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005704 Scalars.clear();
5705 BackedgeTakenCounts.clear();
5706 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005707 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005708 UniqueSCEVs.clear();
5709 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005710}
5711
5712void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5713 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005714 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005715 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005716}
5717
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005718bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005719 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005720}
5721
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005722static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005723 const Loop *L) {
5724 // Print all inner loops first
5725 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5726 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005727
Dan Gohman30733292010-01-09 18:17:45 +00005728 OS << "Loop ";
5729 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5730 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005731
Dan Gohman5d984912009-12-18 01:14:11 +00005732 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005733 L->getExitBlocks(ExitBlocks);
5734 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005735 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005736
Dan Gohman46bdfb02009-02-24 18:55:53 +00005737 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5738 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005739 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005740 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005741 }
5742
Dan Gohman30733292010-01-09 18:17:45 +00005743 OS << "\n"
5744 "Loop ";
5745 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5746 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005747
5748 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5749 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5750 } else {
5751 OS << "Unpredictable max backedge-taken count. ";
5752 }
5753
5754 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005755}
5756
Dan Gohman5d984912009-12-18 01:14:11 +00005757void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005758 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005759 // out SCEV values of all instructions that are interesting. Doing
5760 // this potentially causes it to create new SCEV objects though,
5761 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005762 // observable from outside the class though, so casting away the
5763 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005764 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005765
Dan Gohman30733292010-01-09 18:17:45 +00005766 OS << "Classifying expressions for: ";
5767 WriteAsOperand(OS, F, /*PrintType=*/false);
5768 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005769 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005770 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005771 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005772 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005773 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005774 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005775
Dan Gohman0c689c52009-06-19 17:49:54 +00005776 const Loop *L = LI->getLoopFor((*I).getParent());
5777
Dan Gohman0bba49c2009-07-07 17:06:11 +00005778 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005779 if (AtUse != SV) {
5780 OS << " --> ";
5781 AtUse->print(OS);
5782 }
5783
5784 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005785 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005786 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005787 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005788 OS << "<<Unknown>>";
5789 } else {
5790 OS << *ExitValue;
5791 }
5792 }
5793
Chris Lattner53e677a2004-04-02 20:23:17 +00005794 OS << "\n";
5795 }
5796
Dan Gohman30733292010-01-09 18:17:45 +00005797 OS << "Determining loop execution counts for: ";
5798 WriteAsOperand(OS, F, /*PrintType=*/false);
5799 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005800 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5801 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005802}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005803