blob: 55411640c992dada52d75e27b6d211594c0bb67f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel008cd3e2008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
32 <li><a href="#datalayout">Data Layout</a></li>
33 </ol>
34 </li>
35 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038 <li><a href="#t_primitive">Primitive Types</a>
39 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 </ol>
44 </li>
45 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 <li><a href="#t_array">Array Type</a></li>
49 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
51 <li><a href="#t_struct">Structure Type</a></li>
52 <li><a href="#t_pstruct">Packed Structure Type</a></li>
53 <li><a href="#t_vector">Vector Type</a></li>
54 <li><a href="#t_opaque">Opaque Type</a></li>
55 </ol>
56 </li>
57 </ol>
58 </li>
59 <li><a href="#constants">Constants</a>
60 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
67 </li>
68 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
73 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
77 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
79 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
81 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
82 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
83 </ol>
84 </li>
85 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
87 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
90 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
93 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
96 </ol>
97 </li>
98 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
106 </ol>
107 </li>
108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
113 </ol>
114 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
122 <ol>
123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
129 </ol>
130 </li>
131 <li><a href="#convertops">Conversion Operations</a>
132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
145 </ol>
146 <li><a href="#otherops">Other Operations</a>
147 <ol>
148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begeman646fa482008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patela3cc5372008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 </ol>
158 </li>
159 </ol>
160 </li>
161 <li><a href="#intrinsics">Intrinsic Functions</a>
162 <ol>
163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
168 </ol>
169 </li>
170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
175 </ol>
176 </li>
177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
186 </ol>
187 </li>
188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 </ol>
199 </li>
200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
201 <ol>
202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
208 </ol>
209 </li>
210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000242 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 </li>
244 </ol>
245 </li>
246</ol>
247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
251</div>
252
253<!-- *********************************************************************** -->
254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
256
257<div class="doc_text">
258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendlinge7846a52008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner96451482008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
264</div>
265
266<!-- *********************************************************************** -->
267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
269
270<div class="doc_text">
271
272<p>The LLVM code representation is designed to be used in three
273different forms: as an in-memory compiler IR, as an on-disk bitcode
274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
281
282<p>The LLVM representation aims to be light-weight and low-level
283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
292
293</div>
294
295<!-- _______________________________________________________________________ -->
296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
297
298<div class="doc_text">
299
300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
304
305<div class="doc_code">
306<pre>
307%x = <a href="#i_add">add</a> i32 1, %x
308</pre>
309</div>
310
311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
314automatically run by the parser after parsing input assembly and by
315the optimizer before it outputs bitcode. The violations pointed out
316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
318</div>
319
Chris Lattnera83fdc02007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321
322<!-- *********************************************************************** -->
323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
324<!-- *********************************************************************** -->
325
326<div class="doc_text">
327
Reid Spencerc8245b02007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
333<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340
Reid Spencerc8245b02007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
346</ol>
347
Reid Spencerc8245b02007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
354<p>Reserved words in LLVM are very similar to reserved words in other
355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
360and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
366<p>The easy way:</p>
367
368<div class="doc_code">
369<pre>
370%result = <a href="#i_mul">mul</a> i32 %X, 8
371</pre>
372</div>
373
374<p>After strength reduction:</p>
375
376<div class="doc_code">
377<pre>
378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
379</pre>
380</div>
381
382<p>And the hard way:</p>
383
384<div class="doc_code">
385<pre>
386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
389</pre>
390</div>
391
392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
394
395<ol>
396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
403 <li>Unnamed temporaries are numbered sequentially</li>
404
405</ol>
406
407<p>...and it also shows a convention that we follow in this document. When
408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
412</div>
413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
431<div class="doc_code">
432<pre><i>; Declare the string constant as a global constant...</i>
433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
435
436<i>; External declaration of the puts function</i>
437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
438
439<i>; Definition of main function</i>
440define i32 @main() { <i>; i32()* </i>
441 <i>; Convert [13x i8 ]* to i8 *...</i>
442 %cast210 = <a
443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
448 <a
449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
463
464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
476
477<dl>
478
Dale Johannesen96e7e092008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
486 '<tt>static</tt>' keyword in C.
487 </dd>
488
489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
490
491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
496 </dd>
497
Dale Johannesen96e7e092008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
509
Dale Johannesen96e7e092008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 </dd>
515
516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
523 </dd>
524
525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner96451482008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 </dd>
530
531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
536 </dd>
537</dl>
538
539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner96451482008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 </p>
544
545 <dl>
546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
563</dl>
564
565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
573or <tt>extern_weak</tt>.</p>
574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
597 supports varargs function calls and tolerates some mismatch in the declared
598 prototype and implemented declaration of the function (as does normal C).
599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner96451482008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer07444922008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
630</dl>
631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattner96451482008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
687<p>Global variables define regions of memory allocated at compilation time
688instead of run-time. Global variables may optionally be initialized, may have
689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
696cannot be marked "constant" as there is a store to the variable.</p>
697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lambdd0049d2007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lamb20a39e92007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000718
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lambdd0049d2007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730
731<div class="doc_code">
732<pre>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734</pre>
735</div>
736
737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
749<a href="#visibility">visibility style</a>, an optional
750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Pateld468f1c2008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattneree202542008-10-04 18:10:21 +0000755an opening curly brace, a list of basic blocks, and a closing curly brace.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000756
757LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
758optional <a href="#linkage">linkage type</a>, an optional
759<a href="#visibility">visibility style</a>, an optional
760<a href="#callingconv">calling convention</a>, a return type, an optional
761<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000762name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000763<a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764
Chris Lattner96451482008-08-05 18:29:16 +0000765<p>A function definition contains a list of basic blocks, forming the CFG
766(Control Flow Graph) for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000767the function. Each basic block may optionally start with a label (giving the
768basic block a symbol table entry), contains a list of instructions, and ends
769with a <a href="#terminators">terminator</a> instruction (such as a branch or
770function return).</p>
771
772<p>The first basic block in a function is special in two ways: it is immediately
773executed on entrance to the function, and it is not allowed to have predecessor
774basic blocks (i.e. there can not be any branches to the entry block of a
775function). Because the block can have no predecessors, it also cannot have any
776<a href="#i_phi">PHI nodes</a>.</p>
777
778<p>LLVM allows an explicit section to be specified for functions. If the target
779supports it, it will emit functions to the section specified.</p>
780
781<p>An explicit alignment may be specified for a function. If not present, or if
782the alignment is set to zero, the alignment of the function is set by the target
783to whatever it feels convenient. If an explicit alignment is specified, the
784function is forced to have at least that much alignment. All alignments must be
785a power of 2.</p>
786
787</div>
788
789
790<!-- ======================================================================= -->
791<div class="doc_subsection">
792 <a name="aliasstructure">Aliases</a>
793</div>
794<div class="doc_text">
795 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov96822812008-03-22 08:36:14 +0000796 function, global variable, another alias or bitcast of global value). Aliases
797 may have an optional <a href="#linkage">linkage type</a>, and an
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000798 optional <a href="#visibility">visibility style</a>.</p>
799
800 <h5>Syntax:</h5>
801
802<div class="doc_code">
803<pre>
Duncan Sandsd7bfabf2008-09-12 20:48:21 +0000804@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805</pre>
806</div>
807
808</div>
809
810
811
812<!-- ======================================================================= -->
813<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
814<div class="doc_text">
815 <p>The return type and each parameter of a function type may have a set of
816 <i>parameter attributes</i> associated with them. Parameter attributes are
817 used to communicate additional information about the result or parameters of
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000818 a function. Parameter attributes are considered to be part of the function,
819 not of the function type, so functions with different parameter attributes
820 can have the same function type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821
822 <p>Parameter attributes are simple keywords that follow the type specified. If
823 multiple parameter attributes are needed, they are space separated. For
824 example:</p>
825
826<div class="doc_code">
827<pre>
Devang Patel008cd3e2008-09-26 23:51:19 +0000828declare i32 @printf(i8* noalias , ...)
829declare i32 @atoi(i8 zeroext*)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830</pre>
831</div>
832
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000833 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
834 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835
836 <p>Currently, only the following parameter attributes are defined:</p>
837 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000838 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 <dd>This indicates that the parameter should be zero extended just before
840 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000841
Reid Spencerf234bed2007-07-19 23:13:04 +0000842 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000843 <dd>This indicates that the parameter should be sign extended just before
844 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000845
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 <dt><tt>inreg</tt></dt>
Dale Johannesenc08a0e22008-09-25 20:47:45 +0000847 <dd>This indicates that this parameter or return value should be treated
848 in a special target-dependent fashion during while emitting code for a
849 function call or return (usually, by putting it in a register as opposed
850 to memory; in some places it is used to distinguish between two different
851 kinds of registers). Use of this attribute is target-specific</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000852
853 <dt><tt>byval</tt></dt>
Chris Lattner04c86182008-01-15 04:34:22 +0000854 <dd>This indicates that the pointer parameter should really be passed by
855 value to the function. The attribute implies that a hidden copy of the
856 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner6a9f3c42008-08-05 18:21:08 +0000857 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner04c86182008-01-15 04:34:22 +0000858 pointer arguments. It is generally used to pass structs and arrays by
859 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000860
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000861 <dt><tt>sret</tt></dt>
Duncan Sands616cc032008-02-18 04:19:38 +0000862 <dd>This indicates that the pointer parameter specifies the address of a
863 structure that is the return value of the function in the source program.
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000864 Loads and stores to the structure are assumed not to trap.
Duncan Sands616cc032008-02-18 04:19:38 +0000865 May only be applied to the first parameter.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000866
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000867 <dt><tt>noalias</tt></dt>
Owen Andersonc4fc4cd2008-02-18 04:09:01 +0000868 <dd>This indicates that the parameter does not alias any global or any other
869 parameter. The caller is responsible for ensuring that this is the case,
870 usually by placing the value in a stack allocation.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000871
Duncan Sands4ee46812007-07-27 19:57:41 +0000872 <dt><tt>nest</tt></dt>
Duncan Sandsf1a7d4c2008-07-08 09:27:25 +0000873 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands4ee46812007-07-27 19:57:41 +0000874 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000875 </dl>
876
877</div>
878
879<!-- ======================================================================= -->
880<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000881 <a name="gc">Garbage Collector Names</a>
882</div>
883
884<div class="doc_text">
885<p>Each function may specify a garbage collector name, which is simply a
886string.</p>
887
888<div class="doc_code"><pre
889>define void @f() gc "name" { ...</pre></div>
890
891<p>The compiler declares the supported values of <i>name</i>. Specifying a
892collector which will cause the compiler to alter its output in order to support
893the named garbage collection algorithm.</p>
894</div>
895
896<!-- ======================================================================= -->
897<div class="doc_subsection">
Devang Patel008cd3e2008-09-26 23:51:19 +0000898 <a name="fnattrs">Function Attributes</a>
Devang Pateld468f1c2008-09-04 23:05:13 +0000899</div>
900
901<div class="doc_text">
Devang Patel008cd3e2008-09-26 23:51:19 +0000902
903<p>Function attributes are set to communicate additional information about
904 a function. Function attributes are considered to be part of the function,
905 not of the function type, so functions with different parameter attributes
906 can have the same function type.</p>
907
908 <p>Function attributes are simple keywords that follow the type specified. If
909 multiple attributes are needed, they are space separated. For
910 example:</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000911
912<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +0000913<pre>
Devang Patel008cd3e2008-09-26 23:51:19 +0000914define void @f() noinline { ... }
915define void @f() alwaysinline { ... }
916define void @f() alwaysinline optsize { ... }
917define void @f() optsize
Bill Wendling74d3eac2008-09-07 10:26:33 +0000918</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +0000919</div>
920
Bill Wendling74d3eac2008-09-07 10:26:33 +0000921<dl>
Devang Patel008cd3e2008-09-26 23:51:19 +0000922<dt><tt>alwaysinline</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000923<dd>This attribute indicates that the inliner should attempt to inline this
924function into callers whenever possible, ignoring any active inlining size
925threshold for this caller.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +0000926
Devang Patel008cd3e2008-09-26 23:51:19 +0000927<dt><tt>noinline</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000928<dd>This attribute indicates that the inliner should never inline this function
929in any situation. This attribute may not be used together with
930<tt>alwaysinline</tt> attribute.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +0000931
Devang Patel008cd3e2008-09-26 23:51:19 +0000932<dt><tt>optsize</tt></dt>
Devang Patelc29099b2008-09-29 18:34:44 +0000933<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner82d70f92008-10-04 18:23:17 +0000934make choices that keep the code size of this function low, and otherwise do
935optimizations specifically to reduce code size.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +0000936
Devang Patel008cd3e2008-09-26 23:51:19 +0000937<dt><tt>noreturn</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000938<dd>This function attribute indicates that the function never returns normally.
939This produces undefined behavior at runtime if the function ever does
940dynamically return.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +0000941
942<dt><tt>nounwind</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000943<dd>This function attribute indicates that the function never returns with an
944unwind or exceptional control flow. If the function does unwind, its runtime
945behavior is undefined.</dd>
946
947<dt><tt>readnone</tt></dt>
948<dd>This attribute indicates that the function computes its result (or its
949thrown exception) based strictly on its arguments. It does not read any global
950mutable state (e.g. memory, control registers, etc) visible to caller functions.
951Furthermore, <tt>readnone</tt> functions never change any state visible to their
952caller.
Devang Patel008cd3e2008-09-26 23:51:19 +0000953
954<dt><tt>readonly</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000955<dd>This function attribute indicates that the function has no side-effects on
956the calling function, but that it depends on state (memory state, control
957register state, etc) that may be set in the caller. A readonly function always
958returns the same value (or throws the same exception) whenever it is called with
959a particular set of arguments and global state.</dd>
960
Bill Wendling74d3eac2008-09-07 10:26:33 +0000961</dl>
962
Devang Pateld468f1c2008-09-04 23:05:13 +0000963</div>
964
965<!-- ======================================================================= -->
966<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967 <a name="moduleasm">Module-Level Inline Assembly</a>
968</div>
969
970<div class="doc_text">
971<p>
972Modules may contain "module-level inline asm" blocks, which corresponds to the
973GCC "file scope inline asm" blocks. These blocks are internally concatenated by
974LLVM and treated as a single unit, but may be separated in the .ll file if
975desired. The syntax is very simple:
976</p>
977
978<div class="doc_code">
979<pre>
980module asm "inline asm code goes here"
981module asm "more can go here"
982</pre>
983</div>
984
985<p>The strings can contain any character by escaping non-printable characters.
986 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
987 for the number.
988</p>
989
990<p>
991 The inline asm code is simply printed to the machine code .s file when
992 assembly code is generated.
993</p>
994</div>
995
996<!-- ======================================================================= -->
997<div class="doc_subsection">
998 <a name="datalayout">Data Layout</a>
999</div>
1000
1001<div class="doc_text">
1002<p>A module may specify a target specific data layout string that specifies how
1003data is to be laid out in memory. The syntax for the data layout is simply:</p>
1004<pre> target datalayout = "<i>layout specification</i>"</pre>
1005<p>The <i>layout specification</i> consists of a list of specifications
1006separated by the minus sign character ('-'). Each specification starts with a
1007letter and may include other information after the letter to define some
1008aspect of the data layout. The specifications accepted are as follows: </p>
1009<dl>
1010 <dt><tt>E</tt></dt>
1011 <dd>Specifies that the target lays out data in big-endian form. That is, the
1012 bits with the most significance have the lowest address location.</dd>
1013 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001014 <dd>Specifies that the target lays out data in little-endian form. That is,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 the bits with the least significance have the lowest address location.</dd>
1016 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1017 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1018 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1019 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1020 too.</dd>
1021 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1022 <dd>This specifies the alignment for an integer type of a given bit
1023 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1024 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1025 <dd>This specifies the alignment for a vector type of a given bit
1026 <i>size</i>.</dd>
1027 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1028 <dd>This specifies the alignment for a floating point type of a given bit
1029 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1030 (double).</dd>
1031 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1032 <dd>This specifies the alignment for an aggregate type of a given bit
1033 <i>size</i>.</dd>
1034</dl>
1035<p>When constructing the data layout for a given target, LLVM starts with a
1036default set of specifications which are then (possibly) overriden by the
1037specifications in the <tt>datalayout</tt> keyword. The default specifications
1038are given in this list:</p>
1039<ul>
1040 <li><tt>E</tt> - big endian</li>
1041 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1042 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1043 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1044 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1045 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001046 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 alignment of 64-bits</li>
1048 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1049 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1050 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1051 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1052 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1053</ul>
Chris Lattner6a9f3c42008-08-05 18:21:08 +00001054<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055following rules:
1056<ol>
1057 <li>If the type sought is an exact match for one of the specifications, that
1058 specification is used.</li>
1059 <li>If no match is found, and the type sought is an integer type, then the
1060 smallest integer type that is larger than the bitwidth of the sought type is
1061 used. If none of the specifications are larger than the bitwidth then the the
1062 largest integer type is used. For example, given the default specifications
1063 above, the i7 type will use the alignment of i8 (next largest) while both
1064 i65 and i256 will use the alignment of i64 (largest specified).</li>
1065 <li>If no match is found, and the type sought is a vector type, then the
1066 largest vector type that is smaller than the sought vector type will be used
1067 as a fall back. This happens because <128 x double> can be implemented in
1068 terms of 64 <2 x double>, for example.</li>
1069</ol>
1070</div>
1071
1072<!-- *********************************************************************** -->
1073<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1074<!-- *********************************************************************** -->
1075
1076<div class="doc_text">
1077
1078<p>The LLVM type system is one of the most important features of the
1079intermediate representation. Being typed enables a number of
Chris Lattner96451482008-08-05 18:29:16 +00001080optimizations to be performed on the intermediate representation directly,
1081without having to do
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001082extra analyses on the side before the transformation. A strong type
1083system makes it easier to read the generated code and enables novel
1084analyses and transformations that are not feasible to perform on normal
1085three address code representations.</p>
1086
1087</div>
1088
1089<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001090<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091Classifications</a> </div>
1092<div class="doc_text">
Chris Lattner488772f2008-01-04 04:32:38 +00001093<p>The types fall into a few useful
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094classifications:</p>
1095
1096<table border="1" cellspacing="0" cellpadding="4">
1097 <tbody>
1098 <tr><th>Classification</th><th>Types</th></tr>
1099 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001100 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001101 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1102 </tr>
1103 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001104 <td><a href="#t_floating">floating point</a></td>
1105 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001106 </tr>
1107 <tr>
1108 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001109 <td><a href="#t_integer">integer</a>,
1110 <a href="#t_floating">floating point</a>,
1111 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001112 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001113 <a href="#t_struct">structure</a>,
1114 <a href="#t_array">array</a>,
Dan Gohmand13951e2008-05-23 22:50:26 +00001115 <a href="#t_label">label</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116 </td>
1117 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001118 <tr>
1119 <td><a href="#t_primitive">primitive</a></td>
1120 <td><a href="#t_label">label</a>,
1121 <a href="#t_void">void</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001122 <a href="#t_floating">floating point</a>.</td>
1123 </tr>
1124 <tr>
1125 <td><a href="#t_derived">derived</a></td>
1126 <td><a href="#t_integer">integer</a>,
1127 <a href="#t_array">array</a>,
1128 <a href="#t_function">function</a>,
1129 <a href="#t_pointer">pointer</a>,
1130 <a href="#t_struct">structure</a>,
1131 <a href="#t_pstruct">packed structure</a>,
1132 <a href="#t_vector">vector</a>,
1133 <a href="#t_opaque">opaque</a>.
1134 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135 </tbody>
1136</table>
1137
1138<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1139most important. Values of these types are the only ones which can be
1140produced by instructions, passed as arguments, or used as operands to
Dan Gohman4f29e422008-05-23 21:53:15 +00001141instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001142</div>
1143
1144<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001145<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001146
Chris Lattner488772f2008-01-04 04:32:38 +00001147<div class="doc_text">
1148<p>The primitive types are the fundamental building blocks of the LLVM
1149system.</p>
1150
Chris Lattner86437612008-01-04 04:34:14 +00001151</div>
1152
Chris Lattner488772f2008-01-04 04:32:38 +00001153<!-- _______________________________________________________________________ -->
1154<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1155
1156<div class="doc_text">
1157 <table>
1158 <tbody>
1159 <tr><th>Type</th><th>Description</th></tr>
1160 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1161 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1162 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1163 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1164 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1165 </tbody>
1166 </table>
1167</div>
1168
1169<!-- _______________________________________________________________________ -->
1170<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1171
1172<div class="doc_text">
1173<h5>Overview:</h5>
1174<p>The void type does not represent any value and has no size.</p>
1175
1176<h5>Syntax:</h5>
1177
1178<pre>
1179 void
1180</pre>
1181</div>
1182
1183<!-- _______________________________________________________________________ -->
1184<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1185
1186<div class="doc_text">
1187<h5>Overview:</h5>
1188<p>The label type represents code labels.</p>
1189
1190<h5>Syntax:</h5>
1191
1192<pre>
1193 label
1194</pre>
1195</div>
1196
1197
1198<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001199<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1200
1201<div class="doc_text">
1202
1203<p>The real power in LLVM comes from the derived types in the system.
1204This is what allows a programmer to represent arrays, functions,
1205pointers, and other useful types. Note that these derived types may be
1206recursive: For example, it is possible to have a two dimensional array.</p>
1207
1208</div>
1209
1210<!-- _______________________________________________________________________ -->
1211<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1212
1213<div class="doc_text">
1214
1215<h5>Overview:</h5>
1216<p>The integer type is a very simple derived type that simply specifies an
1217arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12182^23-1 (about 8 million) can be specified.</p>
1219
1220<h5>Syntax:</h5>
1221
1222<pre>
1223 iN
1224</pre>
1225
1226<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1227value.</p>
1228
1229<h5>Examples:</h5>
1230<table class="layout">
Chris Lattner251ab812007-12-18 06:18:21 +00001231 <tbody>
1232 <tr>
1233 <td><tt>i1</tt></td>
1234 <td>a single-bit integer.</td>
1235 </tr><tr>
1236 <td><tt>i32</tt></td>
1237 <td>a 32-bit integer.</td>
1238 </tr><tr>
1239 <td><tt>i1942652</tt></td>
1240 <td>a really big integer of over 1 million bits.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001241 </tr>
Chris Lattner251ab812007-12-18 06:18:21 +00001242 </tbody>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001243</table>
1244</div>
1245
1246<!-- _______________________________________________________________________ -->
1247<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1248
1249<div class="doc_text">
1250
1251<h5>Overview:</h5>
1252
1253<p>The array type is a very simple derived type that arranges elements
1254sequentially in memory. The array type requires a size (number of
1255elements) and an underlying data type.</p>
1256
1257<h5>Syntax:</h5>
1258
1259<pre>
1260 [&lt;# elements&gt; x &lt;elementtype&gt;]
1261</pre>
1262
1263<p>The number of elements is a constant integer value; elementtype may
1264be any type with a size.</p>
1265
1266<h5>Examples:</h5>
1267<table class="layout">
1268 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001269 <td class="left"><tt>[40 x i32]</tt></td>
1270 <td class="left">Array of 40 32-bit integer values.</td>
1271 </tr>
1272 <tr class="layout">
1273 <td class="left"><tt>[41 x i32]</tt></td>
1274 <td class="left">Array of 41 32-bit integer values.</td>
1275 </tr>
1276 <tr class="layout">
1277 <td class="left"><tt>[4 x i8]</tt></td>
1278 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 </tr>
1280</table>
1281<p>Here are some examples of multidimensional arrays:</p>
1282<table class="layout">
1283 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001284 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1285 <td class="left">3x4 array of 32-bit integer values.</td>
1286 </tr>
1287 <tr class="layout">
1288 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1289 <td class="left">12x10 array of single precision floating point values.</td>
1290 </tr>
1291 <tr class="layout">
1292 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1293 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001294 </tr>
1295</table>
1296
1297<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1298length array. Normally, accesses past the end of an array are undefined in
1299LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1300As a special case, however, zero length arrays are recognized to be variable
1301length. This allows implementation of 'pascal style arrays' with the LLVM
1302type "{ i32, [0 x float]}", for example.</p>
1303
1304</div>
1305
1306<!-- _______________________________________________________________________ -->
1307<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1308<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001309
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001310<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001311
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001312<p>The function type can be thought of as a function signature. It
Devang Pateld4ba41d2008-03-24 05:35:41 +00001313consists of a return type and a list of formal parameter types. The
Chris Lattner43030e72008-04-23 04:59:35 +00001314return type of a function type is a scalar type, a void type, or a struct type.
Devang Pateld5404c02008-03-24 20:52:42 +00001315If the return type is a struct type then all struct elements must be of first
Chris Lattner43030e72008-04-23 04:59:35 +00001316class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001317
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001319
1320<pre>
1321 &lt;returntype list&gt; (&lt;parameter list&gt;)
1322</pre>
1323
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001324<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1325specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1326which indicates that the function takes a variable number of arguments.
1327Variable argument functions can access their arguments with the <a
Devang Patela3cc5372008-03-10 20:49:15 +00001328 href="#int_varargs">variable argument handling intrinsic</a> functions.
1329'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1330<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001332<h5>Examples:</h5>
1333<table class="layout">
1334 <tr class="layout">
1335 <td class="left"><tt>i32 (i32)</tt></td>
1336 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1337 </td>
1338 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001339 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340 </tt></td>
1341 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1342 an <tt>i16</tt> that should be sign extended and a
1343 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1344 <tt>float</tt>.
1345 </td>
1346 </tr><tr class="layout">
1347 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1348 <td class="left">A vararg function that takes at least one
1349 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1350 which returns an integer. This is the signature for <tt>printf</tt> in
1351 LLVM.
1352 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001353 </tr><tr class="layout">
1354 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel6dddba22008-03-24 18:10:52 +00001355 <td class="left">A function taking an <tt>i32></tt>, returning two
1356 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001357 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 </tr>
1359</table>
1360
1361</div>
1362<!-- _______________________________________________________________________ -->
1363<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1364<div class="doc_text">
1365<h5>Overview:</h5>
1366<p>The structure type is used to represent a collection of data members
1367together in memory. The packing of the field types is defined to match
1368the ABI of the underlying processor. The elements of a structure may
1369be any type that has a size.</p>
1370<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1371and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1372field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1373instruction.</p>
1374<h5>Syntax:</h5>
1375<pre> { &lt;type list&gt; }<br></pre>
1376<h5>Examples:</h5>
1377<table class="layout">
1378 <tr class="layout">
1379 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1380 <td class="left">A triple of three <tt>i32</tt> values</td>
1381 </tr><tr class="layout">
1382 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1383 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1384 second element is a <a href="#t_pointer">pointer</a> to a
1385 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1386 an <tt>i32</tt>.</td>
1387 </tr>
1388</table>
1389</div>
1390
1391<!-- _______________________________________________________________________ -->
1392<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1393</div>
1394<div class="doc_text">
1395<h5>Overview:</h5>
1396<p>The packed structure type is used to represent a collection of data members
1397together in memory. There is no padding between fields. Further, the alignment
1398of a packed structure is 1 byte. The elements of a packed structure may
1399be any type that has a size.</p>
1400<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1401and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1402field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1403instruction.</p>
1404<h5>Syntax:</h5>
1405<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1406<h5>Examples:</h5>
1407<table class="layout">
1408 <tr class="layout">
1409 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1410 <td class="left">A triple of three <tt>i32</tt> values</td>
1411 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001412 <td class="left">
1413<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001414 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1415 second element is a <a href="#t_pointer">pointer</a> to a
1416 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1417 an <tt>i32</tt>.</td>
1418 </tr>
1419</table>
1420</div>
1421
1422<!-- _______________________________________________________________________ -->
1423<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1424<div class="doc_text">
1425<h5>Overview:</h5>
1426<p>As in many languages, the pointer type represents a pointer or
Christopher Lambdd0049d2007-12-11 09:31:00 +00001427reference to another object, which must live in memory. Pointer types may have
1428an optional address space attribute defining the target-specific numbered
1429address space where the pointed-to object resides. The default address space is
1430zero.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001431<h5>Syntax:</h5>
1432<pre> &lt;type&gt; *<br></pre>
1433<h5>Examples:</h5>
1434<table class="layout">
1435 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001436 <td class="left"><tt>[4x i32]*</tt></td>
1437 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1438 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1439 </tr>
1440 <tr class="layout">
1441 <td class="left"><tt>i32 (i32 *) *</tt></td>
1442 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001443 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001444 <tt>i32</tt>.</td>
1445 </tr>
1446 <tr class="layout">
1447 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1448 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1449 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450 </tr>
1451</table>
1452</div>
1453
1454<!-- _______________________________________________________________________ -->
1455<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1456<div class="doc_text">
1457
1458<h5>Overview:</h5>
1459
1460<p>A vector type is a simple derived type that represents a vector
1461of elements. Vector types are used when multiple primitive data
1462are operated in parallel using a single instruction (SIMD).
1463A vector type requires a size (number of
1464elements) and an underlying primitive data type. Vectors must have a power
1465of two length (1, 2, 4, 8, 16 ...). Vector types are
1466considered <a href="#t_firstclass">first class</a>.</p>
1467
1468<h5>Syntax:</h5>
1469
1470<pre>
1471 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1472</pre>
1473
1474<p>The number of elements is a constant integer value; elementtype may
1475be any integer or floating point type.</p>
1476
1477<h5>Examples:</h5>
1478
1479<table class="layout">
1480 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001481 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1482 <td class="left">Vector of 4 32-bit integer values.</td>
1483 </tr>
1484 <tr class="layout">
1485 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1486 <td class="left">Vector of 8 32-bit floating-point values.</td>
1487 </tr>
1488 <tr class="layout">
1489 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1490 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491 </tr>
1492</table>
1493</div>
1494
1495<!-- _______________________________________________________________________ -->
1496<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1497<div class="doc_text">
1498
1499<h5>Overview:</h5>
1500
1501<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001502corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001503In LLVM, opaque types can eventually be resolved to any type (not just a
1504structure type).</p>
1505
1506<h5>Syntax:</h5>
1507
1508<pre>
1509 opaque
1510</pre>
1511
1512<h5>Examples:</h5>
1513
1514<table class="layout">
1515 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001516 <td class="left"><tt>opaque</tt></td>
1517 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001518 </tr>
1519</table>
1520</div>
1521
1522
1523<!-- *********************************************************************** -->
1524<div class="doc_section"> <a name="constants">Constants</a> </div>
1525<!-- *********************************************************************** -->
1526
1527<div class="doc_text">
1528
1529<p>LLVM has several different basic types of constants. This section describes
1530them all and their syntax.</p>
1531
1532</div>
1533
1534<!-- ======================================================================= -->
1535<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1536
1537<div class="doc_text">
1538
1539<dl>
1540 <dt><b>Boolean constants</b></dt>
1541
1542 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1543 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1544 </dd>
1545
1546 <dt><b>Integer constants</b></dt>
1547
1548 <dd>Standard integers (such as '4') are constants of the <a
1549 href="#t_integer">integer</a> type. Negative numbers may be used with
1550 integer types.
1551 </dd>
1552
1553 <dt><b>Floating point constants</b></dt>
1554
1555 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1556 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00001557 notation (see below). The assembler requires the exact decimal value of
1558 a floating-point constant. For example, the assembler accepts 1.25 but
1559 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1560 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001561
1562 <dt><b>Null pointer constants</b></dt>
1563
1564 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1565 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1566
1567</dl>
1568
1569<p>The one non-intuitive notation for constants is the optional hexadecimal form
1570of floating point constants. For example, the form '<tt>double
15710x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15724.5e+15</tt>'. The only time hexadecimal floating point constants are required
1573(and the only time that they are generated by the disassembler) is when a
1574floating point constant must be emitted but it cannot be represented as a
1575decimal floating point number. For example, NaN's, infinities, and other
1576special values are represented in their IEEE hexadecimal format so that
1577assembly and disassembly do not cause any bits to change in the constants.</p>
1578
1579</div>
1580
1581<!-- ======================================================================= -->
1582<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1583</div>
1584
1585<div class="doc_text">
1586<p>Aggregate constants arise from aggregation of simple constants
1587and smaller aggregate constants.</p>
1588
1589<dl>
1590 <dt><b>Structure constants</b></dt>
1591
1592 <dd>Structure constants are represented with notation similar to structure
1593 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner6c8de962007-12-25 20:34:52 +00001594 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1595 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596 must have <a href="#t_struct">structure type</a>, and the number and
1597 types of elements must match those specified by the type.
1598 </dd>
1599
1600 <dt><b>Array constants</b></dt>
1601
1602 <dd>Array constants are represented with notation similar to array type
1603 definitions (a comma separated list of elements, surrounded by square brackets
1604 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1605 constants must have <a href="#t_array">array type</a>, and the number and
1606 types of elements must match those specified by the type.
1607 </dd>
1608
1609 <dt><b>Vector constants</b></dt>
1610
1611 <dd>Vector constants are represented with notation similar to vector type
1612 definitions (a comma separated list of elements, surrounded by
1613 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1614 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1615 href="#t_vector">vector type</a>, and the number and types of elements must
1616 match those specified by the type.
1617 </dd>
1618
1619 <dt><b>Zero initialization</b></dt>
1620
1621 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1622 value to zero of <em>any</em> type, including scalar and aggregate types.
1623 This is often used to avoid having to print large zero initializers (e.g. for
1624 large arrays) and is always exactly equivalent to using explicit zero
1625 initializers.
1626 </dd>
1627</dl>
1628
1629</div>
1630
1631<!-- ======================================================================= -->
1632<div class="doc_subsection">
1633 <a name="globalconstants">Global Variable and Function Addresses</a>
1634</div>
1635
1636<div class="doc_text">
1637
1638<p>The addresses of <a href="#globalvars">global variables</a> and <a
1639href="#functionstructure">functions</a> are always implicitly valid (link-time)
1640constants. These constants are explicitly referenced when the <a
1641href="#identifiers">identifier for the global</a> is used and always have <a
1642href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1643file:</p>
1644
1645<div class="doc_code">
1646<pre>
1647@X = global i32 17
1648@Y = global i32 42
1649@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1650</pre>
1651</div>
1652
1653</div>
1654
1655<!-- ======================================================================= -->
1656<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1657<div class="doc_text">
1658 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1659 no specific value. Undefined values may be of any type and be used anywhere
1660 a constant is permitted.</p>
1661
1662 <p>Undefined values indicate to the compiler that the program is well defined
1663 no matter what value is used, giving the compiler more freedom to optimize.
1664 </p>
1665</div>
1666
1667<!-- ======================================================================= -->
1668<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1669</div>
1670
1671<div class="doc_text">
1672
1673<p>Constant expressions are used to allow expressions involving other constants
1674to be used as constants. Constant expressions may be of any <a
1675href="#t_firstclass">first class</a> type and may involve any LLVM operation
1676that does not have side effects (e.g. load and call are not supported). The
1677following is the syntax for constant expressions:</p>
1678
1679<dl>
1680 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1681 <dd>Truncate a constant to another type. The bit size of CST must be larger
1682 than the bit size of TYPE. Both types must be integers.</dd>
1683
1684 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1685 <dd>Zero extend a constant to another type. The bit size of CST must be
1686 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1687
1688 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1689 <dd>Sign extend a constant to another type. The bit size of CST must be
1690 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1691
1692 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1693 <dd>Truncate a floating point constant to another floating point type. The
1694 size of CST must be larger than the size of TYPE. Both types must be
1695 floating point.</dd>
1696
1697 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1698 <dd>Floating point extend a constant to another type. The size of CST must be
1699 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1700
Reid Spencere6adee82007-07-31 14:40:14 +00001701 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001702 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001703 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1704 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1705 of the same number of elements. If the value won't fit in the integer type,
1706 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707
1708 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1709 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001710 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1711 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1712 of the same number of elements. If the value won't fit in the integer type,
1713 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001714
1715 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1716 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001717 constant. TYPE must be a scalar or vector floating point type. CST must be of
1718 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1719 of the same number of elements. If the value won't fit in the floating point
1720 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001721
1722 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1723 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001724 constant. TYPE must be a scalar or vector floating point type. CST must be of
1725 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1726 of the same number of elements. If the value won't fit in the floating point
1727 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001728
1729 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1730 <dd>Convert a pointer typed constant to the corresponding integer constant
1731 TYPE must be an integer type. CST must be of pointer type. The CST value is
1732 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1733
1734 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1735 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1736 pointer type. CST must be of integer type. The CST value is zero extended,
1737 truncated, or unchanged to make it fit in a pointer size. This one is
1738 <i>really</i> dangerous!</dd>
1739
1740 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1741 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1742 identical (same number of bits). The conversion is done as if the CST value
1743 was stored to memory and read back as TYPE. In other words, no bits change
1744 with this operator, just the type. This can be used for conversion of
1745 vector types to any other type, as long as they have the same bit width. For
Dan Gohman7305fa02008-09-08 16:45:59 +00001746 pointers it is only valid to cast to another pointer type. It is not valid
1747 to bitcast to or from an aggregate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001748 </dd>
1749
1750 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1751
1752 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1753 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1754 instruction, the index list may have zero or more indexes, which are required
1755 to make sense for the type of "CSTPTR".</dd>
1756
1757 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1758
1759 <dd>Perform the <a href="#i_select">select operation</a> on
1760 constants.</dd>
1761
1762 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1763 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1764
1765 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1766 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1767
Nate Begeman646fa482008-05-12 19:01:56 +00001768 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1769 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1770
1771 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1772 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1773
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001774 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1775
1776 <dd>Perform the <a href="#i_extractelement">extractelement
1777 operation</a> on constants.
1778
1779 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1780
1781 <dd>Perform the <a href="#i_insertelement">insertelement
1782 operation</a> on constants.</dd>
1783
1784
1785 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1786
1787 <dd>Perform the <a href="#i_shufflevector">shufflevector
1788 operation</a> on constants.</dd>
1789
1790 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1791
1792 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1793 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1794 binary</a> operations. The constraints on operands are the same as those for
1795 the corresponding instruction (e.g. no bitwise operations on floating point
1796 values are allowed).</dd>
1797</dl>
1798</div>
1799
1800<!-- *********************************************************************** -->
1801<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1802<!-- *********************************************************************** -->
1803
1804<!-- ======================================================================= -->
1805<div class="doc_subsection">
1806<a name="inlineasm">Inline Assembler Expressions</a>
1807</div>
1808
1809<div class="doc_text">
1810
1811<p>
1812LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1813Module-Level Inline Assembly</a>) through the use of a special value. This
1814value represents the inline assembler as a string (containing the instructions
1815to emit), a list of operand constraints (stored as a string), and a flag that
1816indicates whether or not the inline asm expression has side effects. An example
1817inline assembler expression is:
1818</p>
1819
1820<div class="doc_code">
1821<pre>
1822i32 (i32) asm "bswap $0", "=r,r"
1823</pre>
1824</div>
1825
1826<p>
1827Inline assembler expressions may <b>only</b> be used as the callee operand of
1828a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1829</p>
1830
1831<div class="doc_code">
1832<pre>
1833%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1834</pre>
1835</div>
1836
1837<p>
1838Inline asms with side effects not visible in the constraint list must be marked
1839as having side effects. This is done through the use of the
1840'<tt>sideeffect</tt>' keyword, like so:
1841</p>
1842
1843<div class="doc_code">
1844<pre>
1845call void asm sideeffect "eieio", ""()
1846</pre>
1847</div>
1848
1849<p>TODO: The format of the asm and constraints string still need to be
1850documented here. Constraints on what can be done (e.g. duplication, moving, etc
1851need to be documented).
1852</p>
1853
1854</div>
1855
1856<!-- *********************************************************************** -->
1857<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1858<!-- *********************************************************************** -->
1859
1860<div class="doc_text">
1861
1862<p>The LLVM instruction set consists of several different
1863classifications of instructions: <a href="#terminators">terminator
1864instructions</a>, <a href="#binaryops">binary instructions</a>,
1865<a href="#bitwiseops">bitwise binary instructions</a>, <a
1866 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1867instructions</a>.</p>
1868
1869</div>
1870
1871<!-- ======================================================================= -->
1872<div class="doc_subsection"> <a name="terminators">Terminator
1873Instructions</a> </div>
1874
1875<div class="doc_text">
1876
1877<p>As mentioned <a href="#functionstructure">previously</a>, every
1878basic block in a program ends with a "Terminator" instruction, which
1879indicates which block should be executed after the current block is
1880finished. These terminator instructions typically yield a '<tt>void</tt>'
1881value: they produce control flow, not values (the one exception being
1882the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1883<p>There are six different terminator instructions: the '<a
1884 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1885instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1886the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1887 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1888 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1889
1890</div>
1891
1892<!-- _______________________________________________________________________ -->
1893<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1894Instruction</a> </div>
1895<div class="doc_text">
1896<h5>Syntax:</h5>
1897<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1898 ret void <i>; Return from void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001899 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001900</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00001901
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001902<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001903
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1905value) from a function back to the caller.</p>
1906<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner43030e72008-04-23 04:59:35 +00001907returns value(s) and then causes control flow, and one that just causes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001908control flow to occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001909
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001910<h5>Arguments:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001911
1912<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1913The type of each return value must be a '<a href="#t_firstclass">first
1914class</a>' type. Note that a function is not <a href="#wellformed">well
1915formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1916function that returns values that do not match the return type of the
1917function.</p>
1918
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001919<h5>Semantics:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001920
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001921<p>When the '<tt>ret</tt>' instruction is executed, control flow
1922returns back to the calling function's context. If the caller is a "<a
1923 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1924the instruction after the call. If the caller was an "<a
1925 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1926at the beginning of the "normal" destination block. If the instruction
1927returns a value, that value shall set the call or invoke instruction's
Devang Patela3cc5372008-03-10 20:49:15 +00001928return value. If the instruction returns multiple values then these
Devang Patelec8a5b02008-03-11 05:51:59 +00001929values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1930</a>' instruction.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001931
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001932<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001933
1934<pre>
1935 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936 ret void <i>; Return from a void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001937 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938</pre>
1939</div>
1940<!-- _______________________________________________________________________ -->
1941<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1942<div class="doc_text">
1943<h5>Syntax:</h5>
1944<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1945</pre>
1946<h5>Overview:</h5>
1947<p>The '<tt>br</tt>' instruction is used to cause control flow to
1948transfer to a different basic block in the current function. There are
1949two forms of this instruction, corresponding to a conditional branch
1950and an unconditional branch.</p>
1951<h5>Arguments:</h5>
1952<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1953single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1954unconditional form of the '<tt>br</tt>' instruction takes a single
1955'<tt>label</tt>' value as a target.</p>
1956<h5>Semantics:</h5>
1957<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1958argument is evaluated. If the value is <tt>true</tt>, control flows
1959to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1960control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1961<h5>Example:</h5>
1962<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1963 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1964</div>
1965<!-- _______________________________________________________________________ -->
1966<div class="doc_subsubsection">
1967 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1968</div>
1969
1970<div class="doc_text">
1971<h5>Syntax:</h5>
1972
1973<pre>
1974 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1975</pre>
1976
1977<h5>Overview:</h5>
1978
1979<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1980several different places. It is a generalization of the '<tt>br</tt>'
1981instruction, allowing a branch to occur to one of many possible
1982destinations.</p>
1983
1984
1985<h5>Arguments:</h5>
1986
1987<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1988comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1989an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1990table is not allowed to contain duplicate constant entries.</p>
1991
1992<h5>Semantics:</h5>
1993
1994<p>The <tt>switch</tt> instruction specifies a table of values and
1995destinations. When the '<tt>switch</tt>' instruction is executed, this
1996table is searched for the given value. If the value is found, control flow is
1997transfered to the corresponding destination; otherwise, control flow is
1998transfered to the default destination.</p>
1999
2000<h5>Implementation:</h5>
2001
2002<p>Depending on properties of the target machine and the particular
2003<tt>switch</tt> instruction, this instruction may be code generated in different
2004ways. For example, it could be generated as a series of chained conditional
2005branches or with a lookup table.</p>
2006
2007<h5>Example:</h5>
2008
2009<pre>
2010 <i>; Emulate a conditional br instruction</i>
2011 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2012 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
2013
2014 <i>; Emulate an unconditional br instruction</i>
2015 switch i32 0, label %dest [ ]
2016
2017 <i>; Implement a jump table:</i>
2018 switch i32 %val, label %otherwise [ i32 0, label %onzero
2019 i32 1, label %onone
2020 i32 2, label %ontwo ]
2021</pre>
2022</div>
2023
2024<!-- _______________________________________________________________________ -->
2025<div class="doc_subsubsection">
2026 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2027</div>
2028
2029<div class="doc_text">
2030
2031<h5>Syntax:</h5>
2032
2033<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002034 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002035 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2036</pre>
2037
2038<h5>Overview:</h5>
2039
2040<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2041function, with the possibility of control flow transfer to either the
2042'<tt>normal</tt>' label or the
2043'<tt>exception</tt>' label. If the callee function returns with the
2044"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2045"normal" label. If the callee (or any indirect callees) returns with the "<a
2046href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patela3cc5372008-03-10 20:49:15 +00002047continued at the dynamically nearest "exception" label. If the callee function
Devang Patelec8a5b02008-03-11 05:51:59 +00002048returns multiple values then individual return values are only accessible through
2049a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002050
2051<h5>Arguments:</h5>
2052
2053<p>This instruction requires several arguments:</p>
2054
2055<ol>
2056 <li>
2057 The optional "cconv" marker indicates which <a href="#callingconv">calling
2058 convention</a> the call should use. If none is specified, the call defaults
2059 to using C calling conventions.
2060 </li>
2061 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2062 function value being invoked. In most cases, this is a direct function
2063 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2064 an arbitrary pointer to function value.
2065 </li>
2066
2067 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2068 function to be invoked. </li>
2069
2070 <li>'<tt>function args</tt>': argument list whose types match the function
2071 signature argument types. If the function signature indicates the function
2072 accepts a variable number of arguments, the extra arguments can be
2073 specified. </li>
2074
2075 <li>'<tt>normal label</tt>': the label reached when the called function
2076 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2077
2078 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2079 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2080
2081</ol>
2082
2083<h5>Semantics:</h5>
2084
2085<p>This instruction is designed to operate as a standard '<tt><a
2086href="#i_call">call</a></tt>' instruction in most regards. The primary
2087difference is that it establishes an association with a label, which is used by
2088the runtime library to unwind the stack.</p>
2089
2090<p>This instruction is used in languages with destructors to ensure that proper
2091cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2092exception. Additionally, this is important for implementation of
2093'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2094
2095<h5>Example:</h5>
2096<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002097 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002098 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002099 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002100 unwind label %TestCleanup <i>; {i32}:retval set</i>
2101</pre>
2102</div>
2103
2104
2105<!-- _______________________________________________________________________ -->
2106
2107<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2108Instruction</a> </div>
2109
2110<div class="doc_text">
2111
2112<h5>Syntax:</h5>
2113<pre>
2114 unwind
2115</pre>
2116
2117<h5>Overview:</h5>
2118
2119<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2120at the first callee in the dynamic call stack which used an <a
2121href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2122primarily used to implement exception handling.</p>
2123
2124<h5>Semantics:</h5>
2125
Chris Lattner8b094fc2008-04-19 21:01:16 +00002126<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127immediately halt. The dynamic call stack is then searched for the first <a
2128href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2129execution continues at the "exceptional" destination block specified by the
2130<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2131dynamic call chain, undefined behavior results.</p>
2132</div>
2133
2134<!-- _______________________________________________________________________ -->
2135
2136<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2137Instruction</a> </div>
2138
2139<div class="doc_text">
2140
2141<h5>Syntax:</h5>
2142<pre>
2143 unreachable
2144</pre>
2145
2146<h5>Overview:</h5>
2147
2148<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2149instruction is used to inform the optimizer that a particular portion of the
2150code is not reachable. This can be used to indicate that the code after a
2151no-return function cannot be reached, and other facts.</p>
2152
2153<h5>Semantics:</h5>
2154
2155<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2156</div>
2157
2158
2159
2160<!-- ======================================================================= -->
2161<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2162<div class="doc_text">
2163<p>Binary operators are used to do most of the computation in a
Chris Lattnerab596d92008-04-01 18:47:32 +00002164program. They require two operands of the same type, execute an operation on them, and
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002165produce a single value. The operands might represent
2166multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnerab596d92008-04-01 18:47:32 +00002167The result value has the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002168<p>There are several different binary operators:</p>
2169</div>
2170<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002171<div class="doc_subsubsection">
2172 <a name="i_add">'<tt>add</tt>' Instruction</a>
2173</div>
2174
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002175<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002176
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002177<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002178
2179<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002180 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002181</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002182
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002183<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002184
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002185<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002186
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002187<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002188
2189<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2190 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2191 <a href="#t_vector">vector</a> values. Both arguments must have identical
2192 types.</p>
2193
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002194<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002195
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002196<p>The value produced is the integer or floating point sum of the two
2197operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002198
Chris Lattner9aba1e22008-01-28 00:36:27 +00002199<p>If an integer sum has unsigned overflow, the result returned is the
2200mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2201the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002202
Chris Lattner9aba1e22008-01-28 00:36:27 +00002203<p>Because LLVM integers use a two's complement representation, this
2204instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002205
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002206<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002207
2208<pre>
2209 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002210</pre>
2211</div>
2212<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002213<div class="doc_subsubsection">
2214 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2215</div>
2216
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002217<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002218
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002219<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002220
2221<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002222 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002223</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002226
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002227<p>The '<tt>sub</tt>' instruction returns the difference of its two
2228operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002229
2230<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2231'<tt>neg</tt>' instruction present in most other intermediate
2232representations.</p>
2233
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002234<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002235
2236<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2237 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2238 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2239 types.</p>
2240
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002241<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002242
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002243<p>The value produced is the integer or floating point difference of
2244the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002245
Chris Lattner9aba1e22008-01-28 00:36:27 +00002246<p>If an integer difference has unsigned overflow, the result returned is the
2247mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2248the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002249
Chris Lattner9aba1e22008-01-28 00:36:27 +00002250<p>Because LLVM integers use a two's complement representation, this
2251instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002252
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253<h5>Example:</h5>
2254<pre>
2255 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2256 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2257</pre>
2258</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002259
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002260<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002261<div class="doc_subsubsection">
2262 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2263</div>
2264
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002265<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002266
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002267<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002268<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002269</pre>
2270<h5>Overview:</h5>
2271<p>The '<tt>mul</tt>' instruction returns the product of its two
2272operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002273
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002274<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002275
2276<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2277href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2278or <a href="#t_vector">vector</a> values. Both arguments must have identical
2279types.</p>
2280
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002281<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002282
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002283<p>The value produced is the integer or floating point product of the
2284two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002285
Chris Lattner9aba1e22008-01-28 00:36:27 +00002286<p>If the result of an integer multiplication has unsigned overflow,
2287the result returned is the mathematical result modulo
22882<sup>n</sup>, where n is the bit width of the result.</p>
2289<p>Because LLVM integers use a two's complement representation, and the
2290result is the same width as the operands, this instruction returns the
2291correct result for both signed and unsigned integers. If a full product
2292(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2293should be sign-extended or zero-extended as appropriate to the
2294width of the full product.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002295<h5>Example:</h5>
2296<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2297</pre>
2298</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002299
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002300<!-- _______________________________________________________________________ -->
2301<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2302</a></div>
2303<div class="doc_text">
2304<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002305<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002306</pre>
2307<h5>Overview:</h5>
2308<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2309operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002310
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002311<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002312
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002313<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002314<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2315values. Both arguments must have identical types.</p>
2316
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002317<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002318
Chris Lattner9aba1e22008-01-28 00:36:27 +00002319<p>The value produced is the unsigned integer quotient of the two operands.</p>
2320<p>Note that unsigned integer division and signed integer division are distinct
2321operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2322<p>Division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002323<h5>Example:</h5>
2324<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2325</pre>
2326</div>
2327<!-- _______________________________________________________________________ -->
2328<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2329</a> </div>
2330<div class="doc_text">
2331<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002332<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002333 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002334</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002335
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002336<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002337
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002338<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2339operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002340
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002341<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002342
2343<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2344<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2345values. Both arguments must have identical types.</p>
2346
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002347<h5>Semantics:</h5>
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002348<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002349<p>Note that signed integer division and unsigned integer division are distinct
2350operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2351<p>Division by zero leads to undefined behavior. Overflow also leads to
2352undefined behavior; this is a rare case, but can occur, for example,
2353by doing a 32-bit division of -2147483648 by -1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002354<h5>Example:</h5>
2355<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2356</pre>
2357</div>
2358<!-- _______________________________________________________________________ -->
2359<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2360Instruction</a> </div>
2361<div class="doc_text">
2362<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002363<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002364 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365</pre>
2366<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002367
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002368<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2369operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002370
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002371<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002372
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002374<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2375of floating point values. Both arguments must have identical types.</p>
2376
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002377<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002378
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002379<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002380
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002381<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002382
2383<pre>
2384 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002385</pre>
2386</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002387
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388<!-- _______________________________________________________________________ -->
2389<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2390</div>
2391<div class="doc_text">
2392<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002393<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394</pre>
2395<h5>Overview:</h5>
2396<p>The '<tt>urem</tt>' instruction returns the remainder from the
2397unsigned division of its two arguments.</p>
2398<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002399<p>The two arguments to the '<tt>urem</tt>' instruction must be
2400<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2401values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402<h5>Semantics:</h5>
2403<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002404This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002405<p>Note that unsigned integer remainder and signed integer remainder are
2406distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2407<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408<h5>Example:</h5>
2409<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2410</pre>
2411
2412</div>
2413<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002414<div class="doc_subsubsection">
2415 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2416</div>
2417
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002418<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002419
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002420<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002421
2422<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002423 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002425
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002427
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002429signed division of its two operands. This instruction can also take
2430<a href="#t_vector">vector</a> versions of the values in which case
2431the elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00002432
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002433<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002434
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002435<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002436<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2437values. Both arguments must have identical types.</p>
2438
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002439<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002440
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002441<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greifd9068fe2008-08-07 21:46:00 +00002442has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2443operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002444a value. For more information about the difference, see <a
2445 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2446Math Forum</a>. For a table of how this is implemented in various languages,
2447please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2448Wikipedia: modulo operation</a>.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002449<p>Note that signed integer remainder and unsigned integer remainder are
2450distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2451<p>Taking the remainder of a division by zero leads to undefined behavior.
2452Overflow also leads to undefined behavior; this is a rare case, but can occur,
2453for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2454(The remainder doesn't actually overflow, but this rule lets srem be
2455implemented using instructions that return both the result of the division
2456and the remainder.)</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002457<h5>Example:</h5>
2458<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2459</pre>
2460
2461</div>
2462<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002463<div class="doc_subsubsection">
2464 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2465
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002466<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002467
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002468<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002469<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470</pre>
2471<h5>Overview:</h5>
2472<p>The '<tt>frem</tt>' instruction returns the remainder from the
2473division of its two operands.</p>
2474<h5>Arguments:</h5>
2475<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002476<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2477of floating point values. Both arguments must have identical types.</p>
2478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002479<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002480
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002481<p>This instruction returns the <i>remainder</i> of a division.
2482The remainder has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002483
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002484<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002485
2486<pre>
2487 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002488</pre>
2489</div>
2490
2491<!-- ======================================================================= -->
2492<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2493Operations</a> </div>
2494<div class="doc_text">
2495<p>Bitwise binary operators are used to do various forms of
2496bit-twiddling in a program. They are generally very efficient
2497instructions and can commonly be strength reduced from other
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002498instructions. They require two operands of the same type, execute an operation on them,
2499and produce a single value. The resulting value is the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500</div>
2501
2502<!-- _______________________________________________________________________ -->
2503<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2504Instruction</a> </div>
2505<div class="doc_text">
2506<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002507<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002508</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002509
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002510<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002511
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002512<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2513the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002514
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002515<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002516
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002517<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanbb1ce942008-07-29 15:49:41 +00002518 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002519type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002520
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002521<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002522
Gabor Greifd9068fe2008-08-07 21:46:00 +00002523<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2524where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2525equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002526
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002527<h5>Example:</h5><pre>
2528 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2529 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2530 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002531 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002532</pre>
2533</div>
2534<!-- _______________________________________________________________________ -->
2535<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2536Instruction</a> </div>
2537<div class="doc_text">
2538<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002539<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540</pre>
2541
2542<h5>Overview:</h5>
2543<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2544operand shifted to the right a specified number of bits with zero fill.</p>
2545
2546<h5>Arguments:</h5>
2547<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002548<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002549type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002550
2551<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002552
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002553<p>This instruction always performs a logical shift right operation. The most
2554significant bits of the result will be filled with zero bits after the
Gabor Greifd9068fe2008-08-07 21:46:00 +00002555shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2556the number of bits in <tt>op1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002557
2558<h5>Example:</h5>
2559<pre>
2560 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2561 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2562 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2563 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002564 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002565</pre>
2566</div>
2567
2568<!-- _______________________________________________________________________ -->
2569<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2570Instruction</a> </div>
2571<div class="doc_text">
2572
2573<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002574<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575</pre>
2576
2577<h5>Overview:</h5>
2578<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2579operand shifted to the right a specified number of bits with sign extension.</p>
2580
2581<h5>Arguments:</h5>
2582<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002583<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002584type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002585
2586<h5>Semantics:</h5>
2587<p>This instruction always performs an arithmetic shift right operation,
2588The most significant bits of the result will be filled with the sign bit
Gabor Greifd9068fe2008-08-07 21:46:00 +00002589of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2590larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002591</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002592
2593<h5>Example:</h5>
2594<pre>
2595 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2596 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2597 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2598 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002599 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002600</pre>
2601</div>
2602
2603<!-- _______________________________________________________________________ -->
2604<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2605Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00002606
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002607<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002608
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002609<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002610
2611<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002612 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002613</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002614
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002615<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002616
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002617<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2618its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002619
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002620<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002621
2622<p>The two arguments to the '<tt>and</tt>' instruction must be
2623<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2624values. Both arguments must have identical types.</p>
2625
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002626<h5>Semantics:</h5>
2627<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2628<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002629<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002630<table border="1" cellspacing="0" cellpadding="4">
2631 <tbody>
2632 <tr>
2633 <td>In0</td>
2634 <td>In1</td>
2635 <td>Out</td>
2636 </tr>
2637 <tr>
2638 <td>0</td>
2639 <td>0</td>
2640 <td>0</td>
2641 </tr>
2642 <tr>
2643 <td>0</td>
2644 <td>1</td>
2645 <td>0</td>
2646 </tr>
2647 <tr>
2648 <td>1</td>
2649 <td>0</td>
2650 <td>0</td>
2651 </tr>
2652 <tr>
2653 <td>1</td>
2654 <td>1</td>
2655 <td>1</td>
2656 </tr>
2657 </tbody>
2658</table>
2659</div>
2660<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002661<pre>
2662 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2664 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2665</pre>
2666</div>
2667<!-- _______________________________________________________________________ -->
2668<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2669<div class="doc_text">
2670<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002671<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002672</pre>
2673<h5>Overview:</h5>
2674<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2675or of its two operands.</p>
2676<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002677
2678<p>The two arguments to the '<tt>or</tt>' instruction must be
2679<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2680values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002681<h5>Semantics:</h5>
2682<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2683<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002684<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002685<table border="1" cellspacing="0" cellpadding="4">
2686 <tbody>
2687 <tr>
2688 <td>In0</td>
2689 <td>In1</td>
2690 <td>Out</td>
2691 </tr>
2692 <tr>
2693 <td>0</td>
2694 <td>0</td>
2695 <td>0</td>
2696 </tr>
2697 <tr>
2698 <td>0</td>
2699 <td>1</td>
2700 <td>1</td>
2701 </tr>
2702 <tr>
2703 <td>1</td>
2704 <td>0</td>
2705 <td>1</td>
2706 </tr>
2707 <tr>
2708 <td>1</td>
2709 <td>1</td>
2710 <td>1</td>
2711 </tr>
2712 </tbody>
2713</table>
2714</div>
2715<h5>Example:</h5>
2716<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2717 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2718 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2719</pre>
2720</div>
2721<!-- _______________________________________________________________________ -->
2722<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2723Instruction</a> </div>
2724<div class="doc_text">
2725<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002726<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002727</pre>
2728<h5>Overview:</h5>
2729<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2730or of its two operands. The <tt>xor</tt> is used to implement the
2731"one's complement" operation, which is the "~" operator in C.</p>
2732<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002733<p>The two arguments to the '<tt>xor</tt>' instruction must be
2734<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2735values. Both arguments must have identical types.</p>
2736
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002737<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002738
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002739<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2740<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002741<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002742<table border="1" cellspacing="0" cellpadding="4">
2743 <tbody>
2744 <tr>
2745 <td>In0</td>
2746 <td>In1</td>
2747 <td>Out</td>
2748 </tr>
2749 <tr>
2750 <td>0</td>
2751 <td>0</td>
2752 <td>0</td>
2753 </tr>
2754 <tr>
2755 <td>0</td>
2756 <td>1</td>
2757 <td>1</td>
2758 </tr>
2759 <tr>
2760 <td>1</td>
2761 <td>0</td>
2762 <td>1</td>
2763 </tr>
2764 <tr>
2765 <td>1</td>
2766 <td>1</td>
2767 <td>0</td>
2768 </tr>
2769 </tbody>
2770</table>
2771</div>
2772<p> </p>
2773<h5>Example:</h5>
2774<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2775 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2776 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2777 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2778</pre>
2779</div>
2780
2781<!-- ======================================================================= -->
2782<div class="doc_subsection">
2783 <a name="vectorops">Vector Operations</a>
2784</div>
2785
2786<div class="doc_text">
2787
2788<p>LLVM supports several instructions to represent vector operations in a
2789target-independent manner. These instructions cover the element-access and
2790vector-specific operations needed to process vectors effectively. While LLVM
2791does directly support these vector operations, many sophisticated algorithms
2792will want to use target-specific intrinsics to take full advantage of a specific
2793target.</p>
2794
2795</div>
2796
2797<!-- _______________________________________________________________________ -->
2798<div class="doc_subsubsection">
2799 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2800</div>
2801
2802<div class="doc_text">
2803
2804<h5>Syntax:</h5>
2805
2806<pre>
2807 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2808</pre>
2809
2810<h5>Overview:</h5>
2811
2812<p>
2813The '<tt>extractelement</tt>' instruction extracts a single scalar
2814element from a vector at a specified index.
2815</p>
2816
2817
2818<h5>Arguments:</h5>
2819
2820<p>
2821The first operand of an '<tt>extractelement</tt>' instruction is a
2822value of <a href="#t_vector">vector</a> type. The second operand is
2823an index indicating the position from which to extract the element.
2824The index may be a variable.</p>
2825
2826<h5>Semantics:</h5>
2827
2828<p>
2829The result is a scalar of the same type as the element type of
2830<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2831<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2832results are undefined.
2833</p>
2834
2835<h5>Example:</h5>
2836
2837<pre>
2838 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2839</pre>
2840</div>
2841
2842
2843<!-- _______________________________________________________________________ -->
2844<div class="doc_subsubsection">
2845 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2846</div>
2847
2848<div class="doc_text">
2849
2850<h5>Syntax:</h5>
2851
2852<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00002853 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002854</pre>
2855
2856<h5>Overview:</h5>
2857
2858<p>
2859The '<tt>insertelement</tt>' instruction inserts a scalar
2860element into a vector at a specified index.
2861</p>
2862
2863
2864<h5>Arguments:</h5>
2865
2866<p>
2867The first operand of an '<tt>insertelement</tt>' instruction is a
2868value of <a href="#t_vector">vector</a> type. The second operand is a
2869scalar value whose type must equal the element type of the first
2870operand. The third operand is an index indicating the position at
2871which to insert the value. The index may be a variable.</p>
2872
2873<h5>Semantics:</h5>
2874
2875<p>
2876The result is a vector of the same type as <tt>val</tt>. Its
2877element values are those of <tt>val</tt> except at position
2878<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2879exceeds the length of <tt>val</tt>, the results are undefined.
2880</p>
2881
2882<h5>Example:</h5>
2883
2884<pre>
2885 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2886</pre>
2887</div>
2888
2889<!-- _______________________________________________________________________ -->
2890<div class="doc_subsubsection">
2891 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2892</div>
2893
2894<div class="doc_text">
2895
2896<h5>Syntax:</h5>
2897
2898<pre>
2899 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2900</pre>
2901
2902<h5>Overview:</h5>
2903
2904<p>
2905The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2906from two input vectors, returning a vector of the same type.
2907</p>
2908
2909<h5>Arguments:</h5>
2910
2911<p>
2912The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2913with types that match each other and types that match the result of the
2914instruction. The third argument is a shuffle mask, which has the same number
2915of elements as the other vector type, but whose element type is always 'i32'.
2916</p>
2917
2918<p>
2919The shuffle mask operand is required to be a constant vector with either
2920constant integer or undef values.
2921</p>
2922
2923<h5>Semantics:</h5>
2924
2925<p>
2926The elements of the two input vectors are numbered from left to right across
2927both of the vectors. The shuffle mask operand specifies, for each element of
2928the result vector, which element of the two input registers the result element
2929gets. The element selector may be undef (meaning "don't care") and the second
2930operand may be undef if performing a shuffle from only one vector.
2931</p>
2932
2933<h5>Example:</h5>
2934
2935<pre>
2936 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2937 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2938 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2939 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2940</pre>
2941</div>
2942
2943
2944<!-- ======================================================================= -->
2945<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00002946 <a name="aggregateops">Aggregate Operations</a>
2947</div>
2948
2949<div class="doc_text">
2950
2951<p>LLVM supports several instructions for working with aggregate values.
2952</p>
2953
2954</div>
2955
2956<!-- _______________________________________________________________________ -->
2957<div class="doc_subsubsection">
2958 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2959</div>
2960
2961<div class="doc_text">
2962
2963<h5>Syntax:</h5>
2964
2965<pre>
2966 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2967</pre>
2968
2969<h5>Overview:</h5>
2970
2971<p>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002972The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2973or array element from an aggregate value.
Dan Gohman74d6faf2008-05-12 23:51:09 +00002974</p>
2975
2976
2977<h5>Arguments:</h5>
2978
2979<p>
2980The first operand of an '<tt>extractvalue</tt>' instruction is a
2981value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002982type. The operands are constant indices to specify which value to extract
Dan Gohmane5febe42008-05-31 00:58:22 +00002983in a similar manner as indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00002984'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2985</p>
2986
2987<h5>Semantics:</h5>
2988
2989<p>
2990The result is the value at the position in the aggregate specified by
2991the index operands.
2992</p>
2993
2994<h5>Example:</h5>
2995
2996<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002997 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002998</pre>
2999</div>
3000
3001
3002<!-- _______________________________________________________________________ -->
3003<div class="doc_subsubsection">
3004 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3005</div>
3006
3007<div class="doc_text">
3008
3009<h5>Syntax:</h5>
3010
3011<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00003012 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003013</pre>
3014
3015<h5>Overview:</h5>
3016
3017<p>
3018The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman6c6dea02008-05-13 18:16:06 +00003019into a struct field or array element in an aggregate.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003020</p>
3021
3022
3023<h5>Arguments:</h5>
3024
3025<p>
3026The first operand of an '<tt>insertvalue</tt>' instruction is a
3027value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3028The second operand is a first-class value to insert.
Dan Gohman4f29e422008-05-23 21:53:15 +00003029The following operands are constant indices
Dan Gohmane5febe42008-05-31 00:58:22 +00003030indicating the position at which to insert the value in a similar manner as
Dan Gohman6c6dea02008-05-13 18:16:06 +00003031indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00003032'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3033The value to insert must have the same type as the value identified
Dan Gohman6c6dea02008-05-13 18:16:06 +00003034by the indices.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003035
3036<h5>Semantics:</h5>
3037
3038<p>
3039The result is an aggregate of the same type as <tt>val</tt>. Its
3040value is that of <tt>val</tt> except that the value at the position
Dan Gohman6c6dea02008-05-13 18:16:06 +00003041specified by the indices is that of <tt>elt</tt>.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003042</p>
3043
3044<h5>Example:</h5>
3045
3046<pre>
Dan Gohmanb1aab4e2008-06-23 15:26:37 +00003047 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003048</pre>
3049</div>
3050
3051
3052<!-- ======================================================================= -->
3053<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003054 <a name="memoryops">Memory Access and Addressing Operations</a>
3055</div>
3056
3057<div class="doc_text">
3058
3059<p>A key design point of an SSA-based representation is how it
3060represents memory. In LLVM, no memory locations are in SSA form, which
3061makes things very simple. This section describes how to read, write,
3062allocate, and free memory in LLVM.</p>
3063
3064</div>
3065
3066<!-- _______________________________________________________________________ -->
3067<div class="doc_subsubsection">
3068 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3069</div>
3070
3071<div class="doc_text">
3072
3073<h5>Syntax:</h5>
3074
3075<pre>
3076 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3077</pre>
3078
3079<h5>Overview:</h5>
3080
3081<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lambcfe00962007-12-17 01:00:21 +00003082heap and returns a pointer to it. The object is always allocated in the generic
3083address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003084
3085<h5>Arguments:</h5>
3086
3087<p>The '<tt>malloc</tt>' instruction allocates
3088<tt>sizeof(&lt;type&gt;)*NumElements</tt>
3089bytes of memory from the operating system and returns a pointer of the
3090appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif5082cf42008-02-09 22:24:34 +00003091number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003092If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif5082cf42008-02-09 22:24:34 +00003093be aligned to at least that boundary. If not specified, or if zero, the target can
3094choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003095
3096<p>'<tt>type</tt>' must be a sized type.</p>
3097
3098<h5>Semantics:</h5>
3099
3100<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner8b094fc2008-04-19 21:01:16 +00003101a pointer is returned. The result of a zero byte allocattion is undefined. The
3102result is null if there is insufficient memory available.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003103
3104<h5>Example:</h5>
3105
3106<pre>
3107 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
3108
3109 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3110 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3111 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3112 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3113 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3114</pre>
3115</div>
3116
3117<!-- _______________________________________________________________________ -->
3118<div class="doc_subsubsection">
3119 <a name="i_free">'<tt>free</tt>' Instruction</a>
3120</div>
3121
3122<div class="doc_text">
3123
3124<h5>Syntax:</h5>
3125
3126<pre>
3127 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
3128</pre>
3129
3130<h5>Overview:</h5>
3131
3132<p>The '<tt>free</tt>' instruction returns memory back to the unused
3133memory heap to be reallocated in the future.</p>
3134
3135<h5>Arguments:</h5>
3136
3137<p>'<tt>value</tt>' shall be a pointer value that points to a value
3138that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3139instruction.</p>
3140
3141<h5>Semantics:</h5>
3142
3143<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner329d6532008-04-19 22:41:32 +00003144after this instruction executes. If the pointer is null, the operation
3145is a noop.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003146
3147<h5>Example:</h5>
3148
3149<pre>
3150 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3151 free [4 x i8]* %array
3152</pre>
3153</div>
3154
3155<!-- _______________________________________________________________________ -->
3156<div class="doc_subsubsection">
3157 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3158</div>
3159
3160<div class="doc_text">
3161
3162<h5>Syntax:</h5>
3163
3164<pre>
3165 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3166</pre>
3167
3168<h5>Overview:</h5>
3169
3170<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3171currently executing function, to be automatically released when this function
Christopher Lambcfe00962007-12-17 01:00:21 +00003172returns to its caller. The object is always allocated in the generic address
3173space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003174
3175<h5>Arguments:</h5>
3176
3177<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
3178bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif5082cf42008-02-09 22:24:34 +00003179appropriate type to the program. If "NumElements" is specified, it is the
3180number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003181If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif5082cf42008-02-09 22:24:34 +00003182to be aligned to at least that boundary. If not specified, or if zero, the target
3183can choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003184
3185<p>'<tt>type</tt>' may be any sized type.</p>
3186
3187<h5>Semantics:</h5>
3188
Chris Lattner8b094fc2008-04-19 21:01:16 +00003189<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3190there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003191memory is automatically released when the function returns. The '<tt>alloca</tt>'
3192instruction is commonly used to represent automatic variables that must
3193have an address available. When the function returns (either with the <tt><a
3194 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner10368b62008-04-02 00:38:26 +00003195instructions), the memory is reclaimed. Allocating zero bytes
3196is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003197
3198<h5>Example:</h5>
3199
3200<pre>
3201 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3202 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3203 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3204 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3205</pre>
3206</div>
3207
3208<!-- _______________________________________________________________________ -->
3209<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3210Instruction</a> </div>
3211<div class="doc_text">
3212<h5>Syntax:</h5>
3213<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
3214<h5>Overview:</h5>
3215<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3216<h5>Arguments:</h5>
3217<p>The argument to the '<tt>load</tt>' instruction specifies the memory
3218address from which to load. The pointer must point to a <a
3219 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3220marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
3221the number or order of execution of this <tt>load</tt> with other
3222volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3223instructions. </p>
Chris Lattner21003c82008-01-06 21:04:43 +00003224<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003225The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003226(that is, the alignment of the memory address). A value of 0 or an
3227omitted "align" argument means that the operation has the preferential
3228alignment for the target. It is the responsibility of the code emitter
3229to ensure that the alignment information is correct. Overestimating
3230the alignment results in an undefined behavior. Underestimating the
3231alignment may produce less efficient code. An alignment of 1 is always
3232safe.
3233</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003234<h5>Semantics:</h5>
3235<p>The location of memory pointed to is loaded.</p>
3236<h5>Examples:</h5>
3237<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3238 <a
3239 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3240 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3241</pre>
3242</div>
3243<!-- _______________________________________________________________________ -->
3244<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3245Instruction</a> </div>
3246<div class="doc_text">
3247<h5>Syntax:</h5>
3248<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3249 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3250</pre>
3251<h5>Overview:</h5>
3252<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3253<h5>Arguments:</h5>
3254<p>There are two arguments to the '<tt>store</tt>' instruction: a value
3255to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner10368b62008-04-02 00:38:26 +00003256operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3257of the '<tt>&lt;value&gt;</tt>'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003258operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
3259optimizer is not allowed to modify the number or order of execution of
3260this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3261 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner21003c82008-01-06 21:04:43 +00003262<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003263The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003264(that is, the alignment of the memory address). A value of 0 or an
3265omitted "align" argument means that the operation has the preferential
3266alignment for the target. It is the responsibility of the code emitter
3267to ensure that the alignment information is correct. Overestimating
3268the alignment results in an undefined behavior. Underestimating the
3269alignment may produce less efficient code. An alignment of 1 is always
3270safe.
3271</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003272<h5>Semantics:</h5>
3273<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3274at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
3275<h5>Example:</h5>
3276<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00003277 store i32 3, i32* %ptr <i>; yields {void}</i>
3278 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003279</pre>
3280</div>
3281
3282<!-- _______________________________________________________________________ -->
3283<div class="doc_subsubsection">
3284 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3285</div>
3286
3287<div class="doc_text">
3288<h5>Syntax:</h5>
3289<pre>
3290 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3291</pre>
3292
3293<h5>Overview:</h5>
3294
3295<p>
3296The '<tt>getelementptr</tt>' instruction is used to get the address of a
3297subelement of an aggregate data structure.</p>
3298
3299<h5>Arguments:</h5>
3300
3301<p>This instruction takes a list of integer operands that indicate what
3302elements of the aggregate object to index to. The actual types of the arguments
3303provided depend on the type of the first pointer argument. The
3304'<tt>getelementptr</tt>' instruction is used to index down through the type
3305levels of a structure or to a specific index in an array. When indexing into a
3306structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003307into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3308values will be sign extended to 64-bits if required.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003309
3310<p>For example, let's consider a C code fragment and how it gets
3311compiled to LLVM:</p>
3312
3313<div class="doc_code">
3314<pre>
3315struct RT {
3316 char A;
3317 int B[10][20];
3318 char C;
3319};
3320struct ST {
3321 int X;
3322 double Y;
3323 struct RT Z;
3324};
3325
3326int *foo(struct ST *s) {
3327 return &amp;s[1].Z.B[5][13];
3328}
3329</pre>
3330</div>
3331
3332<p>The LLVM code generated by the GCC frontend is:</p>
3333
3334<div class="doc_code">
3335<pre>
3336%RT = type { i8 , [10 x [20 x i32]], i8 }
3337%ST = type { i32, double, %RT }
3338
3339define i32* %foo(%ST* %s) {
3340entry:
3341 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3342 ret i32* %reg
3343}
3344</pre>
3345</div>
3346
3347<h5>Semantics:</h5>
3348
3349<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
3350on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
3351and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
3352<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner10368b62008-04-02 00:38:26 +00003353to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3354structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003355
3356<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3357type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3358}</tt>' type, a structure. The second index indexes into the third element of
3359the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3360i8 }</tt>' type, another structure. The third index indexes into the second
3361element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3362array. The two dimensions of the array are subscripted into, yielding an
3363'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3364to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3365
3366<p>Note that it is perfectly legal to index partially through a
3367structure, returning a pointer to an inner element. Because of this,
3368the LLVM code for the given testcase is equivalent to:</p>
3369
3370<pre>
3371 define i32* %foo(%ST* %s) {
3372 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3373 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3374 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3375 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3376 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3377 ret i32* %t5
3378 }
3379</pre>
3380
3381<p>Note that it is undefined to access an array out of bounds: array and
3382pointer indexes must always be within the defined bounds of the array type.
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003383The one exception for this rule is zero length arrays. These arrays are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003384defined to be accessible as variable length arrays, which requires access
3385beyond the zero'th element.</p>
3386
3387<p>The getelementptr instruction is often confusing. For some more insight
3388into how it works, see <a href="GetElementPtr.html">the getelementptr
3389FAQ</a>.</p>
3390
3391<h5>Example:</h5>
3392
3393<pre>
3394 <i>; yields [12 x i8]*:aptr</i>
3395 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3396</pre>
3397</div>
3398
3399<!-- ======================================================================= -->
3400<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3401</div>
3402<div class="doc_text">
3403<p>The instructions in this category are the conversion instructions (casting)
3404which all take a single operand and a type. They perform various bit conversions
3405on the operand.</p>
3406</div>
3407
3408<!-- _______________________________________________________________________ -->
3409<div class="doc_subsubsection">
3410 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3411</div>
3412<div class="doc_text">
3413
3414<h5>Syntax:</h5>
3415<pre>
3416 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3417</pre>
3418
3419<h5>Overview:</h5>
3420<p>
3421The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3422</p>
3423
3424<h5>Arguments:</h5>
3425<p>
3426The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3427be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3428and type of the result, which must be an <a href="#t_integer">integer</a>
3429type. The bit size of <tt>value</tt> must be larger than the bit size of
3430<tt>ty2</tt>. Equal sized types are not allowed.</p>
3431
3432<h5>Semantics:</h5>
3433<p>
3434The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3435and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3436larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3437It will always truncate bits.</p>
3438
3439<h5>Example:</h5>
3440<pre>
3441 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3442 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3443 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3444</pre>
3445</div>
3446
3447<!-- _______________________________________________________________________ -->
3448<div class="doc_subsubsection">
3449 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3450</div>
3451<div class="doc_text">
3452
3453<h5>Syntax:</h5>
3454<pre>
3455 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3456</pre>
3457
3458<h5>Overview:</h5>
3459<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3460<tt>ty2</tt>.</p>
3461
3462
3463<h5>Arguments:</h5>
3464<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3465<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3466also be of <a href="#t_integer">integer</a> type. The bit size of the
3467<tt>value</tt> must be smaller than the bit size of the destination type,
3468<tt>ty2</tt>.</p>
3469
3470<h5>Semantics:</h5>
3471<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3472bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3473
3474<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3475
3476<h5>Example:</h5>
3477<pre>
3478 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3479 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3480</pre>
3481</div>
3482
3483<!-- _______________________________________________________________________ -->
3484<div class="doc_subsubsection">
3485 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3486</div>
3487<div class="doc_text">
3488
3489<h5>Syntax:</h5>
3490<pre>
3491 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3492</pre>
3493
3494<h5>Overview:</h5>
3495<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3496
3497<h5>Arguments:</h5>
3498<p>
3499The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3500<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3501also be of <a href="#t_integer">integer</a> type. The bit size of the
3502<tt>value</tt> must be smaller than the bit size of the destination type,
3503<tt>ty2</tt>.</p>
3504
3505<h5>Semantics:</h5>
3506<p>
3507The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3508bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3509the type <tt>ty2</tt>.</p>
3510
3511<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3512
3513<h5>Example:</h5>
3514<pre>
3515 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3516 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3517</pre>
3518</div>
3519
3520<!-- _______________________________________________________________________ -->
3521<div class="doc_subsubsection">
3522 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3523</div>
3524
3525<div class="doc_text">
3526
3527<h5>Syntax:</h5>
3528
3529<pre>
3530 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3531</pre>
3532
3533<h5>Overview:</h5>
3534<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3535<tt>ty2</tt>.</p>
3536
3537
3538<h5>Arguments:</h5>
3539<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3540 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3541cast it to. The size of <tt>value</tt> must be larger than the size of
3542<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3543<i>no-op cast</i>.</p>
3544
3545<h5>Semantics:</h5>
3546<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3547<a href="#t_floating">floating point</a> type to a smaller
3548<a href="#t_floating">floating point</a> type. If the value cannot fit within
3549the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3550
3551<h5>Example:</h5>
3552<pre>
3553 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3554 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3555</pre>
3556</div>
3557
3558<!-- _______________________________________________________________________ -->
3559<div class="doc_subsubsection">
3560 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3561</div>
3562<div class="doc_text">
3563
3564<h5>Syntax:</h5>
3565<pre>
3566 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3567</pre>
3568
3569<h5>Overview:</h5>
3570<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3571floating point value.</p>
3572
3573<h5>Arguments:</h5>
3574<p>The '<tt>fpext</tt>' instruction takes a
3575<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3576and a <a href="#t_floating">floating point</a> type to cast it to. The source
3577type must be smaller than the destination type.</p>
3578
3579<h5>Semantics:</h5>
3580<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3581<a href="#t_floating">floating point</a> type to a larger
3582<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3583used to make a <i>no-op cast</i> because it always changes bits. Use
3584<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3585
3586<h5>Example:</h5>
3587<pre>
3588 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3589 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3590</pre>
3591</div>
3592
3593<!-- _______________________________________________________________________ -->
3594<div class="doc_subsubsection">
3595 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3596</div>
3597<div class="doc_text">
3598
3599<h5>Syntax:</h5>
3600<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003601 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003602</pre>
3603
3604<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003605<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003606unsigned integer equivalent of type <tt>ty2</tt>.
3607</p>
3608
3609<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003610<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003611scalar or vector <a href="#t_floating">floating point</a> value, and a type
3612to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3613type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3614vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003615
3616<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003617<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003618<a href="#t_floating">floating point</a> operand into the nearest (rounding
3619towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3620the results are undefined.</p>
3621
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003622<h5>Example:</h5>
3623<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003624 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003625 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003626 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003627</pre>
3628</div>
3629
3630<!-- _______________________________________________________________________ -->
3631<div class="doc_subsubsection">
3632 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3633</div>
3634<div class="doc_text">
3635
3636<h5>Syntax:</h5>
3637<pre>
3638 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3639</pre>
3640
3641<h5>Overview:</h5>
3642<p>The '<tt>fptosi</tt>' instruction converts
3643<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3644</p>
3645
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003646<h5>Arguments:</h5>
3647<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003648scalar or vector <a href="#t_floating">floating point</a> value, and a type
3649to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3650type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3651vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652
3653<h5>Semantics:</h5>
3654<p>The '<tt>fptosi</tt>' instruction converts its
3655<a href="#t_floating">floating point</a> operand into the nearest (rounding
3656towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3657the results are undefined.</p>
3658
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003659<h5>Example:</h5>
3660<pre>
3661 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003662 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003663 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3664</pre>
3665</div>
3666
3667<!-- _______________________________________________________________________ -->
3668<div class="doc_subsubsection">
3669 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3670</div>
3671<div class="doc_text">
3672
3673<h5>Syntax:</h5>
3674<pre>
3675 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3676</pre>
3677
3678<h5>Overview:</h5>
3679<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3680integer and converts that value to the <tt>ty2</tt> type.</p>
3681
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003683<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3684scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3685to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3686type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3687floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003688
3689<h5>Semantics:</h5>
3690<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3691integer quantity and converts it to the corresponding floating point value. If
3692the value cannot fit in the floating point value, the results are undefined.</p>
3693
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003694<h5>Example:</h5>
3695<pre>
3696 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3697 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3698</pre>
3699</div>
3700
3701<!-- _______________________________________________________________________ -->
3702<div class="doc_subsubsection">
3703 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3704</div>
3705<div class="doc_text">
3706
3707<h5>Syntax:</h5>
3708<pre>
3709 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3710</pre>
3711
3712<h5>Overview:</h5>
3713<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3714integer and converts that value to the <tt>ty2</tt> type.</p>
3715
3716<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003717<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3718scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3719to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3720type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3721floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003722
3723<h5>Semantics:</h5>
3724<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3725integer quantity and converts it to the corresponding floating point value. If
3726the value cannot fit in the floating point value, the results are undefined.</p>
3727
3728<h5>Example:</h5>
3729<pre>
3730 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3731 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3732</pre>
3733</div>
3734
3735<!-- _______________________________________________________________________ -->
3736<div class="doc_subsubsection">
3737 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3738</div>
3739<div class="doc_text">
3740
3741<h5>Syntax:</h5>
3742<pre>
3743 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3744</pre>
3745
3746<h5>Overview:</h5>
3747<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3748the integer type <tt>ty2</tt>.</p>
3749
3750<h5>Arguments:</h5>
3751<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3752must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3753<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3754
3755<h5>Semantics:</h5>
3756<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3757<tt>ty2</tt> by interpreting the pointer value as an integer and either
3758truncating or zero extending that value to the size of the integer type. If
3759<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3760<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3761are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3762change.</p>
3763
3764<h5>Example:</h5>
3765<pre>
3766 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3767 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3768</pre>
3769</div>
3770
3771<!-- _______________________________________________________________________ -->
3772<div class="doc_subsubsection">
3773 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3774</div>
3775<div class="doc_text">
3776
3777<h5>Syntax:</h5>
3778<pre>
3779 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3780</pre>
3781
3782<h5>Overview:</h5>
3783<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3784a pointer type, <tt>ty2</tt>.</p>
3785
3786<h5>Arguments:</h5>
3787<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3788value to cast, and a type to cast it to, which must be a
3789<a href="#t_pointer">pointer</a> type.
3790
3791<h5>Semantics:</h5>
3792<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3793<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3794the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3795size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3796the size of a pointer then a zero extension is done. If they are the same size,
3797nothing is done (<i>no-op cast</i>).</p>
3798
3799<h5>Example:</h5>
3800<pre>
3801 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3802 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3803 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3804</pre>
3805</div>
3806
3807<!-- _______________________________________________________________________ -->
3808<div class="doc_subsubsection">
3809 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3810</div>
3811<div class="doc_text">
3812
3813<h5>Syntax:</h5>
3814<pre>
3815 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3816</pre>
3817
3818<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003819
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003820<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3821<tt>ty2</tt> without changing any bits.</p>
3822
3823<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003824
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman7305fa02008-09-08 16:45:59 +00003826a non-aggregate first class value, and a type to cast it to, which must also be
3827a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3828<tt>value</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003829and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner6704c212008-05-20 20:48:21 +00003830type is a pointer, the destination type must also be a pointer. This
3831instruction supports bitwise conversion of vectors to integers and to vectors
3832of other types (as long as they have the same size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003833
3834<h5>Semantics:</h5>
3835<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3836<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3837this conversion. The conversion is done as if the <tt>value</tt> had been
3838stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3839converted to other pointer types with this instruction. To convert pointers to
3840other types, use the <a href="#i_inttoptr">inttoptr</a> or
3841<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3842
3843<h5>Example:</h5>
3844<pre>
3845 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3846 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3847 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3848</pre>
3849</div>
3850
3851<!-- ======================================================================= -->
3852<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3853<div class="doc_text">
3854<p>The instructions in this category are the "miscellaneous"
3855instructions, which defy better classification.</p>
3856</div>
3857
3858<!-- _______________________________________________________________________ -->
3859<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3860</div>
3861<div class="doc_text">
3862<h5>Syntax:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003863<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003864</pre>
3865<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003866<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3867a vector of boolean values based on comparison
3868of its two integer, integer vector, or pointer operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003869<h5>Arguments:</h5>
3870<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3871the condition code indicating the kind of comparison to perform. It is not
3872a value, just a keyword. The possible condition code are:
3873<ol>
3874 <li><tt>eq</tt>: equal</li>
3875 <li><tt>ne</tt>: not equal </li>
3876 <li><tt>ugt</tt>: unsigned greater than</li>
3877 <li><tt>uge</tt>: unsigned greater or equal</li>
3878 <li><tt>ult</tt>: unsigned less than</li>
3879 <li><tt>ule</tt>: unsigned less or equal</li>
3880 <li><tt>sgt</tt>: signed greater than</li>
3881 <li><tt>sge</tt>: signed greater or equal</li>
3882 <li><tt>slt</tt>: signed less than</li>
3883 <li><tt>sle</tt>: signed less or equal</li>
3884</ol>
3885<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003886<a href="#t_pointer">pointer</a>
3887or integer <a href="#t_vector">vector</a> typed.
3888They must also be identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003890<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003892yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003893<ol>
3894 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3895 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3896 </li>
3897 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3898 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3899 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003900 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003901 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003902 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003903 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003904 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003905 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003906 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003907 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003908 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003910 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003912 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003913 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003914 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003915</ol>
3916<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3917values are compared as if they were integers.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003918<p>If the operands are integer vectors, then they are compared
3919element by element. The result is an <tt>i1</tt> vector with
3920the same number of elements as the values being compared.
3921Otherwise, the result is an <tt>i1</tt>.
3922</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003923
3924<h5>Example:</h5>
3925<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3926 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3927 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3928 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3929 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3930 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3931</pre>
3932</div>
3933
3934<!-- _______________________________________________________________________ -->
3935<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3936</div>
3937<div class="doc_text">
3938<h5>Syntax:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003939<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003940</pre>
3941<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003942<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3943or vector of boolean values based on comparison
3944of its operands.
3945<p>
3946If the operands are floating point scalars, then the result
3947type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3948</p>
3949<p>If the operands are floating point vectors, then the result type
3950is a vector of boolean with the same number of elements as the
3951operands being compared.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003952<h5>Arguments:</h5>
3953<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3954the condition code indicating the kind of comparison to perform. It is not
3955a value, just a keyword. The possible condition code are:
3956<ol>
3957 <li><tt>false</tt>: no comparison, always returns false</li>
3958 <li><tt>oeq</tt>: ordered and equal</li>
3959 <li><tt>ogt</tt>: ordered and greater than </li>
3960 <li><tt>oge</tt>: ordered and greater than or equal</li>
3961 <li><tt>olt</tt>: ordered and less than </li>
3962 <li><tt>ole</tt>: ordered and less than or equal</li>
3963 <li><tt>one</tt>: ordered and not equal</li>
3964 <li><tt>ord</tt>: ordered (no nans)</li>
3965 <li><tt>ueq</tt>: unordered or equal</li>
3966 <li><tt>ugt</tt>: unordered or greater than </li>
3967 <li><tt>uge</tt>: unordered or greater than or equal</li>
3968 <li><tt>ult</tt>: unordered or less than </li>
3969 <li><tt>ule</tt>: unordered or less than or equal</li>
3970 <li><tt>une</tt>: unordered or not equal</li>
3971 <li><tt>uno</tt>: unordered (either nans)</li>
3972 <li><tt>true</tt>: no comparison, always returns true</li>
3973</ol>
3974<p><i>Ordered</i> means that neither operand is a QNAN while
3975<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003976<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3977either a <a href="#t_floating">floating point</a> type
3978or a <a href="#t_vector">vector</a> of floating point type.
3979They must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003980<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003981<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003982according to the condition code given as <tt>cond</tt>.
3983If the operands are vectors, then the vectors are compared
3984element by element.
3985Each comparison performed
3986always yields an <a href="#t_primitive">i1</a> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003987<ol>
3988 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3989 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003990 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003992 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003993 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003994 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003995 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003996 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003997 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003998 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003999 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00004000 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004001 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4002 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004003 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004004 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004005 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004006 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004007 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004008 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004009 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004010 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004011 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004012 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004013 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004014 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
4015 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4016</ol>
4017
4018<h5>Example:</h5>
4019<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004020 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4021 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4022 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004023</pre>
4024</div>
4025
4026<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00004027<div class="doc_subsubsection">
4028 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4029</div>
4030<div class="doc_text">
4031<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004032<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004033</pre>
4034<h5>Overview:</h5>
4035<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4036element-wise comparison of its two integer vector operands.</p>
4037<h5>Arguments:</h5>
4038<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4039the condition code indicating the kind of comparison to perform. It is not
4040a value, just a keyword. The possible condition code are:
4041<ol>
4042 <li><tt>eq</tt>: equal</li>
4043 <li><tt>ne</tt>: not equal </li>
4044 <li><tt>ugt</tt>: unsigned greater than</li>
4045 <li><tt>uge</tt>: unsigned greater or equal</li>
4046 <li><tt>ult</tt>: unsigned less than</li>
4047 <li><tt>ule</tt>: unsigned less or equal</li>
4048 <li><tt>sgt</tt>: signed greater than</li>
4049 <li><tt>sge</tt>: signed greater or equal</li>
4050 <li><tt>slt</tt>: signed less than</li>
4051 <li><tt>sle</tt>: signed less or equal</li>
4052</ol>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004053<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begeman646fa482008-05-12 19:01:56 +00004054<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4055<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004056<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004057according to the condition code given as <tt>cond</tt>. The comparison yields a
4058<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4059identical type as the values being compared. The most significant bit in each
4060element is 1 if the element-wise comparison evaluates to true, and is 0
4061otherwise. All other bits of the result are undefined. The condition codes
4062are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4063instruction</a>.
4064
4065<h5>Example:</h5>
4066<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004067 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4068 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004069</pre>
4070</div>
4071
4072<!-- _______________________________________________________________________ -->
4073<div class="doc_subsubsection">
4074 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4075</div>
4076<div class="doc_text">
4077<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004078<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begeman646fa482008-05-12 19:01:56 +00004079<h5>Overview:</h5>
4080<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4081element-wise comparison of its two floating point vector operands. The output
4082elements have the same width as the input elements.</p>
4083<h5>Arguments:</h5>
4084<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4085the condition code indicating the kind of comparison to perform. It is not
4086a value, just a keyword. The possible condition code are:
4087<ol>
4088 <li><tt>false</tt>: no comparison, always returns false</li>
4089 <li><tt>oeq</tt>: ordered and equal</li>
4090 <li><tt>ogt</tt>: ordered and greater than </li>
4091 <li><tt>oge</tt>: ordered and greater than or equal</li>
4092 <li><tt>olt</tt>: ordered and less than </li>
4093 <li><tt>ole</tt>: ordered and less than or equal</li>
4094 <li><tt>one</tt>: ordered and not equal</li>
4095 <li><tt>ord</tt>: ordered (no nans)</li>
4096 <li><tt>ueq</tt>: unordered or equal</li>
4097 <li><tt>ugt</tt>: unordered or greater than </li>
4098 <li><tt>uge</tt>: unordered or greater than or equal</li>
4099 <li><tt>ult</tt>: unordered or less than </li>
4100 <li><tt>ule</tt>: unordered or less than or equal</li>
4101 <li><tt>une</tt>: unordered or not equal</li>
4102 <li><tt>uno</tt>: unordered (either nans)</li>
4103 <li><tt>true</tt>: no comparison, always returns true</li>
4104</ol>
4105<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4106<a href="#t_floating">floating point</a> typed. They must also be identical
4107types.</p>
4108<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004109<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004110according to the condition code given as <tt>cond</tt>. The comparison yields a
4111<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4112an identical number of elements as the values being compared, and each element
4113having identical with to the width of the floating point elements. The most
4114significant bit in each element is 1 if the element-wise comparison evaluates to
4115true, and is 0 otherwise. All other bits of the result are undefined. The
4116condition codes are evaluated identically to the
4117<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4118
4119<h5>Example:</h5>
4120<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004121 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4122 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004123</pre>
4124</div>
4125
4126<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00004127<div class="doc_subsubsection">
4128 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4129</div>
4130
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004131<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00004132
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004133<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004135<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4136<h5>Overview:</h5>
4137<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4138the SSA graph representing the function.</p>
4139<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004140
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004141<p>The type of the incoming values is specified with the first type
4142field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4143as arguments, with one pair for each predecessor basic block of the
4144current block. Only values of <a href="#t_firstclass">first class</a>
4145type may be used as the value arguments to the PHI node. Only labels
4146may be used as the label arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004147
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004148<p>There must be no non-phi instructions between the start of a basic
4149block and the PHI instructions: i.e. PHI instructions must be first in
4150a basic block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004151
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004152<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004153
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004154<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4155specified by the pair corresponding to the predecessor basic block that executed
4156just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004157
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004158<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004159<pre>
4160Loop: ; Infinite loop that counts from 0 on up...
4161 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4162 %nextindvar = add i32 %indvar, 1
4163 br label %Loop
4164</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004165</div>
4166
4167<!-- _______________________________________________________________________ -->
4168<div class="doc_subsubsection">
4169 <a name="i_select">'<tt>select</tt>' Instruction</a>
4170</div>
4171
4172<div class="doc_text">
4173
4174<h5>Syntax:</h5>
4175
4176<pre>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004177 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4178
4179 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004180</pre>
4181
4182<h5>Overview:</h5>
4183
4184<p>
4185The '<tt>select</tt>' instruction is used to choose one value based on a
4186condition, without branching.
4187</p>
4188
4189
4190<h5>Arguments:</h5>
4191
4192<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004193The '<tt>select</tt>' instruction requires an 'i1' value or
4194a vector of 'i1' values indicating the
Chris Lattner6704c212008-05-20 20:48:21 +00004195condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004196type. If the val1/val2 are vectors and
4197the condition is a scalar, then entire vectors are selected, not
Chris Lattner6704c212008-05-20 20:48:21 +00004198individual elements.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004199</p>
4200
4201<h5>Semantics:</h5>
4202
4203<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004204If the condition is an i1 and it evaluates to 1, the instruction returns the first
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004205value argument; otherwise, it returns the second value argument.
4206</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004207<p>
4208If the condition is a vector of i1, then the value arguments must
4209be vectors of the same size, and the selection is done element
4210by element.
4211</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004212
4213<h5>Example:</h5>
4214
4215<pre>
4216 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4217</pre>
4218</div>
4219
4220
4221<!-- _______________________________________________________________________ -->
4222<div class="doc_subsubsection">
4223 <a name="i_call">'<tt>call</tt>' Instruction</a>
4224</div>
4225
4226<div class="doc_text">
4227
4228<h5>Syntax:</h5>
4229<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004230 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004231</pre>
4232
4233<h5>Overview:</h5>
4234
4235<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4236
4237<h5>Arguments:</h5>
4238
4239<p>This instruction requires several arguments:</p>
4240
4241<ol>
4242 <li>
4243 <p>The optional "tail" marker indicates whether the callee function accesses
4244 any allocas or varargs in the caller. If the "tail" marker is present, the
4245 function call is eligible for tail call optimization. Note that calls may
4246 be marked "tail" even if they do not occur before a <a
4247 href="#i_ret"><tt>ret</tt></a> instruction.
4248 </li>
4249 <li>
4250 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
4251 convention</a> the call should use. If none is specified, the call defaults
4252 to using C calling conventions.
4253 </li>
4254 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004255 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4256 the type of the return value. Functions that return no value are marked
4257 <tt><a href="#t_void">void</a></tt>.</p>
4258 </li>
4259 <li>
4260 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4261 value being invoked. The argument types must match the types implied by
4262 this signature. This type can be omitted if the function is not varargs
4263 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004264 </li>
4265 <li>
4266 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4267 be invoked. In most cases, this is a direct function invocation, but
4268 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4269 to function value.</p>
4270 </li>
4271 <li>
4272 <p>'<tt>function args</tt>': argument list whose types match the
4273 function signature argument types. All arguments must be of
4274 <a href="#t_firstclass">first class</a> type. If the function signature
4275 indicates the function accepts a variable number of arguments, the extra
4276 arguments can be specified.</p>
4277 </li>
4278</ol>
4279
4280<h5>Semantics:</h5>
4281
4282<p>The '<tt>call</tt>' instruction is used to cause control flow to
4283transfer to a specified function, with its incoming arguments bound to
4284the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4285instruction in the called function, control flow continues with the
4286instruction after the function call, and the return value of the
Chris Lattner5e893ef2008-03-21 17:24:17 +00004287function is bound to the result argument. If the callee returns multiple
4288values then the return values of the function are only accessible through
4289the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004290
4291<h5>Example:</h5>
4292
4293<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004294 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00004295 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4296 %X = tail call i32 @foo() <i>; yields i32</i>
4297 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4298 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00004299
4300 %struct.A = type { i32, i8 }
Chris Lattner5e893ef2008-03-21 17:24:17 +00004301 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4302 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4303 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004304</pre>
4305
4306</div>
4307
4308<!-- _______________________________________________________________________ -->
4309<div class="doc_subsubsection">
4310 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4311</div>
4312
4313<div class="doc_text">
4314
4315<h5>Syntax:</h5>
4316
4317<pre>
4318 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4319</pre>
4320
4321<h5>Overview:</h5>
4322
4323<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4324the "variable argument" area of a function call. It is used to implement the
4325<tt>va_arg</tt> macro in C.</p>
4326
4327<h5>Arguments:</h5>
4328
4329<p>This instruction takes a <tt>va_list*</tt> value and the type of
4330the argument. It returns a value of the specified argument type and
4331increments the <tt>va_list</tt> to point to the next argument. The
4332actual type of <tt>va_list</tt> is target specific.</p>
4333
4334<h5>Semantics:</h5>
4335
4336<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4337type from the specified <tt>va_list</tt> and causes the
4338<tt>va_list</tt> to point to the next argument. For more information,
4339see the variable argument handling <a href="#int_varargs">Intrinsic
4340Functions</a>.</p>
4341
4342<p>It is legal for this instruction to be called in a function which does not
4343take a variable number of arguments, for example, the <tt>vfprintf</tt>
4344function.</p>
4345
4346<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
4347href="#intrinsics">intrinsic function</a> because it takes a type as an
4348argument.</p>
4349
4350<h5>Example:</h5>
4351
4352<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4353
4354</div>
4355
Devang Patela3cc5372008-03-10 20:49:15 +00004356<!-- _______________________________________________________________________ -->
4357<div class="doc_subsubsection">
4358 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4359</div>
4360
4361<div class="doc_text">
4362
4363<h5>Syntax:</h5>
4364<pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004365 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patela3cc5372008-03-10 20:49:15 +00004366</pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004367
Devang Patela3cc5372008-03-10 20:49:15 +00004368<h5>Overview:</h5>
4369
4370<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattneree9da3f2008-03-21 17:20:51 +00004371from a '<tt><a href="#i_call">call</a></tt>'
4372or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4373results.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004374
4375<h5>Arguments:</h5>
4376
Chris Lattneree9da3f2008-03-21 17:20:51 +00004377<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattnerd8dd3522008-04-23 04:06:52 +00004378first argument, or an undef value. The value must have <a
4379href="#t_struct">structure type</a>. The second argument is a constant
4380unsigned index value which must be in range for the number of values returned
4381by the call.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004382
4383<h5>Semantics:</h5>
4384
Chris Lattneree9da3f2008-03-21 17:20:51 +00004385<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4386'<tt>index</tt>' from the aggregate value.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004387
4388<h5>Example:</h5>
4389
4390<pre>
4391 %struct.A = type { i32, i8 }
4392
4393 %r = call %struct.A @foo()
Chris Lattneree9da3f2008-03-21 17:20:51 +00004394 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4395 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patela3cc5372008-03-10 20:49:15 +00004396 add i32 %gr, 42
4397 add i8 %gr1, 41
4398</pre>
4399
4400</div>
4401
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004402<!-- *********************************************************************** -->
4403<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4404<!-- *********************************************************************** -->
4405
4406<div class="doc_text">
4407
4408<p>LLVM supports the notion of an "intrinsic function". These functions have
4409well known names and semantics and are required to follow certain restrictions.
4410Overall, these intrinsics represent an extension mechanism for the LLVM
4411language that does not require changing all of the transformations in LLVM when
4412adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
4413
4414<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4415prefix is reserved in LLVM for intrinsic names; thus, function names may not
4416begin with this prefix. Intrinsic functions must always be external functions:
4417you cannot define the body of intrinsic functions. Intrinsic functions may
4418only be used in call or invoke instructions: it is illegal to take the address
4419of an intrinsic function. Additionally, because intrinsic functions are part
4420of the LLVM language, it is required if any are added that they be documented
4421here.</p>
4422
Chandler Carrutha228e392007-08-04 01:51:18 +00004423<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4424a family of functions that perform the same operation but on different data
4425types. Because LLVM can represent over 8 million different integer types,
4426overloading is used commonly to allow an intrinsic function to operate on any
4427integer type. One or more of the argument types or the result type can be
4428overloaded to accept any integer type. Argument types may also be defined as
4429exactly matching a previous argument's type or the result type. This allows an
4430intrinsic function which accepts multiple arguments, but needs all of them to
4431be of the same type, to only be overloaded with respect to a single argument or
4432the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004433
Chandler Carrutha228e392007-08-04 01:51:18 +00004434<p>Overloaded intrinsics will have the names of its overloaded argument types
4435encoded into its function name, each preceded by a period. Only those types
4436which are overloaded result in a name suffix. Arguments whose type is matched
4437against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4438take an integer of any width and returns an integer of exactly the same integer
4439width. This leads to a family of functions such as
4440<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4441Only one type, the return type, is overloaded, and only one type suffix is
4442required. Because the argument's type is matched against the return type, it
4443does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004444
4445<p>To learn how to add an intrinsic function, please see the
4446<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
4447</p>
4448
4449</div>
4450
4451<!-- ======================================================================= -->
4452<div class="doc_subsection">
4453 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4454</div>
4455
4456<div class="doc_text">
4457
4458<p>Variable argument support is defined in LLVM with the <a
4459 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4460intrinsic functions. These functions are related to the similarly
4461named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
4462
4463<p>All of these functions operate on arguments that use a
4464target-specific value type "<tt>va_list</tt>". The LLVM assembly
4465language reference manual does not define what this type is, so all
4466transformations should be prepared to handle these functions regardless of
4467the type used.</p>
4468
4469<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4470instruction and the variable argument handling intrinsic functions are
4471used.</p>
4472
4473<div class="doc_code">
4474<pre>
4475define i32 @test(i32 %X, ...) {
4476 ; Initialize variable argument processing
4477 %ap = alloca i8*
4478 %ap2 = bitcast i8** %ap to i8*
4479 call void @llvm.va_start(i8* %ap2)
4480
4481 ; Read a single integer argument
4482 %tmp = va_arg i8** %ap, i32
4483
4484 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4485 %aq = alloca i8*
4486 %aq2 = bitcast i8** %aq to i8*
4487 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4488 call void @llvm.va_end(i8* %aq2)
4489
4490 ; Stop processing of arguments.
4491 call void @llvm.va_end(i8* %ap2)
4492 ret i32 %tmp
4493}
4494
4495declare void @llvm.va_start(i8*)
4496declare void @llvm.va_copy(i8*, i8*)
4497declare void @llvm.va_end(i8*)
4498</pre>
4499</div>
4500
4501</div>
4502
4503<!-- _______________________________________________________________________ -->
4504<div class="doc_subsubsection">
4505 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4506</div>
4507
4508
4509<div class="doc_text">
4510<h5>Syntax:</h5>
4511<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
4512<h5>Overview:</h5>
4513<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4514<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4515href="#i_va_arg">va_arg</a></tt>.</p>
4516
4517<h5>Arguments:</h5>
4518
4519<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4520
4521<h5>Semantics:</h5>
4522
4523<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4524macro available in C. In a target-dependent way, it initializes the
4525<tt>va_list</tt> element to which the argument points, so that the next call to
4526<tt>va_arg</tt> will produce the first variable argument passed to the function.
4527Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4528last argument of the function as the compiler can figure that out.</p>
4529
4530</div>
4531
4532<!-- _______________________________________________________________________ -->
4533<div class="doc_subsubsection">
4534 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4535</div>
4536
4537<div class="doc_text">
4538<h5>Syntax:</h5>
4539<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
4540<h5>Overview:</h5>
4541
4542<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
4543which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4544or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4545
4546<h5>Arguments:</h5>
4547
4548<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4549
4550<h5>Semantics:</h5>
4551
4552<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4553macro available in C. In a target-dependent way, it destroys the
4554<tt>va_list</tt> element to which the argument points. Calls to <a
4555href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4556<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4557<tt>llvm.va_end</tt>.</p>
4558
4559</div>
4560
4561<!-- _______________________________________________________________________ -->
4562<div class="doc_subsubsection">
4563 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4564</div>
4565
4566<div class="doc_text">
4567
4568<h5>Syntax:</h5>
4569
4570<pre>
4571 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4572</pre>
4573
4574<h5>Overview:</h5>
4575
4576<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4577from the source argument list to the destination argument list.</p>
4578
4579<h5>Arguments:</h5>
4580
4581<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4582The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4583
4584
4585<h5>Semantics:</h5>
4586
4587<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4588macro available in C. In a target-dependent way, it copies the source
4589<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4590intrinsic is necessary because the <tt><a href="#int_va_start">
4591llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4592example, memory allocation.</p>
4593
4594</div>
4595
4596<!-- ======================================================================= -->
4597<div class="doc_subsection">
4598 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4599</div>
4600
4601<div class="doc_text">
4602
4603<p>
4604LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00004605Collection</a> (GC) requires the implementation and generation of these
4606intrinsics.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004607These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4608stack</a>, as well as garbage collector implementations that require <a
4609href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4610Front-ends for type-safe garbage collected languages should generate these
4611intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4612href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4613</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00004614
4615<p>The garbage collection intrinsics only operate on objects in the generic
4616 address space (address space zero).</p>
4617
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004618</div>
4619
4620<!-- _______________________________________________________________________ -->
4621<div class="doc_subsubsection">
4622 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4623</div>
4624
4625<div class="doc_text">
4626
4627<h5>Syntax:</h5>
4628
4629<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004630 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004631</pre>
4632
4633<h5>Overview:</h5>
4634
4635<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4636the code generator, and allows some metadata to be associated with it.</p>
4637
4638<h5>Arguments:</h5>
4639
4640<p>The first argument specifies the address of a stack object that contains the
4641root pointer. The second pointer (which must be either a constant or a global
4642value address) contains the meta-data to be associated with the root.</p>
4643
4644<h5>Semantics:</h5>
4645
Chris Lattnera7d94ba2008-04-24 05:59:56 +00004646<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004647location. At compile-time, the code generator generates information to allow
Gordon Henriksen40393542007-12-25 02:31:26 +00004648the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4649intrinsic may only be used in a function which <a href="#gc">specifies a GC
4650algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004651
4652</div>
4653
4654
4655<!-- _______________________________________________________________________ -->
4656<div class="doc_subsubsection">
4657 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4658</div>
4659
4660<div class="doc_text">
4661
4662<h5>Syntax:</h5>
4663
4664<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004665 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004666</pre>
4667
4668<h5>Overview:</h5>
4669
4670<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4671locations, allowing garbage collector implementations that require read
4672barriers.</p>
4673
4674<h5>Arguments:</h5>
4675
4676<p>The second argument is the address to read from, which should be an address
4677allocated from the garbage collector. The first object is a pointer to the
4678start of the referenced object, if needed by the language runtime (otherwise
4679null).</p>
4680
4681<h5>Semantics:</h5>
4682
4683<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4684instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004685garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4686may only be used in a function which <a href="#gc">specifies a GC
4687algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004688
4689</div>
4690
4691
4692<!-- _______________________________________________________________________ -->
4693<div class="doc_subsubsection">
4694 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4695</div>
4696
4697<div class="doc_text">
4698
4699<h5>Syntax:</h5>
4700
4701<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004702 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004703</pre>
4704
4705<h5>Overview:</h5>
4706
4707<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4708locations, allowing garbage collector implementations that require write
4709barriers (such as generational or reference counting collectors).</p>
4710
4711<h5>Arguments:</h5>
4712
4713<p>The first argument is the reference to store, the second is the start of the
4714object to store it to, and the third is the address of the field of Obj to
4715store to. If the runtime does not require a pointer to the object, Obj may be
4716null.</p>
4717
4718<h5>Semantics:</h5>
4719
4720<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4721instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004722garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4723may only be used in a function which <a href="#gc">specifies a GC
4724algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004725
4726</div>
4727
4728
4729
4730<!-- ======================================================================= -->
4731<div class="doc_subsection">
4732 <a name="int_codegen">Code Generator Intrinsics</a>
4733</div>
4734
4735<div class="doc_text">
4736<p>
4737These intrinsics are provided by LLVM to expose special features that may only
4738be implemented with code generator support.
4739</p>
4740
4741</div>
4742
4743<!-- _______________________________________________________________________ -->
4744<div class="doc_subsubsection">
4745 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4746</div>
4747
4748<div class="doc_text">
4749
4750<h5>Syntax:</h5>
4751<pre>
4752 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4753</pre>
4754
4755<h5>Overview:</h5>
4756
4757<p>
4758The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4759target-specific value indicating the return address of the current function
4760or one of its callers.
4761</p>
4762
4763<h5>Arguments:</h5>
4764
4765<p>
4766The argument to this intrinsic indicates which function to return the address
4767for. Zero indicates the calling function, one indicates its caller, etc. The
4768argument is <b>required</b> to be a constant integer value.
4769</p>
4770
4771<h5>Semantics:</h5>
4772
4773<p>
4774The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4775the return address of the specified call frame, or zero if it cannot be
4776identified. The value returned by this intrinsic is likely to be incorrect or 0
4777for arguments other than zero, so it should only be used for debugging purposes.
4778</p>
4779
4780<p>
4781Note that calling this intrinsic does not prevent function inlining or other
4782aggressive transformations, so the value returned may not be that of the obvious
4783source-language caller.
4784</p>
4785</div>
4786
4787
4788<!-- _______________________________________________________________________ -->
4789<div class="doc_subsubsection">
4790 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4791</div>
4792
4793<div class="doc_text">
4794
4795<h5>Syntax:</h5>
4796<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004797 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004798</pre>
4799
4800<h5>Overview:</h5>
4801
4802<p>
4803The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4804target-specific frame pointer value for the specified stack frame.
4805</p>
4806
4807<h5>Arguments:</h5>
4808
4809<p>
4810The argument to this intrinsic indicates which function to return the frame
4811pointer for. Zero indicates the calling function, one indicates its caller,
4812etc. The argument is <b>required</b> to be a constant integer value.
4813</p>
4814
4815<h5>Semantics:</h5>
4816
4817<p>
4818The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4819the frame address of the specified call frame, or zero if it cannot be
4820identified. The value returned by this intrinsic is likely to be incorrect or 0
4821for arguments other than zero, so it should only be used for debugging purposes.
4822</p>
4823
4824<p>
4825Note that calling this intrinsic does not prevent function inlining or other
4826aggressive transformations, so the value returned may not be that of the obvious
4827source-language caller.
4828</p>
4829</div>
4830
4831<!-- _______________________________________________________________________ -->
4832<div class="doc_subsubsection">
4833 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4834</div>
4835
4836<div class="doc_text">
4837
4838<h5>Syntax:</h5>
4839<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004840 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004841</pre>
4842
4843<h5>Overview:</h5>
4844
4845<p>
4846The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4847the function stack, for use with <a href="#int_stackrestore">
4848<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4849features like scoped automatic variable sized arrays in C99.
4850</p>
4851
4852<h5>Semantics:</h5>
4853
4854<p>
4855This intrinsic returns a opaque pointer value that can be passed to <a
4856href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4857<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4858<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4859state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4860practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4861that were allocated after the <tt>llvm.stacksave</tt> was executed.
4862</p>
4863
4864</div>
4865
4866<!-- _______________________________________________________________________ -->
4867<div class="doc_subsubsection">
4868 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4869</div>
4870
4871<div class="doc_text">
4872
4873<h5>Syntax:</h5>
4874<pre>
4875 declare void @llvm.stackrestore(i8 * %ptr)
4876</pre>
4877
4878<h5>Overview:</h5>
4879
4880<p>
4881The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4882the function stack to the state it was in when the corresponding <a
4883href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4884useful for implementing language features like scoped automatic variable sized
4885arrays in C99.
4886</p>
4887
4888<h5>Semantics:</h5>
4889
4890<p>
4891See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4892</p>
4893
4894</div>
4895
4896
4897<!-- _______________________________________________________________________ -->
4898<div class="doc_subsubsection">
4899 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4900</div>
4901
4902<div class="doc_text">
4903
4904<h5>Syntax:</h5>
4905<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004906 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004907</pre>
4908
4909<h5>Overview:</h5>
4910
4911
4912<p>
4913The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4914a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4915no
4916effect on the behavior of the program but can change its performance
4917characteristics.
4918</p>
4919
4920<h5>Arguments:</h5>
4921
4922<p>
4923<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4924determining if the fetch should be for a read (0) or write (1), and
4925<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4926locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4927<tt>locality</tt> arguments must be constant integers.
4928</p>
4929
4930<h5>Semantics:</h5>
4931
4932<p>
4933This intrinsic does not modify the behavior of the program. In particular,
4934prefetches cannot trap and do not produce a value. On targets that support this
4935intrinsic, the prefetch can provide hints to the processor cache for better
4936performance.
4937</p>
4938
4939</div>
4940
4941<!-- _______________________________________________________________________ -->
4942<div class="doc_subsubsection">
4943 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4944</div>
4945
4946<div class="doc_text">
4947
4948<h5>Syntax:</h5>
4949<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004950 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004951</pre>
4952
4953<h5>Overview:</h5>
4954
4955
4956<p>
4957The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner96451482008-08-05 18:29:16 +00004958(PC) in a region of
4959code to simulators and other tools. The method is target specific, but it is
4960expected that the marker will use exported symbols to transmit the PC of the
4961marker.
4962The marker makes no guarantees that it will remain with any specific instruction
4963after optimizations. It is possible that the presence of a marker will inhibit
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004964optimizations. The intended use is to be inserted after optimizations to allow
4965correlations of simulation runs.
4966</p>
4967
4968<h5>Arguments:</h5>
4969
4970<p>
4971<tt>id</tt> is a numerical id identifying the marker.
4972</p>
4973
4974<h5>Semantics:</h5>
4975
4976<p>
4977This intrinsic does not modify the behavior of the program. Backends that do not
4978support this intrinisic may ignore it.
4979</p>
4980
4981</div>
4982
4983<!-- _______________________________________________________________________ -->
4984<div class="doc_subsubsection">
4985 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4986</div>
4987
4988<div class="doc_text">
4989
4990<h5>Syntax:</h5>
4991<pre>
4992 declare i64 @llvm.readcyclecounter( )
4993</pre>
4994
4995<h5>Overview:</h5>
4996
4997
4998<p>
4999The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5000counter register (or similar low latency, high accuracy clocks) on those targets
5001that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5002As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5003should only be used for small timings.
5004</p>
5005
5006<h5>Semantics:</h5>
5007
5008<p>
5009When directly supported, reading the cycle counter should not modify any memory.
5010Implementations are allowed to either return a application specific value or a
5011system wide value. On backends without support, this is lowered to a constant 0.
5012</p>
5013
5014</div>
5015
5016<!-- ======================================================================= -->
5017<div class="doc_subsection">
5018 <a name="int_libc">Standard C Library Intrinsics</a>
5019</div>
5020
5021<div class="doc_text">
5022<p>
5023LLVM provides intrinsics for a few important standard C library functions.
5024These intrinsics allow source-language front-ends to pass information about the
5025alignment of the pointer arguments to the code generator, providing opportunity
5026for more efficient code generation.
5027</p>
5028
5029</div>
5030
5031<!-- _______________________________________________________________________ -->
5032<div class="doc_subsubsection">
5033 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5034</div>
5035
5036<div class="doc_text">
5037
5038<h5>Syntax:</h5>
5039<pre>
5040 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5041 i32 &lt;len&gt;, i32 &lt;align&gt;)
5042 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5043 i64 &lt;len&gt;, i32 &lt;align&gt;)
5044</pre>
5045
5046<h5>Overview:</h5>
5047
5048<p>
5049The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5050location to the destination location.
5051</p>
5052
5053<p>
5054Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5055intrinsics do not return a value, and takes an extra alignment argument.
5056</p>
5057
5058<h5>Arguments:</h5>
5059
5060<p>
5061The first argument is a pointer to the destination, the second is a pointer to
5062the source. The third argument is an integer argument
5063specifying the number of bytes to copy, and the fourth argument is the alignment
5064of the source and destination locations.
5065</p>
5066
5067<p>
5068If the call to this intrinisic has an alignment value that is not 0 or 1, then
5069the caller guarantees that both the source and destination pointers are aligned
5070to that boundary.
5071</p>
5072
5073<h5>Semantics:</h5>
5074
5075<p>
5076The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5077location to the destination location, which are not allowed to overlap. It
5078copies "len" bytes of memory over. If the argument is known to be aligned to
5079some boundary, this can be specified as the fourth argument, otherwise it should
5080be set to 0 or 1.
5081</p>
5082</div>
5083
5084
5085<!-- _______________________________________________________________________ -->
5086<div class="doc_subsubsection">
5087 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5088</div>
5089
5090<div class="doc_text">
5091
5092<h5>Syntax:</h5>
5093<pre>
5094 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5095 i32 &lt;len&gt;, i32 &lt;align&gt;)
5096 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5097 i64 &lt;len&gt;, i32 &lt;align&gt;)
5098</pre>
5099
5100<h5>Overview:</h5>
5101
5102<p>
5103The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5104location to the destination location. It is similar to the
Chris Lattnerdba16ea2008-01-06 19:51:52 +00005105'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005106</p>
5107
5108<p>
5109Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5110intrinsics do not return a value, and takes an extra alignment argument.
5111</p>
5112
5113<h5>Arguments:</h5>
5114
5115<p>
5116The first argument is a pointer to the destination, the second is a pointer to
5117the source. The third argument is an integer argument
5118specifying the number of bytes to copy, and the fourth argument is the alignment
5119of the source and destination locations.
5120</p>
5121
5122<p>
5123If the call to this intrinisic has an alignment value that is not 0 or 1, then
5124the caller guarantees that the source and destination pointers are aligned to
5125that boundary.
5126</p>
5127
5128<h5>Semantics:</h5>
5129
5130<p>
5131The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
5132location to the destination location, which may overlap. It
5133copies "len" bytes of memory over. If the argument is known to be aligned to
5134some boundary, this can be specified as the fourth argument, otherwise it should
5135be set to 0 or 1.
5136</p>
5137</div>
5138
5139
5140<!-- _______________________________________________________________________ -->
5141<div class="doc_subsubsection">
5142 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5143</div>
5144
5145<div class="doc_text">
5146
5147<h5>Syntax:</h5>
5148<pre>
5149 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5150 i32 &lt;len&gt;, i32 &lt;align&gt;)
5151 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5152 i64 &lt;len&gt;, i32 &lt;align&gt;)
5153</pre>
5154
5155<h5>Overview:</h5>
5156
5157<p>
5158The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
5159byte value.
5160</p>
5161
5162<p>
5163Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5164does not return a value, and takes an extra alignment argument.
5165</p>
5166
5167<h5>Arguments:</h5>
5168
5169<p>
5170The first argument is a pointer to the destination to fill, the second is the
5171byte value to fill it with, the third argument is an integer
5172argument specifying the number of bytes to fill, and the fourth argument is the
5173known alignment of destination location.
5174</p>
5175
5176<p>
5177If the call to this intrinisic has an alignment value that is not 0 or 1, then
5178the caller guarantees that the destination pointer is aligned to that boundary.
5179</p>
5180
5181<h5>Semantics:</h5>
5182
5183<p>
5184The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5185the
5186destination location. If the argument is known to be aligned to some boundary,
5187this can be specified as the fourth argument, otherwise it should be set to 0 or
51881.
5189</p>
5190</div>
5191
5192
5193<!-- _______________________________________________________________________ -->
5194<div class="doc_subsubsection">
5195 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5196</div>
5197
5198<div class="doc_text">
5199
5200<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005201<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005202floating point or vector of floating point type. Not all targets support all
5203types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005204<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005205 declare float @llvm.sqrt.f32(float %Val)
5206 declare double @llvm.sqrt.f64(double %Val)
5207 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5208 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5209 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005210</pre>
5211
5212<h5>Overview:</h5>
5213
5214<p>
5215The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00005216returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005217<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattnerf914a002008-01-29 07:00:44 +00005218negative numbers other than -0.0 (which allows for better optimization, because
5219there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5220defined to return -0.0 like IEEE sqrt.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005221</p>
5222
5223<h5>Arguments:</h5>
5224
5225<p>
5226The argument and return value are floating point numbers of the same type.
5227</p>
5228
5229<h5>Semantics:</h5>
5230
5231<p>
5232This function returns the sqrt of the specified operand if it is a nonnegative
5233floating point number.
5234</p>
5235</div>
5236
5237<!-- _______________________________________________________________________ -->
5238<div class="doc_subsubsection">
5239 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5240</div>
5241
5242<div class="doc_text">
5243
5244<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005245<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005246floating point or vector of floating point type. Not all targets support all
5247types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005248<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005249 declare float @llvm.powi.f32(float %Val, i32 %power)
5250 declare double @llvm.powi.f64(double %Val, i32 %power)
5251 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5252 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5253 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005254</pre>
5255
5256<h5>Overview:</h5>
5257
5258<p>
5259The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5260specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00005261multiplications is not defined. When a vector of floating point type is
5262used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005263</p>
5264
5265<h5>Arguments:</h5>
5266
5267<p>
5268The second argument is an integer power, and the first is a value to raise to
5269that power.
5270</p>
5271
5272<h5>Semantics:</h5>
5273
5274<p>
5275This function returns the first value raised to the second power with an
5276unspecified sequence of rounding operations.</p>
5277</div>
5278
Dan Gohman361079c2007-10-15 20:30:11 +00005279<!-- _______________________________________________________________________ -->
5280<div class="doc_subsubsection">
5281 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5282</div>
5283
5284<div class="doc_text">
5285
5286<h5>Syntax:</h5>
5287<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5288floating point or vector of floating point type. Not all targets support all
5289types however.
5290<pre>
5291 declare float @llvm.sin.f32(float %Val)
5292 declare double @llvm.sin.f64(double %Val)
5293 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5294 declare fp128 @llvm.sin.f128(fp128 %Val)
5295 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5296</pre>
5297
5298<h5>Overview:</h5>
5299
5300<p>
5301The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5302</p>
5303
5304<h5>Arguments:</h5>
5305
5306<p>
5307The argument and return value are floating point numbers of the same type.
5308</p>
5309
5310<h5>Semantics:</h5>
5311
5312<p>
5313This function returns the sine of the specified operand, returning the
5314same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005315conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005316</div>
5317
5318<!-- _______________________________________________________________________ -->
5319<div class="doc_subsubsection">
5320 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5321</div>
5322
5323<div class="doc_text">
5324
5325<h5>Syntax:</h5>
5326<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5327floating point or vector of floating point type. Not all targets support all
5328types however.
5329<pre>
5330 declare float @llvm.cos.f32(float %Val)
5331 declare double @llvm.cos.f64(double %Val)
5332 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5333 declare fp128 @llvm.cos.f128(fp128 %Val)
5334 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5335</pre>
5336
5337<h5>Overview:</h5>
5338
5339<p>
5340The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5341</p>
5342
5343<h5>Arguments:</h5>
5344
5345<p>
5346The argument and return value are floating point numbers of the same type.
5347</p>
5348
5349<h5>Semantics:</h5>
5350
5351<p>
5352This function returns the cosine of the specified operand, returning the
5353same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005354conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005355</div>
5356
5357<!-- _______________________________________________________________________ -->
5358<div class="doc_subsubsection">
5359 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5360</div>
5361
5362<div class="doc_text">
5363
5364<h5>Syntax:</h5>
5365<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5366floating point or vector of floating point type. Not all targets support all
5367types however.
5368<pre>
5369 declare float @llvm.pow.f32(float %Val, float %Power)
5370 declare double @llvm.pow.f64(double %Val, double %Power)
5371 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5372 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5373 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5374</pre>
5375
5376<h5>Overview:</h5>
5377
5378<p>
5379The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5380specified (positive or negative) power.
5381</p>
5382
5383<h5>Arguments:</h5>
5384
5385<p>
5386The second argument is a floating point power, and the first is a value to
5387raise to that power.
5388</p>
5389
5390<h5>Semantics:</h5>
5391
5392<p>
5393This function returns the first value raised to the second power,
5394returning the
5395same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005396conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005397</div>
5398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005399
5400<!-- ======================================================================= -->
5401<div class="doc_subsection">
5402 <a name="int_manip">Bit Manipulation Intrinsics</a>
5403</div>
5404
5405<div class="doc_text">
5406<p>
5407LLVM provides intrinsics for a few important bit manipulation operations.
5408These allow efficient code generation for some algorithms.
5409</p>
5410
5411</div>
5412
5413<!-- _______________________________________________________________________ -->
5414<div class="doc_subsubsection">
5415 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5416</div>
5417
5418<div class="doc_text">
5419
5420<h5>Syntax:</h5>
5421<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00005422type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005423<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005424 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5425 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5426 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005427</pre>
5428
5429<h5>Overview:</h5>
5430
5431<p>
5432The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5433values with an even number of bytes (positive multiple of 16 bits). These are
5434useful for performing operations on data that is not in the target's native
5435byte order.
5436</p>
5437
5438<h5>Semantics:</h5>
5439
5440<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00005441The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005442and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5443intrinsic returns an i32 value that has the four bytes of the input i32
5444swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00005445i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5446<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005447additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
5448</p>
5449
5450</div>
5451
5452<!-- _______________________________________________________________________ -->
5453<div class="doc_subsubsection">
5454 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5455</div>
5456
5457<div class="doc_text">
5458
5459<h5>Syntax:</h5>
5460<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5461width. Not all targets support all bit widths however.
5462<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005463 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5464 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005465 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005466 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5467 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005468</pre>
5469
5470<h5>Overview:</h5>
5471
5472<p>
5473The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5474value.
5475</p>
5476
5477<h5>Arguments:</h5>
5478
5479<p>
5480The only argument is the value to be counted. The argument may be of any
5481integer type. The return type must match the argument type.
5482</p>
5483
5484<h5>Semantics:</h5>
5485
5486<p>
5487The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5488</p>
5489</div>
5490
5491<!-- _______________________________________________________________________ -->
5492<div class="doc_subsubsection">
5493 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5494</div>
5495
5496<div class="doc_text">
5497
5498<h5>Syntax:</h5>
5499<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5500integer bit width. Not all targets support all bit widths however.
5501<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005502 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5503 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005504 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005505 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5506 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005507</pre>
5508
5509<h5>Overview:</h5>
5510
5511<p>
5512The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5513leading zeros in a variable.
5514</p>
5515
5516<h5>Arguments:</h5>
5517
5518<p>
5519The only argument is the value to be counted. The argument may be of any
5520integer type. The return type must match the argument type.
5521</p>
5522
5523<h5>Semantics:</h5>
5524
5525<p>
5526The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5527in a variable. If the src == 0 then the result is the size in bits of the type
5528of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5529</p>
5530</div>
5531
5532
5533
5534<!-- _______________________________________________________________________ -->
5535<div class="doc_subsubsection">
5536 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5537</div>
5538
5539<div class="doc_text">
5540
5541<h5>Syntax:</h5>
5542<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5543integer bit width. Not all targets support all bit widths however.
5544<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005545 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5546 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005547 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005548 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5549 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005550</pre>
5551
5552<h5>Overview:</h5>
5553
5554<p>
5555The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5556trailing zeros.
5557</p>
5558
5559<h5>Arguments:</h5>
5560
5561<p>
5562The only argument is the value to be counted. The argument may be of any
5563integer type. The return type must match the argument type.
5564</p>
5565
5566<h5>Semantics:</h5>
5567
5568<p>
5569The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5570in a variable. If the src == 0 then the result is the size in bits of the type
5571of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5572</p>
5573</div>
5574
5575<!-- _______________________________________________________________________ -->
5576<div class="doc_subsubsection">
5577 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5578</div>
5579
5580<div class="doc_text">
5581
5582<h5>Syntax:</h5>
5583<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
5584on any integer bit width.
5585<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005586 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5587 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005588</pre>
5589
5590<h5>Overview:</h5>
5591<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5592range of bits from an integer value and returns them in the same bit width as
5593the original value.</p>
5594
5595<h5>Arguments:</h5>
5596<p>The first argument, <tt>%val</tt> and the result may be integer types of
5597any bit width but they must have the same bit width. The second and third
5598arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5599
5600<h5>Semantics:</h5>
5601<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5602of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5603<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5604operates in forward mode.</p>
5605<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5606right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5607only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5608<ol>
5609 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5610 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5611 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5612 to determine the number of bits to retain.</li>
5613 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5614 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5615</ol>
5616<p>In reverse mode, a similar computation is made except that the bits are
5617returned in the reverse order. So, for example, if <tt>X</tt> has the value
5618<tt>i16 0x0ACF (101011001111)</tt> and we apply
5619<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5620<tt>i16 0x0026 (000000100110)</tt>.</p>
5621</div>
5622
5623<div class="doc_subsubsection">
5624 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5625</div>
5626
5627<div class="doc_text">
5628
5629<h5>Syntax:</h5>
5630<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5631on any integer bit width.
5632<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005633 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5634 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005635</pre>
5636
5637<h5>Overview:</h5>
5638<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5639of bits in an integer value with another integer value. It returns the integer
5640with the replaced bits.</p>
5641
5642<h5>Arguments:</h5>
5643<p>The first argument, <tt>%val</tt> and the result may be integer types of
5644any bit width but they must have the same bit width. <tt>%val</tt> is the value
5645whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5646integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5647type since they specify only a bit index.</p>
5648
5649<h5>Semantics:</h5>
5650<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5651of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5652<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5653operates in forward mode.</p>
5654<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5655truncating it down to the size of the replacement area or zero extending it
5656up to that size.</p>
5657<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5658are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5659in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5660to the <tt>%hi</tt>th bit.
5661<p>In reverse mode, a similar computation is made except that the bits are
5662reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5663<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5664<h5>Examples:</h5>
5665<pre>
5666 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5667 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5668 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5669 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5670 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5671</pre>
5672</div>
5673
5674<!-- ======================================================================= -->
5675<div class="doc_subsection">
5676 <a name="int_debugger">Debugger Intrinsics</a>
5677</div>
5678
5679<div class="doc_text">
5680<p>
5681The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5682are described in the <a
5683href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5684Debugging</a> document.
5685</p>
5686</div>
5687
5688
5689<!-- ======================================================================= -->
5690<div class="doc_subsection">
5691 <a name="int_eh">Exception Handling Intrinsics</a>
5692</div>
5693
5694<div class="doc_text">
5695<p> The LLVM exception handling intrinsics (which all start with
5696<tt>llvm.eh.</tt> prefix), are described in the <a
5697href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5698Handling</a> document. </p>
5699</div>
5700
5701<!-- ======================================================================= -->
5702<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005703 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005704</div>
5705
5706<div class="doc_text">
5707<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005708 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005709 the <tt>nest</tt> attribute, from a function. The result is a callable
5710 function pointer lacking the nest parameter - the caller does not need
5711 to provide a value for it. Instead, the value to use is stored in
5712 advance in a "trampoline", a block of memory usually allocated
5713 on the stack, which also contains code to splice the nest value into the
5714 argument list. This is used to implement the GCC nested function address
5715 extension.
5716</p>
5717<p>
5718 For example, if the function is
5719 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005720 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005721<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005722 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5723 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5724 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5725 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005726</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005727 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5728 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005729</div>
5730
5731<!-- _______________________________________________________________________ -->
5732<div class="doc_subsubsection">
5733 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5734</div>
5735<div class="doc_text">
5736<h5>Syntax:</h5>
5737<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005738declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005739</pre>
5740<h5>Overview:</h5>
5741<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005742 This fills the memory pointed to by <tt>tramp</tt> with code
5743 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005744</p>
5745<h5>Arguments:</h5>
5746<p>
5747 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5748 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5749 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005750 intrinsic. Note that the size and the alignment are target-specific - LLVM
5751 currently provides no portable way of determining them, so a front-end that
5752 generates this intrinsic needs to have some target-specific knowledge.
5753 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005754</p>
5755<h5>Semantics:</h5>
5756<p>
5757 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005758 dependent code, turning it into a function. A pointer to this function is
5759 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005760 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005761 before being called. The new function's signature is the same as that of
5762 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5763 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5764 of pointer type. Calling the new function is equivalent to calling
5765 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5766 missing <tt>nest</tt> argument. If, after calling
5767 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5768 modified, then the effect of any later call to the returned function pointer is
5769 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005770</p>
5771</div>
5772
5773<!-- ======================================================================= -->
5774<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00005775 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5776</div>
5777
5778<div class="doc_text">
5779<p>
5780 These intrinsic functions expand the "universal IR" of LLVM to represent
5781 hardware constructs for atomic operations and memory synchronization. This
5782 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner96451482008-08-05 18:29:16 +00005783 is aimed at a low enough level to allow any programming models or APIs
5784 (Application Programming Interfaces) which
Andrew Lenharth785610d2008-02-16 01:24:58 +00005785 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5786 hardware behavior. Just as hardware provides a "universal IR" for source
5787 languages, it also provides a starting point for developing a "universal"
5788 atomic operation and synchronization IR.
5789</p>
5790<p>
5791 These do <em>not</em> form an API such as high-level threading libraries,
5792 software transaction memory systems, atomic primitives, and intrinsic
5793 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5794 application libraries. The hardware interface provided by LLVM should allow
5795 a clean implementation of all of these APIs and parallel programming models.
5796 No one model or paradigm should be selected above others unless the hardware
5797 itself ubiquitously does so.
5798
5799</p>
5800</div>
5801
5802<!-- _______________________________________________________________________ -->
5803<div class="doc_subsubsection">
5804 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5805</div>
5806<div class="doc_text">
5807<h5>Syntax:</h5>
5808<pre>
5809declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5810i1 &lt;device&gt; )
5811
5812</pre>
5813<h5>Overview:</h5>
5814<p>
5815 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5816 specific pairs of memory access types.
5817</p>
5818<h5>Arguments:</h5>
5819<p>
5820 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5821 The first four arguments enables a specific barrier as listed below. The fith
5822 argument specifies that the barrier applies to io or device or uncached memory.
5823
5824</p>
5825 <ul>
5826 <li><tt>ll</tt>: load-load barrier</li>
5827 <li><tt>ls</tt>: load-store barrier</li>
5828 <li><tt>sl</tt>: store-load barrier</li>
5829 <li><tt>ss</tt>: store-store barrier</li>
5830 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5831 </ul>
5832<h5>Semantics:</h5>
5833<p>
5834 This intrinsic causes the system to enforce some ordering constraints upon
5835 the loads and stores of the program. This barrier does not indicate
5836 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5837 which they occur. For any of the specified pairs of load and store operations
5838 (f.ex. load-load, or store-load), all of the first operations preceding the
5839 barrier will complete before any of the second operations succeeding the
5840 barrier begin. Specifically the semantics for each pairing is as follows:
5841</p>
5842 <ul>
5843 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5844 after the barrier begins.</li>
5845
5846 <li><tt>ls</tt>: All loads before the barrier must complete before any
5847 store after the barrier begins.</li>
5848 <li><tt>ss</tt>: All stores before the barrier must complete before any
5849 store after the barrier begins.</li>
5850 <li><tt>sl</tt>: All stores before the barrier must complete before any
5851 load after the barrier begins.</li>
5852 </ul>
5853<p>
5854 These semantics are applied with a logical "and" behavior when more than one
5855 is enabled in a single memory barrier intrinsic.
5856</p>
5857<p>
5858 Backends may implement stronger barriers than those requested when they do not
5859 support as fine grained a barrier as requested. Some architectures do not
5860 need all types of barriers and on such architectures, these become noops.
5861</p>
5862<h5>Example:</h5>
5863<pre>
5864%ptr = malloc i32
5865 store i32 4, %ptr
5866
5867%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5868 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5869 <i>; guarantee the above finishes</i>
5870 store i32 8, %ptr <i>; before this begins</i>
5871</pre>
5872</div>
5873
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005874<!-- _______________________________________________________________________ -->
5875<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005876 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005877</div>
5878<div class="doc_text">
5879<h5>Syntax:</h5>
5880<p>
Mon P Wangce3ac892008-07-30 04:36:53 +00005881 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5882 any integer bit width and for different address spaces. Not all targets
5883 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005884
5885<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005886declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5887declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5888declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5889declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005890
5891</pre>
5892<h5>Overview:</h5>
5893<p>
5894 This loads a value in memory and compares it to a given value. If they are
5895 equal, it stores a new value into the memory.
5896</p>
5897<h5>Arguments:</h5>
5898<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005899 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005900 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5901 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5902 this integer type. While any bit width integer may be used, targets may only
5903 lower representations they support in hardware.
5904
5905</p>
5906<h5>Semantics:</h5>
5907<p>
5908 This entire intrinsic must be executed atomically. It first loads the value
5909 in memory pointed to by <tt>ptr</tt> and compares it with the value
5910 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5911 loaded value is yielded in all cases. This provides the equivalent of an
5912 atomic compare-and-swap operation within the SSA framework.
5913</p>
5914<h5>Examples:</h5>
5915
5916<pre>
5917%ptr = malloc i32
5918 store i32 4, %ptr
5919
5920%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005921%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005922 <i>; yields {i32}:result1 = 4</i>
5923%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5924%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5925
5926%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005927%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005928 <i>; yields {i32}:result2 = 8</i>
5929%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5930
5931%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5932</pre>
5933</div>
5934
5935<!-- _______________________________________________________________________ -->
5936<div class="doc_subsubsection">
5937 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5938</div>
5939<div class="doc_text">
5940<h5>Syntax:</h5>
5941
5942<p>
5943 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5944 integer bit width. Not all targets support all bit widths however.</p>
5945<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005946declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5947declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5948declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5949declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005950
5951</pre>
5952<h5>Overview:</h5>
5953<p>
5954 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5955 the value from memory. It then stores the value in <tt>val</tt> in the memory
5956 at <tt>ptr</tt>.
5957</p>
5958<h5>Arguments:</h5>
5959
5960<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005961 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005962 <tt>val</tt> argument and the result must be integers of the same bit width.
5963 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5964 integer type. The targets may only lower integer representations they
5965 support.
5966</p>
5967<h5>Semantics:</h5>
5968<p>
5969 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5970 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5971 equivalent of an atomic swap operation within the SSA framework.
5972
5973</p>
5974<h5>Examples:</h5>
5975<pre>
5976%ptr = malloc i32
5977 store i32 4, %ptr
5978
5979%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005980%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005981 <i>; yields {i32}:result1 = 4</i>
5982%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5983%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5984
5985%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005986%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005987 <i>; yields {i32}:result2 = 8</i>
5988
5989%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5990%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5991</pre>
5992</div>
5993
5994<!-- _______________________________________________________________________ -->
5995<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005996 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005997
5998</div>
5999<div class="doc_text">
6000<h5>Syntax:</h5>
6001<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006002 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006003 integer bit width. Not all targets support all bit widths however.</p>
6004<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006005declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6006declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6007declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6008declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006009
6010</pre>
6011<h5>Overview:</h5>
6012<p>
6013 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6014 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6015</p>
6016<h5>Arguments:</h5>
6017<p>
6018
6019 The intrinsic takes two arguments, the first a pointer to an integer value
6020 and the second an integer value. The result is also an integer value. These
6021 integer types can have any bit width, but they must all have the same bit
6022 width. The targets may only lower integer representations they support.
6023</p>
6024<h5>Semantics:</h5>
6025<p>
6026 This intrinsic does a series of operations atomically. It first loads the
6027 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6028 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6029</p>
6030
6031<h5>Examples:</h5>
6032<pre>
6033%ptr = malloc i32
6034 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006035%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006036 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006037%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006038 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006039%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006040 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006041%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006042</pre>
6043</div>
6044
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006045<!-- _______________________________________________________________________ -->
6046<div class="doc_subsubsection">
6047 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6048
6049</div>
6050<div class="doc_text">
6051<h5>Syntax:</h5>
6052<p>
6053 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wangce3ac892008-07-30 04:36:53 +00006054 any integer bit width and for different address spaces. Not all targets
6055 support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006056<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006057declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6058declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6059declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6060declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006061
6062</pre>
6063<h5>Overview:</h5>
6064<p>
6065 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6066 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6067</p>
6068<h5>Arguments:</h5>
6069<p>
6070
6071 The intrinsic takes two arguments, the first a pointer to an integer value
6072 and the second an integer value. The result is also an integer value. These
6073 integer types can have any bit width, but they must all have the same bit
6074 width. The targets may only lower integer representations they support.
6075</p>
6076<h5>Semantics:</h5>
6077<p>
6078 This intrinsic does a series of operations atomically. It first loads the
6079 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6080 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6081</p>
6082
6083<h5>Examples:</h5>
6084<pre>
6085%ptr = malloc i32
6086 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006087%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006088 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006089%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006090 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006091%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006092 <i>; yields {i32}:result3 = 2</i>
6093%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6094</pre>
6095</div>
6096
6097<!-- _______________________________________________________________________ -->
6098<div class="doc_subsubsection">
6099 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6100 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6101 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6102 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6103
6104</div>
6105<div class="doc_text">
6106<h5>Syntax:</h5>
6107<p>
6108 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6109 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006110 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6111 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006112<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006113declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6114declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6115declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6116declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006117
6118</pre>
6119
6120<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006121declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6122declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6123declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6124declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006125
6126</pre>
6127
6128<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006129declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6130declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6131declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6132declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006133
6134</pre>
6135
6136<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006137declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6138declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6139declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6140declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006141
6142</pre>
6143<h5>Overview:</h5>
6144<p>
6145 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6146 the value stored in memory at <tt>ptr</tt>. It yields the original value
6147 at <tt>ptr</tt>.
6148</p>
6149<h5>Arguments:</h5>
6150<p>
6151
6152 These intrinsics take two arguments, the first a pointer to an integer value
6153 and the second an integer value. The result is also an integer value. These
6154 integer types can have any bit width, but they must all have the same bit
6155 width. The targets may only lower integer representations they support.
6156</p>
6157<h5>Semantics:</h5>
6158<p>
6159 These intrinsics does a series of operations atomically. They first load the
6160 value stored at <tt>ptr</tt>. They then do the bitwise operation
6161 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6162 value stored at <tt>ptr</tt>.
6163</p>
6164
6165<h5>Examples:</h5>
6166<pre>
6167%ptr = malloc i32
6168 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006169%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006170 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006171%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006172 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006173%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006174 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006175%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006176 <i>; yields {i32}:result3 = FF</i>
6177%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6178</pre>
6179</div>
6180
6181
6182<!-- _______________________________________________________________________ -->
6183<div class="doc_subsubsection">
6184 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6185 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6186 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6187 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6188
6189</div>
6190<div class="doc_text">
6191<h5>Syntax:</h5>
6192<p>
6193 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6194 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006195 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6196 address spaces. Not all targets
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006197 support all bit widths however.</p>
6198<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006199declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6200declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6201declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6202declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006203
6204</pre>
6205
6206<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006207declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6208declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6209declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6210declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006211
6212</pre>
6213
6214<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006215declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6216declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6217declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6218declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006219
6220</pre>
6221
6222<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006223declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6224declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6225declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6226declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006227
6228</pre>
6229<h5>Overview:</h5>
6230<p>
6231 These intrinsics takes the signed or unsigned minimum or maximum of
6232 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6233 original value at <tt>ptr</tt>.
6234</p>
6235<h5>Arguments:</h5>
6236<p>
6237
6238 These intrinsics take two arguments, the first a pointer to an integer value
6239 and the second an integer value. The result is also an integer value. These
6240 integer types can have any bit width, but they must all have the same bit
6241 width. The targets may only lower integer representations they support.
6242</p>
6243<h5>Semantics:</h5>
6244<p>
6245 These intrinsics does a series of operations atomically. They first load the
6246 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6247 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6248 the original value stored at <tt>ptr</tt>.
6249</p>
6250
6251<h5>Examples:</h5>
6252<pre>
6253%ptr = malloc i32
6254 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006255%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006256 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006257%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006258 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006259%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006260 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006261%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006262 <i>; yields {i32}:result3 = 8</i>
6263%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6264</pre>
6265</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006266
6267<!-- ======================================================================= -->
6268<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006269 <a name="int_general">General Intrinsics</a>
6270</div>
6271
6272<div class="doc_text">
6273<p> This class of intrinsics is designed to be generic and has
6274no specific purpose. </p>
6275</div>
6276
6277<!-- _______________________________________________________________________ -->
6278<div class="doc_subsubsection">
6279 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6280</div>
6281
6282<div class="doc_text">
6283
6284<h5>Syntax:</h5>
6285<pre>
6286 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6287</pre>
6288
6289<h5>Overview:</h5>
6290
6291<p>
6292The '<tt>llvm.var.annotation</tt>' intrinsic
6293</p>
6294
6295<h5>Arguments:</h5>
6296
6297<p>
6298The first argument is a pointer to a value, the second is a pointer to a
6299global string, the third is a pointer to a global string which is the source
6300file name, and the last argument is the line number.
6301</p>
6302
6303<h5>Semantics:</h5>
6304
6305<p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006306This intrinsic allows annotation of local variables with arbitrary strings.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006307This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006308annotations. These have no other defined use, they are ignored by code
6309generation and optimization.
6310</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006311</div>
6312
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006313<!-- _______________________________________________________________________ -->
6314<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00006315 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006316</div>
6317
6318<div class="doc_text">
6319
6320<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006321<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6322any integer bit width.
6323</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006324<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00006325 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6326 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6327 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6328 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6329 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006330</pre>
6331
6332<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006333
6334<p>
6335The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006336</p>
6337
6338<h5>Arguments:</h5>
6339
6340<p>
6341The first argument is an integer value (result of some expression),
6342the second is a pointer to a global string, the third is a pointer to a global
6343string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00006344It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006345</p>
6346
6347<h5>Semantics:</h5>
6348
6349<p>
6350This intrinsic allows annotations to be put on arbitrary expressions
6351with arbitrary strings. This can be useful for special purpose optimizations
6352that want to look for these annotations. These have no other defined use, they
6353are ignored by code generation and optimization.
6354</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006355
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006356<!-- _______________________________________________________________________ -->
6357<div class="doc_subsubsection">
6358 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6359</div>
6360
6361<div class="doc_text">
6362
6363<h5>Syntax:</h5>
6364<pre>
6365 declare void @llvm.trap()
6366</pre>
6367
6368<h5>Overview:</h5>
6369
6370<p>
6371The '<tt>llvm.trap</tt>' intrinsic
6372</p>
6373
6374<h5>Arguments:</h5>
6375
6376<p>
6377None
6378</p>
6379
6380<h5>Semantics:</h5>
6381
6382<p>
6383This intrinsics is lowered to the target dependent trap instruction. If the
6384target does not have a trap instruction, this intrinsic will be lowered to the
6385call of the abort() function.
6386</p>
6387</div>
6388
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006389<!-- *********************************************************************** -->
6390<hr>
6391<address>
6392 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6393 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6394 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner08497ce2008-01-04 04:33:49 +00006395 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006396
6397 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6398 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6399 Last modified: $Date$
6400</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00006401
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006402</body>
6403</html>