blob: 25ac4cbde1b6be025f5884d5519f5faeeb5a3ac2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Devang Patel25928cb2008-09-04 23:10:26 +000030 <li><a href="#notes">Function Notes</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
32 <li><a href="#datalayout">Data Layout</a></li>
33 </ol>
34 </li>
35 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038 <li><a href="#t_primitive">Primitive Types</a>
39 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 </ol>
44 </li>
45 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 <li><a href="#t_array">Array Type</a></li>
49 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
51 <li><a href="#t_struct">Structure Type</a></li>
52 <li><a href="#t_pstruct">Packed Structure Type</a></li>
53 <li><a href="#t_vector">Vector Type</a></li>
54 <li><a href="#t_opaque">Opaque Type</a></li>
55 </ol>
56 </li>
57 </ol>
58 </li>
59 <li><a href="#constants">Constants</a>
60 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
67 </li>
68 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
73 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
77 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
79 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
81 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
82 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
83 </ol>
84 </li>
85 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
87 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
90 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
93 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
96 </ol>
97 </li>
98 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
106 </ol>
107 </li>
108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
113 </ol>
114 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
122 <ol>
123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
129 </ol>
130 </li>
131 <li><a href="#convertops">Conversion Operations</a>
132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
145 </ol>
146 <li><a href="#otherops">Other Operations</a>
147 <ol>
148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begeman646fa482008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patela3cc5372008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 </ol>
158 </li>
159 </ol>
160 </li>
161 <li><a href="#intrinsics">Intrinsic Functions</a>
162 <ol>
163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
168 </ol>
169 </li>
170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
175 </ol>
176 </li>
177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
186 </ol>
187 </li>
188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 </ol>
199 </li>
200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
201 <ol>
202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
208 </ol>
209 </li>
210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000242 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 </li>
244 </ol>
245 </li>
246</ol>
247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
251</div>
252
253<!-- *********************************************************************** -->
254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
256
257<div class="doc_text">
258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendlinge7846a52008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner96451482008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
264</div>
265
266<!-- *********************************************************************** -->
267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
269
270<div class="doc_text">
271
272<p>The LLVM code representation is designed to be used in three
273different forms: as an in-memory compiler IR, as an on-disk bitcode
274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
281
282<p>The LLVM representation aims to be light-weight and low-level
283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
292
293</div>
294
295<!-- _______________________________________________________________________ -->
296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
297
298<div class="doc_text">
299
300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
304
305<div class="doc_code">
306<pre>
307%x = <a href="#i_add">add</a> i32 1, %x
308</pre>
309</div>
310
311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
314automatically run by the parser after parsing input assembly and by
315the optimizer before it outputs bitcode. The violations pointed out
316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
318</div>
319
Chris Lattnera83fdc02007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321
322<!-- *********************************************************************** -->
323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
324<!-- *********************************************************************** -->
325
326<div class="doc_text">
327
Reid Spencerc8245b02007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
333<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340
Reid Spencerc8245b02007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
346</ol>
347
Reid Spencerc8245b02007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
354<p>Reserved words in LLVM are very similar to reserved words in other
355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
360and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
366<p>The easy way:</p>
367
368<div class="doc_code">
369<pre>
370%result = <a href="#i_mul">mul</a> i32 %X, 8
371</pre>
372</div>
373
374<p>After strength reduction:</p>
375
376<div class="doc_code">
377<pre>
378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
379</pre>
380</div>
381
382<p>And the hard way:</p>
383
384<div class="doc_code">
385<pre>
386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
389</pre>
390</div>
391
392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
394
395<ol>
396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
403 <li>Unnamed temporaries are numbered sequentially</li>
404
405</ol>
406
407<p>...and it also shows a convention that we follow in this document. When
408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
412</div>
413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
431<div class="doc_code">
432<pre><i>; Declare the string constant as a global constant...</i>
433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
435
436<i>; External declaration of the puts function</i>
437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
438
439<i>; Definition of main function</i>
440define i32 @main() { <i>; i32()* </i>
441 <i>; Convert [13x i8 ]* to i8 *...</i>
442 %cast210 = <a
443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
448 <a
449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
463
464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
476
477<dl>
478
Dale Johannesen96e7e092008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
486 '<tt>static</tt>' keyword in C.
487 </dd>
488
489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
490
491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
496 </dd>
497
Dale Johannesen96e7e092008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
509
Dale Johannesen96e7e092008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 </dd>
515
516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
523 </dd>
524
525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner96451482008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 </dd>
530
531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
536 </dd>
537</dl>
538
539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner96451482008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 </p>
544
545 <dl>
546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
563</dl>
564
565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
573or <tt>extern_weak</tt>.</p>
574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
597 supports varargs function calls and tolerates some mismatch in the declared
598 prototype and implemented declaration of the function (as does normal C).
599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner96451482008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer07444922008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
630</dl>
631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattner96451482008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
687<p>Global variables define regions of memory allocated at compilation time
688instead of run-time. Global variables may optionally be initialized, may have
689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
696cannot be marked "constant" as there is a store to the variable.</p>
697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lambdd0049d2007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lamb20a39e92007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000718
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lambdd0049d2007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730
731<div class="doc_code">
732<pre>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734</pre>
735</div>
736
737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
749<a href="#visibility">visibility style</a>, an optional
750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Pateld468f1c2008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
755an optional <a href="#notes">function notes</a>, an
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000756opening curly brace, a list of basic blocks, and a closing curly brace.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757
758LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
759optional <a href="#linkage">linkage type</a>, an optional
760<a href="#visibility">visibility style</a>, an optional
761<a href="#callingconv">calling convention</a>, a return type, an optional
762<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000763name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000764<a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765
Chris Lattner96451482008-08-05 18:29:16 +0000766<p>A function definition contains a list of basic blocks, forming the CFG
767(Control Flow Graph) for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768the function. Each basic block may optionally start with a label (giving the
769basic block a symbol table entry), contains a list of instructions, and ends
770with a <a href="#terminators">terminator</a> instruction (such as a branch or
771function return).</p>
772
773<p>The first basic block in a function is special in two ways: it is immediately
774executed on entrance to the function, and it is not allowed to have predecessor
775basic blocks (i.e. there can not be any branches to the entry block of a
776function). Because the block can have no predecessors, it also cannot have any
777<a href="#i_phi">PHI nodes</a>.</p>
778
779<p>LLVM allows an explicit section to be specified for functions. If the target
780supports it, it will emit functions to the section specified.</p>
781
782<p>An explicit alignment may be specified for a function. If not present, or if
783the alignment is set to zero, the alignment of the function is set by the target
784to whatever it feels convenient. If an explicit alignment is specified, the
785function is forced to have at least that much alignment. All alignments must be
786a power of 2.</p>
787
788</div>
789
790
791<!-- ======================================================================= -->
792<div class="doc_subsection">
793 <a name="aliasstructure">Aliases</a>
794</div>
795<div class="doc_text">
796 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov96822812008-03-22 08:36:14 +0000797 function, global variable, another alias or bitcast of global value). Aliases
798 may have an optional <a href="#linkage">linkage type</a>, and an
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 optional <a href="#visibility">visibility style</a>.</p>
800
801 <h5>Syntax:</h5>
802
803<div class="doc_code">
804<pre>
Duncan Sandsd7bfabf2008-09-12 20:48:21 +0000805@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000806</pre>
807</div>
808
809</div>
810
811
812
813<!-- ======================================================================= -->
814<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
815<div class="doc_text">
816 <p>The return type and each parameter of a function type may have a set of
817 <i>parameter attributes</i> associated with them. Parameter attributes are
818 used to communicate additional information about the result or parameters of
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000819 a function. Parameter attributes are considered to be part of the function,
820 not of the function type, so functions with different parameter attributes
821 can have the same function type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822
823 <p>Parameter attributes are simple keywords that follow the type specified. If
824 multiple parameter attributes are needed, they are space separated. For
825 example:</p>
826
827<div class="doc_code">
828<pre>
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000829declare i32 @printf(i8* noalias , ...) nounwind
830declare i32 @atoi(i8*) nounwind readonly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831</pre>
832</div>
833
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836
837 <p>Currently, only the following parameter attributes are defined:</p>
838 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 <dd>This indicates that the parameter should be zero extended just before
841 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000842
Reid Spencerf234bed2007-07-19 23:13:04 +0000843 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 <dd>This indicates that the parameter should be sign extended just before
845 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000846
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000847 <dt><tt>inreg</tt></dt>
848 <dd>This indicates that the parameter should be placed in register (if
849 possible) during assembling function call. Support for this attribute is
850 target-specific</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000851
852 <dt><tt>byval</tt></dt>
Chris Lattner04c86182008-01-15 04:34:22 +0000853 <dd>This indicates that the pointer parameter should really be passed by
854 value to the function. The attribute implies that a hidden copy of the
855 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner6a9f3c42008-08-05 18:21:08 +0000856 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner04c86182008-01-15 04:34:22 +0000857 pointer arguments. It is generally used to pass structs and arrays by
858 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000859
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 <dt><tt>sret</tt></dt>
Duncan Sands616cc032008-02-18 04:19:38 +0000861 <dd>This indicates that the pointer parameter specifies the address of a
862 structure that is the return value of the function in the source program.
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000863 Loads and stores to the structure are assumed not to trap.
Duncan Sands616cc032008-02-18 04:19:38 +0000864 May only be applied to the first parameter.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000865
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866 <dt><tt>noalias</tt></dt>
Owen Andersonc4fc4cd2008-02-18 04:09:01 +0000867 <dd>This indicates that the parameter does not alias any global or any other
868 parameter. The caller is responsible for ensuring that this is the case,
869 usually by placing the value in a stack allocation.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000870
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871 <dt><tt>noreturn</tt></dt>
872 <dd>This function attribute indicates that the function never returns. This
873 indicates to LLVM that every call to this function should be treated as if
874 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000875
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000876 <dt><tt>nounwind</tt></dt>
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000877 <dd>This function attribute indicates that no exceptions unwind out of the
878 function. Usually this is because the function makes no use of exceptions,
879 but it may also be that the function catches any exceptions thrown when
880 executing it.</dd>
881
Duncan Sands4ee46812007-07-27 19:57:41 +0000882 <dt><tt>nest</tt></dt>
Duncan Sandsf1a7d4c2008-07-08 09:27:25 +0000883 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands4ee46812007-07-27 19:57:41 +0000884 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sands13e13f82007-11-22 20:23:04 +0000885 <dt><tt>readonly</tt></dt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000886 <dd>This function attribute indicates that the function has no side-effects
Duncan Sands13e13f82007-11-22 20:23:04 +0000887 except for producing a return value or throwing an exception. The value
888 returned must only depend on the function arguments and/or global variables.
889 It may use values obtained by dereferencing pointers.</dd>
890 <dt><tt>readnone</tt></dt>
891 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000892 function, but in addition it is not allowed to dereference any pointer arguments
893 or global variables.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 </dl>
895
896</div>
897
898<!-- ======================================================================= -->
899<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000900 <a name="gc">Garbage Collector Names</a>
901</div>
902
903<div class="doc_text">
904<p>Each function may specify a garbage collector name, which is simply a
905string.</p>
906
907<div class="doc_code"><pre
908>define void @f() gc "name" { ...</pre></div>
909
910<p>The compiler declares the supported values of <i>name</i>. Specifying a
911collector which will cause the compiler to alter its output in order to support
912the named garbage collection algorithm.</p>
913</div>
914
915<!-- ======================================================================= -->
916<div class="doc_subsection">
Devang Pateld468f1c2008-09-04 23:05:13 +0000917 <a name="notes">Function Notes</a>
918</div>
919
920<div class="doc_text">
Devang Patel25928cb2008-09-04 23:10:26 +0000921<p>The function definition may list function notes which are used by
922various passes.</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000923
924<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +0000925<pre>
926define void @f() notes(inline=Always) { ... }
927define void @f() notes(inline=Always,opt-size) { ... }
928define void @f() notes(inline=Never,opt-size) { ... }
929define void @f() notes(opt-size) { ... }
930</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +0000931</div>
932
Bill Wendling74d3eac2008-09-07 10:26:33 +0000933<dl>
934<dt><tt>inline=Always</tt></dt>
935<dd>This note requests inliner to inline this function irrespective of inlining
936size threshold for this function.</dd>
937
938<dt><tt>inline=Never</tt></dt>
939<dd>This note requests inliner to never inline this function in any situation.
940This note may not be used together with <tt>inline=Always</tt> note.</dd>
941
942<dt><tt>opt-size</tt></dt>
943<dd>This note suggests optimization passes and code generator passes to make
944choices that help reduce code size.</dd>
945
946</dl>
947
948<p>Any notes that are not documented here are considered invalid notes.</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000949</div>
950
951<!-- ======================================================================= -->
952<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 <a name="moduleasm">Module-Level Inline Assembly</a>
954</div>
955
956<div class="doc_text">
957<p>
958Modules may contain "module-level inline asm" blocks, which corresponds to the
959GCC "file scope inline asm" blocks. These blocks are internally concatenated by
960LLVM and treated as a single unit, but may be separated in the .ll file if
961desired. The syntax is very simple:
962</p>
963
964<div class="doc_code">
965<pre>
966module asm "inline asm code goes here"
967module asm "more can go here"
968</pre>
969</div>
970
971<p>The strings can contain any character by escaping non-printable characters.
972 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
973 for the number.
974</p>
975
976<p>
977 The inline asm code is simply printed to the machine code .s file when
978 assembly code is generated.
979</p>
980</div>
981
982<!-- ======================================================================= -->
983<div class="doc_subsection">
984 <a name="datalayout">Data Layout</a>
985</div>
986
987<div class="doc_text">
988<p>A module may specify a target specific data layout string that specifies how
989data is to be laid out in memory. The syntax for the data layout is simply:</p>
990<pre> target datalayout = "<i>layout specification</i>"</pre>
991<p>The <i>layout specification</i> consists of a list of specifications
992separated by the minus sign character ('-'). Each specification starts with a
993letter and may include other information after the letter to define some
994aspect of the data layout. The specifications accepted are as follows: </p>
995<dl>
996 <dt><tt>E</tt></dt>
997 <dd>Specifies that the target lays out data in big-endian form. That is, the
998 bits with the most significance have the lowest address location.</dd>
999 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001000 <dd>Specifies that the target lays out data in little-endian form. That is,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 the bits with the least significance have the lowest address location.</dd>
1002 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1003 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1004 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1005 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1006 too.</dd>
1007 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1008 <dd>This specifies the alignment for an integer type of a given bit
1009 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1010 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1011 <dd>This specifies the alignment for a vector type of a given bit
1012 <i>size</i>.</dd>
1013 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1014 <dd>This specifies the alignment for a floating point type of a given bit
1015 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1016 (double).</dd>
1017 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1018 <dd>This specifies the alignment for an aggregate type of a given bit
1019 <i>size</i>.</dd>
1020</dl>
1021<p>When constructing the data layout for a given target, LLVM starts with a
1022default set of specifications which are then (possibly) overriden by the
1023specifications in the <tt>datalayout</tt> keyword. The default specifications
1024are given in this list:</p>
1025<ul>
1026 <li><tt>E</tt> - big endian</li>
1027 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1028 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1029 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1030 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1031 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001032 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 alignment of 64-bits</li>
1034 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1035 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1036 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1037 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1038 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1039</ul>
Chris Lattner6a9f3c42008-08-05 18:21:08 +00001040<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041following rules:
1042<ol>
1043 <li>If the type sought is an exact match for one of the specifications, that
1044 specification is used.</li>
1045 <li>If no match is found, and the type sought is an integer type, then the
1046 smallest integer type that is larger than the bitwidth of the sought type is
1047 used. If none of the specifications are larger than the bitwidth then the the
1048 largest integer type is used. For example, given the default specifications
1049 above, the i7 type will use the alignment of i8 (next largest) while both
1050 i65 and i256 will use the alignment of i64 (largest specified).</li>
1051 <li>If no match is found, and the type sought is a vector type, then the
1052 largest vector type that is smaller than the sought vector type will be used
1053 as a fall back. This happens because <128 x double> can be implemented in
1054 terms of 64 <2 x double>, for example.</li>
1055</ol>
1056</div>
1057
1058<!-- *********************************************************************** -->
1059<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1060<!-- *********************************************************************** -->
1061
1062<div class="doc_text">
1063
1064<p>The LLVM type system is one of the most important features of the
1065intermediate representation. Being typed enables a number of
Chris Lattner96451482008-08-05 18:29:16 +00001066optimizations to be performed on the intermediate representation directly,
1067without having to do
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001068extra analyses on the side before the transformation. A strong type
1069system makes it easier to read the generated code and enables novel
1070analyses and transformations that are not feasible to perform on normal
1071three address code representations.</p>
1072
1073</div>
1074
1075<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001076<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077Classifications</a> </div>
1078<div class="doc_text">
Chris Lattner488772f2008-01-04 04:32:38 +00001079<p>The types fall into a few useful
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080classifications:</p>
1081
1082<table border="1" cellspacing="0" cellpadding="4">
1083 <tbody>
1084 <tr><th>Classification</th><th>Types</th></tr>
1085 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001086 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001087 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1088 </tr>
1089 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001090 <td><a href="#t_floating">floating point</a></td>
1091 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001092 </tr>
1093 <tr>
1094 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001095 <td><a href="#t_integer">integer</a>,
1096 <a href="#t_floating">floating point</a>,
1097 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001098 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001099 <a href="#t_struct">structure</a>,
1100 <a href="#t_array">array</a>,
Dan Gohmand13951e2008-05-23 22:50:26 +00001101 <a href="#t_label">label</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 </td>
1103 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001104 <tr>
1105 <td><a href="#t_primitive">primitive</a></td>
1106 <td><a href="#t_label">label</a>,
1107 <a href="#t_void">void</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001108 <a href="#t_floating">floating point</a>.</td>
1109 </tr>
1110 <tr>
1111 <td><a href="#t_derived">derived</a></td>
1112 <td><a href="#t_integer">integer</a>,
1113 <a href="#t_array">array</a>,
1114 <a href="#t_function">function</a>,
1115 <a href="#t_pointer">pointer</a>,
1116 <a href="#t_struct">structure</a>,
1117 <a href="#t_pstruct">packed structure</a>,
1118 <a href="#t_vector">vector</a>,
1119 <a href="#t_opaque">opaque</a>.
1120 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 </tbody>
1122</table>
1123
1124<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1125most important. Values of these types are the only ones which can be
1126produced by instructions, passed as arguments, or used as operands to
Dan Gohman4f29e422008-05-23 21:53:15 +00001127instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001128</div>
1129
1130<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001131<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001132
Chris Lattner488772f2008-01-04 04:32:38 +00001133<div class="doc_text">
1134<p>The primitive types are the fundamental building blocks of the LLVM
1135system.</p>
1136
Chris Lattner86437612008-01-04 04:34:14 +00001137</div>
1138
Chris Lattner488772f2008-01-04 04:32:38 +00001139<!-- _______________________________________________________________________ -->
1140<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1141
1142<div class="doc_text">
1143 <table>
1144 <tbody>
1145 <tr><th>Type</th><th>Description</th></tr>
1146 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1147 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1148 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1149 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1150 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1151 </tbody>
1152 </table>
1153</div>
1154
1155<!-- _______________________________________________________________________ -->
1156<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1157
1158<div class="doc_text">
1159<h5>Overview:</h5>
1160<p>The void type does not represent any value and has no size.</p>
1161
1162<h5>Syntax:</h5>
1163
1164<pre>
1165 void
1166</pre>
1167</div>
1168
1169<!-- _______________________________________________________________________ -->
1170<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1171
1172<div class="doc_text">
1173<h5>Overview:</h5>
1174<p>The label type represents code labels.</p>
1175
1176<h5>Syntax:</h5>
1177
1178<pre>
1179 label
1180</pre>
1181</div>
1182
1183
1184<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001185<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1186
1187<div class="doc_text">
1188
1189<p>The real power in LLVM comes from the derived types in the system.
1190This is what allows a programmer to represent arrays, functions,
1191pointers, and other useful types. Note that these derived types may be
1192recursive: For example, it is possible to have a two dimensional array.</p>
1193
1194</div>
1195
1196<!-- _______________________________________________________________________ -->
1197<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1198
1199<div class="doc_text">
1200
1201<h5>Overview:</h5>
1202<p>The integer type is a very simple derived type that simply specifies an
1203arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12042^23-1 (about 8 million) can be specified.</p>
1205
1206<h5>Syntax:</h5>
1207
1208<pre>
1209 iN
1210</pre>
1211
1212<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1213value.</p>
1214
1215<h5>Examples:</h5>
1216<table class="layout">
Chris Lattner251ab812007-12-18 06:18:21 +00001217 <tbody>
1218 <tr>
1219 <td><tt>i1</tt></td>
1220 <td>a single-bit integer.</td>
1221 </tr><tr>
1222 <td><tt>i32</tt></td>
1223 <td>a 32-bit integer.</td>
1224 </tr><tr>
1225 <td><tt>i1942652</tt></td>
1226 <td>a really big integer of over 1 million bits.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 </tr>
Chris Lattner251ab812007-12-18 06:18:21 +00001228 </tbody>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229</table>
1230</div>
1231
1232<!-- _______________________________________________________________________ -->
1233<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1234
1235<div class="doc_text">
1236
1237<h5>Overview:</h5>
1238
1239<p>The array type is a very simple derived type that arranges elements
1240sequentially in memory. The array type requires a size (number of
1241elements) and an underlying data type.</p>
1242
1243<h5>Syntax:</h5>
1244
1245<pre>
1246 [&lt;# elements&gt; x &lt;elementtype&gt;]
1247</pre>
1248
1249<p>The number of elements is a constant integer value; elementtype may
1250be any type with a size.</p>
1251
1252<h5>Examples:</h5>
1253<table class="layout">
1254 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001255 <td class="left"><tt>[40 x i32]</tt></td>
1256 <td class="left">Array of 40 32-bit integer values.</td>
1257 </tr>
1258 <tr class="layout">
1259 <td class="left"><tt>[41 x i32]</tt></td>
1260 <td class="left">Array of 41 32-bit integer values.</td>
1261 </tr>
1262 <tr class="layout">
1263 <td class="left"><tt>[4 x i8]</tt></td>
1264 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 </tr>
1266</table>
1267<p>Here are some examples of multidimensional arrays:</p>
1268<table class="layout">
1269 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001270 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1271 <td class="left">3x4 array of 32-bit integer values.</td>
1272 </tr>
1273 <tr class="layout">
1274 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1275 <td class="left">12x10 array of single precision floating point values.</td>
1276 </tr>
1277 <tr class="layout">
1278 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1279 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001280 </tr>
1281</table>
1282
1283<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1284length array. Normally, accesses past the end of an array are undefined in
1285LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1286As a special case, however, zero length arrays are recognized to be variable
1287length. This allows implementation of 'pascal style arrays' with the LLVM
1288type "{ i32, [0 x float]}", for example.</p>
1289
1290</div>
1291
1292<!-- _______________________________________________________________________ -->
1293<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1294<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001295
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001297
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298<p>The function type can be thought of as a function signature. It
Devang Pateld4ba41d2008-03-24 05:35:41 +00001299consists of a return type and a list of formal parameter types. The
Chris Lattner43030e72008-04-23 04:59:35 +00001300return type of a function type is a scalar type, a void type, or a struct type.
Devang Pateld5404c02008-03-24 20:52:42 +00001301If the return type is a struct type then all struct elements must be of first
Chris Lattner43030e72008-04-23 04:59:35 +00001302class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001303
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001305
1306<pre>
1307 &lt;returntype list&gt; (&lt;parameter list&gt;)
1308</pre>
1309
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001310<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1311specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1312which indicates that the function takes a variable number of arguments.
1313Variable argument functions can access their arguments with the <a
Devang Patela3cc5372008-03-10 20:49:15 +00001314 href="#int_varargs">variable argument handling intrinsic</a> functions.
1315'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1316<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001317
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318<h5>Examples:</h5>
1319<table class="layout">
1320 <tr class="layout">
1321 <td class="left"><tt>i32 (i32)</tt></td>
1322 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1323 </td>
1324 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001325 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001326 </tt></td>
1327 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1328 an <tt>i16</tt> that should be sign extended and a
1329 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1330 <tt>float</tt>.
1331 </td>
1332 </tr><tr class="layout">
1333 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1334 <td class="left">A vararg function that takes at least one
1335 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1336 which returns an integer. This is the signature for <tt>printf</tt> in
1337 LLVM.
1338 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001339 </tr><tr class="layout">
1340 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel6dddba22008-03-24 18:10:52 +00001341 <td class="left">A function taking an <tt>i32></tt>, returning two
1342 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001343 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 </tr>
1345</table>
1346
1347</div>
1348<!-- _______________________________________________________________________ -->
1349<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1350<div class="doc_text">
1351<h5>Overview:</h5>
1352<p>The structure type is used to represent a collection of data members
1353together in memory. The packing of the field types is defined to match
1354the ABI of the underlying processor. The elements of a structure may
1355be any type that has a size.</p>
1356<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1357and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1358field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1359instruction.</p>
1360<h5>Syntax:</h5>
1361<pre> { &lt;type list&gt; }<br></pre>
1362<h5>Examples:</h5>
1363<table class="layout">
1364 <tr class="layout">
1365 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1366 <td class="left">A triple of three <tt>i32</tt> values</td>
1367 </tr><tr class="layout">
1368 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1369 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1370 second element is a <a href="#t_pointer">pointer</a> to a
1371 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1372 an <tt>i32</tt>.</td>
1373 </tr>
1374</table>
1375</div>
1376
1377<!-- _______________________________________________________________________ -->
1378<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1379</div>
1380<div class="doc_text">
1381<h5>Overview:</h5>
1382<p>The packed structure type is used to represent a collection of data members
1383together in memory. There is no padding between fields. Further, the alignment
1384of a packed structure is 1 byte. The elements of a packed structure may
1385be any type that has a size.</p>
1386<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1387and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1388field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1389instruction.</p>
1390<h5>Syntax:</h5>
1391<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1392<h5>Examples:</h5>
1393<table class="layout">
1394 <tr class="layout">
1395 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1396 <td class="left">A triple of three <tt>i32</tt> values</td>
1397 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001398 <td class="left">
1399<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001400 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1401 second element is a <a href="#t_pointer">pointer</a> to a
1402 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1403 an <tt>i32</tt>.</td>
1404 </tr>
1405</table>
1406</div>
1407
1408<!-- _______________________________________________________________________ -->
1409<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1410<div class="doc_text">
1411<h5>Overview:</h5>
1412<p>As in many languages, the pointer type represents a pointer or
Christopher Lambdd0049d2007-12-11 09:31:00 +00001413reference to another object, which must live in memory. Pointer types may have
1414an optional address space attribute defining the target-specific numbered
1415address space where the pointed-to object resides. The default address space is
1416zero.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001417<h5>Syntax:</h5>
1418<pre> &lt;type&gt; *<br></pre>
1419<h5>Examples:</h5>
1420<table class="layout">
1421 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001422 <td class="left"><tt>[4x i32]*</tt></td>
1423 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1424 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1425 </tr>
1426 <tr class="layout">
1427 <td class="left"><tt>i32 (i32 *) *</tt></td>
1428 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001430 <tt>i32</tt>.</td>
1431 </tr>
1432 <tr class="layout">
1433 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1434 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1435 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001436 </tr>
1437</table>
1438</div>
1439
1440<!-- _______________________________________________________________________ -->
1441<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1442<div class="doc_text">
1443
1444<h5>Overview:</h5>
1445
1446<p>A vector type is a simple derived type that represents a vector
1447of elements. Vector types are used when multiple primitive data
1448are operated in parallel using a single instruction (SIMD).
1449A vector type requires a size (number of
1450elements) and an underlying primitive data type. Vectors must have a power
1451of two length (1, 2, 4, 8, 16 ...). Vector types are
1452considered <a href="#t_firstclass">first class</a>.</p>
1453
1454<h5>Syntax:</h5>
1455
1456<pre>
1457 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1458</pre>
1459
1460<p>The number of elements is a constant integer value; elementtype may
1461be any integer or floating point type.</p>
1462
1463<h5>Examples:</h5>
1464
1465<table class="layout">
1466 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001467 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1468 <td class="left">Vector of 4 32-bit integer values.</td>
1469 </tr>
1470 <tr class="layout">
1471 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1472 <td class="left">Vector of 8 32-bit floating-point values.</td>
1473 </tr>
1474 <tr class="layout">
1475 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1476 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 </tr>
1478</table>
1479</div>
1480
1481<!-- _______________________________________________________________________ -->
1482<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1483<div class="doc_text">
1484
1485<h5>Overview:</h5>
1486
1487<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001488corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001489In LLVM, opaque types can eventually be resolved to any type (not just a
1490structure type).</p>
1491
1492<h5>Syntax:</h5>
1493
1494<pre>
1495 opaque
1496</pre>
1497
1498<h5>Examples:</h5>
1499
1500<table class="layout">
1501 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001502 <td class="left"><tt>opaque</tt></td>
1503 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504 </tr>
1505</table>
1506</div>
1507
1508
1509<!-- *********************************************************************** -->
1510<div class="doc_section"> <a name="constants">Constants</a> </div>
1511<!-- *********************************************************************** -->
1512
1513<div class="doc_text">
1514
1515<p>LLVM has several different basic types of constants. This section describes
1516them all and their syntax.</p>
1517
1518</div>
1519
1520<!-- ======================================================================= -->
1521<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1522
1523<div class="doc_text">
1524
1525<dl>
1526 <dt><b>Boolean constants</b></dt>
1527
1528 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1529 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1530 </dd>
1531
1532 <dt><b>Integer constants</b></dt>
1533
1534 <dd>Standard integers (such as '4') are constants of the <a
1535 href="#t_integer">integer</a> type. Negative numbers may be used with
1536 integer types.
1537 </dd>
1538
1539 <dt><b>Floating point constants</b></dt>
1540
1541 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1542 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00001543 notation (see below). The assembler requires the exact decimal value of
1544 a floating-point constant. For example, the assembler accepts 1.25 but
1545 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1546 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547
1548 <dt><b>Null pointer constants</b></dt>
1549
1550 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1551 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1552
1553</dl>
1554
1555<p>The one non-intuitive notation for constants is the optional hexadecimal form
1556of floating point constants. For example, the form '<tt>double
15570x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15584.5e+15</tt>'. The only time hexadecimal floating point constants are required
1559(and the only time that they are generated by the disassembler) is when a
1560floating point constant must be emitted but it cannot be represented as a
1561decimal floating point number. For example, NaN's, infinities, and other
1562special values are represented in their IEEE hexadecimal format so that
1563assembly and disassembly do not cause any bits to change in the constants.</p>
1564
1565</div>
1566
1567<!-- ======================================================================= -->
1568<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1569</div>
1570
1571<div class="doc_text">
1572<p>Aggregate constants arise from aggregation of simple constants
1573and smaller aggregate constants.</p>
1574
1575<dl>
1576 <dt><b>Structure constants</b></dt>
1577
1578 <dd>Structure constants are represented with notation similar to structure
1579 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner6c8de962007-12-25 20:34:52 +00001580 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1581 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001582 must have <a href="#t_struct">structure type</a>, and the number and
1583 types of elements must match those specified by the type.
1584 </dd>
1585
1586 <dt><b>Array constants</b></dt>
1587
1588 <dd>Array constants are represented with notation similar to array type
1589 definitions (a comma separated list of elements, surrounded by square brackets
1590 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1591 constants must have <a href="#t_array">array type</a>, and the number and
1592 types of elements must match those specified by the type.
1593 </dd>
1594
1595 <dt><b>Vector constants</b></dt>
1596
1597 <dd>Vector constants are represented with notation similar to vector type
1598 definitions (a comma separated list of elements, surrounded by
1599 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1600 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1601 href="#t_vector">vector type</a>, and the number and types of elements must
1602 match those specified by the type.
1603 </dd>
1604
1605 <dt><b>Zero initialization</b></dt>
1606
1607 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1608 value to zero of <em>any</em> type, including scalar and aggregate types.
1609 This is often used to avoid having to print large zero initializers (e.g. for
1610 large arrays) and is always exactly equivalent to using explicit zero
1611 initializers.
1612 </dd>
1613</dl>
1614
1615</div>
1616
1617<!-- ======================================================================= -->
1618<div class="doc_subsection">
1619 <a name="globalconstants">Global Variable and Function Addresses</a>
1620</div>
1621
1622<div class="doc_text">
1623
1624<p>The addresses of <a href="#globalvars">global variables</a> and <a
1625href="#functionstructure">functions</a> are always implicitly valid (link-time)
1626constants. These constants are explicitly referenced when the <a
1627href="#identifiers">identifier for the global</a> is used and always have <a
1628href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1629file:</p>
1630
1631<div class="doc_code">
1632<pre>
1633@X = global i32 17
1634@Y = global i32 42
1635@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1636</pre>
1637</div>
1638
1639</div>
1640
1641<!-- ======================================================================= -->
1642<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1643<div class="doc_text">
1644 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1645 no specific value. Undefined values may be of any type and be used anywhere
1646 a constant is permitted.</p>
1647
1648 <p>Undefined values indicate to the compiler that the program is well defined
1649 no matter what value is used, giving the compiler more freedom to optimize.
1650 </p>
1651</div>
1652
1653<!-- ======================================================================= -->
1654<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1655</div>
1656
1657<div class="doc_text">
1658
1659<p>Constant expressions are used to allow expressions involving other constants
1660to be used as constants. Constant expressions may be of any <a
1661href="#t_firstclass">first class</a> type and may involve any LLVM operation
1662that does not have side effects (e.g. load and call are not supported). The
1663following is the syntax for constant expressions:</p>
1664
1665<dl>
1666 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1667 <dd>Truncate a constant to another type. The bit size of CST must be larger
1668 than the bit size of TYPE. Both types must be integers.</dd>
1669
1670 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1671 <dd>Zero extend a constant to another type. The bit size of CST must be
1672 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1673
1674 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1675 <dd>Sign extend a constant to another type. The bit size of CST must be
1676 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1677
1678 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1679 <dd>Truncate a floating point constant to another floating point type. The
1680 size of CST must be larger than the size of TYPE. Both types must be
1681 floating point.</dd>
1682
1683 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1684 <dd>Floating point extend a constant to another type. The size of CST must be
1685 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1686
Reid Spencere6adee82007-07-31 14:40:14 +00001687 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001688 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001689 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1690 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1691 of the same number of elements. If the value won't fit in the integer type,
1692 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001693
1694 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1695 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001696 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1697 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1698 of the same number of elements. If the value won't fit in the integer type,
1699 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001700
1701 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1702 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001703 constant. TYPE must be a scalar or vector floating point type. CST must be of
1704 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1705 of the same number of elements. If the value won't fit in the floating point
1706 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707
1708 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1709 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001710 constant. TYPE must be a scalar or vector floating point type. CST must be of
1711 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1712 of the same number of elements. If the value won't fit in the floating point
1713 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001714
1715 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1716 <dd>Convert a pointer typed constant to the corresponding integer constant
1717 TYPE must be an integer type. CST must be of pointer type. The CST value is
1718 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1719
1720 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1721 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1722 pointer type. CST must be of integer type. The CST value is zero extended,
1723 truncated, or unchanged to make it fit in a pointer size. This one is
1724 <i>really</i> dangerous!</dd>
1725
1726 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1727 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1728 identical (same number of bits). The conversion is done as if the CST value
1729 was stored to memory and read back as TYPE. In other words, no bits change
1730 with this operator, just the type. This can be used for conversion of
1731 vector types to any other type, as long as they have the same bit width. For
Dan Gohman7305fa02008-09-08 16:45:59 +00001732 pointers it is only valid to cast to another pointer type. It is not valid
1733 to bitcast to or from an aggregate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001734 </dd>
1735
1736 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1737
1738 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1739 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1740 instruction, the index list may have zero or more indexes, which are required
1741 to make sense for the type of "CSTPTR".</dd>
1742
1743 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1744
1745 <dd>Perform the <a href="#i_select">select operation</a> on
1746 constants.</dd>
1747
1748 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1749 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1750
1751 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1752 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1753
Nate Begeman646fa482008-05-12 19:01:56 +00001754 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1755 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1756
1757 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1758 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1759
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001760 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1761
1762 <dd>Perform the <a href="#i_extractelement">extractelement
1763 operation</a> on constants.
1764
1765 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1766
1767 <dd>Perform the <a href="#i_insertelement">insertelement
1768 operation</a> on constants.</dd>
1769
1770
1771 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1772
1773 <dd>Perform the <a href="#i_shufflevector">shufflevector
1774 operation</a> on constants.</dd>
1775
1776 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1777
1778 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1779 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1780 binary</a> operations. The constraints on operands are the same as those for
1781 the corresponding instruction (e.g. no bitwise operations on floating point
1782 values are allowed).</dd>
1783</dl>
1784</div>
1785
1786<!-- *********************************************************************** -->
1787<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1788<!-- *********************************************************************** -->
1789
1790<!-- ======================================================================= -->
1791<div class="doc_subsection">
1792<a name="inlineasm">Inline Assembler Expressions</a>
1793</div>
1794
1795<div class="doc_text">
1796
1797<p>
1798LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1799Module-Level Inline Assembly</a>) through the use of a special value. This
1800value represents the inline assembler as a string (containing the instructions
1801to emit), a list of operand constraints (stored as a string), and a flag that
1802indicates whether or not the inline asm expression has side effects. An example
1803inline assembler expression is:
1804</p>
1805
1806<div class="doc_code">
1807<pre>
1808i32 (i32) asm "bswap $0", "=r,r"
1809</pre>
1810</div>
1811
1812<p>
1813Inline assembler expressions may <b>only</b> be used as the callee operand of
1814a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1815</p>
1816
1817<div class="doc_code">
1818<pre>
1819%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1820</pre>
1821</div>
1822
1823<p>
1824Inline asms with side effects not visible in the constraint list must be marked
1825as having side effects. This is done through the use of the
1826'<tt>sideeffect</tt>' keyword, like so:
1827</p>
1828
1829<div class="doc_code">
1830<pre>
1831call void asm sideeffect "eieio", ""()
1832</pre>
1833</div>
1834
1835<p>TODO: The format of the asm and constraints string still need to be
1836documented here. Constraints on what can be done (e.g. duplication, moving, etc
1837need to be documented).
1838</p>
1839
1840</div>
1841
1842<!-- *********************************************************************** -->
1843<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1844<!-- *********************************************************************** -->
1845
1846<div class="doc_text">
1847
1848<p>The LLVM instruction set consists of several different
1849classifications of instructions: <a href="#terminators">terminator
1850instructions</a>, <a href="#binaryops">binary instructions</a>,
1851<a href="#bitwiseops">bitwise binary instructions</a>, <a
1852 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1853instructions</a>.</p>
1854
1855</div>
1856
1857<!-- ======================================================================= -->
1858<div class="doc_subsection"> <a name="terminators">Terminator
1859Instructions</a> </div>
1860
1861<div class="doc_text">
1862
1863<p>As mentioned <a href="#functionstructure">previously</a>, every
1864basic block in a program ends with a "Terminator" instruction, which
1865indicates which block should be executed after the current block is
1866finished. These terminator instructions typically yield a '<tt>void</tt>'
1867value: they produce control flow, not values (the one exception being
1868the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1869<p>There are six different terminator instructions: the '<a
1870 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1871instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1872the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1873 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1874 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1875
1876</div>
1877
1878<!-- _______________________________________________________________________ -->
1879<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1880Instruction</a> </div>
1881<div class="doc_text">
1882<h5>Syntax:</h5>
1883<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1884 ret void <i>; Return from void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001885 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001886</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00001887
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001888<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001889
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001890<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1891value) from a function back to the caller.</p>
1892<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner43030e72008-04-23 04:59:35 +00001893returns value(s) and then causes control flow, and one that just causes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001894control flow to occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001895
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896<h5>Arguments:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001897
1898<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1899The type of each return value must be a '<a href="#t_firstclass">first
1900class</a>' type. Note that a function is not <a href="#wellformed">well
1901formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1902function that returns values that do not match the return type of the
1903function.</p>
1904
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905<h5>Semantics:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001906
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907<p>When the '<tt>ret</tt>' instruction is executed, control flow
1908returns back to the calling function's context. If the caller is a "<a
1909 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1910the instruction after the call. If the caller was an "<a
1911 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1912at the beginning of the "normal" destination block. If the instruction
1913returns a value, that value shall set the call or invoke instruction's
Devang Patela3cc5372008-03-10 20:49:15 +00001914return value. If the instruction returns multiple values then these
Devang Patelec8a5b02008-03-11 05:51:59 +00001915values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1916</a>' instruction.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001917
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001918<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001919
1920<pre>
1921 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001922 ret void <i>; Return from a void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001923 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001924</pre>
1925</div>
1926<!-- _______________________________________________________________________ -->
1927<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1928<div class="doc_text">
1929<h5>Syntax:</h5>
1930<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1931</pre>
1932<h5>Overview:</h5>
1933<p>The '<tt>br</tt>' instruction is used to cause control flow to
1934transfer to a different basic block in the current function. There are
1935two forms of this instruction, corresponding to a conditional branch
1936and an unconditional branch.</p>
1937<h5>Arguments:</h5>
1938<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1939single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1940unconditional form of the '<tt>br</tt>' instruction takes a single
1941'<tt>label</tt>' value as a target.</p>
1942<h5>Semantics:</h5>
1943<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1944argument is evaluated. If the value is <tt>true</tt>, control flows
1945to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1946control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1947<h5>Example:</h5>
1948<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1949 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1950</div>
1951<!-- _______________________________________________________________________ -->
1952<div class="doc_subsubsection">
1953 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1954</div>
1955
1956<div class="doc_text">
1957<h5>Syntax:</h5>
1958
1959<pre>
1960 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1961</pre>
1962
1963<h5>Overview:</h5>
1964
1965<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1966several different places. It is a generalization of the '<tt>br</tt>'
1967instruction, allowing a branch to occur to one of many possible
1968destinations.</p>
1969
1970
1971<h5>Arguments:</h5>
1972
1973<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1974comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1975an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1976table is not allowed to contain duplicate constant entries.</p>
1977
1978<h5>Semantics:</h5>
1979
1980<p>The <tt>switch</tt> instruction specifies a table of values and
1981destinations. When the '<tt>switch</tt>' instruction is executed, this
1982table is searched for the given value. If the value is found, control flow is
1983transfered to the corresponding destination; otherwise, control flow is
1984transfered to the default destination.</p>
1985
1986<h5>Implementation:</h5>
1987
1988<p>Depending on properties of the target machine and the particular
1989<tt>switch</tt> instruction, this instruction may be code generated in different
1990ways. For example, it could be generated as a series of chained conditional
1991branches or with a lookup table.</p>
1992
1993<h5>Example:</h5>
1994
1995<pre>
1996 <i>; Emulate a conditional br instruction</i>
1997 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1998 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1999
2000 <i>; Emulate an unconditional br instruction</i>
2001 switch i32 0, label %dest [ ]
2002
2003 <i>; Implement a jump table:</i>
2004 switch i32 %val, label %otherwise [ i32 0, label %onzero
2005 i32 1, label %onone
2006 i32 2, label %ontwo ]
2007</pre>
2008</div>
2009
2010<!-- _______________________________________________________________________ -->
2011<div class="doc_subsubsection">
2012 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2013</div>
2014
2015<div class="doc_text">
2016
2017<h5>Syntax:</h5>
2018
2019<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002020 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002021 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2022</pre>
2023
2024<h5>Overview:</h5>
2025
2026<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2027function, with the possibility of control flow transfer to either the
2028'<tt>normal</tt>' label or the
2029'<tt>exception</tt>' label. If the callee function returns with the
2030"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2031"normal" label. If the callee (or any indirect callees) returns with the "<a
2032href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patela3cc5372008-03-10 20:49:15 +00002033continued at the dynamically nearest "exception" label. If the callee function
Devang Patelec8a5b02008-03-11 05:51:59 +00002034returns multiple values then individual return values are only accessible through
2035a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002036
2037<h5>Arguments:</h5>
2038
2039<p>This instruction requires several arguments:</p>
2040
2041<ol>
2042 <li>
2043 The optional "cconv" marker indicates which <a href="#callingconv">calling
2044 convention</a> the call should use. If none is specified, the call defaults
2045 to using C calling conventions.
2046 </li>
2047 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2048 function value being invoked. In most cases, this is a direct function
2049 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2050 an arbitrary pointer to function value.
2051 </li>
2052
2053 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2054 function to be invoked. </li>
2055
2056 <li>'<tt>function args</tt>': argument list whose types match the function
2057 signature argument types. If the function signature indicates the function
2058 accepts a variable number of arguments, the extra arguments can be
2059 specified. </li>
2060
2061 <li>'<tt>normal label</tt>': the label reached when the called function
2062 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2063
2064 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2065 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2066
2067</ol>
2068
2069<h5>Semantics:</h5>
2070
2071<p>This instruction is designed to operate as a standard '<tt><a
2072href="#i_call">call</a></tt>' instruction in most regards. The primary
2073difference is that it establishes an association with a label, which is used by
2074the runtime library to unwind the stack.</p>
2075
2076<p>This instruction is used in languages with destructors to ensure that proper
2077cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2078exception. Additionally, this is important for implementation of
2079'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2080
2081<h5>Example:</h5>
2082<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002083 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002084 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002085 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002086 unwind label %TestCleanup <i>; {i32}:retval set</i>
2087</pre>
2088</div>
2089
2090
2091<!-- _______________________________________________________________________ -->
2092
2093<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2094Instruction</a> </div>
2095
2096<div class="doc_text">
2097
2098<h5>Syntax:</h5>
2099<pre>
2100 unwind
2101</pre>
2102
2103<h5>Overview:</h5>
2104
2105<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2106at the first callee in the dynamic call stack which used an <a
2107href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2108primarily used to implement exception handling.</p>
2109
2110<h5>Semantics:</h5>
2111
Chris Lattner8b094fc2008-04-19 21:01:16 +00002112<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002113immediately halt. The dynamic call stack is then searched for the first <a
2114href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2115execution continues at the "exceptional" destination block specified by the
2116<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2117dynamic call chain, undefined behavior results.</p>
2118</div>
2119
2120<!-- _______________________________________________________________________ -->
2121
2122<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2123Instruction</a> </div>
2124
2125<div class="doc_text">
2126
2127<h5>Syntax:</h5>
2128<pre>
2129 unreachable
2130</pre>
2131
2132<h5>Overview:</h5>
2133
2134<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2135instruction is used to inform the optimizer that a particular portion of the
2136code is not reachable. This can be used to indicate that the code after a
2137no-return function cannot be reached, and other facts.</p>
2138
2139<h5>Semantics:</h5>
2140
2141<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2142</div>
2143
2144
2145
2146<!-- ======================================================================= -->
2147<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2148<div class="doc_text">
2149<p>Binary operators are used to do most of the computation in a
Chris Lattnerab596d92008-04-01 18:47:32 +00002150program. They require two operands of the same type, execute an operation on them, and
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002151produce a single value. The operands might represent
2152multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnerab596d92008-04-01 18:47:32 +00002153The result value has the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002154<p>There are several different binary operators:</p>
2155</div>
2156<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002157<div class="doc_subsubsection">
2158 <a name="i_add">'<tt>add</tt>' Instruction</a>
2159</div>
2160
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002161<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002162
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002163<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002164
2165<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002166 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002167</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002170
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002171<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002172
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002173<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002174
2175<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2176 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2177 <a href="#t_vector">vector</a> values. Both arguments must have identical
2178 types.</p>
2179
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002180<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002181
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002182<p>The value produced is the integer or floating point sum of the two
2183operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002184
Chris Lattner9aba1e22008-01-28 00:36:27 +00002185<p>If an integer sum has unsigned overflow, the result returned is the
2186mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2187the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002188
Chris Lattner9aba1e22008-01-28 00:36:27 +00002189<p>Because LLVM integers use a two's complement representation, this
2190instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002191
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002192<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002193
2194<pre>
2195 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002196</pre>
2197</div>
2198<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002199<div class="doc_subsubsection">
2200 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2201</div>
2202
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002203<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002204
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002206
2207<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002208 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002209</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002210
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002211<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002212
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213<p>The '<tt>sub</tt>' instruction returns the difference of its two
2214operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002215
2216<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2217'<tt>neg</tt>' instruction present in most other intermediate
2218representations.</p>
2219
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002220<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002221
2222<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2223 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2224 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2225 types.</p>
2226
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002227<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002228
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002229<p>The value produced is the integer or floating point difference of
2230the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002231
Chris Lattner9aba1e22008-01-28 00:36:27 +00002232<p>If an integer difference has unsigned overflow, the result returned is the
2233mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2234the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002235
Chris Lattner9aba1e22008-01-28 00:36:27 +00002236<p>Because LLVM integers use a two's complement representation, this
2237instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002238
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002239<h5>Example:</h5>
2240<pre>
2241 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2242 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2243</pre>
2244</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002245
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002246<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002247<div class="doc_subsubsection">
2248 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2249</div>
2250
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002251<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002252
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002254<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002255</pre>
2256<h5>Overview:</h5>
2257<p>The '<tt>mul</tt>' instruction returns the product of its two
2258operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002259
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002260<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002261
2262<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2263href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2264or <a href="#t_vector">vector</a> values. Both arguments must have identical
2265types.</p>
2266
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002267<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002268
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002269<p>The value produced is the integer or floating point product of the
2270two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002271
Chris Lattner9aba1e22008-01-28 00:36:27 +00002272<p>If the result of an integer multiplication has unsigned overflow,
2273the result returned is the mathematical result modulo
22742<sup>n</sup>, where n is the bit width of the result.</p>
2275<p>Because LLVM integers use a two's complement representation, and the
2276result is the same width as the operands, this instruction returns the
2277correct result for both signed and unsigned integers. If a full product
2278(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2279should be sign-extended or zero-extended as appropriate to the
2280width of the full product.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002281<h5>Example:</h5>
2282<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2283</pre>
2284</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002285
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002286<!-- _______________________________________________________________________ -->
2287<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2288</a></div>
2289<div class="doc_text">
2290<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002291<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002292</pre>
2293<h5>Overview:</h5>
2294<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2295operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002296
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002297<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002298
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002299<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002300<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2301values. Both arguments must have identical types.</p>
2302
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002303<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002304
Chris Lattner9aba1e22008-01-28 00:36:27 +00002305<p>The value produced is the unsigned integer quotient of the two operands.</p>
2306<p>Note that unsigned integer division and signed integer division are distinct
2307operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2308<p>Division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002309<h5>Example:</h5>
2310<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2311</pre>
2312</div>
2313<!-- _______________________________________________________________________ -->
2314<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2315</a> </div>
2316<div class="doc_text">
2317<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002318<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002319 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002320</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002321
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002322<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002323
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002324<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2325operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002326
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002327<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002328
2329<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2330<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2331values. Both arguments must have identical types.</p>
2332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002333<h5>Semantics:</h5>
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002334<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002335<p>Note that signed integer division and unsigned integer division are distinct
2336operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2337<p>Division by zero leads to undefined behavior. Overflow also leads to
2338undefined behavior; this is a rare case, but can occur, for example,
2339by doing a 32-bit division of -2147483648 by -1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002340<h5>Example:</h5>
2341<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2342</pre>
2343</div>
2344<!-- _______________________________________________________________________ -->
2345<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2346Instruction</a> </div>
2347<div class="doc_text">
2348<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002349<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002350 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351</pre>
2352<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002353
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002354<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2355operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002357<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002358
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002360<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2361of floating point values. Both arguments must have identical types.</p>
2362
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002364
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002366
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002367<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002368
2369<pre>
2370 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002371</pre>
2372</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002373
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002374<!-- _______________________________________________________________________ -->
2375<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2376</div>
2377<div class="doc_text">
2378<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002379<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002380</pre>
2381<h5>Overview:</h5>
2382<p>The '<tt>urem</tt>' instruction returns the remainder from the
2383unsigned division of its two arguments.</p>
2384<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002385<p>The two arguments to the '<tt>urem</tt>' instruction must be
2386<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2387values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388<h5>Semantics:</h5>
2389<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002390This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002391<p>Note that unsigned integer remainder and signed integer remainder are
2392distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2393<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394<h5>Example:</h5>
2395<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2396</pre>
2397
2398</div>
2399<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002400<div class="doc_subsubsection">
2401 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2402</div>
2403
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002405
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002407
2408<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002409 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002411
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002413
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002414<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002415signed division of its two operands. This instruction can also take
2416<a href="#t_vector">vector</a> versions of the values in which case
2417the elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00002418
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002419<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002420
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002422<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2423values. Both arguments must have identical types.</p>
2424
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002425<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002426
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greifd9068fe2008-08-07 21:46:00 +00002428has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2429operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430a value. For more information about the difference, see <a
2431 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2432Math Forum</a>. For a table of how this is implemented in various languages,
2433please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2434Wikipedia: modulo operation</a>.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002435<p>Note that signed integer remainder and unsigned integer remainder are
2436distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2437<p>Taking the remainder of a division by zero leads to undefined behavior.
2438Overflow also leads to undefined behavior; this is a rare case, but can occur,
2439for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2440(The remainder doesn't actually overflow, but this rule lets srem be
2441implemented using instructions that return both the result of the division
2442and the remainder.)</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002443<h5>Example:</h5>
2444<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2445</pre>
2446
2447</div>
2448<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002449<div class="doc_subsubsection">
2450 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2451
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002452<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002453
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002455<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002456</pre>
2457<h5>Overview:</h5>
2458<p>The '<tt>frem</tt>' instruction returns the remainder from the
2459division of its two operands.</p>
2460<h5>Arguments:</h5>
2461<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002462<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2463of floating point values. Both arguments must have identical types.</p>
2464
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002465<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002466
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002467<p>This instruction returns the <i>remainder</i> of a division.
2468The remainder has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002469
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002471
2472<pre>
2473 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474</pre>
2475</div>
2476
2477<!-- ======================================================================= -->
2478<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2479Operations</a> </div>
2480<div class="doc_text">
2481<p>Bitwise binary operators are used to do various forms of
2482bit-twiddling in a program. They are generally very efficient
2483instructions and can commonly be strength reduced from other
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002484instructions. They require two operands of the same type, execute an operation on them,
2485and produce a single value. The resulting value is the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002486</div>
2487
2488<!-- _______________________________________________________________________ -->
2489<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2490Instruction</a> </div>
2491<div class="doc_text">
2492<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002493<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002495
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002497
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002498<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2499the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002500
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002501<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002502
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002503<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanbb1ce942008-07-29 15:49:41 +00002504 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002505type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002506
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002508
Gabor Greifd9068fe2008-08-07 21:46:00 +00002509<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2510where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2511equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002512
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002513<h5>Example:</h5><pre>
2514 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2515 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2516 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002517 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002518</pre>
2519</div>
2520<!-- _______________________________________________________________________ -->
2521<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2522Instruction</a> </div>
2523<div class="doc_text">
2524<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002525<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002526</pre>
2527
2528<h5>Overview:</h5>
2529<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2530operand shifted to the right a specified number of bits with zero fill.</p>
2531
2532<h5>Arguments:</h5>
2533<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002534<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002535type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536
2537<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002538
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002539<p>This instruction always performs a logical shift right operation. The most
2540significant bits of the result will be filled with zero bits after the
Gabor Greifd9068fe2008-08-07 21:46:00 +00002541shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2542the number of bits in <tt>op1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002543
2544<h5>Example:</h5>
2545<pre>
2546 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2547 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2548 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2549 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002550 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551</pre>
2552</div>
2553
2554<!-- _______________________________________________________________________ -->
2555<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2556Instruction</a> </div>
2557<div class="doc_text">
2558
2559<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002560<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002561</pre>
2562
2563<h5>Overview:</h5>
2564<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2565operand shifted to the right a specified number of bits with sign extension.</p>
2566
2567<h5>Arguments:</h5>
2568<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002569<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002570type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002571
2572<h5>Semantics:</h5>
2573<p>This instruction always performs an arithmetic shift right operation,
2574The most significant bits of the result will be filled with the sign bit
Gabor Greifd9068fe2008-08-07 21:46:00 +00002575of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2576larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002577</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002578
2579<h5>Example:</h5>
2580<pre>
2581 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2582 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2583 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2584 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002585 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002586</pre>
2587</div>
2588
2589<!-- _______________________________________________________________________ -->
2590<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2591Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00002592
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002593<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002594
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002595<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002596
2597<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002598 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002599</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002600
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002602
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2604its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002605
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002606<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002607
2608<p>The two arguments to the '<tt>and</tt>' instruction must be
2609<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2610values. Both arguments must have identical types.</p>
2611
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002612<h5>Semantics:</h5>
2613<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2614<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002615<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002616<table border="1" cellspacing="0" cellpadding="4">
2617 <tbody>
2618 <tr>
2619 <td>In0</td>
2620 <td>In1</td>
2621 <td>Out</td>
2622 </tr>
2623 <tr>
2624 <td>0</td>
2625 <td>0</td>
2626 <td>0</td>
2627 </tr>
2628 <tr>
2629 <td>0</td>
2630 <td>1</td>
2631 <td>0</td>
2632 </tr>
2633 <tr>
2634 <td>1</td>
2635 <td>0</td>
2636 <td>0</td>
2637 </tr>
2638 <tr>
2639 <td>1</td>
2640 <td>1</td>
2641 <td>1</td>
2642 </tr>
2643 </tbody>
2644</table>
2645</div>
2646<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002647<pre>
2648 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002649 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2650 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2651</pre>
2652</div>
2653<!-- _______________________________________________________________________ -->
2654<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2655<div class="doc_text">
2656<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002657<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002658</pre>
2659<h5>Overview:</h5>
2660<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2661or of its two operands.</p>
2662<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002663
2664<p>The two arguments to the '<tt>or</tt>' instruction must be
2665<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2666values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002667<h5>Semantics:</h5>
2668<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2669<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002670<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002671<table border="1" cellspacing="0" cellpadding="4">
2672 <tbody>
2673 <tr>
2674 <td>In0</td>
2675 <td>In1</td>
2676 <td>Out</td>
2677 </tr>
2678 <tr>
2679 <td>0</td>
2680 <td>0</td>
2681 <td>0</td>
2682 </tr>
2683 <tr>
2684 <td>0</td>
2685 <td>1</td>
2686 <td>1</td>
2687 </tr>
2688 <tr>
2689 <td>1</td>
2690 <td>0</td>
2691 <td>1</td>
2692 </tr>
2693 <tr>
2694 <td>1</td>
2695 <td>1</td>
2696 <td>1</td>
2697 </tr>
2698 </tbody>
2699</table>
2700</div>
2701<h5>Example:</h5>
2702<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2703 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2704 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2705</pre>
2706</div>
2707<!-- _______________________________________________________________________ -->
2708<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2709Instruction</a> </div>
2710<div class="doc_text">
2711<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002712<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002713</pre>
2714<h5>Overview:</h5>
2715<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2716or of its two operands. The <tt>xor</tt> is used to implement the
2717"one's complement" operation, which is the "~" operator in C.</p>
2718<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002719<p>The two arguments to the '<tt>xor</tt>' instruction must be
2720<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2721values. Both arguments must have identical types.</p>
2722
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002723<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002724
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002725<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2726<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002727<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002728<table border="1" cellspacing="0" cellpadding="4">
2729 <tbody>
2730 <tr>
2731 <td>In0</td>
2732 <td>In1</td>
2733 <td>Out</td>
2734 </tr>
2735 <tr>
2736 <td>0</td>
2737 <td>0</td>
2738 <td>0</td>
2739 </tr>
2740 <tr>
2741 <td>0</td>
2742 <td>1</td>
2743 <td>1</td>
2744 </tr>
2745 <tr>
2746 <td>1</td>
2747 <td>0</td>
2748 <td>1</td>
2749 </tr>
2750 <tr>
2751 <td>1</td>
2752 <td>1</td>
2753 <td>0</td>
2754 </tr>
2755 </tbody>
2756</table>
2757</div>
2758<p> </p>
2759<h5>Example:</h5>
2760<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2761 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2762 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2763 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2764</pre>
2765</div>
2766
2767<!-- ======================================================================= -->
2768<div class="doc_subsection">
2769 <a name="vectorops">Vector Operations</a>
2770</div>
2771
2772<div class="doc_text">
2773
2774<p>LLVM supports several instructions to represent vector operations in a
2775target-independent manner. These instructions cover the element-access and
2776vector-specific operations needed to process vectors effectively. While LLVM
2777does directly support these vector operations, many sophisticated algorithms
2778will want to use target-specific intrinsics to take full advantage of a specific
2779target.</p>
2780
2781</div>
2782
2783<!-- _______________________________________________________________________ -->
2784<div class="doc_subsubsection">
2785 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2786</div>
2787
2788<div class="doc_text">
2789
2790<h5>Syntax:</h5>
2791
2792<pre>
2793 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2794</pre>
2795
2796<h5>Overview:</h5>
2797
2798<p>
2799The '<tt>extractelement</tt>' instruction extracts a single scalar
2800element from a vector at a specified index.
2801</p>
2802
2803
2804<h5>Arguments:</h5>
2805
2806<p>
2807The first operand of an '<tt>extractelement</tt>' instruction is a
2808value of <a href="#t_vector">vector</a> type. The second operand is
2809an index indicating the position from which to extract the element.
2810The index may be a variable.</p>
2811
2812<h5>Semantics:</h5>
2813
2814<p>
2815The result is a scalar of the same type as the element type of
2816<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2817<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2818results are undefined.
2819</p>
2820
2821<h5>Example:</h5>
2822
2823<pre>
2824 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2825</pre>
2826</div>
2827
2828
2829<!-- _______________________________________________________________________ -->
2830<div class="doc_subsubsection">
2831 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2832</div>
2833
2834<div class="doc_text">
2835
2836<h5>Syntax:</h5>
2837
2838<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00002839 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002840</pre>
2841
2842<h5>Overview:</h5>
2843
2844<p>
2845The '<tt>insertelement</tt>' instruction inserts a scalar
2846element into a vector at a specified index.
2847</p>
2848
2849
2850<h5>Arguments:</h5>
2851
2852<p>
2853The first operand of an '<tt>insertelement</tt>' instruction is a
2854value of <a href="#t_vector">vector</a> type. The second operand is a
2855scalar value whose type must equal the element type of the first
2856operand. The third operand is an index indicating the position at
2857which to insert the value. The index may be a variable.</p>
2858
2859<h5>Semantics:</h5>
2860
2861<p>
2862The result is a vector of the same type as <tt>val</tt>. Its
2863element values are those of <tt>val</tt> except at position
2864<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2865exceeds the length of <tt>val</tt>, the results are undefined.
2866</p>
2867
2868<h5>Example:</h5>
2869
2870<pre>
2871 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2872</pre>
2873</div>
2874
2875<!-- _______________________________________________________________________ -->
2876<div class="doc_subsubsection">
2877 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2878</div>
2879
2880<div class="doc_text">
2881
2882<h5>Syntax:</h5>
2883
2884<pre>
2885 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2886</pre>
2887
2888<h5>Overview:</h5>
2889
2890<p>
2891The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2892from two input vectors, returning a vector of the same type.
2893</p>
2894
2895<h5>Arguments:</h5>
2896
2897<p>
2898The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2899with types that match each other and types that match the result of the
2900instruction. The third argument is a shuffle mask, which has the same number
2901of elements as the other vector type, but whose element type is always 'i32'.
2902</p>
2903
2904<p>
2905The shuffle mask operand is required to be a constant vector with either
2906constant integer or undef values.
2907</p>
2908
2909<h5>Semantics:</h5>
2910
2911<p>
2912The elements of the two input vectors are numbered from left to right across
2913both of the vectors. The shuffle mask operand specifies, for each element of
2914the result vector, which element of the two input registers the result element
2915gets. The element selector may be undef (meaning "don't care") and the second
2916operand may be undef if performing a shuffle from only one vector.
2917</p>
2918
2919<h5>Example:</h5>
2920
2921<pre>
2922 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2923 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2924 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2925 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2926</pre>
2927</div>
2928
2929
2930<!-- ======================================================================= -->
2931<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00002932 <a name="aggregateops">Aggregate Operations</a>
2933</div>
2934
2935<div class="doc_text">
2936
2937<p>LLVM supports several instructions for working with aggregate values.
2938</p>
2939
2940</div>
2941
2942<!-- _______________________________________________________________________ -->
2943<div class="doc_subsubsection">
2944 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2945</div>
2946
2947<div class="doc_text">
2948
2949<h5>Syntax:</h5>
2950
2951<pre>
2952 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2953</pre>
2954
2955<h5>Overview:</h5>
2956
2957<p>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002958The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2959or array element from an aggregate value.
Dan Gohman74d6faf2008-05-12 23:51:09 +00002960</p>
2961
2962
2963<h5>Arguments:</h5>
2964
2965<p>
2966The first operand of an '<tt>extractvalue</tt>' instruction is a
2967value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002968type. The operands are constant indices to specify which value to extract
Dan Gohmane5febe42008-05-31 00:58:22 +00002969in a similar manner as indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00002970'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2971</p>
2972
2973<h5>Semantics:</h5>
2974
2975<p>
2976The result is the value at the position in the aggregate specified by
2977the index operands.
2978</p>
2979
2980<h5>Example:</h5>
2981
2982<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002983 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002984</pre>
2985</div>
2986
2987
2988<!-- _______________________________________________________________________ -->
2989<div class="doc_subsubsection">
2990 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2991</div>
2992
2993<div class="doc_text">
2994
2995<h5>Syntax:</h5>
2996
2997<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002998 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002999</pre>
3000
3001<h5>Overview:</h5>
3002
3003<p>
3004The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman6c6dea02008-05-13 18:16:06 +00003005into a struct field or array element in an aggregate.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003006</p>
3007
3008
3009<h5>Arguments:</h5>
3010
3011<p>
3012The first operand of an '<tt>insertvalue</tt>' instruction is a
3013value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3014The second operand is a first-class value to insert.
Dan Gohman4f29e422008-05-23 21:53:15 +00003015The following operands are constant indices
Dan Gohmane5febe42008-05-31 00:58:22 +00003016indicating the position at which to insert the value in a similar manner as
Dan Gohman6c6dea02008-05-13 18:16:06 +00003017indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00003018'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3019The value to insert must have the same type as the value identified
Dan Gohman6c6dea02008-05-13 18:16:06 +00003020by the indices.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003021
3022<h5>Semantics:</h5>
3023
3024<p>
3025The result is an aggregate of the same type as <tt>val</tt>. Its
3026value is that of <tt>val</tt> except that the value at the position
Dan Gohman6c6dea02008-05-13 18:16:06 +00003027specified by the indices is that of <tt>elt</tt>.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003028</p>
3029
3030<h5>Example:</h5>
3031
3032<pre>
Dan Gohmanb1aab4e2008-06-23 15:26:37 +00003033 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003034</pre>
3035</div>
3036
3037
3038<!-- ======================================================================= -->
3039<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040 <a name="memoryops">Memory Access and Addressing Operations</a>
3041</div>
3042
3043<div class="doc_text">
3044
3045<p>A key design point of an SSA-based representation is how it
3046represents memory. In LLVM, no memory locations are in SSA form, which
3047makes things very simple. This section describes how to read, write,
3048allocate, and free memory in LLVM.</p>
3049
3050</div>
3051
3052<!-- _______________________________________________________________________ -->
3053<div class="doc_subsubsection">
3054 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3055</div>
3056
3057<div class="doc_text">
3058
3059<h5>Syntax:</h5>
3060
3061<pre>
3062 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3063</pre>
3064
3065<h5>Overview:</h5>
3066
3067<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lambcfe00962007-12-17 01:00:21 +00003068heap and returns a pointer to it. The object is always allocated in the generic
3069address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003070
3071<h5>Arguments:</h5>
3072
3073<p>The '<tt>malloc</tt>' instruction allocates
3074<tt>sizeof(&lt;type&gt;)*NumElements</tt>
3075bytes of memory from the operating system and returns a pointer of the
3076appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif5082cf42008-02-09 22:24:34 +00003077number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003078If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif5082cf42008-02-09 22:24:34 +00003079be aligned to at least that boundary. If not specified, or if zero, the target can
3080choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003081
3082<p>'<tt>type</tt>' must be a sized type.</p>
3083
3084<h5>Semantics:</h5>
3085
3086<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner8b094fc2008-04-19 21:01:16 +00003087a pointer is returned. The result of a zero byte allocattion is undefined. The
3088result is null if there is insufficient memory available.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003089
3090<h5>Example:</h5>
3091
3092<pre>
3093 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
3094
3095 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3096 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3097 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3098 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3099 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3100</pre>
3101</div>
3102
3103<!-- _______________________________________________________________________ -->
3104<div class="doc_subsubsection">
3105 <a name="i_free">'<tt>free</tt>' Instruction</a>
3106</div>
3107
3108<div class="doc_text">
3109
3110<h5>Syntax:</h5>
3111
3112<pre>
3113 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
3114</pre>
3115
3116<h5>Overview:</h5>
3117
3118<p>The '<tt>free</tt>' instruction returns memory back to the unused
3119memory heap to be reallocated in the future.</p>
3120
3121<h5>Arguments:</h5>
3122
3123<p>'<tt>value</tt>' shall be a pointer value that points to a value
3124that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3125instruction.</p>
3126
3127<h5>Semantics:</h5>
3128
3129<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner329d6532008-04-19 22:41:32 +00003130after this instruction executes. If the pointer is null, the operation
3131is a noop.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003132
3133<h5>Example:</h5>
3134
3135<pre>
3136 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3137 free [4 x i8]* %array
3138</pre>
3139</div>
3140
3141<!-- _______________________________________________________________________ -->
3142<div class="doc_subsubsection">
3143 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3144</div>
3145
3146<div class="doc_text">
3147
3148<h5>Syntax:</h5>
3149
3150<pre>
3151 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3152</pre>
3153
3154<h5>Overview:</h5>
3155
3156<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3157currently executing function, to be automatically released when this function
Christopher Lambcfe00962007-12-17 01:00:21 +00003158returns to its caller. The object is always allocated in the generic address
3159space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003160
3161<h5>Arguments:</h5>
3162
3163<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
3164bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif5082cf42008-02-09 22:24:34 +00003165appropriate type to the program. If "NumElements" is specified, it is the
3166number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003167If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif5082cf42008-02-09 22:24:34 +00003168to be aligned to at least that boundary. If not specified, or if zero, the target
3169can choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003170
3171<p>'<tt>type</tt>' may be any sized type.</p>
3172
3173<h5>Semantics:</h5>
3174
Chris Lattner8b094fc2008-04-19 21:01:16 +00003175<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3176there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003177memory is automatically released when the function returns. The '<tt>alloca</tt>'
3178instruction is commonly used to represent automatic variables that must
3179have an address available. When the function returns (either with the <tt><a
3180 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner10368b62008-04-02 00:38:26 +00003181instructions), the memory is reclaimed. Allocating zero bytes
3182is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003183
3184<h5>Example:</h5>
3185
3186<pre>
3187 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3188 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3189 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3190 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3191</pre>
3192</div>
3193
3194<!-- _______________________________________________________________________ -->
3195<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3196Instruction</a> </div>
3197<div class="doc_text">
3198<h5>Syntax:</h5>
3199<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
3200<h5>Overview:</h5>
3201<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3202<h5>Arguments:</h5>
3203<p>The argument to the '<tt>load</tt>' instruction specifies the memory
3204address from which to load. The pointer must point to a <a
3205 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3206marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
3207the number or order of execution of this <tt>load</tt> with other
3208volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3209instructions. </p>
Chris Lattner21003c82008-01-06 21:04:43 +00003210<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003211The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003212(that is, the alignment of the memory address). A value of 0 or an
3213omitted "align" argument means that the operation has the preferential
3214alignment for the target. It is the responsibility of the code emitter
3215to ensure that the alignment information is correct. Overestimating
3216the alignment results in an undefined behavior. Underestimating the
3217alignment may produce less efficient code. An alignment of 1 is always
3218safe.
3219</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003220<h5>Semantics:</h5>
3221<p>The location of memory pointed to is loaded.</p>
3222<h5>Examples:</h5>
3223<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3224 <a
3225 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3226 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3227</pre>
3228</div>
3229<!-- _______________________________________________________________________ -->
3230<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3231Instruction</a> </div>
3232<div class="doc_text">
3233<h5>Syntax:</h5>
3234<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3235 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3236</pre>
3237<h5>Overview:</h5>
3238<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3239<h5>Arguments:</h5>
3240<p>There are two arguments to the '<tt>store</tt>' instruction: a value
3241to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner10368b62008-04-02 00:38:26 +00003242operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3243of the '<tt>&lt;value&gt;</tt>'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003244operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
3245optimizer is not allowed to modify the number or order of execution of
3246this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3247 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner21003c82008-01-06 21:04:43 +00003248<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003249The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003250(that is, the alignment of the memory address). A value of 0 or an
3251omitted "align" argument means that the operation has the preferential
3252alignment for the target. It is the responsibility of the code emitter
3253to ensure that the alignment information is correct. Overestimating
3254the alignment results in an undefined behavior. Underestimating the
3255alignment may produce less efficient code. An alignment of 1 is always
3256safe.
3257</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003258<h5>Semantics:</h5>
3259<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3260at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
3261<h5>Example:</h5>
3262<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00003263 store i32 3, i32* %ptr <i>; yields {void}</i>
3264 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003265</pre>
3266</div>
3267
3268<!-- _______________________________________________________________________ -->
3269<div class="doc_subsubsection">
3270 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3271</div>
3272
3273<div class="doc_text">
3274<h5>Syntax:</h5>
3275<pre>
3276 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3277</pre>
3278
3279<h5>Overview:</h5>
3280
3281<p>
3282The '<tt>getelementptr</tt>' instruction is used to get the address of a
3283subelement of an aggregate data structure.</p>
3284
3285<h5>Arguments:</h5>
3286
3287<p>This instruction takes a list of integer operands that indicate what
3288elements of the aggregate object to index to. The actual types of the arguments
3289provided depend on the type of the first pointer argument. The
3290'<tt>getelementptr</tt>' instruction is used to index down through the type
3291levels of a structure or to a specific index in an array. When indexing into a
3292structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003293into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3294values will be sign extended to 64-bits if required.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003295
3296<p>For example, let's consider a C code fragment and how it gets
3297compiled to LLVM:</p>
3298
3299<div class="doc_code">
3300<pre>
3301struct RT {
3302 char A;
3303 int B[10][20];
3304 char C;
3305};
3306struct ST {
3307 int X;
3308 double Y;
3309 struct RT Z;
3310};
3311
3312int *foo(struct ST *s) {
3313 return &amp;s[1].Z.B[5][13];
3314}
3315</pre>
3316</div>
3317
3318<p>The LLVM code generated by the GCC frontend is:</p>
3319
3320<div class="doc_code">
3321<pre>
3322%RT = type { i8 , [10 x [20 x i32]], i8 }
3323%ST = type { i32, double, %RT }
3324
3325define i32* %foo(%ST* %s) {
3326entry:
3327 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3328 ret i32* %reg
3329}
3330</pre>
3331</div>
3332
3333<h5>Semantics:</h5>
3334
3335<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
3336on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
3337and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
3338<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner10368b62008-04-02 00:38:26 +00003339to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3340structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003341
3342<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3343type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3344}</tt>' type, a structure. The second index indexes into the third element of
3345the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3346i8 }</tt>' type, another structure. The third index indexes into the second
3347element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3348array. The two dimensions of the array are subscripted into, yielding an
3349'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3350to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3351
3352<p>Note that it is perfectly legal to index partially through a
3353structure, returning a pointer to an inner element. Because of this,
3354the LLVM code for the given testcase is equivalent to:</p>
3355
3356<pre>
3357 define i32* %foo(%ST* %s) {
3358 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3359 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3360 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3361 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3362 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3363 ret i32* %t5
3364 }
3365</pre>
3366
3367<p>Note that it is undefined to access an array out of bounds: array and
3368pointer indexes must always be within the defined bounds of the array type.
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003369The one exception for this rule is zero length arrays. These arrays are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003370defined to be accessible as variable length arrays, which requires access
3371beyond the zero'th element.</p>
3372
3373<p>The getelementptr instruction is often confusing. For some more insight
3374into how it works, see <a href="GetElementPtr.html">the getelementptr
3375FAQ</a>.</p>
3376
3377<h5>Example:</h5>
3378
3379<pre>
3380 <i>; yields [12 x i8]*:aptr</i>
3381 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3382</pre>
3383</div>
3384
3385<!-- ======================================================================= -->
3386<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3387</div>
3388<div class="doc_text">
3389<p>The instructions in this category are the conversion instructions (casting)
3390which all take a single operand and a type. They perform various bit conversions
3391on the operand.</p>
3392</div>
3393
3394<!-- _______________________________________________________________________ -->
3395<div class="doc_subsubsection">
3396 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3397</div>
3398<div class="doc_text">
3399
3400<h5>Syntax:</h5>
3401<pre>
3402 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3403</pre>
3404
3405<h5>Overview:</h5>
3406<p>
3407The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3408</p>
3409
3410<h5>Arguments:</h5>
3411<p>
3412The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3413be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3414and type of the result, which must be an <a href="#t_integer">integer</a>
3415type. The bit size of <tt>value</tt> must be larger than the bit size of
3416<tt>ty2</tt>. Equal sized types are not allowed.</p>
3417
3418<h5>Semantics:</h5>
3419<p>
3420The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3421and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3422larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3423It will always truncate bits.</p>
3424
3425<h5>Example:</h5>
3426<pre>
3427 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3428 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3429 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3430</pre>
3431</div>
3432
3433<!-- _______________________________________________________________________ -->
3434<div class="doc_subsubsection">
3435 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3436</div>
3437<div class="doc_text">
3438
3439<h5>Syntax:</h5>
3440<pre>
3441 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3442</pre>
3443
3444<h5>Overview:</h5>
3445<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3446<tt>ty2</tt>.</p>
3447
3448
3449<h5>Arguments:</h5>
3450<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3451<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3452also be of <a href="#t_integer">integer</a> type. The bit size of the
3453<tt>value</tt> must be smaller than the bit size of the destination type,
3454<tt>ty2</tt>.</p>
3455
3456<h5>Semantics:</h5>
3457<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3458bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3459
3460<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3461
3462<h5>Example:</h5>
3463<pre>
3464 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3465 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3466</pre>
3467</div>
3468
3469<!-- _______________________________________________________________________ -->
3470<div class="doc_subsubsection">
3471 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3472</div>
3473<div class="doc_text">
3474
3475<h5>Syntax:</h5>
3476<pre>
3477 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3478</pre>
3479
3480<h5>Overview:</h5>
3481<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3482
3483<h5>Arguments:</h5>
3484<p>
3485The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3486<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3487also be of <a href="#t_integer">integer</a> type. The bit size of the
3488<tt>value</tt> must be smaller than the bit size of the destination type,
3489<tt>ty2</tt>.</p>
3490
3491<h5>Semantics:</h5>
3492<p>
3493The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3494bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3495the type <tt>ty2</tt>.</p>
3496
3497<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3498
3499<h5>Example:</h5>
3500<pre>
3501 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3502 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3503</pre>
3504</div>
3505
3506<!-- _______________________________________________________________________ -->
3507<div class="doc_subsubsection">
3508 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3509</div>
3510
3511<div class="doc_text">
3512
3513<h5>Syntax:</h5>
3514
3515<pre>
3516 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3517</pre>
3518
3519<h5>Overview:</h5>
3520<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3521<tt>ty2</tt>.</p>
3522
3523
3524<h5>Arguments:</h5>
3525<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3526 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3527cast it to. The size of <tt>value</tt> must be larger than the size of
3528<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3529<i>no-op cast</i>.</p>
3530
3531<h5>Semantics:</h5>
3532<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3533<a href="#t_floating">floating point</a> type to a smaller
3534<a href="#t_floating">floating point</a> type. If the value cannot fit within
3535the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3536
3537<h5>Example:</h5>
3538<pre>
3539 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3540 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3541</pre>
3542</div>
3543
3544<!-- _______________________________________________________________________ -->
3545<div class="doc_subsubsection">
3546 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3547</div>
3548<div class="doc_text">
3549
3550<h5>Syntax:</h5>
3551<pre>
3552 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3553</pre>
3554
3555<h5>Overview:</h5>
3556<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3557floating point value.</p>
3558
3559<h5>Arguments:</h5>
3560<p>The '<tt>fpext</tt>' instruction takes a
3561<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3562and a <a href="#t_floating">floating point</a> type to cast it to. The source
3563type must be smaller than the destination type.</p>
3564
3565<h5>Semantics:</h5>
3566<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3567<a href="#t_floating">floating point</a> type to a larger
3568<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3569used to make a <i>no-op cast</i> because it always changes bits. Use
3570<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3571
3572<h5>Example:</h5>
3573<pre>
3574 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3575 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3576</pre>
3577</div>
3578
3579<!-- _______________________________________________________________________ -->
3580<div class="doc_subsubsection">
3581 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3582</div>
3583<div class="doc_text">
3584
3585<h5>Syntax:</h5>
3586<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003587 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003588</pre>
3589
3590<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003591<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003592unsigned integer equivalent of type <tt>ty2</tt>.
3593</p>
3594
3595<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003596<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003597scalar or vector <a href="#t_floating">floating point</a> value, and a type
3598to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3599type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3600vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003601
3602<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003603<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003604<a href="#t_floating">floating point</a> operand into the nearest (rounding
3605towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3606the results are undefined.</p>
3607
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003608<h5>Example:</h5>
3609<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003610 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003611 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003612 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003613</pre>
3614</div>
3615
3616<!-- _______________________________________________________________________ -->
3617<div class="doc_subsubsection">
3618 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3619</div>
3620<div class="doc_text">
3621
3622<h5>Syntax:</h5>
3623<pre>
3624 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3625</pre>
3626
3627<h5>Overview:</h5>
3628<p>The '<tt>fptosi</tt>' instruction converts
3629<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3630</p>
3631
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003632<h5>Arguments:</h5>
3633<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003634scalar or vector <a href="#t_floating">floating point</a> value, and a type
3635to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3636type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3637vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003638
3639<h5>Semantics:</h5>
3640<p>The '<tt>fptosi</tt>' instruction converts its
3641<a href="#t_floating">floating point</a> operand into the nearest (rounding
3642towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3643the results are undefined.</p>
3644
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003645<h5>Example:</h5>
3646<pre>
3647 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003648 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003649 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3650</pre>
3651</div>
3652
3653<!-- _______________________________________________________________________ -->
3654<div class="doc_subsubsection">
3655 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3656</div>
3657<div class="doc_text">
3658
3659<h5>Syntax:</h5>
3660<pre>
3661 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3662</pre>
3663
3664<h5>Overview:</h5>
3665<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3666integer and converts that value to the <tt>ty2</tt> type.</p>
3667
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003668<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003669<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3670scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3671to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3672type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3673floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003674
3675<h5>Semantics:</h5>
3676<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3677integer quantity and converts it to the corresponding floating point value. If
3678the value cannot fit in the floating point value, the results are undefined.</p>
3679
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003680<h5>Example:</h5>
3681<pre>
3682 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3683 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3684</pre>
3685</div>
3686
3687<!-- _______________________________________________________________________ -->
3688<div class="doc_subsubsection">
3689 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3690</div>
3691<div class="doc_text">
3692
3693<h5>Syntax:</h5>
3694<pre>
3695 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3696</pre>
3697
3698<h5>Overview:</h5>
3699<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3700integer and converts that value to the <tt>ty2</tt> type.</p>
3701
3702<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003703<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3704scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3705to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3706type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3707floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003708
3709<h5>Semantics:</h5>
3710<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3711integer quantity and converts it to the corresponding floating point value. If
3712the value cannot fit in the floating point value, the results are undefined.</p>
3713
3714<h5>Example:</h5>
3715<pre>
3716 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3717 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3718</pre>
3719</div>
3720
3721<!-- _______________________________________________________________________ -->
3722<div class="doc_subsubsection">
3723 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3724</div>
3725<div class="doc_text">
3726
3727<h5>Syntax:</h5>
3728<pre>
3729 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3730</pre>
3731
3732<h5>Overview:</h5>
3733<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3734the integer type <tt>ty2</tt>.</p>
3735
3736<h5>Arguments:</h5>
3737<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3738must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3739<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3740
3741<h5>Semantics:</h5>
3742<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3743<tt>ty2</tt> by interpreting the pointer value as an integer and either
3744truncating or zero extending that value to the size of the integer type. If
3745<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3746<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3747are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3748change.</p>
3749
3750<h5>Example:</h5>
3751<pre>
3752 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3753 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3754</pre>
3755</div>
3756
3757<!-- _______________________________________________________________________ -->
3758<div class="doc_subsubsection">
3759 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3760</div>
3761<div class="doc_text">
3762
3763<h5>Syntax:</h5>
3764<pre>
3765 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3766</pre>
3767
3768<h5>Overview:</h5>
3769<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3770a pointer type, <tt>ty2</tt>.</p>
3771
3772<h5>Arguments:</h5>
3773<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3774value to cast, and a type to cast it to, which must be a
3775<a href="#t_pointer">pointer</a> type.
3776
3777<h5>Semantics:</h5>
3778<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3779<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3780the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3781size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3782the size of a pointer then a zero extension is done. If they are the same size,
3783nothing is done (<i>no-op cast</i>).</p>
3784
3785<h5>Example:</h5>
3786<pre>
3787 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3788 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3789 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3790</pre>
3791</div>
3792
3793<!-- _______________________________________________________________________ -->
3794<div class="doc_subsubsection">
3795 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3796</div>
3797<div class="doc_text">
3798
3799<h5>Syntax:</h5>
3800<pre>
3801 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3802</pre>
3803
3804<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003805
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003806<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3807<tt>ty2</tt> without changing any bits.</p>
3808
3809<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003810
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003811<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman7305fa02008-09-08 16:45:59 +00003812a non-aggregate first class value, and a type to cast it to, which must also be
3813a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3814<tt>value</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003815and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner6704c212008-05-20 20:48:21 +00003816type is a pointer, the destination type must also be a pointer. This
3817instruction supports bitwise conversion of vectors to integers and to vectors
3818of other types (as long as they have the same size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003819
3820<h5>Semantics:</h5>
3821<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3822<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3823this conversion. The conversion is done as if the <tt>value</tt> had been
3824stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3825converted to other pointer types with this instruction. To convert pointers to
3826other types, use the <a href="#i_inttoptr">inttoptr</a> or
3827<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3828
3829<h5>Example:</h5>
3830<pre>
3831 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3832 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3833 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3834</pre>
3835</div>
3836
3837<!-- ======================================================================= -->
3838<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3839<div class="doc_text">
3840<p>The instructions in this category are the "miscellaneous"
3841instructions, which defy better classification.</p>
3842</div>
3843
3844<!-- _______________________________________________________________________ -->
3845<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3846</div>
3847<div class="doc_text">
3848<h5>Syntax:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003849<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003850</pre>
3851<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003852<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3853a vector of boolean values based on comparison
3854of its two integer, integer vector, or pointer operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003855<h5>Arguments:</h5>
3856<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3857the condition code indicating the kind of comparison to perform. It is not
3858a value, just a keyword. The possible condition code are:
3859<ol>
3860 <li><tt>eq</tt>: equal</li>
3861 <li><tt>ne</tt>: not equal </li>
3862 <li><tt>ugt</tt>: unsigned greater than</li>
3863 <li><tt>uge</tt>: unsigned greater or equal</li>
3864 <li><tt>ult</tt>: unsigned less than</li>
3865 <li><tt>ule</tt>: unsigned less or equal</li>
3866 <li><tt>sgt</tt>: signed greater than</li>
3867 <li><tt>sge</tt>: signed greater or equal</li>
3868 <li><tt>slt</tt>: signed less than</li>
3869 <li><tt>sle</tt>: signed less or equal</li>
3870</ol>
3871<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003872<a href="#t_pointer">pointer</a>
3873or integer <a href="#t_vector">vector</a> typed.
3874They must also be identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003875<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003876<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003877the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003878yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003879<ol>
3880 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3881 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3882 </li>
3883 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3884 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3885 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003886 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003888 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003890 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003892 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003893 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003894 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003896 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003897 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003898 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003899 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003900 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003901</ol>
3902<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3903values are compared as if they were integers.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003904<p>If the operands are integer vectors, then they are compared
3905element by element. The result is an <tt>i1</tt> vector with
3906the same number of elements as the values being compared.
3907Otherwise, the result is an <tt>i1</tt>.
3908</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909
3910<h5>Example:</h5>
3911<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3912 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3913 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3914 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3915 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3916 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3917</pre>
3918</div>
3919
3920<!-- _______________________________________________________________________ -->
3921<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3922</div>
3923<div class="doc_text">
3924<h5>Syntax:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003925<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003926</pre>
3927<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003928<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3929or vector of boolean values based on comparison
3930of its operands.
3931<p>
3932If the operands are floating point scalars, then the result
3933type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3934</p>
3935<p>If the operands are floating point vectors, then the result type
3936is a vector of boolean with the same number of elements as the
3937operands being compared.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003938<h5>Arguments:</h5>
3939<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3940the condition code indicating the kind of comparison to perform. It is not
3941a value, just a keyword. The possible condition code are:
3942<ol>
3943 <li><tt>false</tt>: no comparison, always returns false</li>
3944 <li><tt>oeq</tt>: ordered and equal</li>
3945 <li><tt>ogt</tt>: ordered and greater than </li>
3946 <li><tt>oge</tt>: ordered and greater than or equal</li>
3947 <li><tt>olt</tt>: ordered and less than </li>
3948 <li><tt>ole</tt>: ordered and less than or equal</li>
3949 <li><tt>one</tt>: ordered and not equal</li>
3950 <li><tt>ord</tt>: ordered (no nans)</li>
3951 <li><tt>ueq</tt>: unordered or equal</li>
3952 <li><tt>ugt</tt>: unordered or greater than </li>
3953 <li><tt>uge</tt>: unordered or greater than or equal</li>
3954 <li><tt>ult</tt>: unordered or less than </li>
3955 <li><tt>ule</tt>: unordered or less than or equal</li>
3956 <li><tt>une</tt>: unordered or not equal</li>
3957 <li><tt>uno</tt>: unordered (either nans)</li>
3958 <li><tt>true</tt>: no comparison, always returns true</li>
3959</ol>
3960<p><i>Ordered</i> means that neither operand is a QNAN while
3961<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003962<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3963either a <a href="#t_floating">floating point</a> type
3964or a <a href="#t_vector">vector</a> of floating point type.
3965They must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003966<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003967<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003968according to the condition code given as <tt>cond</tt>.
3969If the operands are vectors, then the vectors are compared
3970element by element.
3971Each comparison performed
3972always yields an <a href="#t_primitive">i1</a> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003973<ol>
3974 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3975 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003976 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003977 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003978 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003980 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003982 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003983 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003984 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003985 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003986 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003987 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3988 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003989 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003990 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003991 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003992 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003993 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003994 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003995 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003996 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003997 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003998 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003999 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004000 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
4001 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4002</ol>
4003
4004<h5>Example:</h5>
4005<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004006 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4007 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4008 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004009</pre>
4010</div>
4011
4012<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00004013<div class="doc_subsubsection">
4014 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4015</div>
4016<div class="doc_text">
4017<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004018<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004019</pre>
4020<h5>Overview:</h5>
4021<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4022element-wise comparison of its two integer vector operands.</p>
4023<h5>Arguments:</h5>
4024<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4025the condition code indicating the kind of comparison to perform. It is not
4026a value, just a keyword. The possible condition code are:
4027<ol>
4028 <li><tt>eq</tt>: equal</li>
4029 <li><tt>ne</tt>: not equal </li>
4030 <li><tt>ugt</tt>: unsigned greater than</li>
4031 <li><tt>uge</tt>: unsigned greater or equal</li>
4032 <li><tt>ult</tt>: unsigned less than</li>
4033 <li><tt>ule</tt>: unsigned less or equal</li>
4034 <li><tt>sgt</tt>: signed greater than</li>
4035 <li><tt>sge</tt>: signed greater or equal</li>
4036 <li><tt>slt</tt>: signed less than</li>
4037 <li><tt>sle</tt>: signed less or equal</li>
4038</ol>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004039<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begeman646fa482008-05-12 19:01:56 +00004040<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4041<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004042<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004043according to the condition code given as <tt>cond</tt>. The comparison yields a
4044<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4045identical type as the values being compared. The most significant bit in each
4046element is 1 if the element-wise comparison evaluates to true, and is 0
4047otherwise. All other bits of the result are undefined. The condition codes
4048are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4049instruction</a>.
4050
4051<h5>Example:</h5>
4052<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004053 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4054 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004055</pre>
4056</div>
4057
4058<!-- _______________________________________________________________________ -->
4059<div class="doc_subsubsection">
4060 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4061</div>
4062<div class="doc_text">
4063<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004064<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begeman646fa482008-05-12 19:01:56 +00004065<h5>Overview:</h5>
4066<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4067element-wise comparison of its two floating point vector operands. The output
4068elements have the same width as the input elements.</p>
4069<h5>Arguments:</h5>
4070<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4071the condition code indicating the kind of comparison to perform. It is not
4072a value, just a keyword. The possible condition code are:
4073<ol>
4074 <li><tt>false</tt>: no comparison, always returns false</li>
4075 <li><tt>oeq</tt>: ordered and equal</li>
4076 <li><tt>ogt</tt>: ordered and greater than </li>
4077 <li><tt>oge</tt>: ordered and greater than or equal</li>
4078 <li><tt>olt</tt>: ordered and less than </li>
4079 <li><tt>ole</tt>: ordered and less than or equal</li>
4080 <li><tt>one</tt>: ordered and not equal</li>
4081 <li><tt>ord</tt>: ordered (no nans)</li>
4082 <li><tt>ueq</tt>: unordered or equal</li>
4083 <li><tt>ugt</tt>: unordered or greater than </li>
4084 <li><tt>uge</tt>: unordered or greater than or equal</li>
4085 <li><tt>ult</tt>: unordered or less than </li>
4086 <li><tt>ule</tt>: unordered or less than or equal</li>
4087 <li><tt>une</tt>: unordered or not equal</li>
4088 <li><tt>uno</tt>: unordered (either nans)</li>
4089 <li><tt>true</tt>: no comparison, always returns true</li>
4090</ol>
4091<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4092<a href="#t_floating">floating point</a> typed. They must also be identical
4093types.</p>
4094<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004095<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004096according to the condition code given as <tt>cond</tt>. The comparison yields a
4097<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4098an identical number of elements as the values being compared, and each element
4099having identical with to the width of the floating point elements. The most
4100significant bit in each element is 1 if the element-wise comparison evaluates to
4101true, and is 0 otherwise. All other bits of the result are undefined. The
4102condition codes are evaluated identically to the
4103<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4104
4105<h5>Example:</h5>
4106<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004107 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4108 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004109</pre>
4110</div>
4111
4112<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00004113<div class="doc_subsubsection">
4114 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4115</div>
4116
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004117<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00004118
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004119<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004120
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004121<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4122<h5>Overview:</h5>
4123<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4124the SSA graph representing the function.</p>
4125<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004126
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004127<p>The type of the incoming values is specified with the first type
4128field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4129as arguments, with one pair for each predecessor basic block of the
4130current block. Only values of <a href="#t_firstclass">first class</a>
4131type may be used as the value arguments to the PHI node. Only labels
4132may be used as the label arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004133
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004134<p>There must be no non-phi instructions between the start of a basic
4135block and the PHI instructions: i.e. PHI instructions must be first in
4136a basic block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004137
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004138<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004139
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004140<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4141specified by the pair corresponding to the predecessor basic block that executed
4142just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004143
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004144<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004145<pre>
4146Loop: ; Infinite loop that counts from 0 on up...
4147 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4148 %nextindvar = add i32 %indvar, 1
4149 br label %Loop
4150</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004151</div>
4152
4153<!-- _______________________________________________________________________ -->
4154<div class="doc_subsubsection">
4155 <a name="i_select">'<tt>select</tt>' Instruction</a>
4156</div>
4157
4158<div class="doc_text">
4159
4160<h5>Syntax:</h5>
4161
4162<pre>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004163 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4164
4165 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004166</pre>
4167
4168<h5>Overview:</h5>
4169
4170<p>
4171The '<tt>select</tt>' instruction is used to choose one value based on a
4172condition, without branching.
4173</p>
4174
4175
4176<h5>Arguments:</h5>
4177
4178<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004179The '<tt>select</tt>' instruction requires an 'i1' value or
4180a vector of 'i1' values indicating the
Chris Lattner6704c212008-05-20 20:48:21 +00004181condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004182type. If the val1/val2 are vectors and
4183the condition is a scalar, then entire vectors are selected, not
Chris Lattner6704c212008-05-20 20:48:21 +00004184individual elements.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004185</p>
4186
4187<h5>Semantics:</h5>
4188
4189<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004190If the condition is an i1 and it evaluates to 1, the instruction returns the first
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004191value argument; otherwise, it returns the second value argument.
4192</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004193<p>
4194If the condition is a vector of i1, then the value arguments must
4195be vectors of the same size, and the selection is done element
4196by element.
4197</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004198
4199<h5>Example:</h5>
4200
4201<pre>
4202 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4203</pre>
4204</div>
4205
4206
4207<!-- _______________________________________________________________________ -->
4208<div class="doc_subsubsection">
4209 <a name="i_call">'<tt>call</tt>' Instruction</a>
4210</div>
4211
4212<div class="doc_text">
4213
4214<h5>Syntax:</h5>
4215<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004216 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004217</pre>
4218
4219<h5>Overview:</h5>
4220
4221<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4222
4223<h5>Arguments:</h5>
4224
4225<p>This instruction requires several arguments:</p>
4226
4227<ol>
4228 <li>
4229 <p>The optional "tail" marker indicates whether the callee function accesses
4230 any allocas or varargs in the caller. If the "tail" marker is present, the
4231 function call is eligible for tail call optimization. Note that calls may
4232 be marked "tail" even if they do not occur before a <a
4233 href="#i_ret"><tt>ret</tt></a> instruction.
4234 </li>
4235 <li>
4236 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
4237 convention</a> the call should use. If none is specified, the call defaults
4238 to using C calling conventions.
4239 </li>
4240 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004241 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4242 the type of the return value. Functions that return no value are marked
4243 <tt><a href="#t_void">void</a></tt>.</p>
4244 </li>
4245 <li>
4246 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4247 value being invoked. The argument types must match the types implied by
4248 this signature. This type can be omitted if the function is not varargs
4249 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004250 </li>
4251 <li>
4252 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4253 be invoked. In most cases, this is a direct function invocation, but
4254 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4255 to function value.</p>
4256 </li>
4257 <li>
4258 <p>'<tt>function args</tt>': argument list whose types match the
4259 function signature argument types. All arguments must be of
4260 <a href="#t_firstclass">first class</a> type. If the function signature
4261 indicates the function accepts a variable number of arguments, the extra
4262 arguments can be specified.</p>
4263 </li>
4264</ol>
4265
4266<h5>Semantics:</h5>
4267
4268<p>The '<tt>call</tt>' instruction is used to cause control flow to
4269transfer to a specified function, with its incoming arguments bound to
4270the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4271instruction in the called function, control flow continues with the
4272instruction after the function call, and the return value of the
Chris Lattner5e893ef2008-03-21 17:24:17 +00004273function is bound to the result argument. If the callee returns multiple
4274values then the return values of the function are only accessible through
4275the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004276
4277<h5>Example:</h5>
4278
4279<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004280 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00004281 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4282 %X = tail call i32 @foo() <i>; yields i32</i>
4283 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4284 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00004285
4286 %struct.A = type { i32, i8 }
Chris Lattner5e893ef2008-03-21 17:24:17 +00004287 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4288 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4289 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004290</pre>
4291
4292</div>
4293
4294<!-- _______________________________________________________________________ -->
4295<div class="doc_subsubsection">
4296 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4297</div>
4298
4299<div class="doc_text">
4300
4301<h5>Syntax:</h5>
4302
4303<pre>
4304 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4305</pre>
4306
4307<h5>Overview:</h5>
4308
4309<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4310the "variable argument" area of a function call. It is used to implement the
4311<tt>va_arg</tt> macro in C.</p>
4312
4313<h5>Arguments:</h5>
4314
4315<p>This instruction takes a <tt>va_list*</tt> value and the type of
4316the argument. It returns a value of the specified argument type and
4317increments the <tt>va_list</tt> to point to the next argument. The
4318actual type of <tt>va_list</tt> is target specific.</p>
4319
4320<h5>Semantics:</h5>
4321
4322<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4323type from the specified <tt>va_list</tt> and causes the
4324<tt>va_list</tt> to point to the next argument. For more information,
4325see the variable argument handling <a href="#int_varargs">Intrinsic
4326Functions</a>.</p>
4327
4328<p>It is legal for this instruction to be called in a function which does not
4329take a variable number of arguments, for example, the <tt>vfprintf</tt>
4330function.</p>
4331
4332<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
4333href="#intrinsics">intrinsic function</a> because it takes a type as an
4334argument.</p>
4335
4336<h5>Example:</h5>
4337
4338<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4339
4340</div>
4341
Devang Patela3cc5372008-03-10 20:49:15 +00004342<!-- _______________________________________________________________________ -->
4343<div class="doc_subsubsection">
4344 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4345</div>
4346
4347<div class="doc_text">
4348
4349<h5>Syntax:</h5>
4350<pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004351 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patela3cc5372008-03-10 20:49:15 +00004352</pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004353
Devang Patela3cc5372008-03-10 20:49:15 +00004354<h5>Overview:</h5>
4355
4356<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattneree9da3f2008-03-21 17:20:51 +00004357from a '<tt><a href="#i_call">call</a></tt>'
4358or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4359results.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004360
4361<h5>Arguments:</h5>
4362
Chris Lattneree9da3f2008-03-21 17:20:51 +00004363<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattnerd8dd3522008-04-23 04:06:52 +00004364first argument, or an undef value. The value must have <a
4365href="#t_struct">structure type</a>. The second argument is a constant
4366unsigned index value which must be in range for the number of values returned
4367by the call.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004368
4369<h5>Semantics:</h5>
4370
Chris Lattneree9da3f2008-03-21 17:20:51 +00004371<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4372'<tt>index</tt>' from the aggregate value.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004373
4374<h5>Example:</h5>
4375
4376<pre>
4377 %struct.A = type { i32, i8 }
4378
4379 %r = call %struct.A @foo()
Chris Lattneree9da3f2008-03-21 17:20:51 +00004380 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4381 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patela3cc5372008-03-10 20:49:15 +00004382 add i32 %gr, 42
4383 add i8 %gr1, 41
4384</pre>
4385
4386</div>
4387
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004388<!-- *********************************************************************** -->
4389<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4390<!-- *********************************************************************** -->
4391
4392<div class="doc_text">
4393
4394<p>LLVM supports the notion of an "intrinsic function". These functions have
4395well known names and semantics and are required to follow certain restrictions.
4396Overall, these intrinsics represent an extension mechanism for the LLVM
4397language that does not require changing all of the transformations in LLVM when
4398adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
4399
4400<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4401prefix is reserved in LLVM for intrinsic names; thus, function names may not
4402begin with this prefix. Intrinsic functions must always be external functions:
4403you cannot define the body of intrinsic functions. Intrinsic functions may
4404only be used in call or invoke instructions: it is illegal to take the address
4405of an intrinsic function. Additionally, because intrinsic functions are part
4406of the LLVM language, it is required if any are added that they be documented
4407here.</p>
4408
Chandler Carrutha228e392007-08-04 01:51:18 +00004409<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4410a family of functions that perform the same operation but on different data
4411types. Because LLVM can represent over 8 million different integer types,
4412overloading is used commonly to allow an intrinsic function to operate on any
4413integer type. One or more of the argument types or the result type can be
4414overloaded to accept any integer type. Argument types may also be defined as
4415exactly matching a previous argument's type or the result type. This allows an
4416intrinsic function which accepts multiple arguments, but needs all of them to
4417be of the same type, to only be overloaded with respect to a single argument or
4418the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004419
Chandler Carrutha228e392007-08-04 01:51:18 +00004420<p>Overloaded intrinsics will have the names of its overloaded argument types
4421encoded into its function name, each preceded by a period. Only those types
4422which are overloaded result in a name suffix. Arguments whose type is matched
4423against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4424take an integer of any width and returns an integer of exactly the same integer
4425width. This leads to a family of functions such as
4426<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4427Only one type, the return type, is overloaded, and only one type suffix is
4428required. Because the argument's type is matched against the return type, it
4429does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004430
4431<p>To learn how to add an intrinsic function, please see the
4432<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
4433</p>
4434
4435</div>
4436
4437<!-- ======================================================================= -->
4438<div class="doc_subsection">
4439 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4440</div>
4441
4442<div class="doc_text">
4443
4444<p>Variable argument support is defined in LLVM with the <a
4445 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4446intrinsic functions. These functions are related to the similarly
4447named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
4448
4449<p>All of these functions operate on arguments that use a
4450target-specific value type "<tt>va_list</tt>". The LLVM assembly
4451language reference manual does not define what this type is, so all
4452transformations should be prepared to handle these functions regardless of
4453the type used.</p>
4454
4455<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4456instruction and the variable argument handling intrinsic functions are
4457used.</p>
4458
4459<div class="doc_code">
4460<pre>
4461define i32 @test(i32 %X, ...) {
4462 ; Initialize variable argument processing
4463 %ap = alloca i8*
4464 %ap2 = bitcast i8** %ap to i8*
4465 call void @llvm.va_start(i8* %ap2)
4466
4467 ; Read a single integer argument
4468 %tmp = va_arg i8** %ap, i32
4469
4470 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4471 %aq = alloca i8*
4472 %aq2 = bitcast i8** %aq to i8*
4473 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4474 call void @llvm.va_end(i8* %aq2)
4475
4476 ; Stop processing of arguments.
4477 call void @llvm.va_end(i8* %ap2)
4478 ret i32 %tmp
4479}
4480
4481declare void @llvm.va_start(i8*)
4482declare void @llvm.va_copy(i8*, i8*)
4483declare void @llvm.va_end(i8*)
4484</pre>
4485</div>
4486
4487</div>
4488
4489<!-- _______________________________________________________________________ -->
4490<div class="doc_subsubsection">
4491 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4492</div>
4493
4494
4495<div class="doc_text">
4496<h5>Syntax:</h5>
4497<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
4498<h5>Overview:</h5>
4499<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4500<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4501href="#i_va_arg">va_arg</a></tt>.</p>
4502
4503<h5>Arguments:</h5>
4504
4505<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4506
4507<h5>Semantics:</h5>
4508
4509<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4510macro available in C. In a target-dependent way, it initializes the
4511<tt>va_list</tt> element to which the argument points, so that the next call to
4512<tt>va_arg</tt> will produce the first variable argument passed to the function.
4513Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4514last argument of the function as the compiler can figure that out.</p>
4515
4516</div>
4517
4518<!-- _______________________________________________________________________ -->
4519<div class="doc_subsubsection">
4520 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4521</div>
4522
4523<div class="doc_text">
4524<h5>Syntax:</h5>
4525<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
4526<h5>Overview:</h5>
4527
4528<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
4529which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4530or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4531
4532<h5>Arguments:</h5>
4533
4534<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4535
4536<h5>Semantics:</h5>
4537
4538<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4539macro available in C. In a target-dependent way, it destroys the
4540<tt>va_list</tt> element to which the argument points. Calls to <a
4541href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4542<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4543<tt>llvm.va_end</tt>.</p>
4544
4545</div>
4546
4547<!-- _______________________________________________________________________ -->
4548<div class="doc_subsubsection">
4549 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4550</div>
4551
4552<div class="doc_text">
4553
4554<h5>Syntax:</h5>
4555
4556<pre>
4557 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4558</pre>
4559
4560<h5>Overview:</h5>
4561
4562<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4563from the source argument list to the destination argument list.</p>
4564
4565<h5>Arguments:</h5>
4566
4567<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4568The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4569
4570
4571<h5>Semantics:</h5>
4572
4573<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4574macro available in C. In a target-dependent way, it copies the source
4575<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4576intrinsic is necessary because the <tt><a href="#int_va_start">
4577llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4578example, memory allocation.</p>
4579
4580</div>
4581
4582<!-- ======================================================================= -->
4583<div class="doc_subsection">
4584 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4585</div>
4586
4587<div class="doc_text">
4588
4589<p>
4590LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00004591Collection</a> (GC) requires the implementation and generation of these
4592intrinsics.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004593These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4594stack</a>, as well as garbage collector implementations that require <a
4595href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4596Front-ends for type-safe garbage collected languages should generate these
4597intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4598href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4599</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00004600
4601<p>The garbage collection intrinsics only operate on objects in the generic
4602 address space (address space zero).</p>
4603
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004604</div>
4605
4606<!-- _______________________________________________________________________ -->
4607<div class="doc_subsubsection">
4608 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4609</div>
4610
4611<div class="doc_text">
4612
4613<h5>Syntax:</h5>
4614
4615<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004616 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004617</pre>
4618
4619<h5>Overview:</h5>
4620
4621<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4622the code generator, and allows some metadata to be associated with it.</p>
4623
4624<h5>Arguments:</h5>
4625
4626<p>The first argument specifies the address of a stack object that contains the
4627root pointer. The second pointer (which must be either a constant or a global
4628value address) contains the meta-data to be associated with the root.</p>
4629
4630<h5>Semantics:</h5>
4631
Chris Lattnera7d94ba2008-04-24 05:59:56 +00004632<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004633location. At compile-time, the code generator generates information to allow
Gordon Henriksen40393542007-12-25 02:31:26 +00004634the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4635intrinsic may only be used in a function which <a href="#gc">specifies a GC
4636algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004637
4638</div>
4639
4640
4641<!-- _______________________________________________________________________ -->
4642<div class="doc_subsubsection">
4643 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4644</div>
4645
4646<div class="doc_text">
4647
4648<h5>Syntax:</h5>
4649
4650<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004651 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004652</pre>
4653
4654<h5>Overview:</h5>
4655
4656<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4657locations, allowing garbage collector implementations that require read
4658barriers.</p>
4659
4660<h5>Arguments:</h5>
4661
4662<p>The second argument is the address to read from, which should be an address
4663allocated from the garbage collector. The first object is a pointer to the
4664start of the referenced object, if needed by the language runtime (otherwise
4665null).</p>
4666
4667<h5>Semantics:</h5>
4668
4669<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4670instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004671garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4672may only be used in a function which <a href="#gc">specifies a GC
4673algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004674
4675</div>
4676
4677
4678<!-- _______________________________________________________________________ -->
4679<div class="doc_subsubsection">
4680 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4681</div>
4682
4683<div class="doc_text">
4684
4685<h5>Syntax:</h5>
4686
4687<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004688 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004689</pre>
4690
4691<h5>Overview:</h5>
4692
4693<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4694locations, allowing garbage collector implementations that require write
4695barriers (such as generational or reference counting collectors).</p>
4696
4697<h5>Arguments:</h5>
4698
4699<p>The first argument is the reference to store, the second is the start of the
4700object to store it to, and the third is the address of the field of Obj to
4701store to. If the runtime does not require a pointer to the object, Obj may be
4702null.</p>
4703
4704<h5>Semantics:</h5>
4705
4706<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4707instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004708garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4709may only be used in a function which <a href="#gc">specifies a GC
4710algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004711
4712</div>
4713
4714
4715
4716<!-- ======================================================================= -->
4717<div class="doc_subsection">
4718 <a name="int_codegen">Code Generator Intrinsics</a>
4719</div>
4720
4721<div class="doc_text">
4722<p>
4723These intrinsics are provided by LLVM to expose special features that may only
4724be implemented with code generator support.
4725</p>
4726
4727</div>
4728
4729<!-- _______________________________________________________________________ -->
4730<div class="doc_subsubsection">
4731 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4732</div>
4733
4734<div class="doc_text">
4735
4736<h5>Syntax:</h5>
4737<pre>
4738 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4739</pre>
4740
4741<h5>Overview:</h5>
4742
4743<p>
4744The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4745target-specific value indicating the return address of the current function
4746or one of its callers.
4747</p>
4748
4749<h5>Arguments:</h5>
4750
4751<p>
4752The argument to this intrinsic indicates which function to return the address
4753for. Zero indicates the calling function, one indicates its caller, etc. The
4754argument is <b>required</b> to be a constant integer value.
4755</p>
4756
4757<h5>Semantics:</h5>
4758
4759<p>
4760The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4761the return address of the specified call frame, or zero if it cannot be
4762identified. The value returned by this intrinsic is likely to be incorrect or 0
4763for arguments other than zero, so it should only be used for debugging purposes.
4764</p>
4765
4766<p>
4767Note that calling this intrinsic does not prevent function inlining or other
4768aggressive transformations, so the value returned may not be that of the obvious
4769source-language caller.
4770</p>
4771</div>
4772
4773
4774<!-- _______________________________________________________________________ -->
4775<div class="doc_subsubsection">
4776 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4777</div>
4778
4779<div class="doc_text">
4780
4781<h5>Syntax:</h5>
4782<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004783 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004784</pre>
4785
4786<h5>Overview:</h5>
4787
4788<p>
4789The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4790target-specific frame pointer value for the specified stack frame.
4791</p>
4792
4793<h5>Arguments:</h5>
4794
4795<p>
4796The argument to this intrinsic indicates which function to return the frame
4797pointer for. Zero indicates the calling function, one indicates its caller,
4798etc. The argument is <b>required</b> to be a constant integer value.
4799</p>
4800
4801<h5>Semantics:</h5>
4802
4803<p>
4804The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4805the frame address of the specified call frame, or zero if it cannot be
4806identified. The value returned by this intrinsic is likely to be incorrect or 0
4807for arguments other than zero, so it should only be used for debugging purposes.
4808</p>
4809
4810<p>
4811Note that calling this intrinsic does not prevent function inlining or other
4812aggressive transformations, so the value returned may not be that of the obvious
4813source-language caller.
4814</p>
4815</div>
4816
4817<!-- _______________________________________________________________________ -->
4818<div class="doc_subsubsection">
4819 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4820</div>
4821
4822<div class="doc_text">
4823
4824<h5>Syntax:</h5>
4825<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004826 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004827</pre>
4828
4829<h5>Overview:</h5>
4830
4831<p>
4832The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4833the function stack, for use with <a href="#int_stackrestore">
4834<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4835features like scoped automatic variable sized arrays in C99.
4836</p>
4837
4838<h5>Semantics:</h5>
4839
4840<p>
4841This intrinsic returns a opaque pointer value that can be passed to <a
4842href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4843<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4844<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4845state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4846practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4847that were allocated after the <tt>llvm.stacksave</tt> was executed.
4848</p>
4849
4850</div>
4851
4852<!-- _______________________________________________________________________ -->
4853<div class="doc_subsubsection">
4854 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4855</div>
4856
4857<div class="doc_text">
4858
4859<h5>Syntax:</h5>
4860<pre>
4861 declare void @llvm.stackrestore(i8 * %ptr)
4862</pre>
4863
4864<h5>Overview:</h5>
4865
4866<p>
4867The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4868the function stack to the state it was in when the corresponding <a
4869href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4870useful for implementing language features like scoped automatic variable sized
4871arrays in C99.
4872</p>
4873
4874<h5>Semantics:</h5>
4875
4876<p>
4877See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4878</p>
4879
4880</div>
4881
4882
4883<!-- _______________________________________________________________________ -->
4884<div class="doc_subsubsection">
4885 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4886</div>
4887
4888<div class="doc_text">
4889
4890<h5>Syntax:</h5>
4891<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004892 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004893</pre>
4894
4895<h5>Overview:</h5>
4896
4897
4898<p>
4899The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4900a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4901no
4902effect on the behavior of the program but can change its performance
4903characteristics.
4904</p>
4905
4906<h5>Arguments:</h5>
4907
4908<p>
4909<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4910determining if the fetch should be for a read (0) or write (1), and
4911<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4912locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4913<tt>locality</tt> arguments must be constant integers.
4914</p>
4915
4916<h5>Semantics:</h5>
4917
4918<p>
4919This intrinsic does not modify the behavior of the program. In particular,
4920prefetches cannot trap and do not produce a value. On targets that support this
4921intrinsic, the prefetch can provide hints to the processor cache for better
4922performance.
4923</p>
4924
4925</div>
4926
4927<!-- _______________________________________________________________________ -->
4928<div class="doc_subsubsection">
4929 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4930</div>
4931
4932<div class="doc_text">
4933
4934<h5>Syntax:</h5>
4935<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004936 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004937</pre>
4938
4939<h5>Overview:</h5>
4940
4941
4942<p>
4943The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner96451482008-08-05 18:29:16 +00004944(PC) in a region of
4945code to simulators and other tools. The method is target specific, but it is
4946expected that the marker will use exported symbols to transmit the PC of the
4947marker.
4948The marker makes no guarantees that it will remain with any specific instruction
4949after optimizations. It is possible that the presence of a marker will inhibit
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004950optimizations. The intended use is to be inserted after optimizations to allow
4951correlations of simulation runs.
4952</p>
4953
4954<h5>Arguments:</h5>
4955
4956<p>
4957<tt>id</tt> is a numerical id identifying the marker.
4958</p>
4959
4960<h5>Semantics:</h5>
4961
4962<p>
4963This intrinsic does not modify the behavior of the program. Backends that do not
4964support this intrinisic may ignore it.
4965</p>
4966
4967</div>
4968
4969<!-- _______________________________________________________________________ -->
4970<div class="doc_subsubsection">
4971 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4972</div>
4973
4974<div class="doc_text">
4975
4976<h5>Syntax:</h5>
4977<pre>
4978 declare i64 @llvm.readcyclecounter( )
4979</pre>
4980
4981<h5>Overview:</h5>
4982
4983
4984<p>
4985The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4986counter register (or similar low latency, high accuracy clocks) on those targets
4987that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4988As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4989should only be used for small timings.
4990</p>
4991
4992<h5>Semantics:</h5>
4993
4994<p>
4995When directly supported, reading the cycle counter should not modify any memory.
4996Implementations are allowed to either return a application specific value or a
4997system wide value. On backends without support, this is lowered to a constant 0.
4998</p>
4999
5000</div>
5001
5002<!-- ======================================================================= -->
5003<div class="doc_subsection">
5004 <a name="int_libc">Standard C Library Intrinsics</a>
5005</div>
5006
5007<div class="doc_text">
5008<p>
5009LLVM provides intrinsics for a few important standard C library functions.
5010These intrinsics allow source-language front-ends to pass information about the
5011alignment of the pointer arguments to the code generator, providing opportunity
5012for more efficient code generation.
5013</p>
5014
5015</div>
5016
5017<!-- _______________________________________________________________________ -->
5018<div class="doc_subsubsection">
5019 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5020</div>
5021
5022<div class="doc_text">
5023
5024<h5>Syntax:</h5>
5025<pre>
5026 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5027 i32 &lt;len&gt;, i32 &lt;align&gt;)
5028 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5029 i64 &lt;len&gt;, i32 &lt;align&gt;)
5030</pre>
5031
5032<h5>Overview:</h5>
5033
5034<p>
5035The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5036location to the destination location.
5037</p>
5038
5039<p>
5040Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5041intrinsics do not return a value, and takes an extra alignment argument.
5042</p>
5043
5044<h5>Arguments:</h5>
5045
5046<p>
5047The first argument is a pointer to the destination, the second is a pointer to
5048the source. The third argument is an integer argument
5049specifying the number of bytes to copy, and the fourth argument is the alignment
5050of the source and destination locations.
5051</p>
5052
5053<p>
5054If the call to this intrinisic has an alignment value that is not 0 or 1, then
5055the caller guarantees that both the source and destination pointers are aligned
5056to that boundary.
5057</p>
5058
5059<h5>Semantics:</h5>
5060
5061<p>
5062The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5063location to the destination location, which are not allowed to overlap. It
5064copies "len" bytes of memory over. If the argument is known to be aligned to
5065some boundary, this can be specified as the fourth argument, otherwise it should
5066be set to 0 or 1.
5067</p>
5068</div>
5069
5070
5071<!-- _______________________________________________________________________ -->
5072<div class="doc_subsubsection">
5073 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5074</div>
5075
5076<div class="doc_text">
5077
5078<h5>Syntax:</h5>
5079<pre>
5080 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5081 i32 &lt;len&gt;, i32 &lt;align&gt;)
5082 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5083 i64 &lt;len&gt;, i32 &lt;align&gt;)
5084</pre>
5085
5086<h5>Overview:</h5>
5087
5088<p>
5089The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5090location to the destination location. It is similar to the
Chris Lattnerdba16ea2008-01-06 19:51:52 +00005091'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005092</p>
5093
5094<p>
5095Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5096intrinsics do not return a value, and takes an extra alignment argument.
5097</p>
5098
5099<h5>Arguments:</h5>
5100
5101<p>
5102The first argument is a pointer to the destination, the second is a pointer to
5103the source. The third argument is an integer argument
5104specifying the number of bytes to copy, and the fourth argument is the alignment
5105of the source and destination locations.
5106</p>
5107
5108<p>
5109If the call to this intrinisic has an alignment value that is not 0 or 1, then
5110the caller guarantees that the source and destination pointers are aligned to
5111that boundary.
5112</p>
5113
5114<h5>Semantics:</h5>
5115
5116<p>
5117The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
5118location to the destination location, which may overlap. It
5119copies "len" bytes of memory over. If the argument is known to be aligned to
5120some boundary, this can be specified as the fourth argument, otherwise it should
5121be set to 0 or 1.
5122</p>
5123</div>
5124
5125
5126<!-- _______________________________________________________________________ -->
5127<div class="doc_subsubsection">
5128 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5129</div>
5130
5131<div class="doc_text">
5132
5133<h5>Syntax:</h5>
5134<pre>
5135 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5136 i32 &lt;len&gt;, i32 &lt;align&gt;)
5137 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5138 i64 &lt;len&gt;, i32 &lt;align&gt;)
5139</pre>
5140
5141<h5>Overview:</h5>
5142
5143<p>
5144The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
5145byte value.
5146</p>
5147
5148<p>
5149Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5150does not return a value, and takes an extra alignment argument.
5151</p>
5152
5153<h5>Arguments:</h5>
5154
5155<p>
5156The first argument is a pointer to the destination to fill, the second is the
5157byte value to fill it with, the third argument is an integer
5158argument specifying the number of bytes to fill, and the fourth argument is the
5159known alignment of destination location.
5160</p>
5161
5162<p>
5163If the call to this intrinisic has an alignment value that is not 0 or 1, then
5164the caller guarantees that the destination pointer is aligned to that boundary.
5165</p>
5166
5167<h5>Semantics:</h5>
5168
5169<p>
5170The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5171the
5172destination location. If the argument is known to be aligned to some boundary,
5173this can be specified as the fourth argument, otherwise it should be set to 0 or
51741.
5175</p>
5176</div>
5177
5178
5179<!-- _______________________________________________________________________ -->
5180<div class="doc_subsubsection">
5181 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5182</div>
5183
5184<div class="doc_text">
5185
5186<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005187<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005188floating point or vector of floating point type. Not all targets support all
5189types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005190<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005191 declare float @llvm.sqrt.f32(float %Val)
5192 declare double @llvm.sqrt.f64(double %Val)
5193 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5194 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5195 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005196</pre>
5197
5198<h5>Overview:</h5>
5199
5200<p>
5201The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00005202returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005203<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattnerf914a002008-01-29 07:00:44 +00005204negative numbers other than -0.0 (which allows for better optimization, because
5205there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5206defined to return -0.0 like IEEE sqrt.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005207</p>
5208
5209<h5>Arguments:</h5>
5210
5211<p>
5212The argument and return value are floating point numbers of the same type.
5213</p>
5214
5215<h5>Semantics:</h5>
5216
5217<p>
5218This function returns the sqrt of the specified operand if it is a nonnegative
5219floating point number.
5220</p>
5221</div>
5222
5223<!-- _______________________________________________________________________ -->
5224<div class="doc_subsubsection">
5225 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5226</div>
5227
5228<div class="doc_text">
5229
5230<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005231<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005232floating point or vector of floating point type. Not all targets support all
5233types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005234<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005235 declare float @llvm.powi.f32(float %Val, i32 %power)
5236 declare double @llvm.powi.f64(double %Val, i32 %power)
5237 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5238 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5239 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005240</pre>
5241
5242<h5>Overview:</h5>
5243
5244<p>
5245The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5246specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00005247multiplications is not defined. When a vector of floating point type is
5248used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005249</p>
5250
5251<h5>Arguments:</h5>
5252
5253<p>
5254The second argument is an integer power, and the first is a value to raise to
5255that power.
5256</p>
5257
5258<h5>Semantics:</h5>
5259
5260<p>
5261This function returns the first value raised to the second power with an
5262unspecified sequence of rounding operations.</p>
5263</div>
5264
Dan Gohman361079c2007-10-15 20:30:11 +00005265<!-- _______________________________________________________________________ -->
5266<div class="doc_subsubsection">
5267 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5268</div>
5269
5270<div class="doc_text">
5271
5272<h5>Syntax:</h5>
5273<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5274floating point or vector of floating point type. Not all targets support all
5275types however.
5276<pre>
5277 declare float @llvm.sin.f32(float %Val)
5278 declare double @llvm.sin.f64(double %Val)
5279 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5280 declare fp128 @llvm.sin.f128(fp128 %Val)
5281 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5282</pre>
5283
5284<h5>Overview:</h5>
5285
5286<p>
5287The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5288</p>
5289
5290<h5>Arguments:</h5>
5291
5292<p>
5293The argument and return value are floating point numbers of the same type.
5294</p>
5295
5296<h5>Semantics:</h5>
5297
5298<p>
5299This function returns the sine of the specified operand, returning the
5300same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005301conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005302</div>
5303
5304<!-- _______________________________________________________________________ -->
5305<div class="doc_subsubsection">
5306 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5307</div>
5308
5309<div class="doc_text">
5310
5311<h5>Syntax:</h5>
5312<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5313floating point or vector of floating point type. Not all targets support all
5314types however.
5315<pre>
5316 declare float @llvm.cos.f32(float %Val)
5317 declare double @llvm.cos.f64(double %Val)
5318 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5319 declare fp128 @llvm.cos.f128(fp128 %Val)
5320 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5321</pre>
5322
5323<h5>Overview:</h5>
5324
5325<p>
5326The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5327</p>
5328
5329<h5>Arguments:</h5>
5330
5331<p>
5332The argument and return value are floating point numbers of the same type.
5333</p>
5334
5335<h5>Semantics:</h5>
5336
5337<p>
5338This function returns the cosine of the specified operand, returning the
5339same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005340conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005341</div>
5342
5343<!-- _______________________________________________________________________ -->
5344<div class="doc_subsubsection">
5345 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5346</div>
5347
5348<div class="doc_text">
5349
5350<h5>Syntax:</h5>
5351<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5352floating point or vector of floating point type. Not all targets support all
5353types however.
5354<pre>
5355 declare float @llvm.pow.f32(float %Val, float %Power)
5356 declare double @llvm.pow.f64(double %Val, double %Power)
5357 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5358 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5359 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5360</pre>
5361
5362<h5>Overview:</h5>
5363
5364<p>
5365The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5366specified (positive or negative) power.
5367</p>
5368
5369<h5>Arguments:</h5>
5370
5371<p>
5372The second argument is a floating point power, and the first is a value to
5373raise to that power.
5374</p>
5375
5376<h5>Semantics:</h5>
5377
5378<p>
5379This function returns the first value raised to the second power,
5380returning the
5381same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005382conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005383</div>
5384
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005385
5386<!-- ======================================================================= -->
5387<div class="doc_subsection">
5388 <a name="int_manip">Bit Manipulation Intrinsics</a>
5389</div>
5390
5391<div class="doc_text">
5392<p>
5393LLVM provides intrinsics for a few important bit manipulation operations.
5394These allow efficient code generation for some algorithms.
5395</p>
5396
5397</div>
5398
5399<!-- _______________________________________________________________________ -->
5400<div class="doc_subsubsection">
5401 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5402</div>
5403
5404<div class="doc_text">
5405
5406<h5>Syntax:</h5>
5407<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00005408type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005409<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005410 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5411 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5412 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005413</pre>
5414
5415<h5>Overview:</h5>
5416
5417<p>
5418The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5419values with an even number of bytes (positive multiple of 16 bits). These are
5420useful for performing operations on data that is not in the target's native
5421byte order.
5422</p>
5423
5424<h5>Semantics:</h5>
5425
5426<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00005427The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005428and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5429intrinsic returns an i32 value that has the four bytes of the input i32
5430swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00005431i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5432<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005433additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
5434</p>
5435
5436</div>
5437
5438<!-- _______________________________________________________________________ -->
5439<div class="doc_subsubsection">
5440 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5441</div>
5442
5443<div class="doc_text">
5444
5445<h5>Syntax:</h5>
5446<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5447width. Not all targets support all bit widths however.
5448<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005449 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5450 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005451 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005452 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5453 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005454</pre>
5455
5456<h5>Overview:</h5>
5457
5458<p>
5459The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5460value.
5461</p>
5462
5463<h5>Arguments:</h5>
5464
5465<p>
5466The only argument is the value to be counted. The argument may be of any
5467integer type. The return type must match the argument type.
5468</p>
5469
5470<h5>Semantics:</h5>
5471
5472<p>
5473The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5474</p>
5475</div>
5476
5477<!-- _______________________________________________________________________ -->
5478<div class="doc_subsubsection">
5479 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5480</div>
5481
5482<div class="doc_text">
5483
5484<h5>Syntax:</h5>
5485<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5486integer bit width. Not all targets support all bit widths however.
5487<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005488 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5489 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005490 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005491 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5492 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005493</pre>
5494
5495<h5>Overview:</h5>
5496
5497<p>
5498The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5499leading zeros in a variable.
5500</p>
5501
5502<h5>Arguments:</h5>
5503
5504<p>
5505The only argument is the value to be counted. The argument may be of any
5506integer type. The return type must match the argument type.
5507</p>
5508
5509<h5>Semantics:</h5>
5510
5511<p>
5512The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5513in a variable. If the src == 0 then the result is the size in bits of the type
5514of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5515</p>
5516</div>
5517
5518
5519
5520<!-- _______________________________________________________________________ -->
5521<div class="doc_subsubsection">
5522 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5523</div>
5524
5525<div class="doc_text">
5526
5527<h5>Syntax:</h5>
5528<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5529integer bit width. Not all targets support all bit widths however.
5530<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005531 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5532 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005533 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005534 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5535 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005536</pre>
5537
5538<h5>Overview:</h5>
5539
5540<p>
5541The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5542trailing zeros.
5543</p>
5544
5545<h5>Arguments:</h5>
5546
5547<p>
5548The only argument is the value to be counted. The argument may be of any
5549integer type. The return type must match the argument type.
5550</p>
5551
5552<h5>Semantics:</h5>
5553
5554<p>
5555The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5556in a variable. If the src == 0 then the result is the size in bits of the type
5557of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5558</p>
5559</div>
5560
5561<!-- _______________________________________________________________________ -->
5562<div class="doc_subsubsection">
5563 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5564</div>
5565
5566<div class="doc_text">
5567
5568<h5>Syntax:</h5>
5569<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
5570on any integer bit width.
5571<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005572 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5573 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005574</pre>
5575
5576<h5>Overview:</h5>
5577<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5578range of bits from an integer value and returns them in the same bit width as
5579the original value.</p>
5580
5581<h5>Arguments:</h5>
5582<p>The first argument, <tt>%val</tt> and the result may be integer types of
5583any bit width but they must have the same bit width. The second and third
5584arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5585
5586<h5>Semantics:</h5>
5587<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5588of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5589<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5590operates in forward mode.</p>
5591<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5592right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5593only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5594<ol>
5595 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5596 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5597 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5598 to determine the number of bits to retain.</li>
5599 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5600 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5601</ol>
5602<p>In reverse mode, a similar computation is made except that the bits are
5603returned in the reverse order. So, for example, if <tt>X</tt> has the value
5604<tt>i16 0x0ACF (101011001111)</tt> and we apply
5605<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5606<tt>i16 0x0026 (000000100110)</tt>.</p>
5607</div>
5608
5609<div class="doc_subsubsection">
5610 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5611</div>
5612
5613<div class="doc_text">
5614
5615<h5>Syntax:</h5>
5616<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5617on any integer bit width.
5618<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005619 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5620 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005621</pre>
5622
5623<h5>Overview:</h5>
5624<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5625of bits in an integer value with another integer value. It returns the integer
5626with the replaced bits.</p>
5627
5628<h5>Arguments:</h5>
5629<p>The first argument, <tt>%val</tt> and the result may be integer types of
5630any bit width but they must have the same bit width. <tt>%val</tt> is the value
5631whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5632integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5633type since they specify only a bit index.</p>
5634
5635<h5>Semantics:</h5>
5636<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5637of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5638<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5639operates in forward mode.</p>
5640<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5641truncating it down to the size of the replacement area or zero extending it
5642up to that size.</p>
5643<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5644are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5645in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5646to the <tt>%hi</tt>th bit.
5647<p>In reverse mode, a similar computation is made except that the bits are
5648reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5649<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5650<h5>Examples:</h5>
5651<pre>
5652 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5653 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5654 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5655 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5656 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5657</pre>
5658</div>
5659
5660<!-- ======================================================================= -->
5661<div class="doc_subsection">
5662 <a name="int_debugger">Debugger Intrinsics</a>
5663</div>
5664
5665<div class="doc_text">
5666<p>
5667The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5668are described in the <a
5669href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5670Debugging</a> document.
5671</p>
5672</div>
5673
5674
5675<!-- ======================================================================= -->
5676<div class="doc_subsection">
5677 <a name="int_eh">Exception Handling Intrinsics</a>
5678</div>
5679
5680<div class="doc_text">
5681<p> The LLVM exception handling intrinsics (which all start with
5682<tt>llvm.eh.</tt> prefix), are described in the <a
5683href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5684Handling</a> document. </p>
5685</div>
5686
5687<!-- ======================================================================= -->
5688<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005689 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005690</div>
5691
5692<div class="doc_text">
5693<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005694 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005695 the <tt>nest</tt> attribute, from a function. The result is a callable
5696 function pointer lacking the nest parameter - the caller does not need
5697 to provide a value for it. Instead, the value to use is stored in
5698 advance in a "trampoline", a block of memory usually allocated
5699 on the stack, which also contains code to splice the nest value into the
5700 argument list. This is used to implement the GCC nested function address
5701 extension.
5702</p>
5703<p>
5704 For example, if the function is
5705 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005706 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005707<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005708 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5709 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5710 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5711 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005712</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005713 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5714 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005715</div>
5716
5717<!-- _______________________________________________________________________ -->
5718<div class="doc_subsubsection">
5719 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5720</div>
5721<div class="doc_text">
5722<h5>Syntax:</h5>
5723<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005724declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005725</pre>
5726<h5>Overview:</h5>
5727<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005728 This fills the memory pointed to by <tt>tramp</tt> with code
5729 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005730</p>
5731<h5>Arguments:</h5>
5732<p>
5733 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5734 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5735 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005736 intrinsic. Note that the size and the alignment are target-specific - LLVM
5737 currently provides no portable way of determining them, so a front-end that
5738 generates this intrinsic needs to have some target-specific knowledge.
5739 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005740</p>
5741<h5>Semantics:</h5>
5742<p>
5743 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005744 dependent code, turning it into a function. A pointer to this function is
5745 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005746 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005747 before being called. The new function's signature is the same as that of
5748 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5749 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5750 of pointer type. Calling the new function is equivalent to calling
5751 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5752 missing <tt>nest</tt> argument. If, after calling
5753 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5754 modified, then the effect of any later call to the returned function pointer is
5755 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005756</p>
5757</div>
5758
5759<!-- ======================================================================= -->
5760<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00005761 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5762</div>
5763
5764<div class="doc_text">
5765<p>
5766 These intrinsic functions expand the "universal IR" of LLVM to represent
5767 hardware constructs for atomic operations and memory synchronization. This
5768 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner96451482008-08-05 18:29:16 +00005769 is aimed at a low enough level to allow any programming models or APIs
5770 (Application Programming Interfaces) which
Andrew Lenharth785610d2008-02-16 01:24:58 +00005771 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5772 hardware behavior. Just as hardware provides a "universal IR" for source
5773 languages, it also provides a starting point for developing a "universal"
5774 atomic operation and synchronization IR.
5775</p>
5776<p>
5777 These do <em>not</em> form an API such as high-level threading libraries,
5778 software transaction memory systems, atomic primitives, and intrinsic
5779 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5780 application libraries. The hardware interface provided by LLVM should allow
5781 a clean implementation of all of these APIs and parallel programming models.
5782 No one model or paradigm should be selected above others unless the hardware
5783 itself ubiquitously does so.
5784
5785</p>
5786</div>
5787
5788<!-- _______________________________________________________________________ -->
5789<div class="doc_subsubsection">
5790 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5791</div>
5792<div class="doc_text">
5793<h5>Syntax:</h5>
5794<pre>
5795declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5796i1 &lt;device&gt; )
5797
5798</pre>
5799<h5>Overview:</h5>
5800<p>
5801 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5802 specific pairs of memory access types.
5803</p>
5804<h5>Arguments:</h5>
5805<p>
5806 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5807 The first four arguments enables a specific barrier as listed below. The fith
5808 argument specifies that the barrier applies to io or device or uncached memory.
5809
5810</p>
5811 <ul>
5812 <li><tt>ll</tt>: load-load barrier</li>
5813 <li><tt>ls</tt>: load-store barrier</li>
5814 <li><tt>sl</tt>: store-load barrier</li>
5815 <li><tt>ss</tt>: store-store barrier</li>
5816 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5817 </ul>
5818<h5>Semantics:</h5>
5819<p>
5820 This intrinsic causes the system to enforce some ordering constraints upon
5821 the loads and stores of the program. This barrier does not indicate
5822 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5823 which they occur. For any of the specified pairs of load and store operations
5824 (f.ex. load-load, or store-load), all of the first operations preceding the
5825 barrier will complete before any of the second operations succeeding the
5826 barrier begin. Specifically the semantics for each pairing is as follows:
5827</p>
5828 <ul>
5829 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5830 after the barrier begins.</li>
5831
5832 <li><tt>ls</tt>: All loads before the barrier must complete before any
5833 store after the barrier begins.</li>
5834 <li><tt>ss</tt>: All stores before the barrier must complete before any
5835 store after the barrier begins.</li>
5836 <li><tt>sl</tt>: All stores before the barrier must complete before any
5837 load after the barrier begins.</li>
5838 </ul>
5839<p>
5840 These semantics are applied with a logical "and" behavior when more than one
5841 is enabled in a single memory barrier intrinsic.
5842</p>
5843<p>
5844 Backends may implement stronger barriers than those requested when they do not
5845 support as fine grained a barrier as requested. Some architectures do not
5846 need all types of barriers and on such architectures, these become noops.
5847</p>
5848<h5>Example:</h5>
5849<pre>
5850%ptr = malloc i32
5851 store i32 4, %ptr
5852
5853%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5854 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5855 <i>; guarantee the above finishes</i>
5856 store i32 8, %ptr <i>; before this begins</i>
5857</pre>
5858</div>
5859
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005860<!-- _______________________________________________________________________ -->
5861<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005862 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005863</div>
5864<div class="doc_text">
5865<h5>Syntax:</h5>
5866<p>
Mon P Wangce3ac892008-07-30 04:36:53 +00005867 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5868 any integer bit width and for different address spaces. Not all targets
5869 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005870
5871<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005872declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5873declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5874declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5875declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005876
5877</pre>
5878<h5>Overview:</h5>
5879<p>
5880 This loads a value in memory and compares it to a given value. If they are
5881 equal, it stores a new value into the memory.
5882</p>
5883<h5>Arguments:</h5>
5884<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005885 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005886 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5887 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5888 this integer type. While any bit width integer may be used, targets may only
5889 lower representations they support in hardware.
5890
5891</p>
5892<h5>Semantics:</h5>
5893<p>
5894 This entire intrinsic must be executed atomically. It first loads the value
5895 in memory pointed to by <tt>ptr</tt> and compares it with the value
5896 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5897 loaded value is yielded in all cases. This provides the equivalent of an
5898 atomic compare-and-swap operation within the SSA framework.
5899</p>
5900<h5>Examples:</h5>
5901
5902<pre>
5903%ptr = malloc i32
5904 store i32 4, %ptr
5905
5906%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005907%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005908 <i>; yields {i32}:result1 = 4</i>
5909%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5910%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5911
5912%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005913%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005914 <i>; yields {i32}:result2 = 8</i>
5915%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5916
5917%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5918</pre>
5919</div>
5920
5921<!-- _______________________________________________________________________ -->
5922<div class="doc_subsubsection">
5923 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5924</div>
5925<div class="doc_text">
5926<h5>Syntax:</h5>
5927
5928<p>
5929 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5930 integer bit width. Not all targets support all bit widths however.</p>
5931<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005932declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5933declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5934declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5935declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005936
5937</pre>
5938<h5>Overview:</h5>
5939<p>
5940 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5941 the value from memory. It then stores the value in <tt>val</tt> in the memory
5942 at <tt>ptr</tt>.
5943</p>
5944<h5>Arguments:</h5>
5945
5946<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005947 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005948 <tt>val</tt> argument and the result must be integers of the same bit width.
5949 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5950 integer type. The targets may only lower integer representations they
5951 support.
5952</p>
5953<h5>Semantics:</h5>
5954<p>
5955 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5956 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5957 equivalent of an atomic swap operation within the SSA framework.
5958
5959</p>
5960<h5>Examples:</h5>
5961<pre>
5962%ptr = malloc i32
5963 store i32 4, %ptr
5964
5965%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005966%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005967 <i>; yields {i32}:result1 = 4</i>
5968%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5969%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5970
5971%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005972%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005973 <i>; yields {i32}:result2 = 8</i>
5974
5975%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5976%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5977</pre>
5978</div>
5979
5980<!-- _______________________________________________________________________ -->
5981<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005982 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005983
5984</div>
5985<div class="doc_text">
5986<h5>Syntax:</h5>
5987<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005988 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005989 integer bit width. Not all targets support all bit widths however.</p>
5990<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005991declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5992declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5993declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5994declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005995
5996</pre>
5997<h5>Overview:</h5>
5998<p>
5999 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6000 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6001</p>
6002<h5>Arguments:</h5>
6003<p>
6004
6005 The intrinsic takes two arguments, the first a pointer to an integer value
6006 and the second an integer value. The result is also an integer value. These
6007 integer types can have any bit width, but they must all have the same bit
6008 width. The targets may only lower integer representations they support.
6009</p>
6010<h5>Semantics:</h5>
6011<p>
6012 This intrinsic does a series of operations atomically. It first loads the
6013 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6014 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6015</p>
6016
6017<h5>Examples:</h5>
6018<pre>
6019%ptr = malloc i32
6020 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006021%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006022 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006023%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006024 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006025%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006026 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006027%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006028</pre>
6029</div>
6030
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006031<!-- _______________________________________________________________________ -->
6032<div class="doc_subsubsection">
6033 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6034
6035</div>
6036<div class="doc_text">
6037<h5>Syntax:</h5>
6038<p>
6039 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wangce3ac892008-07-30 04:36:53 +00006040 any integer bit width and for different address spaces. Not all targets
6041 support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006042<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006043declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6044declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6045declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6046declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006047
6048</pre>
6049<h5>Overview:</h5>
6050<p>
6051 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6052 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6053</p>
6054<h5>Arguments:</h5>
6055<p>
6056
6057 The intrinsic takes two arguments, the first a pointer to an integer value
6058 and the second an integer value. The result is also an integer value. These
6059 integer types can have any bit width, but they must all have the same bit
6060 width. The targets may only lower integer representations they support.
6061</p>
6062<h5>Semantics:</h5>
6063<p>
6064 This intrinsic does a series of operations atomically. It first loads the
6065 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6066 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6067</p>
6068
6069<h5>Examples:</h5>
6070<pre>
6071%ptr = malloc i32
6072 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006073%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006074 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006075%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006076 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006077%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006078 <i>; yields {i32}:result3 = 2</i>
6079%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6080</pre>
6081</div>
6082
6083<!-- _______________________________________________________________________ -->
6084<div class="doc_subsubsection">
6085 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6086 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6087 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6088 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6089
6090</div>
6091<div class="doc_text">
6092<h5>Syntax:</h5>
6093<p>
6094 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6095 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006096 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6097 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006098<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006099declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6100declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6101declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6102declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006103
6104</pre>
6105
6106<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006107declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6108declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6109declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6110declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006111
6112</pre>
6113
6114<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006115declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6116declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6117declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6118declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006119
6120</pre>
6121
6122<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006123declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6124declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6125declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6126declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006127
6128</pre>
6129<h5>Overview:</h5>
6130<p>
6131 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6132 the value stored in memory at <tt>ptr</tt>. It yields the original value
6133 at <tt>ptr</tt>.
6134</p>
6135<h5>Arguments:</h5>
6136<p>
6137
6138 These intrinsics take two arguments, the first a pointer to an integer value
6139 and the second an integer value. The result is also an integer value. These
6140 integer types can have any bit width, but they must all have the same bit
6141 width. The targets may only lower integer representations they support.
6142</p>
6143<h5>Semantics:</h5>
6144<p>
6145 These intrinsics does a series of operations atomically. They first load the
6146 value stored at <tt>ptr</tt>. They then do the bitwise operation
6147 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6148 value stored at <tt>ptr</tt>.
6149</p>
6150
6151<h5>Examples:</h5>
6152<pre>
6153%ptr = malloc i32
6154 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006155%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006156 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006157%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006158 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006159%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006160 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006161%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006162 <i>; yields {i32}:result3 = FF</i>
6163%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6164</pre>
6165</div>
6166
6167
6168<!-- _______________________________________________________________________ -->
6169<div class="doc_subsubsection">
6170 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6171 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6172 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6173 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6174
6175</div>
6176<div class="doc_text">
6177<h5>Syntax:</h5>
6178<p>
6179 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6180 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006181 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6182 address spaces. Not all targets
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006183 support all bit widths however.</p>
6184<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006185declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6186declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6187declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6188declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006189
6190</pre>
6191
6192<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006193declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6194declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6195declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6196declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006197
6198</pre>
6199
6200<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006201declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6202declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6203declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6204declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006205
6206</pre>
6207
6208<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006209declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6210declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6211declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6212declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006213
6214</pre>
6215<h5>Overview:</h5>
6216<p>
6217 These intrinsics takes the signed or unsigned minimum or maximum of
6218 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6219 original value at <tt>ptr</tt>.
6220</p>
6221<h5>Arguments:</h5>
6222<p>
6223
6224 These intrinsics take two arguments, the first a pointer to an integer value
6225 and the second an integer value. The result is also an integer value. These
6226 integer types can have any bit width, but they must all have the same bit
6227 width. The targets may only lower integer representations they support.
6228</p>
6229<h5>Semantics:</h5>
6230<p>
6231 These intrinsics does a series of operations atomically. They first load the
6232 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6233 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6234 the original value stored at <tt>ptr</tt>.
6235</p>
6236
6237<h5>Examples:</h5>
6238<pre>
6239%ptr = malloc i32
6240 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006241%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006242 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006243%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006244 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006245%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006246 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006247%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006248 <i>; yields {i32}:result3 = 8</i>
6249%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6250</pre>
6251</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006252
6253<!-- ======================================================================= -->
6254<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006255 <a name="int_general">General Intrinsics</a>
6256</div>
6257
6258<div class="doc_text">
6259<p> This class of intrinsics is designed to be generic and has
6260no specific purpose. </p>
6261</div>
6262
6263<!-- _______________________________________________________________________ -->
6264<div class="doc_subsubsection">
6265 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6266</div>
6267
6268<div class="doc_text">
6269
6270<h5>Syntax:</h5>
6271<pre>
6272 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6273</pre>
6274
6275<h5>Overview:</h5>
6276
6277<p>
6278The '<tt>llvm.var.annotation</tt>' intrinsic
6279</p>
6280
6281<h5>Arguments:</h5>
6282
6283<p>
6284The first argument is a pointer to a value, the second is a pointer to a
6285global string, the third is a pointer to a global string which is the source
6286file name, and the last argument is the line number.
6287</p>
6288
6289<h5>Semantics:</h5>
6290
6291<p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006292This intrinsic allows annotation of local variables with arbitrary strings.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006293This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006294annotations. These have no other defined use, they are ignored by code
6295generation and optimization.
6296</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006297</div>
6298
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006299<!-- _______________________________________________________________________ -->
6300<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00006301 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006302</div>
6303
6304<div class="doc_text">
6305
6306<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006307<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6308any integer bit width.
6309</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006310<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00006311 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6312 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6313 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6314 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6315 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006316</pre>
6317
6318<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006319
6320<p>
6321The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006322</p>
6323
6324<h5>Arguments:</h5>
6325
6326<p>
6327The first argument is an integer value (result of some expression),
6328the second is a pointer to a global string, the third is a pointer to a global
6329string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00006330It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006331</p>
6332
6333<h5>Semantics:</h5>
6334
6335<p>
6336This intrinsic allows annotations to be put on arbitrary expressions
6337with arbitrary strings. This can be useful for special purpose optimizations
6338that want to look for these annotations. These have no other defined use, they
6339are ignored by code generation and optimization.
6340</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006341
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006342<!-- _______________________________________________________________________ -->
6343<div class="doc_subsubsection">
6344 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6345</div>
6346
6347<div class="doc_text">
6348
6349<h5>Syntax:</h5>
6350<pre>
6351 declare void @llvm.trap()
6352</pre>
6353
6354<h5>Overview:</h5>
6355
6356<p>
6357The '<tt>llvm.trap</tt>' intrinsic
6358</p>
6359
6360<h5>Arguments:</h5>
6361
6362<p>
6363None
6364</p>
6365
6366<h5>Semantics:</h5>
6367
6368<p>
6369This intrinsics is lowered to the target dependent trap instruction. If the
6370target does not have a trap instruction, this intrinsic will be lowered to the
6371call of the abort() function.
6372</p>
6373</div>
6374
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006375<!-- *********************************************************************** -->
6376<hr>
6377<address>
6378 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6379 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6380 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner08497ce2008-01-04 04:33:49 +00006381 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006382
6383 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6384 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6385 Last modified: $Date$
6386</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00006387
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006388</body>
6389</html>