blob: b948e8f43ac4f3e726c6aff6ceabcc241ded6bd7 [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner36d26c22007-12-08 19:00:03 +000015#include "llvm/ADT/APFloat.h"
Ted Kremenek1f801fa2008-02-11 17:24:50 +000016#include "llvm/ADT/FoldingSet.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000017#include "llvm/Support/MathExtras.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000018#include <cstring>
Chris Lattnerb39cdde2007-08-20 22:49:32 +000019
20using namespace llvm;
21
22#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
23
Neil Bootha30b0ee2007-10-03 22:26:02 +000024/* Assumed in hexadecimal significand parsing, and conversion to
25 hexadecimal strings. */
Chris Lattner9f17eb02008-08-17 04:58:58 +000026#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +000027COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
28
29namespace llvm {
30
31 /* Represents floating point arithmetic semantics. */
32 struct fltSemantics {
33 /* The largest E such that 2^E is representable; this matches the
34 definition of IEEE 754. */
35 exponent_t maxExponent;
36
37 /* The smallest E such that 2^E is a normalized number; this
38 matches the definition of IEEE 754. */
39 exponent_t minExponent;
40
41 /* Number of bits in the significand. This includes the integer
42 bit. */
Neil Booth7a951ca2007-10-12 15:33:27 +000043 unsigned int precision;
Neil Boothcaf19d72007-10-14 10:29:28 +000044
45 /* True if arithmetic is supported. */
46 unsigned int arithmeticOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +000047 };
48
Neil Boothcaf19d72007-10-14 10:29:28 +000049 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
50 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
51 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
52 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
53 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
Dale Johannesena471c2e2007-10-11 18:07:22 +000054
55 // The PowerPC format consists of two doubles. It does not map cleanly
56 // onto the usual format above. For now only storage of constants of
57 // this type is supported, no arithmetic.
Neil Boothcaf19d72007-10-14 10:29:28 +000058 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
Neil Booth96c74712007-10-12 16:02:31 +000059
60 /* A tight upper bound on number of parts required to hold the value
61 pow(5, power) is
62
Neil Booth686700e2007-10-15 15:00:55 +000063 power * 815 / (351 * integerPartWidth) + 1
Neil Booth96c74712007-10-12 16:02:31 +000064
65 However, whilst the result may require only this many parts,
66 because we are multiplying two values to get it, the
67 multiplication may require an extra part with the excess part
68 being zero (consider the trivial case of 1 * 1, tcFullMultiply
69 requires two parts to hold the single-part result). So we add an
70 extra one to guarantee enough space whilst multiplying. */
71 const unsigned int maxExponent = 16383;
72 const unsigned int maxPrecision = 113;
73 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
Neil Booth686700e2007-10-15 15:00:55 +000074 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
75 / (351 * integerPartWidth));
Chris Lattnerb39cdde2007-08-20 22:49:32 +000076}
77
78/* Put a bunch of private, handy routines in an anonymous namespace. */
79namespace {
80
Dan Gohman3bd659b2008-04-10 21:11:47 +000081 static inline unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +000082 partCountForBits(unsigned int bits)
83 {
84 return ((bits) + integerPartWidth - 1) / integerPartWidth;
85 }
86
Neil Booth1870f292007-10-14 10:16:12 +000087 /* Returns 0U-9U. Return values >= 10U are not digits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +000088 static inline unsigned int
Neil Booth1870f292007-10-14 10:16:12 +000089 decDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000090 {
Neil Booth1870f292007-10-14 10:16:12 +000091 return c - '0';
Chris Lattnerb39cdde2007-08-20 22:49:32 +000092 }
93
Dan Gohman3bd659b2008-04-10 21:11:47 +000094 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +000095 hexDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000096 {
97 unsigned int r;
98
99 r = c - '0';
100 if(r <= 9)
101 return r;
102
103 r = c - 'A';
104 if(r <= 5)
105 return r + 10;
106
107 r = c - 'a';
108 if(r <= 5)
109 return r + 10;
110
111 return -1U;
112 }
113
Dan Gohman3bd659b2008-04-10 21:11:47 +0000114 static inline void
Neil Boothcaf19d72007-10-14 10:29:28 +0000115 assertArithmeticOK(const llvm::fltSemantics &semantics) {
116 assert(semantics.arithmeticOK
117 && "Compile-time arithmetic does not support these semantics");
118 }
119
Neil Booth1870f292007-10-14 10:16:12 +0000120 /* Return the value of a decimal exponent of the form
121 [+-]ddddddd.
122
123 If the exponent overflows, returns a large exponent with the
124 appropriate sign. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000125 static int
Neil Booth1870f292007-10-14 10:16:12 +0000126 readExponent(const char *p)
127 {
128 bool isNegative;
129 unsigned int absExponent;
130 const unsigned int overlargeExponent = 24000; /* FIXME. */
131
132 isNegative = (*p == '-');
133 if (*p == '-' || *p == '+')
134 p++;
135
136 absExponent = decDigitValue(*p++);
137 assert (absExponent < 10U);
138
139 for (;;) {
140 unsigned int value;
141
142 value = decDigitValue(*p);
143 if (value >= 10U)
144 break;
145
146 p++;
147 value += absExponent * 10;
148 if (absExponent >= overlargeExponent) {
149 absExponent = overlargeExponent;
150 break;
151 }
152 absExponent = value;
153 }
154
155 if (isNegative)
156 return -(int) absExponent;
157 else
158 return (int) absExponent;
159 }
160
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000161 /* This is ugly and needs cleaning up, but I don't immediately see
162 how whilst remaining safe. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000163 static int
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000164 totalExponent(const char *p, int exponentAdjustment)
165 {
Evan Cheng48e8c802008-05-02 21:15:08 +0000166 int unsignedExponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000167 bool negative, overflow;
Evan Cheng48e8c802008-05-02 21:15:08 +0000168 int exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000169
170 /* Move past the exponent letter and sign to the digits. */
171 p++;
172 negative = *p == '-';
173 if(*p == '-' || *p == '+')
174 p++;
175
176 unsignedExponent = 0;
177 overflow = false;
178 for(;;) {
179 unsigned int value;
180
Neil Booth1870f292007-10-14 10:16:12 +0000181 value = decDigitValue(*p);
182 if(value >= 10U)
Neil Booth4f881702007-09-26 21:33:42 +0000183 break;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000184
185 p++;
186 unsignedExponent = unsignedExponent * 10 + value;
187 if(unsignedExponent > 65535)
Neil Booth4f881702007-09-26 21:33:42 +0000188 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000189 }
190
191 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
192 overflow = true;
193
194 if(!overflow) {
195 exponent = unsignedExponent;
196 if(negative)
Neil Booth4f881702007-09-26 21:33:42 +0000197 exponent = -exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000198 exponent += exponentAdjustment;
199 if(exponent > 65535 || exponent < -65536)
Neil Booth4f881702007-09-26 21:33:42 +0000200 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000201 }
202
203 if(overflow)
204 exponent = negative ? -65536: 65535;
205
206 return exponent;
207 }
208
Dan Gohman3bd659b2008-04-10 21:11:47 +0000209 static const char *
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000210 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
211 {
212 *dot = 0;
213 while(*p == '0')
214 p++;
215
216 if(*p == '.') {
217 *dot = p++;
218 while(*p == '0')
Neil Booth4f881702007-09-26 21:33:42 +0000219 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000220 }
221
222 return p;
223 }
224
Neil Booth1870f292007-10-14 10:16:12 +0000225 /* Given a normal decimal floating point number of the form
226
227 dddd.dddd[eE][+-]ddd
228
229 where the decimal point and exponent are optional, fill out the
Neil Booth686700e2007-10-15 15:00:55 +0000230 structure D. Exponent is appropriate if the significand is
231 treated as an integer, and normalizedExponent if the significand
232 is taken to have the decimal point after a single leading
233 non-zero digit.
234
Neil Bootha89e45f2007-12-05 13:01:24 +0000235 If the value is zero, V->firstSigDigit points to a non-digit, and
236 the return exponent is zero.
Neil Booth686700e2007-10-15 15:00:55 +0000237 */
Neil Booth1870f292007-10-14 10:16:12 +0000238 struct decimalInfo {
239 const char *firstSigDigit;
240 const char *lastSigDigit;
241 int exponent;
Neil Booth686700e2007-10-15 15:00:55 +0000242 int normalizedExponent;
Neil Booth1870f292007-10-14 10:16:12 +0000243 };
244
Dan Gohman3bd659b2008-04-10 21:11:47 +0000245 static void
Neil Booth1870f292007-10-14 10:16:12 +0000246 interpretDecimal(const char *p, decimalInfo *D)
247 {
248 const char *dot;
249
250 p = skipLeadingZeroesAndAnyDot (p, &dot);
251
252 D->firstSigDigit = p;
253 D->exponent = 0;
Neil Booth686700e2007-10-15 15:00:55 +0000254 D->normalizedExponent = 0;
Neil Booth1870f292007-10-14 10:16:12 +0000255
256 for (;;) {
257 if (*p == '.') {
258 assert(dot == 0);
259 dot = p++;
260 }
261 if (decDigitValue(*p) >= 10U)
262 break;
263 p++;
264 }
265
266 /* If number is all zerooes accept any exponent. */
Neil Boothcc233592007-12-05 13:06:04 +0000267 if (p != D->firstSigDigit) {
Neil Booth1870f292007-10-14 10:16:12 +0000268 if (*p == 'e' || *p == 'E')
269 D->exponent = readExponent(p + 1);
270
271 /* Implied decimal point? */
272 if (!dot)
273 dot = p;
274
275 /* Drop insignificant trailing zeroes. */
276 do
277 do
278 p--;
279 while (*p == '0');
280 while (*p == '.');
281
Neil Booth686700e2007-10-15 15:00:55 +0000282 /* Adjust the exponents for any decimal point. */
Evan Cheng48e8c802008-05-02 21:15:08 +0000283 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
284 D->normalizedExponent = (D->exponent +
285 static_cast<exponent_t>((p - D->firstSigDigit)
286 - (dot > D->firstSigDigit && dot < p)));
Neil Booth1870f292007-10-14 10:16:12 +0000287 }
288
289 D->lastSigDigit = p;
290 }
291
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000292 /* Return the trailing fraction of a hexadecimal number.
293 DIGITVALUE is the first hex digit of the fraction, P points to
294 the next digit. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000295 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000296 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
297 {
298 unsigned int hexDigit;
299
300 /* If the first trailing digit isn't 0 or 8 we can work out the
301 fraction immediately. */
302 if(digitValue > 8)
303 return lfMoreThanHalf;
304 else if(digitValue < 8 && digitValue > 0)
305 return lfLessThanHalf;
306
307 /* Otherwise we need to find the first non-zero digit. */
308 while(*p == '0')
309 p++;
310
311 hexDigit = hexDigitValue(*p);
312
313 /* If we ran off the end it is exactly zero or one-half, otherwise
314 a little more. */
315 if(hexDigit == -1U)
316 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
317 else
318 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
319 }
320
Neil Boothb7dea4c2007-10-03 15:16:41 +0000321 /* Return the fraction lost were a bignum truncated losing the least
322 significant BITS bits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000323 static lostFraction
Neil Bootha30b0ee2007-10-03 22:26:02 +0000324 lostFractionThroughTruncation(const integerPart *parts,
Neil Booth4f881702007-09-26 21:33:42 +0000325 unsigned int partCount,
326 unsigned int bits)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000327 {
328 unsigned int lsb;
329
330 lsb = APInt::tcLSB(parts, partCount);
331
332 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
333 if(bits <= lsb)
334 return lfExactlyZero;
335 if(bits == lsb + 1)
336 return lfExactlyHalf;
337 if(bits <= partCount * integerPartWidth
338 && APInt::tcExtractBit(parts, bits - 1))
339 return lfMoreThanHalf;
340
341 return lfLessThanHalf;
342 }
343
344 /* Shift DST right BITS bits noting lost fraction. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000345 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000346 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
347 {
348 lostFraction lost_fraction;
349
350 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
351
352 APInt::tcShiftRight(dst, parts, bits);
353
354 return lost_fraction;
355 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000356
Neil Booth33d4c922007-10-07 08:51:21 +0000357 /* Combine the effect of two lost fractions. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000358 static lostFraction
Neil Booth33d4c922007-10-07 08:51:21 +0000359 combineLostFractions(lostFraction moreSignificant,
360 lostFraction lessSignificant)
361 {
362 if(lessSignificant != lfExactlyZero) {
363 if(moreSignificant == lfExactlyZero)
364 moreSignificant = lfLessThanHalf;
365 else if(moreSignificant == lfExactlyHalf)
366 moreSignificant = lfMoreThanHalf;
367 }
368
369 return moreSignificant;
370 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000371
Neil Booth96c74712007-10-12 16:02:31 +0000372 /* The error from the true value, in half-ulps, on multiplying two
373 floating point numbers, which differ from the value they
374 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
375 than the returned value.
376
377 See "How to Read Floating Point Numbers Accurately" by William D
378 Clinger. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000379 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000380 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
381 {
382 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
383
384 if (HUerr1 + HUerr2 == 0)
385 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
386 else
387 return inexactMultiply + 2 * (HUerr1 + HUerr2);
388 }
389
390 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
391 when the least significant BITS are truncated. BITS cannot be
392 zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000393 static integerPart
Neil Booth96c74712007-10-12 16:02:31 +0000394 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
395 {
396 unsigned int count, partBits;
397 integerPart part, boundary;
398
399 assert (bits != 0);
400
401 bits--;
402 count = bits / integerPartWidth;
403 partBits = bits % integerPartWidth + 1;
404
405 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
406
407 if (isNearest)
408 boundary = (integerPart) 1 << (partBits - 1);
409 else
410 boundary = 0;
411
412 if (count == 0) {
413 if (part - boundary <= boundary - part)
414 return part - boundary;
415 else
416 return boundary - part;
417 }
418
419 if (part == boundary) {
420 while (--count)
421 if (parts[count])
422 return ~(integerPart) 0; /* A lot. */
423
424 return parts[0];
425 } else if (part == boundary - 1) {
426 while (--count)
427 if (~parts[count])
428 return ~(integerPart) 0; /* A lot. */
429
430 return -parts[0];
431 }
432
433 return ~(integerPart) 0; /* A lot. */
434 }
435
436 /* Place pow(5, power) in DST, and return the number of parts used.
437 DST must be at least one part larger than size of the answer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000438 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000439 powerOf5(integerPart *dst, unsigned int power)
440 {
Dan Gohman7c2e4f22008-05-12 16:38:14 +0000441 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
442 15625, 78125 };
Neil Booth96c74712007-10-12 16:02:31 +0000443 static integerPart pow5s[maxPowerOfFiveParts * 2 + 5] = { 78125 * 5 };
444 static unsigned int partsCount[16] = { 1 };
445
446 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
447 unsigned int result;
448
449 assert(power <= maxExponent);
450
451 p1 = dst;
452 p2 = scratch;
453
454 *p1 = firstEightPowers[power & 7];
455 power >>= 3;
456
457 result = 1;
458 pow5 = pow5s;
459
460 for (unsigned int n = 0; power; power >>= 1, n++) {
461 unsigned int pc;
462
463 pc = partsCount[n];
464
465 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
466 if (pc == 0) {
467 pc = partsCount[n - 1];
468 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
469 pc *= 2;
470 if (pow5[pc - 1] == 0)
471 pc--;
472 partsCount[n] = pc;
473 }
474
475 if (power & 1) {
476 integerPart *tmp;
477
478 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
479 result += pc;
480 if (p2[result - 1] == 0)
481 result--;
482
483 /* Now result is in p1 with partsCount parts and p2 is scratch
484 space. */
485 tmp = p1, p1 = p2, p2 = tmp;
486 }
487
488 pow5 += pc;
489 }
490
491 if (p1 != dst)
492 APInt::tcAssign(dst, p1, result);
493
494 return result;
495 }
496
Neil Bootha30b0ee2007-10-03 22:26:02 +0000497 /* Zero at the end to avoid modular arithmetic when adding one; used
498 when rounding up during hexadecimal output. */
499 static const char hexDigitsLower[] = "0123456789abcdef0";
500 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
501 static const char infinityL[] = "infinity";
502 static const char infinityU[] = "INFINITY";
503 static const char NaNL[] = "nan";
504 static const char NaNU[] = "NAN";
505
506 /* Write out an integerPart in hexadecimal, starting with the most
507 significant nibble. Write out exactly COUNT hexdigits, return
508 COUNT. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000509 static unsigned int
Neil Bootha30b0ee2007-10-03 22:26:02 +0000510 partAsHex (char *dst, integerPart part, unsigned int count,
511 const char *hexDigitChars)
512 {
513 unsigned int result = count;
514
515 assert (count != 0 && count <= integerPartWidth / 4);
516
517 part >>= (integerPartWidth - 4 * count);
518 while (count--) {
519 dst[count] = hexDigitChars[part & 0xf];
520 part >>= 4;
521 }
522
523 return result;
524 }
525
Neil Booth92f7e8d2007-10-06 07:29:25 +0000526 /* Write out an unsigned decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000527 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000528 writeUnsignedDecimal (char *dst, unsigned int n)
Neil Bootha30b0ee2007-10-03 22:26:02 +0000529 {
Neil Booth92f7e8d2007-10-06 07:29:25 +0000530 char buff[40], *p;
Neil Bootha30b0ee2007-10-03 22:26:02 +0000531
Neil Booth92f7e8d2007-10-06 07:29:25 +0000532 p = buff;
533 do
534 *p++ = '0' + n % 10;
535 while (n /= 10);
536
537 do
538 *dst++ = *--p;
539 while (p != buff);
540
541 return dst;
542 }
543
544 /* Write out a signed decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000545 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000546 writeSignedDecimal (char *dst, int value)
547 {
548 if (value < 0) {
Neil Bootha30b0ee2007-10-03 22:26:02 +0000549 *dst++ = '-';
Neil Booth92f7e8d2007-10-06 07:29:25 +0000550 dst = writeUnsignedDecimal(dst, -(unsigned) value);
551 } else
552 dst = writeUnsignedDecimal(dst, value);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000553
554 return dst;
555 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000556}
557
558/* Constructors. */
559void
560APFloat::initialize(const fltSemantics *ourSemantics)
561{
562 unsigned int count;
563
564 semantics = ourSemantics;
565 count = partCount();
566 if(count > 1)
567 significand.parts = new integerPart[count];
568}
569
570void
571APFloat::freeSignificand()
572{
573 if(partCount() > 1)
574 delete [] significand.parts;
575}
576
577void
578APFloat::assign(const APFloat &rhs)
579{
580 assert(semantics == rhs.semantics);
581
582 sign = rhs.sign;
583 category = rhs.category;
584 exponent = rhs.exponent;
Dale Johannesena471c2e2007-10-11 18:07:22 +0000585 sign2 = rhs.sign2;
586 exponent2 = rhs.exponent2;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000587 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000588 copySignificand(rhs);
589}
590
591void
592APFloat::copySignificand(const APFloat &rhs)
593{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000594 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000595 assert(rhs.partCount() >= partCount());
596
597 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000598 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000599}
600
Neil Boothe5e01942007-10-14 10:39:51 +0000601/* Make this number a NaN, with an arbitrary but deterministic value
602 for the significand. */
603void
604APFloat::makeNaN(void)
605{
606 category = fcNaN;
607 APInt::tcSet(significandParts(), ~0U, partCount());
608}
609
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000610APFloat &
611APFloat::operator=(const APFloat &rhs)
612{
613 if(this != &rhs) {
614 if(semantics != rhs.semantics) {
615 freeSignificand();
616 initialize(rhs.semantics);
617 }
618 assign(rhs);
619 }
620
621 return *this;
622}
623
Dale Johannesen343e7702007-08-24 00:56:33 +0000624bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000625APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000626 if (this == &rhs)
627 return true;
628 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000629 category != rhs.category ||
630 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000631 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000632 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000633 sign2 != rhs.sign2)
634 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000635 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000636 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000637 else if (category==fcNormal && exponent!=rhs.exponent)
638 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000639 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000640 exponent2!=rhs.exponent2)
641 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000642 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000643 int i= partCount();
644 const integerPart* p=significandParts();
645 const integerPart* q=rhs.significandParts();
646 for (; i>0; i--, p++, q++) {
647 if (*p != *q)
648 return false;
649 }
650 return true;
651 }
652}
653
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000654APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
655{
Neil Boothcaf19d72007-10-14 10:29:28 +0000656 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000657 initialize(&ourSemantics);
658 sign = 0;
659 zeroSignificand();
660 exponent = ourSemantics.precision - 1;
661 significandParts()[0] = value;
662 normalize(rmNearestTiesToEven, lfExactlyZero);
663}
664
665APFloat::APFloat(const fltSemantics &ourSemantics,
Neil Booth4f881702007-09-26 21:33:42 +0000666 fltCategory ourCategory, bool negative)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000667{
Neil Boothcaf19d72007-10-14 10:29:28 +0000668 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000669 initialize(&ourSemantics);
670 category = ourCategory;
671 sign = negative;
672 if(category == fcNormal)
673 category = fcZero;
Neil Boothe5e01942007-10-14 10:39:51 +0000674 else if (ourCategory == fcNaN)
675 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000676}
677
678APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
679{
Neil Boothcaf19d72007-10-14 10:29:28 +0000680 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000681 initialize(&ourSemantics);
682 convertFromString(text, rmNearestTiesToEven);
683}
684
685APFloat::APFloat(const APFloat &rhs)
686{
687 initialize(rhs.semantics);
688 assign(rhs);
689}
690
691APFloat::~APFloat()
692{
693 freeSignificand();
694}
695
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000696// Profile - This method 'profiles' an APFloat for use with FoldingSet.
697void APFloat::Profile(FoldingSetNodeID& ID) const {
698 ID.Add(convertToAPInt());
699}
700
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000701unsigned int
702APFloat::partCount() const
703{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000704 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000705}
706
707unsigned int
708APFloat::semanticsPrecision(const fltSemantics &semantics)
709{
710 return semantics.precision;
711}
712
713const integerPart *
714APFloat::significandParts() const
715{
716 return const_cast<APFloat *>(this)->significandParts();
717}
718
719integerPart *
720APFloat::significandParts()
721{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000722 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000723
724 if(partCount() > 1)
725 return significand.parts;
726 else
727 return &significand.part;
728}
729
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000730void
731APFloat::zeroSignificand()
732{
733 category = fcNormal;
734 APInt::tcSet(significandParts(), 0, partCount());
735}
736
737/* Increment an fcNormal floating point number's significand. */
738void
739APFloat::incrementSignificand()
740{
741 integerPart carry;
742
743 carry = APInt::tcIncrement(significandParts(), partCount());
744
745 /* Our callers should never cause us to overflow. */
746 assert(carry == 0);
747}
748
749/* Add the significand of the RHS. Returns the carry flag. */
750integerPart
751APFloat::addSignificand(const APFloat &rhs)
752{
753 integerPart *parts;
754
755 parts = significandParts();
756
757 assert(semantics == rhs.semantics);
758 assert(exponent == rhs.exponent);
759
760 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
761}
762
763/* Subtract the significand of the RHS with a borrow flag. Returns
764 the borrow flag. */
765integerPart
766APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
767{
768 integerPart *parts;
769
770 parts = significandParts();
771
772 assert(semantics == rhs.semantics);
773 assert(exponent == rhs.exponent);
774
775 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth4f881702007-09-26 21:33:42 +0000776 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000777}
778
779/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
780 on to the full-precision result of the multiplication. Returns the
781 lost fraction. */
782lostFraction
783APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
784{
Neil Booth4f881702007-09-26 21:33:42 +0000785 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000786 unsigned int partsCount, newPartsCount, precision;
787 integerPart *lhsSignificand;
788 integerPart scratch[4];
789 integerPart *fullSignificand;
790 lostFraction lost_fraction;
791
792 assert(semantics == rhs.semantics);
793
794 precision = semantics->precision;
795 newPartsCount = partCountForBits(precision * 2);
796
797 if(newPartsCount > 4)
798 fullSignificand = new integerPart[newPartsCount];
799 else
800 fullSignificand = scratch;
801
802 lhsSignificand = significandParts();
803 partsCount = partCount();
804
805 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth978661d2007-10-06 00:24:48 +0000806 rhs.significandParts(), partsCount, partsCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000807
808 lost_fraction = lfExactlyZero;
809 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
810 exponent += rhs.exponent;
811
812 if(addend) {
813 Significand savedSignificand = significand;
814 const fltSemantics *savedSemantics = semantics;
815 fltSemantics extendedSemantics;
816 opStatus status;
817 unsigned int extendedPrecision;
818
819 /* Normalize our MSB. */
820 extendedPrecision = precision + precision - 1;
821 if(omsb != extendedPrecision)
822 {
Neil Booth4f881702007-09-26 21:33:42 +0000823 APInt::tcShiftLeft(fullSignificand, newPartsCount,
824 extendedPrecision - omsb);
825 exponent -= extendedPrecision - omsb;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000826 }
827
828 /* Create new semantics. */
829 extendedSemantics = *semantics;
830 extendedSemantics.precision = extendedPrecision;
831
832 if(newPartsCount == 1)
833 significand.part = fullSignificand[0];
834 else
835 significand.parts = fullSignificand;
836 semantics = &extendedSemantics;
837
838 APFloat extendedAddend(*addend);
839 status = extendedAddend.convert(extendedSemantics, rmTowardZero);
840 assert(status == opOK);
841 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
842
843 /* Restore our state. */
844 if(newPartsCount == 1)
845 fullSignificand[0] = significand.part;
846 significand = savedSignificand;
847 semantics = savedSemantics;
848
849 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
850 }
851
852 exponent -= (precision - 1);
853
854 if(omsb > precision) {
855 unsigned int bits, significantParts;
856 lostFraction lf;
857
858 bits = omsb - precision;
859 significantParts = partCountForBits(omsb);
860 lf = shiftRight(fullSignificand, significantParts, bits);
861 lost_fraction = combineLostFractions(lf, lost_fraction);
862 exponent += bits;
863 }
864
865 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
866
867 if(newPartsCount > 4)
868 delete [] fullSignificand;
869
870 return lost_fraction;
871}
872
873/* Multiply the significands of LHS and RHS to DST. */
874lostFraction
875APFloat::divideSignificand(const APFloat &rhs)
876{
877 unsigned int bit, i, partsCount;
878 const integerPart *rhsSignificand;
879 integerPart *lhsSignificand, *dividend, *divisor;
880 integerPart scratch[4];
881 lostFraction lost_fraction;
882
883 assert(semantics == rhs.semantics);
884
885 lhsSignificand = significandParts();
886 rhsSignificand = rhs.significandParts();
887 partsCount = partCount();
888
889 if(partsCount > 2)
890 dividend = new integerPart[partsCount * 2];
891 else
892 dividend = scratch;
893
894 divisor = dividend + partsCount;
895
896 /* Copy the dividend and divisor as they will be modified in-place. */
897 for(i = 0; i < partsCount; i++) {
898 dividend[i] = lhsSignificand[i];
899 divisor[i] = rhsSignificand[i];
900 lhsSignificand[i] = 0;
901 }
902
903 exponent -= rhs.exponent;
904
905 unsigned int precision = semantics->precision;
906
907 /* Normalize the divisor. */
908 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
909 if(bit) {
910 exponent += bit;
911 APInt::tcShiftLeft(divisor, partsCount, bit);
912 }
913
914 /* Normalize the dividend. */
915 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
916 if(bit) {
917 exponent -= bit;
918 APInt::tcShiftLeft(dividend, partsCount, bit);
919 }
920
Neil Booth96c74712007-10-12 16:02:31 +0000921 /* Ensure the dividend >= divisor initially for the loop below.
922 Incidentally, this means that the division loop below is
923 guaranteed to set the integer bit to one. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000924 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
925 exponent--;
926 APInt::tcShiftLeft(dividend, partsCount, 1);
927 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
928 }
929
930 /* Long division. */
931 for(bit = precision; bit; bit -= 1) {
932 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
933 APInt::tcSubtract(dividend, divisor, 0, partsCount);
934 APInt::tcSetBit(lhsSignificand, bit - 1);
935 }
936
937 APInt::tcShiftLeft(dividend, partsCount, 1);
938 }
939
940 /* Figure out the lost fraction. */
941 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
942
943 if(cmp > 0)
944 lost_fraction = lfMoreThanHalf;
945 else if(cmp == 0)
946 lost_fraction = lfExactlyHalf;
947 else if(APInt::tcIsZero(dividend, partsCount))
948 lost_fraction = lfExactlyZero;
949 else
950 lost_fraction = lfLessThanHalf;
951
952 if(partsCount > 2)
953 delete [] dividend;
954
955 return lost_fraction;
956}
957
958unsigned int
959APFloat::significandMSB() const
960{
961 return APInt::tcMSB(significandParts(), partCount());
962}
963
964unsigned int
965APFloat::significandLSB() const
966{
967 return APInt::tcLSB(significandParts(), partCount());
968}
969
970/* Note that a zero result is NOT normalized to fcZero. */
971lostFraction
972APFloat::shiftSignificandRight(unsigned int bits)
973{
974 /* Our exponent should not overflow. */
975 assert((exponent_t) (exponent + bits) >= exponent);
976
977 exponent += bits;
978
979 return shiftRight(significandParts(), partCount(), bits);
980}
981
982/* Shift the significand left BITS bits, subtract BITS from its exponent. */
983void
984APFloat::shiftSignificandLeft(unsigned int bits)
985{
986 assert(bits < semantics->precision);
987
988 if(bits) {
989 unsigned int partsCount = partCount();
990
991 APInt::tcShiftLeft(significandParts(), partsCount, bits);
992 exponent -= bits;
993
994 assert(!APInt::tcIsZero(significandParts(), partsCount));
995 }
996}
997
998APFloat::cmpResult
999APFloat::compareAbsoluteValue(const APFloat &rhs) const
1000{
1001 int compare;
1002
1003 assert(semantics == rhs.semantics);
1004 assert(category == fcNormal);
1005 assert(rhs.category == fcNormal);
1006
1007 compare = exponent - rhs.exponent;
1008
1009 /* If exponents are equal, do an unsigned bignum comparison of the
1010 significands. */
1011 if(compare == 0)
1012 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +00001013 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001014
1015 if(compare > 0)
1016 return cmpGreaterThan;
1017 else if(compare < 0)
1018 return cmpLessThan;
1019 else
1020 return cmpEqual;
1021}
1022
1023/* Handle overflow. Sign is preserved. We either become infinity or
1024 the largest finite number. */
1025APFloat::opStatus
1026APFloat::handleOverflow(roundingMode rounding_mode)
1027{
1028 /* Infinity? */
1029 if(rounding_mode == rmNearestTiesToEven
1030 || rounding_mode == rmNearestTiesToAway
1031 || (rounding_mode == rmTowardPositive && !sign)
1032 || (rounding_mode == rmTowardNegative && sign))
1033 {
1034 category = fcInfinity;
1035 return (opStatus) (opOverflow | opInexact);
1036 }
1037
1038 /* Otherwise we become the largest finite number. */
1039 category = fcNormal;
1040 exponent = semantics->maxExponent;
1041 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth4f881702007-09-26 21:33:42 +00001042 semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001043
1044 return opInexact;
1045}
1046
Neil Boothb7dea4c2007-10-03 15:16:41 +00001047/* Returns TRUE if, when truncating the current number, with BIT the
1048 new LSB, with the given lost fraction and rounding mode, the result
1049 would need to be rounded away from zero (i.e., by increasing the
1050 signficand). This routine must work for fcZero of both signs, and
1051 fcNormal numbers. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001052bool
1053APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Boothb7dea4c2007-10-03 15:16:41 +00001054 lostFraction lost_fraction,
1055 unsigned int bit) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001056{
Dale Johanneseneaf08942007-08-31 04:03:46 +00001057 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001058 assert(category == fcNormal || category == fcZero);
1059
Neil Boothb7dea4c2007-10-03 15:16:41 +00001060 /* Current callers never pass this so we don't handle it. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001061 assert(lost_fraction != lfExactlyZero);
1062
1063 switch(rounding_mode) {
1064 default:
1065 assert(0);
1066
1067 case rmNearestTiesToAway:
1068 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1069
1070 case rmNearestTiesToEven:
1071 if(lost_fraction == lfMoreThanHalf)
1072 return true;
1073
1074 /* Our zeroes don't have a significand to test. */
1075 if(lost_fraction == lfExactlyHalf && category != fcZero)
Neil Boothb7dea4c2007-10-03 15:16:41 +00001076 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001077
1078 return false;
1079
1080 case rmTowardZero:
1081 return false;
1082
1083 case rmTowardPositive:
1084 return sign == false;
1085
1086 case rmTowardNegative:
1087 return sign == true;
1088 }
1089}
1090
1091APFloat::opStatus
1092APFloat::normalize(roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001093 lostFraction lost_fraction)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001094{
Neil Booth4f881702007-09-26 21:33:42 +00001095 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001096 int exponentChange;
1097
1098 if(category != fcNormal)
1099 return opOK;
1100
1101 /* Before rounding normalize the exponent of fcNormal numbers. */
1102 omsb = significandMSB() + 1;
1103
1104 if(omsb) {
1105 /* OMSB is numbered from 1. We want to place it in the integer
1106 bit numbered PRECISON if possible, with a compensating change in
1107 the exponent. */
1108 exponentChange = omsb - semantics->precision;
1109
1110 /* If the resulting exponent is too high, overflow according to
1111 the rounding mode. */
1112 if(exponent + exponentChange > semantics->maxExponent)
1113 return handleOverflow(rounding_mode);
1114
1115 /* Subnormal numbers have exponent minExponent, and their MSB
1116 is forced based on that. */
1117 if(exponent + exponentChange < semantics->minExponent)
1118 exponentChange = semantics->minExponent - exponent;
1119
1120 /* Shifting left is easy as we don't lose precision. */
1121 if(exponentChange < 0) {
1122 assert(lost_fraction == lfExactlyZero);
1123
1124 shiftSignificandLeft(-exponentChange);
1125
1126 return opOK;
1127 }
1128
1129 if(exponentChange > 0) {
1130 lostFraction lf;
1131
1132 /* Shift right and capture any new lost fraction. */
1133 lf = shiftSignificandRight(exponentChange);
1134
1135 lost_fraction = combineLostFractions(lf, lost_fraction);
1136
1137 /* Keep OMSB up-to-date. */
1138 if(omsb > (unsigned) exponentChange)
Neil Booth96c74712007-10-12 16:02:31 +00001139 omsb -= exponentChange;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001140 else
Neil Booth4f881702007-09-26 21:33:42 +00001141 omsb = 0;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001142 }
1143 }
1144
1145 /* Now round the number according to rounding_mode given the lost
1146 fraction. */
1147
1148 /* As specified in IEEE 754, since we do not trap we do not report
1149 underflow for exact results. */
1150 if(lost_fraction == lfExactlyZero) {
1151 /* Canonicalize zeroes. */
1152 if(omsb == 0)
1153 category = fcZero;
1154
1155 return opOK;
1156 }
1157
1158 /* Increment the significand if we're rounding away from zero. */
Neil Boothb7dea4c2007-10-03 15:16:41 +00001159 if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001160 if(omsb == 0)
1161 exponent = semantics->minExponent;
1162
1163 incrementSignificand();
1164 omsb = significandMSB() + 1;
1165
1166 /* Did the significand increment overflow? */
1167 if(omsb == (unsigned) semantics->precision + 1) {
1168 /* Renormalize by incrementing the exponent and shifting our
Neil Booth4f881702007-09-26 21:33:42 +00001169 significand right one. However if we already have the
1170 maximum exponent we overflow to infinity. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001171 if(exponent == semantics->maxExponent) {
Neil Booth4f881702007-09-26 21:33:42 +00001172 category = fcInfinity;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001173
Neil Booth4f881702007-09-26 21:33:42 +00001174 return (opStatus) (opOverflow | opInexact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001175 }
1176
1177 shiftSignificandRight(1);
1178
1179 return opInexact;
1180 }
1181 }
1182
1183 /* The normal case - we were and are not denormal, and any
1184 significand increment above didn't overflow. */
1185 if(omsb == semantics->precision)
1186 return opInexact;
1187
1188 /* We have a non-zero denormal. */
1189 assert(omsb < semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001190
1191 /* Canonicalize zeroes. */
1192 if(omsb == 0)
1193 category = fcZero;
1194
1195 /* The fcZero case is a denormal that underflowed to zero. */
1196 return (opStatus) (opUnderflow | opInexact);
1197}
1198
1199APFloat::opStatus
1200APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1201{
1202 switch(convolve(category, rhs.category)) {
1203 default:
1204 assert(0);
1205
Dale Johanneseneaf08942007-08-31 04:03:46 +00001206 case convolve(fcNaN, fcZero):
1207 case convolve(fcNaN, fcNormal):
1208 case convolve(fcNaN, fcInfinity):
1209 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001210 case convolve(fcNormal, fcZero):
1211 case convolve(fcInfinity, fcNormal):
1212 case convolve(fcInfinity, fcZero):
1213 return opOK;
1214
Dale Johanneseneaf08942007-08-31 04:03:46 +00001215 case convolve(fcZero, fcNaN):
1216 case convolve(fcNormal, fcNaN):
1217 case convolve(fcInfinity, fcNaN):
1218 category = fcNaN;
1219 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001220 return opOK;
1221
1222 case convolve(fcNormal, fcInfinity):
1223 case convolve(fcZero, fcInfinity):
1224 category = fcInfinity;
1225 sign = rhs.sign ^ subtract;
1226 return opOK;
1227
1228 case convolve(fcZero, fcNormal):
1229 assign(rhs);
1230 sign = rhs.sign ^ subtract;
1231 return opOK;
1232
1233 case convolve(fcZero, fcZero):
1234 /* Sign depends on rounding mode; handled by caller. */
1235 return opOK;
1236
1237 case convolve(fcInfinity, fcInfinity):
1238 /* Differently signed infinities can only be validly
1239 subtracted. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001240 if((sign ^ rhs.sign) != subtract) {
Neil Boothe5e01942007-10-14 10:39:51 +00001241 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001242 return opInvalidOp;
1243 }
1244
1245 return opOK;
1246
1247 case convolve(fcNormal, fcNormal):
1248 return opDivByZero;
1249 }
1250}
1251
1252/* Add or subtract two normal numbers. */
1253lostFraction
1254APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1255{
1256 integerPart carry;
1257 lostFraction lost_fraction;
1258 int bits;
1259
1260 /* Determine if the operation on the absolute values is effectively
1261 an addition or subtraction. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001262 subtract ^= (sign ^ rhs.sign) ? true : false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001263
1264 /* Are we bigger exponent-wise than the RHS? */
1265 bits = exponent - rhs.exponent;
1266
1267 /* Subtraction is more subtle than one might naively expect. */
1268 if(subtract) {
1269 APFloat temp_rhs(rhs);
1270 bool reverse;
1271
Chris Lattnerada530b2007-08-24 03:02:34 +00001272 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001273 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1274 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +00001275 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001276 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1277 shiftSignificandLeft(1);
1278 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +00001279 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001280 lost_fraction = shiftSignificandRight(-bits - 1);
1281 temp_rhs.shiftSignificandLeft(1);
1282 reverse = true;
1283 }
1284
Chris Lattnerada530b2007-08-24 03:02:34 +00001285 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001286 carry = temp_rhs.subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001287 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001288 copySignificand(temp_rhs);
1289 sign = !sign;
1290 } else {
1291 carry = subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001292 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001293 }
1294
1295 /* Invert the lost fraction - it was on the RHS and
1296 subtracted. */
1297 if(lost_fraction == lfLessThanHalf)
1298 lost_fraction = lfMoreThanHalf;
1299 else if(lost_fraction == lfMoreThanHalf)
1300 lost_fraction = lfLessThanHalf;
1301
1302 /* The code above is intended to ensure that no borrow is
1303 necessary. */
1304 assert(!carry);
1305 } else {
1306 if(bits > 0) {
1307 APFloat temp_rhs(rhs);
1308
1309 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1310 carry = addSignificand(temp_rhs);
1311 } else {
1312 lost_fraction = shiftSignificandRight(-bits);
1313 carry = addSignificand(rhs);
1314 }
1315
1316 /* We have a guard bit; generating a carry cannot happen. */
1317 assert(!carry);
1318 }
1319
1320 return lost_fraction;
1321}
1322
1323APFloat::opStatus
1324APFloat::multiplySpecials(const APFloat &rhs)
1325{
1326 switch(convolve(category, rhs.category)) {
1327 default:
1328 assert(0);
1329
Dale Johanneseneaf08942007-08-31 04:03:46 +00001330 case convolve(fcNaN, fcZero):
1331 case convolve(fcNaN, fcNormal):
1332 case convolve(fcNaN, fcInfinity):
1333 case convolve(fcNaN, fcNaN):
1334 return opOK;
1335
1336 case convolve(fcZero, fcNaN):
1337 case convolve(fcNormal, fcNaN):
1338 case convolve(fcInfinity, fcNaN):
1339 category = fcNaN;
1340 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001341 return opOK;
1342
1343 case convolve(fcNormal, fcInfinity):
1344 case convolve(fcInfinity, fcNormal):
1345 case convolve(fcInfinity, fcInfinity):
1346 category = fcInfinity;
1347 return opOK;
1348
1349 case convolve(fcZero, fcNormal):
1350 case convolve(fcNormal, fcZero):
1351 case convolve(fcZero, fcZero):
1352 category = fcZero;
1353 return opOK;
1354
1355 case convolve(fcZero, fcInfinity):
1356 case convolve(fcInfinity, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001357 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001358 return opInvalidOp;
1359
1360 case convolve(fcNormal, fcNormal):
1361 return opOK;
1362 }
1363}
1364
1365APFloat::opStatus
1366APFloat::divideSpecials(const APFloat &rhs)
1367{
1368 switch(convolve(category, rhs.category)) {
1369 default:
1370 assert(0);
1371
Dale Johanneseneaf08942007-08-31 04:03:46 +00001372 case convolve(fcNaN, fcZero):
1373 case convolve(fcNaN, fcNormal):
1374 case convolve(fcNaN, fcInfinity):
1375 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001376 case convolve(fcInfinity, fcZero):
1377 case convolve(fcInfinity, fcNormal):
1378 case convolve(fcZero, fcInfinity):
1379 case convolve(fcZero, fcNormal):
1380 return opOK;
1381
Dale Johanneseneaf08942007-08-31 04:03:46 +00001382 case convolve(fcZero, fcNaN):
1383 case convolve(fcNormal, fcNaN):
1384 case convolve(fcInfinity, fcNaN):
1385 category = fcNaN;
1386 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001387 return opOK;
1388
1389 case convolve(fcNormal, fcInfinity):
1390 category = fcZero;
1391 return opOK;
1392
1393 case convolve(fcNormal, fcZero):
1394 category = fcInfinity;
1395 return opDivByZero;
1396
1397 case convolve(fcInfinity, fcInfinity):
1398 case convolve(fcZero, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001399 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001400 return opInvalidOp;
1401
1402 case convolve(fcNormal, fcNormal):
1403 return opOK;
1404 }
1405}
1406
1407/* Change sign. */
1408void
1409APFloat::changeSign()
1410{
1411 /* Look mummy, this one's easy. */
1412 sign = !sign;
1413}
1414
Dale Johannesene15c2db2007-08-31 23:35:31 +00001415void
1416APFloat::clearSign()
1417{
1418 /* So is this one. */
1419 sign = 0;
1420}
1421
1422void
1423APFloat::copySign(const APFloat &rhs)
1424{
1425 /* And this one. */
1426 sign = rhs.sign;
1427}
1428
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001429/* Normalized addition or subtraction. */
1430APFloat::opStatus
1431APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001432 bool subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001433{
1434 opStatus fs;
1435
Neil Boothcaf19d72007-10-14 10:29:28 +00001436 assertArithmeticOK(*semantics);
1437
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001438 fs = addOrSubtractSpecials(rhs, subtract);
1439
1440 /* This return code means it was not a simple case. */
1441 if(fs == opDivByZero) {
1442 lostFraction lost_fraction;
1443
1444 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1445 fs = normalize(rounding_mode, lost_fraction);
1446
1447 /* Can only be zero if we lost no fraction. */
1448 assert(category != fcZero || lost_fraction == lfExactlyZero);
1449 }
1450
1451 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1452 positive zero unless rounding to minus infinity, except that
1453 adding two like-signed zeroes gives that zero. */
1454 if(category == fcZero) {
1455 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1456 sign = (rounding_mode == rmTowardNegative);
1457 }
1458
1459 return fs;
1460}
1461
1462/* Normalized addition. */
1463APFloat::opStatus
1464APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1465{
1466 return addOrSubtract(rhs, rounding_mode, false);
1467}
1468
1469/* Normalized subtraction. */
1470APFloat::opStatus
1471APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1472{
1473 return addOrSubtract(rhs, rounding_mode, true);
1474}
1475
1476/* Normalized multiply. */
1477APFloat::opStatus
1478APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1479{
1480 opStatus fs;
1481
Neil Boothcaf19d72007-10-14 10:29:28 +00001482 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001483 sign ^= rhs.sign;
1484 fs = multiplySpecials(rhs);
1485
1486 if(category == fcNormal) {
1487 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1488 fs = normalize(rounding_mode, lost_fraction);
1489 if(lost_fraction != lfExactlyZero)
1490 fs = (opStatus) (fs | opInexact);
1491 }
1492
1493 return fs;
1494}
1495
1496/* Normalized divide. */
1497APFloat::opStatus
1498APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1499{
1500 opStatus fs;
1501
Neil Boothcaf19d72007-10-14 10:29:28 +00001502 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001503 sign ^= rhs.sign;
1504 fs = divideSpecials(rhs);
1505
1506 if(category == fcNormal) {
1507 lostFraction lost_fraction = divideSignificand(rhs);
1508 fs = normalize(rounding_mode, lost_fraction);
1509 if(lost_fraction != lfExactlyZero)
1510 fs = (opStatus) (fs | opInexact);
1511 }
1512
1513 return fs;
1514}
1515
Neil Bootha30b0ee2007-10-03 22:26:02 +00001516/* Normalized remainder. This is not currently doing TRT. */
Dale Johannesene15c2db2007-08-31 23:35:31 +00001517APFloat::opStatus
1518APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1519{
1520 opStatus fs;
1521 APFloat V = *this;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001522 unsigned int origSign = sign;
Neil Boothcaf19d72007-10-14 10:29:28 +00001523
1524 assertArithmeticOK(*semantics);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001525 fs = V.divide(rhs, rmNearestTiesToEven);
1526 if (fs == opDivByZero)
1527 return fs;
1528
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001529 int parts = partCount();
1530 integerPart *x = new integerPart[parts];
Neil Booth4f881702007-09-26 21:33:42 +00001531 fs = V.convertToInteger(x, parts * integerPartWidth, true,
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001532 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001533 if (fs==opInvalidOp)
1534 return fs;
1535
Neil Boothccf596a2007-10-07 11:45:55 +00001536 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1537 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001538 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001539
Dale Johannesene15c2db2007-08-31 23:35:31 +00001540 fs = V.multiply(rhs, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001541 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1542
Dale Johannesene15c2db2007-08-31 23:35:31 +00001543 fs = subtract(V, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001544 assert(fs==opOK || fs==opInexact); // likewise
1545
1546 if (isZero())
1547 sign = origSign; // IEEE754 requires this
1548 delete[] x;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001549 return fs;
1550}
1551
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001552/* Normalized fused-multiply-add. */
1553APFloat::opStatus
1554APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth4f881702007-09-26 21:33:42 +00001555 const APFloat &addend,
1556 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001557{
1558 opStatus fs;
1559
Neil Boothcaf19d72007-10-14 10:29:28 +00001560 assertArithmeticOK(*semantics);
1561
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001562 /* Post-multiplication sign, before addition. */
1563 sign ^= multiplicand.sign;
1564
1565 /* If and only if all arguments are normal do we need to do an
1566 extended-precision calculation. */
1567 if(category == fcNormal
1568 && multiplicand.category == fcNormal
1569 && addend.category == fcNormal) {
1570 lostFraction lost_fraction;
1571
1572 lost_fraction = multiplySignificand(multiplicand, &addend);
1573 fs = normalize(rounding_mode, lost_fraction);
1574 if(lost_fraction != lfExactlyZero)
1575 fs = (opStatus) (fs | opInexact);
1576
1577 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1578 positive zero unless rounding to minus infinity, except that
1579 adding two like-signed zeroes gives that zero. */
1580 if(category == fcZero && sign != addend.sign)
1581 sign = (rounding_mode == rmTowardNegative);
1582 } else {
1583 fs = multiplySpecials(multiplicand);
1584
1585 /* FS can only be opOK or opInvalidOp. There is no more work
1586 to do in the latter case. The IEEE-754R standard says it is
1587 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001588 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001589
1590 If we need to do the addition we can do so with normal
1591 precision. */
1592 if(fs == opOK)
1593 fs = addOrSubtract(addend, rounding_mode, false);
1594 }
1595
1596 return fs;
1597}
1598
1599/* Comparison requires normalized numbers. */
1600APFloat::cmpResult
1601APFloat::compare(const APFloat &rhs) const
1602{
1603 cmpResult result;
1604
Neil Boothcaf19d72007-10-14 10:29:28 +00001605 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001606 assert(semantics == rhs.semantics);
1607
1608 switch(convolve(category, rhs.category)) {
1609 default:
1610 assert(0);
1611
Dale Johanneseneaf08942007-08-31 04:03:46 +00001612 case convolve(fcNaN, fcZero):
1613 case convolve(fcNaN, fcNormal):
1614 case convolve(fcNaN, fcInfinity):
1615 case convolve(fcNaN, fcNaN):
1616 case convolve(fcZero, fcNaN):
1617 case convolve(fcNormal, fcNaN):
1618 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001619 return cmpUnordered;
1620
1621 case convolve(fcInfinity, fcNormal):
1622 case convolve(fcInfinity, fcZero):
1623 case convolve(fcNormal, fcZero):
1624 if(sign)
1625 return cmpLessThan;
1626 else
1627 return cmpGreaterThan;
1628
1629 case convolve(fcNormal, fcInfinity):
1630 case convolve(fcZero, fcInfinity):
1631 case convolve(fcZero, fcNormal):
1632 if(rhs.sign)
1633 return cmpGreaterThan;
1634 else
1635 return cmpLessThan;
1636
1637 case convolve(fcInfinity, fcInfinity):
1638 if(sign == rhs.sign)
1639 return cmpEqual;
1640 else if(sign)
1641 return cmpLessThan;
1642 else
1643 return cmpGreaterThan;
1644
1645 case convolve(fcZero, fcZero):
1646 return cmpEqual;
1647
1648 case convolve(fcNormal, fcNormal):
1649 break;
1650 }
1651
1652 /* Two normal numbers. Do they have the same sign? */
1653 if(sign != rhs.sign) {
1654 if(sign)
1655 result = cmpLessThan;
1656 else
1657 result = cmpGreaterThan;
1658 } else {
1659 /* Compare absolute values; invert result if negative. */
1660 result = compareAbsoluteValue(rhs);
1661
1662 if(sign) {
1663 if(result == cmpLessThan)
Neil Booth4f881702007-09-26 21:33:42 +00001664 result = cmpGreaterThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001665 else if(result == cmpGreaterThan)
Neil Booth4f881702007-09-26 21:33:42 +00001666 result = cmpLessThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001667 }
1668 }
1669
1670 return result;
1671}
1672
1673APFloat::opStatus
1674APFloat::convert(const fltSemantics &toSemantics,
Neil Booth4f881702007-09-26 21:33:42 +00001675 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001676{
Neil Boothc8db43d2007-09-22 02:56:19 +00001677 lostFraction lostFraction;
1678 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001679 opStatus fs;
Neil Booth4f881702007-09-26 21:33:42 +00001680
Neil Boothcaf19d72007-10-14 10:29:28 +00001681 assertArithmeticOK(*semantics);
Dale Johannesen79f82f92008-04-20 01:34:03 +00001682 assertArithmeticOK(toSemantics);
Neil Boothc8db43d2007-09-22 02:56:19 +00001683 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001684 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001685 oldPartCount = partCount();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001686
Neil Boothc8db43d2007-09-22 02:56:19 +00001687 /* Handle storage complications. If our new form is wider,
1688 re-allocate our bit pattern into wider storage. If it is
1689 narrower, we ignore the excess parts, but if narrowing to a
Dale Johannesen902ff942007-09-25 17:25:00 +00001690 single part we need to free the old storage.
1691 Be careful not to reference significandParts for zeroes
1692 and infinities, since it aborts. */
Neil Boothc8db43d2007-09-22 02:56:19 +00001693 if (newPartCount > oldPartCount) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001694 integerPart *newParts;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001695 newParts = new integerPart[newPartCount];
1696 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesen902ff942007-09-25 17:25:00 +00001697 if (category==fcNormal || category==fcNaN)
1698 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001699 freeSignificand();
1700 significand.parts = newParts;
Neil Boothc8db43d2007-09-22 02:56:19 +00001701 } else if (newPartCount < oldPartCount) {
1702 /* Capture any lost fraction through truncation of parts so we get
1703 correct rounding whilst normalizing. */
Dale Johannesen902ff942007-09-25 17:25:00 +00001704 if (category==fcNormal)
1705 lostFraction = lostFractionThroughTruncation
1706 (significandParts(), oldPartCount, toSemantics.precision);
1707 if (newPartCount == 1) {
1708 integerPart newPart = 0;
Neil Booth4f881702007-09-26 21:33:42 +00001709 if (category==fcNormal || category==fcNaN)
Dale Johannesen902ff942007-09-25 17:25:00 +00001710 newPart = significandParts()[0];
1711 freeSignificand();
1712 significand.part = newPart;
1713 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001714 }
1715
1716 if(category == fcNormal) {
1717 /* Re-interpret our bit-pattern. */
1718 exponent += toSemantics.precision - semantics->precision;
1719 semantics = &toSemantics;
Neil Boothc8db43d2007-09-22 02:56:19 +00001720 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen902ff942007-09-25 17:25:00 +00001721 } else if (category == fcNaN) {
1722 int shift = toSemantics.precision - semantics->precision;
Dale Johannesenb63fa052008-01-31 18:34:01 +00001723 // Do this now so significandParts gets the right answer
1724 semantics = &toSemantics;
Dale Johannesen902ff942007-09-25 17:25:00 +00001725 // No normalization here, just truncate
1726 if (shift>0)
1727 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
1728 else if (shift < 0)
1729 APInt::tcShiftRight(significandParts(), newPartCount, -shift);
1730 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1731 // does not give you back the same bits. This is dubious, and we
1732 // don't currently do it. You're really supposed to get
1733 // an invalid operation signal at runtime, but nobody does that.
Dale Johannesen902ff942007-09-25 17:25:00 +00001734 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001735 } else {
1736 semantics = &toSemantics;
1737 fs = opOK;
1738 }
1739
1740 return fs;
1741}
1742
1743/* Convert a floating point number to an integer according to the
1744 rounding mode. If the rounded integer value is out of range this
Neil Boothee7ae382007-11-01 22:43:37 +00001745 returns an invalid operation exception and the contents of the
1746 destination parts are unspecified. If the rounded value is in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001747 range but the floating point number is not the exact integer, the C
1748 standard doesn't require an inexact exception to be raised. IEEE
1749 854 does require it so we do that.
1750
1751 Note that for conversions to integer type the C standard requires
1752 round-to-zero to always be used. */
1753APFloat::opStatus
Neil Boothee7ae382007-11-01 22:43:37 +00001754APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1755 bool isSigned,
1756 roundingMode rounding_mode) const
1757{
1758 lostFraction lost_fraction;
1759 const integerPart *src;
1760 unsigned int dstPartsCount, truncatedBits;
1761
Neil Boothe3d936a2007-11-02 15:10:05 +00001762 assertArithmeticOK(*semantics);
1763
Neil Boothee7ae382007-11-01 22:43:37 +00001764 /* Handle the three special cases first. */
1765 if(category == fcInfinity || category == fcNaN)
1766 return opInvalidOp;
1767
1768 dstPartsCount = partCountForBits(width);
1769
1770 if(category == fcZero) {
1771 APInt::tcSet(parts, 0, dstPartsCount);
1772 return opOK;
1773 }
1774
1775 src = significandParts();
1776
1777 /* Step 1: place our absolute value, with any fraction truncated, in
1778 the destination. */
1779 if (exponent < 0) {
1780 /* Our absolute value is less than one; truncate everything. */
1781 APInt::tcSet(parts, 0, dstPartsCount);
1782 truncatedBits = semantics->precision;
1783 } else {
1784 /* We want the most significant (exponent + 1) bits; the rest are
1785 truncated. */
1786 unsigned int bits = exponent + 1U;
1787
1788 /* Hopelessly large in magnitude? */
1789 if (bits > width)
1790 return opInvalidOp;
1791
1792 if (bits < semantics->precision) {
1793 /* We truncate (semantics->precision - bits) bits. */
1794 truncatedBits = semantics->precision - bits;
1795 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1796 } else {
1797 /* We want at least as many bits as are available. */
1798 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1799 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1800 truncatedBits = 0;
1801 }
1802 }
1803
1804 /* Step 2: work out any lost fraction, and increment the absolute
1805 value if we would round away from zero. */
1806 if (truncatedBits) {
1807 lost_fraction = lostFractionThroughTruncation(src, partCount(),
1808 truncatedBits);
1809 if (lost_fraction != lfExactlyZero
1810 && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
1811 if (APInt::tcIncrement(parts, dstPartsCount))
1812 return opInvalidOp; /* Overflow. */
1813 }
1814 } else {
1815 lost_fraction = lfExactlyZero;
1816 }
1817
1818 /* Step 3: check if we fit in the destination. */
1819 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
1820
1821 if (sign) {
1822 if (!isSigned) {
1823 /* Negative numbers cannot be represented as unsigned. */
1824 if (omsb != 0)
1825 return opInvalidOp;
1826 } else {
1827 /* It takes omsb bits to represent the unsigned integer value.
1828 We lose a bit for the sign, but care is needed as the
1829 maximally negative integer is a special case. */
1830 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
1831 return opInvalidOp;
1832
1833 /* This case can happen because of rounding. */
1834 if (omsb > width)
1835 return opInvalidOp;
1836 }
1837
1838 APInt::tcNegate (parts, dstPartsCount);
1839 } else {
1840 if (omsb >= width + !isSigned)
1841 return opInvalidOp;
1842 }
1843
1844 if (lost_fraction == lfExactlyZero)
1845 return opOK;
1846 else
1847 return opInexact;
1848}
1849
1850/* Same as convertToSignExtendedInteger, except we provide
1851 deterministic values in case of an invalid operation exception,
1852 namely zero for NaNs and the minimal or maximal value respectively
1853 for underflow or overflow. */
1854APFloat::opStatus
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001855APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth4f881702007-09-26 21:33:42 +00001856 bool isSigned,
1857 roundingMode rounding_mode) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001858{
Neil Boothee7ae382007-11-01 22:43:37 +00001859 opStatus fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001860
Neil Boothee7ae382007-11-01 22:43:37 +00001861 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001862
Neil Boothee7ae382007-11-01 22:43:37 +00001863 if (fs == opInvalidOp) {
1864 unsigned int bits, dstPartsCount;
1865
1866 dstPartsCount = partCountForBits(width);
1867
1868 if (category == fcNaN)
1869 bits = 0;
1870 else if (sign)
1871 bits = isSigned;
1872 else
1873 bits = width - isSigned;
1874
1875 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
1876 if (sign && isSigned)
1877 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001878 }
1879
Neil Boothee7ae382007-11-01 22:43:37 +00001880 return fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001881}
1882
Neil Booth643ce592007-10-07 12:07:53 +00001883/* Convert an unsigned integer SRC to a floating point number,
1884 rounding according to ROUNDING_MODE. The sign of the floating
1885 point number is not modified. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001886APFloat::opStatus
Neil Booth643ce592007-10-07 12:07:53 +00001887APFloat::convertFromUnsignedParts(const integerPart *src,
1888 unsigned int srcCount,
1889 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001890{
Neil Booth5477f852007-10-08 14:39:42 +00001891 unsigned int omsb, precision, dstCount;
Neil Booth643ce592007-10-07 12:07:53 +00001892 integerPart *dst;
Neil Booth5477f852007-10-08 14:39:42 +00001893 lostFraction lost_fraction;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001894
Neil Boothcaf19d72007-10-14 10:29:28 +00001895 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001896 category = fcNormal;
Neil Booth5477f852007-10-08 14:39:42 +00001897 omsb = APInt::tcMSB(src, srcCount) + 1;
Neil Booth643ce592007-10-07 12:07:53 +00001898 dst = significandParts();
1899 dstCount = partCount();
Neil Booth5477f852007-10-08 14:39:42 +00001900 precision = semantics->precision;
Neil Booth643ce592007-10-07 12:07:53 +00001901
Neil Booth5477f852007-10-08 14:39:42 +00001902 /* We want the most significant PRECISON bits of SRC. There may not
1903 be that many; extract what we can. */
1904 if (precision <= omsb) {
1905 exponent = omsb - 1;
Neil Booth643ce592007-10-07 12:07:53 +00001906 lost_fraction = lostFractionThroughTruncation(src, srcCount,
Neil Booth5477f852007-10-08 14:39:42 +00001907 omsb - precision);
1908 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
1909 } else {
1910 exponent = precision - 1;
1911 lost_fraction = lfExactlyZero;
1912 APInt::tcExtract(dst, dstCount, src, omsb, 0);
Neil Booth643ce592007-10-07 12:07:53 +00001913 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001914
1915 return normalize(rounding_mode, lost_fraction);
1916}
1917
Dan Gohman93c276e2008-02-29 01:26:11 +00001918APFloat::opStatus
1919APFloat::convertFromAPInt(const APInt &Val,
1920 bool isSigned,
1921 roundingMode rounding_mode)
1922{
1923 unsigned int partCount = Val.getNumWords();
1924 APInt api = Val;
1925
1926 sign = false;
1927 if (isSigned && api.isNegative()) {
1928 sign = true;
1929 api = -api;
1930 }
1931
1932 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
1933}
1934
Neil Boothf16c5952007-10-07 12:15:41 +00001935/* Convert a two's complement integer SRC to a floating point number,
1936 rounding according to ROUNDING_MODE. ISSIGNED is true if the
1937 integer is signed, in which case it must be sign-extended. */
1938APFloat::opStatus
1939APFloat::convertFromSignExtendedInteger(const integerPart *src,
1940 unsigned int srcCount,
1941 bool isSigned,
1942 roundingMode rounding_mode)
1943{
1944 opStatus status;
1945
Neil Boothcaf19d72007-10-14 10:29:28 +00001946 assertArithmeticOK(*semantics);
Neil Boothf16c5952007-10-07 12:15:41 +00001947 if (isSigned
1948 && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
1949 integerPart *copy;
1950
1951 /* If we're signed and negative negate a copy. */
1952 sign = true;
1953 copy = new integerPart[srcCount];
1954 APInt::tcAssign(copy, src, srcCount);
1955 APInt::tcNegate(copy, srcCount);
1956 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
1957 delete [] copy;
1958 } else {
1959 sign = false;
1960 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
1961 }
1962
1963 return status;
1964}
1965
Neil Boothccf596a2007-10-07 11:45:55 +00001966/* FIXME: should this just take a const APInt reference? */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001967APFloat::opStatus
Neil Boothccf596a2007-10-07 11:45:55 +00001968APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
1969 unsigned int width, bool isSigned,
1970 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001971{
Dale Johannesen910993e2007-09-21 22:09:37 +00001972 unsigned int partCount = partCountForBits(width);
Dale Johannesen910993e2007-09-21 22:09:37 +00001973 APInt api = APInt(width, partCount, parts);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001974
1975 sign = false;
Dale Johannesencce23a42007-09-30 18:17:01 +00001976 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
1977 sign = true;
1978 api = -api;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001979 }
1980
Neil Booth7a7bc0f2007-10-07 12:10:57 +00001981 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001982}
1983
1984APFloat::opStatus
1985APFloat::convertFromHexadecimalString(const char *p,
Neil Booth4f881702007-09-26 21:33:42 +00001986 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001987{
1988 lostFraction lost_fraction;
1989 integerPart *significand;
1990 unsigned int bitPos, partsCount;
1991 const char *dot, *firstSignificantDigit;
1992
1993 zeroSignificand();
1994 exponent = 0;
1995 category = fcNormal;
1996
1997 significand = significandParts();
1998 partsCount = partCount();
1999 bitPos = partsCount * integerPartWidth;
2000
Neil Booth33d4c922007-10-07 08:51:21 +00002001 /* Skip leading zeroes and any (hexa)decimal point. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002002 p = skipLeadingZeroesAndAnyDot(p, &dot);
2003 firstSignificantDigit = p;
2004
2005 for(;;) {
Dale Johannesen386f3e92008-05-14 22:53:25 +00002006 integerPart hex_value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002007
2008 if(*p == '.') {
2009 assert(dot == 0);
2010 dot = p++;
2011 }
2012
2013 hex_value = hexDigitValue(*p);
2014 if(hex_value == -1U) {
2015 lost_fraction = lfExactlyZero;
2016 break;
2017 }
2018
2019 p++;
2020
2021 /* Store the number whilst 4-bit nibbles remain. */
2022 if(bitPos) {
2023 bitPos -= 4;
2024 hex_value <<= bitPos % integerPartWidth;
2025 significand[bitPos / integerPartWidth] |= hex_value;
2026 } else {
2027 lost_fraction = trailingHexadecimalFraction(p, hex_value);
2028 while(hexDigitValue(*p) != -1U)
Neil Booth4f881702007-09-26 21:33:42 +00002029 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002030 break;
2031 }
2032 }
2033
2034 /* Hex floats require an exponent but not a hexadecimal point. */
2035 assert(*p == 'p' || *p == 'P');
2036
2037 /* Ignore the exponent if we are zero. */
2038 if(p != firstSignificantDigit) {
2039 int expAdjustment;
2040
2041 /* Implicit hexadecimal point? */
2042 if(!dot)
2043 dot = p;
2044
2045 /* Calculate the exponent adjustment implicit in the number of
2046 significant digits. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002047 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002048 if(expAdjustment < 0)
2049 expAdjustment++;
2050 expAdjustment = expAdjustment * 4 - 1;
2051
2052 /* Adjust for writing the significand starting at the most
2053 significant nibble. */
2054 expAdjustment += semantics->precision;
2055 expAdjustment -= partsCount * integerPartWidth;
2056
2057 /* Adjust for the given exponent. */
2058 exponent = totalExponent(p, expAdjustment);
2059 }
2060
2061 return normalize(rounding_mode, lost_fraction);
2062}
2063
2064APFloat::opStatus
Neil Booth96c74712007-10-12 16:02:31 +00002065APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2066 unsigned sigPartCount, int exp,
2067 roundingMode rounding_mode)
2068{
2069 unsigned int parts, pow5PartCount;
Neil Boothcaf19d72007-10-14 10:29:28 +00002070 fltSemantics calcSemantics = { 32767, -32767, 0, true };
Neil Booth96c74712007-10-12 16:02:31 +00002071 integerPart pow5Parts[maxPowerOfFiveParts];
2072 bool isNearest;
2073
2074 isNearest = (rounding_mode == rmNearestTiesToEven
2075 || rounding_mode == rmNearestTiesToAway);
2076
2077 parts = partCountForBits(semantics->precision + 11);
2078
2079 /* Calculate pow(5, abs(exp)). */
2080 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2081
2082 for (;; parts *= 2) {
2083 opStatus sigStatus, powStatus;
2084 unsigned int excessPrecision, truncatedBits;
2085
2086 calcSemantics.precision = parts * integerPartWidth - 1;
2087 excessPrecision = calcSemantics.precision - semantics->precision;
2088 truncatedBits = excessPrecision;
2089
2090 APFloat decSig(calcSemantics, fcZero, sign);
2091 APFloat pow5(calcSemantics, fcZero, false);
2092
2093 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2094 rmNearestTiesToEven);
2095 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2096 rmNearestTiesToEven);
2097 /* Add exp, as 10^n = 5^n * 2^n. */
2098 decSig.exponent += exp;
2099
2100 lostFraction calcLostFraction;
Evan Cheng48e8c802008-05-02 21:15:08 +00002101 integerPart HUerr, HUdistance;
2102 unsigned int powHUerr;
Neil Booth96c74712007-10-12 16:02:31 +00002103
2104 if (exp >= 0) {
2105 /* multiplySignificand leaves the precision-th bit set to 1. */
2106 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2107 powHUerr = powStatus != opOK;
2108 } else {
2109 calcLostFraction = decSig.divideSignificand(pow5);
2110 /* Denormal numbers have less precision. */
2111 if (decSig.exponent < semantics->minExponent) {
2112 excessPrecision += (semantics->minExponent - decSig.exponent);
2113 truncatedBits = excessPrecision;
2114 if (excessPrecision > calcSemantics.precision)
2115 excessPrecision = calcSemantics.precision;
2116 }
2117 /* Extra half-ulp lost in reciprocal of exponent. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002118 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
Neil Booth96c74712007-10-12 16:02:31 +00002119 }
2120
2121 /* Both multiplySignificand and divideSignificand return the
2122 result with the integer bit set. */
2123 assert (APInt::tcExtractBit
2124 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2125
2126 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2127 powHUerr);
2128 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2129 excessPrecision, isNearest);
2130
2131 /* Are we guaranteed to round correctly if we truncate? */
2132 if (HUdistance >= HUerr) {
2133 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2134 calcSemantics.precision - excessPrecision,
2135 excessPrecision);
2136 /* Take the exponent of decSig. If we tcExtract-ed less bits
2137 above we must adjust our exponent to compensate for the
2138 implicit right shift. */
2139 exponent = (decSig.exponent + semantics->precision
2140 - (calcSemantics.precision - excessPrecision));
2141 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2142 decSig.partCount(),
2143 truncatedBits);
2144 return normalize(rounding_mode, calcLostFraction);
2145 }
2146 }
2147}
2148
2149APFloat::opStatus
2150APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
2151{
Neil Booth1870f292007-10-14 10:16:12 +00002152 decimalInfo D;
Neil Booth96c74712007-10-12 16:02:31 +00002153 opStatus fs;
2154
Neil Booth1870f292007-10-14 10:16:12 +00002155 /* Scan the text. */
2156 interpretDecimal(p, &D);
Neil Booth96c74712007-10-12 16:02:31 +00002157
Neil Booth686700e2007-10-15 15:00:55 +00002158 /* Handle the quick cases. First the case of no significant digits,
2159 i.e. zero, and then exponents that are obviously too large or too
2160 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2161 definitely overflows if
2162
2163 (exp - 1) * L >= maxExponent
2164
2165 and definitely underflows to zero where
2166
2167 (exp + 1) * L <= minExponent - precision
2168
2169 With integer arithmetic the tightest bounds for L are
2170
2171 93/28 < L < 196/59 [ numerator <= 256 ]
2172 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2173 */
2174
Neil Boothcc233592007-12-05 13:06:04 +00002175 if (decDigitValue(*D.firstSigDigit) >= 10U) {
Neil Booth96c74712007-10-12 16:02:31 +00002176 category = fcZero;
2177 fs = opOK;
Neil Booth686700e2007-10-15 15:00:55 +00002178 } else if ((D.normalizedExponent + 1) * 28738
2179 <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
2180 /* Underflow to zero and round. */
2181 zeroSignificand();
2182 fs = normalize(rounding_mode, lfLessThanHalf);
2183 } else if ((D.normalizedExponent - 1) * 42039
2184 >= 12655 * semantics->maxExponent) {
2185 /* Overflow and round. */
2186 fs = handleOverflow(rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002187 } else {
Neil Booth1870f292007-10-14 10:16:12 +00002188 integerPart *decSignificand;
2189 unsigned int partCount;
Neil Booth96c74712007-10-12 16:02:31 +00002190
Neil Booth1870f292007-10-14 10:16:12 +00002191 /* A tight upper bound on number of bits required to hold an
Neil Booth686700e2007-10-15 15:00:55 +00002192 N-digit decimal integer is N * 196 / 59. Allocate enough space
Neil Booth1870f292007-10-14 10:16:12 +00002193 to hold the full significand, and an extra part required by
2194 tcMultiplyPart. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002195 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
Neil Booth686700e2007-10-15 15:00:55 +00002196 partCount = partCountForBits(1 + 196 * partCount / 59);
Neil Booth1870f292007-10-14 10:16:12 +00002197 decSignificand = new integerPart[partCount + 1];
2198 partCount = 0;
Neil Booth96c74712007-10-12 16:02:31 +00002199
Neil Booth1870f292007-10-14 10:16:12 +00002200 /* Convert to binary efficiently - we do almost all multiplication
2201 in an integerPart. When this would overflow do we do a single
2202 bignum multiplication, and then revert again to multiplication
2203 in an integerPart. */
2204 do {
2205 integerPart decValue, val, multiplier;
2206
2207 val = 0;
2208 multiplier = 1;
2209
2210 do {
2211 if (*p == '.')
2212 p++;
2213
2214 decValue = decDigitValue(*p++);
2215 multiplier *= 10;
2216 val = val * 10 + decValue;
2217 /* The maximum number that can be multiplied by ten with any
2218 digit added without overflowing an integerPart. */
2219 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2220
2221 /* Multiply out the current part. */
2222 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2223 partCount, partCount + 1, false);
2224
2225 /* If we used another part (likely but not guaranteed), increase
2226 the count. */
2227 if (decSignificand[partCount])
2228 partCount++;
2229 } while (p <= D.lastSigDigit);
Neil Booth96c74712007-10-12 16:02:31 +00002230
Neil Booth43a4b282007-11-01 22:51:07 +00002231 category = fcNormal;
Neil Booth96c74712007-10-12 16:02:31 +00002232 fs = roundSignificandWithExponent(decSignificand, partCount,
Neil Booth1870f292007-10-14 10:16:12 +00002233 D.exponent, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002234
Neil Booth1870f292007-10-14 10:16:12 +00002235 delete [] decSignificand;
2236 }
Neil Booth96c74712007-10-12 16:02:31 +00002237
2238 return fs;
2239}
2240
2241APFloat::opStatus
Neil Booth4f881702007-09-26 21:33:42 +00002242APFloat::convertFromString(const char *p, roundingMode rounding_mode)
2243{
Neil Boothcaf19d72007-10-14 10:29:28 +00002244 assertArithmeticOK(*semantics);
2245
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002246 /* Handle a leading minus sign. */
2247 if(*p == '-')
2248 sign = 1, p++;
2249 else
2250 sign = 0;
2251
2252 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
2253 return convertFromHexadecimalString(p + 2, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002254 else
2255 return convertFromDecimalString(p, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002256}
Dale Johannesen343e7702007-08-24 00:56:33 +00002257
Neil Bootha30b0ee2007-10-03 22:26:02 +00002258/* Write out a hexadecimal representation of the floating point value
2259 to DST, which must be of sufficient size, in the C99 form
2260 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2261 excluding the terminating NUL.
2262
2263 If UPPERCASE, the output is in upper case, otherwise in lower case.
2264
2265 HEXDIGITS digits appear altogether, rounding the value if
2266 necessary. If HEXDIGITS is 0, the minimal precision to display the
2267 number precisely is used instead. If nothing would appear after
2268 the decimal point it is suppressed.
2269
2270 The decimal exponent is always printed and has at least one digit.
2271 Zero values display an exponent of zero. Infinities and NaNs
2272 appear as "infinity" or "nan" respectively.
2273
2274 The above rules are as specified by C99. There is ambiguity about
2275 what the leading hexadecimal digit should be. This implementation
2276 uses whatever is necessary so that the exponent is displayed as
2277 stored. This implies the exponent will fall within the IEEE format
2278 range, and the leading hexadecimal digit will be 0 (for denormals),
2279 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2280 any other digits zero).
2281*/
2282unsigned int
2283APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2284 bool upperCase, roundingMode rounding_mode) const
2285{
2286 char *p;
2287
Neil Boothcaf19d72007-10-14 10:29:28 +00002288 assertArithmeticOK(*semantics);
2289
Neil Bootha30b0ee2007-10-03 22:26:02 +00002290 p = dst;
2291 if (sign)
2292 *dst++ = '-';
2293
2294 switch (category) {
2295 case fcInfinity:
2296 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2297 dst += sizeof infinityL - 1;
2298 break;
2299
2300 case fcNaN:
2301 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2302 dst += sizeof NaNU - 1;
2303 break;
2304
2305 case fcZero:
2306 *dst++ = '0';
2307 *dst++ = upperCase ? 'X': 'x';
2308 *dst++ = '0';
2309 if (hexDigits > 1) {
2310 *dst++ = '.';
2311 memset (dst, '0', hexDigits - 1);
2312 dst += hexDigits - 1;
2313 }
2314 *dst++ = upperCase ? 'P': 'p';
2315 *dst++ = '0';
2316 break;
2317
2318 case fcNormal:
2319 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2320 break;
2321 }
2322
2323 *dst = 0;
2324
Evan Cheng48e8c802008-05-02 21:15:08 +00002325 return static_cast<unsigned int>(dst - p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002326}
2327
2328/* Does the hard work of outputting the correctly rounded hexadecimal
2329 form of a normal floating point number with the specified number of
2330 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2331 digits necessary to print the value precisely is output. */
2332char *
2333APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2334 bool upperCase,
2335 roundingMode rounding_mode) const
2336{
2337 unsigned int count, valueBits, shift, partsCount, outputDigits;
2338 const char *hexDigitChars;
2339 const integerPart *significand;
2340 char *p;
2341 bool roundUp;
2342
2343 *dst++ = '0';
2344 *dst++ = upperCase ? 'X': 'x';
2345
2346 roundUp = false;
2347 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2348
2349 significand = significandParts();
2350 partsCount = partCount();
2351
2352 /* +3 because the first digit only uses the single integer bit, so
2353 we have 3 virtual zero most-significant-bits. */
2354 valueBits = semantics->precision + 3;
2355 shift = integerPartWidth - valueBits % integerPartWidth;
2356
2357 /* The natural number of digits required ignoring trailing
2358 insignificant zeroes. */
2359 outputDigits = (valueBits - significandLSB () + 3) / 4;
2360
2361 /* hexDigits of zero means use the required number for the
2362 precision. Otherwise, see if we are truncating. If we are,
Neil Booth978661d2007-10-06 00:24:48 +00002363 find out if we need to round away from zero. */
Neil Bootha30b0ee2007-10-03 22:26:02 +00002364 if (hexDigits) {
2365 if (hexDigits < outputDigits) {
2366 /* We are dropping non-zero bits, so need to check how to round.
2367 "bits" is the number of dropped bits. */
2368 unsigned int bits;
2369 lostFraction fraction;
2370
2371 bits = valueBits - hexDigits * 4;
2372 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2373 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2374 }
2375 outputDigits = hexDigits;
2376 }
2377
2378 /* Write the digits consecutively, and start writing in the location
2379 of the hexadecimal point. We move the most significant digit
2380 left and add the hexadecimal point later. */
2381 p = ++dst;
2382
2383 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2384
2385 while (outputDigits && count) {
2386 integerPart part;
2387
2388 /* Put the most significant integerPartWidth bits in "part". */
2389 if (--count == partsCount)
2390 part = 0; /* An imaginary higher zero part. */
2391 else
2392 part = significand[count] << shift;
2393
2394 if (count && shift)
2395 part |= significand[count - 1] >> (integerPartWidth - shift);
2396
2397 /* Convert as much of "part" to hexdigits as we can. */
2398 unsigned int curDigits = integerPartWidth / 4;
2399
2400 if (curDigits > outputDigits)
2401 curDigits = outputDigits;
2402 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2403 outputDigits -= curDigits;
2404 }
2405
2406 if (roundUp) {
2407 char *q = dst;
2408
2409 /* Note that hexDigitChars has a trailing '0'. */
2410 do {
2411 q--;
2412 *q = hexDigitChars[hexDigitValue (*q) + 1];
Neil Booth978661d2007-10-06 00:24:48 +00002413 } while (*q == '0');
2414 assert (q >= p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002415 } else {
2416 /* Add trailing zeroes. */
2417 memset (dst, '0', outputDigits);
2418 dst += outputDigits;
2419 }
2420
2421 /* Move the most significant digit to before the point, and if there
2422 is something after the decimal point add it. This must come
2423 after rounding above. */
2424 p[-1] = p[0];
2425 if (dst -1 == p)
2426 dst--;
2427 else
2428 p[0] = '.';
2429
2430 /* Finally output the exponent. */
2431 *dst++ = upperCase ? 'P': 'p';
2432
Neil Booth92f7e8d2007-10-06 07:29:25 +00002433 return writeSignedDecimal (dst, exponent);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002434}
2435
Dale Johannesen343e7702007-08-24 00:56:33 +00002436// For good performance it is desirable for different APFloats
2437// to produce different integers.
2438uint32_t
Neil Booth4f881702007-09-26 21:33:42 +00002439APFloat::getHashValue() const
2440{
Dale Johannesen343e7702007-08-24 00:56:33 +00002441 if (category==fcZero) return sign<<8 | semantics->precision ;
2442 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002443 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00002444 else {
2445 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2446 const integerPart* p = significandParts();
2447 for (int i=partCount(); i>0; i--, p++)
Evan Cheng48e8c802008-05-02 21:15:08 +00002448 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
Dale Johannesen343e7702007-08-24 00:56:33 +00002449 return hash;
2450 }
2451}
2452
2453// Conversion from APFloat to/from host float/double. It may eventually be
2454// possible to eliminate these and have everybody deal with APFloats, but that
2455// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00002456// Current implementation requires integerPartWidth==64, which is correct at
2457// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00002458
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002459// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00002460// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002461
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002462APInt
Neil Booth4f881702007-09-26 21:33:42 +00002463APFloat::convertF80LongDoubleAPFloatToAPInt() const
2464{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002465 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002466 assert (partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002467
2468 uint64_t myexponent, mysignificand;
2469
2470 if (category==fcNormal) {
2471 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00002472 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002473 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2474 myexponent = 0; // denormal
2475 } else if (category==fcZero) {
2476 myexponent = 0;
2477 mysignificand = 0;
2478 } else if (category==fcInfinity) {
2479 myexponent = 0x7fff;
2480 mysignificand = 0x8000000000000000ULL;
Chris Lattnera11ef822007-10-06 06:13:42 +00002481 } else {
2482 assert(category == fcNaN && "Unknown category");
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002483 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002484 mysignificand = significandParts()[0];
Chris Lattnera11ef822007-10-06 06:13:42 +00002485 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002486
2487 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002488 words[0] = ((uint64_t)(sign & 1) << 63) |
2489 ((myexponent & 0x7fffLL) << 48) |
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002490 ((mysignificand >>16) & 0xffffffffffffLL);
2491 words[1] = mysignificand & 0xffff;
Chris Lattnera11ef822007-10-06 06:13:42 +00002492 return APInt(80, 2, words);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002493}
2494
2495APInt
Dale Johannesena471c2e2007-10-11 18:07:22 +00002496APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2497{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002498 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002499 assert (partCount()==2);
2500
2501 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2502
2503 if (category==fcNormal) {
2504 myexponent = exponent + 1023; //bias
2505 myexponent2 = exponent2 + 1023;
2506 mysignificand = significandParts()[0];
2507 mysignificand2 = significandParts()[1];
2508 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2509 myexponent = 0; // denormal
2510 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2511 myexponent2 = 0; // denormal
2512 } else if (category==fcZero) {
2513 myexponent = 0;
2514 mysignificand = 0;
2515 myexponent2 = 0;
2516 mysignificand2 = 0;
2517 } else if (category==fcInfinity) {
2518 myexponent = 0x7ff;
2519 myexponent2 = 0;
2520 mysignificand = 0;
2521 mysignificand2 = 0;
2522 } else {
2523 assert(category == fcNaN && "Unknown category");
2524 myexponent = 0x7ff;
2525 mysignificand = significandParts()[0];
2526 myexponent2 = exponent2;
2527 mysignificand2 = significandParts()[1];
2528 }
2529
2530 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002531 words[0] = ((uint64_t)(sign & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002532 ((myexponent & 0x7ff) << 52) |
2533 (mysignificand & 0xfffffffffffffLL);
Evan Cheng48e8c802008-05-02 21:15:08 +00002534 words[1] = ((uint64_t)(sign2 & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002535 ((myexponent2 & 0x7ff) << 52) |
2536 (mysignificand2 & 0xfffffffffffffLL);
2537 return APInt(128, 2, words);
2538}
2539
2540APInt
Neil Booth4f881702007-09-26 21:33:42 +00002541APFloat::convertDoubleAPFloatToAPInt() const
2542{
Dan Gohmancb648f92007-09-14 20:08:19 +00002543 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002544 assert (partCount()==1);
2545
Dale Johanneseneaf08942007-08-31 04:03:46 +00002546 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002547
2548 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002549 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002550 mysignificand = *significandParts();
2551 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2552 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002553 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002554 myexponent = 0;
2555 mysignificand = 0;
2556 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002557 myexponent = 0x7ff;
2558 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002559 } else {
2560 assert(category == fcNaN && "Unknown category!");
Dale Johannesen343e7702007-08-24 00:56:33 +00002561 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002562 mysignificand = *significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002563 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002564
Evan Cheng48e8c802008-05-02 21:15:08 +00002565 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
Chris Lattnera11ef822007-10-06 06:13:42 +00002566 ((myexponent & 0x7ff) << 52) |
2567 (mysignificand & 0xfffffffffffffLL))));
Dale Johannesen343e7702007-08-24 00:56:33 +00002568}
2569
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002570APInt
Neil Booth4f881702007-09-26 21:33:42 +00002571APFloat::convertFloatAPFloatToAPInt() const
2572{
Dan Gohmancb648f92007-09-14 20:08:19 +00002573 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002574 assert (partCount()==1);
Neil Booth4f881702007-09-26 21:33:42 +00002575
Dale Johanneseneaf08942007-08-31 04:03:46 +00002576 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002577
2578 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002579 myexponent = exponent+127; //bias
Evan Cheng48e8c802008-05-02 21:15:08 +00002580 mysignificand = (uint32_t)*significandParts();
Dale Johannesend0763b92007-11-17 01:02:27 +00002581 if (myexponent == 1 && !(mysignificand & 0x800000))
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002582 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002583 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002584 myexponent = 0;
2585 mysignificand = 0;
2586 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002587 myexponent = 0xff;
2588 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002589 } else {
2590 assert(category == fcNaN && "Unknown category!");
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002591 myexponent = 0xff;
Evan Cheng48e8c802008-05-02 21:15:08 +00002592 mysignificand = (uint32_t)*significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002593 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002594
Chris Lattnera11ef822007-10-06 06:13:42 +00002595 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2596 (mysignificand & 0x7fffff)));
Dale Johannesen343e7702007-08-24 00:56:33 +00002597}
2598
Dale Johannesena471c2e2007-10-11 18:07:22 +00002599// This function creates an APInt that is just a bit map of the floating
2600// point constant as it would appear in memory. It is not a conversion,
2601// and treating the result as a normal integer is unlikely to be useful.
2602
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002603APInt
Neil Booth4f881702007-09-26 21:33:42 +00002604APFloat::convertToAPInt() const
2605{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002606 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002607 return convertFloatAPFloatToAPInt();
Chris Lattnera11ef822007-10-06 06:13:42 +00002608
Dan Gohmanb10abe12008-01-29 12:08:20 +00002609 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002610 return convertDoubleAPFloatToAPInt();
Neil Booth4f881702007-09-26 21:33:42 +00002611
Dan Gohmanb10abe12008-01-29 12:08:20 +00002612 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
Dale Johannesena471c2e2007-10-11 18:07:22 +00002613 return convertPPCDoubleDoubleAPFloatToAPInt();
2614
Dan Gohmanb10abe12008-01-29 12:08:20 +00002615 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
Chris Lattnera11ef822007-10-06 06:13:42 +00002616 "unknown format!");
2617 return convertF80LongDoubleAPFloatToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002618}
2619
Neil Booth4f881702007-09-26 21:33:42 +00002620float
2621APFloat::convertToFloat() const
2622{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002623 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002624 APInt api = convertToAPInt();
2625 return api.bitsToFloat();
2626}
2627
Neil Booth4f881702007-09-26 21:33:42 +00002628double
2629APFloat::convertToDouble() const
2630{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002631 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002632 APInt api = convertToAPInt();
2633 return api.bitsToDouble();
2634}
2635
2636/// Integer bit is explicit in this format. Current Intel book does not
2637/// define meaning of:
2638/// exponent = all 1's, integer bit not set.
2639/// exponent = 0, integer bit set. (formerly "psuedodenormals")
2640/// exponent!=0 nor all 1's, integer bit not set. (formerly "unnormals")
2641void
Neil Booth4f881702007-09-26 21:33:42 +00002642APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2643{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002644 assert(api.getBitWidth()==80);
2645 uint64_t i1 = api.getRawData()[0];
2646 uint64_t i2 = api.getRawData()[1];
2647 uint64_t myexponent = (i1 >> 48) & 0x7fff;
2648 uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) |
2649 (i2 & 0xffff);
2650
2651 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002652 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002653
Evan Cheng48e8c802008-05-02 21:15:08 +00002654 sign = static_cast<unsigned int>(i1>>63);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002655 if (myexponent==0 && mysignificand==0) {
2656 // exponent, significand meaningless
2657 category = fcZero;
2658 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2659 // exponent, significand meaningless
2660 category = fcInfinity;
2661 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2662 // exponent meaningless
2663 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002664 significandParts()[0] = mysignificand;
2665 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002666 } else {
2667 category = fcNormal;
2668 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002669 significandParts()[0] = mysignificand;
2670 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002671 if (myexponent==0) // denormal
2672 exponent = -16382;
Neil Booth4f881702007-09-26 21:33:42 +00002673 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002674}
2675
2676void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002677APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2678{
2679 assert(api.getBitWidth()==128);
2680 uint64_t i1 = api.getRawData()[0];
2681 uint64_t i2 = api.getRawData()[1];
2682 uint64_t myexponent = (i1 >> 52) & 0x7ff;
2683 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
2684 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
2685 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
2686
2687 initialize(&APFloat::PPCDoubleDouble);
2688 assert(partCount()==2);
2689
Evan Cheng48e8c802008-05-02 21:15:08 +00002690 sign = static_cast<unsigned int>(i1>>63);
2691 sign2 = static_cast<unsigned int>(i2>>63);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002692 if (myexponent==0 && mysignificand==0) {
2693 // exponent, significand meaningless
2694 // exponent2 and significand2 are required to be 0; we don't check
2695 category = fcZero;
2696 } else if (myexponent==0x7ff && mysignificand==0) {
2697 // exponent, significand meaningless
2698 // exponent2 and significand2 are required to be 0; we don't check
2699 category = fcInfinity;
2700 } else if (myexponent==0x7ff && mysignificand!=0) {
2701 // exponent meaningless. So is the whole second word, but keep it
2702 // for determinism.
2703 category = fcNaN;
2704 exponent2 = myexponent2;
2705 significandParts()[0] = mysignificand;
2706 significandParts()[1] = mysignificand2;
2707 } else {
2708 category = fcNormal;
2709 // Note there is no category2; the second word is treated as if it is
2710 // fcNormal, although it might be something else considered by itself.
2711 exponent = myexponent - 1023;
2712 exponent2 = myexponent2 - 1023;
2713 significandParts()[0] = mysignificand;
2714 significandParts()[1] = mysignificand2;
2715 if (myexponent==0) // denormal
2716 exponent = -1022;
2717 else
2718 significandParts()[0] |= 0x10000000000000LL; // integer bit
2719 if (myexponent2==0)
2720 exponent2 = -1022;
2721 else
2722 significandParts()[1] |= 0x10000000000000LL; // integer bit
2723 }
2724}
2725
2726void
Neil Booth4f881702007-09-26 21:33:42 +00002727APFloat::initFromDoubleAPInt(const APInt &api)
2728{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002729 assert(api.getBitWidth()==64);
2730 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002731 uint64_t myexponent = (i >> 52) & 0x7ff;
2732 uint64_t mysignificand = i & 0xfffffffffffffLL;
2733
Dale Johannesen343e7702007-08-24 00:56:33 +00002734 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002735 assert(partCount()==1);
2736
Evan Cheng48e8c802008-05-02 21:15:08 +00002737 sign = static_cast<unsigned int>(i>>63);
Dale Johannesen343e7702007-08-24 00:56:33 +00002738 if (myexponent==0 && mysignificand==0) {
2739 // exponent, significand meaningless
2740 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002741 } else if (myexponent==0x7ff && mysignificand==0) {
2742 // exponent, significand meaningless
2743 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002744 } else if (myexponent==0x7ff && mysignificand!=0) {
2745 // exponent meaningless
2746 category = fcNaN;
2747 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002748 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00002749 category = fcNormal;
2750 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002751 *significandParts() = mysignificand;
2752 if (myexponent==0) // denormal
2753 exponent = -1022;
2754 else
2755 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth4f881702007-09-26 21:33:42 +00002756 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002757}
2758
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002759void
Neil Booth4f881702007-09-26 21:33:42 +00002760APFloat::initFromFloatAPInt(const APInt & api)
2761{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002762 assert(api.getBitWidth()==32);
2763 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002764 uint32_t myexponent = (i >> 23) & 0xff;
2765 uint32_t mysignificand = i & 0x7fffff;
2766
Dale Johannesen343e7702007-08-24 00:56:33 +00002767 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002768 assert(partCount()==1);
2769
Dale Johanneseneaf08942007-08-31 04:03:46 +00002770 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00002771 if (myexponent==0 && mysignificand==0) {
2772 // exponent, significand meaningless
2773 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002774 } else if (myexponent==0xff && mysignificand==0) {
2775 // exponent, significand meaningless
2776 category = fcInfinity;
Dale Johannesen902ff942007-09-25 17:25:00 +00002777 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002778 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00002779 category = fcNaN;
2780 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002781 } else {
2782 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00002783 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002784 *significandParts() = mysignificand;
2785 if (myexponent==0) // denormal
2786 exponent = -126;
2787 else
2788 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00002789 }
2790}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002791
2792/// Treat api as containing the bits of a floating point number. Currently
Dale Johannesena471c2e2007-10-11 18:07:22 +00002793/// we infer the floating point type from the size of the APInt. The
2794/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
2795/// when the size is anything else).
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002796void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002797APFloat::initFromAPInt(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002798{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002799 if (api.getBitWidth() == 32)
2800 return initFromFloatAPInt(api);
2801 else if (api.getBitWidth()==64)
2802 return initFromDoubleAPInt(api);
2803 else if (api.getBitWidth()==80)
2804 return initFromF80LongDoubleAPInt(api);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002805 else if (api.getBitWidth()==128 && !isIEEE)
2806 return initFromPPCDoubleDoubleAPInt(api);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002807 else
2808 assert(0);
2809}
2810
Dale Johannesena471c2e2007-10-11 18:07:22 +00002811APFloat::APFloat(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002812{
Dale Johannesena471c2e2007-10-11 18:07:22 +00002813 initFromAPInt(api, isIEEE);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002814}
2815
Neil Booth4f881702007-09-26 21:33:42 +00002816APFloat::APFloat(float f)
2817{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002818 APInt api = APInt(32, 0);
2819 initFromAPInt(api.floatToBits(f));
2820}
2821
Neil Booth4f881702007-09-26 21:33:42 +00002822APFloat::APFloat(double d)
2823{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002824 APInt api = APInt(64, 0);
2825 initFromAPInt(api.doubleToBits(d));
2826}