blob: 4d87efed8b7f6a92467f8b05207f27903566885b [file] [log] [blame]
Evan Cheng148b6a42007-07-05 21:15:40 +00001//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Evan Cheng148b6a42007-07-05 21:15:40 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
Evan Cheng0f282432008-10-29 23:55:43 +000015#define DEBUG_TYPE "jit"
Evan Cheng7602e112008-09-02 06:52:38 +000016#include "ARM.h"
17#include "ARMAddressingModes.h"
Evan Cheng0f282432008-10-29 23:55:43 +000018#include "ARMConstantPoolValue.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000019#include "ARMInstrInfo.h"
Evan Cheng7602e112008-09-02 06:52:38 +000020#include "ARMRelocations.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000021#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
Jim Grosbachbc6d8762008-10-28 18:25:49 +000023#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
Evan Cheng42d5ee062008-09-13 01:15:21 +000025#include "llvm/Function.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000026#include "llvm/PassManager.h"
27#include "llvm/CodeGen/MachineCodeEmitter.h"
Evan Cheng057d0c32008-09-18 07:28:19 +000028#include "llvm/CodeGen/MachineConstantPool.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000029#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
Evan Cheng4df60f52008-11-07 09:06:08 +000031#include "llvm/CodeGen/MachineJumpTableInfo.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000032#include "llvm/CodeGen/Passes.h"
Evan Cheng148b6a42007-07-05 21:15:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/Compiler.h"
Evan Cheng42d5ee062008-09-13 01:15:21 +000035#include "llvm/Support/Debug.h"
Evan Cheng4df60f52008-11-07 09:06:08 +000036#ifndef NDEBUG
37#include <iomanip>
38#endif
Evan Cheng148b6a42007-07-05 21:15:40 +000039using namespace llvm;
40
41STATISTIC(NumEmitted, "Number of machine instructions emitted");
42
43namespace {
Evan Cheng7602e112008-09-02 06:52:38 +000044 class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
Evan Cheng057d0c32008-09-18 07:28:19 +000045 ARMJITInfo *JTI;
46 const ARMInstrInfo *II;
47 const TargetData *TD;
48 TargetMachine &TM;
49 MachineCodeEmitter &MCE;
Evan Cheng938b9d82008-10-31 19:55:13 +000050 const std::vector<MachineConstantPoolEntry> *MCPEs;
Evan Cheng4df60f52008-11-07 09:06:08 +000051 const std::vector<MachineJumpTableEntry> *MJTEs;
52 bool IsPIC;
53
Evan Cheng148b6a42007-07-05 21:15:40 +000054 public:
55 static char ID;
Evan Cheng7602e112008-09-02 06:52:38 +000056 explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
Evan Cheng057d0c32008-09-18 07:28:19 +000057 : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
Evan Cheng4df60f52008-11-07 09:06:08 +000058 MCE(mce), MCPEs(0), MJTEs(0),
59 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Evan Cheng7602e112008-09-02 06:52:38 +000060 ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
Evan Cheng148b6a42007-07-05 21:15:40 +000061 const ARMInstrInfo &ii, const TargetData &td)
Evan Cheng057d0c32008-09-18 07:28:19 +000062 : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
Evan Cheng4df60f52008-11-07 09:06:08 +000063 MCE(mce), MCPEs(0), MJTEs(0),
64 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Evan Cheng148b6a42007-07-05 21:15:40 +000065
66 bool runOnMachineFunction(MachineFunction &MF);
67
68 virtual const char *getPassName() const {
69 return "ARM Machine Code Emitter";
70 }
71
72 void emitInstruction(const MachineInstr &MI);
Evan Cheng7602e112008-09-02 06:52:38 +000073
74 private:
Evan Cheng057d0c32008-09-18 07:28:19 +000075
Evan Cheng83b5cf02008-11-05 23:22:34 +000076 void emitWordLE(unsigned Binary);
77
Evan Chengcb5201f2008-11-11 22:19:31 +000078 void emitDWordLE(uint64_t Binary);
79
Evan Cheng057d0c32008-09-18 07:28:19 +000080 void emitConstPoolInstruction(const MachineInstr &MI);
81
Evan Cheng90922132008-11-06 02:25:39 +000082 void emitMOVi2piecesInstruction(const MachineInstr &MI);
83
Evan Cheng4df60f52008-11-07 09:06:08 +000084 void emitLEApcrelJTInstruction(const MachineInstr &MI);
85
Evan Cheng83b5cf02008-11-05 23:22:34 +000086 void addPCLabel(unsigned LabelID);
87
Evan Cheng057d0c32008-09-18 07:28:19 +000088 void emitPseudoInstruction(const MachineInstr &MI);
89
Evan Cheng5f1db7b2008-09-12 22:01:15 +000090 unsigned getMachineSoRegOpValue(const MachineInstr &MI,
Evan Cheng49a9f292008-09-12 22:45:55 +000091 const TargetInstrDesc &TID,
Evan Chengeb4ed4b2008-10-31 19:10:44 +000092 const MachineOperand &MO,
Evan Cheng5f1db7b2008-09-12 22:01:15 +000093 unsigned OpIdx);
94
Evan Cheng90922132008-11-06 02:25:39 +000095 unsigned getMachineSoImmOpValue(unsigned SoImm);
Evan Chengeb4ed4b2008-10-31 19:10:44 +000096
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +000097 unsigned getAddrModeSBit(const MachineInstr &MI,
98 const TargetInstrDesc &TID) const;
Evan Cheng49a9f292008-09-12 22:45:55 +000099
Evan Cheng83b5cf02008-11-05 23:22:34 +0000100 void emitDataProcessingInstruction(const MachineInstr &MI,
Evan Cheng437c1732008-11-07 22:30:53 +0000101 unsigned ImplicitRd = 0,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000102 unsigned ImplicitRn = 0);
Evan Cheng7602e112008-09-02 06:52:38 +0000103
Evan Cheng83b5cf02008-11-05 23:22:34 +0000104 void emitLoadStoreInstruction(const MachineInstr &MI,
Evan Cheng4df60f52008-11-07 09:06:08 +0000105 unsigned ImplicitRd = 0,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000106 unsigned ImplicitRn = 0);
Evan Chengedda31c2008-11-05 18:35:52 +0000107
Evan Cheng83b5cf02008-11-05 23:22:34 +0000108 void emitMiscLoadStoreInstruction(const MachineInstr &MI,
109 unsigned ImplicitRn = 0);
Evan Chengedda31c2008-11-05 18:35:52 +0000110
111 void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
112
Evan Chengfbc9d412008-11-06 01:21:28 +0000113 void emitMulFrmInstruction(const MachineInstr &MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000114
Evan Cheng97f48c32008-11-06 22:15:19 +0000115 void emitExtendInstruction(const MachineInstr &MI);
116
Evan Cheng8b59db32008-11-07 01:41:35 +0000117 void emitMiscArithInstruction(const MachineInstr &MI);
118
Evan Chengedda31c2008-11-05 18:35:52 +0000119 void emitBranchInstruction(const MachineInstr &MI);
120
Evan Cheng437c1732008-11-07 22:30:53 +0000121 void emitInlineJumpTable(unsigned JTIndex);
Evan Cheng4df60f52008-11-07 09:06:08 +0000122
Evan Chengedda31c2008-11-05 18:35:52 +0000123 void emitMiscBranchInstruction(const MachineInstr &MI);
Evan Cheng7602e112008-09-02 06:52:38 +0000124
Evan Cheng96581d32008-11-11 02:11:05 +0000125 void emitVFPArithInstruction(const MachineInstr &MI);
126
Evan Cheng78be83d2008-11-11 19:40:26 +0000127 void emitVFPConversionInstruction(const MachineInstr &MI);
128
Evan Chengcd8e66a2008-11-11 21:48:44 +0000129 void emitVFPLoadStoreInstruction(const MachineInstr &MI);
130
131 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
132
133 void emitMiscInstruction(const MachineInstr &MI);
134
Evan Cheng7602e112008-09-02 06:52:38 +0000135 /// getBinaryCodeForInstr - This function, generated by the
136 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
137 /// machine instructions.
138 ///
Raul Herbster9c1a3822007-08-30 23:29:26 +0000139 unsigned getBinaryCodeForInstr(const MachineInstr &MI);
Evan Cheng0ff94f72007-08-07 01:37:15 +0000140
Evan Cheng7602e112008-09-02 06:52:38 +0000141 /// getMachineOpValue - Return binary encoding of operand. If the machine
142 /// operand requires relocation, record the relocation and return zero.
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000143 unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
Evan Cheng7602e112008-09-02 06:52:38 +0000144 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
145 return getMachineOpValue(MI, MI.getOperand(OpIdx));
146 }
Evan Cheng7602e112008-09-02 06:52:38 +0000147
Evan Cheng83b5cf02008-11-05 23:22:34 +0000148 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
Evan Cheng7602e112008-09-02 06:52:38 +0000149 ///
Evan Cheng83b5cf02008-11-05 23:22:34 +0000150 unsigned getShiftOp(unsigned Imm) const ;
Evan Cheng7602e112008-09-02 06:52:38 +0000151
152 /// Routines that handle operands which add machine relocations which are
Evan Cheng437c1732008-11-07 22:30:53 +0000153 /// fixed up by the relocation stage.
Evan Cheng057d0c32008-09-18 07:28:19 +0000154 void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
Evan Cheng413a89f2008-11-07 22:57:53 +0000155 bool NeedStub, intptr_t ACPV = 0);
Evan Cheng0ff94f72007-08-07 01:37:15 +0000156 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
Evan Cheng437c1732008-11-07 22:30:53 +0000157 void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
158 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
159 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
160 intptr_t JTBase = 0);
Evan Cheng148b6a42007-07-05 21:15:40 +0000161 };
Evan Cheng7602e112008-09-02 06:52:38 +0000162 char ARMCodeEmitter::ID = 0;
Evan Cheng148b6a42007-07-05 21:15:40 +0000163}
164
165/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
166/// to the specified MCE object.
167FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
168 MachineCodeEmitter &MCE) {
Evan Cheng7602e112008-09-02 06:52:38 +0000169 return new ARMCodeEmitter(TM, MCE);
Evan Cheng148b6a42007-07-05 21:15:40 +0000170}
171
Evan Cheng7602e112008-09-02 06:52:38 +0000172bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
Evan Cheng148b6a42007-07-05 21:15:40 +0000173 assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
174 MF.getTarget().getRelocationModel() != Reloc::Static) &&
175 "JIT relocation model must be set to static or default!");
176 II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
177 TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
Evan Cheng057d0c32008-09-18 07:28:19 +0000178 JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
Evan Cheng938b9d82008-10-31 19:55:13 +0000179 MCPEs = &MF.getConstantPool()->getConstants();
Evan Cheng4df60f52008-11-07 09:06:08 +0000180 MJTEs = &MF.getJumpTableInfo()->getJumpTables();
181 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Evan Cheng3cc82232008-11-08 07:38:22 +0000182 JTI->Initialize(MF, IsPIC);
Evan Cheng148b6a42007-07-05 21:15:40 +0000183
184 do {
Evan Cheng42d5ee062008-09-13 01:15:21 +0000185 DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
Evan Cheng148b6a42007-07-05 21:15:40 +0000186 MCE.startFunction(MF);
187 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
188 MBB != E; ++MBB) {
189 MCE.StartMachineBasicBlock(MBB);
190 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
191 I != E; ++I)
192 emitInstruction(*I);
193 }
194 } while (MCE.finishFunction(MF));
195
196 return false;
197}
198
Evan Cheng83b5cf02008-11-05 23:22:34 +0000199/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
Evan Cheng7602e112008-09-02 06:52:38 +0000200///
Evan Cheng83b5cf02008-11-05 23:22:34 +0000201unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
202 switch (ARM_AM::getAM2ShiftOpc(Imm)) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000203 default: assert(0 && "Unknown shift opc!");
Evan Cheng7602e112008-09-02 06:52:38 +0000204 case ARM_AM::asr: return 2;
205 case ARM_AM::lsl: return 0;
206 case ARM_AM::lsr: return 1;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000207 case ARM_AM::ror:
Evan Cheng7602e112008-09-02 06:52:38 +0000208 case ARM_AM::rrx: return 3;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000209 }
Evan Cheng7602e112008-09-02 06:52:38 +0000210 return 0;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000211}
212
Evan Cheng7602e112008-09-02 06:52:38 +0000213/// getMachineOpValue - Return binary encoding of operand. If the machine
214/// operand requires relocation, record the relocation and return zero.
215unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
216 const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000217 if (MO.isReg())
Evan Cheng7602e112008-09-02 06:52:38 +0000218 return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
Dan Gohmand735b802008-10-03 15:45:36 +0000219 else if (MO.isImm())
Evan Cheng7602e112008-09-02 06:52:38 +0000220 return static_cast<unsigned>(MO.getImm());
Dan Gohmand735b802008-10-03 15:45:36 +0000221 else if (MO.isGlobal())
Jim Grosbach016d34c2008-10-03 15:52:42 +0000222 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
Dan Gohmand735b802008-10-03 15:45:36 +0000223 else if (MO.isSymbol())
Evan Cheng10332512008-11-08 07:22:33 +0000224 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
Evan Cheng580c0df2008-11-12 01:02:24 +0000225 else if (MO.isCPI()) {
226 const TargetInstrDesc &TID = MI.getDesc();
227 // For VFP load, the immediate offset is multiplied by 4.
228 unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
229 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
230 emitConstPoolAddress(MO.getIndex(), Reloc);
231 } else if (MO.isJTI())
Chris Lattner8aa797a2007-12-30 23:10:15 +0000232 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
Dan Gohmand735b802008-10-03 15:45:36 +0000233 else if (MO.isMBB())
Evan Cheng4df60f52008-11-07 09:06:08 +0000234 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
Evan Cheng2aa0e642008-09-13 01:55:59 +0000235 else {
236 cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
237 abort();
238 }
Evan Cheng7602e112008-09-02 06:52:38 +0000239 return 0;
Evan Cheng0ff94f72007-08-07 01:37:15 +0000240}
241
Evan Cheng057d0c32008-09-18 07:28:19 +0000242/// emitGlobalAddress - Emit the specified address to the code stream.
Evan Cheng0ff94f72007-08-07 01:37:15 +0000243///
Evan Cheng413a89f2008-11-07 22:57:53 +0000244void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
245 bool NeedStub, intptr_t ACPV) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000246 MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
Evan Cheng413a89f2008-11-07 22:57:53 +0000247 Reloc, GV, ACPV, NeedStub));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000248}
249
250/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
251/// be emitted to the current location in the function, and allow it to be PC
252/// relative.
Evan Cheng7602e112008-09-02 06:52:38 +0000253void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000254 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
255 Reloc, ES));
256}
257
258/// emitConstPoolAddress - Arrange for the address of an constant pool
259/// to be emitted to the current location in the function, and allow it to be PC
260/// relative.
Evan Cheng437c1732008-11-07 22:30:53 +0000261void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
Evan Cheng0f282432008-10-29 23:55:43 +0000262 // Tell JIT emitter we'll resolve the address.
Evan Cheng0ff94f72007-08-07 01:37:15 +0000263 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000264 Reloc, CPI, 0, true));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000265}
266
267/// emitJumpTableAddress - Arrange for the address of a jump table to
268/// be emitted to the current location in the function, and allow it to be PC
269/// relative.
Evan Cheng437c1732008-11-07 22:30:53 +0000270void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
Evan Cheng0ff94f72007-08-07 01:37:15 +0000271 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000272 Reloc, JTIndex, 0, true));
Evan Cheng0ff94f72007-08-07 01:37:15 +0000273}
274
Raul Herbster9c1a3822007-08-30 23:29:26 +0000275/// emitMachineBasicBlock - Emit the specified address basic block.
Evan Cheng4df60f52008-11-07 09:06:08 +0000276void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
Evan Cheng437c1732008-11-07 22:30:53 +0000277 unsigned Reloc, intptr_t JTBase) {
Raul Herbster9c1a3822007-08-30 23:29:26 +0000278 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Evan Cheng437c1732008-11-07 22:30:53 +0000279 Reloc, BB, JTBase));
Raul Herbster9c1a3822007-08-30 23:29:26 +0000280}
Evan Cheng0ff94f72007-08-07 01:37:15 +0000281
Evan Cheng83b5cf02008-11-05 23:22:34 +0000282void ARMCodeEmitter::emitWordLE(unsigned Binary) {
Evan Cheng4df60f52008-11-07 09:06:08 +0000283#ifndef NDEBUG
284 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
285 << Binary << std::dec << "\n";
286#endif
Evan Cheng83b5cf02008-11-05 23:22:34 +0000287 MCE.emitWordLE(Binary);
288}
289
Evan Chengcb5201f2008-11-11 22:19:31 +0000290void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
291#ifndef NDEBUG
292 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
293 << (unsigned)Binary << std::dec << "\n";
294 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
295 << (unsigned)(Binary >> 32) << std::dec << "\n";
296#endif
297 MCE.emitDWordLE(Binary);
298}
299
Evan Cheng7602e112008-09-02 06:52:38 +0000300void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
Evan Cheng25e04782008-11-04 00:50:32 +0000301 DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
Evan Cheng42d5ee062008-09-13 01:15:21 +0000302
Evan Cheng148b6a42007-07-05 21:15:40 +0000303 NumEmitted++; // Keep track of the # of mi's emitted
Evan Chengedda31c2008-11-05 18:35:52 +0000304 switch (MI.getDesc().TSFlags & ARMII::FormMask) {
Evan Chengffa6d962008-11-13 23:36:57 +0000305 default: {
Evan Chengedda31c2008-11-05 18:35:52 +0000306 assert(0 && "Unhandled instruction encoding format!");
307 break;
Evan Chengffa6d962008-11-13 23:36:57 +0000308 }
Evan Chengedda31c2008-11-05 18:35:52 +0000309 case ARMII::Pseudo:
Evan Cheng057d0c32008-09-18 07:28:19 +0000310 emitPseudoInstruction(MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000311 break;
312 case ARMII::DPFrm:
313 case ARMII::DPSoRegFrm:
314 emitDataProcessingInstruction(MI);
315 break;
Evan Cheng148cad82008-11-13 07:34:59 +0000316 case ARMII::LdFrm:
317 case ARMII::StFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000318 emitLoadStoreInstruction(MI);
319 break;
Evan Cheng148cad82008-11-13 07:34:59 +0000320 case ARMII::LdMiscFrm:
321 case ARMII::StMiscFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000322 emitMiscLoadStoreInstruction(MI);
323 break;
Evan Cheng3c4a4ff2008-11-12 07:18:38 +0000324 case ARMII::LdStMulFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000325 emitLoadStoreMultipleInstruction(MI);
326 break;
Evan Chengfbc9d412008-11-06 01:21:28 +0000327 case ARMII::MulFrm:
328 emitMulFrmInstruction(MI);
Evan Chengedda31c2008-11-05 18:35:52 +0000329 break;
Evan Cheng97f48c32008-11-06 22:15:19 +0000330 case ARMII::ExtFrm:
331 emitExtendInstruction(MI);
332 break;
Evan Cheng8b59db32008-11-07 01:41:35 +0000333 case ARMII::ArithMiscFrm:
334 emitMiscArithInstruction(MI);
335 break;
Evan Cheng12c3a532008-11-06 17:48:05 +0000336 case ARMII::BrFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000337 emitBranchInstruction(MI);
338 break;
Evan Cheng12c3a532008-11-06 17:48:05 +0000339 case ARMII::BrMiscFrm:
Evan Chengedda31c2008-11-05 18:35:52 +0000340 emitMiscBranchInstruction(MI);
341 break;
Evan Cheng96581d32008-11-11 02:11:05 +0000342 // VFP instructions.
343 case ARMII::VFPUnaryFrm:
344 case ARMII::VFPBinaryFrm:
345 emitVFPArithInstruction(MI);
346 break;
Evan Cheng78be83d2008-11-11 19:40:26 +0000347 case ARMII::VFPConv1Frm:
348 case ARMII::VFPConv2Frm:
Evan Cheng0a0ab132008-11-11 22:46:12 +0000349 case ARMII::VFPConv3Frm:
Evan Cheng80a11982008-11-12 06:41:41 +0000350 case ARMII::VFPConv4Frm:
351 case ARMII::VFPConv5Frm:
Evan Cheng78be83d2008-11-11 19:40:26 +0000352 emitVFPConversionInstruction(MI);
353 break;
Evan Chengcd8e66a2008-11-11 21:48:44 +0000354 case ARMII::VFPLdStFrm:
355 emitVFPLoadStoreInstruction(MI);
356 break;
357 case ARMII::VFPLdStMulFrm:
358 emitVFPLoadStoreMultipleInstruction(MI);
359 break;
360 case ARMII::VFPMiscFrm:
361 emitMiscInstruction(MI);
362 break;
Evan Chengedda31c2008-11-05 18:35:52 +0000363 }
Evan Cheng0ff94f72007-08-07 01:37:15 +0000364}
365
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000366void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
Evan Cheng437c1732008-11-07 22:30:53 +0000367 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
368 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
Evan Cheng938b9d82008-10-31 19:55:13 +0000369 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000370
371 // Remember the CONSTPOOL_ENTRY address for later relocation.
372 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
373
374 // Emit constpool island entry. In most cases, the actual values will be
375 // resolved and relocated after code emission.
376 if (MCPE.isMachineConstantPoolEntry()) {
377 ARMConstantPoolValue *ACPV =
378 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
379
Evan Cheng12c3a532008-11-06 17:48:05 +0000380 DOUT << " ** ARM constant pool #" << CPI << " @ "
Evan Cheng437c1732008-11-07 22:30:53 +0000381 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000382
383 GlobalValue *GV = ACPV->getGV();
384 if (GV) {
385 assert(!ACPV->isStub() && "Don't know how to deal this yet!");
Evan Chenge96a4902008-11-08 01:31:27 +0000386 if (ACPV->isNonLazyPointer())
Evan Cheng9ed2f802008-11-10 01:08:07 +0000387 MCE.addRelocation(MachineRelocation::getIndirectSymbol(
Evan Chenge96a4902008-11-08 01:31:27 +0000388 MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
389 (intptr_t)ACPV, false));
390 else
391 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
Evan Cheng35b0bfd2008-11-13 19:22:28 +0000392 ACPV->isStub() || isa<Function>(GV), (intptr_t)ACPV);
Evan Cheng25e04782008-11-04 00:50:32 +0000393 } else {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000394 assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
395 emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
396 }
Evan Cheng83b5cf02008-11-05 23:22:34 +0000397 emitWordLE(0);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000398 } else {
399 Constant *CV = MCPE.Val.ConstVal;
400
Evan Cheng35b0bfd2008-11-13 19:22:28 +0000401#ifndef NDEBUG
Evan Cheng12c3a532008-11-06 17:48:05 +0000402 DOUT << " ** Constant pool #" << CPI << " @ "
Evan Cheng35b0bfd2008-11-13 19:22:28 +0000403 << (void*)MCE.getCurrentPCValue() << " ";
404 if (const Function *F = dyn_cast<Function>(CV))
405 DOUT << F->getName();
406 else
407 DOUT << *CV;
408 DOUT << '\n';
409#endif
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000410
411 if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
Evan Cheng35b0bfd2008-11-13 19:22:28 +0000412 emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV));
Evan Cheng83b5cf02008-11-05 23:22:34 +0000413 emitWordLE(0);
Evan Chengcb5201f2008-11-11 22:19:31 +0000414 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000415 uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
Evan Cheng83b5cf02008-11-05 23:22:34 +0000416 emitWordLE(Val);
Evan Chengcb5201f2008-11-11 22:19:31 +0000417 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
418 if (CFP->getType() == Type::FloatTy)
419 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
420 else if (CFP->getType() == Type::DoubleTy)
421 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
422 else {
423 assert(0 && "Unable to handle this constantpool entry!");
424 abort();
425 }
426 } else {
427 assert(0 && "Unable to handle this constantpool entry!");
428 abort();
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000429 }
430 }
431}
432
Evan Cheng90922132008-11-06 02:25:39 +0000433void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
434 const MachineOperand &MO0 = MI.getOperand(0);
435 const MachineOperand &MO1 = MI.getOperand(1);
436 assert(MO1.isImm() && "Not a valid so_imm value!");
437 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
438 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
439
440 // Emit the 'mov' instruction.
441 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
442
443 // Set the conditional execution predicate.
Evan Cheng97f48c32008-11-06 22:15:19 +0000444 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng90922132008-11-06 02:25:39 +0000445
446 // Encode Rd.
447 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
448
449 // Encode so_imm.
450 // Set bit I(25) to identify this is the immediate form of <shifter_op>
451 Binary |= 1 << ARMII::I_BitShift;
452 Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1));
453 emitWordLE(Binary);
454
455 // Now the 'orr' instruction.
456 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
457
458 // Set the conditional execution predicate.
Evan Cheng97f48c32008-11-06 22:15:19 +0000459 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng90922132008-11-06 02:25:39 +0000460
461 // Encode Rd.
462 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
463
464 // Encode Rn.
465 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
466
467 // Encode so_imm.
468 // Set bit I(25) to identify this is the immediate form of <shifter_op>
469 Binary |= 1 << ARMII::I_BitShift;
470 Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2));
471 emitWordLE(Binary);
472}
473
Evan Cheng4df60f52008-11-07 09:06:08 +0000474void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
475 // It's basically add r, pc, (LJTI - $+8)
476
477 const TargetInstrDesc &TID = MI.getDesc();
478
479 // Emit the 'add' instruction.
480 unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100
481
482 // Set the conditional execution predicate
483 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
484
485 // Encode S bit if MI modifies CPSR.
486 Binary |= getAddrModeSBit(MI, TID);
487
488 // Encode Rd.
489 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
490
491 // Encode Rn which is PC.
492 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
493
494 // Encode the displacement.
495 // Set bit I(25) to identify this is the immediate form of <shifter_op>.
496 Binary |= 1 << ARMII::I_BitShift;
497 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
498
499 emitWordLE(Binary);
500}
501
Evan Cheng83b5cf02008-11-05 23:22:34 +0000502void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
Evan Cheng12c3a532008-11-06 17:48:05 +0000503 DOUT << " ** LPC" << LabelID << " @ "
Evan Cheng83b5cf02008-11-05 23:22:34 +0000504 << (void*)MCE.getCurrentPCValue() << '\n';
505 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
506}
507
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000508void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
509 unsigned Opcode = MI.getDesc().Opcode;
510 switch (Opcode) {
511 default:
512 abort(); // FIXME:
Evan Chengffa6d962008-11-13 23:36:57 +0000513 case TargetInstrInfo::INLINEASM: {
514 const char* Value = MI.getOperand(0).getSymbolName();
515 /* We allow inline assembler nodes with empty bodies - they can
516 implicitly define registers, which is ok for JIT. */
517 assert((Value[0] == 0) && "JIT does not support inline asm!\n");
518 break;
519 }
520 case TargetInstrInfo::DBG_LABEL:
521 case TargetInstrInfo::EH_LABEL:
522 MCE.emitLabel(MI.getOperand(0).getImm());
523 break;
524 case TargetInstrInfo::IMPLICIT_DEF:
525 case TargetInstrInfo::DECLARE:
526 case ARM::DWARF_LOC:
527 // Do nothing.
528 break;
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000529 case ARM::CONSTPOOL_ENTRY:
530 emitConstPoolInstruction(MI);
531 break;
532 case ARM::PICADD: {
Evan Cheng25e04782008-11-04 00:50:32 +0000533 // Remember of the address of the PC label for relocation later.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000534 addPCLabel(MI.getOperand(2).getImm());
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000535 // PICADD is just an add instruction that implicitly read pc.
Evan Cheng437c1732008-11-07 22:30:53 +0000536 emitDataProcessingInstruction(MI, 0, ARM::PC);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000537 break;
538 }
539 case ARM::PICLDR:
540 case ARM::PICLDRB:
541 case ARM::PICSTR:
542 case ARM::PICSTRB: {
543 // Remember of the address of the PC label for relocation later.
544 addPCLabel(MI.getOperand(2).getImm());
545 // These are just load / store instructions that implicitly read pc.
Evan Cheng4df60f52008-11-07 09:06:08 +0000546 emitLoadStoreInstruction(MI, 0, ARM::PC);
Evan Cheng83b5cf02008-11-05 23:22:34 +0000547 break;
548 }
549 case ARM::PICLDRH:
550 case ARM::PICLDRSH:
551 case ARM::PICLDRSB:
552 case ARM::PICSTRH: {
553 // Remember of the address of the PC label for relocation later.
554 addPCLabel(MI.getOperand(2).getImm());
555 // These are just load / store instructions that implicitly read pc.
556 emitMiscLoadStoreInstruction(MI, ARM::PC);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000557 break;
558 }
Evan Cheng90922132008-11-06 02:25:39 +0000559 case ARM::MOVi2pieces:
560 // Two instructions to materialize a constant.
561 emitMOVi2piecesInstruction(MI);
562 break;
Evan Cheng4df60f52008-11-07 09:06:08 +0000563 case ARM::LEApcrelJT:
564 // Materialize jumptable address.
565 emitLEApcrelJTInstruction(MI);
566 break;
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000567 }
568}
569
570
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000571unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
Evan Cheng49a9f292008-09-12 22:45:55 +0000572 const TargetInstrDesc &TID,
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000573 const MachineOperand &MO,
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000574 unsigned OpIdx) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000575 unsigned Binary = getMachineOpValue(MI, MO);
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000576
577 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
578 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
579 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
580
581 // Encode the shift opcode.
582 unsigned SBits = 0;
583 unsigned Rs = MO1.getReg();
584 if (Rs) {
585 // Set shift operand (bit[7:4]).
586 // LSL - 0001
587 // LSR - 0011
588 // ASR - 0101
589 // ROR - 0111
590 // RRX - 0110 and bit[11:8] clear.
591 switch (SOpc) {
592 default: assert(0 && "Unknown shift opc!");
593 case ARM_AM::lsl: SBits = 0x1; break;
594 case ARM_AM::lsr: SBits = 0x3; break;
595 case ARM_AM::asr: SBits = 0x5; break;
596 case ARM_AM::ror: SBits = 0x7; break;
597 case ARM_AM::rrx: SBits = 0x6; break;
598 }
599 } else {
600 // Set shift operand (bit[6:4]).
601 // LSL - 000
602 // LSR - 010
603 // ASR - 100
604 // ROR - 110
605 switch (SOpc) {
606 default: assert(0 && "Unknown shift opc!");
607 case ARM_AM::lsl: SBits = 0x0; break;
608 case ARM_AM::lsr: SBits = 0x2; break;
609 case ARM_AM::asr: SBits = 0x4; break;
610 case ARM_AM::ror: SBits = 0x6; break;
611 }
612 }
613 Binary |= SBits << 4;
614 if (SOpc == ARM_AM::rrx)
615 return Binary;
616
617 // Encode the shift operation Rs or shift_imm (except rrx).
618 if (Rs) {
619 // Encode Rs bit[11:8].
620 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
621 return Binary |
622 (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
623 }
624
625 // Encode shift_imm bit[11:7].
626 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
627}
628
Evan Cheng90922132008-11-06 02:25:39 +0000629unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000630 // Encode rotate_imm.
Evan Cheng97f48c32008-11-06 22:15:19 +0000631 unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1)
632 << ARMII::SoRotImmShift;
633
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000634 // Encode immed_8.
Evan Cheng90922132008-11-06 02:25:39 +0000635 Binary |= ARM_AM::getSOImmValImm(SoImm);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000636 return Binary;
637}
638
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000639unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
640 const TargetInstrDesc &TID) const {
Evan Cheng49a9f292008-09-12 22:45:55 +0000641 for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
642 const MachineOperand &MO = MI.getOperand(i-1);
Dan Gohmand735b802008-10-03 15:45:36 +0000643 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
Evan Cheng49a9f292008-09-12 22:45:55 +0000644 return 1 << ARMII::S_BitShift;
645 }
646 return 0;
647}
648
Evan Cheng83b5cf02008-11-05 23:22:34 +0000649void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
Evan Cheng437c1732008-11-07 22:30:53 +0000650 unsigned ImplicitRd,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000651 unsigned ImplicitRn) {
Evan Chengedda31c2008-11-05 18:35:52 +0000652 const TargetInstrDesc &TID = MI.getDesc();
Evan Chengedda31c2008-11-05 18:35:52 +0000653
654 // Part of binary is determined by TableGn.
655 unsigned Binary = getBinaryCodeForInstr(MI);
656
Jim Grosbach33412622008-10-07 19:05:35 +0000657 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000658 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000659
Evan Cheng49a9f292008-09-12 22:45:55 +0000660 // Encode S bit if MI modifies CPSR.
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000661 Binary |= getAddrModeSBit(MI, TID);
Evan Cheng49a9f292008-09-12 22:45:55 +0000662
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000663 // Encode register def if there is one.
Evan Cheng49a9f292008-09-12 22:45:55 +0000664 unsigned NumDefs = TID.getNumDefs();
Evan Chenga964b7d2008-09-12 23:15:39 +0000665 unsigned OpIdx = 0;
Evan Cheng437c1732008-11-07 22:30:53 +0000666 if (NumDefs)
667 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
668 else if (ImplicitRd)
669 // Special handling for implicit use (e.g. PC).
670 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
671 << ARMII::RegRdShift);
Evan Cheng7602e112008-09-02 06:52:38 +0000672
Evan Chengd87293c2008-11-06 08:47:38 +0000673 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
674 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
675 ++OpIdx;
676
Jim Grosbachefd30ba2008-10-01 18:16:49 +0000677 // Encode first non-shifter register operand if there is one.
Evan Chengedda31c2008-11-05 18:35:52 +0000678 bool isUnary = TID.TSFlags & ARMII::UnaryDP;
679 if (!isUnary) {
Evan Cheng83b5cf02008-11-05 23:22:34 +0000680 if (ImplicitRn)
681 // Special handling for implicit use (e.g. PC).
682 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
Evan Chengedda31c2008-11-05 18:35:52 +0000683 << ARMII::RegRnShift);
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000684 else {
685 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
686 ++OpIdx;
687 }
Evan Cheng7602e112008-09-02 06:52:38 +0000688 }
689
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000690 // Encode shifter operand.
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000691 const MachineOperand &MO = MI.getOperand(OpIdx);
Evan Chengedda31c2008-11-05 18:35:52 +0000692 if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000693 // Encode SoReg.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000694 emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
Evan Chengedda31c2008-11-05 18:35:52 +0000695 return;
696 }
Evan Chengeb4ed4b2008-10-31 19:10:44 +0000697
Evan Chengedda31c2008-11-05 18:35:52 +0000698 if (MO.isReg()) {
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000699 // Encode register Rm.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000700 emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
Evan Chengedda31c2008-11-05 18:35:52 +0000701 return;
702 }
Evan Cheng7602e112008-09-02 06:52:38 +0000703
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000704 // Encode so_imm.
Evan Cheng4df60f52008-11-07 09:06:08 +0000705 // Set bit I(25) to identify this is the immediate form of <shifter_op>.
Evan Cheng5f1db7b2008-09-12 22:01:15 +0000706 Binary |= 1 << ARMII::I_BitShift;
Evan Cheng90922132008-11-06 02:25:39 +0000707 Binary |= getMachineSoImmOpValue(MO.getImm());
Evan Chengedda31c2008-11-05 18:35:52 +0000708
Evan Cheng83b5cf02008-11-05 23:22:34 +0000709 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000710}
711
Evan Cheng83b5cf02008-11-05 23:22:34 +0000712void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
Evan Cheng4df60f52008-11-07 09:06:08 +0000713 unsigned ImplicitRd,
Evan Cheng83b5cf02008-11-05 23:22:34 +0000714 unsigned ImplicitRn) {
Evan Cheng05c356e2008-11-08 01:44:13 +0000715 const TargetInstrDesc &TID = MI.getDesc();
Evan Cheng148cad82008-11-13 07:34:59 +0000716 unsigned Form = TID.TSFlags & ARMII::FormMask;
717 bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
Evan Cheng05c356e2008-11-08 01:44:13 +0000718
Evan Chengedda31c2008-11-05 18:35:52 +0000719 // Part of binary is determined by TableGn.
720 unsigned Binary = getBinaryCodeForInstr(MI);
721
Jim Grosbach33412622008-10-07 19:05:35 +0000722 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000723 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng057d0c32008-09-18 07:28:19 +0000724
Evan Cheng4df60f52008-11-07 09:06:08 +0000725 unsigned OpIdx = 0;
Evan Cheng148cad82008-11-13 07:34:59 +0000726
727 // Operand 0 of a pre- and post-indexed store is the address base
728 // writeback. Skip it.
729 bool Skipped = false;
730 if (IsPrePost && Form == ARMII::StFrm) {
731 ++OpIdx;
732 Skipped = true;
733 }
734
735 // Set first operand
Evan Cheng4df60f52008-11-07 09:06:08 +0000736 if (ImplicitRd)
737 // Special handling for implicit use (e.g. PC).
738 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
739 << ARMII::RegRdShift);
740 else
741 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000742
743 // Set second operand
Evan Cheng83b5cf02008-11-05 23:22:34 +0000744 if (ImplicitRn)
745 // Special handling for implicit use (e.g. PC).
746 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
747 << ARMII::RegRnShift);
Evan Cheng4df60f52008-11-07 09:06:08 +0000748 else
749 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000750
Evan Cheng05c356e2008-11-08 01:44:13 +0000751 // If this is a two-address operand, skip it. e.g. LDR_PRE.
Evan Cheng148cad82008-11-13 07:34:59 +0000752 if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
Evan Cheng05c356e2008-11-08 01:44:13 +0000753 ++OpIdx;
754
Evan Cheng83b5cf02008-11-05 23:22:34 +0000755 const MachineOperand &MO2 = MI.getOperand(OpIdx);
Evan Chengd87293c2008-11-06 08:47:38 +0000756 unsigned AM2Opc = (ImplicitRn == ARM::PC)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000757 ? 0 : MI.getOperand(OpIdx+1).getImm();
Evan Cheng7602e112008-09-02 06:52:38 +0000758
Evan Chenge7de7e32008-09-13 01:44:01 +0000759 // Set bit U(23) according to sign of immed value (positive or negative).
Evan Cheng83b5cf02008-11-05 23:22:34 +0000760 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
Evan Chenge7de7e32008-09-13 01:44:01 +0000761 ARMII::U_BitShift);
Evan Cheng7602e112008-09-02 06:52:38 +0000762 if (!MO2.getReg()) { // is immediate
Evan Cheng83b5cf02008-11-05 23:22:34 +0000763 if (ARM_AM::getAM2Offset(AM2Opc))
Evan Cheng7602e112008-09-02 06:52:38 +0000764 // Set the value of offset_12 field
Evan Cheng83b5cf02008-11-05 23:22:34 +0000765 Binary |= ARM_AM::getAM2Offset(AM2Opc);
766 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000767 return;
Evan Cheng7602e112008-09-02 06:52:38 +0000768 }
769
770 // Set bit I(25), because this is not in immediate enconding.
771 Binary |= 1 << ARMII::I_BitShift;
772 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
773 // Set bit[3:0] to the corresponding Rm register
774 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
775
Evan Cheng70632912008-11-12 07:34:37 +0000776 // If this instr is in scaled register offset/index instruction, set
Evan Cheng7602e112008-09-02 06:52:38 +0000777 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
Evan Cheng83b5cf02008-11-05 23:22:34 +0000778 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
Evan Cheng70632912008-11-12 07:34:37 +0000779 Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
780 Binary |= ShImm << ARMII::ShiftShift; // shift_immed
Evan Cheng7602e112008-09-02 06:52:38 +0000781 }
782
Evan Cheng83b5cf02008-11-05 23:22:34 +0000783 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000784}
785
Evan Cheng83b5cf02008-11-05 23:22:34 +0000786void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
787 unsigned ImplicitRn) {
Evan Cheng05c356e2008-11-08 01:44:13 +0000788 const TargetInstrDesc &TID = MI.getDesc();
Evan Cheng148cad82008-11-13 07:34:59 +0000789 unsigned Form = TID.TSFlags & ARMII::FormMask;
790 bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
Evan Cheng05c356e2008-11-08 01:44:13 +0000791
Evan Chengedda31c2008-11-05 18:35:52 +0000792 // Part of binary is determined by TableGn.
793 unsigned Binary = getBinaryCodeForInstr(MI);
794
Jim Grosbach33412622008-10-07 19:05:35 +0000795 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000796 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Cheng057d0c32008-09-18 07:28:19 +0000797
Evan Cheng148cad82008-11-13 07:34:59 +0000798 unsigned OpIdx = 0;
799
800 // Operand 0 of a pre- and post-indexed store is the address base
801 // writeback. Skip it.
802 bool Skipped = false;
803 if (IsPrePost && Form == ARMII::StMiscFrm) {
804 ++OpIdx;
805 Skipped = true;
806 }
807
Evan Cheng7602e112008-09-02 06:52:38 +0000808 // Set first operand
Evan Cheng148cad82008-11-13 07:34:59 +0000809 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000810
811 // Set second operand
Evan Cheng83b5cf02008-11-05 23:22:34 +0000812 if (ImplicitRn)
813 // Special handling for implicit use (e.g. PC).
814 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
815 << ARMII::RegRnShift);
Evan Cheng4df60f52008-11-07 09:06:08 +0000816 else
817 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000818
Evan Cheng05c356e2008-11-08 01:44:13 +0000819 // If this is a two-address operand, skip it. e.g. LDRH_POST.
Evan Cheng148cad82008-11-13 07:34:59 +0000820 if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
Evan Cheng05c356e2008-11-08 01:44:13 +0000821 ++OpIdx;
822
Evan Cheng83b5cf02008-11-05 23:22:34 +0000823 const MachineOperand &MO2 = MI.getOperand(OpIdx);
Evan Chengd87293c2008-11-06 08:47:38 +0000824 unsigned AM3Opc = (ImplicitRn == ARM::PC)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000825 ? 0 : MI.getOperand(OpIdx+1).getImm();
Evan Cheng7602e112008-09-02 06:52:38 +0000826
Evan Chenge7de7e32008-09-13 01:44:01 +0000827 // Set bit U(23) according to sign of immed value (positive or negative)
Evan Cheng83b5cf02008-11-05 23:22:34 +0000828 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
Evan Cheng7602e112008-09-02 06:52:38 +0000829 ARMII::U_BitShift);
830
831 // If this instr is in register offset/index encoding, set bit[3:0]
832 // to the corresponding Rm register.
833 if (MO2.getReg()) {
834 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
Evan Cheng83b5cf02008-11-05 23:22:34 +0000835 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +0000836 return;
Evan Cheng7602e112008-09-02 06:52:38 +0000837 }
838
Evan Chengd87293c2008-11-06 08:47:38 +0000839 // This instr is in immediate offset/index encoding, set bit 22 to 1.
Evan Cheng97f48c32008-11-06 22:15:19 +0000840 Binary |= 1 << ARMII::AM3_I_BitShift;
Evan Cheng83b5cf02008-11-05 23:22:34 +0000841 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
Evan Cheng7602e112008-09-02 06:52:38 +0000842 // Set operands
Evan Cheng70632912008-11-12 07:34:37 +0000843 Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
844 Binary |= (ImmOffs & 0xF); // immedL
Evan Cheng7602e112008-09-02 06:52:38 +0000845 }
846
Evan Cheng83b5cf02008-11-05 23:22:34 +0000847 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000848}
849
Evan Chengcd8e66a2008-11-11 21:48:44 +0000850static unsigned getAddrModeUPBits(unsigned Mode) {
851 unsigned Binary = 0;
Evan Cheng7602e112008-09-02 06:52:38 +0000852
853 // Set addressing mode by modifying bits U(23) and P(24)
854 // IA - Increment after - bit U = 1 and bit P = 0
855 // IB - Increment before - bit U = 1 and bit P = 1
856 // DA - Decrement after - bit U = 0 and bit P = 0
857 // DB - Decrement before - bit U = 0 and bit P = 1
Evan Cheng7602e112008-09-02 06:52:38 +0000858 switch (Mode) {
859 default: assert(0 && "Unknown addressing sub-mode!");
860 case ARM_AM::da: break;
Evan Cheng97f48c32008-11-06 22:15:19 +0000861 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
862 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
863 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
Evan Cheng7602e112008-09-02 06:52:38 +0000864 }
865
Evan Chengcd8e66a2008-11-11 21:48:44 +0000866 return Binary;
867}
868
869void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
870 // Part of binary is determined by TableGn.
871 unsigned Binary = getBinaryCodeForInstr(MI);
872
873 // Set the conditional execution predicate
874 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
875
876 // Set base address operand
877 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
878
879 // Set addressing mode by modifying bits U(23) and P(24)
880 const MachineOperand &MO = MI.getOperand(1);
881 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
882
Evan Cheng7602e112008-09-02 06:52:38 +0000883 // Set bit W(21)
884 if (ARM_AM::getAM4WBFlag(MO.getImm()))
Evan Cheng97f48c32008-11-06 22:15:19 +0000885 Binary |= 0x1 << ARMII::W_BitShift;
Evan Cheng7602e112008-09-02 06:52:38 +0000886
887 // Set registers
888 for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
889 const MachineOperand &MO = MI.getOperand(i);
Evan Chengcd8e66a2008-11-11 21:48:44 +0000890 if (!MO.isReg() || MO.isImplicit())
891 break;
Evan Cheng7602e112008-09-02 06:52:38 +0000892 unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
893 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
894 RegNum < 16);
895 Binary |= 0x1 << RegNum;
896 }
897
Evan Cheng83b5cf02008-11-05 23:22:34 +0000898 emitWordLE(Binary);
Evan Cheng7602e112008-09-02 06:52:38 +0000899}
900
Evan Chengfbc9d412008-11-06 01:21:28 +0000901void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
Evan Chengedda31c2008-11-05 18:35:52 +0000902 const TargetInstrDesc &TID = MI.getDesc();
903
904 // Part of binary is determined by TableGn.
905 unsigned Binary = getBinaryCodeForInstr(MI);
906
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000907 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +0000908 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000909
910 // Encode S bit if MI modifies CPSR.
911 Binary |= getAddrModeSBit(MI, TID);
912
913 // 32x32->64bit operations have two destination registers. The number
914 // of register definitions will tell us if that's what we're dealing with.
Evan Cheng97f48c32008-11-06 22:15:19 +0000915 unsigned OpIdx = 0;
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000916 if (TID.getNumDefs() == 2)
917 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
918
919 // Encode Rd
920 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
921
922 // Encode Rm
923 Binary |= getMachineOpValue(MI, OpIdx++);
924
925 // Encode Rs
926 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
927
Evan Chengfbc9d412008-11-06 01:21:28 +0000928 // Many multiple instructions (e.g. MLA) have three src operands. Encode
929 // it as Rn (for multiply, that's in the same offset as RdLo.
Evan Cheng97f48c32008-11-06 22:15:19 +0000930 if (TID.getNumOperands() > OpIdx &&
931 !TID.OpInfo[OpIdx].isPredicate() &&
932 !TID.OpInfo[OpIdx].isOptionalDef())
933 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
934
935 emitWordLE(Binary);
936}
937
938void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
939 const TargetInstrDesc &TID = MI.getDesc();
940
941 // Part of binary is determined by TableGn.
942 unsigned Binary = getBinaryCodeForInstr(MI);
943
944 // Set the conditional execution predicate
945 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
946
947 unsigned OpIdx = 0;
948
949 // Encode Rd
950 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
951
952 const MachineOperand &MO1 = MI.getOperand(OpIdx++);
953 const MachineOperand &MO2 = MI.getOperand(OpIdx);
954 if (MO2.isReg()) {
955 // Two register operand form.
956 // Encode Rn.
957 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
958
959 // Encode Rm.
960 Binary |= getMachineOpValue(MI, MO2);
961 ++OpIdx;
962 } else {
963 Binary |= getMachineOpValue(MI, MO1);
964 }
965
966 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
967 if (MI.getOperand(OpIdx).isImm() &&
968 !TID.OpInfo[OpIdx].isPredicate() &&
969 !TID.OpInfo[OpIdx].isOptionalDef())
970 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
Evan Chengfbc9d412008-11-06 01:21:28 +0000971
Evan Cheng83b5cf02008-11-05 23:22:34 +0000972 emitWordLE(Binary);
Jim Grosbach0a4b9dc2008-11-03 18:38:31 +0000973}
974
Evan Cheng8b59db32008-11-07 01:41:35 +0000975void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
976 const TargetInstrDesc &TID = MI.getDesc();
977
978 // Part of binary is determined by TableGn.
979 unsigned Binary = getBinaryCodeForInstr(MI);
980
981 // Set the conditional execution predicate
982 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
983
984 unsigned OpIdx = 0;
985
986 // Encode Rd
987 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
988
989 const MachineOperand &MO = MI.getOperand(OpIdx++);
990 if (OpIdx == TID.getNumOperands() ||
991 TID.OpInfo[OpIdx].isPredicate() ||
992 TID.OpInfo[OpIdx].isOptionalDef()) {
993 // Encode Rm and it's done.
994 Binary |= getMachineOpValue(MI, MO);
995 emitWordLE(Binary);
996 return;
997 }
998
999 // Encode Rn.
1000 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1001
1002 // Encode Rm.
1003 Binary |= getMachineOpValue(MI, OpIdx++);
1004
1005 // Encode shift_imm.
1006 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1007 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1008 Binary |= ShiftAmt << ARMII::ShiftShift;
1009
1010 emitWordLE(Binary);
1011}
1012
Evan Chengedda31c2008-11-05 18:35:52 +00001013void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1014 const TargetInstrDesc &TID = MI.getDesc();
1015
Evan Cheng12c3a532008-11-06 17:48:05 +00001016 if (TID.Opcode == ARM::TPsoft)
1017 abort(); // FIXME
1018
Evan Cheng7602e112008-09-02 06:52:38 +00001019 // Part of binary is determined by TableGn.
1020 unsigned Binary = getBinaryCodeForInstr(MI);
1021
Evan Chengedda31c2008-11-05 18:35:52 +00001022 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +00001023 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Chengedda31c2008-11-05 18:35:52 +00001024
1025 // Set signed_immed_24 field
1026 Binary |= getMachineOpValue(MI, 0);
1027
Evan Cheng83b5cf02008-11-05 23:22:34 +00001028 emitWordLE(Binary);
Evan Chengedda31c2008-11-05 18:35:52 +00001029}
1030
Evan Cheng437c1732008-11-07 22:30:53 +00001031void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
Evan Cheng4df60f52008-11-07 09:06:08 +00001032 // Remember the base address of the inline jump table.
Evan Cheng437c1732008-11-07 22:30:53 +00001033 intptr_t JTBase = MCE.getCurrentPCValue();
1034 JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1035 DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
Evan Cheng4df60f52008-11-07 09:06:08 +00001036
1037 // Now emit the jump table entries.
1038 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1039 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1040 if (IsPIC)
1041 // DestBB address - JT base.
Evan Cheng437c1732008-11-07 22:30:53 +00001042 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
Evan Cheng4df60f52008-11-07 09:06:08 +00001043 else
1044 // Absolute DestBB address.
1045 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1046 emitWordLE(0);
1047 }
1048}
1049
Evan Chengedda31c2008-11-05 18:35:52 +00001050void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1051 const TargetInstrDesc &TID = MI.getDesc();
Evan Chengedda31c2008-11-05 18:35:52 +00001052
Evan Cheng437c1732008-11-07 22:30:53 +00001053 // Handle jump tables.
1054 if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1055 // First emit a ldr pc, [] instruction.
1056 emitDataProcessingInstruction(MI, ARM::PC);
1057
1058 // Then emit the inline jump table.
1059 unsigned JTIndex = (TID.Opcode == ARM::BR_JTr)
1060 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1061 emitInlineJumpTable(JTIndex);
1062 return;
1063 } else if (TID.Opcode == ARM::BR_JTm) {
Evan Cheng4df60f52008-11-07 09:06:08 +00001064 // First emit a ldr pc, [] instruction.
1065 emitLoadStoreInstruction(MI, ARM::PC);
1066
1067 // Then emit the inline jump table.
Evan Cheng437c1732008-11-07 22:30:53 +00001068 emitInlineJumpTable(MI.getOperand(3).getIndex());
Evan Cheng4df60f52008-11-07 09:06:08 +00001069 return;
1070 }
1071
Evan Chengedda31c2008-11-05 18:35:52 +00001072 // Part of binary is determined by TableGn.
1073 unsigned Binary = getBinaryCodeForInstr(MI);
1074
1075 // Set the conditional execution predicate
Evan Cheng97f48c32008-11-06 22:15:19 +00001076 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
Evan Chengedda31c2008-11-05 18:35:52 +00001077
1078 if (TID.Opcode == ARM::BX_RET)
1079 // The return register is LR.
1080 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1081 else
1082 // otherwise, set the return register
1083 Binary |= getMachineOpValue(MI, 0);
1084
Evan Cheng83b5cf02008-11-05 23:22:34 +00001085 emitWordLE(Binary);
Evan Cheng148b6a42007-07-05 21:15:40 +00001086}
Evan Cheng7602e112008-09-02 06:52:38 +00001087
Evan Cheng80a11982008-11-12 06:41:41 +00001088static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
Evan Chengd06d48d2008-11-12 02:19:38 +00001089 unsigned RegD = MI.getOperand(OpIdx).getReg();
Evan Cheng80a11982008-11-12 06:41:41 +00001090 unsigned Binary = 0;
Evan Chengd06d48d2008-11-12 02:19:38 +00001091 bool isSPVFP = false;
1092 RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
1093 if (!isSPVFP)
1094 Binary |= RegD << ARMII::RegRdShift;
1095 else {
1096 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1097 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1098 }
Evan Cheng80a11982008-11-12 06:41:41 +00001099 return Binary;
1100}
Evan Cheng78be83d2008-11-11 19:40:26 +00001101
Evan Cheng80a11982008-11-12 06:41:41 +00001102static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
Evan Chengd06d48d2008-11-12 02:19:38 +00001103 unsigned RegN = MI.getOperand(OpIdx).getReg();
Evan Cheng80a11982008-11-12 06:41:41 +00001104 unsigned Binary = 0;
1105 bool isSPVFP = false;
Evan Chengd06d48d2008-11-12 02:19:38 +00001106 RegN = ARMRegisterInfo::getRegisterNumbering(RegN, isSPVFP);
1107 if (!isSPVFP)
1108 Binary |= RegN << ARMII::RegRnShift;
1109 else {
1110 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1111 Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1112 }
Evan Cheng80a11982008-11-12 06:41:41 +00001113 return Binary;
1114}
Evan Chengd06d48d2008-11-12 02:19:38 +00001115
Evan Cheng80a11982008-11-12 06:41:41 +00001116static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1117 unsigned RegM = MI.getOperand(OpIdx).getReg();
1118 unsigned Binary = 0;
1119 bool isSPVFP = false;
1120 RegM = ARMRegisterInfo::getRegisterNumbering(RegM, isSPVFP);
1121 if (!isSPVFP)
1122 Binary |= RegM;
1123 else {
1124 Binary |= ((RegM & 0x1E) >> 1);
1125 Binary |= (RegM & 0x01) << ARMII::M_BitShift;
Evan Cheng78be83d2008-11-11 19:40:26 +00001126 }
Evan Cheng80a11982008-11-12 06:41:41 +00001127 return Binary;
1128}
1129
Evan Cheng3c4a4ff2008-11-12 07:18:38 +00001130void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1131 const TargetInstrDesc &TID = MI.getDesc();
1132
1133 // Part of binary is determined by TableGn.
1134 unsigned Binary = getBinaryCodeForInstr(MI);
1135
1136 // Set the conditional execution predicate
1137 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1138
1139 unsigned OpIdx = 0;
1140 assert((Binary & ARMII::D_BitShift) == 0 &&
1141 (Binary & ARMII::N_BitShift) == 0 &&
1142 (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1143
1144 // Encode Dd / Sd.
1145 Binary |= encodeVFPRd(MI, OpIdx++);
1146
1147 // If this is a two-address operand, skip it, e.g. FMACD.
1148 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1149 ++OpIdx;
1150
1151 // Encode Dn / Sn.
1152 if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
Evan Cheng3f4924e2008-11-12 08:14:21 +00001153 Binary |= encodeVFPRn(MI, OpIdx++);
Evan Cheng3c4a4ff2008-11-12 07:18:38 +00001154
1155 if (OpIdx == TID.getNumOperands() ||
1156 TID.OpInfo[OpIdx].isPredicate() ||
1157 TID.OpInfo[OpIdx].isOptionalDef()) {
1158 // FCMPEZD etc. has only one operand.
1159 emitWordLE(Binary);
1160 return;
1161 }
1162
1163 // Encode Dm / Sm.
1164 Binary |= encodeVFPRm(MI, OpIdx);
1165
1166 emitWordLE(Binary);
1167}
1168
Evan Cheng80a11982008-11-12 06:41:41 +00001169void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1170 const TargetInstrDesc &TID = MI.getDesc();
1171 unsigned Form = TID.TSFlags & ARMII::FormMask;
1172
1173 // Part of binary is determined by TableGn.
1174 unsigned Binary = getBinaryCodeForInstr(MI);
1175
1176 // Set the conditional execution predicate
1177 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1178
1179 switch (Form) {
1180 default: break;
1181 case ARMII::VFPConv1Frm:
1182 case ARMII::VFPConv2Frm:
1183 case ARMII::VFPConv3Frm:
1184 // Encode Dd / Sd.
1185 Binary |= encodeVFPRd(MI, 0);
1186 break;
1187 case ARMII::VFPConv4Frm:
1188 // Encode Dn / Sn.
1189 Binary |= encodeVFPRn(MI, 0);
1190 break;
1191 case ARMII::VFPConv5Frm:
1192 // Encode Dm / Sm.
1193 Binary |= encodeVFPRm(MI, 0);
1194 break;
1195 }
1196
1197 switch (Form) {
1198 default: break;
1199 case ARMII::VFPConv1Frm:
1200 // Encode Dm / Sm.
1201 Binary |= encodeVFPRm(MI, 1);
Evan Cheng67fd91f2008-11-13 07:46:59 +00001202 break;
Evan Cheng80a11982008-11-12 06:41:41 +00001203 case ARMII::VFPConv2Frm:
1204 case ARMII::VFPConv3Frm:
1205 // Encode Dn / Sn.
1206 Binary |= encodeVFPRn(MI, 1);
1207 break;
1208 case ARMII::VFPConv4Frm:
1209 case ARMII::VFPConv5Frm:
1210 // Encode Dd / Sd.
1211 Binary |= encodeVFPRd(MI, 1);
1212 break;
1213 }
1214
1215 if (Form == ARMII::VFPConv5Frm)
1216 // Encode Dn / Sn.
1217 Binary |= encodeVFPRn(MI, 2);
1218 else if (Form == ARMII::VFPConv3Frm)
1219 // Encode Dm / Sm.
1220 Binary |= encodeVFPRm(MI, 2);
Evan Cheng78be83d2008-11-11 19:40:26 +00001221
1222 emitWordLE(Binary);
1223}
1224
Evan Chengcd8e66a2008-11-11 21:48:44 +00001225void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1226 // Part of binary is determined by TableGn.
1227 unsigned Binary = getBinaryCodeForInstr(MI);
1228
1229 // Set the conditional execution predicate
1230 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1231
1232 unsigned OpIdx = 0;
1233
1234 // Encode Dd / Sd.
Evan Cheng3c4a4ff2008-11-12 07:18:38 +00001235 Binary |= encodeVFPRd(MI, OpIdx++);
Evan Chengcd8e66a2008-11-11 21:48:44 +00001236
1237 // Encode address base.
1238 const MachineOperand &Base = MI.getOperand(OpIdx++);
1239 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1240
1241 // If there is a non-zero immediate offset, encode it.
1242 if (Base.isReg()) {
1243 const MachineOperand &Offset = MI.getOperand(OpIdx);
1244 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1245 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1246 Binary |= 1 << ARMII::U_BitShift;
Evan Cheng607f1b42008-11-12 08:21:12 +00001247 Binary |= ImmOffs;
Evan Chengcd8e66a2008-11-11 21:48:44 +00001248 emitWordLE(Binary);
1249 return;
1250 }
1251 }
1252
1253 // If immediate offset is omitted, default to +0.
1254 Binary |= 1 << ARMII::U_BitShift;
1255
1256 emitWordLE(Binary);
1257}
1258
1259void
1260ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1261 // Part of binary is determined by TableGn.
1262 unsigned Binary = getBinaryCodeForInstr(MI);
1263
1264 // Set the conditional execution predicate
1265 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1266
1267 // Set base address operand
1268 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
1269
1270 // Set addressing mode by modifying bits U(23) and P(24)
1271 const MachineOperand &MO = MI.getOperand(1);
1272 Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1273
1274 // Set bit W(21)
1275 if (ARM_AM::getAM5WBFlag(MO.getImm()))
1276 Binary |= 0x1 << ARMII::W_BitShift;
1277
1278 // First register is encoded in Dd.
Evan Cheng3c4a4ff2008-11-12 07:18:38 +00001279 Binary |= encodeVFPRd(MI, 4);
Evan Chengcd8e66a2008-11-11 21:48:44 +00001280
1281 // Number of registers are encoded in offset field.
1282 unsigned NumRegs = 1;
1283 for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
1284 const MachineOperand &MO = MI.getOperand(i);
1285 if (!MO.isReg() || MO.isImplicit())
1286 break;
1287 ++NumRegs;
1288 }
1289 Binary |= NumRegs * 2;
1290
1291 emitWordLE(Binary);
1292}
1293
1294void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1295 // Part of binary is determined by TableGn.
1296 unsigned Binary = getBinaryCodeForInstr(MI);
1297
1298 // Set the conditional execution predicate
1299 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1300
1301 emitWordLE(Binary);
1302}
1303
Evan Cheng7602e112008-09-02 06:52:38 +00001304#include "ARMGenCodeEmitter.inc"