blob: 0969a404f84ff6d5917f1839699a4ef55c84532b [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
Doug Thompson7d6034d2009-04-27 20:01:01 +02002#include <asm/k8.h>
Doug Thompson2bc65412009-05-04 20:11:14 +02003
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
16/* Lookup table for all possible MC control instances */
17struct amd64_pvt;
Borislav Petkov3011b202009-09-21 13:23:34 +020018static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
Doug Thompson2bc65412009-05-04 20:11:14 +020020
21/*
Borislav Petkov1433eb92009-10-21 13:44:36 +020022 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
23 * later.
Borislav Petkovb70ef012009-06-25 19:32:38 +020024 */
Borislav Petkov1433eb92009-10-21 13:44:36 +020025static int ddr2_dbam_revCG[] = {
26 [0] = 32,
27 [1] = 64,
28 [2] = 128,
29 [3] = 256,
30 [4] = 512,
31 [5] = 1024,
32 [6] = 2048,
33};
34
35static int ddr2_dbam_revD[] = {
36 [0] = 32,
37 [1] = 64,
38 [2 ... 3] = 128,
39 [4] = 256,
40 [5] = 512,
41 [6] = 256,
42 [7] = 512,
43 [8 ... 9] = 1024,
44 [10] = 2048,
45};
46
47static int ddr2_dbam[] = { [0] = 128,
48 [1] = 256,
49 [2 ... 4] = 512,
50 [5 ... 6] = 1024,
51 [7 ... 8] = 2048,
52 [9 ... 10] = 4096,
53 [11] = 8192,
54};
55
56static int ddr3_dbam[] = { [0] = -1,
57 [1] = 256,
58 [2] = 512,
59 [3 ... 4] = -1,
60 [5 ... 6] = 1024,
61 [7 ... 8] = 2048,
62 [9 ... 10] = 4096,
63 [11] = 8192,
Borislav Petkovb70ef012009-06-25 19:32:38 +020064};
65
66/*
67 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
68 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
69 * or higher value'.
70 *
71 *FIXME: Produce a better mapping/linearisation.
72 */
73
74struct scrubrate scrubrates[] = {
75 { 0x01, 1600000000UL},
76 { 0x02, 800000000UL},
77 { 0x03, 400000000UL},
78 { 0x04, 200000000UL},
79 { 0x05, 100000000UL},
80 { 0x06, 50000000UL},
81 { 0x07, 25000000UL},
82 { 0x08, 12284069UL},
83 { 0x09, 6274509UL},
84 { 0x0A, 3121951UL},
85 { 0x0B, 1560975UL},
86 { 0x0C, 781440UL},
87 { 0x0D, 390720UL},
88 { 0x0E, 195300UL},
89 { 0x0F, 97650UL},
90 { 0x10, 48854UL},
91 { 0x11, 24427UL},
92 { 0x12, 12213UL},
93 { 0x13, 6101UL},
94 { 0x14, 3051UL},
95 { 0x15, 1523UL},
96 { 0x16, 761UL},
97 { 0x00, 0UL}, /* scrubbing off */
98};
99
100/*
Doug Thompson2bc65412009-05-04 20:11:14 +0200101 * Memory scrubber control interface. For K8, memory scrubbing is handled by
102 * hardware and can involve L2 cache, dcache as well as the main memory. With
103 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
104 * functionality.
105 *
106 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
107 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
108 * bytes/sec for the setting.
109 *
110 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
111 * other archs, we might not have access to the caches directly.
112 */
113
114/*
115 * scan the scrub rate mapping table for a close or matching bandwidth value to
116 * issue. If requested is too big, then use last maximum value found.
117 */
118static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
119 u32 min_scrubrate)
120{
121 u32 scrubval;
122 int i;
123
124 /*
125 * map the configured rate (new_bw) to a value specific to the AMD64
126 * memory controller and apply to register. Search for the first
127 * bandwidth entry that is greater or equal than the setting requested
128 * and program that. If at last entry, turn off DRAM scrubbing.
129 */
130 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
131 /*
132 * skip scrub rates which aren't recommended
133 * (see F10 BKDG, F3x58)
134 */
135 if (scrubrates[i].scrubval < min_scrubrate)
136 continue;
137
138 if (scrubrates[i].bandwidth <= new_bw)
139 break;
140
141 /*
142 * if no suitable bandwidth found, turn off DRAM scrubbing
143 * entirely by falling back to the last element in the
144 * scrubrates array.
145 */
146 }
147
148 scrubval = scrubrates[i].scrubval;
149 if (scrubval)
150 edac_printk(KERN_DEBUG, EDAC_MC,
151 "Setting scrub rate bandwidth: %u\n",
152 scrubrates[i].bandwidth);
153 else
154 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
155
156 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
157
158 return 0;
159}
160
161static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
162{
163 struct amd64_pvt *pvt = mci->pvt_info;
164 u32 min_scrubrate = 0x0;
165
166 switch (boot_cpu_data.x86) {
167 case 0xf:
168 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
169 break;
170 case 0x10:
171 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
172 break;
173 case 0x11:
174 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
175 break;
176
177 default:
178 amd64_printk(KERN_ERR, "Unsupported family!\n");
179 break;
180 }
181 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
182 min_scrubrate);
183}
184
185static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
186{
187 struct amd64_pvt *pvt = mci->pvt_info;
188 u32 scrubval = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200189 int status = -1, i;
Doug Thompson2bc65412009-05-04 20:11:14 +0200190
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200191 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200192
193 scrubval = scrubval & 0x001F;
194
195 edac_printk(KERN_DEBUG, EDAC_MC,
196 "pci-read, sdram scrub control value: %d \n", scrubval);
197
198 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
199 if (scrubrates[i].scrubval == scrubval) {
200 *bw = scrubrates[i].bandwidth;
201 status = 0;
202 break;
203 }
204 }
205
206 return status;
207}
208
Doug Thompson67757632009-04-27 15:53:22 +0200209/* Map from a CSROW entry to the mask entry that operates on it */
210static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
211{
Borislav Petkov1433eb92009-10-21 13:44:36 +0200212 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200213 return csrow;
214 else
215 return csrow >> 1;
Doug Thompson67757632009-04-27 15:53:22 +0200216}
217
218/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
219static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
220{
221 if (dct == 0)
222 return pvt->dcsb0[csrow];
223 else
224 return pvt->dcsb1[csrow];
225}
226
227/*
228 * Return the 'mask' address the i'th CS entry. This function is needed because
229 * there number of DCSM registers on Rev E and prior vs Rev F and later is
230 * different.
231 */
232static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
233{
234 if (dct == 0)
235 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
236 else
237 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
238}
239
240
241/*
242 * In *base and *limit, pass back the full 40-bit base and limit physical
243 * addresses for the node given by node_id. This information is obtained from
244 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
245 * base and limit addresses are of type SysAddr, as defined at the start of
246 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
247 * in the address range they represent.
248 */
249static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
250 u64 *base, u64 *limit)
251{
252 *base = pvt->dram_base[node_id];
253 *limit = pvt->dram_limit[node_id];
254}
255
256/*
257 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
258 * with node_id
259 */
260static int amd64_base_limit_match(struct amd64_pvt *pvt,
261 u64 sys_addr, int node_id)
262{
263 u64 base, limit, addr;
264
265 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
266
267 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
268 * all ones if the most significant implemented address bit is 1.
269 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
270 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
271 * Application Programming.
272 */
273 addr = sys_addr & 0x000000ffffffffffull;
274
275 return (addr >= base) && (addr <= limit);
276}
277
278/*
279 * Attempt to map a SysAddr to a node. On success, return a pointer to the
280 * mem_ctl_info structure for the node that the SysAddr maps to.
281 *
282 * On failure, return NULL.
283 */
284static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
285 u64 sys_addr)
286{
287 struct amd64_pvt *pvt;
288 int node_id;
289 u32 intlv_en, bits;
290
291 /*
292 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
293 * 3.4.4.2) registers to map the SysAddr to a node ID.
294 */
295 pvt = mci->pvt_info;
296
297 /*
298 * The value of this field should be the same for all DRAM Base
299 * registers. Therefore we arbitrarily choose to read it from the
300 * register for node 0.
301 */
302 intlv_en = pvt->dram_IntlvEn[0];
303
304 if (intlv_en == 0) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200305 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
Doug Thompson67757632009-04-27 15:53:22 +0200306 if (amd64_base_limit_match(pvt, sys_addr, node_id))
Borislav Petkov8edc5442009-09-18 12:39:19 +0200307 goto found;
Doug Thompson67757632009-04-27 15:53:22 +0200308 }
Borislav Petkov8edc5442009-09-18 12:39:19 +0200309 goto err_no_match;
Doug Thompson67757632009-04-27 15:53:22 +0200310 }
311
Borislav Petkov72f158f2009-09-18 12:27:27 +0200312 if (unlikely((intlv_en != 0x01) &&
313 (intlv_en != 0x03) &&
314 (intlv_en != 0x07))) {
Doug Thompson67757632009-04-27 15:53:22 +0200315 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
316 "IntlvEn field of DRAM Base Register for node 0: "
Borislav Petkov72f158f2009-09-18 12:27:27 +0200317 "this probably indicates a BIOS bug.\n", intlv_en);
Doug Thompson67757632009-04-27 15:53:22 +0200318 return NULL;
319 }
320
321 bits = (((u32) sys_addr) >> 12) & intlv_en;
322
323 for (node_id = 0; ; ) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200324 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
Doug Thompson67757632009-04-27 15:53:22 +0200325 break; /* intlv_sel field matches */
326
327 if (++node_id >= DRAM_REG_COUNT)
328 goto err_no_match;
329 }
330
331 /* sanity test for sys_addr */
332 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
333 amd64_printk(KERN_WARNING,
Borislav Petkov8edc5442009-09-18 12:39:19 +0200334 "%s(): sys_addr 0x%llx falls outside base/limit "
335 "address range for node %d with node interleaving "
336 "enabled.\n",
337 __func__, sys_addr, node_id);
Doug Thompson67757632009-04-27 15:53:22 +0200338 return NULL;
339 }
340
341found:
342 return edac_mc_find(node_id);
343
344err_no_match:
345 debugf2("sys_addr 0x%lx doesn't match any node\n",
346 (unsigned long)sys_addr);
347
348 return NULL;
349}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200350
351/*
352 * Extract the DRAM CS base address from selected csrow register.
353 */
354static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
355{
356 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
357 pvt->dcs_shift;
358}
359
360/*
361 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
362 */
363static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
364{
365 u64 dcsm_bits, other_bits;
366 u64 mask;
367
368 /* Extract bits from DRAM CS Mask. */
369 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
370
371 other_bits = pvt->dcsm_mask;
372 other_bits = ~(other_bits << pvt->dcs_shift);
373
374 /*
375 * The extracted bits from DCSM belong in the spaces represented by
376 * the cleared bits in other_bits.
377 */
378 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
379
380 return mask;
381}
382
383/*
384 * @input_addr is an InputAddr associated with the node given by mci. Return the
385 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
386 */
387static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
388{
389 struct amd64_pvt *pvt;
390 int csrow;
391 u64 base, mask;
392
393 pvt = mci->pvt_info;
394
395 /*
396 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
397 * base/mask register pair, test the condition shown near the start of
398 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
399 */
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200400 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200401
402 /* This DRAM chip select is disabled on this node */
403 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
404 continue;
405
406 base = base_from_dct_base(pvt, csrow);
407 mask = ~mask_from_dct_mask(pvt, csrow);
408
409 if ((input_addr & mask) == (base & mask)) {
410 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
411 (unsigned long)input_addr, csrow,
412 pvt->mc_node_id);
413
414 return csrow;
415 }
416 }
417
418 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
419 (unsigned long)input_addr, pvt->mc_node_id);
420
421 return -1;
422}
423
424/*
425 * Return the base value defined by the DRAM Base register for the node
426 * represented by mci. This function returns the full 40-bit value despite the
427 * fact that the register only stores bits 39-24 of the value. See section
428 * 3.4.4.1 (BKDG #26094, K8, revA-E)
429 */
430static inline u64 get_dram_base(struct mem_ctl_info *mci)
431{
432 struct amd64_pvt *pvt = mci->pvt_info;
433
434 return pvt->dram_base[pvt->mc_node_id];
435}
436
437/*
438 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
439 * for the node represented by mci. Info is passed back in *hole_base,
440 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
441 * info is invalid. Info may be invalid for either of the following reasons:
442 *
443 * - The revision of the node is not E or greater. In this case, the DRAM Hole
444 * Address Register does not exist.
445 *
446 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
447 * indicating that its contents are not valid.
448 *
449 * The values passed back in *hole_base, *hole_offset, and *hole_size are
450 * complete 32-bit values despite the fact that the bitfields in the DHAR
451 * only represent bits 31-24 of the base and offset values.
452 */
453int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
454 u64 *hole_offset, u64 *hole_size)
455{
456 struct amd64_pvt *pvt = mci->pvt_info;
457 u64 base;
458
459 /* only revE and later have the DRAM Hole Address Register */
Borislav Petkov1433eb92009-10-21 13:44:36 +0200460 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200461 debugf1(" revision %d for node %d does not support DHAR\n",
462 pvt->ext_model, pvt->mc_node_id);
463 return 1;
464 }
465
466 /* only valid for Fam10h */
467 if (boot_cpu_data.x86 == 0x10 &&
468 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
469 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
470 return 1;
471 }
472
473 if ((pvt->dhar & DHAR_VALID) == 0) {
474 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
475 pvt->mc_node_id);
476 return 1;
477 }
478
479 /* This node has Memory Hoisting */
480
481 /* +------------------+--------------------+--------------------+-----
482 * | memory | DRAM hole | relocated |
483 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
484 * | | | DRAM hole |
485 * | | | [0x100000000, |
486 * | | | (0x100000000+ |
487 * | | | (0xffffffff-x))] |
488 * +------------------+--------------------+--------------------+-----
489 *
490 * Above is a diagram of physical memory showing the DRAM hole and the
491 * relocated addresses from the DRAM hole. As shown, the DRAM hole
492 * starts at address x (the base address) and extends through address
493 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
494 * addresses in the hole so that they start at 0x100000000.
495 */
496
497 base = dhar_base(pvt->dhar);
498
499 *hole_base = base;
500 *hole_size = (0x1ull << 32) - base;
501
502 if (boot_cpu_data.x86 > 0xf)
503 *hole_offset = f10_dhar_offset(pvt->dhar);
504 else
505 *hole_offset = k8_dhar_offset(pvt->dhar);
506
507 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
508 pvt->mc_node_id, (unsigned long)*hole_base,
509 (unsigned long)*hole_offset, (unsigned long)*hole_size);
510
511 return 0;
512}
513EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
514
Doug Thompson93c2df52009-05-04 20:46:50 +0200515/*
516 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
517 * assumed that sys_addr maps to the node given by mci.
518 *
519 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
520 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
521 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
522 * then it is also involved in translating a SysAddr to a DramAddr. Sections
523 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
524 * These parts of the documentation are unclear. I interpret them as follows:
525 *
526 * When node n receives a SysAddr, it processes the SysAddr as follows:
527 *
528 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
529 * Limit registers for node n. If the SysAddr is not within the range
530 * specified by the base and limit values, then node n ignores the Sysaddr
531 * (since it does not map to node n). Otherwise continue to step 2 below.
532 *
533 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
534 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
535 * the range of relocated addresses (starting at 0x100000000) from the DRAM
536 * hole. If not, skip to step 3 below. Else get the value of the
537 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
538 * offset defined by this value from the SysAddr.
539 *
540 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
541 * Base register for node n. To obtain the DramAddr, subtract the base
542 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
543 */
544static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
545{
546 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
547 int ret = 0;
548
549 dram_base = get_dram_base(mci);
550
551 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
552 &hole_size);
553 if (!ret) {
554 if ((sys_addr >= (1ull << 32)) &&
555 (sys_addr < ((1ull << 32) + hole_size))) {
556 /* use DHAR to translate SysAddr to DramAddr */
557 dram_addr = sys_addr - hole_offset;
558
559 debugf2("using DHAR to translate SysAddr 0x%lx to "
560 "DramAddr 0x%lx\n",
561 (unsigned long)sys_addr,
562 (unsigned long)dram_addr);
563
564 return dram_addr;
565 }
566 }
567
568 /*
569 * Translate the SysAddr to a DramAddr as shown near the start of
570 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
571 * only deals with 40-bit values. Therefore we discard bits 63-40 of
572 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
573 * discard are all 1s. Otherwise the bits we discard are all 0s. See
574 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
575 * Programmer's Manual Volume 1 Application Programming.
576 */
577 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
578
579 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
580 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
581 (unsigned long)dram_addr);
582 return dram_addr;
583}
584
585/*
586 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
587 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
588 * for node interleaving.
589 */
590static int num_node_interleave_bits(unsigned intlv_en)
591{
592 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
593 int n;
594
595 BUG_ON(intlv_en > 7);
596 n = intlv_shift_table[intlv_en];
597 return n;
598}
599
600/* Translate the DramAddr given by @dram_addr to an InputAddr. */
601static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
602{
603 struct amd64_pvt *pvt;
604 int intlv_shift;
605 u64 input_addr;
606
607 pvt = mci->pvt_info;
608
609 /*
610 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
611 * concerning translating a DramAddr to an InputAddr.
612 */
613 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
614 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
615 (dram_addr & 0xfff);
616
617 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
618 intlv_shift, (unsigned long)dram_addr,
619 (unsigned long)input_addr);
620
621 return input_addr;
622}
623
624/*
625 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
626 * assumed that @sys_addr maps to the node given by mci.
627 */
628static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
629{
630 u64 input_addr;
631
632 input_addr =
633 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
634
635 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
636 (unsigned long)sys_addr, (unsigned long)input_addr);
637
638 return input_addr;
639}
640
641
642/*
643 * @input_addr is an InputAddr associated with the node represented by mci.
644 * Translate @input_addr to a DramAddr and return the result.
645 */
646static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
647{
648 struct amd64_pvt *pvt;
649 int node_id, intlv_shift;
650 u64 bits, dram_addr;
651 u32 intlv_sel;
652
653 /*
654 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
655 * shows how to translate a DramAddr to an InputAddr. Here we reverse
656 * this procedure. When translating from a DramAddr to an InputAddr, the
657 * bits used for node interleaving are discarded. Here we recover these
658 * bits from the IntlvSel field of the DRAM Limit register (section
659 * 3.4.4.2) for the node that input_addr is associated with.
660 */
661 pvt = mci->pvt_info;
662 node_id = pvt->mc_node_id;
663 BUG_ON((node_id < 0) || (node_id > 7));
664
665 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
666
667 if (intlv_shift == 0) {
668 debugf1(" InputAddr 0x%lx translates to DramAddr of "
669 "same value\n", (unsigned long)input_addr);
670
671 return input_addr;
672 }
673
674 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
675 (input_addr & 0xfff);
676
677 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
678 dram_addr = bits + (intlv_sel << 12);
679
680 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
681 "(%d node interleave bits)\n", (unsigned long)input_addr,
682 (unsigned long)dram_addr, intlv_shift);
683
684 return dram_addr;
685}
686
687/*
688 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
689 * @dram_addr to a SysAddr.
690 */
691static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
692{
693 struct amd64_pvt *pvt = mci->pvt_info;
694 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
695 int ret = 0;
696
697 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
698 &hole_size);
699 if (!ret) {
700 if ((dram_addr >= hole_base) &&
701 (dram_addr < (hole_base + hole_size))) {
702 sys_addr = dram_addr + hole_offset;
703
704 debugf1("using DHAR to translate DramAddr 0x%lx to "
705 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
706 (unsigned long)sys_addr);
707
708 return sys_addr;
709 }
710 }
711
712 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
713 sys_addr = dram_addr + base;
714
715 /*
716 * The sys_addr we have computed up to this point is a 40-bit value
717 * because the k8 deals with 40-bit values. However, the value we are
718 * supposed to return is a full 64-bit physical address. The AMD
719 * x86-64 architecture specifies that the most significant implemented
720 * address bit through bit 63 of a physical address must be either all
721 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
722 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
723 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
724 * Programming.
725 */
726 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
727
728 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
729 pvt->mc_node_id, (unsigned long)dram_addr,
730 (unsigned long)sys_addr);
731
732 return sys_addr;
733}
734
735/*
736 * @input_addr is an InputAddr associated with the node given by mci. Translate
737 * @input_addr to a SysAddr.
738 */
739static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
740 u64 input_addr)
741{
742 return dram_addr_to_sys_addr(mci,
743 input_addr_to_dram_addr(mci, input_addr));
744}
745
746/*
747 * Find the minimum and maximum InputAddr values that map to the given @csrow.
748 * Pass back these values in *input_addr_min and *input_addr_max.
749 */
750static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
751 u64 *input_addr_min, u64 *input_addr_max)
752{
753 struct amd64_pvt *pvt;
754 u64 base, mask;
755
756 pvt = mci->pvt_info;
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200757 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
Doug Thompson93c2df52009-05-04 20:46:50 +0200758
759 base = base_from_dct_base(pvt, csrow);
760 mask = mask_from_dct_mask(pvt, csrow);
761
762 *input_addr_min = base & ~mask;
763 *input_addr_max = base | mask | pvt->dcs_mask_notused;
764}
765
Doug Thompson93c2df52009-05-04 20:46:50 +0200766/* Map the Error address to a PAGE and PAGE OFFSET. */
767static inline void error_address_to_page_and_offset(u64 error_address,
768 u32 *page, u32 *offset)
769{
770 *page = (u32) (error_address >> PAGE_SHIFT);
771 *offset = ((u32) error_address) & ~PAGE_MASK;
772}
773
774/*
775 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
776 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
777 * of a node that detected an ECC memory error. mci represents the node that
778 * the error address maps to (possibly different from the node that detected
779 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
780 * error.
781 */
782static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
783{
784 int csrow;
785
786 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
787
788 if (csrow == -1)
789 amd64_mc_printk(mci, KERN_ERR,
790 "Failed to translate InputAddr to csrow for "
791 "address 0x%lx\n", (unsigned long)sys_addr);
792 return csrow;
793}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200794
Borislav Petkovbfc04ae2009-11-12 19:05:07 +0100795static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
Doug Thompson2da11652009-04-27 16:09:09 +0200796
797static void amd64_cpu_display_info(struct amd64_pvt *pvt)
798{
799 if (boot_cpu_data.x86 == 0x11)
800 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
801 else if (boot_cpu_data.x86 == 0x10)
802 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
803 else if (boot_cpu_data.x86 == 0xf)
804 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
Borislav Petkov1433eb92009-10-21 13:44:36 +0200805 (pvt->ext_model >= K8_REV_F) ?
Doug Thompson2da11652009-04-27 16:09:09 +0200806 "Rev F or later" : "Rev E or earlier");
807 else
808 /* we'll hardly ever ever get here */
809 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
810}
811
812/*
813 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
814 * are ECC capable.
815 */
816static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
817{
818 int bit;
Borislav Petkov584fcff2009-06-10 18:29:54 +0200819 enum dev_type edac_cap = EDAC_FLAG_NONE;
Doug Thompson2da11652009-04-27 16:09:09 +0200820
Borislav Petkov1433eb92009-10-21 13:44:36 +0200821 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
Doug Thompson2da11652009-04-27 16:09:09 +0200822 ? 19
823 : 17;
824
Borislav Petkov584fcff2009-06-10 18:29:54 +0200825 if (pvt->dclr0 & BIT(bit))
Doug Thompson2da11652009-04-27 16:09:09 +0200826 edac_cap = EDAC_FLAG_SECDED;
827
828 return edac_cap;
829}
830
831
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200832static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200833
Borislav Petkov68798e12009-11-03 16:18:33 +0100834static void amd64_dump_dramcfg_low(u32 dclr, int chan)
835{
836 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
837
838 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
839 (dclr & BIT(16)) ? "un" : "",
840 (dclr & BIT(19)) ? "yes" : "no");
841
842 debugf1(" PAR/ERR parity: %s\n",
843 (dclr & BIT(8)) ? "enabled" : "disabled");
844
845 debugf1(" DCT 128bit mode width: %s\n",
846 (dclr & BIT(11)) ? "128b" : "64b");
847
848 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
849 (dclr & BIT(12)) ? "yes" : "no",
850 (dclr & BIT(13)) ? "yes" : "no",
851 (dclr & BIT(14)) ? "yes" : "no",
852 (dclr & BIT(15)) ? "yes" : "no");
853}
854
Doug Thompson2da11652009-04-27 16:09:09 +0200855/* Display and decode various NB registers for debug purposes. */
856static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
857{
858 int ganged;
859
Borislav Petkov68798e12009-11-03 16:18:33 +0100860 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
Doug Thompson2da11652009-04-27 16:09:09 +0200861
Borislav Petkov68798e12009-11-03 16:18:33 +0100862 debugf1(" NB two channel DRAM capable: %s\n",
863 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
864
865 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
866 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
867 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
868
869 amd64_dump_dramcfg_low(pvt->dclr0, 0);
Doug Thompson2da11652009-04-27 16:09:09 +0200870
Borislav Petkov8de1d912009-10-16 13:39:30 +0200871 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
Doug Thompson2da11652009-04-27 16:09:09 +0200872
Borislav Petkov8de1d912009-10-16 13:39:30 +0200873 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
874 "offset: 0x%08x\n",
875 pvt->dhar,
876 dhar_base(pvt->dhar),
877 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
878 : f10_dhar_offset(pvt->dhar));
Doug Thompson2da11652009-04-27 16:09:09 +0200879
Borislav Petkov8de1d912009-10-16 13:39:30 +0200880 debugf1(" DramHoleValid: %s\n",
881 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
Doug Thompson2da11652009-04-27 16:09:09 +0200882
Borislav Petkov8de1d912009-10-16 13:39:30 +0200883 /* everything below this point is Fam10h and above */
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200884 if (boot_cpu_data.x86 == 0xf) {
885 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200886 return;
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200887 }
Doug Thompson2da11652009-04-27 16:09:09 +0200888
Borislav Petkov8de1d912009-10-16 13:39:30 +0200889 /* Only if NOT ganged does dclr1 have valid info */
Borislav Petkov68798e12009-11-03 16:18:33 +0100890 if (!dct_ganging_enabled(pvt))
891 amd64_dump_dramcfg_low(pvt->dclr1, 1);
Doug Thompson2da11652009-04-27 16:09:09 +0200892
893 /*
894 * Determine if ganged and then dump memory sizes for first controller,
895 * and if NOT ganged dump info for 2nd controller.
896 */
897 ganged = dct_ganging_enabled(pvt);
898
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200899 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200900
901 if (!ganged)
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200902 amd64_debug_display_dimm_sizes(1, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200903}
904
905/* Read in both of DBAM registers */
906static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
907{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200908 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
Doug Thompson2da11652009-04-27 16:09:09 +0200909
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200910 if (boot_cpu_data.x86 >= 0x10)
911 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
Doug Thompson2da11652009-04-27 16:09:09 +0200912}
913
Doug Thompson94be4bf2009-04-27 16:12:00 +0200914/*
915 * NOTE: CPU Revision Dependent code: Rev E and Rev F
916 *
917 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
918 * set the shift factor for the DCSB and DCSM values.
919 *
920 * ->dcs_mask_notused, RevE:
921 *
922 * To find the max InputAddr for the csrow, start with the base address and set
923 * all bits that are "don't care" bits in the test at the start of section
924 * 3.5.4 (p. 84).
925 *
926 * The "don't care" bits are all set bits in the mask and all bits in the gaps
927 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
928 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
929 * gaps.
930 *
931 * ->dcs_mask_notused, RevF and later:
932 *
933 * To find the max InputAddr for the csrow, start with the base address and set
934 * all bits that are "don't care" bits in the test at the start of NPT section
935 * 4.5.4 (p. 87).
936 *
937 * The "don't care" bits are all set bits in the mask and all bits in the gaps
938 * between bit ranges [36:27] and [21:13].
939 *
940 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
941 * which are all bits in the above-mentioned gaps.
942 */
943static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
944{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200945
Borislav Petkov1433eb92009-10-21 13:44:36 +0200946 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200947 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
948 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
949 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
950 pvt->dcs_shift = REV_E_DCS_SHIFT;
951 pvt->cs_count = 8;
952 pvt->num_dcsm = 8;
953 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200954 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
955 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
956 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
957 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
958
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200959 if (boot_cpu_data.x86 == 0x11) {
960 pvt->cs_count = 4;
961 pvt->num_dcsm = 2;
962 } else {
963 pvt->cs_count = 8;
964 pvt->num_dcsm = 4;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200965 }
Doug Thompson94be4bf2009-04-27 16:12:00 +0200966 }
967}
968
969/*
970 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
971 */
972static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
973{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200974 int cs, reg;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200975
976 amd64_set_dct_base_and_mask(pvt);
977
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200978 for (cs = 0; cs < pvt->cs_count; cs++) {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200979 reg = K8_DCSB0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200980 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200981 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
982 cs, pvt->dcsb0[cs], reg);
983
984 /* If DCT are NOT ganged, then read in DCT1's base */
985 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
986 reg = F10_DCSB1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200987 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
988 &pvt->dcsb1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200989 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
990 cs, pvt->dcsb1[cs], reg);
991 } else {
992 pvt->dcsb1[cs] = 0;
993 }
994 }
995
996 for (cs = 0; cs < pvt->num_dcsm; cs++) {
Wan Wei4afcd2d2009-07-27 14:34:15 +0200997 reg = K8_DCSM0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200998 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200999 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1000 cs, pvt->dcsm0[cs], reg);
1001
1002 /* If DCT are NOT ganged, then read in DCT1's mask */
1003 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1004 reg = F10_DCSM1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001005 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1006 &pvt->dcsm1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001007 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1008 cs, pvt->dcsm1[cs], reg);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001009 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001010 pvt->dcsm1[cs] = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001011 }
Doug Thompson94be4bf2009-04-27 16:12:00 +02001012 }
1013}
1014
1015static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1016{
1017 enum mem_type type;
1018
Borislav Petkov1433eb92009-10-21 13:44:36 +02001019 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
Borislav Petkov6b4c0bd2009-11-12 15:37:57 +01001020 if (pvt->dchr0 & DDR3_MODE)
1021 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1022 else
1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
Doug Thompson94be4bf2009-04-27 16:12:00 +02001024 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001025 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1026 }
1027
Borislav Petkov239642f2009-11-12 15:33:16 +01001028 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
Doug Thompson94be4bf2009-04-27 16:12:00 +02001029
1030 return type;
1031}
1032
Doug Thompsonddff8762009-04-27 16:14:52 +02001033/*
1034 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1035 * and the later RevF memory controllers (DDR vs DDR2)
1036 *
1037 * Return:
1038 * number of memory channels in operation
1039 * Pass back:
1040 * contents of the DCL0_LOW register
1041 */
1042static int k8_early_channel_count(struct amd64_pvt *pvt)
1043{
1044 int flag, err = 0;
1045
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001046 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001047 if (err)
1048 return err;
1049
Borislav Petkov1433eb92009-10-21 13:44:36 +02001050 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
Doug Thompsonddff8762009-04-27 16:14:52 +02001051 /* RevF (NPT) and later */
1052 flag = pvt->dclr0 & F10_WIDTH_128;
1053 } else {
1054 /* RevE and earlier */
1055 flag = pvt->dclr0 & REVE_WIDTH_128;
1056 }
1057
1058 /* not used */
1059 pvt->dclr1 = 0;
1060
1061 return (flag) ? 2 : 1;
1062}
1063
1064/* extract the ERROR ADDRESS for the K8 CPUs */
1065static u64 k8_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001066 struct err_regs *info)
Doug Thompsonddff8762009-04-27 16:14:52 +02001067{
1068 return (((u64) (info->nbeah & 0xff)) << 32) +
1069 (info->nbeal & ~0x03);
1070}
1071
1072/*
1073 * Read the Base and Limit registers for K8 based Memory controllers; extract
1074 * fields from the 'raw' reg into separate data fields
1075 *
1076 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1077 */
1078static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1079{
1080 u32 low;
1081 u32 off = dram << 3; /* 8 bytes between DRAM entries */
Doug Thompsonddff8762009-04-27 16:14:52 +02001082
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001083 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001084
1085 /* Extract parts into separate data entries */
Borislav Petkov49978112009-10-12 17:23:03 +02001086 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
Doug Thompsonddff8762009-04-27 16:14:52 +02001087 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1088 pvt->dram_rw_en[dram] = (low & 0x3);
1089
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001090 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001091
1092 /*
1093 * Extract parts into separate data entries. Limit is the HIGHEST memory
1094 * location of the region, so lower 24 bits need to be all ones
1095 */
Borislav Petkov49978112009-10-12 17:23:03 +02001096 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
Doug Thompsonddff8762009-04-27 16:14:52 +02001097 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1098 pvt->dram_DstNode[dram] = (low & 0x7);
1099}
1100
1101static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001102 struct err_regs *info,
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001103 u64 sys_addr)
Doug Thompsonddff8762009-04-27 16:14:52 +02001104{
1105 struct mem_ctl_info *src_mci;
1106 unsigned short syndrome;
1107 int channel, csrow;
1108 u32 page, offset;
1109
1110 /* Extract the syndrome parts and form a 16-bit syndrome */
Borislav Petkovb70ef012009-06-25 19:32:38 +02001111 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1112 syndrome |= LOW_SYNDROME(info->nbsh);
Doug Thompsonddff8762009-04-27 16:14:52 +02001113
1114 /* CHIPKILL enabled */
1115 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001116 channel = get_channel_from_ecc_syndrome(mci, syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001117 if (channel < 0) {
1118 /*
1119 * Syndrome didn't map, so we don't know which of the
1120 * 2 DIMMs is in error. So we need to ID 'both' of them
1121 * as suspect.
1122 */
1123 amd64_mc_printk(mci, KERN_WARNING,
1124 "unknown syndrome 0x%x - possible error "
1125 "reporting race\n", syndrome);
1126 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1127 return;
1128 }
1129 } else {
1130 /*
1131 * non-chipkill ecc mode
1132 *
1133 * The k8 documentation is unclear about how to determine the
1134 * channel number when using non-chipkill memory. This method
1135 * was obtained from email communication with someone at AMD.
1136 * (Wish the email was placed in this comment - norsk)
1137 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001138 channel = ((sys_addr & BIT(3)) != 0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001139 }
1140
1141 /*
1142 * Find out which node the error address belongs to. This may be
1143 * different from the node that detected the error.
1144 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001145 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Keith Mannthey2cff18c2009-09-18 14:35:23 +02001146 if (!src_mci) {
Doug Thompsonddff8762009-04-27 16:14:52 +02001147 amd64_mc_printk(mci, KERN_ERR,
1148 "failed to map error address 0x%lx to a node\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001149 (unsigned long)sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001150 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1151 return;
1152 }
1153
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001154 /* Now map the sys_addr to a CSROW */
1155 csrow = sys_addr_to_csrow(src_mci, sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001156 if (csrow < 0) {
1157 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1158 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001159 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsonddff8762009-04-27 16:14:52 +02001160
1161 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1162 channel, EDAC_MOD_STR);
1163 }
1164}
1165
Borislav Petkov1433eb92009-10-21 13:44:36 +02001166static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompsonddff8762009-04-27 16:14:52 +02001167{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001168 int *dbam_map;
Doug Thompsonddff8762009-04-27 16:14:52 +02001169
Borislav Petkov1433eb92009-10-21 13:44:36 +02001170 if (pvt->ext_model >= K8_REV_F)
1171 dbam_map = ddr2_dbam;
1172 else if (pvt->ext_model >= K8_REV_D)
1173 dbam_map = ddr2_dbam_revD;
1174 else
1175 dbam_map = ddr2_dbam_revCG;
Doug Thompsonddff8762009-04-27 16:14:52 +02001176
Borislav Petkov1433eb92009-10-21 13:44:36 +02001177 return dbam_map[cs_mode];
Doug Thompsonddff8762009-04-27 16:14:52 +02001178}
1179
Doug Thompson1afd3c92009-04-27 16:16:50 +02001180/*
1181 * Get the number of DCT channels in use.
1182 *
1183 * Return:
1184 * number of Memory Channels in operation
1185 * Pass back:
1186 * contents of the DCL0_LOW register
1187 */
1188static int f10_early_channel_count(struct amd64_pvt *pvt)
1189{
Wan Wei57a30852009-08-07 17:04:49 +02001190 int dbams[] = { DBAM0, DBAM1 };
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001191 int i, j, channels = 0;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001192 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001193
Doug Thompson1afd3c92009-04-27 16:16:50 +02001194 /* If we are in 128 bit mode, then we are using 2 channels */
1195 if (pvt->dclr0 & F10_WIDTH_128) {
Doug Thompson1afd3c92009-04-27 16:16:50 +02001196 channels = 2;
1197 return channels;
1198 }
1199
1200 /*
Borislav Petkovd16149e2009-10-16 19:55:49 +02001201 * Need to check if in unganged mode: In such, there are 2 channels,
1202 * but they are not in 128 bit mode and thus the above 'dclr0' status
1203 * bit will be OFF.
Doug Thompson1afd3c92009-04-27 16:16:50 +02001204 *
1205 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1206 * their CSEnable bit on. If so, then SINGLE DIMM case.
1207 */
Borislav Petkovd16149e2009-10-16 19:55:49 +02001208 debugf0("Data width is not 128 bits - need more decoding\n");
Doug Thompson1afd3c92009-04-27 16:16:50 +02001209
1210 /*
1211 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1212 * is more than just one DIMM present in unganged mode. Need to check
1213 * both controllers since DIMMs can be placed in either one.
1214 */
Wan Wei57a30852009-08-07 17:04:49 +02001215 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001216 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001217 goto err_reg;
1218
Wan Wei57a30852009-08-07 17:04:49 +02001219 for (j = 0; j < 4; j++) {
1220 if (DBAM_DIMM(j, dbam) > 0) {
1221 channels++;
1222 break;
1223 }
1224 }
Doug Thompson1afd3c92009-04-27 16:16:50 +02001225 }
1226
Borislav Petkovd16149e2009-10-16 19:55:49 +02001227 if (channels > 2)
1228 channels = 2;
1229
Borislav Petkov37da0452009-06-10 17:36:57 +02001230 debugf0("MCT channel count: %d\n", channels);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001231
1232 return channels;
1233
1234err_reg:
1235 return -1;
1236
1237}
1238
Borislav Petkov1433eb92009-10-21 13:44:36 +02001239static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001240{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001241 int *dbam_map;
1242
1243 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1244 dbam_map = ddr3_dbam;
1245 else
1246 dbam_map = ddr2_dbam;
1247
1248 return dbam_map[cs_mode];
Doug Thompson1afd3c92009-04-27 16:16:50 +02001249}
1250
1251/* Enable extended configuration access via 0xCF8 feature */
1252static void amd64_setup(struct amd64_pvt *pvt)
1253{
1254 u32 reg;
1255
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001256 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001257
1258 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1259 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1260 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1261}
1262
1263/* Restore the extended configuration access via 0xCF8 feature */
1264static void amd64_teardown(struct amd64_pvt *pvt)
1265{
1266 u32 reg;
1267
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001268 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001269
1270 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1271 if (pvt->flags.cf8_extcfg)
1272 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1274}
1275
1276static u64 f10_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001277 struct err_regs *info)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001278{
1279 return (((u64) (info->nbeah & 0xffff)) << 32) +
1280 (info->nbeal & ~0x01);
1281}
1282
1283/*
1284 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1285 * fields from the 'raw' reg into separate data fields.
1286 *
1287 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1288 */
1289static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1290{
1291 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1292
1293 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1294 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1295
1296 /* read the 'raw' DRAM BASE Address register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001297 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001298
1299 /* Read from the ECS data register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001300 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001301
1302 /* Extract parts into separate data entries */
1303 pvt->dram_rw_en[dram] = (low_base & 0x3);
1304
1305 if (pvt->dram_rw_en[dram] == 0)
1306 return;
1307
1308 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1309
Borislav Petkov66216a72009-09-22 16:48:37 +02001310 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001311 (((u64)low_base & 0xFFFF0000) << 8);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001312
1313 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1314 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1315
1316 /* read the 'raw' LIMIT registers */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001317 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001318
1319 /* Read from the ECS data register for the HIGH portion */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001320 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001321
Doug Thompson1afd3c92009-04-27 16:16:50 +02001322 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1323 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1324
1325 /*
1326 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1327 * memory location of the region, so low 24 bits need to be all ones.
1328 */
Borislav Petkov66216a72009-09-22 16:48:37 +02001329 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001330 (((u64) low_limit & 0xFFFF0000) << 8) |
Borislav Petkov66216a72009-09-22 16:48:37 +02001331 0x00FFFFFF;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001332}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001333
1334static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1335{
Doug Thompson6163b5d2009-04-27 16:20:17 +02001336
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001337 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1338 &pvt->dram_ctl_select_low)) {
Borislav Petkov72381bd2009-10-09 19:14:43 +02001339 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1340 "High range addresses at: 0x%x\n",
1341 pvt->dram_ctl_select_low,
1342 dct_sel_baseaddr(pvt));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001343
Borislav Petkov72381bd2009-10-09 19:14:43 +02001344 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1345 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1346 (dct_dram_enabled(pvt) ? "yes" : "no"));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001347
Borislav Petkov72381bd2009-10-09 19:14:43 +02001348 if (!dct_ganging_enabled(pvt))
1349 debugf0(" Address range split per DCT: %s\n",
1350 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1351
1352 debugf0(" DCT data interleave for ECC: %s, "
1353 "DRAM cleared since last warm reset: %s\n",
1354 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1355 (dct_memory_cleared(pvt) ? "yes" : "no"));
1356
1357 debugf0(" DCT channel interleave: %s, "
1358 "DCT interleave bits selector: 0x%x\n",
1359 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
Doug Thompson6163b5d2009-04-27 16:20:17 +02001360 dct_sel_interleave_addr(pvt));
1361 }
1362
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001363 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1364 &pvt->dram_ctl_select_high);
Doug Thompson6163b5d2009-04-27 16:20:17 +02001365}
1366
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001367/*
1368 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1369 * Interleaving Modes.
1370 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001371static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1372 int hi_range_sel, u32 intlv_en)
1373{
1374 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1375
1376 if (dct_ganging_enabled(pvt))
1377 cs = 0;
1378 else if (hi_range_sel)
1379 cs = dct_sel_high;
1380 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001381 /*
1382 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1383 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001384 if (dct_sel_interleave_addr(pvt) == 0)
1385 cs = sys_addr >> 6 & 1;
1386 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1387 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1388
1389 if (dct_sel_interleave_addr(pvt) & 1)
1390 cs = (sys_addr >> 9 & 1) ^ temp;
1391 else
1392 cs = (sys_addr >> 6 & 1) ^ temp;
1393 } else if (intlv_en & 4)
1394 cs = sys_addr >> 15 & 1;
1395 else if (intlv_en & 2)
1396 cs = sys_addr >> 14 & 1;
1397 else if (intlv_en & 1)
1398 cs = sys_addr >> 13 & 1;
1399 else
1400 cs = sys_addr >> 12 & 1;
1401 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1402 cs = ~dct_sel_high & 1;
1403 else
1404 cs = 0;
1405
1406 return cs;
1407}
1408
1409static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1410{
1411 if (intlv_en == 1)
1412 return 1;
1413 else if (intlv_en == 3)
1414 return 2;
1415 else if (intlv_en == 7)
1416 return 3;
1417
1418 return 0;
1419}
1420
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001421/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1422static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001423 u32 dct_sel_base_addr,
1424 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001425 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001426 u64 dram_base)
1427{
1428 u64 chan_off;
1429
1430 if (hi_range_sel) {
1431 if (!(dct_sel_base_addr & 0xFFFFF800) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001432 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001433 chan_off = hole_off << 16;
1434 else
1435 chan_off = dct_sel_base_off;
1436 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001437 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001438 chan_off = hole_off << 16;
1439 else
1440 chan_off = dram_base & 0xFFFFF8000000ULL;
1441 }
1442
1443 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1444 (chan_off & 0x0000FFFFFF800000ULL);
1445}
1446
1447/* Hack for the time being - Can we get this from BIOS?? */
1448#define CH0SPARE_RANK 0
1449#define CH1SPARE_RANK 1
1450
1451/*
1452 * checks if the csrow passed in is marked as SPARED, if so returns the new
1453 * spare row
1454 */
1455static inline int f10_process_possible_spare(int csrow,
1456 u32 cs, struct amd64_pvt *pvt)
1457{
1458 u32 swap_done;
1459 u32 bad_dram_cs;
1460
1461 /* Depending on channel, isolate respective SPARING info */
1462 if (cs) {
1463 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1464 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1465 if (swap_done && (csrow == bad_dram_cs))
1466 csrow = CH1SPARE_RANK;
1467 } else {
1468 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1469 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1470 if (swap_done && (csrow == bad_dram_cs))
1471 csrow = CH0SPARE_RANK;
1472 }
1473 return csrow;
1474}
1475
1476/*
1477 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1478 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1479 *
1480 * Return:
1481 * -EINVAL: NOT FOUND
1482 * 0..csrow = Chip-Select Row
1483 */
1484static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1485{
1486 struct mem_ctl_info *mci;
1487 struct amd64_pvt *pvt;
1488 u32 cs_base, cs_mask;
1489 int cs_found = -EINVAL;
1490 int csrow;
1491
1492 mci = mci_lookup[nid];
1493 if (!mci)
1494 return cs_found;
1495
1496 pvt = mci->pvt_info;
1497
1498 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1499
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001500 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompson6163b5d2009-04-27 16:20:17 +02001501
1502 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1503 if (!(cs_base & K8_DCSB_CS_ENABLE))
1504 continue;
1505
1506 /*
1507 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1508 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1509 * of the actual address.
1510 */
1511 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1512
1513 /*
1514 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1515 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1516 */
1517 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1518
1519 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1520 csrow, cs_base, cs_mask);
1521
1522 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1523
1524 debugf1(" Final CSMask=0x%x\n", cs_mask);
1525 debugf1(" (InputAddr & ~CSMask)=0x%x "
1526 "(CSBase & ~CSMask)=0x%x\n",
1527 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1528
1529 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1530 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1531
1532 debugf1(" MATCH csrow=%d\n", cs_found);
1533 break;
1534 }
1535 }
1536 return cs_found;
1537}
1538
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001539/* For a given @dram_range, check if @sys_addr falls within it. */
1540static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1541 u64 sys_addr, int *nid, int *chan_sel)
1542{
1543 int node_id, cs_found = -EINVAL, high_range = 0;
1544 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1545 u32 hole_valid, tmp, dct_sel_base, channel;
1546 u64 dram_base, chan_addr, dct_sel_base_off;
1547
1548 dram_base = pvt->dram_base[dram_range];
1549 intlv_en = pvt->dram_IntlvEn[dram_range];
1550
1551 node_id = pvt->dram_DstNode[dram_range];
1552 intlv_sel = pvt->dram_IntlvSel[dram_range];
1553
1554 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1555 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1556
1557 /*
1558 * This assumes that one node's DHAR is the same as all the other
1559 * nodes' DHAR.
1560 */
1561 hole_off = (pvt->dhar & 0x0000FF80);
1562 hole_valid = (pvt->dhar & 0x1);
1563 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1564
1565 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1566 hole_off, hole_valid, intlv_sel);
1567
1568 if (intlv_en ||
1569 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1570 return -EINVAL;
1571
1572 dct_sel_base = dct_sel_baseaddr(pvt);
1573
1574 /*
1575 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1576 * select between DCT0 and DCT1.
1577 */
1578 if (dct_high_range_enabled(pvt) &&
1579 !dct_ganging_enabled(pvt) &&
1580 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1581 high_range = 1;
1582
1583 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1584
1585 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1586 dct_sel_base_off, hole_valid,
1587 hole_off, dram_base);
1588
1589 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1590
1591 /* remove Node ID (in case of memory interleaving) */
1592 tmp = chan_addr & 0xFC0;
1593
1594 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1595
1596 /* remove channel interleave and hash */
1597 if (dct_interleave_enabled(pvt) &&
1598 !dct_high_range_enabled(pvt) &&
1599 !dct_ganging_enabled(pvt)) {
1600 if (dct_sel_interleave_addr(pvt) != 1)
1601 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1602 else {
1603 tmp = chan_addr & 0xFC0;
1604 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1605 | tmp;
1606 }
1607 }
1608
1609 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1610 chan_addr, (u32)(chan_addr >> 8));
1611
1612 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1613
1614 if (cs_found >= 0) {
1615 *nid = node_id;
1616 *chan_sel = channel;
1617 }
1618 return cs_found;
1619}
1620
1621static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1622 int *node, int *chan_sel)
1623{
1624 int dram_range, cs_found = -EINVAL;
1625 u64 dram_base, dram_limit;
1626
1627 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1628
1629 if (!pvt->dram_rw_en[dram_range])
1630 continue;
1631
1632 dram_base = pvt->dram_base[dram_range];
1633 dram_limit = pvt->dram_limit[dram_range];
1634
1635 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1636
1637 cs_found = f10_match_to_this_node(pvt, dram_range,
1638 sys_addr, node,
1639 chan_sel);
1640 if (cs_found >= 0)
1641 break;
1642 }
1643 }
1644 return cs_found;
1645}
1646
1647/*
1648 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1649 * CSROW, Channel.
1650 *
1651 * The @sys_addr is usually an error address received from the hardware.
1652 */
1653static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001654 struct err_regs *info,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001655 u64 sys_addr)
1656{
1657 struct amd64_pvt *pvt = mci->pvt_info;
1658 u32 page, offset;
1659 unsigned short syndrome;
1660 int nid, csrow, chan = 0;
1661
1662 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1663
1664 if (csrow >= 0) {
1665 error_address_to_page_and_offset(sys_addr, &page, &offset);
1666
Borislav Petkovb70ef012009-06-25 19:32:38 +02001667 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1668 syndrome |= LOW_SYNDROME(info->nbsh);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001669
1670 /*
1671 * Is CHIPKILL on? If so, then we can attempt to use the
1672 * syndrome to isolate which channel the error was on.
1673 */
1674 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001675 chan = get_channel_from_ecc_syndrome(mci, syndrome);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001676
1677 if (chan >= 0) {
1678 edac_mc_handle_ce(mci, page, offset, syndrome,
1679 csrow, chan, EDAC_MOD_STR);
1680 } else {
1681 /*
1682 * Channel unknown, report all channels on this
1683 * CSROW as failed.
1684 */
1685 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1686 chan++) {
1687 edac_mc_handle_ce(mci, page, offset,
1688 syndrome,
1689 csrow, chan,
1690 EDAC_MOD_STR);
1691 }
1692 }
1693
1694 } else {
1695 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1696 }
1697}
1698
1699/*
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001700 * debug routine to display the memory sizes of all logical DIMMs and its
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001701 * CSROWs as well
1702 */
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001703static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001704{
1705 int dimm, size0, size1;
1706 u32 dbam;
1707 u32 *dcsb;
1708
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001709 if (boot_cpu_data.x86 == 0xf) {
1710 /* K8 families < revF not supported yet */
Borislav Petkov1433eb92009-10-21 13:44:36 +02001711 if (pvt->ext_model < K8_REV_F)
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001712 return;
1713 else
1714 WARN_ON(ctrl != 0);
1715 }
1716
1717 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1718 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001719
1720 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1721 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1722
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001723 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1724
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001725 /* Dump memory sizes for DIMM and its CSROWs */
1726 for (dimm = 0; dimm < 4; dimm++) {
1727
1728 size0 = 0;
1729 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001730 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001731
1732 size1 = 0;
1733 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001734 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001735
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001736 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1737 dimm * 2, size0, dimm * 2 + 1, size1);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001738 }
1739}
1740
1741/*
Doug Thompson4d376072009-04-27 16:25:05 +02001742 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1743 * (as per PCI DEVICE_IDs):
1744 *
1745 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1746 * DEVICE ID, even though there is differences between the different Revisions
1747 * (CG,D,E,F).
1748 *
1749 * Family F10h and F11h.
1750 *
1751 */
1752static struct amd64_family_type amd64_family_types[] = {
1753 [K8_CPUS] = {
1754 .ctl_name = "RevF",
1755 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1756 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1757 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001758 .early_channel_count = k8_early_channel_count,
1759 .get_error_address = k8_get_error_address,
1760 .read_dram_base_limit = k8_read_dram_base_limit,
1761 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1762 .dbam_to_cs = k8_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001763 }
1764 },
1765 [F10_CPUS] = {
1766 .ctl_name = "Family 10h",
1767 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1768 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1769 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001770 .early_channel_count = f10_early_channel_count,
1771 .get_error_address = f10_get_error_address,
1772 .read_dram_base_limit = f10_read_dram_base_limit,
1773 .read_dram_ctl_register = f10_read_dram_ctl_register,
1774 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1775 .dbam_to_cs = f10_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001776 }
1777 },
1778 [F11_CPUS] = {
1779 .ctl_name = "Family 11h",
1780 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1781 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1782 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001783 .early_channel_count = f10_early_channel_count,
1784 .get_error_address = f10_get_error_address,
1785 .read_dram_base_limit = f10_read_dram_base_limit,
1786 .read_dram_ctl_register = f10_read_dram_ctl_register,
1787 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1788 .dbam_to_cs = f10_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001789 }
1790 },
1791};
1792
1793static struct pci_dev *pci_get_related_function(unsigned int vendor,
1794 unsigned int device,
1795 struct pci_dev *related)
1796{
1797 struct pci_dev *dev = NULL;
1798
1799 dev = pci_get_device(vendor, device, dev);
1800 while (dev) {
1801 if ((dev->bus->number == related->bus->number) &&
1802 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1803 break;
1804 dev = pci_get_device(vendor, device, dev);
1805 }
1806
1807 return dev;
1808}
1809
Doug Thompsonb1289d62009-04-27 16:37:05 +02001810/*
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001811 * These are tables of eigenvectors (one per line) which can be used for the
1812 * construction of the syndrome tables. The modified syndrome search algorithm
1813 * uses those to find the symbol in error and thus the DIMM.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001814 *
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001815 * Algorithm courtesy of Ross LaFetra from AMD.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001816 */
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001817static u16 x4_vectors[] = {
1818 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1819 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1820 0x0001, 0x0002, 0x0004, 0x0008,
1821 0x1013, 0x3032, 0x4044, 0x8088,
1822 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1823 0x4857, 0xc4fe, 0x13cc, 0x3288,
1824 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1825 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1826 0x15c1, 0x2a42, 0x89ac, 0x4758,
1827 0x2b03, 0x1602, 0x4f0c, 0xca08,
1828 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1829 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1830 0x2b87, 0x164e, 0x642c, 0xdc18,
1831 0x40b9, 0x80de, 0x1094, 0x20e8,
1832 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1833 0x11c1, 0x2242, 0x84ac, 0x4c58,
1834 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1835 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1836 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1837 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1838 0x16b3, 0x3d62, 0x4f34, 0x8518,
1839 0x1e2f, 0x391a, 0x5cac, 0xf858,
1840 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1841 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1842 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1843 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1844 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1845 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1846 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1847 0x185d, 0x2ca6, 0x7914, 0x9e28,
1848 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1849 0x4199, 0x82ee, 0x19f4, 0x2e58,
1850 0x4807, 0xc40e, 0x130c, 0x3208,
1851 0x1905, 0x2e0a, 0x5804, 0xac08,
1852 0x213f, 0x132a, 0xadfc, 0x5ba8,
1853 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
Doug Thompsonb1289d62009-04-27 16:37:05 +02001854};
1855
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001856static u16 x8_vectors[] = {
1857 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1858 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1859 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1860 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1861 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1862 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1863 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1864 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1865 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1866 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1867 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1868 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1869 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1870 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1871 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1872 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1873 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1874 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1875 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1876};
1877
1878static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1879 int v_dim)
Doug Thompsonb1289d62009-04-27 16:37:05 +02001880{
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001881 unsigned int i, err_sym;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001882
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001883 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1884 u16 s = syndrome;
1885 int v_idx = err_sym * v_dim;
1886 int v_end = (err_sym + 1) * v_dim;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001887
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001888 /* walk over all 16 bits of the syndrome */
1889 for (i = 1; i < (1U << 16); i <<= 1) {
1890
1891 /* if bit is set in that eigenvector... */
1892 if (v_idx < v_end && vectors[v_idx] & i) {
1893 u16 ev_comp = vectors[v_idx++];
1894
1895 /* ... and bit set in the modified syndrome, */
1896 if (s & i) {
1897 /* remove it. */
1898 s ^= ev_comp;
1899
1900 if (!s)
1901 return err_sym;
1902 }
1903
1904 } else if (s & i)
1905 /* can't get to zero, move to next symbol */
1906 break;
1907 }
Doug Thompsonb1289d62009-04-27 16:37:05 +02001908 }
1909
1910 debugf0("syndrome(%x) not found\n", syndrome);
1911 return -1;
1912}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001913
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001914static int map_err_sym_to_channel(int err_sym, int sym_size)
1915{
1916 if (sym_size == 4)
1917 switch (err_sym) {
1918 case 0x20:
1919 case 0x21:
1920 return 0;
1921 break;
1922 case 0x22:
1923 case 0x23:
1924 return 1;
1925 break;
1926 default:
1927 return err_sym >> 4;
1928 break;
1929 }
1930 /* x8 symbols */
1931 else
1932 switch (err_sym) {
1933 /* imaginary bits not in a DIMM */
1934 case 0x10:
1935 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1936 err_sym);
1937 return -1;
1938 break;
1939
1940 case 0x11:
1941 return 0;
1942 break;
1943 case 0x12:
1944 return 1;
1945 break;
1946 default:
1947 return err_sym >> 3;
1948 break;
1949 }
1950 return -1;
1951}
1952
1953static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1954{
1955 struct amd64_pvt *pvt = mci->pvt_info;
1956 u32 value = 0;
1957 int err_sym = 0;
1958
1959 amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
1960
1961 /* F3x180[EccSymbolSize]=1, x8 symbols */
1962 if (boot_cpu_data.x86 == 0x10 &&
1963 boot_cpu_data.x86_model > 7 &&
1964 value & BIT(25)) {
1965 err_sym = decode_syndrome(syndrome, x8_vectors,
1966 ARRAY_SIZE(x8_vectors), 8);
1967 return map_err_sym_to_channel(err_sym, 8);
1968 } else {
1969 err_sym = decode_syndrome(syndrome, x4_vectors,
1970 ARRAY_SIZE(x4_vectors), 4);
1971 return map_err_sym_to_channel(err_sym, 4);
1972 }
1973}
1974
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001975/*
1976 * Check for valid error in the NB Status High register. If so, proceed to read
1977 * NB Status Low, NB Address Low and NB Address High registers and store data
1978 * into error structure.
1979 *
1980 * Returns:
1981 * - 1: if hardware regs contains valid error info
1982 * - 0: if no valid error is indicated
1983 */
1984static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001985 struct err_regs *regs)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001986{
1987 struct amd64_pvt *pvt;
1988 struct pci_dev *misc_f3_ctl;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001989
1990 pvt = mci->pvt_info;
1991 misc_f3_ctl = pvt->misc_f3_ctl;
1992
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001993 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1994 return 0;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001995
1996 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1997 return 0;
1998
1999 /* valid error, read remaining error information registers */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002000 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
2001 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2002 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2003 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2004 return 0;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002005
2006 return 1;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002007}
2008
2009/*
2010 * This function is called to retrieve the error data from hardware and store it
2011 * in the info structure.
2012 *
2013 * Returns:
2014 * - 1: if a valid error is found
2015 * - 0: if no error is found
2016 */
2017static int amd64_get_error_info(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002018 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002019{
2020 struct amd64_pvt *pvt;
Borislav Petkovef44cc42009-07-23 14:45:48 +02002021 struct err_regs regs;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002022
2023 pvt = mci->pvt_info;
2024
2025 if (!amd64_get_error_info_regs(mci, info))
2026 return 0;
2027
2028 /*
2029 * Here's the problem with the K8's EDAC reporting: There are four
2030 * registers which report pieces of error information. They are shared
2031 * between CEs and UEs. Furthermore, contrary to what is stated in the
2032 * BKDG, the overflow bit is never used! Every error always updates the
2033 * reporting registers.
2034 *
2035 * Can you see the race condition? All four error reporting registers
2036 * must be read before a new error updates them! There is no way to read
2037 * all four registers atomically. The best than can be done is to detect
2038 * that a race has occured and then report the error without any kind of
2039 * precision.
2040 *
2041 * What is still positive is that errors are still reported and thus
2042 * problems can still be detected - just not localized because the
2043 * syndrome and address are spread out across registers.
2044 *
2045 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2046 * UEs and CEs should have separate register sets with proper overflow
2047 * bits that are used! At very least the problem can be fixed by
2048 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2049 * set the overflow bit - unless the current error is CE and the new
2050 * error is UE which would be the only situation for overwriting the
2051 * current values.
2052 */
2053
2054 regs = *info;
2055
2056 /* Use info from the second read - most current */
2057 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2058 return 0;
2059
2060 /* clear the error bits in hardware */
2061 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2062
2063 /* Check for the possible race condition */
2064 if ((regs.nbsh != info->nbsh) ||
2065 (regs.nbsl != info->nbsl) ||
2066 (regs.nbeah != info->nbeah) ||
2067 (regs.nbeal != info->nbeal)) {
2068 amd64_mc_printk(mci, KERN_WARNING,
2069 "hardware STATUS read access race condition "
2070 "detected!\n");
2071 return 0;
2072 }
2073 return 1;
2074}
2075
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002076/*
2077 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2078 * ADDRESS and process.
2079 */
2080static void amd64_handle_ce(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002081 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002082{
2083 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002084 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002085
2086 /* Ensure that the Error Address is VALID */
2087 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2088 amd64_mc_printk(mci, KERN_ERR,
2089 "HW has no ERROR_ADDRESS available\n");
2090 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2091 return;
2092 }
2093
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01002094 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002095
2096 amd64_mc_printk(mci, KERN_ERR,
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002097 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002098
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002099 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002100}
2101
2102/* Handle any Un-correctable Errors (UEs) */
2103static void amd64_handle_ue(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002104 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002105{
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01002106 struct amd64_pvt *pvt = mci->pvt_info;
2107 struct mem_ctl_info *log_mci, *src_mci = NULL;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002108 int csrow;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002109 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002110 u32 page, offset;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002111
2112 log_mci = mci;
2113
2114 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2115 amd64_mc_printk(mci, KERN_CRIT,
2116 "HW has no ERROR_ADDRESS available\n");
2117 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2118 return;
2119 }
2120
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01002121 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002122
2123 /*
2124 * Find out which node the error address belongs to. This may be
2125 * different from the node that detected the error.
2126 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002127 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002128 if (!src_mci) {
2129 amd64_mc_printk(mci, KERN_CRIT,
2130 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002131 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002132 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2133 return;
2134 }
2135
2136 log_mci = src_mci;
2137
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002138 csrow = sys_addr_to_csrow(log_mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002139 if (csrow < 0) {
2140 amd64_mc_printk(mci, KERN_CRIT,
2141 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002142 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002143 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2144 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002145 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002146 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2147 }
2148}
2149
Borislav Petkov549d0422009-07-24 13:51:42 +02002150static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002151 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002152{
Borislav Petkovb70ef012009-06-25 19:32:38 +02002153 u32 ec = ERROR_CODE(info->nbsl);
2154 u32 xec = EXT_ERROR_CODE(info->nbsl);
Borislav Petkov17adea02009-11-04 14:04:06 +01002155 int ecc_type = (info->nbsh >> 13) & 0x3;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002156
Borislav Petkovb70ef012009-06-25 19:32:38 +02002157 /* Bail early out if this was an 'observed' error */
2158 if (PP(ec) == K8_NBSL_PP_OBS)
2159 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002160
Borislav Petkovecaf5602009-07-23 16:32:01 +02002161 /* Do only ECC errors */
2162 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002163 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002164
Borislav Petkovecaf5602009-07-23 16:32:01 +02002165 if (ecc_type == 2)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002166 amd64_handle_ce(mci, info);
Borislav Petkovecaf5602009-07-23 16:32:01 +02002167 else if (ecc_type == 1)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002168 amd64_handle_ue(mci, info);
2169
2170 /*
2171 * If main error is CE then overflow must be CE. If main error is UE
2172 * then overflow is unknown. We'll call the overflow a CE - if
2173 * panic_on_ue is set then we're already panic'ed and won't arrive
2174 * here. Else, then apparently someone doesn't think that UE's are
2175 * catastrophic.
2176 */
2177 if (info->nbsh & K8_NBSH_OVERFLOW)
Borislav Petkovecaf5602009-07-23 16:32:01 +02002178 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002179}
2180
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002181void amd64_decode_bus_error(int node_id, struct err_regs *regs)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002182{
Borislav Petkov549d0422009-07-24 13:51:42 +02002183 struct mem_ctl_info *mci = mci_lookup[node_id];
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002184
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002185 __amd64_decode_bus_error(mci, regs);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002186
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002187 /*
2188 * Check the UE bit of the NB status high register, if set generate some
2189 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2190 * If it was a GART error, skip that process.
Borislav Petkov549d0422009-07-24 13:51:42 +02002191 *
2192 * FIXME: this should go somewhere else, if at all.
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002193 */
Borislav Petkov5110dbd2009-06-25 19:51:04 +02002194 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2195 edac_mc_handle_ue_no_info(mci, "UE bit is set");
Borislav Petkov549d0422009-07-24 13:51:42 +02002196
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002197}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002198
Doug Thompson0ec449e2009-04-27 19:41:25 +02002199/*
2200 * The main polling 'check' function, called FROM the edac core to perform the
2201 * error checking and if an error is encountered, error processing.
2202 */
2203static void amd64_check(struct mem_ctl_info *mci)
2204{
Borislav Petkovef44cc42009-07-23 14:45:48 +02002205 struct err_regs regs;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002206
Borislav Petkov549d0422009-07-24 13:51:42 +02002207 if (amd64_get_error_info(mci, &regs)) {
2208 struct amd64_pvt *pvt = mci->pvt_info;
2209 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2210 }
Doug Thompson0ec449e2009-04-27 19:41:25 +02002211}
2212
2213/*
2214 * Input:
2215 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2216 * 2) AMD Family index value
2217 *
2218 * Ouput:
2219 * Upon return of 0, the following filled in:
2220 *
2221 * struct pvt->addr_f1_ctl
2222 * struct pvt->misc_f3_ctl
2223 *
2224 * Filled in with related device funcitions of 'dram_f2_ctl'
2225 * These devices are "reserved" via the pci_get_device()
2226 *
2227 * Upon return of 1 (error status):
2228 *
2229 * Nothing reserved
2230 */
2231static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2232{
2233 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2234
2235 /* Reserve the ADDRESS MAP Device */
2236 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2237 amd64_dev->addr_f1_ctl,
2238 pvt->dram_f2_ctl);
2239
2240 if (!pvt->addr_f1_ctl) {
2241 amd64_printk(KERN_ERR, "error address map device not found: "
2242 "vendor %x device 0x%x (broken BIOS?)\n",
2243 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2244 return 1;
2245 }
2246
2247 /* Reserve the MISC Device */
2248 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2249 amd64_dev->misc_f3_ctl,
2250 pvt->dram_f2_ctl);
2251
2252 if (!pvt->misc_f3_ctl) {
2253 pci_dev_put(pvt->addr_f1_ctl);
2254 pvt->addr_f1_ctl = NULL;
2255
2256 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2257 "vendor %x device 0x%x (broken BIOS?)\n",
2258 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2259 return 1;
2260 }
2261
2262 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2263 pci_name(pvt->addr_f1_ctl));
2264 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2265 pci_name(pvt->dram_f2_ctl));
2266 debugf1(" Misc device PCI Bus ID:\t%s\n",
2267 pci_name(pvt->misc_f3_ctl));
2268
2269 return 0;
2270}
2271
2272static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2273{
2274 pci_dev_put(pvt->addr_f1_ctl);
2275 pci_dev_put(pvt->misc_f3_ctl);
2276}
2277
2278/*
2279 * Retrieve the hardware registers of the memory controller (this includes the
2280 * 'Address Map' and 'Misc' device regs)
2281 */
2282static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2283{
2284 u64 msr_val;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002285 int dram;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002286
2287 /*
2288 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2289 * those are Read-As-Zero
2290 */
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002291 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2292 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002293
2294 /* check first whether TOP_MEM2 is enabled */
2295 rdmsrl(MSR_K8_SYSCFG, msr_val);
2296 if (msr_val & (1U << 21)) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002297 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2298 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002299 } else
2300 debugf0(" TOP_MEM2 disabled.\n");
2301
2302 amd64_cpu_display_info(pvt);
2303
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002304 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002305
2306 if (pvt->ops->read_dram_ctl_register)
2307 pvt->ops->read_dram_ctl_register(pvt);
2308
2309 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2310 /*
2311 * Call CPU specific READ function to get the DRAM Base and
2312 * Limit values from the DCT.
2313 */
2314 pvt->ops->read_dram_base_limit(pvt, dram);
2315
2316 /*
2317 * Only print out debug info on rows with both R and W Enabled.
2318 * Normal processing, compiler should optimize this whole 'if'
2319 * debug output block away.
2320 */
2321 if (pvt->dram_rw_en[dram] != 0) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002322 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2323 "DRAM-LIMIT: 0x%016llx\n",
Doug Thompson0ec449e2009-04-27 19:41:25 +02002324 dram,
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002325 pvt->dram_base[dram],
2326 pvt->dram_limit[dram]);
2327
Doug Thompson0ec449e2009-04-27 19:41:25 +02002328 debugf1(" IntlvEn=%s %s %s "
2329 "IntlvSel=%d DstNode=%d\n",
2330 pvt->dram_IntlvEn[dram] ?
2331 "Enabled" : "Disabled",
2332 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2333 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2334 pvt->dram_IntlvSel[dram],
2335 pvt->dram_DstNode[dram]);
2336 }
2337 }
2338
2339 amd64_read_dct_base_mask(pvt);
2340
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002341 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002342 amd64_read_dbam_reg(pvt);
2343
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002344 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2345 F10_ONLINE_SPARE, &pvt->online_spare);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002346
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002347 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2348 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002349
2350 if (!dct_ganging_enabled(pvt)) {
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002351 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2352 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002353 }
Doug Thompson0ec449e2009-04-27 19:41:25 +02002354 amd64_dump_misc_regs(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002355}
2356
2357/*
2358 * NOTE: CPU Revision Dependent code
2359 *
2360 * Input:
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002361 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002362 * k8 private pointer to -->
2363 * DRAM Bank Address mapping register
2364 * node_id
2365 * DCL register where dual_channel_active is
2366 *
2367 * The DBAM register consists of 4 sets of 4 bits each definitions:
2368 *
2369 * Bits: CSROWs
2370 * 0-3 CSROWs 0 and 1
2371 * 4-7 CSROWs 2 and 3
2372 * 8-11 CSROWs 4 and 5
2373 * 12-15 CSROWs 6 and 7
2374 *
2375 * Values range from: 0 to 15
2376 * The meaning of the values depends on CPU revision and dual-channel state,
2377 * see relevant BKDG more info.
2378 *
2379 * The memory controller provides for total of only 8 CSROWs in its current
2380 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2381 * single channel or two (2) DIMMs in dual channel mode.
2382 *
2383 * The following code logic collapses the various tables for CSROW based on CPU
2384 * revision.
2385 *
2386 * Returns:
2387 * The number of PAGE_SIZE pages on the specified CSROW number it
2388 * encompasses
2389 *
2390 */
2391static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2392{
Borislav Petkov1433eb92009-10-21 13:44:36 +02002393 u32 cs_mode, nr_pages;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002394
2395 /*
2396 * The math on this doesn't look right on the surface because x/2*4 can
2397 * be simplified to x*2 but this expression makes use of the fact that
2398 * it is integral math where 1/2=0. This intermediate value becomes the
2399 * number of bits to shift the DBAM register to extract the proper CSROW
2400 * field.
2401 */
Borislav Petkov1433eb92009-10-21 13:44:36 +02002402 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002403
Borislav Petkov1433eb92009-10-21 13:44:36 +02002404 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002405
2406 /*
2407 * If dual channel then double the memory size of single channel.
2408 * Channel count is 1 or 2
2409 */
2410 nr_pages <<= (pvt->channel_count - 1);
2411
Borislav Petkov1433eb92009-10-21 13:44:36 +02002412 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002413 debugf0(" nr_pages= %u channel-count = %d\n",
2414 nr_pages, pvt->channel_count);
2415
2416 return nr_pages;
2417}
2418
2419/*
2420 * Initialize the array of csrow attribute instances, based on the values
2421 * from pci config hardware registers.
2422 */
2423static int amd64_init_csrows(struct mem_ctl_info *mci)
2424{
2425 struct csrow_info *csrow;
2426 struct amd64_pvt *pvt;
2427 u64 input_addr_min, input_addr_max, sys_addr;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002428 int i, empty = 1;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002429
2430 pvt = mci->pvt_info;
2431
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002432 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002433
2434 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2435 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2436 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2437 );
2438
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002439 for (i = 0; i < pvt->cs_count; i++) {
Doug Thompson0ec449e2009-04-27 19:41:25 +02002440 csrow = &mci->csrows[i];
2441
2442 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2443 debugf1("----CSROW %d EMPTY for node %d\n", i,
2444 pvt->mc_node_id);
2445 continue;
2446 }
2447
2448 debugf1("----CSROW %d VALID for MC node %d\n",
2449 i, pvt->mc_node_id);
2450
2451 empty = 0;
2452 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2453 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2454 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2455 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2456 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2457 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2458 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2459 /* 8 bytes of resolution */
2460
2461 csrow->mtype = amd64_determine_memory_type(pvt);
2462
2463 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2464 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2465 (unsigned long)input_addr_min,
2466 (unsigned long)input_addr_max);
2467 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2468 (unsigned long)sys_addr, csrow->page_mask);
2469 debugf1(" nr_pages: %u first_page: 0x%lx "
2470 "last_page: 0x%lx\n",
2471 (unsigned)csrow->nr_pages,
2472 csrow->first_page, csrow->last_page);
2473
2474 /*
2475 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2476 */
2477 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2478 csrow->edac_mode =
2479 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2480 EDAC_S4ECD4ED : EDAC_SECDED;
2481 else
2482 csrow->edac_mode = EDAC_NONE;
2483 }
2484
2485 return empty;
2486}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002487
Borislav Petkov06724532009-09-16 13:05:46 +02002488/* get all cores on this DCT */
Rusty Russellba578cb2009-11-03 14:56:35 +10302489static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002490{
Borislav Petkov06724532009-09-16 13:05:46 +02002491 int cpu;
Doug Thompsonf9431992009-04-27 19:46:08 +02002492
Borislav Petkov06724532009-09-16 13:05:46 +02002493 for_each_online_cpu(cpu)
2494 if (amd_get_nb_id(cpu) == nid)
2495 cpumask_set_cpu(cpu, mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002496}
2497
2498/* check MCG_CTL on all the cpus on this node */
Borislav Petkov06724532009-09-16 13:05:46 +02002499static bool amd64_nb_mce_bank_enabled_on_node(int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002500{
Rusty Russellba578cb2009-11-03 14:56:35 +10302501 cpumask_var_t mask;
Borislav Petkov06724532009-09-16 13:05:46 +02002502 struct msr *msrs;
2503 int cpu, nbe, idx = 0;
2504 bool ret = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002505
Rusty Russellba578cb2009-11-03 14:56:35 +10302506 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2507 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2508 __func__);
2509 return false;
2510 }
Borislav Petkov06724532009-09-16 13:05:46 +02002511
Rusty Russellba578cb2009-11-03 14:56:35 +10302512 get_cpus_on_this_dct_cpumask(mask, nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002513
Rusty Russellba578cb2009-11-03 14:56:35 +10302514 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
Borislav Petkov06724532009-09-16 13:05:46 +02002515 if (!msrs) {
2516 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2517 __func__);
Rusty Russellba578cb2009-11-03 14:56:35 +10302518 free_cpumask_var(mask);
Borislav Petkov06724532009-09-16 13:05:46 +02002519 return false;
2520 }
2521
Rusty Russellba578cb2009-11-03 14:56:35 +10302522 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
Borislav Petkov06724532009-09-16 13:05:46 +02002523
Rusty Russellba578cb2009-11-03 14:56:35 +10302524 for_each_cpu(cpu, mask) {
Borislav Petkov06724532009-09-16 13:05:46 +02002525 nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2526
2527 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2528 cpu, msrs[idx].q,
2529 (nbe ? "enabled" : "disabled"));
2530
2531 if (!nbe)
2532 goto out;
2533
2534 idx++;
2535 }
2536 ret = true;
2537
2538out:
2539 kfree(msrs);
Rusty Russellba578cb2009-11-03 14:56:35 +10302540 free_cpumask_var(mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002541 return ret;
2542}
2543
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002544static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2545{
2546 cpumask_var_t cmask;
2547 struct msr *msrs = NULL;
2548 int cpu, idx = 0;
2549
2550 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2551 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2552 __func__);
2553 return false;
2554 }
2555
2556 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2557
2558 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
2559 if (!msrs) {
2560 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2561 __func__);
2562 return -ENOMEM;
2563 }
2564
2565 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2566
2567 for_each_cpu(cpu, cmask) {
2568
2569 if (on) {
2570 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2571 pvt->flags.ecc_report = 1;
2572
2573 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2574 } else {
2575 /*
2576 * Turn off ECC reporting only when it was off before
2577 */
2578 if (!pvt->flags.ecc_report)
2579 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2580 }
2581 idx++;
2582 }
2583 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2584
2585 kfree(msrs);
2586 free_cpumask_var(cmask);
2587
2588 return 0;
2589}
2590
2591/*
2592 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2593 * enable it.
2594 */
2595static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2596{
2597 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002598 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2599
2600 if (!ecc_enable_override)
2601 return;
2602
2603 amd64_printk(KERN_WARNING,
2604 "'ecc_enable_override' parameter is active, "
2605 "Enabling AMD ECC hardware now: CAUTION\n");
2606
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002607 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002608
2609 /* turn on UECCn and CECCEn bits */
2610 pvt->old_nbctl = value & mask;
2611 pvt->nbctl_mcgctl_saved = 1;
2612
2613 value |= mask;
2614 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2615
2616 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2617 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2618 "MCGCTL!\n");
2619
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002620 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002621
2622 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2623 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2624 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2625
2626 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2627 amd64_printk(KERN_WARNING,
2628 "This node reports that DRAM ECC is "
2629 "currently Disabled; ENABLING now\n");
2630
2631 /* Attempt to turn on DRAM ECC Enable */
2632 value |= K8_NBCFG_ECC_ENABLE;
2633 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2634
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002635 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002636
2637 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2638 amd64_printk(KERN_WARNING,
2639 "Hardware rejects Enabling DRAM ECC checking\n"
2640 "Check memory DIMM configuration\n");
2641 } else {
2642 amd64_printk(KERN_DEBUG,
2643 "Hardware accepted DRAM ECC Enable\n");
2644 }
2645 }
2646 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2647 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2648 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2649
2650 pvt->ctl_error_info.nbcfg = value;
2651}
2652
2653static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2654{
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002655 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2656
2657 if (!pvt->nbctl_mcgctl_saved)
2658 return;
2659
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002660 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002661 value &= ~mask;
2662 value |= pvt->old_nbctl;
2663
2664 /* restore the NB Enable MCGCTL bit */
2665 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2666
2667 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2668 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2669 "MCGCTL!\n");
2670}
2671
Doug Thompsonf9431992009-04-27 19:46:08 +02002672/*
2673 * EDAC requires that the BIOS have ECC enabled before taking over the
2674 * processing of ECC errors. This is because the BIOS can properly initialize
2675 * the memory system completely. A command line option allows to force-enable
2676 * hardware ECC later in amd64_enable_ecc_error_reporting().
2677 */
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002678static const char *ecc_warning =
2679 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2680 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2681 " Also, use of the override can cause unknown side effects.\n";
2682
Doug Thompsonf9431992009-04-27 19:46:08 +02002683static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2684{
2685 u32 value;
Borislav Petkov06724532009-09-16 13:05:46 +02002686 u8 ecc_enabled = 0;
2687 bool nb_mce_en = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002688
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002689 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Doug Thompsonf9431992009-04-27 19:46:08 +02002690
2691 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002692 if (!ecc_enabled)
2693 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2694 "is currently disabled, set F3x%x[22] (%s).\n",
2695 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2696 else
2697 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
Doug Thompsonf9431992009-04-27 19:46:08 +02002698
Borislav Petkov06724532009-09-16 13:05:46 +02002699 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2700 if (!nb_mce_en)
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002701 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2702 "0x%08x[4] on node %d to enable.\n",
2703 MSR_IA32_MCG_CTL, pvt->mc_node_id);
Doug Thompsonf9431992009-04-27 19:46:08 +02002704
Borislav Petkov06724532009-09-16 13:05:46 +02002705 if (!ecc_enabled || !nb_mce_en) {
Doug Thompsonf9431992009-04-27 19:46:08 +02002706 if (!ecc_enable_override) {
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002707 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2708 return -ENODEV;
2709 }
2710 } else
Doug Thompsonf9431992009-04-27 19:46:08 +02002711 /* CLEAR the override, since BIOS controlled it */
2712 ecc_enable_override = 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002713
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002714 return 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002715}
2716
Doug Thompson7d6034d2009-04-27 20:01:01 +02002717struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2718 ARRAY_SIZE(amd64_inj_attrs) +
2719 1];
2720
2721struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2722
2723static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2724{
2725 unsigned int i = 0, j = 0;
2726
2727 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2728 sysfs_attrs[i] = amd64_dbg_attrs[i];
2729
2730 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2731 sysfs_attrs[i] = amd64_inj_attrs[j];
2732
2733 sysfs_attrs[i] = terminator;
2734
2735 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2736}
2737
2738static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2739{
2740 struct amd64_pvt *pvt = mci->pvt_info;
2741
2742 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2743 mci->edac_ctl_cap = EDAC_FLAG_NONE;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002744
2745 if (pvt->nbcap & K8_NBCAP_SECDED)
2746 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2747
2748 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2749 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2750
2751 mci->edac_cap = amd64_determine_edac_cap(pvt);
2752 mci->mod_name = EDAC_MOD_STR;
2753 mci->mod_ver = EDAC_AMD64_VERSION;
2754 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2755 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2756 mci->ctl_page_to_phys = NULL;
2757
2758 /* IMPORTANT: Set the polling 'check' function in this module */
2759 mci->edac_check = amd64_check;
2760
2761 /* memory scrubber interface */
2762 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2763 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2764}
2765
2766/*
2767 * Init stuff for this DRAM Controller device.
2768 *
2769 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2770 * Space feature MUST be enabled on ALL Processors prior to actually reading
2771 * from the ECS registers. Since the loading of the module can occur on any
2772 * 'core', and cores don't 'see' all the other processors ECS data when the
2773 * others are NOT enabled. Our solution is to first enable ECS access in this
2774 * routine on all processors, gather some data in a amd64_pvt structure and
2775 * later come back in a finish-setup function to perform that final
2776 * initialization. See also amd64_init_2nd_stage() for that.
2777 */
2778static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2779 int mc_type_index)
2780{
2781 struct amd64_pvt *pvt = NULL;
2782 int err = 0, ret;
2783
2784 ret = -ENOMEM;
2785 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2786 if (!pvt)
2787 goto err_exit;
2788
Borislav Petkov37da0452009-06-10 17:36:57 +02002789 pvt->mc_node_id = get_node_id(dram_f2_ctl);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002790
2791 pvt->dram_f2_ctl = dram_f2_ctl;
2792 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2793 pvt->mc_type_index = mc_type_index;
2794 pvt->ops = family_ops(mc_type_index);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002795
2796 /*
2797 * We have the dram_f2_ctl device as an argument, now go reserve its
2798 * sibling devices from the PCI system.
2799 */
2800 ret = -ENODEV;
2801 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2802 if (err)
2803 goto err_free;
2804
2805 ret = -EINVAL;
2806 err = amd64_check_ecc_enabled(pvt);
2807 if (err)
2808 goto err_put;
2809
2810 /*
2811 * Key operation here: setup of HW prior to performing ops on it. Some
2812 * setup is required to access ECS data. After this is performed, the
2813 * 'teardown' function must be called upon error and normal exit paths.
2814 */
2815 if (boot_cpu_data.x86 >= 0x10)
2816 amd64_setup(pvt);
2817
2818 /*
2819 * Save the pointer to the private data for use in 2nd initialization
2820 * stage
2821 */
2822 pvt_lookup[pvt->mc_node_id] = pvt;
2823
2824 return 0;
2825
2826err_put:
2827 amd64_free_mc_sibling_devices(pvt);
2828
2829err_free:
2830 kfree(pvt);
2831
2832err_exit:
2833 return ret;
2834}
2835
2836/*
2837 * This is the finishing stage of the init code. Needs to be performed after all
2838 * MCs' hardware have been prepped for accessing extended config space.
2839 */
2840static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2841{
2842 int node_id = pvt->mc_node_id;
2843 struct mem_ctl_info *mci;
Borislav Petkov986a42a2009-11-11 20:42:46 +01002844 int ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002845
2846 amd64_read_mc_registers(pvt);
2847
Doug Thompson7d6034d2009-04-27 20:01:01 +02002848 /*
2849 * We need to determine how many memory channels there are. Then use
2850 * that information for calculating the size of the dynamic instance
2851 * tables in the 'mci' structure
2852 */
2853 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2854 if (pvt->channel_count < 0)
2855 goto err_exit;
2856
2857 ret = -ENOMEM;
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002858 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002859 if (!mci)
2860 goto err_exit;
2861
2862 mci->pvt_info = pvt;
2863
2864 mci->dev = &pvt->dram_f2_ctl->dev;
2865 amd64_setup_mci_misc_attributes(mci);
2866
2867 if (amd64_init_csrows(mci))
2868 mci->edac_cap = EDAC_FLAG_NONE;
2869
2870 amd64_enable_ecc_error_reporting(mci);
2871 amd64_set_mc_sysfs_attributes(mci);
2872
2873 ret = -ENODEV;
2874 if (edac_mc_add_mc(mci)) {
2875 debugf1("failed edac_mc_add_mc()\n");
2876 goto err_add_mc;
2877 }
2878
2879 mci_lookup[node_id] = mci;
2880 pvt_lookup[node_id] = NULL;
Borislav Petkov549d0422009-07-24 13:51:42 +02002881
2882 /* register stuff with EDAC MCE */
2883 if (report_gart_errors)
2884 amd_report_gart_errors(true);
2885
2886 amd_register_ecc_decoder(amd64_decode_bus_error);
2887
Doug Thompson7d6034d2009-04-27 20:01:01 +02002888 return 0;
2889
2890err_add_mc:
2891 edac_mc_free(mci);
2892
2893err_exit:
2894 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2895
2896 amd64_restore_ecc_error_reporting(pvt);
2897
2898 if (boot_cpu_data.x86 > 0xf)
2899 amd64_teardown(pvt);
2900
2901 amd64_free_mc_sibling_devices(pvt);
2902
2903 kfree(pvt_lookup[pvt->mc_node_id]);
2904 pvt_lookup[node_id] = NULL;
2905
2906 return ret;
2907}
2908
2909
2910static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2911 const struct pci_device_id *mc_type)
2912{
2913 int ret = 0;
2914
Borislav Petkov37da0452009-06-10 17:36:57 +02002915 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
Doug Thompson7d6034d2009-04-27 20:01:01 +02002916 get_amd_family_name(mc_type->driver_data));
2917
2918 ret = pci_enable_device(pdev);
2919 if (ret < 0)
2920 ret = -EIO;
2921 else
2922 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2923
2924 if (ret < 0)
2925 debugf0("ret=%d\n", ret);
2926
2927 return ret;
2928}
2929
2930static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2931{
2932 struct mem_ctl_info *mci;
2933 struct amd64_pvt *pvt;
2934
2935 /* Remove from EDAC CORE tracking list */
2936 mci = edac_mc_del_mc(&pdev->dev);
2937 if (!mci)
2938 return;
2939
2940 pvt = mci->pvt_info;
2941
2942 amd64_restore_ecc_error_reporting(pvt);
2943
2944 if (boot_cpu_data.x86 > 0xf)
2945 amd64_teardown(pvt);
2946
2947 amd64_free_mc_sibling_devices(pvt);
2948
2949 kfree(pvt);
2950 mci->pvt_info = NULL;
2951
2952 mci_lookup[pvt->mc_node_id] = NULL;
2953
Borislav Petkov549d0422009-07-24 13:51:42 +02002954 /* unregister from EDAC MCE */
2955 amd_report_gart_errors(false);
2956 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2957
Doug Thompson7d6034d2009-04-27 20:01:01 +02002958 /* Free the EDAC CORE resources */
2959 edac_mc_free(mci);
2960}
2961
2962/*
2963 * This table is part of the interface for loading drivers for PCI devices. The
2964 * PCI core identifies what devices are on a system during boot, and then
2965 * inquiry this table to see if this driver is for a given device found.
2966 */
2967static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2968 {
2969 .vendor = PCI_VENDOR_ID_AMD,
2970 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2971 .subvendor = PCI_ANY_ID,
2972 .subdevice = PCI_ANY_ID,
2973 .class = 0,
2974 .class_mask = 0,
2975 .driver_data = K8_CPUS
2976 },
2977 {
2978 .vendor = PCI_VENDOR_ID_AMD,
2979 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2980 .subvendor = PCI_ANY_ID,
2981 .subdevice = PCI_ANY_ID,
2982 .class = 0,
2983 .class_mask = 0,
2984 .driver_data = F10_CPUS
2985 },
2986 {
2987 .vendor = PCI_VENDOR_ID_AMD,
2988 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2989 .subvendor = PCI_ANY_ID,
2990 .subdevice = PCI_ANY_ID,
2991 .class = 0,
2992 .class_mask = 0,
2993 .driver_data = F11_CPUS
2994 },
2995 {0, }
2996};
2997MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2998
2999static struct pci_driver amd64_pci_driver = {
3000 .name = EDAC_MOD_STR,
3001 .probe = amd64_init_one_instance,
3002 .remove = __devexit_p(amd64_remove_one_instance),
3003 .id_table = amd64_pci_table,
3004};
3005
3006static void amd64_setup_pci_device(void)
3007{
3008 struct mem_ctl_info *mci;
3009 struct amd64_pvt *pvt;
3010
3011 if (amd64_ctl_pci)
3012 return;
3013
3014 mci = mci_lookup[0];
3015 if (mci) {
3016
3017 pvt = mci->pvt_info;
3018 amd64_ctl_pci =
3019 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3020 EDAC_MOD_STR);
3021
3022 if (!amd64_ctl_pci) {
3023 pr_warning("%s(): Unable to create PCI control\n",
3024 __func__);
3025
3026 pr_warning("%s(): PCI error report via EDAC not set\n",
3027 __func__);
3028 }
3029 }
3030}
3031
3032static int __init amd64_edac_init(void)
3033{
3034 int nb, err = -ENODEV;
3035
3036 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3037
3038 opstate_init();
3039
3040 if (cache_k8_northbridges() < 0)
Li Honga3c4c582009-10-19 16:33:29 +08003041 return err;
Doug Thompson7d6034d2009-04-27 20:01:01 +02003042
3043 err = pci_register_driver(&amd64_pci_driver);
3044 if (err)
3045 return err;
3046
3047 /*
3048 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3049 * amd64_pvt structs. These will be used in the 2nd stage init function
3050 * to finish initialization of the MC instances.
3051 */
3052 for (nb = 0; nb < num_k8_northbridges; nb++) {
3053 if (!pvt_lookup[nb])
3054 continue;
3055
3056 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3057 if (err)
Borislav Petkov37da0452009-06-10 17:36:57 +02003058 goto err_2nd_stage;
Doug Thompson7d6034d2009-04-27 20:01:01 +02003059 }
3060
3061 amd64_setup_pci_device();
3062
3063 return 0;
3064
Borislav Petkov37da0452009-06-10 17:36:57 +02003065err_2nd_stage:
3066 debugf0("2nd stage failed\n");
Doug Thompson7d6034d2009-04-27 20:01:01 +02003067 pci_unregister_driver(&amd64_pci_driver);
3068
3069 return err;
3070}
3071
3072static void __exit amd64_edac_exit(void)
3073{
3074 if (amd64_ctl_pci)
3075 edac_pci_release_generic_ctl(amd64_ctl_pci);
3076
3077 pci_unregister_driver(&amd64_pci_driver);
3078}
3079
3080module_init(amd64_edac_init);
3081module_exit(amd64_edac_exit);
3082
3083MODULE_LICENSE("GPL");
3084MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3085 "Dave Peterson, Thayne Harbaugh");
3086MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3087 EDAC_AMD64_VERSION);
3088
3089module_param(edac_op_state, int, 0444);
3090MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");