blob: bdc561087a513b48d4769fb8349c87d3a709fc6d [file] [log] [blame]
Mike Marciniszyn77241052015-07-30 15:17:43 -04001/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
Dean Luick5d9157a2015-11-16 21:59:34 -050066#include "efivar.h"
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -080067#include "platform.h"
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -080068#include "aspm.h"
Mike Marciniszyn77241052015-07-30 15:17:43 -040069
70#define NUM_IB_PORTS 1
71
72uint kdeth_qp;
73module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
74MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
75
76uint num_vls = HFI1_MAX_VLS_SUPPORTED;
77module_param(num_vls, uint, S_IRUGO);
78MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79
80/*
81 * Default time to aggregate two 10K packets from the idle state
82 * (timer not running). The timer starts at the end of the first packet,
83 * so only the time for one 10K packet and header plus a bit extra is needed.
84 * 10 * 1024 + 64 header byte = 10304 byte
85 * 10304 byte / 12.5 GB/s = 824.32ns
86 */
87uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
88module_param(rcv_intr_timeout, uint, S_IRUGO);
89MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
90
91uint rcv_intr_count = 16; /* same as qib */
92module_param(rcv_intr_count, uint, S_IRUGO);
93MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
94
95ushort link_crc_mask = SUPPORTED_CRCS;
96module_param(link_crc_mask, ushort, S_IRUGO);
97MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98
99uint loopback;
100module_param_named(loopback, loopback, uint, S_IRUGO);
101MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
102
103/* Other driver tunables */
104uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
105static ushort crc_14b_sideband = 1;
106static uint use_flr = 1;
107uint quick_linkup; /* skip LNI */
108
109struct flag_table {
110 u64 flag; /* the flag */
111 char *str; /* description string */
112 u16 extra; /* extra information */
113 u16 unused0;
114 u32 unused1;
115};
116
117/* str must be a string constant */
118#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
119#define FLAG_ENTRY0(str, flag) {flag, str, 0}
120
121/* Send Error Consequences */
122#define SEC_WRITE_DROPPED 0x1
123#define SEC_PACKET_DROPPED 0x2
124#define SEC_SC_HALTED 0x4 /* per-context only */
125#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
126
Mike Marciniszyn77241052015-07-30 15:17:43 -0400127#define MIN_KERNEL_KCTXTS 2
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -0500128#define FIRST_KERNEL_KCTXT 1
Mike Marciniszyn77241052015-07-30 15:17:43 -0400129#define NUM_MAP_REGS 32
130
131/* Bit offset into the GUID which carries HFI id information */
132#define GUID_HFI_INDEX_SHIFT 39
133
134/* extract the emulation revision */
135#define emulator_rev(dd) ((dd)->irev >> 8)
136/* parallel and serial emulation versions are 3 and 4 respectively */
137#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
138#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
139
140/* RSM fields */
141
142/* packet type */
143#define IB_PACKET_TYPE 2ull
144#define QW_SHIFT 6ull
145/* QPN[7..1] */
146#define QPN_WIDTH 7ull
147
148/* LRH.BTH: QW 0, OFFSET 48 - for match */
149#define LRH_BTH_QW 0ull
150#define LRH_BTH_BIT_OFFSET 48ull
151#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
152#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
153#define LRH_BTH_SELECT
154#define LRH_BTH_MASK 3ull
155#define LRH_BTH_VALUE 2ull
156
157/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
158#define LRH_SC_QW 0ull
159#define LRH_SC_BIT_OFFSET 56ull
160#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
161#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
162#define LRH_SC_MASK 128ull
163#define LRH_SC_VALUE 0ull
164
165/* SC[n..0] QW 0, OFFSET 60 - for select */
166#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
167
168/* QPN[m+n:1] QW 1, OFFSET 1 */
169#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
170
171/* defines to build power on SC2VL table */
172#define SC2VL_VAL( \
173 num, \
174 sc0, sc0val, \
175 sc1, sc1val, \
176 sc2, sc2val, \
177 sc3, sc3val, \
178 sc4, sc4val, \
179 sc5, sc5val, \
180 sc6, sc6val, \
181 sc7, sc7val) \
182( \
183 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
184 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
185 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
186 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
187 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
188 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
189 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
190 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
191)
192
193#define DC_SC_VL_VAL( \
194 range, \
195 e0, e0val, \
196 e1, e1val, \
197 e2, e2val, \
198 e3, e3val, \
199 e4, e4val, \
200 e5, e5val, \
201 e6, e6val, \
202 e7, e7val, \
203 e8, e8val, \
204 e9, e9val, \
205 e10, e10val, \
206 e11, e11val, \
207 e12, e12val, \
208 e13, e13val, \
209 e14, e14val, \
210 e15, e15val) \
211( \
212 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
213 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
214 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
215 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
216 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
217 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
218 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
219 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
220 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
221 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
222 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
223 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
224 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
225 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
226 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
227 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
228)
229
230/* all CceStatus sub-block freeze bits */
231#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
232 | CCE_STATUS_RXE_FROZE_SMASK \
233 | CCE_STATUS_TXE_FROZE_SMASK \
234 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
235/* all CceStatus sub-block TXE pause bits */
236#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
237 | CCE_STATUS_TXE_PAUSED_SMASK \
238 | CCE_STATUS_SDMA_PAUSED_SMASK)
239/* all CceStatus sub-block RXE pause bits */
240#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
241
242/*
243 * CCE Error flags.
244 */
245static struct flag_table cce_err_status_flags[] = {
246/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
247 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
248/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
249 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
250/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
251 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
252/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
253 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
254/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
255 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
256/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
257 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
258/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
259 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
260/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
261 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
262/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
263 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
264/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
265 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
266/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
267 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
268/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
270/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
272/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
273 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
274/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
275 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
276/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
277 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
278/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
279 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
280/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
281 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
282/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
283 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
284/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
285 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
286/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
287 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
288/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
289 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
290/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
291 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
292/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
293 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
294/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
295 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
296/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
297 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
298/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
299 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
300/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
301 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
302/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
303 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
304/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
305 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
306/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
307 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
308/*31*/ FLAG_ENTRY0("LATriggered",
309 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
310/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
311 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
312/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
313 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
314/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
315 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
316/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
317 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
318/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
319 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
320/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
321 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
322/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
323 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
324/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
325 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
326/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
327 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
328/*41-63 reserved*/
329};
330
331/*
332 * Misc Error flags
333 */
334#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
335static struct flag_table misc_err_status_flags[] = {
336/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
337/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
338/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
339/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
340/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
341/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
342/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
343/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
344/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
345/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
346/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
347/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
348/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
349};
350
351/*
352 * TXE PIO Error flags and consequences
353 */
354static struct flag_table pio_err_status_flags[] = {
355/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
356 SEC_WRITE_DROPPED,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
358/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
361/* 2*/ FLAG_ENTRY("PioCsrParity",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
364/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
367/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
370/* 5*/ FLAG_ENTRY("PioPccFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
373/* 6*/ FLAG_ENTRY("PioPecFifoParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
376/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
379/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
382/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
385/*10*/ FLAG_ENTRY("PioSmPktResetParity",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
388/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
391/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
392 SEC_SPC_FREEZE,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
394/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
397/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
398 0,
399 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
400/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
403/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
404 SEC_SPC_FREEZE,
405 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
406/*17*/ FLAG_ENTRY("PioInitSmIn",
407 0,
408 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
409/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
412/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
413 SEC_SPC_FREEZE,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
415/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
416 0,
417 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
418/*21*/ FLAG_ENTRY("PioWriteDataParity",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
421/*22*/ FLAG_ENTRY("PioStateMachine",
422 SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
424/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
Jubin John8638b772016-02-14 20:19:24 -0800425 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
Mike Marciniszyn77241052015-07-30 15:17:43 -0400426 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
427/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
Jubin John8638b772016-02-14 20:19:24 -0800428 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
Mike Marciniszyn77241052015-07-30 15:17:43 -0400429 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
430/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
433/*26*/ FLAG_ENTRY("PioVlfSopParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
436/*27*/ FLAG_ENTRY("PioVlFifoParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
439/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
442/*29*/ FLAG_ENTRY("PioPpmcSopLen",
443 SEC_SPC_FREEZE,
444 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
445/*30-31 reserved*/
446/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
449/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
452/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
455/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
456 SEC_SPC_FREEZE,
457 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
458/*36-63 reserved*/
459};
460
461/* TXE PIO errors that cause an SPC freeze */
462#define ALL_PIO_FREEZE_ERR \
463 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
490 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
491 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
492
493/*
494 * TXE SDMA Error flags
495 */
496static struct flag_table sdma_err_status_flags[] = {
497/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
498 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
499/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
500 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
501/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
502 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
503/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
504 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
505/*04-63 reserved*/
506};
507
508/* TXE SDMA errors that cause an SPC freeze */
509#define ALL_SDMA_FREEZE_ERR \
510 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
511 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
512 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
513
Mike Marciniszyn69a00b82016-02-03 14:31:49 -0800514/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
515#define PORT_DISCARD_EGRESS_ERRS \
516 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
517 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
518 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
519
Mike Marciniszyn77241052015-07-30 15:17:43 -0400520/*
521 * TXE Egress Error flags
522 */
523#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
524static struct flag_table egress_err_status_flags[] = {
525/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
526/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
527/* 2 reserved */
528/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
529 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
530/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
531/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
532/* 6 reserved */
533/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
534 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
535/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
536 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
537/* 9-10 reserved */
538/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
539 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
540/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
541/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
542/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
543/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
544/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
545 SEES(TX_SDMA0_DISALLOWED_PACKET)),
546/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
547 SEES(TX_SDMA1_DISALLOWED_PACKET)),
548/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
549 SEES(TX_SDMA2_DISALLOWED_PACKET)),
550/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
551 SEES(TX_SDMA3_DISALLOWED_PACKET)),
552/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
553 SEES(TX_SDMA4_DISALLOWED_PACKET)),
554/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
555 SEES(TX_SDMA5_DISALLOWED_PACKET)),
556/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
557 SEES(TX_SDMA6_DISALLOWED_PACKET)),
558/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
559 SEES(TX_SDMA7_DISALLOWED_PACKET)),
560/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
561 SEES(TX_SDMA8_DISALLOWED_PACKET)),
562/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
563 SEES(TX_SDMA9_DISALLOWED_PACKET)),
564/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
565 SEES(TX_SDMA10_DISALLOWED_PACKET)),
566/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
567 SEES(TX_SDMA11_DISALLOWED_PACKET)),
568/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
569 SEES(TX_SDMA12_DISALLOWED_PACKET)),
570/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
571 SEES(TX_SDMA13_DISALLOWED_PACKET)),
572/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
573 SEES(TX_SDMA14_DISALLOWED_PACKET)),
574/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
575 SEES(TX_SDMA15_DISALLOWED_PACKET)),
576/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
577 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
578/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
579 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
580/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
581 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
582/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
583 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
584/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
585 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
586/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
587 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
588/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
589 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
590/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
591 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
592/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
593 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
594/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
595/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
596/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
597/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
598/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
599/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
600/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
601/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
602/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
603/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
604/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
605/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
606/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
607/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
608/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
609/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
610/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
611/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
612/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
613/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
614/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
615/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
616 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
617/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
618 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
619};
620
621/*
622 * TXE Egress Error Info flags
623 */
624#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
625static struct flag_table egress_err_info_flags[] = {
626/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
627/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
628/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
629/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
630/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
631/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
632/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
633/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
634/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
635/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
636/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
637/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
638/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
639/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
640/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
641/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
642/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
643/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
644/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
645/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
646/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
647/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
648};
649
650/* TXE Egress errors that cause an SPC freeze */
651#define ALL_TXE_EGRESS_FREEZE_ERR \
652 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
653 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
654 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
655 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
656 | SEES(TX_LAUNCH_CSR_PARITY) \
657 | SEES(TX_SBRD_CTL_CSR_PARITY) \
658 | SEES(TX_CONFIG_PARITY) \
659 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
660 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
661 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
662 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
663 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
665 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
666 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
667 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
668 | SEES(TX_CREDIT_RETURN_PARITY))
669
670/*
671 * TXE Send error flags
672 */
673#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
674static struct flag_table send_err_status_flags[] = {
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -0500675/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
Mike Marciniszyn77241052015-07-30 15:17:43 -0400676/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
677/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
678};
679
680/*
681 * TXE Send Context Error flags and consequences
682 */
683static struct flag_table sc_err_status_flags[] = {
684/* 0*/ FLAG_ENTRY("InconsistentSop",
685 SEC_PACKET_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
687/* 1*/ FLAG_ENTRY("DisallowedPacket",
688 SEC_PACKET_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
690/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
691 SEC_WRITE_DROPPED | SEC_SC_HALTED,
692 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
693/* 3*/ FLAG_ENTRY("WriteOverflow",
694 SEC_WRITE_DROPPED | SEC_SC_HALTED,
695 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
696/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
697 SEC_WRITE_DROPPED | SEC_SC_HALTED,
698 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
699/* 5-63 reserved*/
700};
701
702/*
703 * RXE Receive Error flags
704 */
705#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
706static struct flag_table rxe_err_status_flags[] = {
707/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
708/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
709/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
710/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
711/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
712/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
713/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
714/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
715/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
716/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
717/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
718/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
719/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
720/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
721/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
722/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
723/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
724 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
725/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
726/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
727/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
728 RXES(RBUF_BLOCK_LIST_READ_UNC)),
729/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
730 RXES(RBUF_BLOCK_LIST_READ_COR)),
731/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
732 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
733/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
734 RXES(RBUF_CSR_QENT_CNT_PARITY)),
735/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
736 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
737/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
738 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
739/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
740/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
741/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
742 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
743/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
744/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
745/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
746/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
747/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
748/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
749/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
750/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
751 RXES(RBUF_FL_INITDONE_PARITY)),
752/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
753 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
754/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
755/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
756/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
757/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
758 RXES(LOOKUP_DES_PART1_UNC_COR)),
759/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
760 RXES(LOOKUP_DES_PART2_PARITY)),
761/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
762/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
763/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
764/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
765/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
766/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
767/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
768/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
769/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
770/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
771/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
772/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
773/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
774/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
775/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
776/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
777/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
778/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
779/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
780/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
781/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
782/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
783};
784
785/* RXE errors that will trigger an SPC freeze */
786#define ALL_RXE_FREEZE_ERR \
787 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
831
832#define RXE_FREEZE_ABORT_MASK \
833 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
834 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
835 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
836
837/*
838 * DCC Error Flags
839 */
840#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
841static struct flag_table dcc_err_flags[] = {
842 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
843 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
844 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
845 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
846 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
847 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
848 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
849 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
850 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
851 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
852 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
853 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
854 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
855 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
856 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
857 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
858 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
859 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
860 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
861 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
862 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
863 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
864 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
865 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
866 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
867 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
868 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
869 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
870 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
871 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
872 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
873 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
874 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
875 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
876 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
877 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
878 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
879 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
880 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
881 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
882 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
883 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
884 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
885 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
886 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
887 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
888};
889
890/*
891 * LCB error flags
892 */
893#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
894static struct flag_table lcb_err_flags[] = {
895/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
896/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
897/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
898/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
899 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
900/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
901/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
902/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
903/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
904/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
905/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
906/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
907/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
908/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
909/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
910 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
911/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
912/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
913/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
914/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
915/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
916/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
917 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
918/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
919/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
920/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
921/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
922/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
923/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
924/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
925 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
926/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
927/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
928 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
929/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
930 LCBE(REDUNDANT_FLIT_PARITY_ERR))
931};
932
933/*
934 * DC8051 Error Flags
935 */
936#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
937static struct flag_table dc8051_err_flags[] = {
938 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
939 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
940 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
941 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
942 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
943 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
944 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
945 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
946 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
947 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
948 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
949};
950
951/*
952 * DC8051 Information Error flags
953 *
954 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
955 */
956static struct flag_table dc8051_info_err_flags[] = {
957 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
958 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
959 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
960 FLAG_ENTRY0("Serdes internal loopback failure",
961 FAILED_SERDES_INTERNAL_LOOPBACK),
962 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
963 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
964 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
965 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
966 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
967 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
968 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
969 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
970};
971
972/*
973 * DC8051 Information Host Information flags
974 *
975 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
976 */
977static struct flag_table dc8051_info_host_msg_flags[] = {
978 FLAG_ENTRY0("Host request done", 0x0001),
979 FLAG_ENTRY0("BC SMA message", 0x0002),
980 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
981 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
982 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
983 FLAG_ENTRY0("External device config request", 0x0020),
984 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
985 FLAG_ENTRY0("LinkUp achieved", 0x0080),
986 FLAG_ENTRY0("Link going down", 0x0100),
987};
988
Mike Marciniszyn77241052015-07-30 15:17:43 -0400989static u32 encoded_size(u32 size);
990static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
991static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
992static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
993 u8 *continuous);
994static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
995 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
996static void read_vc_remote_link_width(struct hfi1_devdata *dd,
997 u8 *remote_tx_rate, u16 *link_widths);
998static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
999 u8 *flag_bits, u16 *link_widths);
1000static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1001 u8 *device_rev);
1002static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1003static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1004static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1005 u8 *tx_polarity_inversion,
1006 u8 *rx_polarity_inversion, u8 *max_rate);
1007static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1008 unsigned int context, u64 err_status);
1009static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1010static void handle_dcc_err(struct hfi1_devdata *dd,
1011 unsigned int context, u64 err_status);
1012static void handle_lcb_err(struct hfi1_devdata *dd,
1013 unsigned int context, u64 err_status);
1014static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1015static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1016static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1017static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1018static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1019static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1021static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022static void set_partition_keys(struct hfi1_pportdata *);
1023static const char *link_state_name(u32 state);
1024static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1025 u32 state);
1026static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1027 u64 *out_data);
1028static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1029static int thermal_init(struct hfi1_devdata *dd);
1030
1031static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1032 int msecs);
1033static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1034static void handle_temp_err(struct hfi1_devdata *);
1035static void dc_shutdown(struct hfi1_devdata *);
1036static void dc_start(struct hfi1_devdata *);
1037
1038/*
1039 * Error interrupt table entry. This is used as input to the interrupt
1040 * "clear down" routine used for all second tier error interrupt register.
1041 * Second tier interrupt registers have a single bit representing them
1042 * in the top-level CceIntStatus.
1043 */
1044struct err_reg_info {
1045 u32 status; /* status CSR offset */
1046 u32 clear; /* clear CSR offset */
1047 u32 mask; /* mask CSR offset */
1048 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1049 const char *desc;
1050};
1051
1052#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1053#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1054#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1055
1056/*
1057 * Helpers for building HFI and DC error interrupt table entries. Different
1058 * helpers are needed because of inconsistent register names.
1059 */
1060#define EE(reg, handler, desc) \
1061 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1062 handler, desc }
1063#define DC_EE1(reg, handler, desc) \
1064 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1065#define DC_EE2(reg, handler, desc) \
1066 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1067
1068/*
1069 * Table of the "misc" grouping of error interrupts. Each entry refers to
1070 * another register containing more information.
1071 */
1072static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1073/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1074/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1075/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1076/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1077/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1078/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1079/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1080/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1081 /* the rest are reserved */
1082};
1083
1084/*
1085 * Index into the Various section of the interrupt sources
1086 * corresponding to the Critical Temperature interrupt.
1087 */
1088#define TCRIT_INT_SOURCE 4
1089
1090/*
1091 * SDMA error interrupt entry - refers to another register containing more
1092 * information.
1093 */
1094static const struct err_reg_info sdma_eng_err =
1095 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1096
1097static const struct err_reg_info various_err[NUM_VARIOUS] = {
1098/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1099/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1100/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1101/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1102/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1103 /* rest are reserved */
1104};
1105
1106/*
1107 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1108 * register can not be derived from the MTU value because 10K is not
1109 * a power of 2. Therefore, we need a constant. Everything else can
1110 * be calculated.
1111 */
1112#define DCC_CFG_PORT_MTU_CAP_10240 7
1113
1114/*
1115 * Table of the DC grouping of error interrupts. Each entry refers to
1116 * another register containing more information.
1117 */
1118static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1119/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1120/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1121/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1122/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1123 /* the rest are reserved */
1124};
1125
1126struct cntr_entry {
1127 /*
1128 * counter name
1129 */
1130 char *name;
1131
1132 /*
1133 * csr to read for name (if applicable)
1134 */
1135 u64 csr;
1136
1137 /*
1138 * offset into dd or ppd to store the counter's value
1139 */
1140 int offset;
1141
1142 /*
1143 * flags
1144 */
1145 u8 flags;
1146
1147 /*
1148 * accessor for stat element, context either dd or ppd
1149 */
1150 u64 (*rw_cntr)(const struct cntr_entry *,
1151 void *context,
1152 int vl,
1153 int mode,
1154 u64 data);
1155};
1156
1157#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1158#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1159
1160#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1161{ \
1162 name, \
1163 csr, \
1164 offset, \
1165 flags, \
1166 accessor \
1167}
1168
1169/* 32bit RXE */
1170#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1171CNTR_ELEM(#name, \
1172 (counter * 8 + RCV_COUNTER_ARRAY32), \
1173 0, flags | CNTR_32BIT, \
1174 port_access_u32_csr)
1175
1176#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1177CNTR_ELEM(#name, \
1178 (counter * 8 + RCV_COUNTER_ARRAY32), \
1179 0, flags | CNTR_32BIT, \
1180 dev_access_u32_csr)
1181
1182/* 64bit RXE */
1183#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1184CNTR_ELEM(#name, \
1185 (counter * 8 + RCV_COUNTER_ARRAY64), \
1186 0, flags, \
1187 port_access_u64_csr)
1188
1189#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1190CNTR_ELEM(#name, \
1191 (counter * 8 + RCV_COUNTER_ARRAY64), \
1192 0, flags, \
1193 dev_access_u64_csr)
1194
1195#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1196#define OVR_ELM(ctx) \
1197CNTR_ELEM("RcvHdrOvr" #ctx, \
Jubin John8638b772016-02-14 20:19:24 -08001198 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
Mike Marciniszyn77241052015-07-30 15:17:43 -04001199 0, CNTR_NORMAL, port_access_u64_csr)
1200
1201/* 32bit TXE */
1202#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1203CNTR_ELEM(#name, \
1204 (counter * 8 + SEND_COUNTER_ARRAY32), \
1205 0, flags | CNTR_32BIT, \
1206 port_access_u32_csr)
1207
1208/* 64bit TXE */
1209#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1210CNTR_ELEM(#name, \
1211 (counter * 8 + SEND_COUNTER_ARRAY64), \
1212 0, flags, \
1213 port_access_u64_csr)
1214
1215# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1216CNTR_ELEM(#name,\
1217 counter * 8 + SEND_COUNTER_ARRAY64, \
1218 0, \
1219 flags, \
1220 dev_access_u64_csr)
1221
1222/* CCE */
1223#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1224CNTR_ELEM(#name, \
1225 (counter * 8 + CCE_COUNTER_ARRAY32), \
1226 0, flags | CNTR_32BIT, \
1227 dev_access_u32_csr)
1228
1229#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1230CNTR_ELEM(#name, \
1231 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1232 0, flags | CNTR_32BIT, \
1233 dev_access_u32_csr)
1234
1235/* DC */
1236#define DC_PERF_CNTR(name, counter, flags) \
1237CNTR_ELEM(#name, \
1238 counter, \
1239 0, \
1240 flags, \
1241 dev_access_u64_csr)
1242
1243#define DC_PERF_CNTR_LCB(name, counter, flags) \
1244CNTR_ELEM(#name, \
1245 counter, \
1246 0, \
1247 flags, \
1248 dc_access_lcb_cntr)
1249
1250/* ibp counters */
1251#define SW_IBP_CNTR(name, cntr) \
1252CNTR_ELEM(#name, \
1253 0, \
1254 0, \
1255 CNTR_SYNTH, \
1256 access_ibp_##cntr)
1257
1258u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1259{
1260 u64 val;
1261
1262 if (dd->flags & HFI1_PRESENT) {
1263 val = readq((void __iomem *)dd->kregbase + offset);
1264 return val;
1265 }
1266 return -1;
1267}
1268
1269void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1270{
1271 if (dd->flags & HFI1_PRESENT)
1272 writeq(value, (void __iomem *)dd->kregbase + offset);
1273}
1274
1275void __iomem *get_csr_addr(
1276 struct hfi1_devdata *dd,
1277 u32 offset)
1278{
1279 return (void __iomem *)dd->kregbase + offset;
1280}
1281
1282static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1283 int mode, u64 value)
1284{
1285 u64 ret;
1286
Mike Marciniszyn77241052015-07-30 15:17:43 -04001287 if (mode == CNTR_MODE_R) {
1288 ret = read_csr(dd, csr);
1289 } else if (mode == CNTR_MODE_W) {
1290 write_csr(dd, csr, value);
1291 ret = value;
1292 } else {
1293 dd_dev_err(dd, "Invalid cntr register access mode");
1294 return 0;
1295 }
1296
1297 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1298 return ret;
1299}
1300
1301/* Dev Access */
1302static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1303 void *context, int vl, int mode, u64 data)
1304{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301305 struct hfi1_devdata *dd = context;
Vennila Megavannana699c6c2016-01-11 18:30:56 -05001306 u64 csr = entry->csr;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001307
Vennila Megavannana699c6c2016-01-11 18:30:56 -05001308 if (entry->flags & CNTR_SDMA) {
1309 if (vl == CNTR_INVALID_VL)
1310 return 0;
1311 csr += 0x100 * vl;
1312 } else {
1313 if (vl != CNTR_INVALID_VL)
1314 return 0;
1315 }
1316 return read_write_csr(dd, csr, mode, data);
1317}
1318
1319static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1320 void *context, int idx, int mode, u64 data)
1321{
1322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1323
1324 if (dd->per_sdma && idx < dd->num_sdma)
1325 return dd->per_sdma[idx].err_cnt;
1326 return 0;
1327}
1328
1329static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1330 void *context, int idx, int mode, u64 data)
1331{
1332 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1333
1334 if (dd->per_sdma && idx < dd->num_sdma)
1335 return dd->per_sdma[idx].sdma_int_cnt;
1336 return 0;
1337}
1338
1339static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1340 void *context, int idx, int mode, u64 data)
1341{
1342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1343
1344 if (dd->per_sdma && idx < dd->num_sdma)
1345 return dd->per_sdma[idx].idle_int_cnt;
1346 return 0;
1347}
1348
1349static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1350 void *context, int idx, int mode,
1351 u64 data)
1352{
1353 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1354
1355 if (dd->per_sdma && idx < dd->num_sdma)
1356 return dd->per_sdma[idx].progress_int_cnt;
1357 return 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001358}
1359
1360static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1361 int vl, int mode, u64 data)
1362{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301363 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001364
1365 u64 val = 0;
1366 u64 csr = entry->csr;
1367
1368 if (entry->flags & CNTR_VL) {
1369 if (vl == CNTR_INVALID_VL)
1370 return 0;
1371 csr += 8 * vl;
1372 } else {
1373 if (vl != CNTR_INVALID_VL)
1374 return 0;
1375 }
1376
1377 val = read_write_csr(dd, csr, mode, data);
1378 return val;
1379}
1380
1381static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1382 int vl, int mode, u64 data)
1383{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301384 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001385 u32 csr = entry->csr;
1386 int ret = 0;
1387
1388 if (vl != CNTR_INVALID_VL)
1389 return 0;
1390 if (mode == CNTR_MODE_R)
1391 ret = read_lcb_csr(dd, csr, &data);
1392 else if (mode == CNTR_MODE_W)
1393 ret = write_lcb_csr(dd, csr, data);
1394
1395 if (ret) {
1396 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1397 return 0;
1398 }
1399
1400 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1401 return data;
1402}
1403
1404/* Port Access */
1405static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1406 int vl, int mode, u64 data)
1407{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301408 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001409
1410 if (vl != CNTR_INVALID_VL)
1411 return 0;
1412 return read_write_csr(ppd->dd, entry->csr, mode, data);
1413}
1414
1415static u64 port_access_u64_csr(const struct cntr_entry *entry,
1416 void *context, int vl, int mode, u64 data)
1417{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301418 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001419 u64 val;
1420 u64 csr = entry->csr;
1421
1422 if (entry->flags & CNTR_VL) {
1423 if (vl == CNTR_INVALID_VL)
1424 return 0;
1425 csr += 8 * vl;
1426 } else {
1427 if (vl != CNTR_INVALID_VL)
1428 return 0;
1429 }
1430 val = read_write_csr(ppd->dd, csr, mode, data);
1431 return val;
1432}
1433
1434/* Software defined */
1435static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1436 u64 data)
1437{
1438 u64 ret;
1439
1440 if (mode == CNTR_MODE_R) {
1441 ret = *cntr;
1442 } else if (mode == CNTR_MODE_W) {
1443 *cntr = data;
1444 ret = data;
1445 } else {
1446 dd_dev_err(dd, "Invalid cntr sw access mode");
1447 return 0;
1448 }
1449
1450 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1451
1452 return ret;
1453}
1454
1455static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1456 int vl, int mode, u64 data)
1457{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301458 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001459
1460 if (vl != CNTR_INVALID_VL)
1461 return 0;
1462 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1463}
1464
1465static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1466 int vl, int mode, u64 data)
1467{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301468 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001469
1470 if (vl != CNTR_INVALID_VL)
1471 return 0;
1472 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1473}
1474
Dean Luick6d014532015-12-01 15:38:23 -05001475static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1476 void *context, int vl, int mode,
1477 u64 data)
1478{
1479 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1480
1481 if (vl != CNTR_INVALID_VL)
1482 return 0;
1483 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1484}
1485
Mike Marciniszyn77241052015-07-30 15:17:43 -04001486static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1487 void *context, int vl, int mode, u64 data)
1488{
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08001489 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1490 u64 zero = 0;
1491 u64 *counter;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001492
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08001493 if (vl == CNTR_INVALID_VL)
1494 counter = &ppd->port_xmit_discards;
1495 else if (vl >= 0 && vl < C_VL_COUNT)
1496 counter = &ppd->port_xmit_discards_vl[vl];
1497 else
1498 counter = &zero;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001499
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08001500 return read_write_sw(ppd->dd, counter, mode, data);
Mike Marciniszyn77241052015-07-30 15:17:43 -04001501}
1502
1503static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1504 void *context, int vl, int mode, u64 data)
1505{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301506 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001507
1508 if (vl != CNTR_INVALID_VL)
1509 return 0;
1510
1511 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1512 mode, data);
1513}
1514
1515static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1516 void *context, int vl, int mode, u64 data)
1517{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301518 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001519
1520 if (vl != CNTR_INVALID_VL)
1521 return 0;
1522
1523 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1524 mode, data);
1525}
1526
1527u64 get_all_cpu_total(u64 __percpu *cntr)
1528{
1529 int cpu;
1530 u64 counter = 0;
1531
1532 for_each_possible_cpu(cpu)
1533 counter += *per_cpu_ptr(cntr, cpu);
1534 return counter;
1535}
1536
1537static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1538 u64 __percpu *cntr,
1539 int vl, int mode, u64 data)
1540{
Mike Marciniszyn77241052015-07-30 15:17:43 -04001541 u64 ret = 0;
1542
1543 if (vl != CNTR_INVALID_VL)
1544 return 0;
1545
1546 if (mode == CNTR_MODE_R) {
1547 ret = get_all_cpu_total(cntr) - *z_val;
1548 } else if (mode == CNTR_MODE_W) {
1549 /* A write can only zero the counter */
1550 if (data == 0)
1551 *z_val = get_all_cpu_total(cntr);
1552 else
1553 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1554 } else {
1555 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1556 return 0;
1557 }
1558
1559 return ret;
1560}
1561
1562static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1563 void *context, int vl, int mode, u64 data)
1564{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301565 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001566
1567 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1568 mode, data);
1569}
1570
1571static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1572 void *context, int vl, int mode, u64 data)
1573{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301574 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001575
1576 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1577 mode, data);
1578}
1579
1580static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1581 void *context, int vl, int mode, u64 data)
1582{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301583 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001584
1585 return dd->verbs_dev.n_piowait;
1586}
1587
Mike Marciniszyn14553ca2016-02-14 12:45:36 -08001588static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1589 void *context, int vl, int mode, u64 data)
1590{
1591 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1592
1593 return dd->verbs_dev.n_piodrain;
1594}
1595
Mike Marciniszyn77241052015-07-30 15:17:43 -04001596static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1597 void *context, int vl, int mode, u64 data)
1598{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301599 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001600
1601 return dd->verbs_dev.n_txwait;
1602}
1603
1604static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1605 void *context, int vl, int mode, u64 data)
1606{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301607 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001608
1609 return dd->verbs_dev.n_kmem_wait;
1610}
1611
Dean Luickb4219222015-10-26 10:28:35 -04001612static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1613 void *context, int vl, int mode, u64 data)
1614{
1615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1616
Vennila Megavannan89abfc82016-02-03 14:34:07 -08001617 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1618 mode, data);
Dean Luickb4219222015-10-26 10:28:35 -04001619}
1620
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05001621/* Software counters for the error status bits within MISC_ERR_STATUS */
1622static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1623 void *context, int vl, int mode,
1624 u64 data)
1625{
1626 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1627
1628 return dd->misc_err_status_cnt[12];
1629}
1630
1631static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1632 void *context, int vl, int mode,
1633 u64 data)
1634{
1635 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1636
1637 return dd->misc_err_status_cnt[11];
1638}
1639
1640static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1641 void *context, int vl, int mode,
1642 u64 data)
1643{
1644 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1645
1646 return dd->misc_err_status_cnt[10];
1647}
1648
1649static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1650 void *context, int vl,
1651 int mode, u64 data)
1652{
1653 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1654
1655 return dd->misc_err_status_cnt[9];
1656}
1657
1658static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1659 void *context, int vl, int mode,
1660 u64 data)
1661{
1662 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1663
1664 return dd->misc_err_status_cnt[8];
1665}
1666
1667static u64 access_misc_efuse_read_bad_addr_err_cnt(
1668 const struct cntr_entry *entry,
1669 void *context, int vl, int mode, u64 data)
1670{
1671 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1672
1673 return dd->misc_err_status_cnt[7];
1674}
1675
1676static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1677 void *context, int vl,
1678 int mode, u64 data)
1679{
1680 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1681
1682 return dd->misc_err_status_cnt[6];
1683}
1684
1685static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1686 void *context, int vl, int mode,
1687 u64 data)
1688{
1689 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1690
1691 return dd->misc_err_status_cnt[5];
1692}
1693
1694static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1695 void *context, int vl, int mode,
1696 u64 data)
1697{
1698 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1699
1700 return dd->misc_err_status_cnt[4];
1701}
1702
1703static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1704 void *context, int vl,
1705 int mode, u64 data)
1706{
1707 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708
1709 return dd->misc_err_status_cnt[3];
1710}
1711
1712static u64 access_misc_csr_write_bad_addr_err_cnt(
1713 const struct cntr_entry *entry,
1714 void *context, int vl, int mode, u64 data)
1715{
1716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1717
1718 return dd->misc_err_status_cnt[2];
1719}
1720
1721static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1722 void *context, int vl,
1723 int mode, u64 data)
1724{
1725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1726
1727 return dd->misc_err_status_cnt[1];
1728}
1729
1730static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1731 void *context, int vl, int mode,
1732 u64 data)
1733{
1734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1735
1736 return dd->misc_err_status_cnt[0];
1737}
1738
1739/*
1740 * Software counter for the aggregate of
1741 * individual CceErrStatus counters
1742 */
1743static u64 access_sw_cce_err_status_aggregated_cnt(
1744 const struct cntr_entry *entry,
1745 void *context, int vl, int mode, u64 data)
1746{
1747 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1748
1749 return dd->sw_cce_err_status_aggregate;
1750}
1751
1752/*
1753 * Software counters corresponding to each of the
1754 * error status bits within CceErrStatus
1755 */
1756static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1757 void *context, int vl, int mode,
1758 u64 data)
1759{
1760 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1761
1762 return dd->cce_err_status_cnt[40];
1763}
1764
1765static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1766 void *context, int vl, int mode,
1767 u64 data)
1768{
1769 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1770
1771 return dd->cce_err_status_cnt[39];
1772}
1773
1774static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1775 void *context, int vl, int mode,
1776 u64 data)
1777{
1778 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1779
1780 return dd->cce_err_status_cnt[38];
1781}
1782
1783static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1784 void *context, int vl, int mode,
1785 u64 data)
1786{
1787 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1788
1789 return dd->cce_err_status_cnt[37];
1790}
1791
1792static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1793 void *context, int vl, int mode,
1794 u64 data)
1795{
1796 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1797
1798 return dd->cce_err_status_cnt[36];
1799}
1800
1801static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1802 const struct cntr_entry *entry,
1803 void *context, int vl, int mode, u64 data)
1804{
1805 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1806
1807 return dd->cce_err_status_cnt[35];
1808}
1809
1810static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1811 const struct cntr_entry *entry,
1812 void *context, int vl, int mode, u64 data)
1813{
1814 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1815
1816 return dd->cce_err_status_cnt[34];
1817}
1818
1819static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1820 void *context, int vl,
1821 int mode, u64 data)
1822{
1823 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1824
1825 return dd->cce_err_status_cnt[33];
1826}
1827
1828static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1829 void *context, int vl, int mode,
1830 u64 data)
1831{
1832 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1833
1834 return dd->cce_err_status_cnt[32];
1835}
1836
1837static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1838 void *context, int vl, int mode, u64 data)
1839{
1840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1841
1842 return dd->cce_err_status_cnt[31];
1843}
1844
1845static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1846 void *context, int vl, int mode,
1847 u64 data)
1848{
1849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1850
1851 return dd->cce_err_status_cnt[30];
1852}
1853
1854static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1855 void *context, int vl, int mode,
1856 u64 data)
1857{
1858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1859
1860 return dd->cce_err_status_cnt[29];
1861}
1862
1863static u64 access_pcic_transmit_back_parity_err_cnt(
1864 const struct cntr_entry *entry,
1865 void *context, int vl, int mode, u64 data)
1866{
1867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1868
1869 return dd->cce_err_status_cnt[28];
1870}
1871
1872static u64 access_pcic_transmit_front_parity_err_cnt(
1873 const struct cntr_entry *entry,
1874 void *context, int vl, int mode, u64 data)
1875{
1876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1877
1878 return dd->cce_err_status_cnt[27];
1879}
1880
1881static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1882 void *context, int vl, int mode,
1883 u64 data)
1884{
1885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1886
1887 return dd->cce_err_status_cnt[26];
1888}
1889
1890static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1891 void *context, int vl, int mode,
1892 u64 data)
1893{
1894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1895
1896 return dd->cce_err_status_cnt[25];
1897}
1898
1899static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1900 void *context, int vl, int mode,
1901 u64 data)
1902{
1903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1904
1905 return dd->cce_err_status_cnt[24];
1906}
1907
1908static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1909 void *context, int vl, int mode,
1910 u64 data)
1911{
1912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1913
1914 return dd->cce_err_status_cnt[23];
1915}
1916
1917static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1918 void *context, int vl,
1919 int mode, u64 data)
1920{
1921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1922
1923 return dd->cce_err_status_cnt[22];
1924}
1925
1926static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1927 void *context, int vl, int mode,
1928 u64 data)
1929{
1930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1931
1932 return dd->cce_err_status_cnt[21];
1933}
1934
1935static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1936 const struct cntr_entry *entry,
1937 void *context, int vl, int mode, u64 data)
1938{
1939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1940
1941 return dd->cce_err_status_cnt[20];
1942}
1943
1944static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1945 void *context, int vl,
1946 int mode, u64 data)
1947{
1948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1949
1950 return dd->cce_err_status_cnt[19];
1951}
1952
1953static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1954 void *context, int vl, int mode,
1955 u64 data)
1956{
1957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1958
1959 return dd->cce_err_status_cnt[18];
1960}
1961
1962static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1963 void *context, int vl, int mode,
1964 u64 data)
1965{
1966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1967
1968 return dd->cce_err_status_cnt[17];
1969}
1970
1971static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1972 void *context, int vl, int mode,
1973 u64 data)
1974{
1975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1976
1977 return dd->cce_err_status_cnt[16];
1978}
1979
1980static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1981 void *context, int vl, int mode,
1982 u64 data)
1983{
1984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1985
1986 return dd->cce_err_status_cnt[15];
1987}
1988
1989static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1990 void *context, int vl,
1991 int mode, u64 data)
1992{
1993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1994
1995 return dd->cce_err_status_cnt[14];
1996}
1997
1998static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
1999 void *context, int vl, int mode,
2000 u64 data)
2001{
2002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2003
2004 return dd->cce_err_status_cnt[13];
2005}
2006
2007static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2008 const struct cntr_entry *entry,
2009 void *context, int vl, int mode, u64 data)
2010{
2011 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2012
2013 return dd->cce_err_status_cnt[12];
2014}
2015
2016static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2017 const struct cntr_entry *entry,
2018 void *context, int vl, int mode, u64 data)
2019{
2020 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2021
2022 return dd->cce_err_status_cnt[11];
2023}
2024
2025static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2026 const struct cntr_entry *entry,
2027 void *context, int vl, int mode, u64 data)
2028{
2029 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2030
2031 return dd->cce_err_status_cnt[10];
2032}
2033
2034static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2035 const struct cntr_entry *entry,
2036 void *context, int vl, int mode, u64 data)
2037{
2038 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2039
2040 return dd->cce_err_status_cnt[9];
2041}
2042
2043static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2044 const struct cntr_entry *entry,
2045 void *context, int vl, int mode, u64 data)
2046{
2047 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2048
2049 return dd->cce_err_status_cnt[8];
2050}
2051
2052static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2053 void *context, int vl,
2054 int mode, u64 data)
2055{
2056 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2057
2058 return dd->cce_err_status_cnt[7];
2059}
2060
2061static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2062 const struct cntr_entry *entry,
2063 void *context, int vl, int mode, u64 data)
2064{
2065 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2066
2067 return dd->cce_err_status_cnt[6];
2068}
2069
2070static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2071 void *context, int vl, int mode,
2072 u64 data)
2073{
2074 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2075
2076 return dd->cce_err_status_cnt[5];
2077}
2078
2079static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2080 void *context, int vl, int mode,
2081 u64 data)
2082{
2083 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2084
2085 return dd->cce_err_status_cnt[4];
2086}
2087
2088static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2089 const struct cntr_entry *entry,
2090 void *context, int vl, int mode, u64 data)
2091{
2092 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2093
2094 return dd->cce_err_status_cnt[3];
2095}
2096
2097static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2098 void *context, int vl,
2099 int mode, u64 data)
2100{
2101 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2102
2103 return dd->cce_err_status_cnt[2];
2104}
2105
2106static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2107 void *context, int vl,
2108 int mode, u64 data)
2109{
2110 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2111
2112 return dd->cce_err_status_cnt[1];
2113}
2114
2115static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2116 void *context, int vl, int mode,
2117 u64 data)
2118{
2119 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2120
2121 return dd->cce_err_status_cnt[0];
2122}
2123
2124/*
2125 * Software counters corresponding to each of the
2126 * error status bits within RcvErrStatus
2127 */
2128static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2129 void *context, int vl, int mode,
2130 u64 data)
2131{
2132 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2133
2134 return dd->rcv_err_status_cnt[63];
2135}
2136
2137static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2138 void *context, int vl,
2139 int mode, u64 data)
2140{
2141 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2142
2143 return dd->rcv_err_status_cnt[62];
2144}
2145
2146static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2147 void *context, int vl, int mode,
2148 u64 data)
2149{
2150 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2151
2152 return dd->rcv_err_status_cnt[61];
2153}
2154
2155static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2156 void *context, int vl, int mode,
2157 u64 data)
2158{
2159 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2160
2161 return dd->rcv_err_status_cnt[60];
2162}
2163
2164static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2165 void *context, int vl,
2166 int mode, u64 data)
2167{
2168 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2169
2170 return dd->rcv_err_status_cnt[59];
2171}
2172
2173static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2174 void *context, int vl,
2175 int mode, u64 data)
2176{
2177 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2178
2179 return dd->rcv_err_status_cnt[58];
2180}
2181
2182static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2183 void *context, int vl, int mode,
2184 u64 data)
2185{
2186 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2187
2188 return dd->rcv_err_status_cnt[57];
2189}
2190
2191static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2192 void *context, int vl, int mode,
2193 u64 data)
2194{
2195 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2196
2197 return dd->rcv_err_status_cnt[56];
2198}
2199
2200static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2201 void *context, int vl, int mode,
2202 u64 data)
2203{
2204 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2205
2206 return dd->rcv_err_status_cnt[55];
2207}
2208
2209static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2210 const struct cntr_entry *entry,
2211 void *context, int vl, int mode, u64 data)
2212{
2213 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2214
2215 return dd->rcv_err_status_cnt[54];
2216}
2217
2218static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2219 const struct cntr_entry *entry,
2220 void *context, int vl, int mode, u64 data)
2221{
2222 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2223
2224 return dd->rcv_err_status_cnt[53];
2225}
2226
2227static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2228 void *context, int vl,
2229 int mode, u64 data)
2230{
2231 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2232
2233 return dd->rcv_err_status_cnt[52];
2234}
2235
2236static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2237 void *context, int vl,
2238 int mode, u64 data)
2239{
2240 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2241
2242 return dd->rcv_err_status_cnt[51];
2243}
2244
2245static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2246 void *context, int vl,
2247 int mode, u64 data)
2248{
2249 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2250
2251 return dd->rcv_err_status_cnt[50];
2252}
2253
2254static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2255 void *context, int vl,
2256 int mode, u64 data)
2257{
2258 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2259
2260 return dd->rcv_err_status_cnt[49];
2261}
2262
2263static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2264 void *context, int vl,
2265 int mode, u64 data)
2266{
2267 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2268
2269 return dd->rcv_err_status_cnt[48];
2270}
2271
2272static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2273 void *context, int vl,
2274 int mode, u64 data)
2275{
2276 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2277
2278 return dd->rcv_err_status_cnt[47];
2279}
2280
2281static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2282 void *context, int vl, int mode,
2283 u64 data)
2284{
2285 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2286
2287 return dd->rcv_err_status_cnt[46];
2288}
2289
2290static u64 access_rx_hq_intr_csr_parity_err_cnt(
2291 const struct cntr_entry *entry,
2292 void *context, int vl, int mode, u64 data)
2293{
2294 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2295
2296 return dd->rcv_err_status_cnt[45];
2297}
2298
2299static u64 access_rx_lookup_csr_parity_err_cnt(
2300 const struct cntr_entry *entry,
2301 void *context, int vl, int mode, u64 data)
2302{
2303 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2304
2305 return dd->rcv_err_status_cnt[44];
2306}
2307
2308static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2309 const struct cntr_entry *entry,
2310 void *context, int vl, int mode, u64 data)
2311{
2312 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2313
2314 return dd->rcv_err_status_cnt[43];
2315}
2316
2317static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2318 const struct cntr_entry *entry,
2319 void *context, int vl, int mode, u64 data)
2320{
2321 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2322
2323 return dd->rcv_err_status_cnt[42];
2324}
2325
2326static u64 access_rx_lookup_des_part2_parity_err_cnt(
2327 const struct cntr_entry *entry,
2328 void *context, int vl, int mode, u64 data)
2329{
2330 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2331
2332 return dd->rcv_err_status_cnt[41];
2333}
2334
2335static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2336 const struct cntr_entry *entry,
2337 void *context, int vl, int mode, u64 data)
2338{
2339 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2340
2341 return dd->rcv_err_status_cnt[40];
2342}
2343
2344static u64 access_rx_lookup_des_part1_unc_err_cnt(
2345 const struct cntr_entry *entry,
2346 void *context, int vl, int mode, u64 data)
2347{
2348 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2349
2350 return dd->rcv_err_status_cnt[39];
2351}
2352
2353static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2354 const struct cntr_entry *entry,
2355 void *context, int vl, int mode, u64 data)
2356{
2357 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2358
2359 return dd->rcv_err_status_cnt[38];
2360}
2361
2362static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2363 const struct cntr_entry *entry,
2364 void *context, int vl, int mode, u64 data)
2365{
2366 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2367
2368 return dd->rcv_err_status_cnt[37];
2369}
2370
2371static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2372 const struct cntr_entry *entry,
2373 void *context, int vl, int mode, u64 data)
2374{
2375 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2376
2377 return dd->rcv_err_status_cnt[36];
2378}
2379
2380static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2381 const struct cntr_entry *entry,
2382 void *context, int vl, int mode, u64 data)
2383{
2384 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2385
2386 return dd->rcv_err_status_cnt[35];
2387}
2388
2389static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2390 const struct cntr_entry *entry,
2391 void *context, int vl, int mode, u64 data)
2392{
2393 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2394
2395 return dd->rcv_err_status_cnt[34];
2396}
2397
2398static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2399 const struct cntr_entry *entry,
2400 void *context, int vl, int mode, u64 data)
2401{
2402 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2403
2404 return dd->rcv_err_status_cnt[33];
2405}
2406
2407static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2408 void *context, int vl, int mode,
2409 u64 data)
2410{
2411 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2412
2413 return dd->rcv_err_status_cnt[32];
2414}
2415
2416static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2417 void *context, int vl, int mode,
2418 u64 data)
2419{
2420 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2421
2422 return dd->rcv_err_status_cnt[31];
2423}
2424
2425static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2426 void *context, int vl, int mode,
2427 u64 data)
2428{
2429 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2430
2431 return dd->rcv_err_status_cnt[30];
2432}
2433
2434static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2435 void *context, int vl, int mode,
2436 u64 data)
2437{
2438 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2439
2440 return dd->rcv_err_status_cnt[29];
2441}
2442
2443static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2444 void *context, int vl,
2445 int mode, u64 data)
2446{
2447 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2448
2449 return dd->rcv_err_status_cnt[28];
2450}
2451
2452static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2453 const struct cntr_entry *entry,
2454 void *context, int vl, int mode, u64 data)
2455{
2456 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2457
2458 return dd->rcv_err_status_cnt[27];
2459}
2460
2461static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2462 const struct cntr_entry *entry,
2463 void *context, int vl, int mode, u64 data)
2464{
2465 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2466
2467 return dd->rcv_err_status_cnt[26];
2468}
2469
2470static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2471 const struct cntr_entry *entry,
2472 void *context, int vl, int mode, u64 data)
2473{
2474 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2475
2476 return dd->rcv_err_status_cnt[25];
2477}
2478
2479static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2480 const struct cntr_entry *entry,
2481 void *context, int vl, int mode, u64 data)
2482{
2483 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2484
2485 return dd->rcv_err_status_cnt[24];
2486}
2487
2488static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2489 const struct cntr_entry *entry,
2490 void *context, int vl, int mode, u64 data)
2491{
2492 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2493
2494 return dd->rcv_err_status_cnt[23];
2495}
2496
2497static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2498 const struct cntr_entry *entry,
2499 void *context, int vl, int mode, u64 data)
2500{
2501 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2502
2503 return dd->rcv_err_status_cnt[22];
2504}
2505
2506static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2507 const struct cntr_entry *entry,
2508 void *context, int vl, int mode, u64 data)
2509{
2510 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2511
2512 return dd->rcv_err_status_cnt[21];
2513}
2514
2515static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2516 const struct cntr_entry *entry,
2517 void *context, int vl, int mode, u64 data)
2518{
2519 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2520
2521 return dd->rcv_err_status_cnt[20];
2522}
2523
2524static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2525 const struct cntr_entry *entry,
2526 void *context, int vl, int mode, u64 data)
2527{
2528 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2529
2530 return dd->rcv_err_status_cnt[19];
2531}
2532
2533static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2534 void *context, int vl,
2535 int mode, u64 data)
2536{
2537 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2538
2539 return dd->rcv_err_status_cnt[18];
2540}
2541
2542static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2543 void *context, int vl,
2544 int mode, u64 data)
2545{
2546 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2547
2548 return dd->rcv_err_status_cnt[17];
2549}
2550
2551static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2552 const struct cntr_entry *entry,
2553 void *context, int vl, int mode, u64 data)
2554{
2555 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2556
2557 return dd->rcv_err_status_cnt[16];
2558}
2559
2560static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2561 const struct cntr_entry *entry,
2562 void *context, int vl, int mode, u64 data)
2563{
2564 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2565
2566 return dd->rcv_err_status_cnt[15];
2567}
2568
2569static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2570 void *context, int vl,
2571 int mode, u64 data)
2572{
2573 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2574
2575 return dd->rcv_err_status_cnt[14];
2576}
2577
2578static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2579 void *context, int vl,
2580 int mode, u64 data)
2581{
2582 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2583
2584 return dd->rcv_err_status_cnt[13];
2585}
2586
2587static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2588 void *context, int vl, int mode,
2589 u64 data)
2590{
2591 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2592
2593 return dd->rcv_err_status_cnt[12];
2594}
2595
2596static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2597 void *context, int vl, int mode,
2598 u64 data)
2599{
2600 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2601
2602 return dd->rcv_err_status_cnt[11];
2603}
2604
2605static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2606 void *context, int vl, int mode,
2607 u64 data)
2608{
2609 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2610
2611 return dd->rcv_err_status_cnt[10];
2612}
2613
2614static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2615 void *context, int vl, int mode,
2616 u64 data)
2617{
2618 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2619
2620 return dd->rcv_err_status_cnt[9];
2621}
2622
2623static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2624 void *context, int vl, int mode,
2625 u64 data)
2626{
2627 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2628
2629 return dd->rcv_err_status_cnt[8];
2630}
2631
2632static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2633 const struct cntr_entry *entry,
2634 void *context, int vl, int mode, u64 data)
2635{
2636 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2637
2638 return dd->rcv_err_status_cnt[7];
2639}
2640
2641static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2642 const struct cntr_entry *entry,
2643 void *context, int vl, int mode, u64 data)
2644{
2645 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2646
2647 return dd->rcv_err_status_cnt[6];
2648}
2649
2650static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2651 void *context, int vl, int mode,
2652 u64 data)
2653{
2654 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2655
2656 return dd->rcv_err_status_cnt[5];
2657}
2658
2659static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2660 void *context, int vl, int mode,
2661 u64 data)
2662{
2663 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2664
2665 return dd->rcv_err_status_cnt[4];
2666}
2667
2668static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2669 void *context, int vl, int mode,
2670 u64 data)
2671{
2672 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2673
2674 return dd->rcv_err_status_cnt[3];
2675}
2676
2677static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2678 void *context, int vl, int mode,
2679 u64 data)
2680{
2681 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2682
2683 return dd->rcv_err_status_cnt[2];
2684}
2685
2686static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2687 void *context, int vl, int mode,
2688 u64 data)
2689{
2690 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2691
2692 return dd->rcv_err_status_cnt[1];
2693}
2694
2695static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2696 void *context, int vl, int mode,
2697 u64 data)
2698{
2699 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2700
2701 return dd->rcv_err_status_cnt[0];
2702}
2703
2704/*
2705 * Software counters corresponding to each of the
2706 * error status bits within SendPioErrStatus
2707 */
2708static u64 access_pio_pec_sop_head_parity_err_cnt(
2709 const struct cntr_entry *entry,
2710 void *context, int vl, int mode, u64 data)
2711{
2712 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2713
2714 return dd->send_pio_err_status_cnt[35];
2715}
2716
2717static u64 access_pio_pcc_sop_head_parity_err_cnt(
2718 const struct cntr_entry *entry,
2719 void *context, int vl, int mode, u64 data)
2720{
2721 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2722
2723 return dd->send_pio_err_status_cnt[34];
2724}
2725
2726static u64 access_pio_last_returned_cnt_parity_err_cnt(
2727 const struct cntr_entry *entry,
2728 void *context, int vl, int mode, u64 data)
2729{
2730 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2731
2732 return dd->send_pio_err_status_cnt[33];
2733}
2734
2735static u64 access_pio_current_free_cnt_parity_err_cnt(
2736 const struct cntr_entry *entry,
2737 void *context, int vl, int mode, u64 data)
2738{
2739 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2740
2741 return dd->send_pio_err_status_cnt[32];
2742}
2743
2744static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2745 void *context, int vl, int mode,
2746 u64 data)
2747{
2748 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2749
2750 return dd->send_pio_err_status_cnt[31];
2751}
2752
2753static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2754 void *context, int vl, int mode,
2755 u64 data)
2756{
2757 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2758
2759 return dd->send_pio_err_status_cnt[30];
2760}
2761
2762static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2763 void *context, int vl, int mode,
2764 u64 data)
2765{
2766 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2767
2768 return dd->send_pio_err_status_cnt[29];
2769}
2770
2771static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2772 const struct cntr_entry *entry,
2773 void *context, int vl, int mode, u64 data)
2774{
2775 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2776
2777 return dd->send_pio_err_status_cnt[28];
2778}
2779
2780static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2781 void *context, int vl, int mode,
2782 u64 data)
2783{
2784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2785
2786 return dd->send_pio_err_status_cnt[27];
2787}
2788
2789static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2790 void *context, int vl, int mode,
2791 u64 data)
2792{
2793 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2794
2795 return dd->send_pio_err_status_cnt[26];
2796}
2797
2798static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2799 void *context, int vl,
2800 int mode, u64 data)
2801{
2802 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2803
2804 return dd->send_pio_err_status_cnt[25];
2805}
2806
2807static u64 access_pio_block_qw_count_parity_err_cnt(
2808 const struct cntr_entry *entry,
2809 void *context, int vl, int mode, u64 data)
2810{
2811 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2812
2813 return dd->send_pio_err_status_cnt[24];
2814}
2815
2816static u64 access_pio_write_qw_valid_parity_err_cnt(
2817 const struct cntr_entry *entry,
2818 void *context, int vl, int mode, u64 data)
2819{
2820 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2821
2822 return dd->send_pio_err_status_cnt[23];
2823}
2824
2825static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2826 void *context, int vl, int mode,
2827 u64 data)
2828{
2829 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2830
2831 return dd->send_pio_err_status_cnt[22];
2832}
2833
2834static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2835 void *context, int vl,
2836 int mode, u64 data)
2837{
2838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2839
2840 return dd->send_pio_err_status_cnt[21];
2841}
2842
2843static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2844 void *context, int vl,
2845 int mode, u64 data)
2846{
2847 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2848
2849 return dd->send_pio_err_status_cnt[20];
2850}
2851
2852static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2853 void *context, int vl,
2854 int mode, u64 data)
2855{
2856 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2857
2858 return dd->send_pio_err_status_cnt[19];
2859}
2860
2861static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2862 const struct cntr_entry *entry,
2863 void *context, int vl, int mode, u64 data)
2864{
2865 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2866
2867 return dd->send_pio_err_status_cnt[18];
2868}
2869
2870static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2871 void *context, int vl, int mode,
2872 u64 data)
2873{
2874 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2875
2876 return dd->send_pio_err_status_cnt[17];
2877}
2878
2879static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2880 void *context, int vl, int mode,
2881 u64 data)
2882{
2883 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2884
2885 return dd->send_pio_err_status_cnt[16];
2886}
2887
2888static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2889 const struct cntr_entry *entry,
2890 void *context, int vl, int mode, u64 data)
2891{
2892 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2893
2894 return dd->send_pio_err_status_cnt[15];
2895}
2896
2897static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2898 const struct cntr_entry *entry,
2899 void *context, int vl, int mode, u64 data)
2900{
2901 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2902
2903 return dd->send_pio_err_status_cnt[14];
2904}
2905
2906static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2907 const struct cntr_entry *entry,
2908 void *context, int vl, int mode, u64 data)
2909{
2910 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2911
2912 return dd->send_pio_err_status_cnt[13];
2913}
2914
2915static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2916 const struct cntr_entry *entry,
2917 void *context, int vl, int mode, u64 data)
2918{
2919 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2920
2921 return dd->send_pio_err_status_cnt[12];
2922}
2923
2924static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2925 const struct cntr_entry *entry,
2926 void *context, int vl, int mode, u64 data)
2927{
2928 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2929
2930 return dd->send_pio_err_status_cnt[11];
2931}
2932
2933static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2934 const struct cntr_entry *entry,
2935 void *context, int vl, int mode, u64 data)
2936{
2937 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2938
2939 return dd->send_pio_err_status_cnt[10];
2940}
2941
2942static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2943 const struct cntr_entry *entry,
2944 void *context, int vl, int mode, u64 data)
2945{
2946 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2947
2948 return dd->send_pio_err_status_cnt[9];
2949}
2950
2951static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2952 const struct cntr_entry *entry,
2953 void *context, int vl, int mode, u64 data)
2954{
2955 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2956
2957 return dd->send_pio_err_status_cnt[8];
2958}
2959
2960static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2961 const struct cntr_entry *entry,
2962 void *context, int vl, int mode, u64 data)
2963{
2964 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2965
2966 return dd->send_pio_err_status_cnt[7];
2967}
2968
2969static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2970 void *context, int vl, int mode,
2971 u64 data)
2972{
2973 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2974
2975 return dd->send_pio_err_status_cnt[6];
2976}
2977
2978static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2979 void *context, int vl, int mode,
2980 u64 data)
2981{
2982 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2983
2984 return dd->send_pio_err_status_cnt[5];
2985}
2986
2987static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2988 void *context, int vl, int mode,
2989 u64 data)
2990{
2991 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2992
2993 return dd->send_pio_err_status_cnt[4];
2994}
2995
2996static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
2997 void *context, int vl, int mode,
2998 u64 data)
2999{
3000 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3001
3002 return dd->send_pio_err_status_cnt[3];
3003}
3004
3005static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3006 void *context, int vl, int mode,
3007 u64 data)
3008{
3009 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3010
3011 return dd->send_pio_err_status_cnt[2];
3012}
3013
3014static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3015 void *context, int vl,
3016 int mode, u64 data)
3017{
3018 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3019
3020 return dd->send_pio_err_status_cnt[1];
3021}
3022
3023static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3024 void *context, int vl, int mode,
3025 u64 data)
3026{
3027 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3028
3029 return dd->send_pio_err_status_cnt[0];
3030}
3031
3032/*
3033 * Software counters corresponding to each of the
3034 * error status bits within SendDmaErrStatus
3035 */
3036static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3037 const struct cntr_entry *entry,
3038 void *context, int vl, int mode, u64 data)
3039{
3040 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3041
3042 return dd->send_dma_err_status_cnt[3];
3043}
3044
3045static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3046 const struct cntr_entry *entry,
3047 void *context, int vl, int mode, u64 data)
3048{
3049 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3050
3051 return dd->send_dma_err_status_cnt[2];
3052}
3053
3054static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3055 void *context, int vl, int mode,
3056 u64 data)
3057{
3058 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3059
3060 return dd->send_dma_err_status_cnt[1];
3061}
3062
3063static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3064 void *context, int vl, int mode,
3065 u64 data)
3066{
3067 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3068
3069 return dd->send_dma_err_status_cnt[0];
3070}
3071
3072/*
3073 * Software counters corresponding to each of the
3074 * error status bits within SendEgressErrStatus
3075 */
3076static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3077 const struct cntr_entry *entry,
3078 void *context, int vl, int mode, u64 data)
3079{
3080 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3081
3082 return dd->send_egress_err_status_cnt[63];
3083}
3084
3085static u64 access_tx_read_sdma_memory_csr_err_cnt(
3086 const struct cntr_entry *entry,
3087 void *context, int vl, int mode, u64 data)
3088{
3089 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3090
3091 return dd->send_egress_err_status_cnt[62];
3092}
3093
3094static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3095 void *context, int vl, int mode,
3096 u64 data)
3097{
3098 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3099
3100 return dd->send_egress_err_status_cnt[61];
3101}
3102
3103static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3104 void *context, int vl,
3105 int mode, u64 data)
3106{
3107 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3108
3109 return dd->send_egress_err_status_cnt[60];
3110}
3111
3112static u64 access_tx_read_sdma_memory_cor_err_cnt(
3113 const struct cntr_entry *entry,
3114 void *context, int vl, int mode, u64 data)
3115{
3116 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3117
3118 return dd->send_egress_err_status_cnt[59];
3119}
3120
3121static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3122 void *context, int vl, int mode,
3123 u64 data)
3124{
3125 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3126
3127 return dd->send_egress_err_status_cnt[58];
3128}
3129
3130static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3131 void *context, int vl, int mode,
3132 u64 data)
3133{
3134 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3135
3136 return dd->send_egress_err_status_cnt[57];
3137}
3138
3139static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3140 void *context, int vl, int mode,
3141 u64 data)
3142{
3143 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3144
3145 return dd->send_egress_err_status_cnt[56];
3146}
3147
3148static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3149 void *context, int vl, int mode,
3150 u64 data)
3151{
3152 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3153
3154 return dd->send_egress_err_status_cnt[55];
3155}
3156
3157static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3158 void *context, int vl, int mode,
3159 u64 data)
3160{
3161 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3162
3163 return dd->send_egress_err_status_cnt[54];
3164}
3165
3166static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3167 void *context, int vl, int mode,
3168 u64 data)
3169{
3170 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3171
3172 return dd->send_egress_err_status_cnt[53];
3173}
3174
3175static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3176 void *context, int vl, int mode,
3177 u64 data)
3178{
3179 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3180
3181 return dd->send_egress_err_status_cnt[52];
3182}
3183
3184static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3185 void *context, int vl, int mode,
3186 u64 data)
3187{
3188 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3189
3190 return dd->send_egress_err_status_cnt[51];
3191}
3192
3193static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3194 void *context, int vl, int mode,
3195 u64 data)
3196{
3197 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3198
3199 return dd->send_egress_err_status_cnt[50];
3200}
3201
3202static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3203 void *context, int vl, int mode,
3204 u64 data)
3205{
3206 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3207
3208 return dd->send_egress_err_status_cnt[49];
3209}
3210
3211static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3212 void *context, int vl, int mode,
3213 u64 data)
3214{
3215 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3216
3217 return dd->send_egress_err_status_cnt[48];
3218}
3219
3220static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3221 void *context, int vl, int mode,
3222 u64 data)
3223{
3224 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3225
3226 return dd->send_egress_err_status_cnt[47];
3227}
3228
3229static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3230 void *context, int vl, int mode,
3231 u64 data)
3232{
3233 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3234
3235 return dd->send_egress_err_status_cnt[46];
3236}
3237
3238static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3239 void *context, int vl, int mode,
3240 u64 data)
3241{
3242 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3243
3244 return dd->send_egress_err_status_cnt[45];
3245}
3246
3247static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3248 void *context, int vl,
3249 int mode, u64 data)
3250{
3251 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3252
3253 return dd->send_egress_err_status_cnt[44];
3254}
3255
3256static u64 access_tx_read_sdma_memory_unc_err_cnt(
3257 const struct cntr_entry *entry,
3258 void *context, int vl, int mode, u64 data)
3259{
3260 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3261
3262 return dd->send_egress_err_status_cnt[43];
3263}
3264
3265static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3266 void *context, int vl, int mode,
3267 u64 data)
3268{
3269 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3270
3271 return dd->send_egress_err_status_cnt[42];
3272}
3273
3274static u64 access_tx_credit_return_partiy_err_cnt(
3275 const struct cntr_entry *entry,
3276 void *context, int vl, int mode, u64 data)
3277{
3278 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3279
3280 return dd->send_egress_err_status_cnt[41];
3281}
3282
3283static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3284 const struct cntr_entry *entry,
3285 void *context, int vl, int mode, u64 data)
3286{
3287 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3288
3289 return dd->send_egress_err_status_cnt[40];
3290}
3291
3292static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3293 const struct cntr_entry *entry,
3294 void *context, int vl, int mode, u64 data)
3295{
3296 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3297
3298 return dd->send_egress_err_status_cnt[39];
3299}
3300
3301static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3302 const struct cntr_entry *entry,
3303 void *context, int vl, int mode, u64 data)
3304{
3305 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3306
3307 return dd->send_egress_err_status_cnt[38];
3308}
3309
3310static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3311 const struct cntr_entry *entry,
3312 void *context, int vl, int mode, u64 data)
3313{
3314 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3315
3316 return dd->send_egress_err_status_cnt[37];
3317}
3318
3319static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3320 const struct cntr_entry *entry,
3321 void *context, int vl, int mode, u64 data)
3322{
3323 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3324
3325 return dd->send_egress_err_status_cnt[36];
3326}
3327
3328static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3329 const struct cntr_entry *entry,
3330 void *context, int vl, int mode, u64 data)
3331{
3332 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3333
3334 return dd->send_egress_err_status_cnt[35];
3335}
3336
3337static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3338 const struct cntr_entry *entry,
3339 void *context, int vl, int mode, u64 data)
3340{
3341 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3342
3343 return dd->send_egress_err_status_cnt[34];
3344}
3345
3346static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3347 const struct cntr_entry *entry,
3348 void *context, int vl, int mode, u64 data)
3349{
3350 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3351
3352 return dd->send_egress_err_status_cnt[33];
3353}
3354
3355static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3356 const struct cntr_entry *entry,
3357 void *context, int vl, int mode, u64 data)
3358{
3359 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3360
3361 return dd->send_egress_err_status_cnt[32];
3362}
3363
3364static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3365 const struct cntr_entry *entry,
3366 void *context, int vl, int mode, u64 data)
3367{
3368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3369
3370 return dd->send_egress_err_status_cnt[31];
3371}
3372
3373static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3374 const struct cntr_entry *entry,
3375 void *context, int vl, int mode, u64 data)
3376{
3377 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3378
3379 return dd->send_egress_err_status_cnt[30];
3380}
3381
3382static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3383 const struct cntr_entry *entry,
3384 void *context, int vl, int mode, u64 data)
3385{
3386 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3387
3388 return dd->send_egress_err_status_cnt[29];
3389}
3390
3391static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3392 const struct cntr_entry *entry,
3393 void *context, int vl, int mode, u64 data)
3394{
3395 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3396
3397 return dd->send_egress_err_status_cnt[28];
3398}
3399
3400static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3401 const struct cntr_entry *entry,
3402 void *context, int vl, int mode, u64 data)
3403{
3404 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3405
3406 return dd->send_egress_err_status_cnt[27];
3407}
3408
3409static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3410 const struct cntr_entry *entry,
3411 void *context, int vl, int mode, u64 data)
3412{
3413 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3414
3415 return dd->send_egress_err_status_cnt[26];
3416}
3417
3418static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3419 const struct cntr_entry *entry,
3420 void *context, int vl, int mode, u64 data)
3421{
3422 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3423
3424 return dd->send_egress_err_status_cnt[25];
3425}
3426
3427static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3428 const struct cntr_entry *entry,
3429 void *context, int vl, int mode, u64 data)
3430{
3431 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3432
3433 return dd->send_egress_err_status_cnt[24];
3434}
3435
3436static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3437 const struct cntr_entry *entry,
3438 void *context, int vl, int mode, u64 data)
3439{
3440 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3441
3442 return dd->send_egress_err_status_cnt[23];
3443}
3444
3445static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3446 const struct cntr_entry *entry,
3447 void *context, int vl, int mode, u64 data)
3448{
3449 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3450
3451 return dd->send_egress_err_status_cnt[22];
3452}
3453
3454static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3455 const struct cntr_entry *entry,
3456 void *context, int vl, int mode, u64 data)
3457{
3458 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3459
3460 return dd->send_egress_err_status_cnt[21];
3461}
3462
3463static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3464 const struct cntr_entry *entry,
3465 void *context, int vl, int mode, u64 data)
3466{
3467 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3468
3469 return dd->send_egress_err_status_cnt[20];
3470}
3471
3472static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3473 const struct cntr_entry *entry,
3474 void *context, int vl, int mode, u64 data)
3475{
3476 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3477
3478 return dd->send_egress_err_status_cnt[19];
3479}
3480
3481static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3482 const struct cntr_entry *entry,
3483 void *context, int vl, int mode, u64 data)
3484{
3485 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3486
3487 return dd->send_egress_err_status_cnt[18];
3488}
3489
3490static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3491 const struct cntr_entry *entry,
3492 void *context, int vl, int mode, u64 data)
3493{
3494 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3495
3496 return dd->send_egress_err_status_cnt[17];
3497}
3498
3499static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3500 const struct cntr_entry *entry,
3501 void *context, int vl, int mode, u64 data)
3502{
3503 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3504
3505 return dd->send_egress_err_status_cnt[16];
3506}
3507
3508static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3509 void *context, int vl, int mode,
3510 u64 data)
3511{
3512 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3513
3514 return dd->send_egress_err_status_cnt[15];
3515}
3516
3517static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3518 void *context, int vl,
3519 int mode, u64 data)
3520{
3521 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3522
3523 return dd->send_egress_err_status_cnt[14];
3524}
3525
3526static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3527 void *context, int vl, int mode,
3528 u64 data)
3529{
3530 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3531
3532 return dd->send_egress_err_status_cnt[13];
3533}
3534
3535static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3536 void *context, int vl, int mode,
3537 u64 data)
3538{
3539 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3540
3541 return dd->send_egress_err_status_cnt[12];
3542}
3543
3544static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3545 const struct cntr_entry *entry,
3546 void *context, int vl, int mode, u64 data)
3547{
3548 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3549
3550 return dd->send_egress_err_status_cnt[11];
3551}
3552
3553static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3554 void *context, int vl, int mode,
3555 u64 data)
3556{
3557 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3558
3559 return dd->send_egress_err_status_cnt[10];
3560}
3561
3562static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3563 void *context, int vl, int mode,
3564 u64 data)
3565{
3566 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3567
3568 return dd->send_egress_err_status_cnt[9];
3569}
3570
3571static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3572 const struct cntr_entry *entry,
3573 void *context, int vl, int mode, u64 data)
3574{
3575 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3576
3577 return dd->send_egress_err_status_cnt[8];
3578}
3579
3580static u64 access_tx_pio_launch_intf_parity_err_cnt(
3581 const struct cntr_entry *entry,
3582 void *context, int vl, int mode, u64 data)
3583{
3584 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3585
3586 return dd->send_egress_err_status_cnt[7];
3587}
3588
3589static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3590 void *context, int vl, int mode,
3591 u64 data)
3592{
3593 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3594
3595 return dd->send_egress_err_status_cnt[6];
3596}
3597
3598static u64 access_tx_incorrect_link_state_err_cnt(
3599 const struct cntr_entry *entry,
3600 void *context, int vl, int mode, u64 data)
3601{
3602 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3603
3604 return dd->send_egress_err_status_cnt[5];
3605}
3606
3607static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3608 void *context, int vl, int mode,
3609 u64 data)
3610{
3611 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3612
3613 return dd->send_egress_err_status_cnt[4];
3614}
3615
3616static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3617 const struct cntr_entry *entry,
3618 void *context, int vl, int mode, u64 data)
3619{
3620 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3621
3622 return dd->send_egress_err_status_cnt[3];
3623}
3624
3625static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3626 void *context, int vl, int mode,
3627 u64 data)
3628{
3629 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3630
3631 return dd->send_egress_err_status_cnt[2];
3632}
3633
3634static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3635 const struct cntr_entry *entry,
3636 void *context, int vl, int mode, u64 data)
3637{
3638 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3639
3640 return dd->send_egress_err_status_cnt[1];
3641}
3642
3643static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3644 const struct cntr_entry *entry,
3645 void *context, int vl, int mode, u64 data)
3646{
3647 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3648
3649 return dd->send_egress_err_status_cnt[0];
3650}
3651
3652/*
3653 * Software counters corresponding to each of the
3654 * error status bits within SendErrStatus
3655 */
3656static u64 access_send_csr_write_bad_addr_err_cnt(
3657 const struct cntr_entry *entry,
3658 void *context, int vl, int mode, u64 data)
3659{
3660 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3661
3662 return dd->send_err_status_cnt[2];
3663}
3664
3665static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3666 void *context, int vl,
3667 int mode, u64 data)
3668{
3669 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3670
3671 return dd->send_err_status_cnt[1];
3672}
3673
3674static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3675 void *context, int vl, int mode,
3676 u64 data)
3677{
3678 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3679
3680 return dd->send_err_status_cnt[0];
3681}
3682
3683/*
3684 * Software counters corresponding to each of the
3685 * error status bits within SendCtxtErrStatus
3686 */
3687static u64 access_pio_write_out_of_bounds_err_cnt(
3688 const struct cntr_entry *entry,
3689 void *context, int vl, int mode, u64 data)
3690{
3691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3692
3693 return dd->sw_ctxt_err_status_cnt[4];
3694}
3695
3696static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3697 void *context, int vl, int mode,
3698 u64 data)
3699{
3700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3701
3702 return dd->sw_ctxt_err_status_cnt[3];
3703}
3704
3705static u64 access_pio_write_crosses_boundary_err_cnt(
3706 const struct cntr_entry *entry,
3707 void *context, int vl, int mode, u64 data)
3708{
3709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3710
3711 return dd->sw_ctxt_err_status_cnt[2];
3712}
3713
3714static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3715 void *context, int vl,
3716 int mode, u64 data)
3717{
3718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3719
3720 return dd->sw_ctxt_err_status_cnt[1];
3721}
3722
3723static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3724 void *context, int vl, int mode,
3725 u64 data)
3726{
3727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3728
3729 return dd->sw_ctxt_err_status_cnt[0];
3730}
3731
3732/*
3733 * Software counters corresponding to each of the
3734 * error status bits within SendDmaEngErrStatus
3735 */
3736static u64 access_sdma_header_request_fifo_cor_err_cnt(
3737 const struct cntr_entry *entry,
3738 void *context, int vl, int mode, u64 data)
3739{
3740 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3741
3742 return dd->sw_send_dma_eng_err_status_cnt[23];
3743}
3744
3745static u64 access_sdma_header_storage_cor_err_cnt(
3746 const struct cntr_entry *entry,
3747 void *context, int vl, int mode, u64 data)
3748{
3749 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3750
3751 return dd->sw_send_dma_eng_err_status_cnt[22];
3752}
3753
3754static u64 access_sdma_packet_tracking_cor_err_cnt(
3755 const struct cntr_entry *entry,
3756 void *context, int vl, int mode, u64 data)
3757{
3758 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3759
3760 return dd->sw_send_dma_eng_err_status_cnt[21];
3761}
3762
3763static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3764 void *context, int vl, int mode,
3765 u64 data)
3766{
3767 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3768
3769 return dd->sw_send_dma_eng_err_status_cnt[20];
3770}
3771
3772static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3773 void *context, int vl, int mode,
3774 u64 data)
3775{
3776 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3777
3778 return dd->sw_send_dma_eng_err_status_cnt[19];
3779}
3780
3781static u64 access_sdma_header_request_fifo_unc_err_cnt(
3782 const struct cntr_entry *entry,
3783 void *context, int vl, int mode, u64 data)
3784{
3785 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3786
3787 return dd->sw_send_dma_eng_err_status_cnt[18];
3788}
3789
3790static u64 access_sdma_header_storage_unc_err_cnt(
3791 const struct cntr_entry *entry,
3792 void *context, int vl, int mode, u64 data)
3793{
3794 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3795
3796 return dd->sw_send_dma_eng_err_status_cnt[17];
3797}
3798
3799static u64 access_sdma_packet_tracking_unc_err_cnt(
3800 const struct cntr_entry *entry,
3801 void *context, int vl, int mode, u64 data)
3802{
3803 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3804
3805 return dd->sw_send_dma_eng_err_status_cnt[16];
3806}
3807
3808static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3809 void *context, int vl, int mode,
3810 u64 data)
3811{
3812 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3813
3814 return dd->sw_send_dma_eng_err_status_cnt[15];
3815}
3816
3817static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3818 void *context, int vl, int mode,
3819 u64 data)
3820{
3821 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3822
3823 return dd->sw_send_dma_eng_err_status_cnt[14];
3824}
3825
3826static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3827 void *context, int vl, int mode,
3828 u64 data)
3829{
3830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3831
3832 return dd->sw_send_dma_eng_err_status_cnt[13];
3833}
3834
3835static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3836 void *context, int vl, int mode,
3837 u64 data)
3838{
3839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3840
3841 return dd->sw_send_dma_eng_err_status_cnt[12];
3842}
3843
3844static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3845 void *context, int vl, int mode,
3846 u64 data)
3847{
3848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3849
3850 return dd->sw_send_dma_eng_err_status_cnt[11];
3851}
3852
3853static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3854 void *context, int vl, int mode,
3855 u64 data)
3856{
3857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3858
3859 return dd->sw_send_dma_eng_err_status_cnt[10];
3860}
3861
3862static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3863 void *context, int vl, int mode,
3864 u64 data)
3865{
3866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3867
3868 return dd->sw_send_dma_eng_err_status_cnt[9];
3869}
3870
3871static u64 access_sdma_packet_desc_overflow_err_cnt(
3872 const struct cntr_entry *entry,
3873 void *context, int vl, int mode, u64 data)
3874{
3875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3876
3877 return dd->sw_send_dma_eng_err_status_cnt[8];
3878}
3879
3880static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3881 void *context, int vl,
3882 int mode, u64 data)
3883{
3884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3885
3886 return dd->sw_send_dma_eng_err_status_cnt[7];
3887}
3888
3889static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3890 void *context, int vl, int mode, u64 data)
3891{
3892 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3893
3894 return dd->sw_send_dma_eng_err_status_cnt[6];
3895}
3896
3897static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3898 void *context, int vl, int mode,
3899 u64 data)
3900{
3901 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3902
3903 return dd->sw_send_dma_eng_err_status_cnt[5];
3904}
3905
3906static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3907 void *context, int vl, int mode,
3908 u64 data)
3909{
3910 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3911
3912 return dd->sw_send_dma_eng_err_status_cnt[4];
3913}
3914
3915static u64 access_sdma_tail_out_of_bounds_err_cnt(
3916 const struct cntr_entry *entry,
3917 void *context, int vl, int mode, u64 data)
3918{
3919 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3920
3921 return dd->sw_send_dma_eng_err_status_cnt[3];
3922}
3923
3924static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3925 void *context, int vl, int mode,
3926 u64 data)
3927{
3928 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3929
3930 return dd->sw_send_dma_eng_err_status_cnt[2];
3931}
3932
3933static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3934 void *context, int vl, int mode,
3935 u64 data)
3936{
3937 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3938
3939 return dd->sw_send_dma_eng_err_status_cnt[1];
3940}
3941
3942static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3943 void *context, int vl, int mode,
3944 u64 data)
3945{
3946 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3947
3948 return dd->sw_send_dma_eng_err_status_cnt[0];
3949}
3950
Mike Marciniszyn77241052015-07-30 15:17:43 -04003951#define def_access_sw_cpu(cntr) \
3952static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3953 void *context, int vl, int mode, u64 data) \
3954{ \
3955 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
Dennis Dalessandro4eb06882016-01-19 14:42:39 -08003956 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3957 ppd->ibport_data.rvp.cntr, vl, \
Mike Marciniszyn77241052015-07-30 15:17:43 -04003958 mode, data); \
3959}
3960
3961def_access_sw_cpu(rc_acks);
3962def_access_sw_cpu(rc_qacks);
3963def_access_sw_cpu(rc_delayed_comp);
3964
3965#define def_access_ibp_counter(cntr) \
3966static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3967 void *context, int vl, int mode, u64 data) \
3968{ \
3969 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3970 \
3971 if (vl != CNTR_INVALID_VL) \
3972 return 0; \
3973 \
Dennis Dalessandro4eb06882016-01-19 14:42:39 -08003974 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
Mike Marciniszyn77241052015-07-30 15:17:43 -04003975 mode, data); \
3976}
3977
3978def_access_ibp_counter(loop_pkts);
3979def_access_ibp_counter(rc_resends);
3980def_access_ibp_counter(rnr_naks);
3981def_access_ibp_counter(other_naks);
3982def_access_ibp_counter(rc_timeouts);
3983def_access_ibp_counter(pkt_drops);
3984def_access_ibp_counter(dmawait);
3985def_access_ibp_counter(rc_seqnak);
3986def_access_ibp_counter(rc_dupreq);
3987def_access_ibp_counter(rdma_seq);
3988def_access_ibp_counter(unaligned);
3989def_access_ibp_counter(seq_naks);
3990
3991static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
3992[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
3993[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
3994 CNTR_NORMAL),
3995[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
3996 CNTR_NORMAL),
3997[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
3998 RCV_TID_FLOW_GEN_MISMATCH_CNT,
3999 CNTR_NORMAL),
Mike Marciniszyn77241052015-07-30 15:17:43 -04004000[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4001 CNTR_NORMAL),
4002[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4003 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4004[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4005 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4006[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4007 CNTR_NORMAL),
4008[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4009 CNTR_NORMAL),
4010[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4011 CNTR_NORMAL),
4012[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4013 CNTR_NORMAL),
4014[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4015 CNTR_NORMAL),
4016[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4017 CNTR_NORMAL),
4018[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4019 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4020[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4021 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4022[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4023 CNTR_SYNTH),
4024[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
4025[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4026 CNTR_SYNTH),
4027[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4028 CNTR_SYNTH),
4029[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4030 CNTR_SYNTH),
4031[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4032 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4033[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4034 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4035 CNTR_SYNTH),
4036[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4037 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4038[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4039 CNTR_SYNTH),
4040[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4041 CNTR_SYNTH),
4042[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4043 CNTR_SYNTH),
4044[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4045 CNTR_SYNTH),
4046[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4047 CNTR_SYNTH),
4048[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4049 CNTR_SYNTH),
4050[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4051 CNTR_SYNTH),
4052[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4053 CNTR_SYNTH | CNTR_VL),
4054[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4055 CNTR_SYNTH | CNTR_VL),
4056[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4057[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4058 CNTR_SYNTH | CNTR_VL),
4059[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4060[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4061 CNTR_SYNTH | CNTR_VL),
4062[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4063 CNTR_SYNTH),
4064[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4065 CNTR_SYNTH | CNTR_VL),
4066[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4067 CNTR_SYNTH),
4068[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4069 CNTR_SYNTH | CNTR_VL),
4070[C_DC_TOTAL_CRC] =
4071 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4072 CNTR_SYNTH),
4073[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4074 CNTR_SYNTH),
4075[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4076 CNTR_SYNTH),
4077[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4078 CNTR_SYNTH),
4079[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4080 CNTR_SYNTH),
4081[C_DC_CRC_MULT_LN] =
4082 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4083 CNTR_SYNTH),
4084[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4085 CNTR_SYNTH),
4086[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4087 CNTR_SYNTH),
4088[C_DC_SEQ_CRC_CNT] =
4089 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4090 CNTR_SYNTH),
4091[C_DC_ESC0_ONLY_CNT] =
4092 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4093 CNTR_SYNTH),
4094[C_DC_ESC0_PLUS1_CNT] =
4095 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4096 CNTR_SYNTH),
4097[C_DC_ESC0_PLUS2_CNT] =
4098 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4099 CNTR_SYNTH),
4100[C_DC_REINIT_FROM_PEER_CNT] =
4101 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4102 CNTR_SYNTH),
4103[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4104 CNTR_SYNTH),
4105[C_DC_MISC_FLG_CNT] =
4106 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4107 CNTR_SYNTH),
4108[C_DC_PRF_GOOD_LTP_CNT] =
4109 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4110[C_DC_PRF_ACCEPTED_LTP_CNT] =
4111 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4112 CNTR_SYNTH),
4113[C_DC_PRF_RX_FLIT_CNT] =
4114 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4115[C_DC_PRF_TX_FLIT_CNT] =
4116 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4117[C_DC_PRF_CLK_CNTR] =
4118 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4119[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4120 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4121[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4122 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4123 CNTR_SYNTH),
4124[C_DC_PG_STS_TX_SBE_CNT] =
4125 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4126[C_DC_PG_STS_TX_MBE_CNT] =
4127 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4128 CNTR_SYNTH),
4129[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4130 access_sw_cpu_intr),
4131[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4132 access_sw_cpu_rcv_limit),
4133[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4134 access_sw_vtx_wait),
4135[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4136 access_sw_pio_wait),
Mike Marciniszyn14553ca2016-02-14 12:45:36 -08004137[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4138 access_sw_pio_drain),
Mike Marciniszyn77241052015-07-30 15:17:43 -04004139[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4140 access_sw_kmem_wait),
Dean Luickb4219222015-10-26 10:28:35 -04004141[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4142 access_sw_send_schedule),
Vennila Megavannana699c6c2016-01-11 18:30:56 -05004143[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4144 SEND_DMA_DESC_FETCHED_CNT, 0,
4145 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4146 dev_access_u32_csr),
4147[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4148 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4149 access_sde_int_cnt),
4150[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4151 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4152 access_sde_err_cnt),
4153[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4154 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4155 access_sde_idle_int_cnt),
4156[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4157 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4158 access_sde_progress_int_cnt),
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05004159/* MISC_ERR_STATUS */
4160[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4161 CNTR_NORMAL,
4162 access_misc_pll_lock_fail_err_cnt),
4163[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4164 CNTR_NORMAL,
4165 access_misc_mbist_fail_err_cnt),
4166[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4167 CNTR_NORMAL,
4168 access_misc_invalid_eep_cmd_err_cnt),
4169[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4170 CNTR_NORMAL,
4171 access_misc_efuse_done_parity_err_cnt),
4172[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4173 CNTR_NORMAL,
4174 access_misc_efuse_write_err_cnt),
4175[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4176 0, CNTR_NORMAL,
4177 access_misc_efuse_read_bad_addr_err_cnt),
4178[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4179 CNTR_NORMAL,
4180 access_misc_efuse_csr_parity_err_cnt),
4181[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4182 CNTR_NORMAL,
4183 access_misc_fw_auth_failed_err_cnt),
4184[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4185 CNTR_NORMAL,
4186 access_misc_key_mismatch_err_cnt),
4187[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4188 CNTR_NORMAL,
4189 access_misc_sbus_write_failed_err_cnt),
4190[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4191 CNTR_NORMAL,
4192 access_misc_csr_write_bad_addr_err_cnt),
4193[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4194 CNTR_NORMAL,
4195 access_misc_csr_read_bad_addr_err_cnt),
4196[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4197 CNTR_NORMAL,
4198 access_misc_csr_parity_err_cnt),
4199/* CceErrStatus */
4200[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4201 CNTR_NORMAL,
4202 access_sw_cce_err_status_aggregated_cnt),
4203[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4204 CNTR_NORMAL,
4205 access_cce_msix_csr_parity_err_cnt),
4206[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4207 CNTR_NORMAL,
4208 access_cce_int_map_unc_err_cnt),
4209[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4210 CNTR_NORMAL,
4211 access_cce_int_map_cor_err_cnt),
4212[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4213 CNTR_NORMAL,
4214 access_cce_msix_table_unc_err_cnt),
4215[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4216 CNTR_NORMAL,
4217 access_cce_msix_table_cor_err_cnt),
4218[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4219 0, CNTR_NORMAL,
4220 access_cce_rxdma_conv_fifo_parity_err_cnt),
4221[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4222 0, CNTR_NORMAL,
4223 access_cce_rcpl_async_fifo_parity_err_cnt),
4224[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4225 CNTR_NORMAL,
4226 access_cce_seg_write_bad_addr_err_cnt),
4227[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4228 CNTR_NORMAL,
4229 access_cce_seg_read_bad_addr_err_cnt),
4230[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4231 CNTR_NORMAL,
4232 access_la_triggered_cnt),
4233[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4234 CNTR_NORMAL,
4235 access_cce_trgt_cpl_timeout_err_cnt),
4236[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4237 CNTR_NORMAL,
4238 access_pcic_receive_parity_err_cnt),
4239[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4240 CNTR_NORMAL,
4241 access_pcic_transmit_back_parity_err_cnt),
4242[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4243 0, CNTR_NORMAL,
4244 access_pcic_transmit_front_parity_err_cnt),
4245[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4246 CNTR_NORMAL,
4247 access_pcic_cpl_dat_q_unc_err_cnt),
4248[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4249 CNTR_NORMAL,
4250 access_pcic_cpl_hd_q_unc_err_cnt),
4251[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4252 CNTR_NORMAL,
4253 access_pcic_post_dat_q_unc_err_cnt),
4254[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4255 CNTR_NORMAL,
4256 access_pcic_post_hd_q_unc_err_cnt),
4257[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4258 CNTR_NORMAL,
4259 access_pcic_retry_sot_mem_unc_err_cnt),
4260[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4261 CNTR_NORMAL,
4262 access_pcic_retry_mem_unc_err),
4263[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4264 CNTR_NORMAL,
4265 access_pcic_n_post_dat_q_parity_err_cnt),
4266[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4267 CNTR_NORMAL,
4268 access_pcic_n_post_h_q_parity_err_cnt),
4269[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4270 CNTR_NORMAL,
4271 access_pcic_cpl_dat_q_cor_err_cnt),
4272[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4273 CNTR_NORMAL,
4274 access_pcic_cpl_hd_q_cor_err_cnt),
4275[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4276 CNTR_NORMAL,
4277 access_pcic_post_dat_q_cor_err_cnt),
4278[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4279 CNTR_NORMAL,
4280 access_pcic_post_hd_q_cor_err_cnt),
4281[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4282 CNTR_NORMAL,
4283 access_pcic_retry_sot_mem_cor_err_cnt),
4284[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4285 CNTR_NORMAL,
4286 access_pcic_retry_mem_cor_err_cnt),
4287[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4288 "CceCli1AsyncFifoDbgParityError", 0, 0,
4289 CNTR_NORMAL,
4290 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4291[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4292 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4293 CNTR_NORMAL,
4294 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4295 ),
4296[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4297 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4298 CNTR_NORMAL,
4299 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4300[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4301 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4302 CNTR_NORMAL,
4303 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4304[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4305 0, CNTR_NORMAL,
4306 access_cce_cli2_async_fifo_parity_err_cnt),
4307[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4308 CNTR_NORMAL,
4309 access_cce_csr_cfg_bus_parity_err_cnt),
4310[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4311 0, CNTR_NORMAL,
4312 access_cce_cli0_async_fifo_parity_err_cnt),
4313[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4314 CNTR_NORMAL,
4315 access_cce_rspd_data_parity_err_cnt),
4316[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4317 CNTR_NORMAL,
4318 access_cce_trgt_access_err_cnt),
4319[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4320 0, CNTR_NORMAL,
4321 access_cce_trgt_async_fifo_parity_err_cnt),
4322[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4323 CNTR_NORMAL,
4324 access_cce_csr_write_bad_addr_err_cnt),
4325[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4326 CNTR_NORMAL,
4327 access_cce_csr_read_bad_addr_err_cnt),
4328[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4329 CNTR_NORMAL,
4330 access_ccs_csr_parity_err_cnt),
4331
4332/* RcvErrStatus */
4333[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4334 CNTR_NORMAL,
4335 access_rx_csr_parity_err_cnt),
4336[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4337 CNTR_NORMAL,
4338 access_rx_csr_write_bad_addr_err_cnt),
4339[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4340 CNTR_NORMAL,
4341 access_rx_csr_read_bad_addr_err_cnt),
4342[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4343 CNTR_NORMAL,
4344 access_rx_dma_csr_unc_err_cnt),
4345[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4346 CNTR_NORMAL,
4347 access_rx_dma_dq_fsm_encoding_err_cnt),
4348[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4349 CNTR_NORMAL,
4350 access_rx_dma_eq_fsm_encoding_err_cnt),
4351[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4352 CNTR_NORMAL,
4353 access_rx_dma_csr_parity_err_cnt),
4354[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4355 CNTR_NORMAL,
4356 access_rx_rbuf_data_cor_err_cnt),
4357[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4358 CNTR_NORMAL,
4359 access_rx_rbuf_data_unc_err_cnt),
4360[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4361 CNTR_NORMAL,
4362 access_rx_dma_data_fifo_rd_cor_err_cnt),
4363[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4364 CNTR_NORMAL,
4365 access_rx_dma_data_fifo_rd_unc_err_cnt),
4366[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4367 CNTR_NORMAL,
4368 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4369[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4370 CNTR_NORMAL,
4371 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4372[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4373 CNTR_NORMAL,
4374 access_rx_rbuf_desc_part2_cor_err_cnt),
4375[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4376 CNTR_NORMAL,
4377 access_rx_rbuf_desc_part2_unc_err_cnt),
4378[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4379 CNTR_NORMAL,
4380 access_rx_rbuf_desc_part1_cor_err_cnt),
4381[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4382 CNTR_NORMAL,
4383 access_rx_rbuf_desc_part1_unc_err_cnt),
4384[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4385 CNTR_NORMAL,
4386 access_rx_hq_intr_fsm_err_cnt),
4387[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4388 CNTR_NORMAL,
4389 access_rx_hq_intr_csr_parity_err_cnt),
4390[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4391 CNTR_NORMAL,
4392 access_rx_lookup_csr_parity_err_cnt),
4393[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4394 CNTR_NORMAL,
4395 access_rx_lookup_rcv_array_cor_err_cnt),
4396[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4397 CNTR_NORMAL,
4398 access_rx_lookup_rcv_array_unc_err_cnt),
4399[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4400 0, CNTR_NORMAL,
4401 access_rx_lookup_des_part2_parity_err_cnt),
4402[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4403 0, CNTR_NORMAL,
4404 access_rx_lookup_des_part1_unc_cor_err_cnt),
4405[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4406 CNTR_NORMAL,
4407 access_rx_lookup_des_part1_unc_err_cnt),
4408[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rx_rbuf_next_free_buf_cor_err_cnt),
4411[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4412 CNTR_NORMAL,
4413 access_rx_rbuf_next_free_buf_unc_err_cnt),
4414[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4415 "RxRbufFlInitWrAddrParityErr", 0, 0,
4416 CNTR_NORMAL,
4417 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4418[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4419 0, CNTR_NORMAL,
4420 access_rx_rbuf_fl_initdone_parity_err_cnt),
4421[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4422 0, CNTR_NORMAL,
4423 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4424[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4425 CNTR_NORMAL,
4426 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4427[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4428 CNTR_NORMAL,
4429 access_rx_rbuf_empty_err_cnt),
4430[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4431 CNTR_NORMAL,
4432 access_rx_rbuf_full_err_cnt),
4433[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4434 CNTR_NORMAL,
4435 access_rbuf_bad_lookup_err_cnt),
4436[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4437 CNTR_NORMAL,
4438 access_rbuf_ctx_id_parity_err_cnt),
4439[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4440 CNTR_NORMAL,
4441 access_rbuf_csr_qeopdw_parity_err_cnt),
4442[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4443 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4444 CNTR_NORMAL,
4445 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4446[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4447 "RxRbufCsrQTlPtrParityErr", 0, 0,
4448 CNTR_NORMAL,
4449 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4450[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4451 0, CNTR_NORMAL,
4452 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4453[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4454 0, CNTR_NORMAL,
4455 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4456[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4457 0, 0, CNTR_NORMAL,
4458 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4459[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4460 0, CNTR_NORMAL,
4461 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4462[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4463 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4464 CNTR_NORMAL,
4465 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4466[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4467 0, CNTR_NORMAL,
4468 access_rx_rbuf_block_list_read_cor_err_cnt),
4469[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4470 0, CNTR_NORMAL,
4471 access_rx_rbuf_block_list_read_unc_err_cnt),
4472[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4473 CNTR_NORMAL,
4474 access_rx_rbuf_lookup_des_cor_err_cnt),
4475[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_rx_rbuf_lookup_des_unc_err_cnt),
4478[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4479 "RxRbufLookupDesRegUncCorErr", 0, 0,
4480 CNTR_NORMAL,
4481 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4482[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4483 CNTR_NORMAL,
4484 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4485[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4486 CNTR_NORMAL,
4487 access_rx_rbuf_free_list_cor_err_cnt),
4488[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4489 CNTR_NORMAL,
4490 access_rx_rbuf_free_list_unc_err_cnt),
4491[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4492 CNTR_NORMAL,
4493 access_rx_rcv_fsm_encoding_err_cnt),
4494[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4495 CNTR_NORMAL,
4496 access_rx_dma_flag_cor_err_cnt),
4497[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4498 CNTR_NORMAL,
4499 access_rx_dma_flag_unc_err_cnt),
4500[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4501 CNTR_NORMAL,
4502 access_rx_dc_sop_eop_parity_err_cnt),
4503[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4504 CNTR_NORMAL,
4505 access_rx_rcv_csr_parity_err_cnt),
4506[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4507 CNTR_NORMAL,
4508 access_rx_rcv_qp_map_table_cor_err_cnt),
4509[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4510 CNTR_NORMAL,
4511 access_rx_rcv_qp_map_table_unc_err_cnt),
4512[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4513 CNTR_NORMAL,
4514 access_rx_rcv_data_cor_err_cnt),
4515[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4516 CNTR_NORMAL,
4517 access_rx_rcv_data_unc_err_cnt),
4518[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4519 CNTR_NORMAL,
4520 access_rx_rcv_hdr_cor_err_cnt),
4521[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4522 CNTR_NORMAL,
4523 access_rx_rcv_hdr_unc_err_cnt),
4524[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4525 CNTR_NORMAL,
4526 access_rx_dc_intf_parity_err_cnt),
4527[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4528 CNTR_NORMAL,
4529 access_rx_dma_csr_cor_err_cnt),
4530/* SendPioErrStatus */
4531[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4532 CNTR_NORMAL,
4533 access_pio_pec_sop_head_parity_err_cnt),
4534[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4535 CNTR_NORMAL,
4536 access_pio_pcc_sop_head_parity_err_cnt),
4537[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4538 0, 0, CNTR_NORMAL,
4539 access_pio_last_returned_cnt_parity_err_cnt),
4540[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4541 0, CNTR_NORMAL,
4542 access_pio_current_free_cnt_parity_err_cnt),
4543[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4544 CNTR_NORMAL,
4545 access_pio_reserved_31_err_cnt),
4546[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4547 CNTR_NORMAL,
4548 access_pio_reserved_30_err_cnt),
4549[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4550 CNTR_NORMAL,
4551 access_pio_ppmc_sop_len_err_cnt),
4552[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4553 CNTR_NORMAL,
4554 access_pio_ppmc_bqc_mem_parity_err_cnt),
4555[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4556 CNTR_NORMAL,
4557 access_pio_vl_fifo_parity_err_cnt),
4558[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4559 CNTR_NORMAL,
4560 access_pio_vlf_sop_parity_err_cnt),
4561[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4562 CNTR_NORMAL,
4563 access_pio_vlf_v1_len_parity_err_cnt),
4564[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4565 CNTR_NORMAL,
4566 access_pio_block_qw_count_parity_err_cnt),
4567[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4568 CNTR_NORMAL,
4569 access_pio_write_qw_valid_parity_err_cnt),
4570[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4571 CNTR_NORMAL,
4572 access_pio_state_machine_err_cnt),
4573[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4574 CNTR_NORMAL,
4575 access_pio_write_data_parity_err_cnt),
4576[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4577 CNTR_NORMAL,
4578 access_pio_host_addr_mem_cor_err_cnt),
4579[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4580 CNTR_NORMAL,
4581 access_pio_host_addr_mem_unc_err_cnt),
4582[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4583 CNTR_NORMAL,
4584 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4585[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4586 CNTR_NORMAL,
4587 access_pio_init_sm_in_err_cnt),
4588[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4589 CNTR_NORMAL,
4590 access_pio_ppmc_pbl_fifo_err_cnt),
4591[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4592 0, CNTR_NORMAL,
4593 access_pio_credit_ret_fifo_parity_err_cnt),
4594[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4595 CNTR_NORMAL,
4596 access_pio_v1_len_mem_bank1_cor_err_cnt),
4597[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4598 CNTR_NORMAL,
4599 access_pio_v1_len_mem_bank0_cor_err_cnt),
4600[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4601 CNTR_NORMAL,
4602 access_pio_v1_len_mem_bank1_unc_err_cnt),
4603[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4604 CNTR_NORMAL,
4605 access_pio_v1_len_mem_bank0_unc_err_cnt),
4606[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4607 CNTR_NORMAL,
4608 access_pio_sm_pkt_reset_parity_err_cnt),
4609[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_pio_pkt_evict_fifo_parity_err_cnt),
4612[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4613 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4614 CNTR_NORMAL,
4615 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4616[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4617 CNTR_NORMAL,
4618 access_pio_sbrdctl_crrel_parity_err_cnt),
4619[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4620 CNTR_NORMAL,
4621 access_pio_pec_fifo_parity_err_cnt),
4622[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4623 CNTR_NORMAL,
4624 access_pio_pcc_fifo_parity_err_cnt),
4625[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4626 CNTR_NORMAL,
4627 access_pio_sb_mem_fifo1_err_cnt),
4628[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4629 CNTR_NORMAL,
4630 access_pio_sb_mem_fifo0_err_cnt),
4631[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4632 CNTR_NORMAL,
4633 access_pio_csr_parity_err_cnt),
4634[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4635 CNTR_NORMAL,
4636 access_pio_write_addr_parity_err_cnt),
4637[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4638 CNTR_NORMAL,
4639 access_pio_write_bad_ctxt_err_cnt),
4640/* SendDmaErrStatus */
4641[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4642 0, CNTR_NORMAL,
4643 access_sdma_pcie_req_tracking_cor_err_cnt),
4644[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4645 0, CNTR_NORMAL,
4646 access_sdma_pcie_req_tracking_unc_err_cnt),
4647[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4648 CNTR_NORMAL,
4649 access_sdma_csr_parity_err_cnt),
4650[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4651 CNTR_NORMAL,
4652 access_sdma_rpy_tag_err_cnt),
4653/* SendEgressErrStatus */
4654[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4655 CNTR_NORMAL,
4656 access_tx_read_pio_memory_csr_unc_err_cnt),
4657[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4658 0, CNTR_NORMAL,
4659 access_tx_read_sdma_memory_csr_err_cnt),
4660[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4661 CNTR_NORMAL,
4662 access_tx_egress_fifo_cor_err_cnt),
4663[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4664 CNTR_NORMAL,
4665 access_tx_read_pio_memory_cor_err_cnt),
4666[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4667 CNTR_NORMAL,
4668 access_tx_read_sdma_memory_cor_err_cnt),
4669[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4670 CNTR_NORMAL,
4671 access_tx_sb_hdr_cor_err_cnt),
4672[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4673 CNTR_NORMAL,
4674 access_tx_credit_overrun_err_cnt),
4675[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4676 CNTR_NORMAL,
4677 access_tx_launch_fifo8_cor_err_cnt),
4678[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4679 CNTR_NORMAL,
4680 access_tx_launch_fifo7_cor_err_cnt),
4681[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4682 CNTR_NORMAL,
4683 access_tx_launch_fifo6_cor_err_cnt),
4684[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4685 CNTR_NORMAL,
4686 access_tx_launch_fifo5_cor_err_cnt),
4687[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4688 CNTR_NORMAL,
4689 access_tx_launch_fifo4_cor_err_cnt),
4690[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4691 CNTR_NORMAL,
4692 access_tx_launch_fifo3_cor_err_cnt),
4693[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4694 CNTR_NORMAL,
4695 access_tx_launch_fifo2_cor_err_cnt),
4696[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4697 CNTR_NORMAL,
4698 access_tx_launch_fifo1_cor_err_cnt),
4699[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4700 CNTR_NORMAL,
4701 access_tx_launch_fifo0_cor_err_cnt),
4702[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4703 CNTR_NORMAL,
4704 access_tx_credit_return_vl_err_cnt),
4705[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4706 CNTR_NORMAL,
4707 access_tx_hcrc_insertion_err_cnt),
4708[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4709 CNTR_NORMAL,
4710 access_tx_egress_fifo_unc_err_cnt),
4711[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4712 CNTR_NORMAL,
4713 access_tx_read_pio_memory_unc_err_cnt),
4714[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4715 CNTR_NORMAL,
4716 access_tx_read_sdma_memory_unc_err_cnt),
4717[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4718 CNTR_NORMAL,
4719 access_tx_sb_hdr_unc_err_cnt),
4720[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4721 CNTR_NORMAL,
4722 access_tx_credit_return_partiy_err_cnt),
4723[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4724 0, 0, CNTR_NORMAL,
4725 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4726[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4727 0, 0, CNTR_NORMAL,
4728 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4729[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4730 0, 0, CNTR_NORMAL,
4731 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4732[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4733 0, 0, CNTR_NORMAL,
4734 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4735[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4736 0, 0, CNTR_NORMAL,
4737 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4738[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4739 0, 0, CNTR_NORMAL,
4740 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4741[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4742 0, 0, CNTR_NORMAL,
4743 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4744[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4745 0, 0, CNTR_NORMAL,
4746 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4747[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4748 0, 0, CNTR_NORMAL,
4749 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4750[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4751 0, 0, CNTR_NORMAL,
4752 access_tx_sdma15_disallowed_packet_err_cnt),
4753[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4754 0, 0, CNTR_NORMAL,
4755 access_tx_sdma14_disallowed_packet_err_cnt),
4756[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4757 0, 0, CNTR_NORMAL,
4758 access_tx_sdma13_disallowed_packet_err_cnt),
4759[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4760 0, 0, CNTR_NORMAL,
4761 access_tx_sdma12_disallowed_packet_err_cnt),
4762[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4763 0, 0, CNTR_NORMAL,
4764 access_tx_sdma11_disallowed_packet_err_cnt),
4765[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4766 0, 0, CNTR_NORMAL,
4767 access_tx_sdma10_disallowed_packet_err_cnt),
4768[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4769 0, 0, CNTR_NORMAL,
4770 access_tx_sdma9_disallowed_packet_err_cnt),
4771[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4772 0, 0, CNTR_NORMAL,
4773 access_tx_sdma8_disallowed_packet_err_cnt),
4774[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4775 0, 0, CNTR_NORMAL,
4776 access_tx_sdma7_disallowed_packet_err_cnt),
4777[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4778 0, 0, CNTR_NORMAL,
4779 access_tx_sdma6_disallowed_packet_err_cnt),
4780[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4781 0, 0, CNTR_NORMAL,
4782 access_tx_sdma5_disallowed_packet_err_cnt),
4783[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4784 0, 0, CNTR_NORMAL,
4785 access_tx_sdma4_disallowed_packet_err_cnt),
4786[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4787 0, 0, CNTR_NORMAL,
4788 access_tx_sdma3_disallowed_packet_err_cnt),
4789[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4790 0, 0, CNTR_NORMAL,
4791 access_tx_sdma2_disallowed_packet_err_cnt),
4792[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4793 0, 0, CNTR_NORMAL,
4794 access_tx_sdma1_disallowed_packet_err_cnt),
4795[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4796 0, 0, CNTR_NORMAL,
4797 access_tx_sdma0_disallowed_packet_err_cnt),
4798[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4799 CNTR_NORMAL,
4800 access_tx_config_parity_err_cnt),
4801[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4802 CNTR_NORMAL,
4803 access_tx_sbrd_ctl_csr_parity_err_cnt),
4804[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4805 CNTR_NORMAL,
4806 access_tx_launch_csr_parity_err_cnt),
4807[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4808 CNTR_NORMAL,
4809 access_tx_illegal_vl_err_cnt),
4810[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4811 "TxSbrdCtlStateMachineParityErr", 0, 0,
4812 CNTR_NORMAL,
4813 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4814[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4815 CNTR_NORMAL,
4816 access_egress_reserved_10_err_cnt),
4817[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4818 CNTR_NORMAL,
4819 access_egress_reserved_9_err_cnt),
4820[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4821 0, 0, CNTR_NORMAL,
4822 access_tx_sdma_launch_intf_parity_err_cnt),
4823[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4824 CNTR_NORMAL,
4825 access_tx_pio_launch_intf_parity_err_cnt),
4826[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4827 CNTR_NORMAL,
4828 access_egress_reserved_6_err_cnt),
4829[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4830 CNTR_NORMAL,
4831 access_tx_incorrect_link_state_err_cnt),
4832[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4833 CNTR_NORMAL,
4834 access_tx_linkdown_err_cnt),
4835[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4836 "EgressFifoUnderrunOrParityErr", 0, 0,
4837 CNTR_NORMAL,
4838 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4839[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4840 CNTR_NORMAL,
4841 access_egress_reserved_2_err_cnt),
4842[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4843 CNTR_NORMAL,
4844 access_tx_pkt_integrity_mem_unc_err_cnt),
4845[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4846 CNTR_NORMAL,
4847 access_tx_pkt_integrity_mem_cor_err_cnt),
4848/* SendErrStatus */
4849[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4850 CNTR_NORMAL,
4851 access_send_csr_write_bad_addr_err_cnt),
4852[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4853 CNTR_NORMAL,
4854 access_send_csr_read_bad_addr_err_cnt),
4855[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4856 CNTR_NORMAL,
4857 access_send_csr_parity_cnt),
4858/* SendCtxtErrStatus */
4859[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4860 CNTR_NORMAL,
4861 access_pio_write_out_of_bounds_err_cnt),
4862[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4863 CNTR_NORMAL,
4864 access_pio_write_overflow_err_cnt),
4865[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4866 0, 0, CNTR_NORMAL,
4867 access_pio_write_crosses_boundary_err_cnt),
4868[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4869 CNTR_NORMAL,
4870 access_pio_disallowed_packet_err_cnt),
4871[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4872 CNTR_NORMAL,
4873 access_pio_inconsistent_sop_err_cnt),
4874/* SendDmaEngErrStatus */
4875[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4876 0, 0, CNTR_NORMAL,
4877 access_sdma_header_request_fifo_cor_err_cnt),
4878[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4879 CNTR_NORMAL,
4880 access_sdma_header_storage_cor_err_cnt),
4881[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4882 CNTR_NORMAL,
4883 access_sdma_packet_tracking_cor_err_cnt),
4884[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4885 CNTR_NORMAL,
4886 access_sdma_assembly_cor_err_cnt),
4887[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4888 CNTR_NORMAL,
4889 access_sdma_desc_table_cor_err_cnt),
4890[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4891 0, 0, CNTR_NORMAL,
4892 access_sdma_header_request_fifo_unc_err_cnt),
4893[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4894 CNTR_NORMAL,
4895 access_sdma_header_storage_unc_err_cnt),
4896[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4897 CNTR_NORMAL,
4898 access_sdma_packet_tracking_unc_err_cnt),
4899[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4900 CNTR_NORMAL,
4901 access_sdma_assembly_unc_err_cnt),
4902[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4903 CNTR_NORMAL,
4904 access_sdma_desc_table_unc_err_cnt),
4905[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4906 CNTR_NORMAL,
4907 access_sdma_timeout_err_cnt),
4908[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4909 CNTR_NORMAL,
4910 access_sdma_header_length_err_cnt),
4911[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4912 CNTR_NORMAL,
4913 access_sdma_header_address_err_cnt),
4914[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4915 CNTR_NORMAL,
4916 access_sdma_header_select_err_cnt),
4917[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4918 CNTR_NORMAL,
4919 access_sdma_reserved_9_err_cnt),
4920[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4921 CNTR_NORMAL,
4922 access_sdma_packet_desc_overflow_err_cnt),
4923[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4924 CNTR_NORMAL,
4925 access_sdma_length_mismatch_err_cnt),
4926[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4927 CNTR_NORMAL,
4928 access_sdma_halt_err_cnt),
4929[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4930 CNTR_NORMAL,
4931 access_sdma_mem_read_err_cnt),
4932[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4933 CNTR_NORMAL,
4934 access_sdma_first_desc_err_cnt),
4935[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4936 CNTR_NORMAL,
4937 access_sdma_tail_out_of_bounds_err_cnt),
4938[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4939 CNTR_NORMAL,
4940 access_sdma_too_long_err_cnt),
4941[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4942 CNTR_NORMAL,
4943 access_sdma_gen_mismatch_err_cnt),
4944[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4945 CNTR_NORMAL,
4946 access_sdma_wrong_dw_err_cnt),
Mike Marciniszyn77241052015-07-30 15:17:43 -04004947};
4948
4949static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4950[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4951 CNTR_NORMAL),
4952[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4953 CNTR_NORMAL),
4954[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4955 CNTR_NORMAL),
4956[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4957 CNTR_NORMAL),
4958[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4959 CNTR_NORMAL),
4960[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4961 CNTR_NORMAL),
4962[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4963 CNTR_NORMAL),
4964[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4965[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4966[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4967[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4968 CNTR_SYNTH | CNTR_VL),
4969[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4970 CNTR_SYNTH | CNTR_VL),
4971[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4972 CNTR_SYNTH | CNTR_VL),
4973[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
4974[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
4975[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4976 access_sw_link_dn_cnt),
4977[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4978 access_sw_link_up_cnt),
Dean Luick6d014532015-12-01 15:38:23 -05004979[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
4980 access_sw_unknown_frame_cnt),
Mike Marciniszyn77241052015-07-30 15:17:43 -04004981[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4982 access_sw_xmit_discards),
4983[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
4984 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
4985 access_sw_xmit_discards),
4986[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
4987 access_xmit_constraint_errs),
4988[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
4989 access_rcv_constraint_errs),
4990[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
4991[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
4992[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
4993[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
4994[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
4995[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
4996[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
4997[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
4998[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
4999[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5000[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5001[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5002[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5003 access_sw_cpu_rc_acks),
5004[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5005 access_sw_cpu_rc_qacks),
5006[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5007 access_sw_cpu_rc_delayed_comp),
5008[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5009[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5010[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5011[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5012[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5013[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5014[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5015[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5016[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5017[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5018[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5019[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5020[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5021[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5022[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5023[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5024[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5025[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5026[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5027[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5028[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5029[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5030[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5031[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5032[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5033[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5034[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5035[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5036[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5037[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5038[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5039[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5040[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5041[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5042[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5043[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5044[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5045[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5046[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5047[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5048[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5049[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5050[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5051[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5052[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5053[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5054[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5055[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5056[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5057[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5058[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5059[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5060[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5061[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5062[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5063[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5064[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5065[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5066[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5067[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5068[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5069[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5070[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5071[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5072[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5073[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5074[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5075[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5076[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5077[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5078[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5079[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5080[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5081[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5082[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5083[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5084[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5085[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5086[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5087[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5088};
5089
5090/* ======================================================================== */
5091
Mike Marciniszyn77241052015-07-30 15:17:43 -04005092/* return true if this is chip revision revision a */
5093int is_ax(struct hfi1_devdata *dd)
5094{
5095 u8 chip_rev_minor =
5096 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5097 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5098 return (chip_rev_minor & 0xf0) == 0;
5099}
5100
5101/* return true if this is chip revision revision b */
5102int is_bx(struct hfi1_devdata *dd)
5103{
5104 u8 chip_rev_minor =
5105 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5106 & CCE_REVISION_CHIP_REV_MINOR_MASK;
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05005107 return (chip_rev_minor & 0xF0) == 0x10;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005108}
5109
5110/*
5111 * Append string s to buffer buf. Arguments curp and len are the current
5112 * position and remaining length, respectively.
5113 *
5114 * return 0 on success, 1 on out of room
5115 */
5116static int append_str(char *buf, char **curp, int *lenp, const char *s)
5117{
5118 char *p = *curp;
5119 int len = *lenp;
5120 int result = 0; /* success */
5121 char c;
5122
5123 /* add a comma, if first in the buffer */
5124 if (p != buf) {
5125 if (len == 0) {
5126 result = 1; /* out of room */
5127 goto done;
5128 }
5129 *p++ = ',';
5130 len--;
5131 }
5132
5133 /* copy the string */
5134 while ((c = *s++) != 0) {
5135 if (len == 0) {
5136 result = 1; /* out of room */
5137 goto done;
5138 }
5139 *p++ = c;
5140 len--;
5141 }
5142
5143done:
5144 /* write return values */
5145 *curp = p;
5146 *lenp = len;
5147
5148 return result;
5149}
5150
5151/*
5152 * Using the given flag table, print a comma separated string into
5153 * the buffer. End in '*' if the buffer is too short.
5154 */
5155static char *flag_string(char *buf, int buf_len, u64 flags,
5156 struct flag_table *table, int table_size)
5157{
5158 char extra[32];
5159 char *p = buf;
5160 int len = buf_len;
5161 int no_room = 0;
5162 int i;
5163
5164 /* make sure there is at least 2 so we can form "*" */
5165 if (len < 2)
5166 return "";
5167
5168 len--; /* leave room for a nul */
5169 for (i = 0; i < table_size; i++) {
5170 if (flags & table[i].flag) {
5171 no_room = append_str(buf, &p, &len, table[i].str);
5172 if (no_room)
5173 break;
5174 flags &= ~table[i].flag;
5175 }
5176 }
5177
5178 /* any undocumented bits left? */
5179 if (!no_room && flags) {
5180 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5181 no_room = append_str(buf, &p, &len, extra);
5182 }
5183
5184 /* add * if ran out of room */
5185 if (no_room) {
5186 /* may need to back up to add space for a '*' */
5187 if (len == 0)
5188 --p;
5189 *p++ = '*';
5190 }
5191
5192 /* add final nul - space already allocated above */
5193 *p = 0;
5194 return buf;
5195}
5196
5197/* first 8 CCE error interrupt source names */
5198static const char * const cce_misc_names[] = {
5199 "CceErrInt", /* 0 */
5200 "RxeErrInt", /* 1 */
5201 "MiscErrInt", /* 2 */
5202 "Reserved3", /* 3 */
5203 "PioErrInt", /* 4 */
5204 "SDmaErrInt", /* 5 */
5205 "EgressErrInt", /* 6 */
5206 "TxeErrInt" /* 7 */
5207};
5208
5209/*
5210 * Return the miscellaneous error interrupt name.
5211 */
5212static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5213{
5214 if (source < ARRAY_SIZE(cce_misc_names))
5215 strncpy(buf, cce_misc_names[source], bsize);
5216 else
5217 snprintf(buf,
5218 bsize,
5219 "Reserved%u",
5220 source + IS_GENERAL_ERR_START);
5221
5222 return buf;
5223}
5224
5225/*
5226 * Return the SDMA engine error interrupt name.
5227 */
5228static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5229{
5230 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5231 return buf;
5232}
5233
5234/*
5235 * Return the send context error interrupt name.
5236 */
5237static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5238{
5239 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5240 return buf;
5241}
5242
5243static const char * const various_names[] = {
5244 "PbcInt",
5245 "GpioAssertInt",
5246 "Qsfp1Int",
5247 "Qsfp2Int",
5248 "TCritInt"
5249};
5250
5251/*
5252 * Return the various interrupt name.
5253 */
5254static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5255{
5256 if (source < ARRAY_SIZE(various_names))
5257 strncpy(buf, various_names[source], bsize);
5258 else
Jubin John8638b772016-02-14 20:19:24 -08005259 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
Mike Marciniszyn77241052015-07-30 15:17:43 -04005260 return buf;
5261}
5262
5263/*
5264 * Return the DC interrupt name.
5265 */
5266static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5267{
5268 static const char * const dc_int_names[] = {
5269 "common",
5270 "lcb",
5271 "8051",
5272 "lbm" /* local block merge */
5273 };
5274
5275 if (source < ARRAY_SIZE(dc_int_names))
5276 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5277 else
5278 snprintf(buf, bsize, "DCInt%u", source);
5279 return buf;
5280}
5281
5282static const char * const sdma_int_names[] = {
5283 "SDmaInt",
5284 "SdmaIdleInt",
5285 "SdmaProgressInt",
5286};
5287
5288/*
5289 * Return the SDMA engine interrupt name.
5290 */
5291static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5292{
5293 /* what interrupt */
5294 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5295 /* which engine */
5296 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5297
5298 if (likely(what < 3))
5299 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5300 else
5301 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5302 return buf;
5303}
5304
5305/*
5306 * Return the receive available interrupt name.
5307 */
5308static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5309{
5310 snprintf(buf, bsize, "RcvAvailInt%u", source);
5311 return buf;
5312}
5313
5314/*
5315 * Return the receive urgent interrupt name.
5316 */
5317static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5318{
5319 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5320 return buf;
5321}
5322
5323/*
5324 * Return the send credit interrupt name.
5325 */
5326static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5327{
5328 snprintf(buf, bsize, "SendCreditInt%u", source);
5329 return buf;
5330}
5331
5332/*
5333 * Return the reserved interrupt name.
5334 */
5335static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5336{
5337 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5338 return buf;
5339}
5340
5341static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5342{
5343 return flag_string(buf, buf_len, flags,
5344 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
5345}
5346
5347static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5348{
5349 return flag_string(buf, buf_len, flags,
5350 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
5351}
5352
5353static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5354{
5355 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5356 ARRAY_SIZE(misc_err_status_flags));
5357}
5358
5359static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5360{
5361 return flag_string(buf, buf_len, flags,
5362 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
5363}
5364
5365static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5366{
5367 return flag_string(buf, buf_len, flags,
5368 sdma_err_status_flags,
5369 ARRAY_SIZE(sdma_err_status_flags));
5370}
5371
5372static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5373{
5374 return flag_string(buf, buf_len, flags,
5375 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
5376}
5377
5378static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5379{
5380 return flag_string(buf, buf_len, flags,
5381 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
5382}
5383
5384static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5385{
5386 return flag_string(buf, buf_len, flags,
5387 send_err_status_flags,
5388 ARRAY_SIZE(send_err_status_flags));
5389}
5390
5391static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5392{
5393 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005394 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005395
5396 /*
5397 * For most these errors, there is nothing that can be done except
5398 * report or record it.
5399 */
5400 dd_dev_info(dd, "CCE Error: %s\n",
5401 cce_err_status_string(buf, sizeof(buf), reg));
5402
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05005403 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5404 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04005405 /* this error requires a manual drop into SPC freeze mode */
5406 /* then a fix up */
5407 start_freeze_handling(dd->pport, FREEZE_SELF);
5408 }
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005409
5410 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5411 if (reg & (1ull << i)) {
5412 incr_cntr64(&dd->cce_err_status_cnt[i]);
5413 /* maintain a counter over all cce_err_status errors */
5414 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5415 }
5416 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005417}
5418
5419/*
5420 * Check counters for receive errors that do not have an interrupt
5421 * associated with them.
5422 */
5423#define RCVERR_CHECK_TIME 10
5424static void update_rcverr_timer(unsigned long opaque)
5425{
5426 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5427 struct hfi1_pportdata *ppd = dd->pport;
5428 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5429
5430 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5431 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5432 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5433 set_link_down_reason(ppd,
5434 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5435 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5436 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5437 }
Jubin John50e5dcb2016-02-14 20:19:41 -08005438 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005439
5440 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5441}
5442
5443static int init_rcverr(struct hfi1_devdata *dd)
5444{
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05305445 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04005446 /* Assume the hardware counter has been reset */
5447 dd->rcv_ovfl_cnt = 0;
5448 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5449}
5450
5451static void free_rcverr(struct hfi1_devdata *dd)
5452{
5453 if (dd->rcverr_timer.data)
5454 del_timer_sync(&dd->rcverr_timer);
5455 dd->rcverr_timer.data = 0;
5456}
5457
5458static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5459{
5460 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005461 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005462
5463 dd_dev_info(dd, "Receive Error: %s\n",
5464 rxe_err_status_string(buf, sizeof(buf), reg));
5465
5466 if (reg & ALL_RXE_FREEZE_ERR) {
5467 int flags = 0;
5468
5469 /*
5470 * Freeze mode recovery is disabled for the errors
5471 * in RXE_FREEZE_ABORT_MASK
5472 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05005473 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
Mike Marciniszyn77241052015-07-30 15:17:43 -04005474 flags = FREEZE_ABORT;
5475
5476 start_freeze_handling(dd->pport, flags);
5477 }
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005478
5479 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5480 if (reg & (1ull << i))
5481 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5482 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005483}
5484
5485static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5486{
5487 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005488 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005489
5490 dd_dev_info(dd, "Misc Error: %s",
5491 misc_err_status_string(buf, sizeof(buf), reg));
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005492 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5493 if (reg & (1ull << i))
5494 incr_cntr64(&dd->misc_err_status_cnt[i]);
5495 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005496}
5497
5498static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5499{
5500 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005501 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005502
5503 dd_dev_info(dd, "PIO Error: %s\n",
5504 pio_err_status_string(buf, sizeof(buf), reg));
5505
5506 if (reg & ALL_PIO_FREEZE_ERR)
5507 start_freeze_handling(dd->pport, 0);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005508
5509 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5510 if (reg & (1ull << i))
5511 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5512 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005513}
5514
5515static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5516{
5517 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005518 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005519
5520 dd_dev_info(dd, "SDMA Error: %s\n",
5521 sdma_err_status_string(buf, sizeof(buf), reg));
5522
5523 if (reg & ALL_SDMA_FREEZE_ERR)
5524 start_freeze_handling(dd->pport, 0);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005525
5526 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5527 if (reg & (1ull << i))
5528 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5529 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005530}
5531
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005532static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5533{
5534 incr_cntr64(&ppd->port_xmit_discards);
5535}
5536
Mike Marciniszyn77241052015-07-30 15:17:43 -04005537static void count_port_inactive(struct hfi1_devdata *dd)
5538{
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005539 __count_port_discards(dd->pport);
Mike Marciniszyn77241052015-07-30 15:17:43 -04005540}
5541
5542/*
5543 * We have had a "disallowed packet" error during egress. Determine the
5544 * integrity check which failed, and update relevant error counter, etc.
5545 *
5546 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5547 * bit of state per integrity check, and so we can miss the reason for an
5548 * egress error if more than one packet fails the same integrity check
5549 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5550 */
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005551static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5552 int vl)
Mike Marciniszyn77241052015-07-30 15:17:43 -04005553{
5554 struct hfi1_pportdata *ppd = dd->pport;
5555 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5556 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5557 char buf[96];
5558
5559 /* clear down all observed info as quickly as possible after read */
5560 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5561
5562 dd_dev_info(dd,
5563 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5564 info, egress_err_info_string(buf, sizeof(buf), info), src);
5565
5566 /* Eventually add other counters for each bit */
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005567 if (info & PORT_DISCARD_EGRESS_ERRS) {
5568 int weight, i;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005569
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005570 /*
5571 * Count all, in case multiple bits are set. Reminder:
5572 * since there is only one info register for many sources,
5573 * these may be attributed to the wrong VL if they occur
5574 * too close together.
5575 */
5576 weight = hweight64(info);
5577 for (i = 0; i < weight; i++) {
5578 __count_port_discards(ppd);
5579 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5580 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5581 else if (vl == 15)
5582 incr_cntr64(&ppd->port_xmit_discards_vl
5583 [C_VL_15]);
5584 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005585 }
5586}
5587
5588/*
5589 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5590 * register. Does it represent a 'port inactive' error?
5591 */
5592static inline int port_inactive_err(u64 posn)
5593{
5594 return (posn >= SEES(TX_LINKDOWN) &&
5595 posn <= SEES(TX_INCORRECT_LINK_STATE));
5596}
5597
5598/*
5599 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5600 * register. Does it represent a 'disallowed packet' error?
5601 */
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005602static inline int disallowed_pkt_err(int posn)
Mike Marciniszyn77241052015-07-30 15:17:43 -04005603{
5604 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5605 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5606}
5607
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005608/*
5609 * Input value is a bit position of one of the SDMA engine disallowed
5610 * packet errors. Return which engine. Use of this must be guarded by
5611 * disallowed_pkt_err().
5612 */
5613static inline int disallowed_pkt_engine(int posn)
5614{
5615 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5616}
5617
5618/*
5619 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5620 * be done.
5621 */
5622static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5623{
5624 struct sdma_vl_map *m;
5625 int vl;
5626
5627 /* range check */
5628 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5629 return -1;
5630
5631 rcu_read_lock();
5632 m = rcu_dereference(dd->sdma_map);
5633 vl = m->engine_to_vl[engine];
5634 rcu_read_unlock();
5635
5636 return vl;
5637}
5638
5639/*
5640 * Translate the send context (sofware index) into a VL. Return -1 if the
5641 * translation cannot be done.
5642 */
5643static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5644{
5645 struct send_context_info *sci;
5646 struct send_context *sc;
5647 int i;
5648
5649 sci = &dd->send_contexts[sw_index];
5650
5651 /* there is no information for user (PSM) and ack contexts */
5652 if (sci->type != SC_KERNEL)
5653 return -1;
5654
5655 sc = sci->sc;
5656 if (!sc)
5657 return -1;
5658 if (dd->vld[15].sc == sc)
5659 return 15;
5660 for (i = 0; i < num_vls; i++)
5661 if (dd->vld[i].sc == sc)
5662 return i;
5663
5664 return -1;
5665}
5666
Mike Marciniszyn77241052015-07-30 15:17:43 -04005667static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5668{
5669 u64 reg_copy = reg, handled = 0;
5670 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005671 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005672
5673 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5674 start_freeze_handling(dd->pport, 0);
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005675 else if (is_ax(dd) &&
5676 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5677 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
Mike Marciniszyn77241052015-07-30 15:17:43 -04005678 start_freeze_handling(dd->pport, 0);
5679
5680 while (reg_copy) {
5681 int posn = fls64(reg_copy);
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005682 /* fls64() returns a 1-based offset, we want it zero based */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005683 int shift = posn - 1;
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005684 u64 mask = 1ULL << shift;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005685
5686 if (port_inactive_err(shift)) {
5687 count_port_inactive(dd);
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005688 handled |= mask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005689 } else if (disallowed_pkt_err(shift)) {
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005690 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5691
5692 handle_send_egress_err_info(dd, vl);
5693 handled |= mask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005694 }
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005695 reg_copy &= ~mask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005696 }
5697
5698 reg &= ~handled;
5699
5700 if (reg)
5701 dd_dev_info(dd, "Egress Error: %s\n",
5702 egress_err_status_string(buf, sizeof(buf), reg));
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005703
5704 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5705 if (reg & (1ull << i))
5706 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5707 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005708}
5709
5710static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5711{
5712 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005713 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005714
5715 dd_dev_info(dd, "Send Error: %s\n",
5716 send_err_status_string(buf, sizeof(buf), reg));
5717
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005718 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5719 if (reg & (1ull << i))
5720 incr_cntr64(&dd->send_err_status_cnt[i]);
5721 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005722}
5723
5724/*
5725 * The maximum number of times the error clear down will loop before
5726 * blocking a repeating error. This value is arbitrary.
5727 */
5728#define MAX_CLEAR_COUNT 20
5729
5730/*
5731 * Clear and handle an error register. All error interrupts are funneled
5732 * through here to have a central location to correctly handle single-
5733 * or multi-shot errors.
5734 *
5735 * For non per-context registers, call this routine with a context value
5736 * of 0 so the per-context offset is zero.
5737 *
5738 * If the handler loops too many times, assume that something is wrong
5739 * and can't be fixed, so mask the error bits.
5740 */
5741static void interrupt_clear_down(struct hfi1_devdata *dd,
5742 u32 context,
5743 const struct err_reg_info *eri)
5744{
5745 u64 reg;
5746 u32 count;
5747
5748 /* read in a loop until no more errors are seen */
5749 count = 0;
5750 while (1) {
5751 reg = read_kctxt_csr(dd, context, eri->status);
5752 if (reg == 0)
5753 break;
5754 write_kctxt_csr(dd, context, eri->clear, reg);
5755 if (likely(eri->handler))
5756 eri->handler(dd, context, reg);
5757 count++;
5758 if (count > MAX_CLEAR_COUNT) {
5759 u64 mask;
5760
5761 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5762 eri->desc, reg);
5763 /*
5764 * Read-modify-write so any other masked bits
5765 * remain masked.
5766 */
5767 mask = read_kctxt_csr(dd, context, eri->mask);
5768 mask &= ~reg;
5769 write_kctxt_csr(dd, context, eri->mask, mask);
5770 break;
5771 }
5772 }
5773}
5774
5775/*
5776 * CCE block "misc" interrupt. Source is < 16.
5777 */
5778static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5779{
5780 const struct err_reg_info *eri = &misc_errs[source];
5781
5782 if (eri->handler) {
5783 interrupt_clear_down(dd, 0, eri);
5784 } else {
5785 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5786 source);
5787 }
5788}
5789
5790static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5791{
5792 return flag_string(buf, buf_len, flags,
5793 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
5794}
5795
5796/*
5797 * Send context error interrupt. Source (hw_context) is < 160.
5798 *
5799 * All send context errors cause the send context to halt. The normal
5800 * clear-down mechanism cannot be used because we cannot clear the
5801 * error bits until several other long-running items are done first.
5802 * This is OK because with the context halted, nothing else is going
5803 * to happen on it anyway.
5804 */
5805static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5806 unsigned int hw_context)
5807{
5808 struct send_context_info *sci;
5809 struct send_context *sc;
5810 char flags[96];
5811 u64 status;
5812 u32 sw_index;
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005813 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005814
5815 sw_index = dd->hw_to_sw[hw_context];
5816 if (sw_index >= dd->num_send_contexts) {
5817 dd_dev_err(dd,
5818 "out of range sw index %u for send context %u\n",
5819 sw_index, hw_context);
5820 return;
5821 }
5822 sci = &dd->send_contexts[sw_index];
5823 sc = sci->sc;
5824 if (!sc) {
5825 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5826 sw_index, hw_context);
5827 return;
5828 }
5829
5830 /* tell the software that a halt has begun */
5831 sc_stop(sc, SCF_HALTED);
5832
5833 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5834
5835 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5836 send_context_err_status_string(flags, sizeof(flags), status));
5837
5838 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005839 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
Mike Marciniszyn77241052015-07-30 15:17:43 -04005840
5841 /*
5842 * Automatically restart halted kernel contexts out of interrupt
5843 * context. User contexts must ask the driver to restart the context.
5844 */
5845 if (sc->type != SC_USER)
5846 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005847
5848 /*
5849 * Update the counters for the corresponding status bits.
5850 * Note that these particular counters are aggregated over all
5851 * 160 contexts.
5852 */
5853 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5854 if (status & (1ull << i))
5855 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5856 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005857}
5858
5859static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5860 unsigned int source, u64 status)
5861{
5862 struct sdma_engine *sde;
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005863 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005864
5865 sde = &dd->per_sdma[source];
5866#ifdef CONFIG_SDMA_VERBOSITY
5867 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5868 slashstrip(__FILE__), __LINE__, __func__);
5869 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5870 sde->this_idx, source, (unsigned long long)status);
5871#endif
Vennila Megavannana699c6c2016-01-11 18:30:56 -05005872 sde->err_cnt++;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005873 sdma_engine_error(sde, status);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005874
5875 /*
5876 * Update the counters for the corresponding status bits.
5877 * Note that these particular counters are aggregated over
5878 * all 16 DMA engines.
5879 */
5880 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5881 if (status & (1ull << i))
5882 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5883 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005884}
5885
5886/*
5887 * CCE block SDMA error interrupt. Source is < 16.
5888 */
5889static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5890{
5891#ifdef CONFIG_SDMA_VERBOSITY
5892 struct sdma_engine *sde = &dd->per_sdma[source];
5893
5894 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5895 slashstrip(__FILE__), __LINE__, __func__);
5896 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5897 source);
5898 sdma_dumpstate(sde);
5899#endif
5900 interrupt_clear_down(dd, source, &sdma_eng_err);
5901}
5902
5903/*
5904 * CCE block "various" interrupt. Source is < 8.
5905 */
5906static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5907{
5908 const struct err_reg_info *eri = &various_err[source];
5909
5910 /*
5911 * TCritInt cannot go through interrupt_clear_down()
5912 * because it is not a second tier interrupt. The handler
5913 * should be called directly.
5914 */
5915 if (source == TCRIT_INT_SOURCE)
5916 handle_temp_err(dd);
5917 else if (eri->handler)
5918 interrupt_clear_down(dd, 0, eri);
5919 else
5920 dd_dev_info(dd,
5921 "%s: Unimplemented/reserved interrupt %d\n",
5922 __func__, source);
5923}
5924
5925static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5926{
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005927 /* src_ctx is always zero */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005928 struct hfi1_pportdata *ppd = dd->pport;
5929 unsigned long flags;
5930 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5931
5932 if (reg & QSFP_HFI0_MODPRST_N) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04005933 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
5934 __func__);
5935
5936 if (!qsfp_mod_present(ppd)) {
5937 ppd->driver_link_ready = 0;
5938 /*
5939 * Cable removed, reset all our information about the
5940 * cache and cable capabilities
5941 */
5942
5943 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5944 /*
5945 * We don't set cache_refresh_required here as we expect
5946 * an interrupt when a cable is inserted
5947 */
5948 ppd->qsfp_info.cache_valid = 0;
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005949 ppd->qsfp_info.reset_needed = 0;
5950 ppd->qsfp_info.limiting_active = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005951 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5952 flags);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005953 /* Invert the ModPresent pin now to detect plug-in */
5954 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5955 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
Bryan Morgana9c05e32016-02-03 14:30:49 -08005956
5957 if ((ppd->offline_disabled_reason >
5958 HFI1_ODR_MASK(
Easwar Hariharane1bf0d52016-02-03 14:36:58 -08005959 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
Bryan Morgana9c05e32016-02-03 14:30:49 -08005960 (ppd->offline_disabled_reason ==
5961 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
5962 ppd->offline_disabled_reason =
5963 HFI1_ODR_MASK(
Easwar Hariharane1bf0d52016-02-03 14:36:58 -08005964 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
Bryan Morgana9c05e32016-02-03 14:30:49 -08005965
Mike Marciniszyn77241052015-07-30 15:17:43 -04005966 if (ppd->host_link_state == HLS_DN_POLL) {
5967 /*
5968 * The link is still in POLL. This means
5969 * that the normal link down processing
5970 * will not happen. We have to do it here
5971 * before turning the DC off.
5972 */
5973 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
5974 }
5975 } else {
5976 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5977 ppd->qsfp_info.cache_valid = 0;
5978 ppd->qsfp_info.cache_refresh_required = 1;
5979 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5980 flags);
5981
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005982 /*
5983 * Stop inversion of ModPresent pin to detect
5984 * removal of the cable
5985 */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005986 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005987 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5988 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
5989
5990 ppd->offline_disabled_reason =
5991 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
Mike Marciniszyn77241052015-07-30 15:17:43 -04005992 }
5993 }
5994
5995 if (reg & QSFP_HFI0_INT_N) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04005996 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
5997 __func__);
5998 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5999 ppd->qsfp_info.check_interrupt_flags = 1;
Mike Marciniszyn77241052015-07-30 15:17:43 -04006000 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6001 }
6002
6003 /* Schedule the QSFP work only if there is a cable attached. */
6004 if (qsfp_mod_present(ppd))
6005 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6006}
6007
6008static int request_host_lcb_access(struct hfi1_devdata *dd)
6009{
6010 int ret;
6011
6012 ret = do_8051_command(dd, HCMD_MISC,
6013 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
6014 NULL);
6015 if (ret != HCMD_SUCCESS) {
6016 dd_dev_err(dd, "%s: command failed with error %d\n",
6017 __func__, ret);
6018 }
6019 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6020}
6021
6022static int request_8051_lcb_access(struct hfi1_devdata *dd)
6023{
6024 int ret;
6025
6026 ret = do_8051_command(dd, HCMD_MISC,
6027 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
6028 NULL);
6029 if (ret != HCMD_SUCCESS) {
6030 dd_dev_err(dd, "%s: command failed with error %d\n",
6031 __func__, ret);
6032 }
6033 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6034}
6035
6036/*
6037 * Set the LCB selector - allow host access. The DCC selector always
6038 * points to the host.
6039 */
6040static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6041{
6042 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6043 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
6044 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6045}
6046
6047/*
6048 * Clear the LCB selector - allow 8051 access. The DCC selector always
6049 * points to the host.
6050 */
6051static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6052{
6053 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6054 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6055}
6056
6057/*
6058 * Acquire LCB access from the 8051. If the host already has access,
6059 * just increment a counter. Otherwise, inform the 8051 that the
6060 * host is taking access.
6061 *
6062 * Returns:
6063 * 0 on success
6064 * -EBUSY if the 8051 has control and cannot be disturbed
6065 * -errno if unable to acquire access from the 8051
6066 */
6067int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6068{
6069 struct hfi1_pportdata *ppd = dd->pport;
6070 int ret = 0;
6071
6072 /*
6073 * Use the host link state lock so the operation of this routine
6074 * { link state check, selector change, count increment } can occur
6075 * as a unit against a link state change. Otherwise there is a
6076 * race between the state change and the count increment.
6077 */
6078 if (sleep_ok) {
6079 mutex_lock(&ppd->hls_lock);
6080 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03006081 while (!mutex_trylock(&ppd->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04006082 udelay(1);
6083 }
6084
6085 /* this access is valid only when the link is up */
6086 if ((ppd->host_link_state & HLS_UP) == 0) {
6087 dd_dev_info(dd, "%s: link state %s not up\n",
6088 __func__, link_state_name(ppd->host_link_state));
6089 ret = -EBUSY;
6090 goto done;
6091 }
6092
6093 if (dd->lcb_access_count == 0) {
6094 ret = request_host_lcb_access(dd);
6095 if (ret) {
6096 dd_dev_err(dd,
6097 "%s: unable to acquire LCB access, err %d\n",
6098 __func__, ret);
6099 goto done;
6100 }
6101 set_host_lcb_access(dd);
6102 }
6103 dd->lcb_access_count++;
6104done:
6105 mutex_unlock(&ppd->hls_lock);
6106 return ret;
6107}
6108
6109/*
6110 * Release LCB access by decrementing the use count. If the count is moving
6111 * from 1 to 0, inform 8051 that it has control back.
6112 *
6113 * Returns:
6114 * 0 on success
6115 * -errno if unable to release access to the 8051
6116 */
6117int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6118{
6119 int ret = 0;
6120
6121 /*
6122 * Use the host link state lock because the acquire needed it.
6123 * Here, we only need to keep { selector change, count decrement }
6124 * as a unit.
6125 */
6126 if (sleep_ok) {
6127 mutex_lock(&dd->pport->hls_lock);
6128 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03006129 while (!mutex_trylock(&dd->pport->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04006130 udelay(1);
6131 }
6132
6133 if (dd->lcb_access_count == 0) {
6134 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6135 __func__);
6136 goto done;
6137 }
6138
6139 if (dd->lcb_access_count == 1) {
6140 set_8051_lcb_access(dd);
6141 ret = request_8051_lcb_access(dd);
6142 if (ret) {
6143 dd_dev_err(dd,
6144 "%s: unable to release LCB access, err %d\n",
6145 __func__, ret);
6146 /* restore host access if the grant didn't work */
6147 set_host_lcb_access(dd);
6148 goto done;
6149 }
6150 }
6151 dd->lcb_access_count--;
6152done:
6153 mutex_unlock(&dd->pport->hls_lock);
6154 return ret;
6155}
6156
6157/*
6158 * Initialize LCB access variables and state. Called during driver load,
6159 * after most of the initialization is finished.
6160 *
6161 * The DC default is LCB access on for the host. The driver defaults to
6162 * leaving access to the 8051. Assign access now - this constrains the call
6163 * to this routine to be after all LCB set-up is done. In particular, after
6164 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6165 */
6166static void init_lcb_access(struct hfi1_devdata *dd)
6167{
6168 dd->lcb_access_count = 0;
6169}
6170
6171/*
6172 * Write a response back to a 8051 request.
6173 */
6174static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6175{
6176 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6177 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
6178 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
6179 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6180}
6181
6182/*
Easwar Hariharancbac3862016-02-03 14:31:31 -08006183 * Handle host requests from the 8051.
6184 *
6185 * This is a work-queue function outside of the interrupt.
Mike Marciniszyn77241052015-07-30 15:17:43 -04006186 */
Easwar Hariharancbac3862016-02-03 14:31:31 -08006187void handle_8051_request(struct work_struct *work)
Mike Marciniszyn77241052015-07-30 15:17:43 -04006188{
Easwar Hariharancbac3862016-02-03 14:31:31 -08006189 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6190 dc_host_req_work);
6191 struct hfi1_devdata *dd = ppd->dd;
Mike Marciniszyn77241052015-07-30 15:17:43 -04006192 u64 reg;
Easwar Hariharancbac3862016-02-03 14:31:31 -08006193 u16 data = 0;
6194 u8 type, i, lanes, *cache = ppd->qsfp_info.cache;
6195 u8 cdr_ctrl_byte = cache[QSFP_CDR_CTRL_BYTE_OFFS];
Mike Marciniszyn77241052015-07-30 15:17:43 -04006196
6197 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6198 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6199 return; /* no request */
6200
6201 /* zero out COMPLETED so the response is seen */
6202 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6203
6204 /* extract request details */
6205 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6206 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6207 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6208 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6209
6210 switch (type) {
6211 case HREQ_LOAD_CONFIG:
6212 case HREQ_SAVE_CONFIG:
6213 case HREQ_READ_CONFIG:
6214 case HREQ_SET_TX_EQ_ABS:
6215 case HREQ_SET_TX_EQ_REL:
Mike Marciniszyn77241052015-07-30 15:17:43 -04006216 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6217 type);
6218 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6219 break;
6220
Easwar Hariharancbac3862016-02-03 14:31:31 -08006221 case HREQ_ENABLE:
6222 lanes = data & 0xF;
6223 for (i = 0; lanes; lanes >>= 1, i++) {
6224 if (!(lanes & 1))
6225 continue;
6226 if (data & 0x200) {
6227 /* enable TX CDR */
6228 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6229 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6230 cdr_ctrl_byte |= (1 << (i + 4));
6231 } else {
6232 /* disable TX CDR */
6233 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6234 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6235 cdr_ctrl_byte &= ~(1 << (i + 4));
6236 }
6237
6238 if (data & 0x800) {
6239 /* enable RX CDR */
6240 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6241 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6242 cdr_ctrl_byte |= (1 << i);
6243 } else {
6244 /* disable RX CDR */
6245 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6246 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6247 cdr_ctrl_byte &= ~(1 << i);
6248 }
6249 }
6250 qsfp_write(ppd, ppd->dd->hfi1_id, QSFP_CDR_CTRL_BYTE_OFFS,
6251 &cdr_ctrl_byte, 1);
6252 hreq_response(dd, HREQ_SUCCESS, data);
6253 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
6254 break;
6255
Mike Marciniszyn77241052015-07-30 15:17:43 -04006256 case HREQ_CONFIG_DONE:
6257 hreq_response(dd, HREQ_SUCCESS, 0);
6258 break;
6259
6260 case HREQ_INTERFACE_TEST:
6261 hreq_response(dd, HREQ_SUCCESS, data);
6262 break;
6263
6264 default:
6265 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6266 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6267 break;
6268 }
6269}
6270
6271static void write_global_credit(struct hfi1_devdata *dd,
6272 u8 vau, u16 total, u16 shared)
6273{
6274 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6275 ((u64)total
6276 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
6277 | ((u64)shared
6278 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
6279 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6280}
6281
6282/*
6283 * Set up initial VL15 credits of the remote. Assumes the rest of
6284 * the CM credit registers are zero from a previous global or credit reset .
6285 */
6286void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6287{
6288 /* leave shared count at zero for both global and VL15 */
6289 write_global_credit(dd, vau, vl15buf, 0);
6290
6291 /* We may need some credits for another VL when sending packets
6292 * with the snoop interface. Dividing it down the middle for VL15
6293 * and VL0 should suffice.
6294 */
6295 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6296 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6297 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6298 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6299 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6300 } else {
6301 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6302 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6303 }
6304}
6305
6306/*
6307 * Zero all credit details from the previous connection and
6308 * reset the CM manager's internal counters.
6309 */
6310void reset_link_credits(struct hfi1_devdata *dd)
6311{
6312 int i;
6313
6314 /* remove all previous VL credit limits */
6315 for (i = 0; i < TXE_NUM_DATA_VL; i++)
Jubin John8638b772016-02-14 20:19:24 -08006316 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006317 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6318 write_global_credit(dd, 0, 0, 0);
6319 /* reset the CM block */
6320 pio_send_control(dd, PSC_CM_RESET);
6321}
6322
6323/* convert a vCU to a CU */
6324static u32 vcu_to_cu(u8 vcu)
6325{
6326 return 1 << vcu;
6327}
6328
6329/* convert a CU to a vCU */
6330static u8 cu_to_vcu(u32 cu)
6331{
6332 return ilog2(cu);
6333}
6334
6335/* convert a vAU to an AU */
6336static u32 vau_to_au(u8 vau)
6337{
6338 return 8 * (1 << vau);
6339}
6340
6341static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6342{
6343 ppd->sm_trap_qp = 0x0;
6344 ppd->sa_qp = 0x1;
6345}
6346
6347/*
6348 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6349 */
6350static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6351{
6352 u64 reg;
6353
6354 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6355 write_csr(dd, DC_LCB_CFG_RUN, 0);
6356 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6357 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6358 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6359 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6360 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6361 reg = read_csr(dd, DCC_CFG_RESET);
6362 write_csr(dd, DCC_CFG_RESET,
6363 reg
6364 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
6365 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
Jubin John50e5dcb2016-02-14 20:19:41 -08006366 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
Mike Marciniszyn77241052015-07-30 15:17:43 -04006367 if (!abort) {
6368 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6369 write_csr(dd, DCC_CFG_RESET, reg);
6370 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6371 }
6372}
6373
6374/*
6375 * This routine should be called after the link has been transitioned to
6376 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6377 * reset).
6378 *
6379 * The expectation is that the caller of this routine would have taken
6380 * care of properly transitioning the link into the correct state.
6381 */
6382static void dc_shutdown(struct hfi1_devdata *dd)
6383{
6384 unsigned long flags;
6385
6386 spin_lock_irqsave(&dd->dc8051_lock, flags);
6387 if (dd->dc_shutdown) {
6388 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6389 return;
6390 }
6391 dd->dc_shutdown = 1;
6392 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6393 /* Shutdown the LCB */
6394 lcb_shutdown(dd, 1);
6395 /* Going to OFFLINE would have causes the 8051 to put the
6396 * SerDes into reset already. Just need to shut down the 8051,
6397 * itself. */
6398 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6399}
6400
6401/* Calling this after the DC has been brought out of reset should not
6402 * do any damage. */
6403static void dc_start(struct hfi1_devdata *dd)
6404{
6405 unsigned long flags;
6406 int ret;
6407
6408 spin_lock_irqsave(&dd->dc8051_lock, flags);
6409 if (!dd->dc_shutdown)
6410 goto done;
6411 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6412 /* Take the 8051 out of reset */
6413 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6414 /* Wait until 8051 is ready */
6415 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6416 if (ret) {
6417 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6418 __func__);
6419 }
6420 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6421 write_csr(dd, DCC_CFG_RESET, 0x10);
6422 /* lcb_shutdown() with abort=1 does not restore these */
6423 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6424 spin_lock_irqsave(&dd->dc8051_lock, flags);
6425 dd->dc_shutdown = 0;
6426done:
6427 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6428}
6429
6430/*
6431 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6432 */
6433static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6434{
6435 u64 rx_radr, tx_radr;
6436 u32 version;
6437
6438 if (dd->icode != ICODE_FPGA_EMULATION)
6439 return;
6440
6441 /*
6442 * These LCB defaults on emulator _s are good, nothing to do here:
6443 * LCB_CFG_TX_FIFOS_RADR
6444 * LCB_CFG_RX_FIFOS_RADR
6445 * LCB_CFG_LN_DCLK
6446 * LCB_CFG_IGNORE_LOST_RCLK
6447 */
6448 if (is_emulator_s(dd))
6449 return;
6450 /* else this is _p */
6451
6452 version = emulator_rev(dd);
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05006453 if (!is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -04006454 version = 0x2d; /* all B0 use 0x2d or higher settings */
6455
6456 if (version <= 0x12) {
6457 /* release 0x12 and below */
6458
6459 /*
6460 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6461 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6462 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6463 */
6464 rx_radr =
6465 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6466 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6467 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6468 /*
6469 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6470 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6471 */
6472 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6473 } else if (version <= 0x18) {
6474 /* release 0x13 up to 0x18 */
6475 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6476 rx_radr =
6477 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6478 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6479 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6480 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6481 } else if (version == 0x19) {
6482 /* release 0x19 */
6483 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6484 rx_radr =
6485 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6486 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6487 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6488 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6489 } else if (version == 0x1a) {
6490 /* release 0x1a */
6491 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6492 rx_radr =
6493 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6494 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6495 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6496 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6497 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6498 } else {
6499 /* release 0x1b and higher */
6500 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6501 rx_radr =
6502 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6503 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6504 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6505 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6506 }
6507
6508 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6509 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6510 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6511 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6512 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6513}
6514
6515/*
6516 * Handle a SMA idle message
6517 *
6518 * This is a work-queue function outside of the interrupt.
6519 */
6520void handle_sma_message(struct work_struct *work)
6521{
6522 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6523 sma_message_work);
6524 struct hfi1_devdata *dd = ppd->dd;
6525 u64 msg;
6526 int ret;
6527
6528 /* msg is bytes 1-4 of the 40-bit idle message - the command code
6529 is stripped off */
6530 ret = read_idle_sma(dd, &msg);
6531 if (ret)
6532 return;
6533 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6534 /*
6535 * React to the SMA message. Byte[1] (0 for us) is the command.
6536 */
6537 switch (msg & 0xff) {
6538 case SMA_IDLE_ARM:
6539 /*
6540 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6541 * State Transitions
6542 *
6543 * Only expected in INIT or ARMED, discard otherwise.
6544 */
6545 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6546 ppd->neighbor_normal = 1;
6547 break;
6548 case SMA_IDLE_ACTIVE:
6549 /*
6550 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6551 * State Transitions
6552 *
6553 * Can activate the node. Discard otherwise.
6554 */
Jubin Johnd0d236e2016-02-14 20:20:15 -08006555 if (ppd->host_link_state == HLS_UP_ARMED &&
6556 ppd->is_active_optimize_enabled) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04006557 ppd->neighbor_normal = 1;
6558 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6559 if (ret)
6560 dd_dev_err(
6561 dd,
6562 "%s: received Active SMA idle message, couldn't set link to Active\n",
6563 __func__);
6564 }
6565 break;
6566 default:
6567 dd_dev_err(dd,
6568 "%s: received unexpected SMA idle message 0x%llx\n",
6569 __func__, msg);
6570 break;
6571 }
6572}
6573
6574static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6575{
6576 u64 rcvctrl;
6577 unsigned long flags;
6578
6579 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6580 rcvctrl = read_csr(dd, RCV_CTRL);
6581 rcvctrl |= add;
6582 rcvctrl &= ~clear;
6583 write_csr(dd, RCV_CTRL, rcvctrl);
6584 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6585}
6586
6587static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6588{
6589 adjust_rcvctrl(dd, add, 0);
6590}
6591
6592static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6593{
6594 adjust_rcvctrl(dd, 0, clear);
6595}
6596
6597/*
6598 * Called from all interrupt handlers to start handling an SPC freeze.
6599 */
6600void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6601{
6602 struct hfi1_devdata *dd = ppd->dd;
6603 struct send_context *sc;
6604 int i;
6605
6606 if (flags & FREEZE_SELF)
6607 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6608
6609 /* enter frozen mode */
6610 dd->flags |= HFI1_FROZEN;
6611
6612 /* notify all SDMA engines that they are going into a freeze */
6613 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6614
6615 /* do halt pre-handling on all enabled send contexts */
6616 for (i = 0; i < dd->num_send_contexts; i++) {
6617 sc = dd->send_contexts[i].sc;
6618 if (sc && (sc->flags & SCF_ENABLED))
6619 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6620 }
6621
6622 /* Send context are frozen. Notify user space */
6623 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6624
6625 if (flags & FREEZE_ABORT) {
6626 dd_dev_err(dd,
6627 "Aborted freeze recovery. Please REBOOT system\n");
6628 return;
6629 }
6630 /* queue non-interrupt handler */
6631 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6632}
6633
6634/*
6635 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6636 * depending on the "freeze" parameter.
6637 *
6638 * No need to return an error if it times out, our only option
6639 * is to proceed anyway.
6640 */
6641static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6642{
6643 unsigned long timeout;
6644 u64 reg;
6645
6646 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6647 while (1) {
6648 reg = read_csr(dd, CCE_STATUS);
6649 if (freeze) {
6650 /* waiting until all indicators are set */
6651 if ((reg & ALL_FROZE) == ALL_FROZE)
6652 return; /* all done */
6653 } else {
6654 /* waiting until all indicators are clear */
6655 if ((reg & ALL_FROZE) == 0)
6656 return; /* all done */
6657 }
6658
6659 if (time_after(jiffies, timeout)) {
6660 dd_dev_err(dd,
6661 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6662 freeze ? "" : "un",
6663 reg & ALL_FROZE,
6664 freeze ? ALL_FROZE : 0ull);
6665 return;
6666 }
6667 usleep_range(80, 120);
6668 }
6669}
6670
6671/*
6672 * Do all freeze handling for the RXE block.
6673 */
6674static void rxe_freeze(struct hfi1_devdata *dd)
6675{
6676 int i;
6677
6678 /* disable port */
6679 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6680
6681 /* disable all receive contexts */
6682 for (i = 0; i < dd->num_rcv_contexts; i++)
6683 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6684}
6685
6686/*
6687 * Unfreeze handling for the RXE block - kernel contexts only.
6688 * This will also enable the port. User contexts will do unfreeze
6689 * handling on a per-context basis as they call into the driver.
6690 *
6691 */
6692static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6693{
Mitko Haralanov566c1572016-02-03 14:32:49 -08006694 u32 rcvmask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04006695 int i;
6696
6697 /* enable all kernel contexts */
Mitko Haralanov566c1572016-02-03 14:32:49 -08006698 for (i = 0; i < dd->n_krcv_queues; i++) {
6699 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6700 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6701 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6702 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6703 hfi1_rcvctrl(dd, rcvmask, i);
6704 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04006705
6706 /* enable port */
6707 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6708}
6709
6710/*
6711 * Non-interrupt SPC freeze handling.
6712 *
6713 * This is a work-queue function outside of the triggering interrupt.
6714 */
6715void handle_freeze(struct work_struct *work)
6716{
6717 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6718 freeze_work);
6719 struct hfi1_devdata *dd = ppd->dd;
6720
6721 /* wait for freeze indicators on all affected blocks */
Mike Marciniszyn77241052015-07-30 15:17:43 -04006722 wait_for_freeze_status(dd, 1);
6723
6724 /* SPC is now frozen */
6725
6726 /* do send PIO freeze steps */
6727 pio_freeze(dd);
6728
6729 /* do send DMA freeze steps */
6730 sdma_freeze(dd);
6731
6732 /* do send egress freeze steps - nothing to do */
6733
6734 /* do receive freeze steps */
6735 rxe_freeze(dd);
6736
6737 /*
6738 * Unfreeze the hardware - clear the freeze, wait for each
6739 * block's frozen bit to clear, then clear the frozen flag.
6740 */
6741 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6742 wait_for_freeze_status(dd, 0);
6743
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05006744 if (is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04006745 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6746 wait_for_freeze_status(dd, 1);
6747 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6748 wait_for_freeze_status(dd, 0);
6749 }
6750
6751 /* do send PIO unfreeze steps for kernel contexts */
6752 pio_kernel_unfreeze(dd);
6753
6754 /* do send DMA unfreeze steps */
6755 sdma_unfreeze(dd);
6756
6757 /* do send egress unfreeze steps - nothing to do */
6758
6759 /* do receive unfreeze steps for kernel contexts */
6760 rxe_kernel_unfreeze(dd);
6761
6762 /*
6763 * The unfreeze procedure touches global device registers when
6764 * it disables and re-enables RXE. Mark the device unfrozen
6765 * after all that is done so other parts of the driver waiting
6766 * for the device to unfreeze don't do things out of order.
6767 *
6768 * The above implies that the meaning of HFI1_FROZEN flag is
6769 * "Device has gone into freeze mode and freeze mode handling
6770 * is still in progress."
6771 *
6772 * The flag will be removed when freeze mode processing has
6773 * completed.
6774 */
6775 dd->flags &= ~HFI1_FROZEN;
6776 wake_up(&dd->event_queue);
6777
6778 /* no longer frozen */
Mike Marciniszyn77241052015-07-30 15:17:43 -04006779}
6780
6781/*
6782 * Handle a link up interrupt from the 8051.
6783 *
6784 * This is a work-queue function outside of the interrupt.
6785 */
6786void handle_link_up(struct work_struct *work)
6787{
6788 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6789 link_up_work);
6790 set_link_state(ppd, HLS_UP_INIT);
6791
6792 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6793 read_ltp_rtt(ppd->dd);
6794 /*
6795 * OPA specifies that certain counters are cleared on a transition
6796 * to link up, so do that.
6797 */
6798 clear_linkup_counters(ppd->dd);
6799 /*
6800 * And (re)set link up default values.
6801 */
6802 set_linkup_defaults(ppd);
6803
6804 /* enforce link speed enabled */
6805 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6806 /* oops - current speed is not enabled, bounce */
6807 dd_dev_err(ppd->dd,
6808 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6809 ppd->link_speed_active, ppd->link_speed_enabled);
6810 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6811 OPA_LINKDOWN_REASON_SPEED_POLICY);
6812 set_link_state(ppd, HLS_DN_OFFLINE);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006813 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006814 start_link(ppd);
6815 }
6816}
6817
6818/* Several pieces of LNI information were cached for SMA in ppd.
6819 * Reset these on link down */
6820static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6821{
6822 ppd->neighbor_guid = 0;
6823 ppd->neighbor_port_number = 0;
6824 ppd->neighbor_type = 0;
6825 ppd->neighbor_fm_security = 0;
6826}
6827
6828/*
6829 * Handle a link down interrupt from the 8051.
6830 *
6831 * This is a work-queue function outside of the interrupt.
6832 */
6833void handle_link_down(struct work_struct *work)
6834{
6835 u8 lcl_reason, neigh_reason = 0;
6836 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6837 link_down_work);
6838
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006839 if ((ppd->host_link_state &
6840 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6841 ppd->port_type == PORT_TYPE_FIXED)
6842 ppd->offline_disabled_reason =
6843 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6844
6845 /* Go offline first, then deal with reading/writing through 8051 */
Mike Marciniszyn77241052015-07-30 15:17:43 -04006846 set_link_state(ppd, HLS_DN_OFFLINE);
6847
6848 lcl_reason = 0;
6849 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6850
6851 /*
6852 * If no reason, assume peer-initiated but missed
6853 * LinkGoingDown idle flits.
6854 */
6855 if (neigh_reason == 0)
6856 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6857
6858 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6859
6860 reset_neighbor_info(ppd);
6861
6862 /* disable the port */
6863 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6864
6865 /* If there is no cable attached, turn the DC off. Otherwise,
6866 * start the link bring up. */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006867 if (!qsfp_mod_present(ppd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04006868 dc_shutdown(ppd->dd);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006869 } else {
6870 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006871 start_link(ppd);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006872 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04006873}
6874
6875void handle_link_bounce(struct work_struct *work)
6876{
6877 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6878 link_bounce_work);
6879
6880 /*
6881 * Only do something if the link is currently up.
6882 */
6883 if (ppd->host_link_state & HLS_UP) {
6884 set_link_state(ppd, HLS_DN_OFFLINE);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006885 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006886 start_link(ppd);
6887 } else {
6888 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
6889 __func__, link_state_name(ppd->host_link_state));
6890 }
6891}
6892
6893/*
6894 * Mask conversion: Capability exchange to Port LTP. The capability
6895 * exchange has an implicit 16b CRC that is mandatory.
6896 */
6897static int cap_to_port_ltp(int cap)
6898{
6899 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
6900
6901 if (cap & CAP_CRC_14B)
6902 port_ltp |= PORT_LTP_CRC_MODE_14;
6903 if (cap & CAP_CRC_48B)
6904 port_ltp |= PORT_LTP_CRC_MODE_48;
6905 if (cap & CAP_CRC_12B_16B_PER_LANE)
6906 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
6907
6908 return port_ltp;
6909}
6910
6911/*
6912 * Convert an OPA Port LTP mask to capability mask
6913 */
6914int port_ltp_to_cap(int port_ltp)
6915{
6916 int cap_mask = 0;
6917
6918 if (port_ltp & PORT_LTP_CRC_MODE_14)
6919 cap_mask |= CAP_CRC_14B;
6920 if (port_ltp & PORT_LTP_CRC_MODE_48)
6921 cap_mask |= CAP_CRC_48B;
6922 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
6923 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
6924
6925 return cap_mask;
6926}
6927
6928/*
6929 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
6930 */
6931static int lcb_to_port_ltp(int lcb_crc)
6932{
6933 int port_ltp = 0;
6934
6935 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
6936 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
6937 else if (lcb_crc == LCB_CRC_48B)
6938 port_ltp = PORT_LTP_CRC_MODE_48;
6939 else if (lcb_crc == LCB_CRC_14B)
6940 port_ltp = PORT_LTP_CRC_MODE_14;
6941 else
6942 port_ltp = PORT_LTP_CRC_MODE_16;
6943
6944 return port_ltp;
6945}
6946
6947/*
6948 * Our neighbor has indicated that we are allowed to act as a fabric
6949 * manager, so place the full management partition key in the second
6950 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
6951 * that we should already have the limited management partition key in
6952 * array element 1, and also that the port is not yet up when
6953 * add_full_mgmt_pkey() is invoked.
6954 */
6955static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
6956{
6957 struct hfi1_devdata *dd = ppd->dd;
6958
Dean Luick87645222015-12-01 15:38:21 -05006959 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
6960 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
6961 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
6962 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006963 ppd->pkeys[2] = FULL_MGMT_P_KEY;
6964 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
6965}
6966
6967/*
6968 * Convert the given link width to the OPA link width bitmask.
6969 */
6970static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
6971{
6972 switch (width) {
6973 case 0:
6974 /*
6975 * Simulator and quick linkup do not set the width.
6976 * Just set it to 4x without complaint.
6977 */
6978 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
6979 return OPA_LINK_WIDTH_4X;
6980 return 0; /* no lanes up */
6981 case 1: return OPA_LINK_WIDTH_1X;
6982 case 2: return OPA_LINK_WIDTH_2X;
6983 case 3: return OPA_LINK_WIDTH_3X;
6984 default:
6985 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
6986 __func__, width);
6987 /* fall through */
6988 case 4: return OPA_LINK_WIDTH_4X;
6989 }
6990}
6991
6992/*
6993 * Do a population count on the bottom nibble.
6994 */
6995static const u8 bit_counts[16] = {
6996 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
6997};
Jubin Johnf4d507c2016-02-14 20:20:25 -08006998
Mike Marciniszyn77241052015-07-30 15:17:43 -04006999static inline u8 nibble_to_count(u8 nibble)
7000{
7001 return bit_counts[nibble & 0xf];
7002}
7003
7004/*
7005 * Read the active lane information from the 8051 registers and return
7006 * their widths.
7007 *
7008 * Active lane information is found in these 8051 registers:
7009 * enable_lane_tx
7010 * enable_lane_rx
7011 */
7012static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7013 u16 *rx_width)
7014{
7015 u16 tx, rx;
7016 u8 enable_lane_rx;
7017 u8 enable_lane_tx;
7018 u8 tx_polarity_inversion;
7019 u8 rx_polarity_inversion;
7020 u8 max_rate;
7021
7022 /* read the active lanes */
7023 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7024 &rx_polarity_inversion, &max_rate);
7025 read_local_lni(dd, &enable_lane_rx);
7026
7027 /* convert to counts */
7028 tx = nibble_to_count(enable_lane_tx);
7029 rx = nibble_to_count(enable_lane_rx);
7030
7031 /*
7032 * Set link_speed_active here, overriding what was set in
7033 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7034 * set the max_rate field in handle_verify_cap until v0.19.
7035 */
Jubin Johnd0d236e2016-02-14 20:20:15 -08007036 if ((dd->icode == ICODE_RTL_SILICON) &&
7037 (dd->dc8051_ver < dc8051_ver(0, 19))) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04007038 /* max_rate: 0 = 12.5G, 1 = 25G */
7039 switch (max_rate) {
7040 case 0:
7041 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7042 break;
7043 default:
7044 dd_dev_err(dd,
7045 "%s: unexpected max rate %d, using 25Gb\n",
7046 __func__, (int)max_rate);
7047 /* fall through */
7048 case 1:
7049 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7050 break;
7051 }
7052 }
7053
7054 dd_dev_info(dd,
7055 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7056 enable_lane_tx, tx, enable_lane_rx, rx);
7057 *tx_width = link_width_to_bits(dd, tx);
7058 *rx_width = link_width_to_bits(dd, rx);
7059}
7060
7061/*
7062 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7063 * Valid after the end of VerifyCap and during LinkUp. Does not change
7064 * after link up. I.e. look elsewhere for downgrade information.
7065 *
7066 * Bits are:
7067 * + bits [7:4] contain the number of active transmitters
7068 * + bits [3:0] contain the number of active receivers
7069 * These are numbers 1 through 4 and can be different values if the
7070 * link is asymmetric.
7071 *
7072 * verify_cap_local_fm_link_width[0] retains its original value.
7073 */
7074static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7075 u16 *rx_width)
7076{
7077 u16 widths, tx, rx;
7078 u8 misc_bits, local_flags;
7079 u16 active_tx, active_rx;
7080
7081 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7082 tx = widths >> 12;
7083 rx = (widths >> 8) & 0xf;
7084
7085 *tx_width = link_width_to_bits(dd, tx);
7086 *rx_width = link_width_to_bits(dd, rx);
7087
7088 /* print the active widths */
7089 get_link_widths(dd, &active_tx, &active_rx);
7090}
7091
7092/*
7093 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7094 * hardware information when the link first comes up.
7095 *
7096 * The link width is not available until after VerifyCap.AllFramesReceived
7097 * (the trigger for handle_verify_cap), so this is outside that routine
7098 * and should be called when the 8051 signals linkup.
7099 */
7100void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7101{
7102 u16 tx_width, rx_width;
7103
7104 /* get end-of-LNI link widths */
7105 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7106
7107 /* use tx_width as the link is supposed to be symmetric on link up */
7108 ppd->link_width_active = tx_width;
7109 /* link width downgrade active (LWD.A) starts out matching LW.A */
7110 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7111 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7112 /* per OPA spec, on link up LWD.E resets to LWD.S */
7113 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7114 /* cache the active egress rate (units {10^6 bits/sec]) */
7115 ppd->current_egress_rate = active_egress_rate(ppd);
7116}
7117
7118/*
7119 * Handle a verify capabilities interrupt from the 8051.
7120 *
7121 * This is a work-queue function outside of the interrupt.
7122 */
7123void handle_verify_cap(struct work_struct *work)
7124{
7125 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7126 link_vc_work);
7127 struct hfi1_devdata *dd = ppd->dd;
7128 u64 reg;
7129 u8 power_management;
7130 u8 continious;
7131 u8 vcu;
7132 u8 vau;
7133 u8 z;
7134 u16 vl15buf;
7135 u16 link_widths;
7136 u16 crc_mask;
7137 u16 crc_val;
7138 u16 device_id;
7139 u16 active_tx, active_rx;
7140 u8 partner_supported_crc;
7141 u8 remote_tx_rate;
7142 u8 device_rev;
7143
7144 set_link_state(ppd, HLS_VERIFY_CAP);
7145
7146 lcb_shutdown(dd, 0);
7147 adjust_lcb_for_fpga_serdes(dd);
7148
7149 /*
7150 * These are now valid:
7151 * remote VerifyCap fields in the general LNI config
7152 * CSR DC8051_STS_REMOTE_GUID
7153 * CSR DC8051_STS_REMOTE_NODE_TYPE
7154 * CSR DC8051_STS_REMOTE_FM_SECURITY
7155 * CSR DC8051_STS_REMOTE_PORT_NO
7156 */
7157
7158 read_vc_remote_phy(dd, &power_management, &continious);
7159 read_vc_remote_fabric(
7160 dd,
7161 &vau,
7162 &z,
7163 &vcu,
7164 &vl15buf,
7165 &partner_supported_crc);
7166 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7167 read_remote_device_id(dd, &device_id, &device_rev);
7168 /*
7169 * And the 'MgmtAllowed' information, which is exchanged during
7170 * LNI, is also be available at this point.
7171 */
7172 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7173 /* print the active widths */
7174 get_link_widths(dd, &active_tx, &active_rx);
7175 dd_dev_info(dd,
7176 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7177 (int)power_management, (int)continious);
7178 dd_dev_info(dd,
7179 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7180 (int)vau,
7181 (int)z,
7182 (int)vcu,
7183 (int)vl15buf,
7184 (int)partner_supported_crc);
7185 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7186 (u32)remote_tx_rate, (u32)link_widths);
7187 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7188 (u32)device_id, (u32)device_rev);
7189 /*
7190 * The peer vAU value just read is the peer receiver value. HFI does
7191 * not support a transmit vAU of 0 (AU == 8). We advertised that
7192 * with Z=1 in the fabric capabilities sent to the peer. The peer
7193 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7194 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7195 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7196 * subject to the Z value exception.
7197 */
7198 if (vau == 0)
7199 vau = 1;
7200 set_up_vl15(dd, vau, vl15buf);
7201
7202 /* set up the LCB CRC mode */
7203 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7204
7205 /* order is important: use the lowest bit in common */
7206 if (crc_mask & CAP_CRC_14B)
7207 crc_val = LCB_CRC_14B;
7208 else if (crc_mask & CAP_CRC_48B)
7209 crc_val = LCB_CRC_48B;
7210 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7211 crc_val = LCB_CRC_12B_16B_PER_LANE;
7212 else
7213 crc_val = LCB_CRC_16B;
7214
7215 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7216 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7217 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7218
7219 /* set (14b only) or clear sideband credit */
7220 reg = read_csr(dd, SEND_CM_CTRL);
7221 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7222 write_csr(dd, SEND_CM_CTRL,
7223 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7224 } else {
7225 write_csr(dd, SEND_CM_CTRL,
7226 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7227 }
7228
7229 ppd->link_speed_active = 0; /* invalid value */
7230 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7231 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7232 switch (remote_tx_rate) {
7233 case 0:
7234 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7235 break;
7236 case 1:
7237 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7238 break;
7239 }
7240 } else {
7241 /* actual rate is highest bit of the ANDed rates */
7242 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7243
7244 if (rate & 2)
7245 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7246 else if (rate & 1)
7247 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7248 }
7249 if (ppd->link_speed_active == 0) {
7250 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7251 __func__, (int)remote_tx_rate);
7252 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7253 }
7254
7255 /*
7256 * Cache the values of the supported, enabled, and active
7257 * LTP CRC modes to return in 'portinfo' queries. But the bit
7258 * flags that are returned in the portinfo query differ from
7259 * what's in the link_crc_mask, crc_sizes, and crc_val
7260 * variables. Convert these here.
7261 */
7262 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7263 /* supported crc modes */
7264 ppd->port_ltp_crc_mode |=
7265 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7266 /* enabled crc modes */
7267 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7268 /* active crc mode */
7269
7270 /* set up the remote credit return table */
7271 assign_remote_cm_au_table(dd, vcu);
7272
7273 /*
7274 * The LCB is reset on entry to handle_verify_cap(), so this must
7275 * be applied on every link up.
7276 *
7277 * Adjust LCB error kill enable to kill the link if
7278 * these RBUF errors are seen:
7279 * REPLAY_BUF_MBE_SMASK
7280 * FLIT_INPUT_BUF_MBE_SMASK
7281 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05007282 if (is_ax(dd)) { /* fixed in B0 */
Mike Marciniszyn77241052015-07-30 15:17:43 -04007283 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7284 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7285 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7286 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7287 }
7288
7289 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7290 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7291
7292 /* give 8051 access to the LCB CSRs */
7293 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7294 set_8051_lcb_access(dd);
7295
7296 ppd->neighbor_guid =
7297 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7298 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7299 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7300 ppd->neighbor_type =
7301 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7302 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7303 ppd->neighbor_fm_security =
7304 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7305 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7306 dd_dev_info(dd,
7307 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7308 ppd->neighbor_guid, ppd->neighbor_type,
7309 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7310 if (ppd->mgmt_allowed)
7311 add_full_mgmt_pkey(ppd);
7312
7313 /* tell the 8051 to go to LinkUp */
7314 set_link_state(ppd, HLS_GOING_UP);
7315}
7316
7317/*
7318 * Apply the link width downgrade enabled policy against the current active
7319 * link widths.
7320 *
7321 * Called when the enabled policy changes or the active link widths change.
7322 */
7323void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7324{
Mike Marciniszyn77241052015-07-30 15:17:43 -04007325 int do_bounce = 0;
Dean Luick323fd782015-11-16 21:59:24 -05007326 int tries;
7327 u16 lwde;
Mike Marciniszyn77241052015-07-30 15:17:43 -04007328 u16 tx, rx;
7329
Dean Luick323fd782015-11-16 21:59:24 -05007330 /* use the hls lock to avoid a race with actual link up */
7331 tries = 0;
7332retry:
Mike Marciniszyn77241052015-07-30 15:17:43 -04007333 mutex_lock(&ppd->hls_lock);
7334 /* only apply if the link is up */
Dean Luick323fd782015-11-16 21:59:24 -05007335 if (!(ppd->host_link_state & HLS_UP)) {
7336 /* still going up..wait and retry */
7337 if (ppd->host_link_state & HLS_GOING_UP) {
7338 if (++tries < 1000) {
7339 mutex_unlock(&ppd->hls_lock);
7340 usleep_range(100, 120); /* arbitrary */
7341 goto retry;
7342 }
7343 dd_dev_err(ppd->dd,
7344 "%s: giving up waiting for link state change\n",
7345 __func__);
7346 }
7347 goto done;
7348 }
7349
7350 lwde = ppd->link_width_downgrade_enabled;
Mike Marciniszyn77241052015-07-30 15:17:43 -04007351
7352 if (refresh_widths) {
7353 get_link_widths(ppd->dd, &tx, &rx);
7354 ppd->link_width_downgrade_tx_active = tx;
7355 ppd->link_width_downgrade_rx_active = rx;
7356 }
7357
7358 if (lwde == 0) {
7359 /* downgrade is disabled */
7360
7361 /* bounce if not at starting active width */
Jubin Johnd0d236e2016-02-14 20:20:15 -08007362 if ((ppd->link_width_active != ppd->link_width_downgrade_tx_active) ||
7363 (ppd->link_width_active != ppd->link_width_downgrade_rx_active)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04007364 dd_dev_err(ppd->dd,
7365 "Link downgrade is disabled and link has downgraded, downing link\n");
7366 dd_dev_err(ppd->dd,
7367 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7368 ppd->link_width_active,
7369 ppd->link_width_downgrade_tx_active,
7370 ppd->link_width_downgrade_rx_active);
7371 do_bounce = 1;
7372 }
Jubin Johnd0d236e2016-02-14 20:20:15 -08007373 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7374 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04007375 /* Tx or Rx is outside the enabled policy */
7376 dd_dev_err(ppd->dd,
7377 "Link is outside of downgrade allowed, downing link\n");
7378 dd_dev_err(ppd->dd,
7379 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7380 lwde,
7381 ppd->link_width_downgrade_tx_active,
7382 ppd->link_width_downgrade_rx_active);
7383 do_bounce = 1;
7384 }
7385
Dean Luick323fd782015-11-16 21:59:24 -05007386done:
7387 mutex_unlock(&ppd->hls_lock);
7388
Mike Marciniszyn77241052015-07-30 15:17:43 -04007389 if (do_bounce) {
7390 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7391 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7392 set_link_state(ppd, HLS_DN_OFFLINE);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08007393 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04007394 start_link(ppd);
7395 }
7396}
7397
7398/*
7399 * Handle a link downgrade interrupt from the 8051.
7400 *
7401 * This is a work-queue function outside of the interrupt.
7402 */
7403void handle_link_downgrade(struct work_struct *work)
7404{
7405 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7406 link_downgrade_work);
7407
7408 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7409 apply_link_downgrade_policy(ppd, 1);
7410}
7411
7412static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7413{
7414 return flag_string(buf, buf_len, flags, dcc_err_flags,
7415 ARRAY_SIZE(dcc_err_flags));
7416}
7417
7418static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7419{
7420 return flag_string(buf, buf_len, flags, lcb_err_flags,
7421 ARRAY_SIZE(lcb_err_flags));
7422}
7423
7424static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7425{
7426 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7427 ARRAY_SIZE(dc8051_err_flags));
7428}
7429
7430static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7431{
7432 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7433 ARRAY_SIZE(dc8051_info_err_flags));
7434}
7435
7436static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7437{
7438 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7439 ARRAY_SIZE(dc8051_info_host_msg_flags));
7440}
7441
7442static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7443{
7444 struct hfi1_pportdata *ppd = dd->pport;
7445 u64 info, err, host_msg;
7446 int queue_link_down = 0;
7447 char buf[96];
7448
7449 /* look at the flags */
7450 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7451 /* 8051 information set by firmware */
7452 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7453 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7454 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7455 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7456 host_msg = (info >>
7457 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7458 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7459
7460 /*
7461 * Handle error flags.
7462 */
7463 if (err & FAILED_LNI) {
7464 /*
7465 * LNI error indications are cleared by the 8051
7466 * only when starting polling. Only pay attention
7467 * to them when in the states that occur during
7468 * LNI.
7469 */
7470 if (ppd->host_link_state
7471 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7472 queue_link_down = 1;
7473 dd_dev_info(dd, "Link error: %s\n",
7474 dc8051_info_err_string(buf,
7475 sizeof(buf),
7476 err & FAILED_LNI));
7477 }
7478 err &= ~(u64)FAILED_LNI;
7479 }
Dean Luick6d014532015-12-01 15:38:23 -05007480 /* unknown frames can happen durning LNI, just count */
7481 if (err & UNKNOWN_FRAME) {
7482 ppd->unknown_frame_count++;
7483 err &= ~(u64)UNKNOWN_FRAME;
7484 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04007485 if (err) {
7486 /* report remaining errors, but do not do anything */
7487 dd_dev_err(dd, "8051 info error: %s\n",
7488 dc8051_info_err_string(buf, sizeof(buf), err));
7489 }
7490
7491 /*
7492 * Handle host message flags.
7493 */
7494 if (host_msg & HOST_REQ_DONE) {
7495 /*
7496 * Presently, the driver does a busy wait for
7497 * host requests to complete. This is only an
7498 * informational message.
7499 * NOTE: The 8051 clears the host message
7500 * information *on the next 8051 command*.
7501 * Therefore, when linkup is achieved,
7502 * this flag will still be set.
7503 */
7504 host_msg &= ~(u64)HOST_REQ_DONE;
7505 }
7506 if (host_msg & BC_SMA_MSG) {
7507 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7508 host_msg &= ~(u64)BC_SMA_MSG;
7509 }
7510 if (host_msg & LINKUP_ACHIEVED) {
7511 dd_dev_info(dd, "8051: Link up\n");
7512 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7513 host_msg &= ~(u64)LINKUP_ACHIEVED;
7514 }
7515 if (host_msg & EXT_DEVICE_CFG_REQ) {
Easwar Hariharancbac3862016-02-03 14:31:31 -08007516 queue_work(ppd->hfi1_wq, &ppd->dc_host_req_work);
Mike Marciniszyn77241052015-07-30 15:17:43 -04007517 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7518 }
7519 if (host_msg & VERIFY_CAP_FRAME) {
7520 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7521 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7522 }
7523 if (host_msg & LINK_GOING_DOWN) {
7524 const char *extra = "";
7525 /* no downgrade action needed if going down */
7526 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7527 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7528 extra = " (ignoring downgrade)";
7529 }
7530 dd_dev_info(dd, "8051: Link down%s\n", extra);
7531 queue_link_down = 1;
7532 host_msg &= ~(u64)LINK_GOING_DOWN;
7533 }
7534 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7535 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7536 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7537 }
7538 if (host_msg) {
7539 /* report remaining messages, but do not do anything */
7540 dd_dev_info(dd, "8051 info host message: %s\n",
7541 dc8051_info_host_msg_string(buf, sizeof(buf),
7542 host_msg));
7543 }
7544
7545 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7546 }
7547 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7548 /*
7549 * Lost the 8051 heartbeat. If this happens, we
7550 * receive constant interrupts about it. Disable
7551 * the interrupt after the first.
7552 */
7553 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7554 write_csr(dd, DC_DC8051_ERR_EN,
7555 read_csr(dd, DC_DC8051_ERR_EN)
7556 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7557
7558 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7559 }
7560 if (reg) {
7561 /* report the error, but do not do anything */
7562 dd_dev_err(dd, "8051 error: %s\n",
7563 dc8051_err_string(buf, sizeof(buf), reg));
7564 }
7565
7566 if (queue_link_down) {
7567 /* if the link is already going down or disabled, do not
7568 * queue another */
Jubin Johnd0d236e2016-02-14 20:20:15 -08007569 if ((ppd->host_link_state &
7570 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7571 ppd->link_enabled == 0) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04007572 dd_dev_info(dd, "%s: not queuing link down\n",
7573 __func__);
7574 } else {
7575 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7576 }
7577 }
7578}
7579
7580static const char * const fm_config_txt[] = {
7581[0] =
7582 "BadHeadDist: Distance violation between two head flits",
7583[1] =
7584 "BadTailDist: Distance violation between two tail flits",
7585[2] =
7586 "BadCtrlDist: Distance violation between two credit control flits",
7587[3] =
7588 "BadCrdAck: Credits return for unsupported VL",
7589[4] =
7590 "UnsupportedVLMarker: Received VL Marker",
7591[5] =
7592 "BadPreempt: Exceeded the preemption nesting level",
7593[6] =
7594 "BadControlFlit: Received unsupported control flit",
7595/* no 7 */
7596[8] =
7597 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7598};
7599
7600static const char * const port_rcv_txt[] = {
7601[1] =
7602 "BadPktLen: Illegal PktLen",
7603[2] =
7604 "PktLenTooLong: Packet longer than PktLen",
7605[3] =
7606 "PktLenTooShort: Packet shorter than PktLen",
7607[4] =
7608 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7609[5] =
7610 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7611[6] =
7612 "BadL2: Illegal L2 opcode",
7613[7] =
7614 "BadSC: Unsupported SC",
7615[9] =
7616 "BadRC: Illegal RC",
7617[11] =
7618 "PreemptError: Preempting with same VL",
7619[12] =
7620 "PreemptVL15: Preempting a VL15 packet",
7621};
7622
7623#define OPA_LDR_FMCONFIG_OFFSET 16
7624#define OPA_LDR_PORTRCV_OFFSET 0
7625static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7626{
7627 u64 info, hdr0, hdr1;
7628 const char *extra;
7629 char buf[96];
7630 struct hfi1_pportdata *ppd = dd->pport;
7631 u8 lcl_reason = 0;
7632 int do_bounce = 0;
7633
7634 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7635 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7636 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7637 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7638 /* set status bit */
7639 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7640 }
7641 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7642 }
7643
7644 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7645 struct hfi1_pportdata *ppd = dd->pport;
7646 /* this counter saturates at (2^32) - 1 */
7647 if (ppd->link_downed < (u32)UINT_MAX)
7648 ppd->link_downed++;
7649 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7650 }
7651
7652 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7653 u8 reason_valid = 1;
7654
7655 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7656 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7657 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7658 /* set status bit */
7659 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7660 }
7661 switch (info) {
7662 case 0:
7663 case 1:
7664 case 2:
7665 case 3:
7666 case 4:
7667 case 5:
7668 case 6:
7669 extra = fm_config_txt[info];
7670 break;
7671 case 8:
7672 extra = fm_config_txt[info];
7673 if (ppd->port_error_action &
7674 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7675 do_bounce = 1;
7676 /*
7677 * lcl_reason cannot be derived from info
7678 * for this error
7679 */
7680 lcl_reason =
7681 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7682 }
7683 break;
7684 default:
7685 reason_valid = 0;
7686 snprintf(buf, sizeof(buf), "reserved%lld", info);
7687 extra = buf;
7688 break;
7689 }
7690
7691 if (reason_valid && !do_bounce) {
7692 do_bounce = ppd->port_error_action &
7693 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7694 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7695 }
7696
7697 /* just report this */
7698 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7699 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7700 }
7701
7702 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7703 u8 reason_valid = 1;
7704
7705 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7706 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7707 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7708 if (!(dd->err_info_rcvport.status_and_code &
7709 OPA_EI_STATUS_SMASK)) {
7710 dd->err_info_rcvport.status_and_code =
7711 info & OPA_EI_CODE_SMASK;
7712 /* set status bit */
7713 dd->err_info_rcvport.status_and_code |=
7714 OPA_EI_STATUS_SMASK;
7715 /* save first 2 flits in the packet that caused
7716 * the error */
7717 dd->err_info_rcvport.packet_flit1 = hdr0;
7718 dd->err_info_rcvport.packet_flit2 = hdr1;
7719 }
7720 switch (info) {
7721 case 1:
7722 case 2:
7723 case 3:
7724 case 4:
7725 case 5:
7726 case 6:
7727 case 7:
7728 case 9:
7729 case 11:
7730 case 12:
7731 extra = port_rcv_txt[info];
7732 break;
7733 default:
7734 reason_valid = 0;
7735 snprintf(buf, sizeof(buf), "reserved%lld", info);
7736 extra = buf;
7737 break;
7738 }
7739
7740 if (reason_valid && !do_bounce) {
7741 do_bounce = ppd->port_error_action &
7742 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7743 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7744 }
7745
7746 /* just report this */
7747 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7748 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7749 hdr0, hdr1);
7750
7751 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7752 }
7753
7754 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7755 /* informative only */
7756 dd_dev_info(dd, "8051 access to LCB blocked\n");
7757 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7758 }
7759 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7760 /* informative only */
7761 dd_dev_info(dd, "host access to LCB blocked\n");
7762 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7763 }
7764
7765 /* report any remaining errors */
7766 if (reg)
7767 dd_dev_info(dd, "DCC Error: %s\n",
7768 dcc_err_string(buf, sizeof(buf), reg));
7769
7770 if (lcl_reason == 0)
7771 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7772
7773 if (do_bounce) {
7774 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7775 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7776 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7777 }
7778}
7779
7780static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7781{
7782 char buf[96];
7783
7784 dd_dev_info(dd, "LCB Error: %s\n",
7785 lcb_err_string(buf, sizeof(buf), reg));
7786}
7787
7788/*
7789 * CCE block DC interrupt. Source is < 8.
7790 */
7791static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7792{
7793 const struct err_reg_info *eri = &dc_errs[source];
7794
7795 if (eri->handler) {
7796 interrupt_clear_down(dd, 0, eri);
7797 } else if (source == 3 /* dc_lbm_int */) {
7798 /*
7799 * This indicates that a parity error has occurred on the
7800 * address/control lines presented to the LBM. The error
7801 * is a single pulse, there is no associated error flag,
7802 * and it is non-maskable. This is because if a parity
7803 * error occurs on the request the request is dropped.
7804 * This should never occur, but it is nice to know if it
7805 * ever does.
7806 */
7807 dd_dev_err(dd, "Parity error in DC LBM block\n");
7808 } else {
7809 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7810 }
7811}
7812
7813/*
7814 * TX block send credit interrupt. Source is < 160.
7815 */
7816static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7817{
7818 sc_group_release_update(dd, source);
7819}
7820
7821/*
7822 * TX block SDMA interrupt. Source is < 48.
7823 *
7824 * SDMA interrupts are grouped by type:
7825 *
7826 * 0 - N-1 = SDma
7827 * N - 2N-1 = SDmaProgress
7828 * 2N - 3N-1 = SDmaIdle
7829 */
7830static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7831{
7832 /* what interrupt */
7833 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7834 /* which engine */
7835 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7836
7837#ifdef CONFIG_SDMA_VERBOSITY
7838 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7839 slashstrip(__FILE__), __LINE__, __func__);
7840 sdma_dumpstate(&dd->per_sdma[which]);
7841#endif
7842
7843 if (likely(what < 3 && which < dd->num_sdma)) {
7844 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7845 } else {
7846 /* should not happen */
7847 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7848 }
7849}
7850
7851/*
7852 * RX block receive available interrupt. Source is < 160.
7853 */
7854static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7855{
7856 struct hfi1_ctxtdata *rcd;
7857 char *err_detail;
7858
7859 if (likely(source < dd->num_rcv_contexts)) {
7860 rcd = dd->rcd[source];
7861 if (rcd) {
7862 if (source < dd->first_user_ctxt)
Dean Luickf4f30031c2015-10-26 10:28:44 -04007863 rcd->do_interrupt(rcd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04007864 else
7865 handle_user_interrupt(rcd);
7866 return; /* OK */
7867 }
7868 /* received an interrupt, but no rcd */
7869 err_detail = "dataless";
7870 } else {
7871 /* received an interrupt, but are not using that context */
7872 err_detail = "out of range";
7873 }
7874 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
7875 err_detail, source);
7876}
7877
7878/*
7879 * RX block receive urgent interrupt. Source is < 160.
7880 */
7881static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
7882{
7883 struct hfi1_ctxtdata *rcd;
7884 char *err_detail;
7885
7886 if (likely(source < dd->num_rcv_contexts)) {
7887 rcd = dd->rcd[source];
7888 if (rcd) {
7889 /* only pay attention to user urgent interrupts */
7890 if (source >= dd->first_user_ctxt)
7891 handle_user_interrupt(rcd);
7892 return; /* OK */
7893 }
7894 /* received an interrupt, but no rcd */
7895 err_detail = "dataless";
7896 } else {
7897 /* received an interrupt, but are not using that context */
7898 err_detail = "out of range";
7899 }
7900 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
7901 err_detail, source);
7902}
7903
7904/*
7905 * Reserved range interrupt. Should not be called in normal operation.
7906 */
7907static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
7908{
7909 char name[64];
7910
7911 dd_dev_err(dd, "unexpected %s interrupt\n",
7912 is_reserved_name(name, sizeof(name), source));
7913}
7914
7915static const struct is_table is_table[] = {
7916/* start end
7917 name func interrupt func */
7918{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
7919 is_misc_err_name, is_misc_err_int },
7920{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
7921 is_sdma_eng_err_name, is_sdma_eng_err_int },
7922{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
7923 is_sendctxt_err_name, is_sendctxt_err_int },
7924{ IS_SDMA_START, IS_SDMA_END,
7925 is_sdma_eng_name, is_sdma_eng_int },
7926{ IS_VARIOUS_START, IS_VARIOUS_END,
7927 is_various_name, is_various_int },
7928{ IS_DC_START, IS_DC_END,
7929 is_dc_name, is_dc_int },
7930{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
7931 is_rcv_avail_name, is_rcv_avail_int },
7932{ IS_RCVURGENT_START, IS_RCVURGENT_END,
7933 is_rcv_urgent_name, is_rcv_urgent_int },
7934{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
7935 is_send_credit_name, is_send_credit_int},
7936{ IS_RESERVED_START, IS_RESERVED_END,
7937 is_reserved_name, is_reserved_int},
7938};
7939
7940/*
7941 * Interrupt source interrupt - called when the given source has an interrupt.
7942 * Source is a bit index into an array of 64-bit integers.
7943 */
7944static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
7945{
7946 const struct is_table *entry;
7947
7948 /* avoids a double compare by walking the table in-order */
7949 for (entry = &is_table[0]; entry->is_name; entry++) {
7950 if (source < entry->end) {
7951 trace_hfi1_interrupt(dd, entry, source);
7952 entry->is_int(dd, source - entry->start);
7953 return;
7954 }
7955 }
7956 /* fell off the end */
7957 dd_dev_err(dd, "invalid interrupt source %u\n", source);
7958}
7959
7960/*
7961 * General interrupt handler. This is able to correctly handle
7962 * all interrupts in case INTx is used.
7963 */
7964static irqreturn_t general_interrupt(int irq, void *data)
7965{
7966 struct hfi1_devdata *dd = data;
7967 u64 regs[CCE_NUM_INT_CSRS];
7968 u32 bit;
7969 int i;
7970
7971 this_cpu_inc(*dd->int_counter);
7972
7973 /* phase 1: scan and clear all handled interrupts */
7974 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
7975 if (dd->gi_mask[i] == 0) {
7976 regs[i] = 0; /* used later */
7977 continue;
7978 }
7979 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
7980 dd->gi_mask[i];
7981 /* only clear if anything is set */
7982 if (regs[i])
7983 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
7984 }
7985
7986 /* phase 2: call the appropriate handler */
7987 for_each_set_bit(bit, (unsigned long *)&regs[0],
Jubin John8638b772016-02-14 20:19:24 -08007988 CCE_NUM_INT_CSRS * 64) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04007989 is_interrupt(dd, bit);
7990 }
7991
7992 return IRQ_HANDLED;
7993}
7994
7995static irqreturn_t sdma_interrupt(int irq, void *data)
7996{
7997 struct sdma_engine *sde = data;
7998 struct hfi1_devdata *dd = sde->dd;
7999 u64 status;
8000
8001#ifdef CONFIG_SDMA_VERBOSITY
8002 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8003 slashstrip(__FILE__), __LINE__, __func__);
8004 sdma_dumpstate(sde);
8005#endif
8006
8007 this_cpu_inc(*dd->int_counter);
8008
8009 /* This read_csr is really bad in the hot path */
8010 status = read_csr(dd,
Jubin John8638b772016-02-14 20:19:24 -08008011 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
Mike Marciniszyn77241052015-07-30 15:17:43 -04008012 & sde->imask;
8013 if (likely(status)) {
8014 /* clear the interrupt(s) */
8015 write_csr(dd,
Jubin John8638b772016-02-14 20:19:24 -08008016 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
Mike Marciniszyn77241052015-07-30 15:17:43 -04008017 status);
8018
8019 /* handle the interrupt(s) */
8020 sdma_engine_interrupt(sde, status);
8021 } else
8022 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8023 sde->this_idx);
8024
8025 return IRQ_HANDLED;
8026}
8027
8028/*
Dean Luickecd42f82016-02-03 14:35:14 -08008029 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8030 * to insure that the write completed. This does NOT guarantee that
8031 * queued DMA writes to memory from the chip are pushed.
Dean Luickf4f30031c2015-10-26 10:28:44 -04008032 */
8033static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8034{
8035 struct hfi1_devdata *dd = rcd->dd;
8036 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8037
8038 mmiowb(); /* make sure everything before is written */
8039 write_csr(dd, addr, rcd->imask);
8040 /* force the above write on the chip and get a value back */
8041 (void)read_csr(dd, addr);
8042}
8043
8044/* force the receive interrupt */
Jim Snowfb9036d2016-01-11 18:32:21 -05008045void force_recv_intr(struct hfi1_ctxtdata *rcd)
Dean Luickf4f30031c2015-10-26 10:28:44 -04008046{
8047 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8048}
8049
Dean Luickecd42f82016-02-03 14:35:14 -08008050/*
8051 * Return non-zero if a packet is present.
8052 *
8053 * This routine is called when rechecking for packets after the RcvAvail
8054 * interrupt has been cleared down. First, do a quick check of memory for
8055 * a packet present. If not found, use an expensive CSR read of the context
8056 * tail to determine the actual tail. The CSR read is necessary because there
8057 * is no method to push pending DMAs to memory other than an interrupt and we
8058 * are trying to determine if we need to force an interrupt.
8059 */
Dean Luickf4f30031c2015-10-26 10:28:44 -04008060static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8061{
Dean Luickecd42f82016-02-03 14:35:14 -08008062 u32 tail;
8063 int present;
Dean Luickf4f30031c2015-10-26 10:28:44 -04008064
Dean Luickecd42f82016-02-03 14:35:14 -08008065 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8066 present = (rcd->seq_cnt ==
8067 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8068 else /* is RDMA rtail */
8069 present = (rcd->head != get_rcvhdrtail(rcd));
8070
8071 if (present)
8072 return 1;
8073
8074 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8075 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8076 return rcd->head != tail;
Dean Luickf4f30031c2015-10-26 10:28:44 -04008077}
8078
8079/*
8080 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8081 * This routine will try to handle packets immediately (latency), but if
8082 * it finds too many, it will invoke the thread handler (bandwitdh). The
8083 * chip receive interupt is *not* cleared down until this or the thread (if
8084 * invoked) is finished. The intent is to avoid extra interrupts while we
8085 * are processing packets anyway.
Mike Marciniszyn77241052015-07-30 15:17:43 -04008086 */
8087static irqreturn_t receive_context_interrupt(int irq, void *data)
8088{
8089 struct hfi1_ctxtdata *rcd = data;
8090 struct hfi1_devdata *dd = rcd->dd;
Dean Luickf4f30031c2015-10-26 10:28:44 -04008091 int disposition;
8092 int present;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008093
8094 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8095 this_cpu_inc(*dd->int_counter);
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -08008096 aspm_ctx_disable(rcd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008097
Dean Luickf4f30031c2015-10-26 10:28:44 -04008098 /* receive interrupt remains blocked while processing packets */
8099 disposition = rcd->do_interrupt(rcd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008100
Dean Luickf4f30031c2015-10-26 10:28:44 -04008101 /*
8102 * Too many packets were seen while processing packets in this
8103 * IRQ handler. Invoke the handler thread. The receive interrupt
8104 * remains blocked.
8105 */
8106 if (disposition == RCV_PKT_LIMIT)
8107 return IRQ_WAKE_THREAD;
8108
8109 /*
8110 * The packet processor detected no more packets. Clear the receive
8111 * interrupt and recheck for a packet packet that may have arrived
8112 * after the previous check and interrupt clear. If a packet arrived,
8113 * force another interrupt.
8114 */
8115 clear_recv_intr(rcd);
8116 present = check_packet_present(rcd);
8117 if (present)
8118 force_recv_intr(rcd);
8119
8120 return IRQ_HANDLED;
8121}
8122
8123/*
8124 * Receive packet thread handler. This expects to be invoked with the
8125 * receive interrupt still blocked.
8126 */
8127static irqreturn_t receive_context_thread(int irq, void *data)
8128{
8129 struct hfi1_ctxtdata *rcd = data;
8130 int present;
8131
8132 /* receive interrupt is still blocked from the IRQ handler */
8133 (void)rcd->do_interrupt(rcd, 1);
8134
8135 /*
8136 * The packet processor will only return if it detected no more
8137 * packets. Hold IRQs here so we can safely clear the interrupt and
8138 * recheck for a packet that may have arrived after the previous
8139 * check and the interrupt clear. If a packet arrived, force another
8140 * interrupt.
8141 */
8142 local_irq_disable();
8143 clear_recv_intr(rcd);
8144 present = check_packet_present(rcd);
8145 if (present)
8146 force_recv_intr(rcd);
8147 local_irq_enable();
Mike Marciniszyn77241052015-07-30 15:17:43 -04008148
8149 return IRQ_HANDLED;
8150}
8151
8152/* ========================================================================= */
8153
8154u32 read_physical_state(struct hfi1_devdata *dd)
8155{
8156 u64 reg;
8157
8158 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8159 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8160 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8161}
8162
Jim Snowfb9036d2016-01-11 18:32:21 -05008163u32 read_logical_state(struct hfi1_devdata *dd)
Mike Marciniszyn77241052015-07-30 15:17:43 -04008164{
8165 u64 reg;
8166
8167 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8168 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8169 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8170}
8171
8172static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8173{
8174 u64 reg;
8175
8176 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8177 /* clear current state, set new state */
8178 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8179 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8180 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8181}
8182
8183/*
8184 * Use the 8051 to read a LCB CSR.
8185 */
8186static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8187{
8188 u32 regno;
8189 int ret;
8190
8191 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8192 if (acquire_lcb_access(dd, 0) == 0) {
8193 *data = read_csr(dd, addr);
8194 release_lcb_access(dd, 0);
8195 return 0;
8196 }
8197 return -EBUSY;
8198 }
8199
8200 /* register is an index of LCB registers: (offset - base) / 8 */
8201 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8202 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8203 if (ret != HCMD_SUCCESS)
8204 return -EBUSY;
8205 return 0;
8206}
8207
8208/*
8209 * Read an LCB CSR. Access may not be in host control, so check.
8210 * Return 0 on success, -EBUSY on failure.
8211 */
8212int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8213{
8214 struct hfi1_pportdata *ppd = dd->pport;
8215
8216 /* if up, go through the 8051 for the value */
8217 if (ppd->host_link_state & HLS_UP)
8218 return read_lcb_via_8051(dd, addr, data);
8219 /* if going up or down, no access */
8220 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8221 return -EBUSY;
8222 /* otherwise, host has access */
8223 *data = read_csr(dd, addr);
8224 return 0;
8225}
8226
8227/*
8228 * Use the 8051 to write a LCB CSR.
8229 */
8230static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8231{
Dean Luick3bf40d62015-11-06 20:07:04 -05008232 u32 regno;
8233 int ret;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008234
Dean Luick3bf40d62015-11-06 20:07:04 -05008235 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8236 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8237 if (acquire_lcb_access(dd, 0) == 0) {
8238 write_csr(dd, addr, data);
8239 release_lcb_access(dd, 0);
8240 return 0;
8241 }
8242 return -EBUSY;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008243 }
Dean Luick3bf40d62015-11-06 20:07:04 -05008244
8245 /* register is an index of LCB registers: (offset - base) / 8 */
8246 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8247 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8248 if (ret != HCMD_SUCCESS)
8249 return -EBUSY;
8250 return 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008251}
8252
8253/*
8254 * Write an LCB CSR. Access may not be in host control, so check.
8255 * Return 0 on success, -EBUSY on failure.
8256 */
8257int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8258{
8259 struct hfi1_pportdata *ppd = dd->pport;
8260
8261 /* if up, go through the 8051 for the value */
8262 if (ppd->host_link_state & HLS_UP)
8263 return write_lcb_via_8051(dd, addr, data);
8264 /* if going up or down, no access */
8265 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8266 return -EBUSY;
8267 /* otherwise, host has access */
8268 write_csr(dd, addr, data);
8269 return 0;
8270}
8271
8272/*
8273 * Returns:
8274 * < 0 = Linux error, not able to get access
8275 * > 0 = 8051 command RETURN_CODE
8276 */
8277static int do_8051_command(
8278 struct hfi1_devdata *dd,
8279 u32 type,
8280 u64 in_data,
8281 u64 *out_data)
8282{
8283 u64 reg, completed;
8284 int return_code;
8285 unsigned long flags;
8286 unsigned long timeout;
8287
8288 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8289
8290 /*
8291 * Alternative to holding the lock for a long time:
8292 * - keep busy wait - have other users bounce off
8293 */
8294 spin_lock_irqsave(&dd->dc8051_lock, flags);
8295
8296 /* We can't send any commands to the 8051 if it's in reset */
8297 if (dd->dc_shutdown) {
8298 return_code = -ENODEV;
8299 goto fail;
8300 }
8301
8302 /*
8303 * If an 8051 host command timed out previously, then the 8051 is
8304 * stuck.
8305 *
8306 * On first timeout, attempt to reset and restart the entire DC
8307 * block (including 8051). (Is this too big of a hammer?)
8308 *
8309 * If the 8051 times out a second time, the reset did not bring it
8310 * back to healthy life. In that case, fail any subsequent commands.
8311 */
8312 if (dd->dc8051_timed_out) {
8313 if (dd->dc8051_timed_out > 1) {
8314 dd_dev_err(dd,
8315 "Previous 8051 host command timed out, skipping command %u\n",
8316 type);
8317 return_code = -ENXIO;
8318 goto fail;
8319 }
8320 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8321 dc_shutdown(dd);
8322 dc_start(dd);
8323 spin_lock_irqsave(&dd->dc8051_lock, flags);
8324 }
8325
8326 /*
8327 * If there is no timeout, then the 8051 command interface is
8328 * waiting for a command.
8329 */
8330
8331 /*
Dean Luick3bf40d62015-11-06 20:07:04 -05008332 * When writing a LCB CSR, out_data contains the full value to
8333 * to be written, while in_data contains the relative LCB
8334 * address in 7:0. Do the work here, rather than the caller,
8335 * of distrubting the write data to where it needs to go:
8336 *
8337 * Write data
8338 * 39:00 -> in_data[47:8]
8339 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8340 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8341 */
8342 if (type == HCMD_WRITE_LCB_CSR) {
8343 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8344 reg = ((((*out_data) >> 40) & 0xff) <<
8345 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8346 | ((((*out_data) >> 48) & 0xffff) <<
8347 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8348 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8349 }
8350
8351 /*
Mike Marciniszyn77241052015-07-30 15:17:43 -04008352 * Do two writes: the first to stabilize the type and req_data, the
8353 * second to activate.
8354 */
8355 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8356 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8357 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8358 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8359 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8360 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8361 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8362
8363 /* wait for completion, alternate: interrupt */
8364 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8365 while (1) {
8366 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8367 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8368 if (completed)
8369 break;
8370 if (time_after(jiffies, timeout)) {
8371 dd->dc8051_timed_out++;
8372 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8373 if (out_data)
8374 *out_data = 0;
8375 return_code = -ETIMEDOUT;
8376 goto fail;
8377 }
8378 udelay(2);
8379 }
8380
8381 if (out_data) {
8382 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8383 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8384 if (type == HCMD_READ_LCB_CSR) {
8385 /* top 16 bits are in a different register */
8386 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8387 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8388 << (48
8389 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8390 }
8391 }
8392 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8393 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8394 dd->dc8051_timed_out = 0;
8395 /*
8396 * Clear command for next user.
8397 */
8398 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8399
8400fail:
8401 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8402
8403 return return_code;
8404}
8405
8406static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8407{
8408 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8409}
8410
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08008411int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8412 u8 lane_id, u32 config_data)
Mike Marciniszyn77241052015-07-30 15:17:43 -04008413{
8414 u64 data;
8415 int ret;
8416
8417 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8418 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8419 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8420 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8421 if (ret != HCMD_SUCCESS) {
8422 dd_dev_err(dd,
8423 "load 8051 config: field id %d, lane %d, err %d\n",
8424 (int)field_id, (int)lane_id, ret);
8425 }
8426 return ret;
8427}
8428
8429/*
8430 * Read the 8051 firmware "registers". Use the RAM directly. Always
8431 * set the result, even on error.
8432 * Return 0 on success, -errno on failure
8433 */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08008434int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8435 u32 *result)
Mike Marciniszyn77241052015-07-30 15:17:43 -04008436{
8437 u64 big_data;
8438 u32 addr;
8439 int ret;
8440
8441 /* address start depends on the lane_id */
8442 if (lane_id < 4)
8443 addr = (4 * NUM_GENERAL_FIELDS)
8444 + (lane_id * 4 * NUM_LANE_FIELDS);
8445 else
8446 addr = 0;
8447 addr += field_id * 4;
8448
8449 /* read is in 8-byte chunks, hardware will truncate the address down */
8450 ret = read_8051_data(dd, addr, 8, &big_data);
8451
8452 if (ret == 0) {
8453 /* extract the 4 bytes we want */
8454 if (addr & 0x4)
8455 *result = (u32)(big_data >> 32);
8456 else
8457 *result = (u32)big_data;
8458 } else {
8459 *result = 0;
8460 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8461 __func__, lane_id, field_id);
8462 }
8463
8464 return ret;
8465}
8466
8467static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8468 u8 continuous)
8469{
8470 u32 frame;
8471
8472 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8473 | power_management << POWER_MANAGEMENT_SHIFT;
8474 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8475 GENERAL_CONFIG, frame);
8476}
8477
8478static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8479 u16 vl15buf, u8 crc_sizes)
8480{
8481 u32 frame;
8482
8483 frame = (u32)vau << VAU_SHIFT
8484 | (u32)z << Z_SHIFT
8485 | (u32)vcu << VCU_SHIFT
8486 | (u32)vl15buf << VL15BUF_SHIFT
8487 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8488 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8489 GENERAL_CONFIG, frame);
8490}
8491
8492static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8493 u8 *flag_bits, u16 *link_widths)
8494{
8495 u32 frame;
8496
8497 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8498 &frame);
8499 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8500 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8501 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8502}
8503
8504static int write_vc_local_link_width(struct hfi1_devdata *dd,
8505 u8 misc_bits,
8506 u8 flag_bits,
8507 u16 link_widths)
8508{
8509 u32 frame;
8510
8511 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8512 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8513 | (u32)link_widths << LINK_WIDTH_SHIFT;
8514 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8515 frame);
8516}
8517
8518static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8519 u8 device_rev)
8520{
8521 u32 frame;
8522
8523 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8524 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8525 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8526}
8527
8528static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8529 u8 *device_rev)
8530{
8531 u32 frame;
8532
8533 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8534 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8535 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8536 & REMOTE_DEVICE_REV_MASK;
8537}
8538
8539void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8540{
8541 u32 frame;
8542
8543 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8544 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8545 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8546}
8547
8548static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8549 u8 *continuous)
8550{
8551 u32 frame;
8552
8553 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8554 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8555 & POWER_MANAGEMENT_MASK;
8556 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8557 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8558}
8559
8560static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8561 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8562{
8563 u32 frame;
8564
8565 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8566 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8567 *z = (frame >> Z_SHIFT) & Z_MASK;
8568 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8569 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8570 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8571}
8572
8573static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8574 u8 *remote_tx_rate,
8575 u16 *link_widths)
8576{
8577 u32 frame;
8578
8579 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8580 &frame);
8581 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8582 & REMOTE_TX_RATE_MASK;
8583 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8584}
8585
8586static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8587{
8588 u32 frame;
8589
8590 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8591 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8592}
8593
8594static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8595{
8596 u32 frame;
8597
8598 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8599 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8600}
8601
8602static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8603{
8604 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8605}
8606
8607static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8608{
8609 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8610}
8611
8612void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8613{
8614 u32 frame;
8615 int ret;
8616
8617 *link_quality = 0;
8618 if (dd->pport->host_link_state & HLS_UP) {
8619 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8620 &frame);
8621 if (ret == 0)
8622 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8623 & LINK_QUALITY_MASK;
8624 }
8625}
8626
8627static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8628{
8629 u32 frame;
8630
8631 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8632 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8633}
8634
8635static int read_tx_settings(struct hfi1_devdata *dd,
8636 u8 *enable_lane_tx,
8637 u8 *tx_polarity_inversion,
8638 u8 *rx_polarity_inversion,
8639 u8 *max_rate)
8640{
8641 u32 frame;
8642 int ret;
8643
8644 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8645 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8646 & ENABLE_LANE_TX_MASK;
8647 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8648 & TX_POLARITY_INVERSION_MASK;
8649 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8650 & RX_POLARITY_INVERSION_MASK;
8651 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8652 return ret;
8653}
8654
8655static int write_tx_settings(struct hfi1_devdata *dd,
8656 u8 enable_lane_tx,
8657 u8 tx_polarity_inversion,
8658 u8 rx_polarity_inversion,
8659 u8 max_rate)
8660{
8661 u32 frame;
8662
8663 /* no need to mask, all variable sizes match field widths */
8664 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8665 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8666 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8667 | max_rate << MAX_RATE_SHIFT;
8668 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8669}
8670
8671static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
8672{
8673 u32 frame, version, prod_id;
8674 int ret, lane;
8675
8676 /* 4 lanes */
8677 for (lane = 0; lane < 4; lane++) {
8678 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
8679 if (ret) {
8680 dd_dev_err(
8681 dd,
8682 "Unable to read lane %d firmware details\n",
8683 lane);
8684 continue;
8685 }
8686 version = (frame >> SPICO_ROM_VERSION_SHIFT)
8687 & SPICO_ROM_VERSION_MASK;
8688 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
8689 & SPICO_ROM_PROD_ID_MASK;
8690 dd_dev_info(dd,
8691 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
8692 lane, version, prod_id);
8693 }
8694}
8695
8696/*
8697 * Read an idle LCB message.
8698 *
8699 * Returns 0 on success, -EINVAL on error
8700 */
8701static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8702{
8703 int ret;
8704
8705 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
8706 type, data_out);
8707 if (ret != HCMD_SUCCESS) {
8708 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8709 (u32)type, ret);
8710 return -EINVAL;
8711 }
8712 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8713 /* return only the payload as we already know the type */
8714 *data_out >>= IDLE_PAYLOAD_SHIFT;
8715 return 0;
8716}
8717
8718/*
8719 * Read an idle SMA message. To be done in response to a notification from
8720 * the 8051.
8721 *
8722 * Returns 0 on success, -EINVAL on error
8723 */
8724static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8725{
8726 return read_idle_message(dd,
8727 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
8728}
8729
8730/*
8731 * Send an idle LCB message.
8732 *
8733 * Returns 0 on success, -EINVAL on error
8734 */
8735static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8736{
8737 int ret;
8738
8739 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8740 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8741 if (ret != HCMD_SUCCESS) {
8742 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8743 data, ret);
8744 return -EINVAL;
8745 }
8746 return 0;
8747}
8748
8749/*
8750 * Send an idle SMA message.
8751 *
8752 * Returns 0 on success, -EINVAL on error
8753 */
8754int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8755{
8756 u64 data;
8757
8758 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
8759 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8760 return send_idle_message(dd, data);
8761}
8762
8763/*
8764 * Initialize the LCB then do a quick link up. This may or may not be
8765 * in loopback.
8766 *
8767 * return 0 on success, -errno on error
8768 */
8769static int do_quick_linkup(struct hfi1_devdata *dd)
8770{
8771 u64 reg;
8772 unsigned long timeout;
8773 int ret;
8774
8775 lcb_shutdown(dd, 0);
8776
8777 if (loopback) {
8778 /* LCB_CFG_LOOPBACK.VAL = 2 */
8779 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8780 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8781 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8782 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8783 }
8784
8785 /* start the LCBs */
8786 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8787 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8788
8789 /* simulator only loopback steps */
8790 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8791 /* LCB_CFG_RUN.EN = 1 */
8792 write_csr(dd, DC_LCB_CFG_RUN,
8793 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8794
8795 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8796 timeout = jiffies + msecs_to_jiffies(10);
8797 while (1) {
8798 reg = read_csr(dd,
8799 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8800 if (reg)
8801 break;
8802 if (time_after(jiffies, timeout)) {
8803 dd_dev_err(dd,
8804 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8805 return -ETIMEDOUT;
8806 }
8807 udelay(2);
8808 }
8809
8810 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8811 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8812 }
8813
8814 if (!loopback) {
8815 /*
8816 * When doing quick linkup and not in loopback, both
8817 * sides must be done with LCB set-up before either
8818 * starts the quick linkup. Put a delay here so that
8819 * both sides can be started and have a chance to be
8820 * done with LCB set up before resuming.
8821 */
8822 dd_dev_err(dd,
8823 "Pausing for peer to be finished with LCB set up\n");
8824 msleep(5000);
8825 dd_dev_err(dd,
8826 "Continuing with quick linkup\n");
8827 }
8828
8829 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8830 set_8051_lcb_access(dd);
8831
8832 /*
8833 * State "quick" LinkUp request sets the physical link state to
8834 * LinkUp without a verify capability sequence.
8835 * This state is in simulator v37 and later.
8836 */
8837 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8838 if (ret != HCMD_SUCCESS) {
8839 dd_dev_err(dd,
8840 "%s: set physical link state to quick LinkUp failed with return %d\n",
8841 __func__, ret);
8842
8843 set_host_lcb_access(dd);
8844 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8845
8846 if (ret >= 0)
8847 ret = -EINVAL;
8848 return ret;
8849 }
8850
8851 return 0; /* success */
8852}
8853
8854/*
8855 * Set the SerDes to internal loopback mode.
8856 * Returns 0 on success, -errno on error.
8857 */
8858static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8859{
8860 int ret;
8861
8862 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8863 if (ret == HCMD_SUCCESS)
8864 return 0;
8865 dd_dev_err(dd,
8866 "Set physical link state to SerDes Loopback failed with return %d\n",
8867 ret);
8868 if (ret >= 0)
8869 ret = -EINVAL;
8870 return ret;
8871}
8872
8873/*
8874 * Do all special steps to set up loopback.
8875 */
8876static int init_loopback(struct hfi1_devdata *dd)
8877{
8878 dd_dev_info(dd, "Entering loopback mode\n");
8879
8880 /* all loopbacks should disable self GUID check */
8881 write_csr(dd, DC_DC8051_CFG_MODE,
8882 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
8883
8884 /*
8885 * The simulator has only one loopback option - LCB. Switch
8886 * to that option, which includes quick link up.
8887 *
8888 * Accept all valid loopback values.
8889 */
Jubin Johnd0d236e2016-02-14 20:20:15 -08008890 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
8891 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
8892 loopback == LOOPBACK_CABLE)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04008893 loopback = LOOPBACK_LCB;
8894 quick_linkup = 1;
8895 return 0;
8896 }
8897
8898 /* handle serdes loopback */
8899 if (loopback == LOOPBACK_SERDES) {
8900 /* internal serdes loopack needs quick linkup on RTL */
8901 if (dd->icode == ICODE_RTL_SILICON)
8902 quick_linkup = 1;
8903 return set_serdes_loopback_mode(dd);
8904 }
8905
8906 /* LCB loopback - handled at poll time */
8907 if (loopback == LOOPBACK_LCB) {
8908 quick_linkup = 1; /* LCB is always quick linkup */
8909
8910 /* not supported in emulation due to emulation RTL changes */
8911 if (dd->icode == ICODE_FPGA_EMULATION) {
8912 dd_dev_err(dd,
8913 "LCB loopback not supported in emulation\n");
8914 return -EINVAL;
8915 }
8916 return 0;
8917 }
8918
8919 /* external cable loopback requires no extra steps */
8920 if (loopback == LOOPBACK_CABLE)
8921 return 0;
8922
8923 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
8924 return -EINVAL;
8925}
8926
8927/*
8928 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
8929 * used in the Verify Capability link width attribute.
8930 */
8931static u16 opa_to_vc_link_widths(u16 opa_widths)
8932{
8933 int i;
8934 u16 result = 0;
8935
8936 static const struct link_bits {
8937 u16 from;
8938 u16 to;
8939 } opa_link_xlate[] = {
Jubin John8638b772016-02-14 20:19:24 -08008940 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
8941 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
8942 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
8943 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
Mike Marciniszyn77241052015-07-30 15:17:43 -04008944 };
8945
8946 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
8947 if (opa_widths & opa_link_xlate[i].from)
8948 result |= opa_link_xlate[i].to;
8949 }
8950 return result;
8951}
8952
8953/*
8954 * Set link attributes before moving to polling.
8955 */
8956static int set_local_link_attributes(struct hfi1_pportdata *ppd)
8957{
8958 struct hfi1_devdata *dd = ppd->dd;
8959 u8 enable_lane_tx;
8960 u8 tx_polarity_inversion;
8961 u8 rx_polarity_inversion;
8962 int ret;
8963
8964 /* reset our fabric serdes to clear any lingering problems */
8965 fabric_serdes_reset(dd);
8966
8967 /* set the local tx rate - need to read-modify-write */
8968 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
8969 &rx_polarity_inversion, &ppd->local_tx_rate);
8970 if (ret)
8971 goto set_local_link_attributes_fail;
8972
8973 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
8974 /* set the tx rate to the fastest enabled */
8975 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8976 ppd->local_tx_rate = 1;
8977 else
8978 ppd->local_tx_rate = 0;
8979 } else {
8980 /* set the tx rate to all enabled */
8981 ppd->local_tx_rate = 0;
8982 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8983 ppd->local_tx_rate |= 2;
8984 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
8985 ppd->local_tx_rate |= 1;
8986 }
Easwar Hariharanfebffe22015-10-26 10:28:36 -04008987
8988 enable_lane_tx = 0xF; /* enable all four lanes */
Mike Marciniszyn77241052015-07-30 15:17:43 -04008989 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
8990 rx_polarity_inversion, ppd->local_tx_rate);
8991 if (ret != HCMD_SUCCESS)
8992 goto set_local_link_attributes_fail;
8993
8994 /*
8995 * DC supports continuous updates.
8996 */
8997 ret = write_vc_local_phy(dd, 0 /* no power management */,
8998 1 /* continuous updates */);
8999 if (ret != HCMD_SUCCESS)
9000 goto set_local_link_attributes_fail;
9001
9002 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9003 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9004 ppd->port_crc_mode_enabled);
9005 if (ret != HCMD_SUCCESS)
9006 goto set_local_link_attributes_fail;
9007
9008 ret = write_vc_local_link_width(dd, 0, 0,
9009 opa_to_vc_link_widths(ppd->link_width_enabled));
9010 if (ret != HCMD_SUCCESS)
9011 goto set_local_link_attributes_fail;
9012
9013 /* let peer know who we are */
9014 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9015 if (ret == HCMD_SUCCESS)
9016 return 0;
9017
9018set_local_link_attributes_fail:
9019 dd_dev_err(dd,
9020 "Failed to set local link attributes, return 0x%x\n",
9021 ret);
9022 return ret;
9023}
9024
9025/*
9026 * Call this to start the link. Schedule a retry if the cable is not
9027 * present or if unable to start polling. Do not do anything if the
9028 * link is disabled. Returns 0 if link is disabled or moved to polling
9029 */
9030int start_link(struct hfi1_pportdata *ppd)
9031{
9032 if (!ppd->link_enabled) {
9033 dd_dev_info(ppd->dd,
9034 "%s: stopping link start because link is disabled\n",
9035 __func__);
9036 return 0;
9037 }
9038 if (!ppd->driver_link_ready) {
9039 dd_dev_info(ppd->dd,
9040 "%s: stopping link start because driver is not ready\n",
9041 __func__);
9042 return 0;
9043 }
9044
9045 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
9046 loopback == LOOPBACK_LCB ||
9047 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9048 return set_link_state(ppd, HLS_DN_POLL);
9049
9050 dd_dev_info(ppd->dd,
9051 "%s: stopping link start because no cable is present\n",
9052 __func__);
9053 return -EAGAIN;
9054}
9055
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009056static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9057{
9058 struct hfi1_devdata *dd = ppd->dd;
9059 u64 mask;
9060 unsigned long timeout;
9061
9062 /*
9063 * Check for QSFP interrupt for t_init (SFF 8679)
9064 */
9065 timeout = jiffies + msecs_to_jiffies(2000);
9066 while (1) {
9067 mask = read_csr(dd, dd->hfi1_id ?
9068 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9069 if (!(mask & QSFP_HFI0_INT_N)) {
9070 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR :
9071 ASIC_QSFP1_CLEAR, QSFP_HFI0_INT_N);
9072 break;
9073 }
9074 if (time_after(jiffies, timeout)) {
9075 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9076 __func__);
9077 break;
9078 }
9079 udelay(2);
9080 }
9081}
9082
9083static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9084{
9085 struct hfi1_devdata *dd = ppd->dd;
9086 u64 mask;
9087
9088 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9089 if (enable)
9090 mask |= (u64)QSFP_HFI0_INT_N;
9091 else
9092 mask &= ~(u64)QSFP_HFI0_INT_N;
9093 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9094}
9095
9096void reset_qsfp(struct hfi1_pportdata *ppd)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009097{
9098 struct hfi1_devdata *dd = ppd->dd;
9099 u64 mask, qsfp_mask;
9100
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009101 /* Disable INT_N from triggering QSFP interrupts */
9102 set_qsfp_int_n(ppd, 0);
9103
9104 /* Reset the QSFP */
Mike Marciniszyn77241052015-07-30 15:17:43 -04009105 mask = (u64)QSFP_HFI0_RESET_N;
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009106 qsfp_mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009107 qsfp_mask |= mask;
9108 write_csr(dd,
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009109 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE, qsfp_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009110
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009111 qsfp_mask = read_csr(dd, dd->hfi1_id ?
9112 ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009113 qsfp_mask &= ~mask;
9114 write_csr(dd,
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009115 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009116
9117 udelay(10);
9118
9119 qsfp_mask |= mask;
9120 write_csr(dd,
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009121 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9122
9123 wait_for_qsfp_init(ppd);
9124
9125 /*
9126 * Allow INT_N to trigger the QSFP interrupt to watch
9127 * for alarms and warnings
9128 */
9129 set_qsfp_int_n(ppd, 1);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009130}
9131
9132static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9133 u8 *qsfp_interrupt_status)
9134{
9135 struct hfi1_devdata *dd = ppd->dd;
9136
9137 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9138 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9139 dd_dev_info(dd,
9140 "%s: QSFP cable on fire\n",
9141 __func__);
9142
9143 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9144 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9145 dd_dev_info(dd,
9146 "%s: QSFP cable temperature too low\n",
9147 __func__);
9148
9149 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9150 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9151 dd_dev_info(dd,
9152 "%s: QSFP supply voltage too high\n",
9153 __func__);
9154
9155 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9156 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9157 dd_dev_info(dd,
9158 "%s: QSFP supply voltage too low\n",
9159 __func__);
9160
9161 /* Byte 2 is vendor specific */
9162
9163 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9164 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9165 dd_dev_info(dd,
9166 "%s: Cable RX channel 1/2 power too high\n",
9167 __func__);
9168
9169 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9170 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9171 dd_dev_info(dd,
9172 "%s: Cable RX channel 1/2 power too low\n",
9173 __func__);
9174
9175 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9176 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9177 dd_dev_info(dd,
9178 "%s: Cable RX channel 3/4 power too high\n",
9179 __func__);
9180
9181 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9182 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9183 dd_dev_info(dd,
9184 "%s: Cable RX channel 3/4 power too low\n",
9185 __func__);
9186
9187 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9188 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9189 dd_dev_info(dd,
9190 "%s: Cable TX channel 1/2 bias too high\n",
9191 __func__);
9192
9193 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9194 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9195 dd_dev_info(dd,
9196 "%s: Cable TX channel 1/2 bias too low\n",
9197 __func__);
9198
9199 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9200 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9201 dd_dev_info(dd,
9202 "%s: Cable TX channel 3/4 bias too high\n",
9203 __func__);
9204
9205 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9206 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9207 dd_dev_info(dd,
9208 "%s: Cable TX channel 3/4 bias too low\n",
9209 __func__);
9210
9211 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9212 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9213 dd_dev_info(dd,
9214 "%s: Cable TX channel 1/2 power too high\n",
9215 __func__);
9216
9217 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9218 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9219 dd_dev_info(dd,
9220 "%s: Cable TX channel 1/2 power too low\n",
9221 __func__);
9222
9223 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9224 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9225 dd_dev_info(dd,
9226 "%s: Cable TX channel 3/4 power too high\n",
9227 __func__);
9228
9229 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9230 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9231 dd_dev_info(dd,
9232 "%s: Cable TX channel 3/4 power too low\n",
9233 __func__);
9234
9235 /* Bytes 9-10 and 11-12 are reserved */
9236 /* Bytes 13-15 are vendor specific */
9237
9238 return 0;
9239}
9240
Mike Marciniszyn77241052015-07-30 15:17:43 -04009241/* This routine will only be scheduled if the QSFP module is present */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009242void qsfp_event(struct work_struct *work)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009243{
9244 struct qsfp_data *qd;
9245 struct hfi1_pportdata *ppd;
9246 struct hfi1_devdata *dd;
9247
9248 qd = container_of(work, struct qsfp_data, qsfp_work);
9249 ppd = qd->ppd;
9250 dd = ppd->dd;
9251
9252 /* Sanity check */
9253 if (!qsfp_mod_present(ppd))
9254 return;
9255
9256 /*
9257 * Turn DC back on after cables has been
9258 * re-inserted. Up until now, the DC has been in
9259 * reset to save power.
9260 */
9261 dc_start(dd);
9262
9263 if (qd->cache_refresh_required) {
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009264 set_qsfp_int_n(ppd, 0);
9265
9266 wait_for_qsfp_init(ppd);
9267
9268 /*
9269 * Allow INT_N to trigger the QSFP interrupt to watch
9270 * for alarms and warnings
Mike Marciniszyn77241052015-07-30 15:17:43 -04009271 */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009272 set_qsfp_int_n(ppd, 1);
9273
9274 tune_serdes(ppd);
9275
9276 start_link(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009277 }
9278
9279 if (qd->check_interrupt_flags) {
9280 u8 qsfp_interrupt_status[16] = {0,};
9281
9282 if (qsfp_read(ppd, dd->hfi1_id, 6,
9283 &qsfp_interrupt_status[0], 16) != 16) {
9284 dd_dev_info(dd,
9285 "%s: Failed to read status of QSFP module\n",
9286 __func__);
9287 } else {
9288 unsigned long flags;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009289
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009290 handle_qsfp_error_conditions(
9291 ppd, qsfp_interrupt_status);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009292 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9293 ppd->qsfp_info.check_interrupt_flags = 0;
9294 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9295 flags);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009296 }
9297 }
9298}
9299
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009300static void init_qsfp_int(struct hfi1_devdata *dd)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009301{
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009302 struct hfi1_pportdata *ppd = dd->pport;
9303 u64 qsfp_mask, cce_int_mask;
9304 const int qsfp1_int_smask = QSFP1_INT % 64;
9305 const int qsfp2_int_smask = QSFP2_INT % 64;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009306
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009307 /*
9308 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9309 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9310 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9311 * the index of the appropriate CSR in the CCEIntMask CSR array
9312 */
9313 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9314 (8 * (QSFP1_INT / 64)));
9315 if (dd->hfi1_id) {
9316 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9317 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9318 cce_int_mask);
9319 } else {
9320 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9321 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9322 cce_int_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009323 }
9324
Mike Marciniszyn77241052015-07-30 15:17:43 -04009325 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9326 /* Clear current status to avoid spurious interrupts */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009327 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9328 qsfp_mask);
9329 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9330 qsfp_mask);
9331
9332 set_qsfp_int_n(ppd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009333
9334 /* Handle active low nature of INT_N and MODPRST_N pins */
9335 if (qsfp_mod_present(ppd))
9336 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9337 write_csr(dd,
9338 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9339 qsfp_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009340}
9341
Dean Luickbbdeb332015-12-01 15:38:15 -05009342/*
9343 * Do a one-time initialize of the LCB block.
9344 */
9345static void init_lcb(struct hfi1_devdata *dd)
9346{
Dean Luicka59329d2016-02-03 14:32:31 -08009347 /* simulator does not correctly handle LCB cclk loopback, skip */
9348 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9349 return;
9350
Dean Luickbbdeb332015-12-01 15:38:15 -05009351 /* the DC has been reset earlier in the driver load */
9352
9353 /* set LCB for cclk loopback on the port */
9354 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9355 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9356 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9357 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9358 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9359 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9360 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9361}
9362
Mike Marciniszyn77241052015-07-30 15:17:43 -04009363int bringup_serdes(struct hfi1_pportdata *ppd)
9364{
9365 struct hfi1_devdata *dd = ppd->dd;
9366 u64 guid;
9367 int ret;
9368
9369 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9370 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9371
9372 guid = ppd->guid;
9373 if (!guid) {
9374 if (dd->base_guid)
9375 guid = dd->base_guid + ppd->port - 1;
9376 ppd->guid = guid;
9377 }
9378
Mike Marciniszyn77241052015-07-30 15:17:43 -04009379 /* Set linkinit_reason on power up per OPA spec */
9380 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9381
Dean Luickbbdeb332015-12-01 15:38:15 -05009382 /* one-time init of the LCB */
9383 init_lcb(dd);
9384
Mike Marciniszyn77241052015-07-30 15:17:43 -04009385 if (loopback) {
9386 ret = init_loopback(dd);
9387 if (ret < 0)
9388 return ret;
9389 }
9390
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009391 /* tune the SERDES to a ballpark setting for
9392 * optimal signal and bit error rate
9393 * Needs to be done before starting the link
9394 */
9395 tune_serdes(ppd);
9396
Mike Marciniszyn77241052015-07-30 15:17:43 -04009397 return start_link(ppd);
9398}
9399
9400void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9401{
9402 struct hfi1_devdata *dd = ppd->dd;
9403
9404 /*
9405 * Shut down the link and keep it down. First turn off that the
9406 * driver wants to allow the link to be up (driver_link_ready).
9407 * Then make sure the link is not automatically restarted
9408 * (link_enabled). Cancel any pending restart. And finally
9409 * go offline.
9410 */
9411 ppd->driver_link_ready = 0;
9412 ppd->link_enabled = 0;
9413
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009414 ppd->offline_disabled_reason =
9415 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009416 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9417 OPA_LINKDOWN_REASON_SMA_DISABLED);
9418 set_link_state(ppd, HLS_DN_OFFLINE);
9419
9420 /* disable the port */
9421 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9422}
9423
9424static inline int init_cpu_counters(struct hfi1_devdata *dd)
9425{
9426 struct hfi1_pportdata *ppd;
9427 int i;
9428
9429 ppd = (struct hfi1_pportdata *)(dd + 1);
9430 for (i = 0; i < dd->num_pports; i++, ppd++) {
Dennis Dalessandro4eb06882016-01-19 14:42:39 -08009431 ppd->ibport_data.rvp.rc_acks = NULL;
9432 ppd->ibport_data.rvp.rc_qacks = NULL;
9433 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9434 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9435 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9436 if (!ppd->ibport_data.rvp.rc_acks ||
9437 !ppd->ibport_data.rvp.rc_delayed_comp ||
9438 !ppd->ibport_data.rvp.rc_qacks)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009439 return -ENOMEM;
9440 }
9441
9442 return 0;
9443}
9444
9445static const char * const pt_names[] = {
9446 "expected",
9447 "eager",
9448 "invalid"
9449};
9450
9451static const char *pt_name(u32 type)
9452{
9453 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9454}
9455
9456/*
9457 * index is the index into the receive array
9458 */
9459void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9460 u32 type, unsigned long pa, u16 order)
9461{
9462 u64 reg;
9463 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9464 (dd->kregbase + RCV_ARRAY));
9465
9466 if (!(dd->flags & HFI1_PRESENT))
9467 goto done;
9468
9469 if (type == PT_INVALID) {
9470 pa = 0;
9471 } else if (type > PT_INVALID) {
9472 dd_dev_err(dd,
9473 "unexpected receive array type %u for index %u, not handled\n",
9474 type, index);
9475 goto done;
9476 }
9477
9478 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9479 pt_name(type), index, pa, (unsigned long)order);
9480
9481#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9482 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9483 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9484 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9485 << RCV_ARRAY_RT_ADDR_SHIFT;
9486 writeq(reg, base + (index * 8));
9487
9488 if (type == PT_EAGER)
9489 /*
9490 * Eager entries are written one-by-one so we have to push them
9491 * after we write the entry.
9492 */
9493 flush_wc();
9494done:
9495 return;
9496}
9497
9498void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9499{
9500 struct hfi1_devdata *dd = rcd->dd;
9501 u32 i;
9502
9503 /* this could be optimized */
9504 for (i = rcd->eager_base; i < rcd->eager_base +
9505 rcd->egrbufs.alloced; i++)
9506 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9507
9508 for (i = rcd->expected_base;
9509 i < rcd->expected_base + rcd->expected_count; i++)
9510 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9511}
9512
9513int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
9514 struct hfi1_ctxt_info *kinfo)
9515{
9516 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
9517 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
9518 return 0;
9519}
9520
9521struct hfi1_message_header *hfi1_get_msgheader(
9522 struct hfi1_devdata *dd, __le32 *rhf_addr)
9523{
9524 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9525
9526 return (struct hfi1_message_header *)
9527 (rhf_addr - dd->rhf_offset + offset);
9528}
9529
9530static const char * const ib_cfg_name_strings[] = {
9531 "HFI1_IB_CFG_LIDLMC",
9532 "HFI1_IB_CFG_LWID_DG_ENB",
9533 "HFI1_IB_CFG_LWID_ENB",
9534 "HFI1_IB_CFG_LWID",
9535 "HFI1_IB_CFG_SPD_ENB",
9536 "HFI1_IB_CFG_SPD",
9537 "HFI1_IB_CFG_RXPOL_ENB",
9538 "HFI1_IB_CFG_LREV_ENB",
9539 "HFI1_IB_CFG_LINKLATENCY",
9540 "HFI1_IB_CFG_HRTBT",
9541 "HFI1_IB_CFG_OP_VLS",
9542 "HFI1_IB_CFG_VL_HIGH_CAP",
9543 "HFI1_IB_CFG_VL_LOW_CAP",
9544 "HFI1_IB_CFG_OVERRUN_THRESH",
9545 "HFI1_IB_CFG_PHYERR_THRESH",
9546 "HFI1_IB_CFG_LINKDEFAULT",
9547 "HFI1_IB_CFG_PKEYS",
9548 "HFI1_IB_CFG_MTU",
9549 "HFI1_IB_CFG_LSTATE",
9550 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9551 "HFI1_IB_CFG_PMA_TICKS",
9552 "HFI1_IB_CFG_PORT"
9553};
9554
9555static const char *ib_cfg_name(int which)
9556{
9557 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9558 return "invalid";
9559 return ib_cfg_name_strings[which];
9560}
9561
9562int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9563{
9564 struct hfi1_devdata *dd = ppd->dd;
9565 int val = 0;
9566
9567 switch (which) {
9568 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9569 val = ppd->link_width_enabled;
9570 break;
9571 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9572 val = ppd->link_width_active;
9573 break;
9574 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9575 val = ppd->link_speed_enabled;
9576 break;
9577 case HFI1_IB_CFG_SPD: /* current Link speed */
9578 val = ppd->link_speed_active;
9579 break;
9580
9581 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9582 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9583 case HFI1_IB_CFG_LINKLATENCY:
9584 goto unimplemented;
9585
9586 case HFI1_IB_CFG_OP_VLS:
9587 val = ppd->vls_operational;
9588 break;
9589 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9590 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9591 break;
9592 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9593 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9594 break;
9595 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9596 val = ppd->overrun_threshold;
9597 break;
9598 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9599 val = ppd->phy_error_threshold;
9600 break;
9601 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9602 val = dd->link_default;
9603 break;
9604
9605 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9606 case HFI1_IB_CFG_PMA_TICKS:
9607 default:
9608unimplemented:
9609 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9610 dd_dev_info(
9611 dd,
9612 "%s: which %s: not implemented\n",
9613 __func__,
9614 ib_cfg_name(which));
9615 break;
9616 }
9617
9618 return val;
9619}
9620
9621/*
9622 * The largest MAD packet size.
9623 */
9624#define MAX_MAD_PACKET 2048
9625
9626/*
9627 * Return the maximum header bytes that can go on the _wire_
9628 * for this device. This count includes the ICRC which is
9629 * not part of the packet held in memory but it is appended
9630 * by the HW.
9631 * This is dependent on the device's receive header entry size.
9632 * HFI allows this to be set per-receive context, but the
9633 * driver presently enforces a global value.
9634 */
9635u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9636{
9637 /*
9638 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9639 * the Receive Header Entry Size minus the PBC (or RHF) size
9640 * plus one DW for the ICRC appended by HW.
9641 *
9642 * dd->rcd[0].rcvhdrqentsize is in DW.
9643 * We use rcd[0] as all context will have the same value. Also,
9644 * the first kernel context would have been allocated by now so
9645 * we are guaranteed a valid value.
9646 */
9647 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9648}
9649
9650/*
9651 * Set Send Length
9652 * @ppd - per port data
9653 *
9654 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9655 * registers compare against LRH.PktLen, so use the max bytes included
9656 * in the LRH.
9657 *
9658 * This routine changes all VL values except VL15, which it maintains at
9659 * the same value.
9660 */
9661static void set_send_length(struct hfi1_pportdata *ppd)
9662{
9663 struct hfi1_devdata *dd = ppd->dd;
Harish Chegondi6cc6ad22015-12-01 15:38:24 -05009664 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9665 u32 maxvlmtu = dd->vld[15].mtu;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009666 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9667 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9668 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9669 int i;
9670
9671 for (i = 0; i < ppd->vls_supported; i++) {
9672 if (dd->vld[i].mtu > maxvlmtu)
9673 maxvlmtu = dd->vld[i].mtu;
9674 if (i <= 3)
9675 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9676 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9677 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9678 else
9679 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9680 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9681 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9682 }
9683 write_csr(dd, SEND_LEN_CHECK0, len1);
9684 write_csr(dd, SEND_LEN_CHECK1, len2);
9685 /* adjust kernel credit return thresholds based on new MTUs */
9686 /* all kernel receive contexts have the same hdrqentsize */
9687 for (i = 0; i < ppd->vls_supported; i++) {
9688 sc_set_cr_threshold(dd->vld[i].sc,
9689 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
9690 dd->rcd[0]->rcvhdrqentsize));
9691 }
9692 sc_set_cr_threshold(dd->vld[15].sc,
9693 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
9694 dd->rcd[0]->rcvhdrqentsize));
9695
9696 /* Adjust maximum MTU for the port in DC */
9697 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9698 (ilog2(maxvlmtu >> 8) + 1);
9699 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9700 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9701 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9702 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9703 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9704}
9705
9706static void set_lidlmc(struct hfi1_pportdata *ppd)
9707{
9708 int i;
9709 u64 sreg = 0;
9710 struct hfi1_devdata *dd = ppd->dd;
9711 u32 mask = ~((1U << ppd->lmc) - 1);
9712 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9713
9714 if (dd->hfi1_snoop.mode_flag)
9715 dd_dev_info(dd, "Set lid/lmc while snooping");
9716
9717 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9718 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9719 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
Jubin John8638b772016-02-14 20:19:24 -08009720 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
Mike Marciniszyn77241052015-07-30 15:17:43 -04009721 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9722 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9723 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9724
9725 /*
9726 * Iterate over all the send contexts and set their SLID check
9727 */
9728 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9729 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9730 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9731 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9732
9733 for (i = 0; i < dd->chip_send_contexts; i++) {
9734 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9735 i, (u32)sreg);
9736 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9737 }
9738
9739 /* Now we have to do the same thing for the sdma engines */
9740 sdma_update_lmc(dd, mask, ppd->lid);
9741}
9742
9743static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9744{
9745 unsigned long timeout;
9746 u32 curr_state;
9747
9748 timeout = jiffies + msecs_to_jiffies(msecs);
9749 while (1) {
9750 curr_state = read_physical_state(dd);
9751 if (curr_state == state)
9752 break;
9753 if (time_after(jiffies, timeout)) {
9754 dd_dev_err(dd,
9755 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9756 state, curr_state);
9757 return -ETIMEDOUT;
9758 }
9759 usleep_range(1950, 2050); /* sleep 2ms-ish */
9760 }
9761
9762 return 0;
9763}
9764
9765/*
9766 * Helper for set_link_state(). Do not call except from that routine.
9767 * Expects ppd->hls_mutex to be held.
9768 *
9769 * @rem_reason value to be sent to the neighbor
9770 *
9771 * LinkDownReasons only set if transition succeeds.
9772 */
9773static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
9774{
9775 struct hfi1_devdata *dd = ppd->dd;
9776 u32 pstate, previous_state;
9777 u32 last_local_state;
9778 u32 last_remote_state;
9779 int ret;
9780 int do_transition;
9781 int do_wait;
9782
9783 previous_state = ppd->host_link_state;
9784 ppd->host_link_state = HLS_GOING_OFFLINE;
9785 pstate = read_physical_state(dd);
9786 if (pstate == PLS_OFFLINE) {
9787 do_transition = 0; /* in right state */
9788 do_wait = 0; /* ...no need to wait */
9789 } else if ((pstate & 0xff) == PLS_OFFLINE) {
9790 do_transition = 0; /* in an offline transient state */
9791 do_wait = 1; /* ...wait for it to settle */
9792 } else {
9793 do_transition = 1; /* need to move to offline */
9794 do_wait = 1; /* ...will need to wait */
9795 }
9796
9797 if (do_transition) {
9798 ret = set_physical_link_state(dd,
9799 PLS_OFFLINE | (rem_reason << 8));
9800
9801 if (ret != HCMD_SUCCESS) {
9802 dd_dev_err(dd,
9803 "Failed to transition to Offline link state, return %d\n",
9804 ret);
9805 return -EINVAL;
9806 }
Bryan Morgana9c05e32016-02-03 14:30:49 -08009807 if (ppd->offline_disabled_reason ==
9808 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
Mike Marciniszyn77241052015-07-30 15:17:43 -04009809 ppd->offline_disabled_reason =
Bryan Morgana9c05e32016-02-03 14:30:49 -08009810 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009811 }
9812
9813 if (do_wait) {
9814 /* it can take a while for the link to go down */
Dean Luickdc060242015-10-26 10:28:29 -04009815 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009816 if (ret < 0)
9817 return ret;
9818 }
9819
9820 /* make sure the logical state is also down */
9821 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
9822
9823 /*
9824 * Now in charge of LCB - must be after the physical state is
9825 * offline.quiet and before host_link_state is changed.
9826 */
9827 set_host_lcb_access(dd);
9828 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9829 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
9830
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009831 if (ppd->port_type == PORT_TYPE_QSFP &&
9832 ppd->qsfp_info.limiting_active &&
9833 qsfp_mod_present(ppd)) {
9834 set_qsfp_tx(ppd, 0);
9835 }
9836
Mike Marciniszyn77241052015-07-30 15:17:43 -04009837 /*
9838 * The LNI has a mandatory wait time after the physical state
9839 * moves to Offline.Quiet. The wait time may be different
9840 * depending on how the link went down. The 8051 firmware
9841 * will observe the needed wait time and only move to ready
9842 * when that is completed. The largest of the quiet timeouts
Dean Luick05087f3b2015-12-01 15:38:16 -05009843 * is 6s, so wait that long and then at least 0.5s more for
9844 * other transitions, and another 0.5s for a buffer.
Mike Marciniszyn77241052015-07-30 15:17:43 -04009845 */
Dean Luick05087f3b2015-12-01 15:38:16 -05009846 ret = wait_fm_ready(dd, 7000);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009847 if (ret) {
9848 dd_dev_err(dd,
9849 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
9850 /* state is really offline, so make it so */
9851 ppd->host_link_state = HLS_DN_OFFLINE;
9852 return ret;
9853 }
9854
9855 /*
9856 * The state is now offline and the 8051 is ready to accept host
9857 * requests.
9858 * - change our state
9859 * - notify others if we were previously in a linkup state
9860 */
9861 ppd->host_link_state = HLS_DN_OFFLINE;
9862 if (previous_state & HLS_UP) {
9863 /* went down while link was up */
9864 handle_linkup_change(dd, 0);
9865 } else if (previous_state
9866 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
9867 /* went down while attempting link up */
9868 /* byte 1 of last_*_state is the failure reason */
9869 read_last_local_state(dd, &last_local_state);
9870 read_last_remote_state(dd, &last_remote_state);
9871 dd_dev_err(dd,
9872 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
9873 last_local_state, last_remote_state);
9874 }
9875
9876 /* the active link width (downgrade) is 0 on link down */
9877 ppd->link_width_active = 0;
9878 ppd->link_width_downgrade_tx_active = 0;
9879 ppd->link_width_downgrade_rx_active = 0;
9880 ppd->current_egress_rate = 0;
9881 return 0;
9882}
9883
9884/* return the link state name */
9885static const char *link_state_name(u32 state)
9886{
9887 const char *name;
9888 int n = ilog2(state);
9889 static const char * const names[] = {
9890 [__HLS_UP_INIT_BP] = "INIT",
9891 [__HLS_UP_ARMED_BP] = "ARMED",
9892 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
9893 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
9894 [__HLS_DN_POLL_BP] = "POLL",
9895 [__HLS_DN_DISABLE_BP] = "DISABLE",
9896 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
9897 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
9898 [__HLS_GOING_UP_BP] = "GOING_UP",
9899 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
9900 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
9901 };
9902
9903 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
9904 return name ? name : "unknown";
9905}
9906
9907/* return the link state reason name */
9908static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
9909{
9910 if (state == HLS_UP_INIT) {
9911 switch (ppd->linkinit_reason) {
9912 case OPA_LINKINIT_REASON_LINKUP:
9913 return "(LINKUP)";
9914 case OPA_LINKINIT_REASON_FLAPPING:
9915 return "(FLAPPING)";
9916 case OPA_LINKINIT_OUTSIDE_POLICY:
9917 return "(OUTSIDE_POLICY)";
9918 case OPA_LINKINIT_QUARANTINED:
9919 return "(QUARANTINED)";
9920 case OPA_LINKINIT_INSUFIC_CAPABILITY:
9921 return "(INSUFIC_CAPABILITY)";
9922 default:
9923 break;
9924 }
9925 }
9926 return "";
9927}
9928
9929/*
9930 * driver_physical_state - convert the driver's notion of a port's
9931 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
9932 * Return -1 (converted to a u32) to indicate error.
9933 */
9934u32 driver_physical_state(struct hfi1_pportdata *ppd)
9935{
9936 switch (ppd->host_link_state) {
9937 case HLS_UP_INIT:
9938 case HLS_UP_ARMED:
9939 case HLS_UP_ACTIVE:
9940 return IB_PORTPHYSSTATE_LINKUP;
9941 case HLS_DN_POLL:
9942 return IB_PORTPHYSSTATE_POLLING;
9943 case HLS_DN_DISABLE:
9944 return IB_PORTPHYSSTATE_DISABLED;
9945 case HLS_DN_OFFLINE:
9946 return OPA_PORTPHYSSTATE_OFFLINE;
9947 case HLS_VERIFY_CAP:
9948 return IB_PORTPHYSSTATE_POLLING;
9949 case HLS_GOING_UP:
9950 return IB_PORTPHYSSTATE_POLLING;
9951 case HLS_GOING_OFFLINE:
9952 return OPA_PORTPHYSSTATE_OFFLINE;
9953 case HLS_LINK_COOLDOWN:
9954 return OPA_PORTPHYSSTATE_OFFLINE;
9955 case HLS_DN_DOWNDEF:
9956 default:
9957 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9958 ppd->host_link_state);
9959 return -1;
9960 }
9961}
9962
9963/*
9964 * driver_logical_state - convert the driver's notion of a port's
9965 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
9966 * (converted to a u32) to indicate error.
9967 */
9968u32 driver_logical_state(struct hfi1_pportdata *ppd)
9969{
9970 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
9971 return IB_PORT_DOWN;
9972
9973 switch (ppd->host_link_state & HLS_UP) {
9974 case HLS_UP_INIT:
9975 return IB_PORT_INIT;
9976 case HLS_UP_ARMED:
9977 return IB_PORT_ARMED;
9978 case HLS_UP_ACTIVE:
9979 return IB_PORT_ACTIVE;
9980 default:
9981 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9982 ppd->host_link_state);
9983 return -1;
9984 }
9985}
9986
9987void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
9988 u8 neigh_reason, u8 rem_reason)
9989{
9990 if (ppd->local_link_down_reason.latest == 0 &&
9991 ppd->neigh_link_down_reason.latest == 0) {
9992 ppd->local_link_down_reason.latest = lcl_reason;
9993 ppd->neigh_link_down_reason.latest = neigh_reason;
9994 ppd->remote_link_down_reason = rem_reason;
9995 }
9996}
9997
9998/*
9999 * Change the physical and/or logical link state.
10000 *
10001 * Do not call this routine while inside an interrupt. It contains
10002 * calls to routines that can take multiple seconds to finish.
10003 *
10004 * Returns 0 on success, -errno on failure.
10005 */
10006int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10007{
10008 struct hfi1_devdata *dd = ppd->dd;
10009 struct ib_event event = {.device = NULL};
10010 int ret1, ret = 0;
10011 int was_up, is_down;
10012 int orig_new_state, poll_bounce;
10013
10014 mutex_lock(&ppd->hls_lock);
10015
10016 orig_new_state = state;
10017 if (state == HLS_DN_DOWNDEF)
10018 state = dd->link_default;
10019
10020 /* interpret poll -> poll as a link bounce */
Jubin Johnd0d236e2016-02-14 20:20:15 -080010021 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10022 state == HLS_DN_POLL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040010023
10024 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10025 link_state_name(ppd->host_link_state),
10026 link_state_name(orig_new_state),
10027 poll_bounce ? "(bounce) " : "",
10028 link_state_reason_name(ppd, state));
10029
10030 was_up = !!(ppd->host_link_state & HLS_UP);
10031
10032 /*
10033 * If we're going to a (HLS_*) link state that implies the logical
10034 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10035 * reset is_sm_config_started to 0.
10036 */
10037 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10038 ppd->is_sm_config_started = 0;
10039
10040 /*
10041 * Do nothing if the states match. Let a poll to poll link bounce
10042 * go through.
10043 */
10044 if (ppd->host_link_state == state && !poll_bounce)
10045 goto done;
10046
10047 switch (state) {
10048 case HLS_UP_INIT:
Jubin Johnd0d236e2016-02-14 20:20:15 -080010049 if (ppd->host_link_state == HLS_DN_POLL &&
10050 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040010051 /*
10052 * Quick link up jumps from polling to here.
10053 *
10054 * Whether in normal or loopback mode, the
10055 * simulator jumps from polling to link up.
10056 * Accept that here.
10057 */
10058 /* OK */;
10059 } else if (ppd->host_link_state != HLS_GOING_UP) {
10060 goto unexpected;
10061 }
10062
10063 ppd->host_link_state = HLS_UP_INIT;
10064 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10065 if (ret) {
10066 /* logical state didn't change, stay at going_up */
10067 ppd->host_link_state = HLS_GOING_UP;
10068 dd_dev_err(dd,
10069 "%s: logical state did not change to INIT\n",
10070 __func__);
10071 } else {
10072 /* clear old transient LINKINIT_REASON code */
10073 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10074 ppd->linkinit_reason =
10075 OPA_LINKINIT_REASON_LINKUP;
10076
10077 /* enable the port */
10078 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10079
10080 handle_linkup_change(dd, 1);
10081 }
10082 break;
10083 case HLS_UP_ARMED:
10084 if (ppd->host_link_state != HLS_UP_INIT)
10085 goto unexpected;
10086
10087 ppd->host_link_state = HLS_UP_ARMED;
10088 set_logical_state(dd, LSTATE_ARMED);
10089 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10090 if (ret) {
10091 /* logical state didn't change, stay at init */
10092 ppd->host_link_state = HLS_UP_INIT;
10093 dd_dev_err(dd,
10094 "%s: logical state did not change to ARMED\n",
10095 __func__);
10096 }
10097 /*
10098 * The simulator does not currently implement SMA messages,
10099 * so neighbor_normal is not set. Set it here when we first
10100 * move to Armed.
10101 */
10102 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10103 ppd->neighbor_normal = 1;
10104 break;
10105 case HLS_UP_ACTIVE:
10106 if (ppd->host_link_state != HLS_UP_ARMED)
10107 goto unexpected;
10108
10109 ppd->host_link_state = HLS_UP_ACTIVE;
10110 set_logical_state(dd, LSTATE_ACTIVE);
10111 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10112 if (ret) {
10113 /* logical state didn't change, stay at armed */
10114 ppd->host_link_state = HLS_UP_ARMED;
10115 dd_dev_err(dd,
10116 "%s: logical state did not change to ACTIVE\n",
10117 __func__);
10118 } else {
Mike Marciniszyn77241052015-07-30 15:17:43 -040010119 /* tell all engines to go running */
10120 sdma_all_running(dd);
10121
10122 /* Signal the IB layer that the port has went active */
Dennis Dalessandroec3f2c12016-01-19 14:41:33 -080010123 event.device = &dd->verbs_dev.rdi.ibdev;
Mike Marciniszyn77241052015-07-30 15:17:43 -040010124 event.element.port_num = ppd->port;
10125 event.event = IB_EVENT_PORT_ACTIVE;
10126 }
10127 break;
10128 case HLS_DN_POLL:
10129 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10130 ppd->host_link_state == HLS_DN_OFFLINE) &&
10131 dd->dc_shutdown)
10132 dc_start(dd);
10133 /* Hand LED control to the DC */
10134 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10135
10136 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10137 u8 tmp = ppd->link_enabled;
10138
10139 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10140 if (ret) {
10141 ppd->link_enabled = tmp;
10142 break;
10143 }
10144 ppd->remote_link_down_reason = 0;
10145
10146 if (ppd->driver_link_ready)
10147 ppd->link_enabled = 1;
10148 }
10149
Jim Snowfb9036d2016-01-11 18:32:21 -050010150 set_all_slowpath(ppd->dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040010151 ret = set_local_link_attributes(ppd);
10152 if (ret)
10153 break;
10154
10155 ppd->port_error_action = 0;
10156 ppd->host_link_state = HLS_DN_POLL;
10157
10158 if (quick_linkup) {
10159 /* quick linkup does not go into polling */
10160 ret = do_quick_linkup(dd);
10161 } else {
10162 ret1 = set_physical_link_state(dd, PLS_POLLING);
10163 if (ret1 != HCMD_SUCCESS) {
10164 dd_dev_err(dd,
10165 "Failed to transition to Polling link state, return 0x%x\n",
10166 ret1);
10167 ret = -EINVAL;
10168 }
10169 }
Bryan Morgana9c05e32016-02-03 14:30:49 -080010170 ppd->offline_disabled_reason =
10171 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
Mike Marciniszyn77241052015-07-30 15:17:43 -040010172 /*
10173 * If an error occurred above, go back to offline. The
10174 * caller may reschedule another attempt.
10175 */
10176 if (ret)
10177 goto_offline(ppd, 0);
10178 break;
10179 case HLS_DN_DISABLE:
10180 /* link is disabled */
10181 ppd->link_enabled = 0;
10182
10183 /* allow any state to transition to disabled */
10184
10185 /* must transition to offline first */
10186 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10187 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10188 if (ret)
10189 break;
10190 ppd->remote_link_down_reason = 0;
10191 }
10192
10193 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10194 if (ret1 != HCMD_SUCCESS) {
10195 dd_dev_err(dd,
10196 "Failed to transition to Disabled link state, return 0x%x\n",
10197 ret1);
10198 ret = -EINVAL;
10199 break;
10200 }
10201 ppd->host_link_state = HLS_DN_DISABLE;
10202 dc_shutdown(dd);
10203 break;
10204 case HLS_DN_OFFLINE:
10205 if (ppd->host_link_state == HLS_DN_DISABLE)
10206 dc_start(dd);
10207
10208 /* allow any state to transition to offline */
10209 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10210 if (!ret)
10211 ppd->remote_link_down_reason = 0;
10212 break;
10213 case HLS_VERIFY_CAP:
10214 if (ppd->host_link_state != HLS_DN_POLL)
10215 goto unexpected;
10216 ppd->host_link_state = HLS_VERIFY_CAP;
10217 break;
10218 case HLS_GOING_UP:
10219 if (ppd->host_link_state != HLS_VERIFY_CAP)
10220 goto unexpected;
10221
10222 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10223 if (ret1 != HCMD_SUCCESS) {
10224 dd_dev_err(dd,
10225 "Failed to transition to link up state, return 0x%x\n",
10226 ret1);
10227 ret = -EINVAL;
10228 break;
10229 }
10230 ppd->host_link_state = HLS_GOING_UP;
10231 break;
10232
10233 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10234 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10235 default:
10236 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10237 __func__, state);
10238 ret = -EINVAL;
10239 break;
10240 }
10241
10242 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
10243 HLS_DN_DISABLE | HLS_DN_OFFLINE));
10244
10245 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
10246 ppd->neigh_link_down_reason.sma == 0) {
10247 ppd->local_link_down_reason.sma =
10248 ppd->local_link_down_reason.latest;
10249 ppd->neigh_link_down_reason.sma =
10250 ppd->neigh_link_down_reason.latest;
10251 }
10252
10253 goto done;
10254
10255unexpected:
10256 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10257 __func__, link_state_name(ppd->host_link_state),
10258 link_state_name(state));
10259 ret = -EINVAL;
10260
10261done:
10262 mutex_unlock(&ppd->hls_lock);
10263
10264 if (event.device)
10265 ib_dispatch_event(&event);
10266
10267 return ret;
10268}
10269
10270int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10271{
10272 u64 reg;
10273 int ret = 0;
10274
10275 switch (which) {
10276 case HFI1_IB_CFG_LIDLMC:
10277 set_lidlmc(ppd);
10278 break;
10279 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10280 /*
10281 * The VL Arbitrator high limit is sent in units of 4k
10282 * bytes, while HFI stores it in units of 64 bytes.
10283 */
Jubin John8638b772016-02-14 20:19:24 -080010284 val *= 4096 / 64;
Mike Marciniszyn77241052015-07-30 15:17:43 -040010285 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10286 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10287 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10288 break;
10289 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10290 /* HFI only supports POLL as the default link down state */
10291 if (val != HLS_DN_POLL)
10292 ret = -EINVAL;
10293 break;
10294 case HFI1_IB_CFG_OP_VLS:
10295 if (ppd->vls_operational != val) {
10296 ppd->vls_operational = val;
10297 if (!ppd->port)
10298 ret = -EINVAL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040010299 }
10300 break;
10301 /*
10302 * For link width, link width downgrade, and speed enable, always AND
10303 * the setting with what is actually supported. This has two benefits.
10304 * First, enabled can't have unsupported values, no matter what the
10305 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10306 * "fill in with your supported value" have all the bits in the
10307 * field set, so simply ANDing with supported has the desired result.
10308 */
10309 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10310 ppd->link_width_enabled = val & ppd->link_width_supported;
10311 break;
10312 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10313 ppd->link_width_downgrade_enabled =
10314 val & ppd->link_width_downgrade_supported;
10315 break;
10316 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10317 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10318 break;
10319 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10320 /*
10321 * HFI does not follow IB specs, save this value
10322 * so we can report it, if asked.
10323 */
10324 ppd->overrun_threshold = val;
10325 break;
10326 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10327 /*
10328 * HFI does not follow IB specs, save this value
10329 * so we can report it, if asked.
10330 */
10331 ppd->phy_error_threshold = val;
10332 break;
10333
10334 case HFI1_IB_CFG_MTU:
10335 set_send_length(ppd);
10336 break;
10337
10338 case HFI1_IB_CFG_PKEYS:
10339 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10340 set_partition_keys(ppd);
10341 break;
10342
10343 default:
10344 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10345 dd_dev_info(ppd->dd,
10346 "%s: which %s, val 0x%x: not implemented\n",
10347 __func__, ib_cfg_name(which), val);
10348 break;
10349 }
10350 return ret;
10351}
10352
10353/* begin functions related to vl arbitration table caching */
10354static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10355{
10356 int i;
10357
10358 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10359 VL_ARB_LOW_PRIO_TABLE_SIZE);
10360 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10361 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10362
10363 /*
10364 * Note that we always return values directly from the
10365 * 'vl_arb_cache' (and do no CSR reads) in response to a
10366 * 'Get(VLArbTable)'. This is obviously correct after a
10367 * 'Set(VLArbTable)', since the cache will then be up to
10368 * date. But it's also correct prior to any 'Set(VLArbTable)'
10369 * since then both the cache, and the relevant h/w registers
10370 * will be zeroed.
10371 */
10372
10373 for (i = 0; i < MAX_PRIO_TABLE; i++)
10374 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10375}
10376
10377/*
10378 * vl_arb_lock_cache
10379 *
10380 * All other vl_arb_* functions should be called only after locking
10381 * the cache.
10382 */
10383static inline struct vl_arb_cache *
10384vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10385{
10386 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10387 return NULL;
10388 spin_lock(&ppd->vl_arb_cache[idx].lock);
10389 return &ppd->vl_arb_cache[idx];
10390}
10391
10392static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10393{
10394 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10395}
10396
10397static void vl_arb_get_cache(struct vl_arb_cache *cache,
10398 struct ib_vl_weight_elem *vl)
10399{
10400 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10401}
10402
10403static void vl_arb_set_cache(struct vl_arb_cache *cache,
10404 struct ib_vl_weight_elem *vl)
10405{
10406 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10407}
10408
10409static int vl_arb_match_cache(struct vl_arb_cache *cache,
10410 struct ib_vl_weight_elem *vl)
10411{
10412 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10413}
Jubin Johnf4d507c2016-02-14 20:20:25 -080010414
Mike Marciniszyn77241052015-07-30 15:17:43 -040010415/* end functions related to vl arbitration table caching */
10416
10417static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10418 u32 size, struct ib_vl_weight_elem *vl)
10419{
10420 struct hfi1_devdata *dd = ppd->dd;
10421 u64 reg;
10422 unsigned int i, is_up = 0;
10423 int drain, ret = 0;
10424
10425 mutex_lock(&ppd->hls_lock);
10426
10427 if (ppd->host_link_state & HLS_UP)
10428 is_up = 1;
10429
10430 drain = !is_ax(dd) && is_up;
10431
10432 if (drain)
10433 /*
10434 * Before adjusting VL arbitration weights, empty per-VL
10435 * FIFOs, otherwise a packet whose VL weight is being
10436 * set to 0 could get stuck in a FIFO with no chance to
10437 * egress.
10438 */
10439 ret = stop_drain_data_vls(dd);
10440
10441 if (ret) {
10442 dd_dev_err(
10443 dd,
10444 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10445 __func__);
10446 goto err;
10447 }
10448
10449 for (i = 0; i < size; i++, vl++) {
10450 /*
10451 * NOTE: The low priority shift and mask are used here, but
10452 * they are the same for both the low and high registers.
10453 */
10454 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10455 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10456 | (((u64)vl->weight
10457 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10458 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10459 write_csr(dd, target + (i * 8), reg);
10460 }
10461 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10462
10463 if (drain)
10464 open_fill_data_vls(dd); /* reopen all VLs */
10465
10466err:
10467 mutex_unlock(&ppd->hls_lock);
10468
10469 return ret;
10470}
10471
10472/*
10473 * Read one credit merge VL register.
10474 */
10475static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10476 struct vl_limit *vll)
10477{
10478 u64 reg = read_csr(dd, csr);
10479
10480 vll->dedicated = cpu_to_be16(
10481 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10482 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10483 vll->shared = cpu_to_be16(
10484 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10485 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10486}
10487
10488/*
10489 * Read the current credit merge limits.
10490 */
10491static int get_buffer_control(struct hfi1_devdata *dd,
10492 struct buffer_control *bc, u16 *overall_limit)
10493{
10494 u64 reg;
10495 int i;
10496
10497 /* not all entries are filled in */
10498 memset(bc, 0, sizeof(*bc));
10499
10500 /* OPA and HFI have a 1-1 mapping */
10501 for (i = 0; i < TXE_NUM_DATA_VL; i++)
Jubin John8638b772016-02-14 20:19:24 -080010502 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
Mike Marciniszyn77241052015-07-30 15:17:43 -040010503
10504 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10505 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10506
10507 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10508 bc->overall_shared_limit = cpu_to_be16(
10509 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10510 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10511 if (overall_limit)
10512 *overall_limit = (reg
10513 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10514 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10515 return sizeof(struct buffer_control);
10516}
10517
10518static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10519{
10520 u64 reg;
10521 int i;
10522
10523 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10524 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10525 for (i = 0; i < sizeof(u64); i++) {
10526 u8 byte = *(((u8 *)&reg) + i);
10527
10528 dp->vlnt[2 * i] = byte & 0xf;
10529 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10530 }
10531
10532 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10533 for (i = 0; i < sizeof(u64); i++) {
10534 u8 byte = *(((u8 *)&reg) + i);
10535
10536 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10537 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10538 }
10539 return sizeof(struct sc2vlnt);
10540}
10541
10542static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10543 struct ib_vl_weight_elem *vl)
10544{
10545 unsigned int i;
10546
10547 for (i = 0; i < nelems; i++, vl++) {
10548 vl->vl = 0xf;
10549 vl->weight = 0;
10550 }
10551}
10552
10553static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10554{
10555 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10556 DC_SC_VL_VAL(15_0,
10557 0, dp->vlnt[0] & 0xf,
10558 1, dp->vlnt[1] & 0xf,
10559 2, dp->vlnt[2] & 0xf,
10560 3, dp->vlnt[3] & 0xf,
10561 4, dp->vlnt[4] & 0xf,
10562 5, dp->vlnt[5] & 0xf,
10563 6, dp->vlnt[6] & 0xf,
10564 7, dp->vlnt[7] & 0xf,
10565 8, dp->vlnt[8] & 0xf,
10566 9, dp->vlnt[9] & 0xf,
10567 10, dp->vlnt[10] & 0xf,
10568 11, dp->vlnt[11] & 0xf,
10569 12, dp->vlnt[12] & 0xf,
10570 13, dp->vlnt[13] & 0xf,
10571 14, dp->vlnt[14] & 0xf,
10572 15, dp->vlnt[15] & 0xf));
10573 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10574 DC_SC_VL_VAL(31_16,
10575 16, dp->vlnt[16] & 0xf,
10576 17, dp->vlnt[17] & 0xf,
10577 18, dp->vlnt[18] & 0xf,
10578 19, dp->vlnt[19] & 0xf,
10579 20, dp->vlnt[20] & 0xf,
10580 21, dp->vlnt[21] & 0xf,
10581 22, dp->vlnt[22] & 0xf,
10582 23, dp->vlnt[23] & 0xf,
10583 24, dp->vlnt[24] & 0xf,
10584 25, dp->vlnt[25] & 0xf,
10585 26, dp->vlnt[26] & 0xf,
10586 27, dp->vlnt[27] & 0xf,
10587 28, dp->vlnt[28] & 0xf,
10588 29, dp->vlnt[29] & 0xf,
10589 30, dp->vlnt[30] & 0xf,
10590 31, dp->vlnt[31] & 0xf));
10591}
10592
10593static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10594 u16 limit)
10595{
10596 if (limit != 0)
10597 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10598 what, (int)limit, idx);
10599}
10600
10601/* change only the shared limit portion of SendCmGLobalCredit */
10602static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10603{
10604 u64 reg;
10605
10606 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10607 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10608 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10609 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10610}
10611
10612/* change only the total credit limit portion of SendCmGLobalCredit */
10613static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10614{
10615 u64 reg;
10616
10617 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10618 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10619 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10620 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10621}
10622
10623/* set the given per-VL shared limit */
10624static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10625{
10626 u64 reg;
10627 u32 addr;
10628
10629 if (vl < TXE_NUM_DATA_VL)
10630 addr = SEND_CM_CREDIT_VL + (8 * vl);
10631 else
10632 addr = SEND_CM_CREDIT_VL15;
10633
10634 reg = read_csr(dd, addr);
10635 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10636 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10637 write_csr(dd, addr, reg);
10638}
10639
10640/* set the given per-VL dedicated limit */
10641static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10642{
10643 u64 reg;
10644 u32 addr;
10645
10646 if (vl < TXE_NUM_DATA_VL)
10647 addr = SEND_CM_CREDIT_VL + (8 * vl);
10648 else
10649 addr = SEND_CM_CREDIT_VL15;
10650
10651 reg = read_csr(dd, addr);
10652 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10653 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10654 write_csr(dd, addr, reg);
10655}
10656
10657/* spin until the given per-VL status mask bits clear */
10658static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10659 const char *which)
10660{
10661 unsigned long timeout;
10662 u64 reg;
10663
10664 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10665 while (1) {
10666 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10667
10668 if (reg == 0)
10669 return; /* success */
10670 if (time_after(jiffies, timeout))
10671 break; /* timed out */
10672 udelay(1);
10673 }
10674
10675 dd_dev_err(dd,
10676 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10677 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10678 /*
10679 * If this occurs, it is likely there was a credit loss on the link.
10680 * The only recovery from that is a link bounce.
10681 */
10682 dd_dev_err(dd,
10683 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
10684}
10685
10686/*
10687 * The number of credits on the VLs may be changed while everything
10688 * is "live", but the following algorithm must be followed due to
10689 * how the hardware is actually implemented. In particular,
10690 * Return_Credit_Status[] is the only correct status check.
10691 *
10692 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10693 * set Global_Shared_Credit_Limit = 0
10694 * use_all_vl = 1
10695 * mask0 = all VLs that are changing either dedicated or shared limits
10696 * set Shared_Limit[mask0] = 0
10697 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10698 * if (changing any dedicated limit)
10699 * mask1 = all VLs that are lowering dedicated limits
10700 * lower Dedicated_Limit[mask1]
10701 * spin until Return_Credit_Status[mask1] == 0
10702 * raise Dedicated_Limits
10703 * raise Shared_Limits
10704 * raise Global_Shared_Credit_Limit
10705 *
10706 * lower = if the new limit is lower, set the limit to the new value
10707 * raise = if the new limit is higher than the current value (may be changed
10708 * earlier in the algorithm), set the new limit to the new value
10709 */
Mike Marciniszyn8a4d3442016-02-14 12:46:01 -080010710int set_buffer_control(struct hfi1_pportdata *ppd,
10711 struct buffer_control *new_bc)
Mike Marciniszyn77241052015-07-30 15:17:43 -040010712{
Mike Marciniszyn8a4d3442016-02-14 12:46:01 -080010713 struct hfi1_devdata *dd = ppd->dd;
Mike Marciniszyn77241052015-07-30 15:17:43 -040010714 u64 changing_mask, ld_mask, stat_mask;
10715 int change_count;
10716 int i, use_all_mask;
10717 int this_shared_changing;
Mike Marciniszyn8a4d3442016-02-14 12:46:01 -080010718 int vl_count = 0, ret;
Mike Marciniszyn77241052015-07-30 15:17:43 -040010719 /*
10720 * A0: add the variable any_shared_limit_changing below and in the
10721 * algorithm above. If removing A0 support, it can be removed.
10722 */
10723 int any_shared_limit_changing;
10724 struct buffer_control cur_bc;
10725 u8 changing[OPA_MAX_VLS];
10726 u8 lowering_dedicated[OPA_MAX_VLS];
10727 u16 cur_total;
10728 u32 new_total = 0;
10729 const u64 all_mask =
10730 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10731 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10732 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10733 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10734 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10735 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10736 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10737 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10738 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10739
10740#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10741#define NUM_USABLE_VLS 16 /* look at VL15 and less */
10742
Mike Marciniszyn77241052015-07-30 15:17:43 -040010743 /* find the new total credits, do sanity check on unused VLs */
10744 for (i = 0; i < OPA_MAX_VLS; i++) {
10745 if (valid_vl(i)) {
10746 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10747 continue;
10748 }
10749 nonzero_msg(dd, i, "dedicated",
10750 be16_to_cpu(new_bc->vl[i].dedicated));
10751 nonzero_msg(dd, i, "shared",
10752 be16_to_cpu(new_bc->vl[i].shared));
10753 new_bc->vl[i].dedicated = 0;
10754 new_bc->vl[i].shared = 0;
10755 }
10756 new_total += be16_to_cpu(new_bc->overall_shared_limit);
Dean Luickbff14bb2015-12-17 19:24:13 -050010757
Mike Marciniszyn77241052015-07-30 15:17:43 -040010758 /* fetch the current values */
10759 get_buffer_control(dd, &cur_bc, &cur_total);
10760
10761 /*
10762 * Create the masks we will use.
10763 */
10764 memset(changing, 0, sizeof(changing));
10765 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
10766 /* NOTE: Assumes that the individual VL bits are adjacent and in
10767 increasing order */
10768 stat_mask =
10769 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
10770 changing_mask = 0;
10771 ld_mask = 0;
10772 change_count = 0;
10773 any_shared_limit_changing = 0;
10774 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
10775 if (!valid_vl(i))
10776 continue;
10777 this_shared_changing = new_bc->vl[i].shared
10778 != cur_bc.vl[i].shared;
10779 if (this_shared_changing)
10780 any_shared_limit_changing = 1;
Jubin Johnd0d236e2016-02-14 20:20:15 -080010781 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
10782 this_shared_changing) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040010783 changing[i] = 1;
10784 changing_mask |= stat_mask;
10785 change_count++;
10786 }
10787 if (be16_to_cpu(new_bc->vl[i].dedicated) <
10788 be16_to_cpu(cur_bc.vl[i].dedicated)) {
10789 lowering_dedicated[i] = 1;
10790 ld_mask |= stat_mask;
10791 }
10792 }
10793
10794 /* bracket the credit change with a total adjustment */
10795 if (new_total > cur_total)
10796 set_global_limit(dd, new_total);
10797
10798 /*
10799 * Start the credit change algorithm.
10800 */
10801 use_all_mask = 0;
10802 if ((be16_to_cpu(new_bc->overall_shared_limit) <
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050010803 be16_to_cpu(cur_bc.overall_shared_limit)) ||
10804 (is_ax(dd) && any_shared_limit_changing)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040010805 set_global_shared(dd, 0);
10806 cur_bc.overall_shared_limit = 0;
10807 use_all_mask = 1;
10808 }
10809
10810 for (i = 0; i < NUM_USABLE_VLS; i++) {
10811 if (!valid_vl(i))
10812 continue;
10813
10814 if (changing[i]) {
10815 set_vl_shared(dd, i, 0);
10816 cur_bc.vl[i].shared = 0;
10817 }
10818 }
10819
10820 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
10821 "shared");
10822
10823 if (change_count > 0) {
10824 for (i = 0; i < NUM_USABLE_VLS; i++) {
10825 if (!valid_vl(i))
10826 continue;
10827
10828 if (lowering_dedicated[i]) {
10829 set_vl_dedicated(dd, i,
10830 be16_to_cpu(new_bc->vl[i].dedicated));
10831 cur_bc.vl[i].dedicated =
10832 new_bc->vl[i].dedicated;
10833 }
10834 }
10835
10836 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
10837
10838 /* now raise all dedicated that are going up */
10839 for (i = 0; i < NUM_USABLE_VLS; i++) {
10840 if (!valid_vl(i))
10841 continue;
10842
10843 if (be16_to_cpu(new_bc->vl[i].dedicated) >
10844 be16_to_cpu(cur_bc.vl[i].dedicated))
10845 set_vl_dedicated(dd, i,
10846 be16_to_cpu(new_bc->vl[i].dedicated));
10847 }
10848 }
10849
10850 /* next raise all shared that are going up */
10851 for (i = 0; i < NUM_USABLE_VLS; i++) {
10852 if (!valid_vl(i))
10853 continue;
10854
10855 if (be16_to_cpu(new_bc->vl[i].shared) >
10856 be16_to_cpu(cur_bc.vl[i].shared))
10857 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
10858 }
10859
10860 /* finally raise the global shared */
10861 if (be16_to_cpu(new_bc->overall_shared_limit) >
10862 be16_to_cpu(cur_bc.overall_shared_limit))
10863 set_global_shared(dd,
10864 be16_to_cpu(new_bc->overall_shared_limit));
10865
10866 /* bracket the credit change with a total adjustment */
10867 if (new_total < cur_total)
10868 set_global_limit(dd, new_total);
Mike Marciniszyn8a4d3442016-02-14 12:46:01 -080010869
10870 /*
10871 * Determine the actual number of operational VLS using the number of
10872 * dedicated and shared credits for each VL.
10873 */
10874 if (change_count > 0) {
10875 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10876 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
10877 be16_to_cpu(new_bc->vl[i].shared) > 0)
10878 vl_count++;
10879 ppd->actual_vls_operational = vl_count;
10880 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
10881 ppd->actual_vls_operational :
10882 ppd->vls_operational,
10883 NULL);
10884 if (ret == 0)
10885 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
10886 ppd->actual_vls_operational :
10887 ppd->vls_operational, NULL);
10888 if (ret)
10889 return ret;
10890 }
Mike Marciniszyn77241052015-07-30 15:17:43 -040010891 return 0;
10892}
10893
10894/*
10895 * Read the given fabric manager table. Return the size of the
10896 * table (in bytes) on success, and a negative error code on
10897 * failure.
10898 */
10899int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
10900
10901{
10902 int size;
10903 struct vl_arb_cache *vlc;
10904
10905 switch (which) {
10906 case FM_TBL_VL_HIGH_ARB:
10907 size = 256;
10908 /*
10909 * OPA specifies 128 elements (of 2 bytes each), though
10910 * HFI supports only 16 elements in h/w.
10911 */
10912 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10913 vl_arb_get_cache(vlc, t);
10914 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10915 break;
10916 case FM_TBL_VL_LOW_ARB:
10917 size = 256;
10918 /*
10919 * OPA specifies 128 elements (of 2 bytes each), though
10920 * HFI supports only 16 elements in h/w.
10921 */
10922 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10923 vl_arb_get_cache(vlc, t);
10924 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10925 break;
10926 case FM_TBL_BUFFER_CONTROL:
10927 size = get_buffer_control(ppd->dd, t, NULL);
10928 break;
10929 case FM_TBL_SC2VLNT:
10930 size = get_sc2vlnt(ppd->dd, t);
10931 break;
10932 case FM_TBL_VL_PREEMPT_ELEMS:
10933 size = 256;
10934 /* OPA specifies 128 elements, of 2 bytes each */
10935 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
10936 break;
10937 case FM_TBL_VL_PREEMPT_MATRIX:
10938 size = 256;
10939 /*
10940 * OPA specifies that this is the same size as the VL
10941 * arbitration tables (i.e., 256 bytes).
10942 */
10943 break;
10944 default:
10945 return -EINVAL;
10946 }
10947 return size;
10948}
10949
10950/*
10951 * Write the given fabric manager table.
10952 */
10953int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
10954{
10955 int ret = 0;
10956 struct vl_arb_cache *vlc;
10957
10958 switch (which) {
10959 case FM_TBL_VL_HIGH_ARB:
10960 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10961 if (vl_arb_match_cache(vlc, t)) {
10962 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10963 break;
10964 }
10965 vl_arb_set_cache(vlc, t);
10966 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10967 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
10968 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
10969 break;
10970 case FM_TBL_VL_LOW_ARB:
10971 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10972 if (vl_arb_match_cache(vlc, t)) {
10973 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10974 break;
10975 }
10976 vl_arb_set_cache(vlc, t);
10977 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10978 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
10979 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
10980 break;
10981 case FM_TBL_BUFFER_CONTROL:
Mike Marciniszyn8a4d3442016-02-14 12:46:01 -080010982 ret = set_buffer_control(ppd, t);
Mike Marciniszyn77241052015-07-30 15:17:43 -040010983 break;
10984 case FM_TBL_SC2VLNT:
10985 set_sc2vlnt(ppd->dd, t);
10986 break;
10987 default:
10988 ret = -EINVAL;
10989 }
10990 return ret;
10991}
10992
10993/*
10994 * Disable all data VLs.
10995 *
10996 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
10997 */
10998static int disable_data_vls(struct hfi1_devdata *dd)
10999{
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050011000 if (is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -040011001 return 1;
11002
11003 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11004
11005 return 0;
11006}
11007
11008/*
11009 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11010 * Just re-enables all data VLs (the "fill" part happens
11011 * automatically - the name was chosen for symmetry with
11012 * stop_drain_data_vls()).
11013 *
11014 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11015 */
11016int open_fill_data_vls(struct hfi1_devdata *dd)
11017{
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050011018 if (is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -040011019 return 1;
11020
11021 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11022
11023 return 0;
11024}
11025
11026/*
11027 * drain_data_vls() - assumes that disable_data_vls() has been called,
11028 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11029 * engines to drop to 0.
11030 */
11031static void drain_data_vls(struct hfi1_devdata *dd)
11032{
11033 sc_wait(dd);
11034 sdma_wait(dd);
11035 pause_for_credit_return(dd);
11036}
11037
11038/*
11039 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11040 *
11041 * Use open_fill_data_vls() to resume using data VLs. This pair is
11042 * meant to be used like this:
11043 *
11044 * stop_drain_data_vls(dd);
11045 * // do things with per-VL resources
11046 * open_fill_data_vls(dd);
11047 */
11048int stop_drain_data_vls(struct hfi1_devdata *dd)
11049{
11050 int ret;
11051
11052 ret = disable_data_vls(dd);
11053 if (ret == 0)
11054 drain_data_vls(dd);
11055
11056 return ret;
11057}
11058
11059/*
11060 * Convert a nanosecond time to a cclock count. No matter how slow
11061 * the cclock, a non-zero ns will always have a non-zero result.
11062 */
11063u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11064{
11065 u32 cclocks;
11066
11067 if (dd->icode == ICODE_FPGA_EMULATION)
11068 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11069 else /* simulation pretends to be ASIC */
11070 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11071 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11072 cclocks = 1;
11073 return cclocks;
11074}
11075
11076/*
11077 * Convert a cclock count to nanoseconds. Not matter how slow
11078 * the cclock, a non-zero cclocks will always have a non-zero result.
11079 */
11080u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11081{
11082 u32 ns;
11083
11084 if (dd->icode == ICODE_FPGA_EMULATION)
11085 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11086 else /* simulation pretends to be ASIC */
11087 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11088 if (cclocks && !ns)
11089 ns = 1;
11090 return ns;
11091}
11092
11093/*
11094 * Dynamically adjust the receive interrupt timeout for a context based on
11095 * incoming packet rate.
11096 *
11097 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11098 */
11099static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11100{
11101 struct hfi1_devdata *dd = rcd->dd;
11102 u32 timeout = rcd->rcvavail_timeout;
11103
11104 /*
11105 * This algorithm doubles or halves the timeout depending on whether
11106 * the number of packets received in this interrupt were less than or
11107 * greater equal the interrupt count.
11108 *
11109 * The calculations below do not allow a steady state to be achieved.
11110 * Only at the endpoints it is possible to have an unchanging
11111 * timeout.
11112 */
11113 if (npkts < rcv_intr_count) {
11114 /*
11115 * Not enough packets arrived before the timeout, adjust
11116 * timeout downward.
11117 */
11118 if (timeout < 2) /* already at minimum? */
11119 return;
11120 timeout >>= 1;
11121 } else {
11122 /*
11123 * More than enough packets arrived before the timeout, adjust
11124 * timeout upward.
11125 */
11126 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11127 return;
11128 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11129 }
11130
11131 rcd->rcvavail_timeout = timeout;
11132 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
11133 been verified to be in range */
11134 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11135 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11136}
11137
11138void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11139 u32 intr_adjust, u32 npkts)
11140{
11141 struct hfi1_devdata *dd = rcd->dd;
11142 u64 reg;
11143 u32 ctxt = rcd->ctxt;
11144
11145 /*
11146 * Need to write timeout register before updating RcvHdrHead to ensure
11147 * that a new value is used when the HW decides to restart counting.
11148 */
11149 if (intr_adjust)
11150 adjust_rcv_timeout(rcd, npkts);
11151 if (updegr) {
11152 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11153 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11154 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11155 }
11156 mmiowb();
11157 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11158 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11159 << RCV_HDR_HEAD_HEAD_SHIFT);
11160 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11161 mmiowb();
11162}
11163
11164u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11165{
11166 u32 head, tail;
11167
11168 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11169 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11170
11171 if (rcd->rcvhdrtail_kvaddr)
11172 tail = get_rcvhdrtail(rcd);
11173 else
11174 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11175
11176 return head == tail;
11177}
11178
11179/*
11180 * Context Control and Receive Array encoding for buffer size:
11181 * 0x0 invalid
11182 * 0x1 4 KB
11183 * 0x2 8 KB
11184 * 0x3 16 KB
11185 * 0x4 32 KB
11186 * 0x5 64 KB
11187 * 0x6 128 KB
11188 * 0x7 256 KB
11189 * 0x8 512 KB (Receive Array only)
11190 * 0x9 1 MB (Receive Array only)
11191 * 0xa 2 MB (Receive Array only)
11192 *
11193 * 0xB-0xF - reserved (Receive Array only)
11194 *
11195 *
11196 * This routine assumes that the value has already been sanity checked.
11197 */
11198static u32 encoded_size(u32 size)
11199{
11200 switch (size) {
Jubin John8638b772016-02-14 20:19:24 -080011201 case 4 * 1024: return 0x1;
11202 case 8 * 1024: return 0x2;
11203 case 16 * 1024: return 0x3;
11204 case 32 * 1024: return 0x4;
11205 case 64 * 1024: return 0x5;
11206 case 128 * 1024: return 0x6;
11207 case 256 * 1024: return 0x7;
11208 case 512 * 1024: return 0x8;
11209 case 1 * 1024 * 1024: return 0x9;
11210 case 2 * 1024 * 1024: return 0xa;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011211 }
11212 return 0x1; /* if invalid, go with the minimum size */
11213}
11214
11215void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11216{
11217 struct hfi1_ctxtdata *rcd;
11218 u64 rcvctrl, reg;
11219 int did_enable = 0;
11220
11221 rcd = dd->rcd[ctxt];
11222 if (!rcd)
11223 return;
11224
11225 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11226
11227 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11228 /* if the context already enabled, don't do the extra steps */
Jubin Johnd0d236e2016-02-14 20:20:15 -080011229 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11230 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011231 /* reset the tail and hdr addresses, and sequence count */
11232 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11233 rcd->rcvhdrq_phys);
11234 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11235 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11236 rcd->rcvhdrqtailaddr_phys);
11237 rcd->seq_cnt = 1;
11238
11239 /* reset the cached receive header queue head value */
11240 rcd->head = 0;
11241
11242 /*
11243 * Zero the receive header queue so we don't get false
11244 * positives when checking the sequence number. The
11245 * sequence numbers could land exactly on the same spot.
11246 * E.g. a rcd restart before the receive header wrapped.
11247 */
11248 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11249
11250 /* starting timeout */
11251 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11252
11253 /* enable the context */
11254 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11255
11256 /* clean the egr buffer size first */
11257 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11258 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11259 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11260 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11261
11262 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11263 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11264 did_enable = 1;
11265
11266 /* zero RcvEgrIndexHead */
11267 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11268
11269 /* set eager count and base index */
11270 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11271 & RCV_EGR_CTRL_EGR_CNT_MASK)
11272 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11273 (((rcd->eager_base >> RCV_SHIFT)
11274 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11275 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11276 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11277
11278 /*
11279 * Set TID (expected) count and base index.
11280 * rcd->expected_count is set to individual RcvArray entries,
11281 * not pairs, and the CSR takes a pair-count in groups of
11282 * four, so divide by 8.
11283 */
11284 reg = (((rcd->expected_count >> RCV_SHIFT)
11285 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11286 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11287 (((rcd->expected_base >> RCV_SHIFT)
11288 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11289 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11290 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050011291 if (ctxt == HFI1_CTRL_CTXT)
11292 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011293 }
11294 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11295 write_csr(dd, RCV_VL15, 0);
Mark F. Brown46b010d2015-11-09 19:18:20 -050011296 /*
11297 * When receive context is being disabled turn on tail
11298 * update with a dummy tail address and then disable
11299 * receive context.
11300 */
11301 if (dd->rcvhdrtail_dummy_physaddr) {
11302 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11303 dd->rcvhdrtail_dummy_physaddr);
Mitko Haralanov566c1572016-02-03 14:32:49 -080011304 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
Mark F. Brown46b010d2015-11-09 19:18:20 -050011305 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11306 }
11307
Mike Marciniszyn77241052015-07-30 15:17:43 -040011308 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11309 }
11310 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11311 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11312 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11313 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11314 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11315 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
Mitko Haralanov566c1572016-02-03 14:32:49 -080011316 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11317 /* See comment on RcvCtxtCtrl.TailUpd above */
11318 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11319 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11320 }
Mike Marciniszyn77241052015-07-30 15:17:43 -040011321 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11322 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11323 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11324 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11325 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11326 /* In one-packet-per-eager mode, the size comes from
11327 the RcvArray entry. */
11328 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11329 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11330 }
11331 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11332 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11333 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11334 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11335 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11336 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11337 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11338 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11339 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11340 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11341 rcd->rcvctrl = rcvctrl;
11342 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11343 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11344
11345 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
Jubin Johnd0d236e2016-02-14 20:20:15 -080011346 if (did_enable &&
11347 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011348 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11349 if (reg != 0) {
11350 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11351 ctxt, reg);
11352 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11353 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11354 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11355 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11356 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11357 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11358 ctxt, reg, reg == 0 ? "not" : "still");
11359 }
11360 }
11361
11362 if (did_enable) {
11363 /*
11364 * The interrupt timeout and count must be set after
11365 * the context is enabled to take effect.
11366 */
11367 /* set interrupt timeout */
11368 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11369 (u64)rcd->rcvavail_timeout <<
11370 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11371
11372 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11373 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11374 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11375 }
11376
11377 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11378 /*
11379 * If the context has been disabled and the Tail Update has
Mark F. Brown46b010d2015-11-09 19:18:20 -050011380 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11381 * so it doesn't contain an address that is invalid.
Mike Marciniszyn77241052015-07-30 15:17:43 -040011382 */
Mark F. Brown46b010d2015-11-09 19:18:20 -050011383 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11384 dd->rcvhdrtail_dummy_physaddr);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011385}
11386
11387u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
11388 u64 **cntrp)
11389{
11390 int ret;
11391 u64 val = 0;
11392
11393 if (namep) {
11394 ret = dd->cntrnameslen;
11395 if (pos != 0) {
11396 dd_dev_err(dd, "read_cntrs does not support indexing");
11397 return 0;
11398 }
11399 *namep = dd->cntrnames;
11400 } else {
11401 const struct cntr_entry *entry;
11402 int i, j;
11403
11404 ret = (dd->ndevcntrs) * sizeof(u64);
11405 if (pos != 0) {
11406 dd_dev_err(dd, "read_cntrs does not support indexing");
11407 return 0;
11408 }
11409
11410 /* Get the start of the block of counters */
11411 *cntrp = dd->cntrs;
11412
11413 /*
11414 * Now go and fill in each counter in the block.
11415 */
11416 for (i = 0; i < DEV_CNTR_LAST; i++) {
11417 entry = &dev_cntrs[i];
11418 hfi1_cdbg(CNTR, "reading %s", entry->name);
11419 if (entry->flags & CNTR_DISABLED) {
11420 /* Nothing */
11421 hfi1_cdbg(CNTR, "\tDisabled\n");
11422 } else {
11423 if (entry->flags & CNTR_VL) {
11424 hfi1_cdbg(CNTR, "\tPer VL\n");
11425 for (j = 0; j < C_VL_COUNT; j++) {
11426 val = entry->rw_cntr(entry,
11427 dd, j,
11428 CNTR_MODE_R,
11429 0);
11430 hfi1_cdbg(
11431 CNTR,
11432 "\t\tRead 0x%llx for %d\n",
11433 val, j);
11434 dd->cntrs[entry->offset + j] =
11435 val;
11436 }
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011437 } else if (entry->flags & CNTR_SDMA) {
11438 hfi1_cdbg(CNTR,
11439 "\t Per SDMA Engine\n");
11440 for (j = 0; j < dd->chip_sdma_engines;
11441 j++) {
11442 val =
11443 entry->rw_cntr(entry, dd, j,
11444 CNTR_MODE_R, 0);
11445 hfi1_cdbg(CNTR,
11446 "\t\tRead 0x%llx for %d\n",
11447 val, j);
11448 dd->cntrs[entry->offset + j] =
11449 val;
11450 }
Mike Marciniszyn77241052015-07-30 15:17:43 -040011451 } else {
11452 val = entry->rw_cntr(entry, dd,
11453 CNTR_INVALID_VL,
11454 CNTR_MODE_R, 0);
11455 dd->cntrs[entry->offset] = val;
11456 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11457 }
11458 }
11459 }
11460 }
11461 return ret;
11462}
11463
11464/*
11465 * Used by sysfs to create files for hfi stats to read
11466 */
11467u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
11468 char **namep, u64 **cntrp)
11469{
11470 int ret;
11471 u64 val = 0;
11472
11473 if (namep) {
11474 ret = dd->portcntrnameslen;
11475 if (pos != 0) {
11476 dd_dev_err(dd, "index not supported");
11477 return 0;
11478 }
11479 *namep = dd->portcntrnames;
11480 } else {
11481 const struct cntr_entry *entry;
11482 struct hfi1_pportdata *ppd;
11483 int i, j;
11484
11485 ret = (dd->nportcntrs) * sizeof(u64);
11486 if (pos != 0) {
11487 dd_dev_err(dd, "indexing not supported");
11488 return 0;
11489 }
11490 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
11491 *cntrp = ppd->cntrs;
11492
11493 for (i = 0; i < PORT_CNTR_LAST; i++) {
11494 entry = &port_cntrs[i];
11495 hfi1_cdbg(CNTR, "reading %s", entry->name);
11496 if (entry->flags & CNTR_DISABLED) {
11497 /* Nothing */
11498 hfi1_cdbg(CNTR, "\tDisabled\n");
11499 continue;
11500 }
11501
11502 if (entry->flags & CNTR_VL) {
11503 hfi1_cdbg(CNTR, "\tPer VL");
11504 for (j = 0; j < C_VL_COUNT; j++) {
11505 val = entry->rw_cntr(entry, ppd, j,
11506 CNTR_MODE_R,
11507 0);
11508 hfi1_cdbg(
11509 CNTR,
11510 "\t\tRead 0x%llx for %d",
11511 val, j);
11512 ppd->cntrs[entry->offset + j] = val;
11513 }
11514 } else {
11515 val = entry->rw_cntr(entry, ppd,
11516 CNTR_INVALID_VL,
11517 CNTR_MODE_R,
11518 0);
11519 ppd->cntrs[entry->offset] = val;
11520 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11521 }
11522 }
11523 }
11524 return ret;
11525}
11526
11527static void free_cntrs(struct hfi1_devdata *dd)
11528{
11529 struct hfi1_pportdata *ppd;
11530 int i;
11531
11532 if (dd->synth_stats_timer.data)
11533 del_timer_sync(&dd->synth_stats_timer);
11534 dd->synth_stats_timer.data = 0;
11535 ppd = (struct hfi1_pportdata *)(dd + 1);
11536 for (i = 0; i < dd->num_pports; i++, ppd++) {
11537 kfree(ppd->cntrs);
11538 kfree(ppd->scntrs);
Dennis Dalessandro4eb06882016-01-19 14:42:39 -080011539 free_percpu(ppd->ibport_data.rvp.rc_acks);
11540 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11541 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011542 ppd->cntrs = NULL;
11543 ppd->scntrs = NULL;
Dennis Dalessandro4eb06882016-01-19 14:42:39 -080011544 ppd->ibport_data.rvp.rc_acks = NULL;
11545 ppd->ibport_data.rvp.rc_qacks = NULL;
11546 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011547 }
11548 kfree(dd->portcntrnames);
11549 dd->portcntrnames = NULL;
11550 kfree(dd->cntrs);
11551 dd->cntrs = NULL;
11552 kfree(dd->scntrs);
11553 dd->scntrs = NULL;
11554 kfree(dd->cntrnames);
11555 dd->cntrnames = NULL;
11556}
11557
11558#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
11559#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
11560
11561static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11562 u64 *psval, void *context, int vl)
11563{
11564 u64 val;
11565 u64 sval = *psval;
11566
11567 if (entry->flags & CNTR_DISABLED) {
11568 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11569 return 0;
11570 }
11571
11572 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11573
11574 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11575
11576 /* If its a synthetic counter there is more work we need to do */
11577 if (entry->flags & CNTR_SYNTH) {
11578 if (sval == CNTR_MAX) {
11579 /* No need to read already saturated */
11580 return CNTR_MAX;
11581 }
11582
11583 if (entry->flags & CNTR_32BIT) {
11584 /* 32bit counters can wrap multiple times */
11585 u64 upper = sval >> 32;
11586 u64 lower = (sval << 32) >> 32;
11587
11588 if (lower > val) { /* hw wrapped */
11589 if (upper == CNTR_32BIT_MAX)
11590 val = CNTR_MAX;
11591 else
11592 upper++;
11593 }
11594
11595 if (val != CNTR_MAX)
11596 val = (upper << 32) | val;
11597
11598 } else {
11599 /* If we rolled we are saturated */
11600 if ((val < sval) || (val > CNTR_MAX))
11601 val = CNTR_MAX;
11602 }
11603 }
11604
11605 *psval = val;
11606
11607 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11608
11609 return val;
11610}
11611
11612static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11613 struct cntr_entry *entry,
11614 u64 *psval, void *context, int vl, u64 data)
11615{
11616 u64 val;
11617
11618 if (entry->flags & CNTR_DISABLED) {
11619 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11620 return 0;
11621 }
11622
11623 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11624
11625 if (entry->flags & CNTR_SYNTH) {
11626 *psval = data;
11627 if (entry->flags & CNTR_32BIT) {
11628 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11629 (data << 32) >> 32);
11630 val = data; /* return the full 64bit value */
11631 } else {
11632 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11633 data);
11634 }
11635 } else {
11636 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11637 }
11638
11639 *psval = val;
11640
11641 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11642
11643 return val;
11644}
11645
11646u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11647{
11648 struct cntr_entry *entry;
11649 u64 *sval;
11650
11651 entry = &dev_cntrs[index];
11652 sval = dd->scntrs + entry->offset;
11653
11654 if (vl != CNTR_INVALID_VL)
11655 sval += vl;
11656
11657 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11658}
11659
11660u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11661{
11662 struct cntr_entry *entry;
11663 u64 *sval;
11664
11665 entry = &dev_cntrs[index];
11666 sval = dd->scntrs + entry->offset;
11667
11668 if (vl != CNTR_INVALID_VL)
11669 sval += vl;
11670
11671 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11672}
11673
11674u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11675{
11676 struct cntr_entry *entry;
11677 u64 *sval;
11678
11679 entry = &port_cntrs[index];
11680 sval = ppd->scntrs + entry->offset;
11681
11682 if (vl != CNTR_INVALID_VL)
11683 sval += vl;
11684
11685 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11686 (index <= C_RCV_HDR_OVF_LAST)) {
11687 /* We do not want to bother for disabled contexts */
11688 return 0;
11689 }
11690
11691 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11692}
11693
11694u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11695{
11696 struct cntr_entry *entry;
11697 u64 *sval;
11698
11699 entry = &port_cntrs[index];
11700 sval = ppd->scntrs + entry->offset;
11701
11702 if (vl != CNTR_INVALID_VL)
11703 sval += vl;
11704
11705 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11706 (index <= C_RCV_HDR_OVF_LAST)) {
11707 /* We do not want to bother for disabled contexts */
11708 return 0;
11709 }
11710
11711 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11712}
11713
11714static void update_synth_timer(unsigned long opaque)
11715{
11716 u64 cur_tx;
11717 u64 cur_rx;
11718 u64 total_flits;
11719 u8 update = 0;
11720 int i, j, vl;
11721 struct hfi1_pportdata *ppd;
11722 struct cntr_entry *entry;
11723
11724 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11725
11726 /*
11727 * Rather than keep beating on the CSRs pick a minimal set that we can
11728 * check to watch for potential roll over. We can do this by looking at
11729 * the number of flits sent/recv. If the total flits exceeds 32bits then
11730 * we have to iterate all the counters and update.
11731 */
11732 entry = &dev_cntrs[C_DC_RCV_FLITS];
11733 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11734
11735 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11736 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11737
11738 hfi1_cdbg(
11739 CNTR,
11740 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11741 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11742
11743 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11744 /*
11745 * May not be strictly necessary to update but it won't hurt and
11746 * simplifies the logic here.
11747 */
11748 update = 1;
11749 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11750 dd->unit);
11751 } else {
11752 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11753 hfi1_cdbg(CNTR,
11754 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11755 total_flits, (u64)CNTR_32BIT_MAX);
11756 if (total_flits >= CNTR_32BIT_MAX) {
11757 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11758 dd->unit);
11759 update = 1;
11760 }
11761 }
11762
11763 if (update) {
11764 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
11765 for (i = 0; i < DEV_CNTR_LAST; i++) {
11766 entry = &dev_cntrs[i];
11767 if (entry->flags & CNTR_VL) {
11768 for (vl = 0; vl < C_VL_COUNT; vl++)
11769 read_dev_cntr(dd, i, vl);
11770 } else {
11771 read_dev_cntr(dd, i, CNTR_INVALID_VL);
11772 }
11773 }
11774 ppd = (struct hfi1_pportdata *)(dd + 1);
11775 for (i = 0; i < dd->num_pports; i++, ppd++) {
11776 for (j = 0; j < PORT_CNTR_LAST; j++) {
11777 entry = &port_cntrs[j];
11778 if (entry->flags & CNTR_VL) {
11779 for (vl = 0; vl < C_VL_COUNT; vl++)
11780 read_port_cntr(ppd, j, vl);
11781 } else {
11782 read_port_cntr(ppd, j, CNTR_INVALID_VL);
11783 }
11784 }
11785 }
11786
11787 /*
11788 * We want the value in the register. The goal is to keep track
11789 * of the number of "ticks" not the counter value. In other
11790 * words if the register rolls we want to notice it and go ahead
11791 * and force an update.
11792 */
11793 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11794 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11795 CNTR_MODE_R, 0);
11796
11797 entry = &dev_cntrs[C_DC_RCV_FLITS];
11798 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11799 CNTR_MODE_R, 0);
11800
11801 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
11802 dd->unit, dd->last_tx, dd->last_rx);
11803
11804 } else {
11805 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
11806 }
11807
11808mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11809}
11810
11811#define C_MAX_NAME 13 /* 12 chars + one for /0 */
11812static int init_cntrs(struct hfi1_devdata *dd)
11813{
Dean Luickc024c552016-01-11 18:30:57 -050011814 int i, rcv_ctxts, j;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011815 size_t sz;
11816 char *p;
11817 char name[C_MAX_NAME];
11818 struct hfi1_pportdata *ppd;
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011819 const char *bit_type_32 = ",32";
11820 const int bit_type_32_sz = strlen(bit_type_32);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011821
11822 /* set up the stats timer; the add_timer is done at the end */
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +053011823 setup_timer(&dd->synth_stats_timer, update_synth_timer,
11824 (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011825
11826 /***********************/
11827 /* per device counters */
11828 /***********************/
11829
11830 /* size names and determine how many we have*/
11831 dd->ndevcntrs = 0;
11832 sz = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011833
11834 for (i = 0; i < DEV_CNTR_LAST; i++) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011835 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11836 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
11837 continue;
11838 }
11839
11840 if (dev_cntrs[i].flags & CNTR_VL) {
Dean Luickc024c552016-01-11 18:30:57 -050011841 dev_cntrs[i].offset = dd->ndevcntrs;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011842 for (j = 0; j < C_VL_COUNT; j++) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011843 snprintf(name, C_MAX_NAME, "%s%d",
11844 dev_cntrs[i].name,
11845 vl_from_idx(j));
11846 sz += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011847 /* Add ",32" for 32-bit counters */
11848 if (dev_cntrs[i].flags & CNTR_32BIT)
11849 sz += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011850 sz++;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011851 dd->ndevcntrs++;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011852 }
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011853 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
Dean Luickc024c552016-01-11 18:30:57 -050011854 dev_cntrs[i].offset = dd->ndevcntrs;
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011855 for (j = 0; j < dd->chip_sdma_engines; j++) {
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011856 snprintf(name, C_MAX_NAME, "%s%d",
11857 dev_cntrs[i].name, j);
11858 sz += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011859 /* Add ",32" for 32-bit counters */
11860 if (dev_cntrs[i].flags & CNTR_32BIT)
11861 sz += bit_type_32_sz;
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011862 sz++;
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011863 dd->ndevcntrs++;
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011864 }
Mike Marciniszyn77241052015-07-30 15:17:43 -040011865 } else {
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011866 /* +1 for newline. */
Mike Marciniszyn77241052015-07-30 15:17:43 -040011867 sz += strlen(dev_cntrs[i].name) + 1;
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011868 /* Add ",32" for 32-bit counters */
11869 if (dev_cntrs[i].flags & CNTR_32BIT)
11870 sz += bit_type_32_sz;
Dean Luickc024c552016-01-11 18:30:57 -050011871 dev_cntrs[i].offset = dd->ndevcntrs;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011872 dd->ndevcntrs++;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011873 }
11874 }
11875
11876 /* allocate space for the counter values */
Dean Luickc024c552016-01-11 18:30:57 -050011877 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011878 if (!dd->cntrs)
11879 goto bail;
11880
Dean Luickc024c552016-01-11 18:30:57 -050011881 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011882 if (!dd->scntrs)
11883 goto bail;
11884
Mike Marciniszyn77241052015-07-30 15:17:43 -040011885 /* allocate space for the counter names */
11886 dd->cntrnameslen = sz;
11887 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
11888 if (!dd->cntrnames)
11889 goto bail;
11890
11891 /* fill in the names */
Dean Luickc024c552016-01-11 18:30:57 -050011892 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011893 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11894 /* Nothing */
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011895 } else if (dev_cntrs[i].flags & CNTR_VL) {
11896 for (j = 0; j < C_VL_COUNT; j++) {
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011897 snprintf(name, C_MAX_NAME, "%s%d",
11898 dev_cntrs[i].name,
11899 vl_from_idx(j));
11900 memcpy(p, name, strlen(name));
11901 p += strlen(name);
11902
11903 /* Counter is 32 bits */
11904 if (dev_cntrs[i].flags & CNTR_32BIT) {
11905 memcpy(p, bit_type_32, bit_type_32_sz);
11906 p += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011907 }
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011908
Mike Marciniszyn77241052015-07-30 15:17:43 -040011909 *p++ = '\n';
11910 }
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011911 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11912 for (j = 0; j < dd->chip_sdma_engines; j++) {
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011913 snprintf(name, C_MAX_NAME, "%s%d",
11914 dev_cntrs[i].name, j);
11915 memcpy(p, name, strlen(name));
11916 p += strlen(name);
11917
11918 /* Counter is 32 bits */
11919 if (dev_cntrs[i].flags & CNTR_32BIT) {
11920 memcpy(p, bit_type_32, bit_type_32_sz);
11921 p += bit_type_32_sz;
11922 }
11923
11924 *p++ = '\n';
11925 }
11926 } else {
11927 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
11928 p += strlen(dev_cntrs[i].name);
11929
11930 /* Counter is 32 bits */
11931 if (dev_cntrs[i].flags & CNTR_32BIT) {
11932 memcpy(p, bit_type_32, bit_type_32_sz);
11933 p += bit_type_32_sz;
11934 }
11935
11936 *p++ = '\n';
Mike Marciniszyn77241052015-07-30 15:17:43 -040011937 }
11938 }
11939
11940 /*********************/
11941 /* per port counters */
11942 /*********************/
11943
11944 /*
11945 * Go through the counters for the overflows and disable the ones we
11946 * don't need. This varies based on platform so we need to do it
11947 * dynamically here.
11948 */
11949 rcv_ctxts = dd->num_rcv_contexts;
11950 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
11951 i <= C_RCV_HDR_OVF_LAST; i++) {
11952 port_cntrs[i].flags |= CNTR_DISABLED;
11953 }
11954
11955 /* size port counter names and determine how many we have*/
11956 sz = 0;
11957 dd->nportcntrs = 0;
11958 for (i = 0; i < PORT_CNTR_LAST; i++) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011959 if (port_cntrs[i].flags & CNTR_DISABLED) {
11960 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
11961 continue;
11962 }
11963
11964 if (port_cntrs[i].flags & CNTR_VL) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011965 port_cntrs[i].offset = dd->nportcntrs;
11966 for (j = 0; j < C_VL_COUNT; j++) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011967 snprintf(name, C_MAX_NAME, "%s%d",
11968 port_cntrs[i].name,
11969 vl_from_idx(j));
11970 sz += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011971 /* Add ",32" for 32-bit counters */
11972 if (port_cntrs[i].flags & CNTR_32BIT)
11973 sz += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011974 sz++;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011975 dd->nportcntrs++;
11976 }
11977 } else {
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011978 /* +1 for newline */
Mike Marciniszyn77241052015-07-30 15:17:43 -040011979 sz += strlen(port_cntrs[i].name) + 1;
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011980 /* Add ",32" for 32-bit counters */
11981 if (port_cntrs[i].flags & CNTR_32BIT)
11982 sz += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011983 port_cntrs[i].offset = dd->nportcntrs;
11984 dd->nportcntrs++;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011985 }
11986 }
11987
11988 /* allocate space for the counter names */
11989 dd->portcntrnameslen = sz;
11990 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
11991 if (!dd->portcntrnames)
11992 goto bail;
11993
11994 /* fill in port cntr names */
11995 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
11996 if (port_cntrs[i].flags & CNTR_DISABLED)
11997 continue;
11998
11999 if (port_cntrs[i].flags & CNTR_VL) {
12000 for (j = 0; j < C_VL_COUNT; j++) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040012001 snprintf(name, C_MAX_NAME, "%s%d",
12002 port_cntrs[i].name,
12003 vl_from_idx(j));
12004 memcpy(p, name, strlen(name));
12005 p += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080012006
12007 /* Counter is 32 bits */
12008 if (port_cntrs[i].flags & CNTR_32BIT) {
12009 memcpy(p, bit_type_32, bit_type_32_sz);
12010 p += bit_type_32_sz;
12011 }
12012
Mike Marciniszyn77241052015-07-30 15:17:43 -040012013 *p++ = '\n';
12014 }
12015 } else {
12016 memcpy(p, port_cntrs[i].name,
12017 strlen(port_cntrs[i].name));
12018 p += strlen(port_cntrs[i].name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080012019
12020 /* Counter is 32 bits */
12021 if (port_cntrs[i].flags & CNTR_32BIT) {
12022 memcpy(p, bit_type_32, bit_type_32_sz);
12023 p += bit_type_32_sz;
12024 }
12025
Mike Marciniszyn77241052015-07-30 15:17:43 -040012026 *p++ = '\n';
12027 }
12028 }
12029
12030 /* allocate per port storage for counter values */
12031 ppd = (struct hfi1_pportdata *)(dd + 1);
12032 for (i = 0; i < dd->num_pports; i++, ppd++) {
12033 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12034 if (!ppd->cntrs)
12035 goto bail;
12036
12037 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12038 if (!ppd->scntrs)
12039 goto bail;
12040 }
12041
12042 /* CPU counters need to be allocated and zeroed */
12043 if (init_cpu_counters(dd))
12044 goto bail;
12045
12046 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12047 return 0;
12048bail:
12049 free_cntrs(dd);
12050 return -ENOMEM;
12051}
12052
Mike Marciniszyn77241052015-07-30 15:17:43 -040012053static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12054{
12055 switch (chip_lstate) {
12056 default:
12057 dd_dev_err(dd,
12058 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12059 chip_lstate);
12060 /* fall through */
12061 case LSTATE_DOWN:
12062 return IB_PORT_DOWN;
12063 case LSTATE_INIT:
12064 return IB_PORT_INIT;
12065 case LSTATE_ARMED:
12066 return IB_PORT_ARMED;
12067 case LSTATE_ACTIVE:
12068 return IB_PORT_ACTIVE;
12069 }
12070}
12071
12072u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12073{
12074 /* look at the HFI meta-states only */
12075 switch (chip_pstate & 0xf0) {
12076 default:
12077 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12078 chip_pstate);
12079 /* fall through */
12080 case PLS_DISABLED:
12081 return IB_PORTPHYSSTATE_DISABLED;
12082 case PLS_OFFLINE:
12083 return OPA_PORTPHYSSTATE_OFFLINE;
12084 case PLS_POLLING:
12085 return IB_PORTPHYSSTATE_POLLING;
12086 case PLS_CONFIGPHY:
12087 return IB_PORTPHYSSTATE_TRAINING;
12088 case PLS_LINKUP:
12089 return IB_PORTPHYSSTATE_LINKUP;
12090 case PLS_PHYTEST:
12091 return IB_PORTPHYSSTATE_PHY_TEST;
12092 }
12093}
12094
12095/* return the OPA port logical state name */
12096const char *opa_lstate_name(u32 lstate)
12097{
12098 static const char * const port_logical_names[] = {
12099 "PORT_NOP",
12100 "PORT_DOWN",
12101 "PORT_INIT",
12102 "PORT_ARMED",
12103 "PORT_ACTIVE",
12104 "PORT_ACTIVE_DEFER",
12105 };
12106 if (lstate < ARRAY_SIZE(port_logical_names))
12107 return port_logical_names[lstate];
12108 return "unknown";
12109}
12110
12111/* return the OPA port physical state name */
12112const char *opa_pstate_name(u32 pstate)
12113{
12114 static const char * const port_physical_names[] = {
12115 "PHYS_NOP",
12116 "reserved1",
12117 "PHYS_POLL",
12118 "PHYS_DISABLED",
12119 "PHYS_TRAINING",
12120 "PHYS_LINKUP",
12121 "PHYS_LINK_ERR_RECOVER",
12122 "PHYS_PHY_TEST",
12123 "reserved8",
12124 "PHYS_OFFLINE",
12125 "PHYS_GANGED",
12126 "PHYS_TEST",
12127 };
12128 if (pstate < ARRAY_SIZE(port_physical_names))
12129 return port_physical_names[pstate];
12130 return "unknown";
12131}
12132
12133/*
12134 * Read the hardware link state and set the driver's cached value of it.
12135 * Return the (new) current value.
12136 */
12137u32 get_logical_state(struct hfi1_pportdata *ppd)
12138{
12139 u32 new_state;
12140
12141 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12142 if (new_state != ppd->lstate) {
12143 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12144 opa_lstate_name(new_state), new_state);
12145 ppd->lstate = new_state;
12146 }
12147 /*
12148 * Set port status flags in the page mapped into userspace
12149 * memory. Do it here to ensure a reliable state - this is
12150 * the only function called by all state handling code.
12151 * Always set the flags due to the fact that the cache value
12152 * might have been changed explicitly outside of this
12153 * function.
12154 */
12155 if (ppd->statusp) {
12156 switch (ppd->lstate) {
12157 case IB_PORT_DOWN:
12158 case IB_PORT_INIT:
12159 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12160 HFI1_STATUS_IB_READY);
12161 break;
12162 case IB_PORT_ARMED:
12163 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12164 break;
12165 case IB_PORT_ACTIVE:
12166 *ppd->statusp |= HFI1_STATUS_IB_READY;
12167 break;
12168 }
12169 }
12170 return ppd->lstate;
12171}
12172
12173/**
12174 * wait_logical_linkstate - wait for an IB link state change to occur
12175 * @ppd: port device
12176 * @state: the state to wait for
12177 * @msecs: the number of milliseconds to wait
12178 *
12179 * Wait up to msecs milliseconds for IB link state change to occur.
12180 * For now, take the easy polling route.
12181 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12182 */
12183static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12184 int msecs)
12185{
12186 unsigned long timeout;
12187
12188 timeout = jiffies + msecs_to_jiffies(msecs);
12189 while (1) {
12190 if (get_logical_state(ppd) == state)
12191 return 0;
12192 if (time_after(jiffies, timeout))
12193 break;
12194 msleep(20);
12195 }
12196 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12197
12198 return -ETIMEDOUT;
12199}
12200
12201u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12202{
Mike Marciniszyn77241052015-07-30 15:17:43 -040012203 u32 pstate;
12204 u32 ib_pstate;
12205
12206 pstate = read_physical_state(ppd->dd);
12207 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
Dean Luickf45c8dc2016-02-03 14:35:31 -080012208 if (ppd->last_pstate != ib_pstate) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040012209 dd_dev_info(ppd->dd,
12210 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12211 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12212 pstate);
Dean Luickf45c8dc2016-02-03 14:35:31 -080012213 ppd->last_pstate = ib_pstate;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012214 }
12215 return ib_pstate;
12216}
12217
12218/*
12219 * Read/modify/write ASIC_QSFP register bits as selected by mask
12220 * data: 0 or 1 in the positions depending on what needs to be written
12221 * dir: 0 for read, 1 for write
12222 * mask: select by setting
12223 * I2CCLK (bit 0)
12224 * I2CDATA (bit 1)
12225 */
12226u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
12227 u32 mask)
12228{
12229 u64 qsfp_oe, target_oe;
12230
12231 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
12232 if (mask) {
12233 /* We are writing register bits, so lock access */
12234 dir &= mask;
12235 data &= mask;
12236
12237 qsfp_oe = read_csr(dd, target_oe);
12238 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
12239 write_csr(dd, target_oe, qsfp_oe);
12240 }
12241 /* We are exclusively reading bits here, but it is unlikely
12242 * we'll get valid data when we set the direction of the pin
12243 * in the same call, so read should call this function again
12244 * to get valid data
12245 */
12246 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
12247}
12248
12249#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12250(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12251
12252#define SET_STATIC_RATE_CONTROL_SMASK(r) \
12253(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12254
12255int hfi1_init_ctxt(struct send_context *sc)
12256{
Jubin Johnd125a6c2016-02-14 20:19:49 -080012257 if (sc) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040012258 struct hfi1_devdata *dd = sc->dd;
12259 u64 reg;
12260 u8 set = (sc->type == SC_USER ?
12261 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12262 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12263 reg = read_kctxt_csr(dd, sc->hw_context,
12264 SEND_CTXT_CHECK_ENABLE);
12265 if (set)
12266 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12267 else
12268 SET_STATIC_RATE_CONTROL_SMASK(reg);
12269 write_kctxt_csr(dd, sc->hw_context,
12270 SEND_CTXT_CHECK_ENABLE, reg);
12271 }
12272 return 0;
12273}
12274
12275int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12276{
12277 int ret = 0;
12278 u64 reg;
12279
12280 if (dd->icode != ICODE_RTL_SILICON) {
12281 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12282 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12283 __func__);
12284 return -EINVAL;
12285 }
12286 reg = read_csr(dd, ASIC_STS_THERM);
12287 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12288 ASIC_STS_THERM_CURR_TEMP_MASK);
12289 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12290 ASIC_STS_THERM_LO_TEMP_MASK);
12291 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12292 ASIC_STS_THERM_HI_TEMP_MASK);
12293 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12294 ASIC_STS_THERM_CRIT_TEMP_MASK);
12295 /* triggers is a 3-bit value - 1 bit per trigger. */
12296 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12297
12298 return ret;
12299}
12300
12301/* ========================================================================= */
12302
12303/*
12304 * Enable/disable chip from delivering interrupts.
12305 */
12306void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12307{
12308 int i;
12309
12310 /*
12311 * In HFI, the mask needs to be 1 to allow interrupts.
12312 */
12313 if (enable) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040012314 /* enable all interrupts */
12315 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
Jubin John8638b772016-02-14 20:19:24 -080012316 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012317
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -080012318 init_qsfp_int(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012319 } else {
12320 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
Jubin John8638b772016-02-14 20:19:24 -080012321 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012322 }
12323}
12324
12325/*
12326 * Clear all interrupt sources on the chip.
12327 */
12328static void clear_all_interrupts(struct hfi1_devdata *dd)
12329{
12330 int i;
12331
12332 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
Jubin John8638b772016-02-14 20:19:24 -080012333 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012334
12335 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12336 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12337 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12338 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12339 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12340 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12341 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12342 for (i = 0; i < dd->chip_send_contexts; i++)
12343 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12344 for (i = 0; i < dd->chip_sdma_engines; i++)
12345 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12346
12347 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12348 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12349 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12350}
12351
12352/* Move to pcie.c? */
12353static void disable_intx(struct pci_dev *pdev)
12354{
12355 pci_intx(pdev, 0);
12356}
12357
12358static void clean_up_interrupts(struct hfi1_devdata *dd)
12359{
12360 int i;
12361
12362 /* remove irqs - must happen before disabling/turning off */
12363 if (dd->num_msix_entries) {
12364 /* MSI-X */
12365 struct hfi1_msix_entry *me = dd->msix_entries;
12366
12367 for (i = 0; i < dd->num_msix_entries; i++, me++) {
Jubin Johnd125a6c2016-02-14 20:19:49 -080012368 if (!me->arg) /* => no irq, no affinity */
Mitko Haralanov957558c2016-02-03 14:33:40 -080012369 continue;
12370 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012371 free_irq(me->msix.vector, me->arg);
12372 }
12373 } else {
12374 /* INTx */
12375 if (dd->requested_intx_irq) {
12376 free_irq(dd->pcidev->irq, dd);
12377 dd->requested_intx_irq = 0;
12378 }
12379 }
12380
12381 /* turn off interrupts */
12382 if (dd->num_msix_entries) {
12383 /* MSI-X */
Amitoj Kaur Chawla6e5b6132015-11-01 16:14:32 +053012384 pci_disable_msix(dd->pcidev);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012385 } else {
12386 /* INTx */
12387 disable_intx(dd->pcidev);
12388 }
12389
12390 /* clean structures */
Mike Marciniszyn77241052015-07-30 15:17:43 -040012391 kfree(dd->msix_entries);
12392 dd->msix_entries = NULL;
12393 dd->num_msix_entries = 0;
12394}
12395
12396/*
12397 * Remap the interrupt source from the general handler to the given MSI-X
12398 * interrupt.
12399 */
12400static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12401{
12402 u64 reg;
12403 int m, n;
12404
12405 /* clear from the handled mask of the general interrupt */
12406 m = isrc / 64;
12407 n = isrc % 64;
12408 dd->gi_mask[m] &= ~((u64)1 << n);
12409
12410 /* direct the chip source to the given MSI-X interrupt */
12411 m = isrc / 8;
12412 n = isrc % 8;
Jubin John8638b772016-02-14 20:19:24 -080012413 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12414 reg &= ~((u64)0xff << (8 * n));
12415 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12416 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012417}
12418
12419static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12420 int engine, int msix_intr)
12421{
12422 /*
12423 * SDMA engine interrupt sources grouped by type, rather than
12424 * engine. Per-engine interrupts are as follows:
12425 * SDMA
12426 * SDMAProgress
12427 * SDMAIdle
12428 */
Jubin John8638b772016-02-14 20:19:24 -080012429 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
Mike Marciniszyn77241052015-07-30 15:17:43 -040012430 msix_intr);
Jubin John8638b772016-02-14 20:19:24 -080012431 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
Mike Marciniszyn77241052015-07-30 15:17:43 -040012432 msix_intr);
Jubin John8638b772016-02-14 20:19:24 -080012433 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
Mike Marciniszyn77241052015-07-30 15:17:43 -040012434 msix_intr);
12435}
12436
Mike Marciniszyn77241052015-07-30 15:17:43 -040012437static int request_intx_irq(struct hfi1_devdata *dd)
12438{
12439 int ret;
12440
Jubin John98050712015-11-16 21:59:27 -050012441 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12442 dd->unit);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012443 ret = request_irq(dd->pcidev->irq, general_interrupt,
12444 IRQF_SHARED, dd->intx_name, dd);
12445 if (ret)
12446 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12447 ret);
12448 else
12449 dd->requested_intx_irq = 1;
12450 return ret;
12451}
12452
12453static int request_msix_irqs(struct hfi1_devdata *dd)
12454{
Mike Marciniszyn77241052015-07-30 15:17:43 -040012455 int first_general, last_general;
12456 int first_sdma, last_sdma;
12457 int first_rx, last_rx;
Mitko Haralanov957558c2016-02-03 14:33:40 -080012458 int i, ret = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012459
12460 /* calculate the ranges we are going to use */
12461 first_general = 0;
12462 first_sdma = last_general = first_general + 1;
12463 first_rx = last_sdma = first_sdma + dd->num_sdma;
12464 last_rx = first_rx + dd->n_krcv_queues;
12465
12466 /*
Mike Marciniszyn77241052015-07-30 15:17:43 -040012467 * Sanity check - the code expects all SDMA chip source
12468 * interrupts to be in the same CSR, starting at bit 0. Verify
12469 * that this is true by checking the bit location of the start.
12470 */
12471 BUILD_BUG_ON(IS_SDMA_START % 64);
12472
12473 for (i = 0; i < dd->num_msix_entries; i++) {
12474 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12475 const char *err_info;
12476 irq_handler_t handler;
Dean Luickf4f30031c2015-10-26 10:28:44 -040012477 irq_handler_t thread = NULL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012478 void *arg;
12479 int idx;
12480 struct hfi1_ctxtdata *rcd = NULL;
12481 struct sdma_engine *sde = NULL;
12482
12483 /* obtain the arguments to request_irq */
12484 if (first_general <= i && i < last_general) {
12485 idx = i - first_general;
12486 handler = general_interrupt;
12487 arg = dd;
12488 snprintf(me->name, sizeof(me->name),
Jubin John98050712015-11-16 21:59:27 -050012489 DRIVER_NAME "_%d", dd->unit);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012490 err_info = "general";
Mitko Haralanov957558c2016-02-03 14:33:40 -080012491 me->type = IRQ_GENERAL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012492 } else if (first_sdma <= i && i < last_sdma) {
12493 idx = i - first_sdma;
12494 sde = &dd->per_sdma[idx];
12495 handler = sdma_interrupt;
12496 arg = sde;
12497 snprintf(me->name, sizeof(me->name),
Jubin John98050712015-11-16 21:59:27 -050012498 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012499 err_info = "sdma";
12500 remap_sdma_interrupts(dd, idx, i);
Mitko Haralanov957558c2016-02-03 14:33:40 -080012501 me->type = IRQ_SDMA;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012502 } else if (first_rx <= i && i < last_rx) {
12503 idx = i - first_rx;
12504 rcd = dd->rcd[idx];
12505 /* no interrupt if no rcd */
12506 if (!rcd)
12507 continue;
12508 /*
12509 * Set the interrupt register and mask for this
12510 * context's interrupt.
12511 */
Jubin John8638b772016-02-14 20:19:24 -080012512 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012513 rcd->imask = ((u64)1) <<
Jubin John8638b772016-02-14 20:19:24 -080012514 ((IS_RCVAVAIL_START + idx) % 64);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012515 handler = receive_context_interrupt;
Dean Luickf4f30031c2015-10-26 10:28:44 -040012516 thread = receive_context_thread;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012517 arg = rcd;
12518 snprintf(me->name, sizeof(me->name),
Jubin John98050712015-11-16 21:59:27 -050012519 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012520 err_info = "receive context";
Amitoj Kaur Chawla66c09332015-11-01 16:18:18 +053012521 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
Mitko Haralanov957558c2016-02-03 14:33:40 -080012522 me->type = IRQ_RCVCTXT;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012523 } else {
12524 /* not in our expected range - complain, then
12525 ignore it */
12526 dd_dev_err(dd,
12527 "Unexpected extra MSI-X interrupt %d\n", i);
12528 continue;
12529 }
12530 /* no argument, no interrupt */
Jubin Johnd125a6c2016-02-14 20:19:49 -080012531 if (!arg)
Mike Marciniszyn77241052015-07-30 15:17:43 -040012532 continue;
12533 /* make sure the name is terminated */
Jubin John8638b772016-02-14 20:19:24 -080012534 me->name[sizeof(me->name) - 1] = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012535
Dean Luickf4f30031c2015-10-26 10:28:44 -040012536 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12537 me->name, arg);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012538 if (ret) {
12539 dd_dev_err(dd,
12540 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12541 err_info, me->msix.vector, idx, ret);
12542 return ret;
12543 }
12544 /*
12545 * assign arg after request_irq call, so it will be
12546 * cleaned up
12547 */
12548 me->arg = arg;
12549
Mitko Haralanov957558c2016-02-03 14:33:40 -080012550 ret = hfi1_get_irq_affinity(dd, me);
12551 if (ret)
12552 dd_dev_err(dd,
12553 "unable to pin IRQ %d\n", ret);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012554 }
12555
Mike Marciniszyn77241052015-07-30 15:17:43 -040012556 return ret;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012557}
12558
12559/*
12560 * Set the general handler to accept all interrupts, remap all
12561 * chip interrupts back to MSI-X 0.
12562 */
12563static void reset_interrupts(struct hfi1_devdata *dd)
12564{
12565 int i;
12566
12567 /* all interrupts handled by the general handler */
12568 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12569 dd->gi_mask[i] = ~(u64)0;
12570
12571 /* all chip interrupts map to MSI-X 0 */
12572 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
Jubin John8638b772016-02-14 20:19:24 -080012573 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012574}
12575
12576static int set_up_interrupts(struct hfi1_devdata *dd)
12577{
12578 struct hfi1_msix_entry *entries;
12579 u32 total, request;
12580 int i, ret;
12581 int single_interrupt = 0; /* we expect to have all the interrupts */
12582
12583 /*
12584 * Interrupt count:
12585 * 1 general, "slow path" interrupt (includes the SDMA engines
12586 * slow source, SDMACleanupDone)
12587 * N interrupts - one per used SDMA engine
12588 * M interrupt - one per kernel receive context
12589 */
12590 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12591
12592 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12593 if (!entries) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040012594 ret = -ENOMEM;
12595 goto fail;
12596 }
12597 /* 1-1 MSI-X entry assignment */
12598 for (i = 0; i < total; i++)
12599 entries[i].msix.entry = i;
12600
12601 /* ask for MSI-X interrupts */
12602 request = total;
12603 request_msix(dd, &request, entries);
12604
12605 if (request == 0) {
12606 /* using INTx */
12607 /* dd->num_msix_entries already zero */
12608 kfree(entries);
12609 single_interrupt = 1;
12610 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12611 } else {
12612 /* using MSI-X */
12613 dd->num_msix_entries = request;
12614 dd->msix_entries = entries;
12615
12616 if (request != total) {
12617 /* using MSI-X, with reduced interrupts */
12618 dd_dev_err(
12619 dd,
12620 "cannot handle reduced interrupt case, want %u, got %u\n",
12621 total, request);
12622 ret = -EINVAL;
12623 goto fail;
12624 }
12625 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12626 }
12627
12628 /* mask all interrupts */
12629 set_intr_state(dd, 0);
12630 /* clear all pending interrupts */
12631 clear_all_interrupts(dd);
12632
12633 /* reset general handler mask, chip MSI-X mappings */
12634 reset_interrupts(dd);
12635
12636 if (single_interrupt)
12637 ret = request_intx_irq(dd);
12638 else
12639 ret = request_msix_irqs(dd);
12640 if (ret)
12641 goto fail;
12642
12643 return 0;
12644
12645fail:
12646 clean_up_interrupts(dd);
12647 return ret;
12648}
12649
12650/*
12651 * Set up context values in dd. Sets:
12652 *
12653 * num_rcv_contexts - number of contexts being used
12654 * n_krcv_queues - number of kernel contexts
12655 * first_user_ctxt - first non-kernel context in array of contexts
12656 * freectxts - number of free user contexts
12657 * num_send_contexts - number of PIO send contexts being used
12658 */
12659static int set_up_context_variables(struct hfi1_devdata *dd)
12660{
12661 int num_kernel_contexts;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012662 int total_contexts;
12663 int ret;
12664 unsigned ngroups;
12665
12666 /*
12667 * Kernel contexts: (to be fixed later):
12668 * - min or 2 or 1 context/numa
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050012669 * - Context 0 - control context (VL15/multicast/error)
12670 * - Context 1 - default context
Mike Marciniszyn77241052015-07-30 15:17:43 -040012671 */
12672 if (n_krcvqs)
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050012673 /*
12674 * Don't count context 0 in n_krcvqs since
12675 * is isn't used for normal verbs traffic.
12676 *
12677 * krcvqs will reflect number of kernel
12678 * receive contexts above 0.
12679 */
12680 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS - 1;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012681 else
jubin.john@intel.com0edf80e2016-01-11 18:30:55 -050012682 num_kernel_contexts = num_online_nodes() + 1;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012683 num_kernel_contexts =
12684 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
12685 /*
12686 * Every kernel receive context needs an ACK send context.
12687 * one send context is allocated for each VL{0-7} and VL15
12688 */
12689 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12690 dd_dev_err(dd,
12691 "Reducing # kernel rcv contexts to: %d, from %d\n",
12692 (int)(dd->chip_send_contexts - num_vls - 1),
12693 (int)num_kernel_contexts);
12694 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12695 }
12696 /*
12697 * User contexts: (to be fixed later)
Sebastian Sanchez2ce6bf22015-12-11 08:44:48 -050012698 * - default to 1 user context per CPU if num_user_contexts is
12699 * negative
Mike Marciniszyn77241052015-07-30 15:17:43 -040012700 */
Sebastian Sanchez2ce6bf22015-12-11 08:44:48 -050012701 if (num_user_contexts < 0)
Mike Marciniszyn77241052015-07-30 15:17:43 -040012702 num_user_contexts = num_online_cpus();
12703
12704 total_contexts = num_kernel_contexts + num_user_contexts;
12705
12706 /*
12707 * Adjust the counts given a global max.
12708 */
12709 if (total_contexts > dd->chip_rcv_contexts) {
12710 dd_dev_err(dd,
12711 "Reducing # user receive contexts to: %d, from %d\n",
12712 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12713 (int)num_user_contexts);
12714 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12715 /* recalculate */
12716 total_contexts = num_kernel_contexts + num_user_contexts;
12717 }
12718
12719 /* the first N are kernel contexts, the rest are user contexts */
12720 dd->num_rcv_contexts = total_contexts;
12721 dd->n_krcv_queues = num_kernel_contexts;
12722 dd->first_user_ctxt = num_kernel_contexts;
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -080012723 dd->num_user_contexts = num_user_contexts;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012724 dd->freectxts = num_user_contexts;
12725 dd_dev_info(dd,
12726 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12727 (int)dd->chip_rcv_contexts,
12728 (int)dd->num_rcv_contexts,
12729 (int)dd->n_krcv_queues,
12730 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
12731
12732 /*
12733 * Receive array allocation:
12734 * All RcvArray entries are divided into groups of 8. This
12735 * is required by the hardware and will speed up writes to
12736 * consecutive entries by using write-combining of the entire
12737 * cacheline.
12738 *
12739 * The number of groups are evenly divided among all contexts.
12740 * any left over groups will be given to the first N user
12741 * contexts.
12742 */
12743 dd->rcv_entries.group_size = RCV_INCREMENT;
12744 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12745 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12746 dd->rcv_entries.nctxt_extra = ngroups -
12747 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12748 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12749 dd->rcv_entries.ngroups,
12750 dd->rcv_entries.nctxt_extra);
12751 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12752 MAX_EAGER_ENTRIES * 2) {
12753 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12754 dd->rcv_entries.group_size;
12755 dd_dev_info(dd,
12756 "RcvArray group count too high, change to %u\n",
12757 dd->rcv_entries.ngroups);
12758 dd->rcv_entries.nctxt_extra = 0;
12759 }
12760 /*
12761 * PIO send contexts
12762 */
12763 ret = init_sc_pools_and_sizes(dd);
12764 if (ret >= 0) { /* success */
12765 dd->num_send_contexts = ret;
12766 dd_dev_info(
12767 dd,
12768 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
12769 dd->chip_send_contexts,
12770 dd->num_send_contexts,
12771 dd->sc_sizes[SC_KERNEL].count,
12772 dd->sc_sizes[SC_ACK].count,
12773 dd->sc_sizes[SC_USER].count);
12774 ret = 0; /* success */
12775 }
12776
12777 return ret;
12778}
12779
12780/*
12781 * Set the device/port partition key table. The MAD code
12782 * will ensure that, at least, the partial management
12783 * partition key is present in the table.
12784 */
12785static void set_partition_keys(struct hfi1_pportdata *ppd)
12786{
12787 struct hfi1_devdata *dd = ppd->dd;
12788 u64 reg = 0;
12789 int i;
12790
12791 dd_dev_info(dd, "Setting partition keys\n");
12792 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
12793 reg |= (ppd->pkeys[i] &
12794 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
12795 ((i % 4) *
12796 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
12797 /* Each register holds 4 PKey values. */
12798 if ((i % 4) == 3) {
12799 write_csr(dd, RCV_PARTITION_KEY +
12800 ((i - 3) * 2), reg);
12801 reg = 0;
12802 }
12803 }
12804
12805 /* Always enable HW pkeys check when pkeys table is set */
12806 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
12807}
12808
12809/*
12810 * These CSRs and memories are uninitialized on reset and must be
12811 * written before reading to set the ECC/parity bits.
12812 *
12813 * NOTE: All user context CSRs that are not mmaped write-only
12814 * (e.g. the TID flows) must be initialized even if the driver never
12815 * reads them.
12816 */
12817static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
12818{
12819 int i, j;
12820
12821 /* CceIntMap */
12822 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
Jubin John8638b772016-02-14 20:19:24 -080012823 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012824
12825 /* SendCtxtCreditReturnAddr */
12826 for (i = 0; i < dd->chip_send_contexts; i++)
12827 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12828
12829 /* PIO Send buffers */
12830 /* SDMA Send buffers */
12831 /* These are not normally read, and (presently) have no method
12832 to be read, so are not pre-initialized */
12833
12834 /* RcvHdrAddr */
12835 /* RcvHdrTailAddr */
12836 /* RcvTidFlowTable */
12837 for (i = 0; i < dd->chip_rcv_contexts; i++) {
12838 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
12839 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
12840 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
Jubin John8638b772016-02-14 20:19:24 -080012841 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012842 }
12843
12844 /* RcvArray */
12845 for (i = 0; i < dd->chip_rcv_array_count; i++)
Jubin John8638b772016-02-14 20:19:24 -080012846 write_csr(dd, RCV_ARRAY + (8 * i),
Mike Marciniszyn77241052015-07-30 15:17:43 -040012847 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
12848
12849 /* RcvQPMapTable */
12850 for (i = 0; i < 32; i++)
12851 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
12852}
12853
12854/*
12855 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
12856 */
12857static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
12858 u64 ctrl_bits)
12859{
12860 unsigned long timeout;
12861 u64 reg;
12862
12863 /* is the condition present? */
12864 reg = read_csr(dd, CCE_STATUS);
12865 if ((reg & status_bits) == 0)
12866 return;
12867
12868 /* clear the condition */
12869 write_csr(dd, CCE_CTRL, ctrl_bits);
12870
12871 /* wait for the condition to clear */
12872 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
12873 while (1) {
12874 reg = read_csr(dd, CCE_STATUS);
12875 if ((reg & status_bits) == 0)
12876 return;
12877 if (time_after(jiffies, timeout)) {
12878 dd_dev_err(dd,
12879 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
12880 status_bits, reg & status_bits);
12881 return;
12882 }
12883 udelay(1);
12884 }
12885}
12886
12887/* set CCE CSRs to chip reset defaults */
12888static void reset_cce_csrs(struct hfi1_devdata *dd)
12889{
12890 int i;
12891
12892 /* CCE_REVISION read-only */
12893 /* CCE_REVISION2 read-only */
12894 /* CCE_CTRL - bits clear automatically */
12895 /* CCE_STATUS read-only, use CceCtrl to clear */
12896 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
12897 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
12898 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
12899 for (i = 0; i < CCE_NUM_SCRATCH; i++)
12900 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
12901 /* CCE_ERR_STATUS read-only */
12902 write_csr(dd, CCE_ERR_MASK, 0);
12903 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
12904 /* CCE_ERR_FORCE leave alone */
12905 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
12906 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
12907 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
12908 /* CCE_PCIE_CTRL leave alone */
12909 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
12910 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
12911 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
12912 CCE_MSIX_TABLE_UPPER_RESETCSR);
12913 }
12914 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
12915 /* CCE_MSIX_PBA read-only */
12916 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
12917 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
12918 }
12919 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12920 write_csr(dd, CCE_INT_MAP, 0);
12921 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12922 /* CCE_INT_STATUS read-only */
12923 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
12924 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
12925 /* CCE_INT_FORCE leave alone */
12926 /* CCE_INT_BLOCKED read-only */
12927 }
12928 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
12929 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
12930}
12931
12932/* set ASIC CSRs to chip reset defaults */
12933static void reset_asic_csrs(struct hfi1_devdata *dd)
12934{
Mike Marciniszyn77241052015-07-30 15:17:43 -040012935 int i;
12936
12937 /*
12938 * If the HFIs are shared between separate nodes or VMs,
12939 * then more will need to be done here. One idea is a module
12940 * parameter that returns early, letting the first power-on or
12941 * a known first load do the reset and blocking all others.
12942 */
12943
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040012944 if (!(dd->flags & HFI1_DO_INIT_ASIC))
12945 return;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012946
12947 if (dd->icode != ICODE_FPGA_EMULATION) {
12948 /* emulation does not have an SBus - leave these alone */
12949 /*
12950 * All writes to ASIC_CFG_SBUS_REQUEST do something.
12951 * Notes:
12952 * o The reset is not zero if aimed at the core. See the
12953 * SBus documentation for details.
12954 * o If the SBus firmware has been updated (e.g. by the BIOS),
12955 * will the reset revert that?
12956 */
12957 /* ASIC_CFG_SBUS_REQUEST leave alone */
12958 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
12959 }
12960 /* ASIC_SBUS_RESULT read-only */
12961 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
12962 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
12963 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
12964 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040012965
12966 /* We might want to retain this state across FLR if we ever use it */
Mike Marciniszyn77241052015-07-30 15:17:43 -040012967 write_csr(dd, ASIC_CFG_DRV_STR, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040012968
Jareer Abdel-Qader4ef98982015-11-06 20:07:00 -050012969 /* ASIC_CFG_THERM_POLL_EN leave alone */
Mike Marciniszyn77241052015-07-30 15:17:43 -040012970 /* ASIC_STS_THERM read-only */
12971 /* ASIC_CFG_RESET leave alone */
12972
12973 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
12974 /* ASIC_PCIE_SD_HOST_STATUS read-only */
12975 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
12976 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
12977 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
12978 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
12979 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
12980 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
12981 for (i = 0; i < 16; i++)
12982 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
12983
12984 /* ASIC_GPIO_IN read-only */
12985 write_csr(dd, ASIC_GPIO_OE, 0);
12986 write_csr(dd, ASIC_GPIO_INVERT, 0);
12987 write_csr(dd, ASIC_GPIO_OUT, 0);
12988 write_csr(dd, ASIC_GPIO_MASK, 0);
12989 /* ASIC_GPIO_STATUS read-only */
12990 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
12991 /* ASIC_GPIO_FORCE leave alone */
12992
12993 /* ASIC_QSFP1_IN read-only */
12994 write_csr(dd, ASIC_QSFP1_OE, 0);
12995 write_csr(dd, ASIC_QSFP1_INVERT, 0);
12996 write_csr(dd, ASIC_QSFP1_OUT, 0);
12997 write_csr(dd, ASIC_QSFP1_MASK, 0);
12998 /* ASIC_QSFP1_STATUS read-only */
12999 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
13000 /* ASIC_QSFP1_FORCE leave alone */
13001
13002 /* ASIC_QSFP2_IN read-only */
13003 write_csr(dd, ASIC_QSFP2_OE, 0);
13004 write_csr(dd, ASIC_QSFP2_INVERT, 0);
13005 write_csr(dd, ASIC_QSFP2_OUT, 0);
13006 write_csr(dd, ASIC_QSFP2_MASK, 0);
13007 /* ASIC_QSFP2_STATUS read-only */
13008 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
13009 /* ASIC_QSFP2_FORCE leave alone */
13010
13011 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
13012 /* this also writes a NOP command, clearing paging mode */
13013 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
13014 write_csr(dd, ASIC_EEP_DATA, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013015}
13016
13017/* set MISC CSRs to chip reset defaults */
13018static void reset_misc_csrs(struct hfi1_devdata *dd)
13019{
13020 int i;
13021
13022 for (i = 0; i < 32; i++) {
13023 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13024 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13025 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13026 }
13027 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13028 only be written 128-byte chunks */
13029 /* init RSA engine to clear lingering errors */
13030 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13031 write_csr(dd, MISC_CFG_RSA_MU, 0);
13032 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13033 /* MISC_STS_8051_DIGEST read-only */
13034 /* MISC_STS_SBM_DIGEST read-only */
13035 /* MISC_STS_PCIE_DIGEST read-only */
13036 /* MISC_STS_FAB_DIGEST read-only */
13037 /* MISC_ERR_STATUS read-only */
13038 write_csr(dd, MISC_ERR_MASK, 0);
13039 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13040 /* MISC_ERR_FORCE leave alone */
13041}
13042
13043/* set TXE CSRs to chip reset defaults */
13044static void reset_txe_csrs(struct hfi1_devdata *dd)
13045{
13046 int i;
13047
13048 /*
13049 * TXE Kernel CSRs
13050 */
13051 write_csr(dd, SEND_CTRL, 0);
13052 __cm_reset(dd, 0); /* reset CM internal state */
13053 /* SEND_CONTEXTS read-only */
13054 /* SEND_DMA_ENGINES read-only */
13055 /* SEND_PIO_MEM_SIZE read-only */
13056 /* SEND_DMA_MEM_SIZE read-only */
13057 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13058 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13059 /* SEND_PIO_ERR_STATUS read-only */
13060 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13061 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13062 /* SEND_PIO_ERR_FORCE leave alone */
13063 /* SEND_DMA_ERR_STATUS read-only */
13064 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13065 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13066 /* SEND_DMA_ERR_FORCE leave alone */
13067 /* SEND_EGRESS_ERR_STATUS read-only */
13068 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13069 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13070 /* SEND_EGRESS_ERR_FORCE leave alone */
13071 write_csr(dd, SEND_BTH_QP, 0);
13072 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13073 write_csr(dd, SEND_SC2VLT0, 0);
13074 write_csr(dd, SEND_SC2VLT1, 0);
13075 write_csr(dd, SEND_SC2VLT2, 0);
13076 write_csr(dd, SEND_SC2VLT3, 0);
13077 write_csr(dd, SEND_LEN_CHECK0, 0);
13078 write_csr(dd, SEND_LEN_CHECK1, 0);
13079 /* SEND_ERR_STATUS read-only */
13080 write_csr(dd, SEND_ERR_MASK, 0);
13081 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13082 /* SEND_ERR_FORCE read-only */
13083 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
Jubin John8638b772016-02-14 20:19:24 -080013084 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013085 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
Jubin John8638b772016-02-14 20:19:24 -080013086 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13087 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13088 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013089 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
Jubin John8638b772016-02-14 20:19:24 -080013090 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013091 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
Jubin John8638b772016-02-14 20:19:24 -080013092 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013093 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13094 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
13095 SEND_CM_GLOBAL_CREDIT_RESETCSR);
13096 /* SEND_CM_CREDIT_USED_STATUS read-only */
13097 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13098 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13099 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13100 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13101 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13102 for (i = 0; i < TXE_NUM_DATA_VL; i++)
Jubin John8638b772016-02-14 20:19:24 -080013103 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013104 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13105 /* SEND_CM_CREDIT_USED_VL read-only */
13106 /* SEND_CM_CREDIT_USED_VL15 read-only */
13107 /* SEND_EGRESS_CTXT_STATUS read-only */
13108 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13109 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13110 /* SEND_EGRESS_ERR_INFO read-only */
13111 /* SEND_EGRESS_ERR_SOURCE read-only */
13112
13113 /*
13114 * TXE Per-Context CSRs
13115 */
13116 for (i = 0; i < dd->chip_send_contexts; i++) {
13117 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13118 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13119 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13120 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13121 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13122 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13123 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13124 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13125 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13126 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13127 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13128 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13129 }
13130
13131 /*
13132 * TXE Per-SDMA CSRs
13133 */
13134 for (i = 0; i < dd->chip_sdma_engines; i++) {
13135 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13136 /* SEND_DMA_STATUS read-only */
13137 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13138 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13139 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13140 /* SEND_DMA_HEAD read-only */
13141 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13142 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13143 /* SEND_DMA_IDLE_CNT read-only */
13144 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13145 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13146 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13147 /* SEND_DMA_ENG_ERR_STATUS read-only */
13148 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13149 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13150 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13151 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13152 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13153 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13154 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13155 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13156 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13157 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13158 }
13159}
13160
13161/*
13162 * Expect on entry:
13163 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13164 */
13165static void init_rbufs(struct hfi1_devdata *dd)
13166{
13167 u64 reg;
13168 int count;
13169
13170 /*
13171 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13172 * clear.
13173 */
13174 count = 0;
13175 while (1) {
13176 reg = read_csr(dd, RCV_STATUS);
13177 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13178 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13179 break;
13180 /*
13181 * Give up after 1ms - maximum wait time.
13182 *
13183 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
13184 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13185 * 148 KB / (66% * 250MB/s) = 920us
13186 */
13187 if (count++ > 500) {
13188 dd_dev_err(dd,
13189 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13190 __func__, reg);
13191 break;
13192 }
13193 udelay(2); /* do not busy-wait the CSR */
13194 }
13195
13196 /* start the init - expect RcvCtrl to be 0 */
13197 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13198
13199 /*
13200 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13201 * period after the write before RcvStatus.RxRbufInitDone is valid.
13202 * The delay in the first run through the loop below is sufficient and
13203 * required before the first read of RcvStatus.RxRbufInintDone.
13204 */
13205 read_csr(dd, RCV_CTRL);
13206
13207 /* wait for the init to finish */
13208 count = 0;
13209 while (1) {
13210 /* delay is required first time through - see above */
13211 udelay(2); /* do not busy-wait the CSR */
13212 reg = read_csr(dd, RCV_STATUS);
13213 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13214 break;
13215
13216 /* give up after 100us - slowest possible at 33MHz is 73us */
13217 if (count++ > 50) {
13218 dd_dev_err(dd,
13219 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13220 __func__);
13221 break;
13222 }
13223 }
13224}
13225
13226/* set RXE CSRs to chip reset defaults */
13227static void reset_rxe_csrs(struct hfi1_devdata *dd)
13228{
13229 int i, j;
13230
13231 /*
13232 * RXE Kernel CSRs
13233 */
13234 write_csr(dd, RCV_CTRL, 0);
13235 init_rbufs(dd);
13236 /* RCV_STATUS read-only */
13237 /* RCV_CONTEXTS read-only */
13238 /* RCV_ARRAY_CNT read-only */
13239 /* RCV_BUF_SIZE read-only */
13240 write_csr(dd, RCV_BTH_QP, 0);
13241 write_csr(dd, RCV_MULTICAST, 0);
13242 write_csr(dd, RCV_BYPASS, 0);
13243 write_csr(dd, RCV_VL15, 0);
13244 /* this is a clear-down */
13245 write_csr(dd, RCV_ERR_INFO,
13246 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13247 /* RCV_ERR_STATUS read-only */
13248 write_csr(dd, RCV_ERR_MASK, 0);
13249 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13250 /* RCV_ERR_FORCE leave alone */
13251 for (i = 0; i < 32; i++)
13252 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13253 for (i = 0; i < 4; i++)
13254 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13255 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13256 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13257 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13258 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13259 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13260 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13261 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13262 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13263 }
13264 for (i = 0; i < 32; i++)
13265 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13266
13267 /*
13268 * RXE Kernel and User Per-Context CSRs
13269 */
13270 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13271 /* kernel */
13272 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13273 /* RCV_CTXT_STATUS read-only */
13274 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13275 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13276 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13277 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13278 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13279 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13280 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13281 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13282 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13283 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13284
13285 /* user */
13286 /* RCV_HDR_TAIL read-only */
13287 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13288 /* RCV_EGR_INDEX_TAIL read-only */
13289 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13290 /* RCV_EGR_OFFSET_TAIL read-only */
13291 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13292 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
13293 0);
13294 }
13295 }
13296}
13297
13298/*
13299 * Set sc2vl tables.
13300 *
13301 * They power on to zeros, so to avoid send context errors
13302 * they need to be set:
13303 *
13304 * SC 0-7 -> VL 0-7 (respectively)
13305 * SC 15 -> VL 15
13306 * otherwise
13307 * -> VL 0
13308 */
13309static void init_sc2vl_tables(struct hfi1_devdata *dd)
13310{
13311 int i;
13312 /* init per architecture spec, constrained by hardware capability */
13313
13314 /* HFI maps sent packets */
13315 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13316 0,
13317 0, 0, 1, 1,
13318 2, 2, 3, 3,
13319 4, 4, 5, 5,
13320 6, 6, 7, 7));
13321 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13322 1,
13323 8, 0, 9, 0,
13324 10, 0, 11, 0,
13325 12, 0, 13, 0,
13326 14, 0, 15, 15));
13327 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13328 2,
13329 16, 0, 17, 0,
13330 18, 0, 19, 0,
13331 20, 0, 21, 0,
13332 22, 0, 23, 0));
13333 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13334 3,
13335 24, 0, 25, 0,
13336 26, 0, 27, 0,
13337 28, 0, 29, 0,
13338 30, 0, 31, 0));
13339
13340 /* DC maps received packets */
13341 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13342 15_0,
13343 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13344 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13345 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13346 31_16,
13347 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13348 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13349
13350 /* initialize the cached sc2vl values consistently with h/w */
13351 for (i = 0; i < 32; i++) {
13352 if (i < 8 || i == 15)
13353 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13354 else
13355 *((u8 *)(dd->sc2vl) + i) = 0;
13356 }
13357}
13358
13359/*
13360 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13361 * depend on the chip going through a power-on reset - a driver may be loaded
13362 * and unloaded many times.
13363 *
13364 * Do not write any CSR values to the chip in this routine - there may be
13365 * a reset following the (possible) FLR in this routine.
13366 *
13367 */
13368static void init_chip(struct hfi1_devdata *dd)
13369{
13370 int i;
13371
13372 /*
13373 * Put the HFI CSRs in a known state.
13374 * Combine this with a DC reset.
13375 *
13376 * Stop the device from doing anything while we do a
13377 * reset. We know there are no other active users of
13378 * the device since we are now in charge. Turn off
13379 * off all outbound and inbound traffic and make sure
13380 * the device does not generate any interrupts.
13381 */
13382
13383 /* disable send contexts and SDMA engines */
13384 write_csr(dd, SEND_CTRL, 0);
13385 for (i = 0; i < dd->chip_send_contexts; i++)
13386 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13387 for (i = 0; i < dd->chip_sdma_engines; i++)
13388 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13389 /* disable port (turn off RXE inbound traffic) and contexts */
13390 write_csr(dd, RCV_CTRL, 0);
13391 for (i = 0; i < dd->chip_rcv_contexts; i++)
13392 write_csr(dd, RCV_CTXT_CTRL, 0);
13393 /* mask all interrupt sources */
13394 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
Jubin John8638b772016-02-14 20:19:24 -080013395 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013396
13397 /*
13398 * DC Reset: do a full DC reset before the register clear.
13399 * A recommended length of time to hold is one CSR read,
13400 * so reread the CceDcCtrl. Then, hold the DC in reset
13401 * across the clear.
13402 */
13403 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
Jubin John50e5dcb2016-02-14 20:19:41 -080013404 (void)read_csr(dd, CCE_DC_CTRL);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013405
13406 if (use_flr) {
13407 /*
13408 * A FLR will reset the SPC core and part of the PCIe.
13409 * The parts that need to be restored have already been
13410 * saved.
13411 */
13412 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13413
13414 /* do the FLR, the DC reset will remain */
13415 hfi1_pcie_flr(dd);
13416
13417 /* restore command and BARs */
13418 restore_pci_variables(dd);
13419
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013420 if (is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013421 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13422 hfi1_pcie_flr(dd);
13423 restore_pci_variables(dd);
13424 }
13425
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040013426 reset_asic_csrs(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013427 } else {
13428 dd_dev_info(dd, "Resetting CSRs with writes\n");
13429 reset_cce_csrs(dd);
13430 reset_txe_csrs(dd);
13431 reset_rxe_csrs(dd);
13432 reset_asic_csrs(dd);
13433 reset_misc_csrs(dd);
13434 }
13435 /* clear the DC reset */
13436 write_csr(dd, CCE_DC_CTRL, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040013437
Mike Marciniszyn77241052015-07-30 15:17:43 -040013438 /* Set the LED off */
Sebastian Sanchez773d04512016-02-09 14:29:40 -080013439 setextled(dd, 0);
13440
Mike Marciniszyn77241052015-07-30 15:17:43 -040013441 /*
13442 * Clear the QSFP reset.
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013443 * An FLR enforces a 0 on all out pins. The driver does not touch
Mike Marciniszyn77241052015-07-30 15:17:43 -040013444 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013445 * anything plugged constantly in reset, if it pays attention
Mike Marciniszyn77241052015-07-30 15:17:43 -040013446 * to RESET_N.
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013447 * Prime examples of this are optical cables. Set all pins high.
Mike Marciniszyn77241052015-07-30 15:17:43 -040013448 * I2CCLK and I2CDAT will change per direction, and INT_N and
13449 * MODPRS_N are input only and their value is ignored.
13450 */
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013451 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13452 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013453}
13454
13455static void init_early_variables(struct hfi1_devdata *dd)
13456{
13457 int i;
13458
13459 /* assign link credit variables */
13460 dd->vau = CM_VAU;
13461 dd->link_credits = CM_GLOBAL_CREDITS;
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013462 if (is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -040013463 dd->link_credits--;
13464 dd->vcu = cu_to_vcu(hfi1_cu);
13465 /* enough room for 8 MAD packets plus header - 17K */
13466 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13467 if (dd->vl15_init > dd->link_credits)
13468 dd->vl15_init = dd->link_credits;
13469
13470 write_uninitialized_csrs_and_memories(dd);
13471
13472 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13473 for (i = 0; i < dd->num_pports; i++) {
13474 struct hfi1_pportdata *ppd = &dd->pport[i];
13475
13476 set_partition_keys(ppd);
13477 }
13478 init_sc2vl_tables(dd);
13479}
13480
13481static void init_kdeth_qp(struct hfi1_devdata *dd)
13482{
13483 /* user changed the KDETH_QP */
13484 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13485 /* out of range or illegal value */
13486 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13487 kdeth_qp = 0;
13488 }
13489 if (kdeth_qp == 0) /* not set, or failed range check */
13490 kdeth_qp = DEFAULT_KDETH_QP;
13491
13492 write_csr(dd, SEND_BTH_QP,
13493 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
13494 << SEND_BTH_QP_KDETH_QP_SHIFT);
13495
13496 write_csr(dd, RCV_BTH_QP,
13497 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
13498 << RCV_BTH_QP_KDETH_QP_SHIFT);
13499}
13500
13501/**
13502 * init_qpmap_table
13503 * @dd - device data
13504 * @first_ctxt - first context
13505 * @last_ctxt - first context
13506 *
13507 * This return sets the qpn mapping table that
13508 * is indexed by qpn[8:1].
13509 *
13510 * The routine will round robin the 256 settings
13511 * from first_ctxt to last_ctxt.
13512 *
13513 * The first/last looks ahead to having specialized
13514 * receive contexts for mgmt and bypass. Normal
13515 * verbs traffic will assumed to be on a range
13516 * of receive contexts.
13517 */
13518static void init_qpmap_table(struct hfi1_devdata *dd,
13519 u32 first_ctxt,
13520 u32 last_ctxt)
13521{
13522 u64 reg = 0;
13523 u64 regno = RCV_QP_MAP_TABLE;
13524 int i;
13525 u64 ctxt = first_ctxt;
13526
13527 for (i = 0; i < 256;) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013528 reg |= ctxt << (8 * (i % 8));
13529 i++;
13530 ctxt++;
13531 if (ctxt > last_ctxt)
13532 ctxt = first_ctxt;
13533 if (i % 8 == 0) {
13534 write_csr(dd, regno, reg);
13535 reg = 0;
13536 regno += 8;
13537 }
13538 }
13539 if (i % 8)
13540 write_csr(dd, regno, reg);
13541
13542 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13543 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13544}
13545
13546/**
13547 * init_qos - init RX qos
13548 * @dd - device data
13549 * @first_context
13550 *
13551 * This routine initializes Rule 0 and the
13552 * RSM map table to implement qos.
13553 *
13554 * If all of the limit tests succeed,
13555 * qos is applied based on the array
13556 * interpretation of krcvqs where
13557 * entry 0 is VL0.
13558 *
13559 * The number of vl bits (n) and the number of qpn
13560 * bits (m) are computed to feed both the RSM map table
13561 * and the single rule.
13562 *
13563 */
13564static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
13565{
13566 u8 max_by_vl = 0;
13567 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13568 u64 *rsmmap;
13569 u64 reg;
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013570 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
Mike Marciniszyn77241052015-07-30 15:17:43 -040013571
13572 /* validate */
13573 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13574 num_vls == 1 ||
13575 krcvqsset <= 1)
13576 goto bail;
13577 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
13578 if (krcvqs[i] > max_by_vl)
13579 max_by_vl = krcvqs[i];
13580 if (max_by_vl > 32)
13581 goto bail;
13582 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
13583 /* determine bits vl */
13584 n = ilog2(num_vls);
13585 /* determine bits for qpn */
13586 m = ilog2(qpns_per_vl);
13587 if ((m + n) > 7)
13588 goto bail;
13589 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
13590 goto bail;
13591 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
Easwar Hariharan859bcad2015-12-10 11:13:38 -050013592 if (!rsmmap)
13593 goto bail;
Mike Marciniszyn77241052015-07-30 15:17:43 -040013594 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
13595 /* init the local copy of the table */
13596 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
13597 unsigned tctxt;
13598
13599 for (qpn = 0, tctxt = ctxt;
13600 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13601 unsigned idx, regoff, regidx;
13602
13603 /* generate index <= 128 */
13604 idx = (qpn << n) ^ i;
13605 regoff = (idx % 8) * 8;
13606 regidx = idx / 8;
13607 reg = rsmmap[regidx];
13608 /* replace 0xff with context number */
13609 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13610 << regoff);
13611 reg |= (u64)(tctxt++) << regoff;
13612 rsmmap[regidx] = reg;
13613 if (tctxt == ctxt + krcvqs[i])
13614 tctxt = ctxt;
13615 }
13616 ctxt += krcvqs[i];
13617 }
13618 /* flush cached copies to chip */
13619 for (i = 0; i < NUM_MAP_REGS; i++)
13620 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
13621 /* add rule0 */
13622 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
13623 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
13624 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
13625 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13626 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
13627 LRH_BTH_MATCH_OFFSET
13628 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13629 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13630 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13631 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13632 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13633 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13634 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
13635 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
13636 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
13637 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
13638 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
13639 /* Enable RSM */
13640 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13641 kfree(rsmmap);
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050013642 /* map everything else to first context */
13643 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, MIN_KERNEL_KCTXTS - 1);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013644 dd->qos_shift = n + 1;
13645 return;
13646bail:
13647 dd->qos_shift = 1;
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050013648 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013649}
13650
13651static void init_rxe(struct hfi1_devdata *dd)
13652{
13653 /* enable all receive errors */
13654 write_csr(dd, RCV_ERR_MASK, ~0ull);
13655 /* setup QPN map table - start where VL15 context leaves off */
13656 init_qos(
13657 dd,
13658 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
13659 /*
13660 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13661 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13662 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
13663 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13664 * Max_PayLoad_Size set to its minimum of 128.
13665 *
13666 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13667 * (64 bytes). Max_Payload_Size is possibly modified upward in
13668 * tune_pcie_caps() which is called after this routine.
13669 */
13670}
13671
13672static void init_other(struct hfi1_devdata *dd)
13673{
13674 /* enable all CCE errors */
13675 write_csr(dd, CCE_ERR_MASK, ~0ull);
13676 /* enable *some* Misc errors */
13677 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13678 /* enable all DC errors, except LCB */
13679 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13680 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13681}
13682
13683/*
13684 * Fill out the given AU table using the given CU. A CU is defined in terms
13685 * AUs. The table is a an encoding: given the index, how many AUs does that
13686 * represent?
13687 *
13688 * NOTE: Assumes that the register layout is the same for the
13689 * local and remote tables.
13690 */
13691static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
13692 u32 csr0to3, u32 csr4to7)
13693{
13694 write_csr(dd, csr0to3,
13695 0ull <<
13696 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
13697 | 1ull <<
13698 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
13699 | 2ull * cu <<
13700 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
13701 | 4ull * cu <<
13702 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
13703 write_csr(dd, csr4to7,
13704 8ull * cu <<
13705 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
13706 | 16ull * cu <<
13707 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
13708 | 32ull * cu <<
13709 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
13710 | 64ull * cu <<
13711 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013712}
13713
13714static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13715{
13716 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
13717 SEND_CM_LOCAL_AU_TABLE4_TO7);
13718}
13719
13720void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13721{
13722 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
13723 SEND_CM_REMOTE_AU_TABLE4_TO7);
13724}
13725
13726static void init_txe(struct hfi1_devdata *dd)
13727{
13728 int i;
13729
13730 /* enable all PIO, SDMA, general, and Egress errors */
13731 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
13732 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
13733 write_csr(dd, SEND_ERR_MASK, ~0ull);
13734 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
13735
13736 /* enable all per-context and per-SDMA engine errors */
13737 for (i = 0; i < dd->chip_send_contexts; i++)
13738 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
13739 for (i = 0; i < dd->chip_sdma_engines; i++)
13740 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
13741
13742 /* set the local CU to AU mapping */
13743 assign_local_cm_au_table(dd, dd->vcu);
13744
13745 /*
13746 * Set reasonable default for Credit Return Timer
13747 * Don't set on Simulator - causes it to choke.
13748 */
13749 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
13750 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
13751}
13752
13753int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
13754{
13755 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13756 unsigned sctxt;
13757 int ret = 0;
13758 u64 reg;
13759
13760 if (!rcd || !rcd->sc) {
13761 ret = -EINVAL;
13762 goto done;
13763 }
13764 sctxt = rcd->sc->hw_context;
13765 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
13766 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
13767 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
13768 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
13769 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
13770 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
13771 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
13772 /*
13773 * Enable send-side J_KEY integrity check, unless this is A0 h/w
Mike Marciniszyn77241052015-07-30 15:17:43 -040013774 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013775 if (!is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013776 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13777 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13778 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13779 }
13780
13781 /* Enable J_KEY check on receive context. */
13782 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
13783 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
13784 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
13785 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
13786done:
13787 return ret;
13788}
13789
13790int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
13791{
13792 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13793 unsigned sctxt;
13794 int ret = 0;
13795 u64 reg;
13796
13797 if (!rcd || !rcd->sc) {
13798 ret = -EINVAL;
13799 goto done;
13800 }
13801 sctxt = rcd->sc->hw_context;
13802 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
13803 /*
13804 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
13805 * This check would not have been enabled for A0 h/w, see
13806 * set_ctxt_jkey().
13807 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013808 if (!is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013809 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13810 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13811 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13812 }
13813 /* Turn off the J_KEY on the receive side */
13814 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
13815done:
13816 return ret;
13817}
13818
13819int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
13820{
13821 struct hfi1_ctxtdata *rcd;
13822 unsigned sctxt;
13823 int ret = 0;
13824 u64 reg;
13825
13826 if (ctxt < dd->num_rcv_contexts)
13827 rcd = dd->rcd[ctxt];
13828 else {
13829 ret = -EINVAL;
13830 goto done;
13831 }
13832 if (!rcd || !rcd->sc) {
13833 ret = -EINVAL;
13834 goto done;
13835 }
13836 sctxt = rcd->sc->hw_context;
13837 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
13838 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
13839 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
13840 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13841 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13842 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13843done:
13844 return ret;
13845}
13846
13847int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
13848{
13849 struct hfi1_ctxtdata *rcd;
13850 unsigned sctxt;
13851 int ret = 0;
13852 u64 reg;
13853
13854 if (ctxt < dd->num_rcv_contexts)
13855 rcd = dd->rcd[ctxt];
13856 else {
13857 ret = -EINVAL;
13858 goto done;
13859 }
13860 if (!rcd || !rcd->sc) {
13861 ret = -EINVAL;
13862 goto done;
13863 }
13864 sctxt = rcd->sc->hw_context;
13865 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13866 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13867 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13868 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13869done:
13870 return ret;
13871}
13872
13873/*
13874 * Start doing the clean up the the chip. Our clean up happens in multiple
13875 * stages and this is just the first.
13876 */
13877void hfi1_start_cleanup(struct hfi1_devdata *dd)
13878{
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -080013879 aspm_exit(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013880 free_cntrs(dd);
13881 free_rcverr(dd);
13882 clean_up_interrupts(dd);
13883}
13884
13885#define HFI_BASE_GUID(dev) \
13886 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
13887
13888/*
13889 * Certain chip functions need to be initialized only once per asic
13890 * instead of per-device. This function finds the peer device and
13891 * checks whether that chip initialization needs to be done by this
13892 * device.
13893 */
13894static void asic_should_init(struct hfi1_devdata *dd)
13895{
13896 unsigned long flags;
13897 struct hfi1_devdata *tmp, *peer = NULL;
13898
13899 spin_lock_irqsave(&hfi1_devs_lock, flags);
13900 /* Find our peer device */
13901 list_for_each_entry(tmp, &hfi1_dev_list, list) {
13902 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
13903 dd->unit != tmp->unit) {
13904 peer = tmp;
13905 break;
13906 }
13907 }
13908
13909 /*
13910 * "Claim" the ASIC for initialization if it hasn't been
13911 " "claimed" yet.
13912 */
13913 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
13914 dd->flags |= HFI1_DO_INIT_ASIC;
13915 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
13916}
13917
Dean Luick5d9157a2015-11-16 21:59:34 -050013918/*
13919 * Set dd->boardname. Use a generic name if a name is not returned from
13920 * EFI variable space.
13921 *
13922 * Return 0 on success, -ENOMEM if space could not be allocated.
13923 */
13924static int obtain_boardname(struct hfi1_devdata *dd)
13925{
13926 /* generic board description */
13927 const char generic[] =
13928 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
13929 unsigned long size;
13930 int ret;
13931
13932 ret = read_hfi1_efi_var(dd, "description", &size,
13933 (void **)&dd->boardname);
13934 if (ret) {
Dean Luick845f8762016-02-03 14:31:57 -080013935 dd_dev_info(dd, "Board description not found\n");
Dean Luick5d9157a2015-11-16 21:59:34 -050013936 /* use generic description */
13937 dd->boardname = kstrdup(generic, GFP_KERNEL);
13938 if (!dd->boardname)
13939 return -ENOMEM;
13940 }
13941 return 0;
13942}
13943
Mike Marciniszyn77241052015-07-30 15:17:43 -040013944/**
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040013945 * Allocate and initialize the device structure for the hfi.
Mike Marciniszyn77241052015-07-30 15:17:43 -040013946 * @dev: the pci_dev for hfi1_ib device
13947 * @ent: pci_device_id struct for this dev
13948 *
13949 * Also allocates, initializes, and returns the devdata struct for this
13950 * device instance
13951 *
13952 * This is global, and is called directly at init to set up the
13953 * chip-specific function pointers for later use.
13954 */
13955struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
13956 const struct pci_device_id *ent)
13957{
13958 struct hfi1_devdata *dd;
13959 struct hfi1_pportdata *ppd;
13960 u64 reg;
13961 int i, ret;
13962 static const char * const inames[] = { /* implementation names */
13963 "RTL silicon",
13964 "RTL VCS simulation",
13965 "RTL FPGA emulation",
13966 "Functional simulator"
13967 };
13968
13969 dd = hfi1_alloc_devdata(pdev,
13970 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
13971 if (IS_ERR(dd))
13972 goto bail;
13973 ppd = dd->pport;
13974 for (i = 0; i < dd->num_pports; i++, ppd++) {
13975 int vl;
13976 /* init common fields */
13977 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
13978 /* DC supports 4 link widths */
13979 ppd->link_width_supported =
13980 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
13981 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
13982 ppd->link_width_downgrade_supported =
13983 ppd->link_width_supported;
13984 /* start out enabling only 4X */
13985 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
13986 ppd->link_width_downgrade_enabled =
13987 ppd->link_width_downgrade_supported;
13988 /* link width active is 0 when link is down */
13989 /* link width downgrade active is 0 when link is down */
13990
Jubin Johnd0d236e2016-02-14 20:20:15 -080013991 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
13992 num_vls > HFI1_MAX_VLS_SUPPORTED) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013993 hfi1_early_err(&pdev->dev,
13994 "Invalid num_vls %u, using %u VLs\n",
13995 num_vls, HFI1_MAX_VLS_SUPPORTED);
13996 num_vls = HFI1_MAX_VLS_SUPPORTED;
13997 }
13998 ppd->vls_supported = num_vls;
13999 ppd->vls_operational = ppd->vls_supported;
Mike Marciniszyn8a4d3442016-02-14 12:46:01 -080014000 ppd->actual_vls_operational = ppd->vls_supported;
Mike Marciniszyn77241052015-07-30 15:17:43 -040014001 /* Set the default MTU. */
14002 for (vl = 0; vl < num_vls; vl++)
14003 dd->vld[vl].mtu = hfi1_max_mtu;
14004 dd->vld[15].mtu = MAX_MAD_PACKET;
14005 /*
14006 * Set the initial values to reasonable default, will be set
14007 * for real when link is up.
14008 */
14009 ppd->lstate = IB_PORT_DOWN;
14010 ppd->overrun_threshold = 0x4;
14011 ppd->phy_error_threshold = 0xf;
14012 ppd->port_crc_mode_enabled = link_crc_mask;
14013 /* initialize supported LTP CRC mode */
14014 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14015 /* initialize enabled LTP CRC mode */
14016 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14017 /* start in offline */
14018 ppd->host_link_state = HLS_DN_OFFLINE;
14019 init_vl_arb_caches(ppd);
Dean Luickf45c8dc2016-02-03 14:35:31 -080014020 ppd->last_pstate = 0xff; /* invalid value */
Mike Marciniszyn77241052015-07-30 15:17:43 -040014021 }
14022
14023 dd->link_default = HLS_DN_POLL;
14024
14025 /*
14026 * Do remaining PCIe setup and save PCIe values in dd.
14027 * Any error printing is already done by the init code.
14028 * On return, we have the chip mapped.
14029 */
14030 ret = hfi1_pcie_ddinit(dd, pdev, ent);
14031 if (ret < 0)
14032 goto bail_free;
14033
14034 /* verify that reads actually work, save revision for reset check */
14035 dd->revision = read_csr(dd, CCE_REVISION);
14036 if (dd->revision == ~(u64)0) {
14037 dd_dev_err(dd, "cannot read chip CSRs\n");
14038 ret = -EINVAL;
14039 goto bail_cleanup;
14040 }
14041 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14042 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14043 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14044 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14045
14046 /* obtain the hardware ID - NOT related to unit, which is a
14047 software enumeration */
14048 reg = read_csr(dd, CCE_REVISION2);
14049 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14050 & CCE_REVISION2_HFI_ID_MASK;
14051 /* the variable size will remove unwanted bits */
14052 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14053 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14054 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14055 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
14056 (int)dd->irev);
14057
14058 /* speeds the hardware can support */
14059 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14060 /* speeds allowed to run at */
14061 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14062 /* give a reasonable active value, will be set on link up */
14063 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14064
14065 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14066 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14067 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14068 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14069 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14070 /* fix up link widths for emulation _p */
14071 ppd = dd->pport;
14072 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14073 ppd->link_width_supported =
14074 ppd->link_width_enabled =
14075 ppd->link_width_downgrade_supported =
14076 ppd->link_width_downgrade_enabled =
14077 OPA_LINK_WIDTH_1X;
14078 }
14079 /* insure num_vls isn't larger than number of sdma engines */
14080 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14081 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
Dean Luick11a59092015-12-01 15:38:18 -050014082 num_vls, dd->chip_sdma_engines);
14083 num_vls = dd->chip_sdma_engines;
14084 ppd->vls_supported = dd->chip_sdma_engines;
Mike Marciniszyn8a4d3442016-02-14 12:46:01 -080014085 ppd->vls_operational = ppd->vls_supported;
Mike Marciniszyn77241052015-07-30 15:17:43 -040014086 }
14087
14088 /*
14089 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14090 * Limit the max if larger than the field holds. If timeout is
14091 * non-zero, then the calculated field will be at least 1.
14092 *
14093 * Must be after icode is set up - the cclock rate depends
14094 * on knowing the hardware being used.
14095 */
14096 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14097 if (dd->rcv_intr_timeout_csr >
14098 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14099 dd->rcv_intr_timeout_csr =
14100 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14101 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14102 dd->rcv_intr_timeout_csr = 1;
14103
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040014104 /* needs to be done before we look for the peer device */
14105 read_guid(dd);
14106
14107 /* should this device init the ASIC block? */
14108 asic_should_init(dd);
14109
Mike Marciniszyn77241052015-07-30 15:17:43 -040014110 /* obtain chip sizes, reset chip CSRs */
14111 init_chip(dd);
14112
14113 /* read in the PCIe link speed information */
14114 ret = pcie_speeds(dd);
14115 if (ret)
14116 goto bail_cleanup;
14117
Easwar Hariharanc3838b32016-02-09 14:29:13 -080014118 /* Needs to be called before hfi1_firmware_init */
14119 get_platform_config(dd);
14120
Mike Marciniszyn77241052015-07-30 15:17:43 -040014121 /* read in firmware */
14122 ret = hfi1_firmware_init(dd);
14123 if (ret)
14124 goto bail_cleanup;
14125
14126 /*
14127 * In general, the PCIe Gen3 transition must occur after the
14128 * chip has been idled (so it won't initiate any PCIe transactions
14129 * e.g. an interrupt) and before the driver changes any registers
14130 * (the transition will reset the registers).
14131 *
14132 * In particular, place this call after:
14133 * - init_chip() - the chip will not initiate any PCIe transactions
14134 * - pcie_speeds() - reads the current link speed
14135 * - hfi1_firmware_init() - the needed firmware is ready to be
14136 * downloaded
14137 */
14138 ret = do_pcie_gen3_transition(dd);
14139 if (ret)
14140 goto bail_cleanup;
14141
14142 /* start setting dd values and adjusting CSRs */
14143 init_early_variables(dd);
14144
14145 parse_platform_config(dd);
14146
Dean Luick5d9157a2015-11-16 21:59:34 -050014147 ret = obtain_boardname(dd);
14148 if (ret)
Mike Marciniszyn77241052015-07-30 15:17:43 -040014149 goto bail_cleanup;
Mike Marciniszyn77241052015-07-30 15:17:43 -040014150
14151 snprintf(dd->boardversion, BOARD_VERS_MAX,
Dean Luick5d9157a2015-11-16 21:59:34 -050014152 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
Mike Marciniszyn77241052015-07-30 15:17:43 -040014153 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
Mike Marciniszyn77241052015-07-30 15:17:43 -040014154 (u32)dd->majrev,
14155 (u32)dd->minrev,
14156 (dd->revision >> CCE_REVISION_SW_SHIFT)
14157 & CCE_REVISION_SW_MASK);
14158
14159 ret = set_up_context_variables(dd);
14160 if (ret)
14161 goto bail_cleanup;
14162
14163 /* set initial RXE CSRs */
14164 init_rxe(dd);
14165 /* set initial TXE CSRs */
14166 init_txe(dd);
14167 /* set initial non-RXE, non-TXE CSRs */
14168 init_other(dd);
14169 /* set up KDETH QP prefix in both RX and TX CSRs */
14170 init_kdeth_qp(dd);
14171
Mitko Haralanov957558c2016-02-03 14:33:40 -080014172 ret = hfi1_dev_affinity_init(dd);
14173 if (ret)
14174 goto bail_cleanup;
14175
Mike Marciniszyn77241052015-07-30 15:17:43 -040014176 /* send contexts must be set up before receive contexts */
14177 ret = init_send_contexts(dd);
14178 if (ret)
14179 goto bail_cleanup;
14180
14181 ret = hfi1_create_ctxts(dd);
14182 if (ret)
14183 goto bail_cleanup;
14184
14185 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14186 /*
14187 * rcd[0] is guaranteed to be valid by this point. Also, all
14188 * context are using the same value, as per the module parameter.
14189 */
14190 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14191
14192 ret = init_pervl_scs(dd);
14193 if (ret)
14194 goto bail_cleanup;
14195
14196 /* sdma init */
14197 for (i = 0; i < dd->num_pports; ++i) {
14198 ret = sdma_init(dd, i);
14199 if (ret)
14200 goto bail_cleanup;
14201 }
14202
14203 /* use contexts created by hfi1_create_ctxts */
14204 ret = set_up_interrupts(dd);
14205 if (ret)
14206 goto bail_cleanup;
14207
14208 /* set up LCB access - must be after set_up_interrupts() */
14209 init_lcb_access(dd);
14210
14211 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14212 dd->base_guid & 0xFFFFFF);
14213
14214 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14215 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14216 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14217
14218 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14219 if (ret)
14220 goto bail_clear_intr;
14221 check_fabric_firmware_versions(dd);
14222
14223 thermal_init(dd);
14224
14225 ret = init_cntrs(dd);
14226 if (ret)
14227 goto bail_clear_intr;
14228
14229 ret = init_rcverr(dd);
14230 if (ret)
14231 goto bail_free_cntrs;
14232
14233 ret = eprom_init(dd);
14234 if (ret)
14235 goto bail_free_rcverr;
14236
14237 goto bail;
14238
14239bail_free_rcverr:
14240 free_rcverr(dd);
14241bail_free_cntrs:
14242 free_cntrs(dd);
14243bail_clear_intr:
14244 clean_up_interrupts(dd);
14245bail_cleanup:
14246 hfi1_pcie_ddcleanup(dd);
14247bail_free:
14248 hfi1_free_devdata(dd);
14249 dd = ERR_PTR(ret);
14250bail:
14251 return dd;
14252}
14253
14254static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14255 u32 dw_len)
14256{
14257 u32 delta_cycles;
14258 u32 current_egress_rate = ppd->current_egress_rate;
14259 /* rates here are in units of 10^6 bits/sec */
14260
14261 if (desired_egress_rate == -1)
14262 return 0; /* shouldn't happen */
14263
14264 if (desired_egress_rate >= current_egress_rate)
14265 return 0; /* we can't help go faster, only slower */
14266
14267 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14268 egress_cycles(dw_len * 4, current_egress_rate);
14269
14270 return (u16)delta_cycles;
14271}
14272
Mike Marciniszyn77241052015-07-30 15:17:43 -040014273/**
14274 * create_pbc - build a pbc for transmission
14275 * @flags: special case flags or-ed in built pbc
14276 * @srate: static rate
14277 * @vl: vl
14278 * @dwlen: dword length (header words + data words + pbc words)
14279 *
14280 * Create a PBC with the given flags, rate, VL, and length.
14281 *
14282 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14283 * for verbs, which does not use this PSM feature. The lone other caller
14284 * is for the diagnostic interface which calls this if the user does not
14285 * supply their own PBC.
14286 */
14287u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14288 u32 dw_len)
14289{
14290 u64 pbc, delay = 0;
14291
14292 if (unlikely(srate_mbs))
14293 delay = delay_cycles(ppd, srate_mbs, dw_len);
14294
14295 pbc = flags
14296 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14297 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14298 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14299 | (dw_len & PBC_LENGTH_DWS_MASK)
14300 << PBC_LENGTH_DWS_SHIFT;
14301
14302 return pbc;
14303}
14304
14305#define SBUS_THERMAL 0x4f
14306#define SBUS_THERM_MONITOR_MODE 0x1
14307
14308#define THERM_FAILURE(dev, ret, reason) \
14309 dd_dev_err((dd), \
14310 "Thermal sensor initialization failed: %s (%d)\n", \
14311 (reason), (ret))
14312
14313/*
14314 * Initialize the Avago Thermal sensor.
14315 *
14316 * After initialization, enable polling of thermal sensor through
14317 * SBus interface. In order for this to work, the SBus Master
14318 * firmware has to be loaded due to the fact that the HW polling
14319 * logic uses SBus interrupts, which are not supported with
14320 * default firmware. Otherwise, no data will be returned through
14321 * the ASIC_STS_THERM CSR.
14322 */
14323static int thermal_init(struct hfi1_devdata *dd)
14324{
14325 int ret = 0;
14326
14327 if (dd->icode != ICODE_RTL_SILICON ||
14328 !(dd->flags & HFI1_DO_INIT_ASIC))
14329 return ret;
14330
14331 acquire_hw_mutex(dd);
14332 dd_dev_info(dd, "Initializing thermal sensor\n");
Jareer Abdel-Qader4ef98982015-11-06 20:07:00 -050014333 /* Disable polling of thermal readings */
14334 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14335 msleep(100);
Mike Marciniszyn77241052015-07-30 15:17:43 -040014336 /* Thermal Sensor Initialization */
14337 /* Step 1: Reset the Thermal SBus Receiver */
14338 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14339 RESET_SBUS_RECEIVER, 0);
14340 if (ret) {
14341 THERM_FAILURE(dd, ret, "Bus Reset");
14342 goto done;
14343 }
14344 /* Step 2: Set Reset bit in Thermal block */
14345 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14346 WRITE_SBUS_RECEIVER, 0x1);
14347 if (ret) {
14348 THERM_FAILURE(dd, ret, "Therm Block Reset");
14349 goto done;
14350 }
14351 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14352 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14353 WRITE_SBUS_RECEIVER, 0x32);
14354 if (ret) {
14355 THERM_FAILURE(dd, ret, "Write Clock Div");
14356 goto done;
14357 }
14358 /* Step 4: Select temperature mode */
14359 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14360 WRITE_SBUS_RECEIVER,
14361 SBUS_THERM_MONITOR_MODE);
14362 if (ret) {
14363 THERM_FAILURE(dd, ret, "Write Mode Sel");
14364 goto done;
14365 }
14366 /* Step 5: De-assert block reset and start conversion */
14367 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14368 WRITE_SBUS_RECEIVER, 0x2);
14369 if (ret) {
14370 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14371 goto done;
14372 }
14373 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14374 msleep(22);
14375
14376 /* Enable polling of thermal readings */
14377 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14378done:
14379 release_hw_mutex(dd);
14380 return ret;
14381}
14382
14383static void handle_temp_err(struct hfi1_devdata *dd)
14384{
14385 struct hfi1_pportdata *ppd = &dd->pport[0];
14386 /*
14387 * Thermal Critical Interrupt
14388 * Put the device into forced freeze mode, take link down to
14389 * offline, and put DC into reset.
14390 */
14391 dd_dev_emerg(dd,
14392 "Critical temperature reached! Forcing device into freeze mode!\n");
14393 dd->flags |= HFI1_FORCED_FREEZE;
Jubin John8638b772016-02-14 20:19:24 -080014394 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
Mike Marciniszyn77241052015-07-30 15:17:43 -040014395 /*
14396 * Shut DC down as much and as quickly as possible.
14397 *
14398 * Step 1: Take the link down to OFFLINE. This will cause the
14399 * 8051 to put the Serdes in reset. However, we don't want to
14400 * go through the entire link state machine since we want to
14401 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14402 * but rather an attempt to save the chip.
14403 * Code below is almost the same as quiet_serdes() but avoids
14404 * all the extra work and the sleeps.
14405 */
14406 ppd->driver_link_ready = 0;
14407 ppd->link_enabled = 0;
14408 set_physical_link_state(dd, PLS_OFFLINE |
14409 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
14410 /*
14411 * Step 2: Shutdown LCB and 8051
14412 * After shutdown, do not restore DC_CFG_RESET value.
14413 */
14414 dc_shutdown(dd);
14415}