blob: c23b99250df264572c5f71c8d61470d549e0469b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070092#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070093#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080098#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070099#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700106#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700110#include <linux/rtmutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800176 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700206typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800245 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800246 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800247 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248};
249
250/*
251 * struct array_cache
252 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700267 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274};
275
Andrew Mortona737b3e2006-03-22 00:08:11 -0800276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800283 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284};
285
286/*
Christoph Lametere498be72005-09-09 13:03:32 -0700287 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 */
289struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800294 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800295 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Christoph Lametere498be72005-09-09 13:03:32 -0700303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311
Christoph Lametered11d9e2006-06-30 01:55:45 -0700312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700316static int enable_cpucache(struct kmem_cache *cachep);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700317static void cache_reap(void *unused);
318
Christoph Lametere498be72005-09-09 13:03:32 -0700319/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700322 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700323static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700324{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800325 extern void __bad_size(void);
326
Christoph Lametere498be72005-09-09 13:03:32 -0700327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800337 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700338 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800339 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700340 return 0;
341}
342
Ingo Molnare0a42722006-06-23 02:03:46 -0700343static int slab_early_init = 1;
344
Christoph Lametere498be72005-09-09 13:03:32 -0700345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
Pekka Enberg5295a742006-02-01 03:05:48 -0800348static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800355 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
Andrew Mortona737b3e2006-03-22 00:08:11 -0800361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700365 } while (0)
366
Andrew Mortona737b3e2006-03-22 00:08:11 -0800367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373
374/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800375 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 *
377 * manages a cache.
378 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800379
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800380struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800382 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800387
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800388 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800389/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800390 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391
Andrew Mortona737b3e2006-03-22 00:08:11 -0800392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800395/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
399 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800400 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
Andrew Mortona737b3e2006-03-22 00:08:11 -0800402 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800403 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800404 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800405 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800406 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407
408 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800414/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800415 const char *name;
416 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800418/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700429 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434#endif
435#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100455 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700490#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700494#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800496#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505/*
506 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Pekka Enberg343e0d72006-02-01 03:05:50 -0800534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800538 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800539 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Pekka Enberg343e0d72006-02-01 03:05:50 -0800543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547}
548
549#else
550
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
Andrew Mortona737b3e2006-03-22 00:08:11 -0800581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
Nick Piggin84097512006-03-22 00:08:34 -0800593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700595 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
Nick Piggin84097512006-03-22 00:08:34 -0800606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700608 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800609 return (struct slab *)page->lru.prev;
610}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611
Pekka Enberg6ed5eb22006-02-01 03:05:49 -0800612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
Andrew Mortona737b3e2006-03-22 00:08:11 -0800636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800656 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800666static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800670 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800671 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800673 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674#endif
675};
676
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700677#define BAD_ALIEN_MAGIC 0x01020304ul
678
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200679#ifdef CONFIG_LOCKDEP
680
681/*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200691 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700692static struct lock_class_key on_slab_l3_key;
693static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200694
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700695static inline void init_lock_keys(void)
696
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200697{
698 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700699 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200700
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700701 while (s->cs_size != ULONG_MAX) {
702 for_each_node(q) {
703 struct array_cache **alc;
704 int r;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
707 continue;
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709 alc = l3->alien;
710 /*
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
716 */
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718 continue;
719 for_each_node(r) {
720 if (alc[r])
721 lockdep_set_class(&alc[r]->lock,
722 &on_slab_alc_key);
723 }
724 }
725 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200726 }
727}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200728#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700729static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200730{
731}
732#endif
733
Linus Torvalds1da177e2005-04-16 15:20:36 -0700734/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800735static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700736static struct list_head cache_chain;
737
738/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742static enum {
743 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700744 PARTIAL_AC,
745 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746 FULL
747} g_cpucache_up;
748
Mike Kravetz39d24e62006-05-15 09:44:13 -0700749/*
750 * used by boot code to determine if it can use slab based allocator
751 */
752int slab_is_available(void)
753{
754 return g_cpucache_up == FULL;
755}
756
Linus Torvalds1da177e2005-04-16 15:20:36 -0700757static DEFINE_PER_CPU(struct work_struct, reap_work);
758
Pekka Enberg343e0d72006-02-01 03:05:50 -0800759static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700760{
761 return cachep->array[smp_processor_id()];
762}
763
Andrew Mortona737b3e2006-03-22 00:08:11 -0800764static inline struct kmem_cache *__find_general_cachep(size_t size,
765 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700766{
767 struct cache_sizes *csizep = malloc_sizes;
768
769#if DEBUG
770 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
773 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775#endif
776 while (size > csizep->cs_size)
777 csizep++;
778
779 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700780 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700781 * has cs_{dma,}cachep==NULL. Thus no special case
782 * for large kmalloc calls required.
783 */
784 if (unlikely(gfpflags & GFP_DMA))
785 return csizep->cs_dmacachep;
786 return csizep->cs_cachep;
787}
788
Adrian Bunkb2213852006-09-25 23:31:02 -0700789static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700790{
791 return __find_general_cachep(size, gfpflags);
792}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700793
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800794static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800796 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
797}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700798
Andrew Mortona737b3e2006-03-22 00:08:11 -0800799/*
800 * Calculate the number of objects and left-over bytes for a given buffer size.
801 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800802static void cache_estimate(unsigned long gfporder, size_t buffer_size,
803 size_t align, int flags, size_t *left_over,
804 unsigned int *num)
805{
806 int nr_objs;
807 size_t mgmt_size;
808 size_t slab_size = PAGE_SIZE << gfporder;
809
810 /*
811 * The slab management structure can be either off the slab or
812 * on it. For the latter case, the memory allocated for a
813 * slab is used for:
814 *
815 * - The struct slab
816 * - One kmem_bufctl_t for each object
817 * - Padding to respect alignment of @align
818 * - @buffer_size bytes for each object
819 *
820 * If the slab management structure is off the slab, then the
821 * alignment will already be calculated into the size. Because
822 * the slabs are all pages aligned, the objects will be at the
823 * correct alignment when allocated.
824 */
825 if (flags & CFLGS_OFF_SLAB) {
826 mgmt_size = 0;
827 nr_objs = slab_size / buffer_size;
828
829 if (nr_objs > SLAB_LIMIT)
830 nr_objs = SLAB_LIMIT;
831 } else {
832 /*
833 * Ignore padding for the initial guess. The padding
834 * is at most @align-1 bytes, and @buffer_size is at
835 * least @align. In the worst case, this result will
836 * be one greater than the number of objects that fit
837 * into the memory allocation when taking the padding
838 * into account.
839 */
840 nr_objs = (slab_size - sizeof(struct slab)) /
841 (buffer_size + sizeof(kmem_bufctl_t));
842
843 /*
844 * This calculated number will be either the right
845 * amount, or one greater than what we want.
846 */
847 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
848 > slab_size)
849 nr_objs--;
850
851 if (nr_objs > SLAB_LIMIT)
852 nr_objs = SLAB_LIMIT;
853
854 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800856 *num = nr_objs;
857 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858}
859
860#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
861
Andrew Mortona737b3e2006-03-22 00:08:11 -0800862static void __slab_error(const char *function, struct kmem_cache *cachep,
863 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864{
865 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800866 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867 dump_stack();
868}
869
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800870#ifdef CONFIG_NUMA
871/*
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
876 */
877static DEFINE_PER_CPU(unsigned long, reap_node);
878
879static void init_reap_node(int cpu)
880{
881 int node;
882
883 node = next_node(cpu_to_node(cpu), node_online_map);
884 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800885 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800886
887 __get_cpu_var(reap_node) = node;
888}
889
890static void next_reap_node(void)
891{
892 int node = __get_cpu_var(reap_node);
893
894 /*
895 * Also drain per cpu pages on remote zones
896 */
897 if (node != numa_node_id())
898 drain_node_pages(node);
899
900 node = next_node(node, node_online_map);
901 if (unlikely(node >= MAX_NUMNODES))
902 node = first_node(node_online_map);
903 __get_cpu_var(reap_node) = node;
904}
905
906#else
907#define init_reap_node(cpu) do { } while (0)
908#define next_reap_node(void) do { } while (0)
909#endif
910
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911/*
912 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
913 * via the workqueue/eventd.
914 * Add the CPU number into the expiration time to minimize the possibility of
915 * the CPUs getting into lockstep and contending for the global cache chain
916 * lock.
917 */
918static void __devinit start_cpu_timer(int cpu)
919{
920 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
921
922 /*
923 * When this gets called from do_initcalls via cpucache_init(),
924 * init_workqueues() has already run, so keventd will be setup
925 * at that time.
926 */
927 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800928 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 INIT_WORK(reap_work, cache_reap, NULL);
930 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
931 }
932}
933
Christoph Lametere498be72005-09-09 13:03:32 -0700934static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800935 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700936{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800937 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938 struct array_cache *nc = NULL;
939
Christoph Lametere498be72005-09-09 13:03:32 -0700940 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941 if (nc) {
942 nc->avail = 0;
943 nc->limit = entries;
944 nc->batchcount = batchcount;
945 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700946 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700947 }
948 return nc;
949}
950
Christoph Lameter3ded1752006-03-25 03:06:44 -0800951/*
952 * Transfer objects in one arraycache to another.
953 * Locking must be handled by the caller.
954 *
955 * Return the number of entries transferred.
956 */
957static int transfer_objects(struct array_cache *to,
958 struct array_cache *from, unsigned int max)
959{
960 /* Figure out how many entries to transfer */
961 int nr = min(min(from->avail, max), to->limit - to->avail);
962
963 if (!nr)
964 return 0;
965
966 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
967 sizeof(void *) *nr);
968
969 from->avail -= nr;
970 to->avail += nr;
971 to->touched = 1;
972 return nr;
973}
974
Christoph Lameter765c4502006-09-27 01:50:08 -0700975#ifndef CONFIG_NUMA
976
977#define drain_alien_cache(cachep, alien) do { } while (0)
978#define reap_alien(cachep, l3) do { } while (0)
979
980static inline struct array_cache **alloc_alien_cache(int node, int limit)
981{
982 return (struct array_cache **)BAD_ALIEN_MAGIC;
983}
984
985static inline void free_alien_cache(struct array_cache **ac_ptr)
986{
987}
988
989static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
990{
991 return 0;
992}
993
994static inline void *alternate_node_alloc(struct kmem_cache *cachep,
995 gfp_t flags)
996{
997 return NULL;
998}
999
1000static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1001 gfp_t flags, int nodeid)
1002{
1003 return NULL;
1004}
1005
1006#else /* CONFIG_NUMA */
1007
Pekka Enberg343e0d72006-02-01 03:05:50 -08001008static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001009static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001010
Pekka Enberg5295a742006-02-01 03:05:48 -08001011static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001012{
1013 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001014 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -07001015 int i;
1016
1017 if (limit > 1)
1018 limit = 12;
1019 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1020 if (ac_ptr) {
1021 for_each_node(i) {
1022 if (i == node || !node_online(i)) {
1023 ac_ptr[i] = NULL;
1024 continue;
1025 }
1026 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1027 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001028 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001029 kfree(ac_ptr[i]);
1030 kfree(ac_ptr);
1031 return NULL;
1032 }
1033 }
1034 }
1035 return ac_ptr;
1036}
1037
Pekka Enberg5295a742006-02-01 03:05:48 -08001038static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001039{
1040 int i;
1041
1042 if (!ac_ptr)
1043 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001044 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001045 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001046 kfree(ac_ptr);
1047}
1048
Pekka Enberg343e0d72006-02-01 03:05:50 -08001049static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001050 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001051{
1052 struct kmem_list3 *rl3 = cachep->nodelists[node];
1053
1054 if (ac->avail) {
1055 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001056 /*
1057 * Stuff objects into the remote nodes shared array first.
1058 * That way we could avoid the overhead of putting the objects
1059 * into the free lists and getting them back later.
1060 */
shin, jacob693f7d32006-04-28 10:54:37 -05001061 if (rl3->shared)
1062 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001063
Christoph Lameterff694162005-09-22 21:44:02 -07001064 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001065 ac->avail = 0;
1066 spin_unlock(&rl3->list_lock);
1067 }
1068}
1069
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001070/*
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1072 */
1073static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1074{
1075 int node = __get_cpu_var(reap_node);
1076
1077 if (l3->alien) {
1078 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001079
1080 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001081 __drain_alien_cache(cachep, ac, node);
1082 spin_unlock_irq(&ac->lock);
1083 }
1084 }
1085}
1086
Andrew Mortona737b3e2006-03-22 00:08:11 -08001087static void drain_alien_cache(struct kmem_cache *cachep,
1088 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001089{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001090 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001091 struct array_cache *ac;
1092 unsigned long flags;
1093
1094 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001095 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001096 if (ac) {
1097 spin_lock_irqsave(&ac->lock, flags);
1098 __drain_alien_cache(cachep, ac, i);
1099 spin_unlock_irqrestore(&ac->lock, flags);
1100 }
1101 }
1102}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001103
Ingo Molnar873623d2006-07-13 14:44:38 +02001104static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001105{
1106 struct slab *slabp = virt_to_slab(objp);
1107 int nodeid = slabp->nodeid;
1108 struct kmem_list3 *l3;
1109 struct array_cache *alien = NULL;
1110
1111 /*
1112 * Make sure we are not freeing a object from another node to the array
1113 * cache on this cpu.
1114 */
1115 if (likely(slabp->nodeid == numa_node_id()))
1116 return 0;
1117
1118 l3 = cachep->nodelists[numa_node_id()];
1119 STATS_INC_NODEFREES(cachep);
1120 if (l3->alien && l3->alien[nodeid]) {
1121 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001122 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001123 if (unlikely(alien->avail == alien->limit)) {
1124 STATS_INC_ACOVERFLOW(cachep);
1125 __drain_alien_cache(cachep, alien, nodeid);
1126 }
1127 alien->entry[alien->avail++] = objp;
1128 spin_unlock(&alien->lock);
1129 } else {
1130 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1131 free_block(cachep, &objp, 1, nodeid);
1132 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1133 }
1134 return 1;
1135}
Christoph Lametere498be72005-09-09 13:03:32 -07001136#endif
1137
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001138static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001139 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140{
1141 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001142 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001143 struct kmem_list3 *l3 = NULL;
1144 int node = cpu_to_node(cpu);
1145 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146
1147 switch (action) {
1148 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001149 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001150 /*
1151 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001152 * alloc_arraycache's are going to use this list.
1153 * kmalloc_node allows us to add the slab to the right
1154 * kmem_list3 and not this cpu's kmem_list3
1155 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001156
Christoph Lametere498be72005-09-09 13:03:32 -07001157 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001158 /*
1159 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001160 * begin anything. Make sure some other cpu on this
1161 * node has not already allocated this
1162 */
1163 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001164 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1165 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001166 goto bad;
1167 kmem_list3_init(l3);
1168 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001169 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001170
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001171 /*
1172 * The l3s don't come and go as CPUs come and
1173 * go. cache_chain_mutex is sufficient
1174 * protection here.
1175 */
Christoph Lametere498be72005-09-09 13:03:32 -07001176 cachep->nodelists[node] = l3;
1177 }
1178
1179 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1180 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001181 (1 + nr_cpus_node(node)) *
1182 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001183 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1184 }
1185
Andrew Mortona737b3e2006-03-22 00:08:11 -08001186 /*
1187 * Now we can go ahead with allocating the shared arrays and
1188 * array caches
1189 */
Christoph Lametere498be72005-09-09 13:03:32 -07001190 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001191 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001192 struct array_cache *shared;
1193 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001194
Christoph Lametere498be72005-09-09 13:03:32 -07001195 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001196 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197 if (!nc)
1198 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001199 shared = alloc_arraycache(node,
1200 cachep->shared * cachep->batchcount,
1201 0xbaadf00d);
1202 if (!shared)
1203 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001204
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001205 alien = alloc_alien_cache(node, cachep->limit);
1206 if (!alien)
1207 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001209 l3 = cachep->nodelists[node];
1210 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001211
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001212 spin_lock_irq(&l3->list_lock);
1213 if (!l3->shared) {
1214 /*
1215 * We are serialised from CPU_DEAD or
1216 * CPU_UP_CANCELLED by the cpucontrol lock
1217 */
1218 l3->shared = shared;
1219 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001220 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001221#ifdef CONFIG_NUMA
1222 if (!l3->alien) {
1223 l3->alien = alien;
1224 alien = NULL;
1225 }
1226#endif
1227 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001228 kfree(shared);
1229 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001231 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001232 break;
1233 case CPU_ONLINE:
1234 start_cpu_timer(cpu);
1235 break;
1236#ifdef CONFIG_HOTPLUG_CPU
1237 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001238 /*
1239 * Even if all the cpus of a node are down, we don't free the
1240 * kmem_list3 of any cache. This to avoid a race between
1241 * cpu_down, and a kmalloc allocation from another cpu for
1242 * memory from the node of the cpu going down. The list3
1243 * structure is usually allocated from kmem_cache_create() and
1244 * gets destroyed at kmem_cache_destroy().
1245 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001246 /* fall thru */
1247 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001248 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001249 list_for_each_entry(cachep, &cache_chain, next) {
1250 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001251 struct array_cache *shared;
1252 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001253 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001254
Christoph Lametere498be72005-09-09 13:03:32 -07001255 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256 /* cpu is dead; no one can alloc from it. */
1257 nc = cachep->array[cpu];
1258 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001259 l3 = cachep->nodelists[node];
1260
1261 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001262 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001263
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001264 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001265
1266 /* Free limit for this kmem_list3 */
1267 l3->free_limit -= cachep->batchcount;
1268 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001269 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001270
1271 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001272 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001273 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001274 }
Christoph Lametere498be72005-09-09 13:03:32 -07001275
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001276 shared = l3->shared;
1277 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001278 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001279 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001280 l3->shared = NULL;
1281 }
Christoph Lametere498be72005-09-09 13:03:32 -07001282
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001283 alien = l3->alien;
1284 l3->alien = NULL;
1285
1286 spin_unlock_irq(&l3->list_lock);
1287
1288 kfree(shared);
1289 if (alien) {
1290 drain_alien_cache(cachep, alien);
1291 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001292 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001293free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 kfree(nc);
1295 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001296 /*
1297 * In the previous loop, all the objects were freed to
1298 * the respective cache's slabs, now we can go ahead and
1299 * shrink each nodelist to its limit.
1300 */
1301 list_for_each_entry(cachep, &cache_chain, next) {
1302 l3 = cachep->nodelists[node];
1303 if (!l3)
1304 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001305 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001306 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001307 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001308 break;
1309#endif
1310 }
1311 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001312bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001313 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001314 return NOTIFY_BAD;
1315}
1316
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001317static struct notifier_block __cpuinitdata cpucache_notifier = {
1318 &cpuup_callback, NULL, 0
1319};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001320
Christoph Lametere498be72005-09-09 13:03:32 -07001321/*
1322 * swap the static kmem_list3 with kmalloced memory
1323 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001324static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1325 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001326{
1327 struct kmem_list3 *ptr;
1328
1329 BUG_ON(cachep->nodelists[nodeid] != list);
1330 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1331 BUG_ON(!ptr);
1332
1333 local_irq_disable();
1334 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001335 /*
1336 * Do not assume that spinlocks can be initialized via memcpy:
1337 */
1338 spin_lock_init(&ptr->list_lock);
1339
Christoph Lametere498be72005-09-09 13:03:32 -07001340 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1341 cachep->nodelists[nodeid] = ptr;
1342 local_irq_enable();
1343}
1344
Andrew Mortona737b3e2006-03-22 00:08:11 -08001345/*
1346 * Initialisation. Called after the page allocator have been initialised and
1347 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348 */
1349void __init kmem_cache_init(void)
1350{
1351 size_t left_over;
1352 struct cache_sizes *sizes;
1353 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001354 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001355 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001356
1357 for (i = 0; i < NUM_INIT_LISTS; i++) {
1358 kmem_list3_init(&initkmem_list3[i]);
1359 if (i < MAX_NUMNODES)
1360 cache_cache.nodelists[i] = NULL;
1361 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001362
1363 /*
1364 * Fragmentation resistance on low memory - only use bigger
1365 * page orders on machines with more than 32MB of memory.
1366 */
1367 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1368 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1369
Linus Torvalds1da177e2005-04-16 15:20:36 -07001370 /* Bootstrap is tricky, because several objects are allocated
1371 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001372 * 1) initialize the cache_cache cache: it contains the struct
1373 * kmem_cache structures of all caches, except cache_cache itself:
1374 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001375 * Initially an __init data area is used for the head array and the
1376 * kmem_list3 structures, it's replaced with a kmalloc allocated
1377 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001379 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001380 * An __init data area is used for the head array.
1381 * 3) Create the remaining kmalloc caches, with minimally sized
1382 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383 * 4) Replace the __init data head arrays for cache_cache and the first
1384 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001385 * 5) Replace the __init data for kmem_list3 for cache_cache and
1386 * the other cache's with kmalloc allocated memory.
1387 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388 */
1389
1390 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001391 INIT_LIST_HEAD(&cache_chain);
1392 list_add(&cache_cache.next, &cache_chain);
1393 cache_cache.colour_off = cache_line_size();
1394 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001395 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001396
Andrew Mortona737b3e2006-03-22 00:08:11 -08001397 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1398 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399
Jack Steiner07ed76b2006-03-07 21:55:46 -08001400 for (order = 0; order < MAX_ORDER; order++) {
1401 cache_estimate(order, cache_cache.buffer_size,
1402 cache_line_size(), 0, &left_over, &cache_cache.num);
1403 if (cache_cache.num)
1404 break;
1405 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001406 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001407 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001408 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001409 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1410 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411
1412 /* 2+3) create the kmalloc caches */
1413 sizes = malloc_sizes;
1414 names = cache_names;
1415
Andrew Mortona737b3e2006-03-22 00:08:11 -08001416 /*
1417 * Initialize the caches that provide memory for the array cache and the
1418 * kmem_list3 structures first. Without this, further allocations will
1419 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001420 */
1421
1422 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001423 sizes[INDEX_AC].cs_size,
1424 ARCH_KMALLOC_MINALIGN,
1425 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1426 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001427
Andrew Mortona737b3e2006-03-22 00:08:11 -08001428 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001429 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001430 kmem_cache_create(names[INDEX_L3].name,
1431 sizes[INDEX_L3].cs_size,
1432 ARCH_KMALLOC_MINALIGN,
1433 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1434 NULL, NULL);
1435 }
Christoph Lametere498be72005-09-09 13:03:32 -07001436
Ingo Molnare0a42722006-06-23 02:03:46 -07001437 slab_early_init = 0;
1438
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001440 /*
1441 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442 * This should be particularly beneficial on SMP boxes, as it
1443 * eliminates "false sharing".
1444 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001445 * allow tighter packing of the smaller caches.
1446 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001447 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001448 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001449 sizes->cs_size,
1450 ARCH_KMALLOC_MINALIGN,
1451 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1452 NULL, NULL);
1453 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001456 sizes->cs_size,
1457 ARCH_KMALLOC_MINALIGN,
1458 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1459 SLAB_PANIC,
1460 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 sizes++;
1462 names++;
1463 }
1464 /* 4) Replace the bootstrap head arrays */
1465 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001466 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001467
Linus Torvalds1da177e2005-04-16 15:20:36 -07001468 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001469
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001471 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1472 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001473 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001474 /*
1475 * Do not assume that spinlocks can be initialized via memcpy:
1476 */
1477 spin_lock_init(&ptr->lock);
1478
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479 cache_cache.array[smp_processor_id()] = ptr;
1480 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001481
Linus Torvalds1da177e2005-04-16 15:20:36 -07001482 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001483
Linus Torvalds1da177e2005-04-16 15:20:36 -07001484 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001485 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001486 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001487 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001488 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001489 /*
1490 * Do not assume that spinlocks can be initialized via memcpy:
1491 */
1492 spin_lock_init(&ptr->lock);
1493
Christoph Lametere498be72005-09-09 13:03:32 -07001494 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001495 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001496 local_irq_enable();
1497 }
Christoph Lametere498be72005-09-09 13:03:32 -07001498 /* 5) Replace the bootstrap kmem_list3's */
1499 {
1500 int node;
1501 /* Replace the static kmem_list3 structures for the boot cpu */
1502 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001503 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504
Christoph Lametere498be72005-09-09 13:03:32 -07001505 for_each_online_node(node) {
1506 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001507 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001508
1509 if (INDEX_AC != INDEX_L3) {
1510 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001511 &initkmem_list3[SIZE_L3 + node],
1512 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001513 }
1514 }
1515 }
1516
1517 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001518 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001519 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001520 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001522 if (enable_cpucache(cachep))
1523 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001524 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525 }
1526
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001527 /* Annotate slab for lockdep -- annotate the malloc caches */
1528 init_lock_keys();
1529
1530
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531 /* Done! */
1532 g_cpucache_up = FULL;
1533
Andrew Mortona737b3e2006-03-22 00:08:11 -08001534 /*
1535 * Register a cpu startup notifier callback that initializes
1536 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537 */
1538 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539
Andrew Mortona737b3e2006-03-22 00:08:11 -08001540 /*
1541 * The reap timers are started later, with a module init call: That part
1542 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001543 */
1544}
1545
1546static int __init cpucache_init(void)
1547{
1548 int cpu;
1549
Andrew Mortona737b3e2006-03-22 00:08:11 -08001550 /*
1551 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552 */
Christoph Lametere498be72005-09-09 13:03:32 -07001553 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001554 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001555 return 0;
1556}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557__initcall(cpucache_init);
1558
1559/*
1560 * Interface to system's page allocator. No need to hold the cache-lock.
1561 *
1562 * If we requested dmaable memory, we will get it. Even if we
1563 * did not request dmaable memory, we might get it, but that
1564 * would be relatively rare and ignorable.
1565 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001566static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567{
1568 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001569 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570 int i;
1571
Luke Yangd6fef9d2006-04-10 22:52:56 -07001572#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001573 /*
1574 * Nommu uses slab's for process anonymous memory allocations, and thus
1575 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001576 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001577 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001578#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001579
1580 /*
1581 * Under NUMA we want memory on the indicated node. We will handle
1582 * the needed fallback ourselves since we want to serve from our
1583 * per node object lists first for other nodes.
1584 */
1585 flags |= cachep->gfpflags | GFP_THISNODE;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001586
1587 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001588 if (!page)
1589 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001591 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001593 add_zone_page_state(page_zone(page),
1594 NR_SLAB_RECLAIMABLE, nr_pages);
1595 else
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001598 for (i = 0; i < nr_pages; i++)
1599 __SetPageSlab(page + i);
1600 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601}
1602
1603/*
1604 * Interface to system's page release.
1605 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001606static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001608 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001609 struct page *page = virt_to_page(addr);
1610 const unsigned long nr_freed = i;
1611
Christoph Lameter972d1a72006-09-25 23:31:51 -07001612 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 sub_zone_page_state(page_zone(page),
1614 NR_SLAB_RECLAIMABLE, nr_freed);
1615 else
1616 sub_zone_page_state(page_zone(page),
1617 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001619 BUG_ON(!PageSlab(page));
1620 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621 page++;
1622 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623 if (current->reclaim_state)
1624 current->reclaim_state->reclaimed_slab += nr_freed;
1625 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626}
1627
1628static void kmem_rcu_free(struct rcu_head *head)
1629{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001630 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001631 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001632
1633 kmem_freepages(cachep, slab_rcu->addr);
1634 if (OFF_SLAB(cachep))
1635 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1636}
1637
1638#if DEBUG
1639
1640#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001641static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001642 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001643{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001644 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001646 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001648 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649 return;
1650
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001651 *addr++ = 0x12345678;
1652 *addr++ = caller;
1653 *addr++ = smp_processor_id();
1654 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001655 {
1656 unsigned long *sptr = &caller;
1657 unsigned long svalue;
1658
1659 while (!kstack_end(sptr)) {
1660 svalue = *sptr++;
1661 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001662 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663 size -= sizeof(unsigned long);
1664 if (size <= sizeof(unsigned long))
1665 break;
1666 }
1667 }
1668
1669 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001670 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671}
1672#endif
1673
Pekka Enberg343e0d72006-02-01 03:05:50 -08001674static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001676 int size = obj_size(cachep);
1677 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678
1679 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001680 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681}
1682
1683static void dump_line(char *data, int offset, int limit)
1684{
1685 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001686 unsigned char error = 0;
1687 int bad_count = 0;
1688
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001690 for (i = 0; i < limit; i++) {
1691 if (data[offset + i] != POISON_FREE) {
1692 error = data[offset + i];
1693 bad_count++;
1694 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001695 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001696 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001697 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001698
1699 if (bad_count == 1) {
1700 error ^= POISON_FREE;
1701 if (!(error & (error - 1))) {
1702 printk(KERN_ERR "Single bit error detected. Probably "
1703 "bad RAM.\n");
1704#ifdef CONFIG_X86
1705 printk(KERN_ERR "Run memtest86+ or a similar memory "
1706 "test tool.\n");
1707#else
1708 printk(KERN_ERR "Run a memory test tool.\n");
1709#endif
1710 }
1711 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712}
1713#endif
1714
1715#if DEBUG
1716
Pekka Enberg343e0d72006-02-01 03:05:50 -08001717static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001718{
1719 int i, size;
1720 char *realobj;
1721
1722 if (cachep->flags & SLAB_RED_ZONE) {
1723 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001724 *dbg_redzone1(cachep, objp),
1725 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001726 }
1727
1728 if (cachep->flags & SLAB_STORE_USER) {
1729 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001730 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001732 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733 printk("\n");
1734 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001735 realobj = (char *)objp + obj_offset(cachep);
1736 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001737 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001738 int limit;
1739 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001740 if (i + limit > size)
1741 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001742 dump_line(realobj, i, limit);
1743 }
1744}
1745
Pekka Enberg343e0d72006-02-01 03:05:50 -08001746static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747{
1748 char *realobj;
1749 int size, i;
1750 int lines = 0;
1751
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001752 realobj = (char *)objp + obj_offset(cachep);
1753 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001754
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001755 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001756 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001757 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758 exp = POISON_END;
1759 if (realobj[i] != exp) {
1760 int limit;
1761 /* Mismatch ! */
1762 /* Print header */
1763 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001764 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001765 "Slab corruption: start=%p, len=%d\n",
1766 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 print_objinfo(cachep, objp, 0);
1768 }
1769 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001770 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001771 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001772 if (i + limit > size)
1773 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 dump_line(realobj, i, limit);
1775 i += 16;
1776 lines++;
1777 /* Limit to 5 lines */
1778 if (lines > 5)
1779 break;
1780 }
1781 }
1782 if (lines != 0) {
1783 /* Print some data about the neighboring objects, if they
1784 * exist:
1785 */
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08001786 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001787 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001789 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001791 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001792 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001794 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 print_objinfo(cachep, objp, 2);
1796 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001797 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001798 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001799 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001801 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 print_objinfo(cachep, objp, 2);
1803 }
1804 }
1805}
1806#endif
1807
Linus Torvalds1da177e2005-04-16 15:20:36 -07001808#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001809/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001810 * slab_destroy_objs - destroy a slab and its objects
1811 * @cachep: cache pointer being destroyed
1812 * @slabp: slab pointer being destroyed
1813 *
1814 * Call the registered destructor for each object in a slab that is being
1815 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001816 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001817static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001818{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 int i;
1820 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001821 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822
1823 if (cachep->flags & SLAB_POISON) {
1824#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001825 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1826 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001827 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001828 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001829 else
1830 check_poison_obj(cachep, objp);
1831#else
1832 check_poison_obj(cachep, objp);
1833#endif
1834 }
1835 if (cachep->flags & SLAB_RED_ZONE) {
1836 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1837 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001838 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1840 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001841 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 }
1843 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001844 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001845 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001846}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001848static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001849{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001850 if (cachep->dtor) {
1851 int i;
1852 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001853 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001854 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855 }
1856 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001857}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858#endif
1859
Randy Dunlap911851e2006-03-22 00:08:14 -08001860/**
1861 * slab_destroy - destroy and release all objects in a slab
1862 * @cachep: cache pointer being destroyed
1863 * @slabp: slab pointer being destroyed
1864 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001865 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001866 * Before calling the slab must have been unlinked from the cache. The
1867 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001868 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001869static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001870{
1871 void *addr = slabp->s_mem - slabp->colouroff;
1872
1873 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001874 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1875 struct slab_rcu *slab_rcu;
1876
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001877 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001878 slab_rcu->cachep = cachep;
1879 slab_rcu->addr = addr;
1880 call_rcu(&slab_rcu->head, kmem_rcu_free);
1881 } else {
1882 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001883 if (OFF_SLAB(cachep))
1884 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885 }
1886}
1887
Andrew Mortona737b3e2006-03-22 00:08:11 -08001888/*
1889 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1890 * size of kmem_list3.
1891 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001892static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001893{
1894 int node;
1895
1896 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001897 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001898 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001899 REAPTIMEOUT_LIST3 +
1900 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001901 }
1902}
1903
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001904static void __kmem_cache_destroy(struct kmem_cache *cachep)
1905{
1906 int i;
1907 struct kmem_list3 *l3;
1908
1909 for_each_online_cpu(i)
1910 kfree(cachep->array[i]);
1911
1912 /* NUMA: free the list3 structures */
1913 for_each_online_node(i) {
1914 l3 = cachep->nodelists[i];
1915 if (l3) {
1916 kfree(l3->shared);
1917 free_alien_cache(l3->alien);
1918 kfree(l3);
1919 }
1920 }
1921 kmem_cache_free(&cache_cache, cachep);
1922}
1923
1924
Linus Torvalds1da177e2005-04-16 15:20:36 -07001925/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001926 * calculate_slab_order - calculate size (page order) of slabs
1927 * @cachep: pointer to the cache that is being created
1928 * @size: size of objects to be created in this cache.
1929 * @align: required alignment for the objects.
1930 * @flags: slab allocation flags
1931 *
1932 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001933 *
1934 * This could be made much more intelligent. For now, try to avoid using
1935 * high order pages for slabs. When the gfp() functions are more friendly
1936 * towards high-order requests, this should be changed.
1937 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001938static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001939 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001940{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001941 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001942 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001943 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001944
Andrew Mortona737b3e2006-03-22 00:08:11 -08001945 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001946 unsigned int num;
1947 size_t remainder;
1948
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001949 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001950 if (!num)
1951 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001952
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001953 if (flags & CFLGS_OFF_SLAB) {
1954 /*
1955 * Max number of objs-per-slab for caches which
1956 * use off-slab slabs. Needed to avoid a possible
1957 * looping condition in cache_grow().
1958 */
1959 offslab_limit = size - sizeof(struct slab);
1960 offslab_limit /= sizeof(kmem_bufctl_t);
1961
1962 if (num > offslab_limit)
1963 break;
1964 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001965
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001966 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001967 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001968 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001969 left_over = remainder;
1970
1971 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001972 * A VFS-reclaimable slab tends to have most allocations
1973 * as GFP_NOFS and we really don't want to have to be allocating
1974 * higher-order pages when we are unable to shrink dcache.
1975 */
1976 if (flags & SLAB_RECLAIM_ACCOUNT)
1977 break;
1978
1979 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001980 * Large number of objects is good, but very large slabs are
1981 * currently bad for the gfp()s.
1982 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001983 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001984 break;
1985
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001986 /*
1987 * Acceptable internal fragmentation?
1988 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001989 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001990 break;
1991 }
1992 return left_over;
1993}
1994
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001995static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001996{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001997 if (g_cpucache_up == FULL)
1998 return enable_cpucache(cachep);
1999
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002000 if (g_cpucache_up == NONE) {
2001 /*
2002 * Note: the first kmem_cache_create must create the cache
2003 * that's used by kmalloc(24), otherwise the creation of
2004 * further caches will BUG().
2005 */
2006 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2007
2008 /*
2009 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2010 * the first cache, then we need to set up all its list3s,
2011 * otherwise the creation of further caches will BUG().
2012 */
2013 set_up_list3s(cachep, SIZE_AC);
2014 if (INDEX_AC == INDEX_L3)
2015 g_cpucache_up = PARTIAL_L3;
2016 else
2017 g_cpucache_up = PARTIAL_AC;
2018 } else {
2019 cachep->array[smp_processor_id()] =
2020 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2021
2022 if (g_cpucache_up == PARTIAL_AC) {
2023 set_up_list3s(cachep, SIZE_L3);
2024 g_cpucache_up = PARTIAL_L3;
2025 } else {
2026 int node;
2027 for_each_online_node(node) {
2028 cachep->nodelists[node] =
2029 kmalloc_node(sizeof(struct kmem_list3),
2030 GFP_KERNEL, node);
2031 BUG_ON(!cachep->nodelists[node]);
2032 kmem_list3_init(cachep->nodelists[node]);
2033 }
2034 }
2035 }
2036 cachep->nodelists[numa_node_id()]->next_reap =
2037 jiffies + REAPTIMEOUT_LIST3 +
2038 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2039
2040 cpu_cache_get(cachep)->avail = 0;
2041 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2042 cpu_cache_get(cachep)->batchcount = 1;
2043 cpu_cache_get(cachep)->touched = 0;
2044 cachep->batchcount = 1;
2045 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002046 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002047}
2048
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002049/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002050 * kmem_cache_create - Create a cache.
2051 * @name: A string which is used in /proc/slabinfo to identify this cache.
2052 * @size: The size of objects to be created in this cache.
2053 * @align: The required alignment for the objects.
2054 * @flags: SLAB flags
2055 * @ctor: A constructor for the objects.
2056 * @dtor: A destructor for the objects.
2057 *
2058 * Returns a ptr to the cache on success, NULL on failure.
2059 * Cannot be called within a int, but can be interrupted.
2060 * The @ctor is run when new pages are allocated by the cache
2061 * and the @dtor is run before the pages are handed back.
2062 *
2063 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002064 * the module calling this has to destroy the cache before getting unloaded.
2065 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066 * The flags are
2067 *
2068 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2069 * to catch references to uninitialised memory.
2070 *
2071 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2072 * for buffer overruns.
2073 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2075 * cacheline. This can be beneficial if you're counting cycles as closely
2076 * as davem.
2077 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002078struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002079kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002080 unsigned long flags,
2081 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002082 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083{
2084 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002085 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086
2087 /*
2088 * Sanity checks... these are all serious usage bugs.
2089 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002090 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002091 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002092 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2093 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002094 BUG();
2095 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002096
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002097 /*
2098 * Prevent CPUs from coming and going.
2099 * lock_cpu_hotplug() nests outside cache_chain_mutex
2100 */
2101 lock_cpu_hotplug();
2102
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002103 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002104
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002105 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002106 mm_segment_t old_fs = get_fs();
2107 char tmp;
2108 int res;
2109
2110 /*
2111 * This happens when the module gets unloaded and doesn't
2112 * destroy its slab cache and no-one else reuses the vmalloc
2113 * area of the module. Print a warning.
2114 */
2115 set_fs(KERNEL_DS);
2116 res = __get_user(tmp, pc->name);
2117 set_fs(old_fs);
2118 if (res) {
2119 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002120 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002121 continue;
2122 }
2123
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002124 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002125 printk("kmem_cache_create: duplicate cache %s\n", name);
2126 dump_stack();
2127 goto oops;
2128 }
2129 }
2130
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131#if DEBUG
2132 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2133 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2134 /* No constructor, but inital state check requested */
2135 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002136 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002137 flags &= ~SLAB_DEBUG_INITIAL;
2138 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139#if FORCED_DEBUG
2140 /*
2141 * Enable redzoning and last user accounting, except for caches with
2142 * large objects, if the increased size would increase the object size
2143 * above the next power of two: caches with object sizes just above a
2144 * power of two have a significant amount of internal fragmentation.
2145 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002146 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002147 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002148 if (!(flags & SLAB_DESTROY_BY_RCU))
2149 flags |= SLAB_POISON;
2150#endif
2151 if (flags & SLAB_DESTROY_BY_RCU)
2152 BUG_ON(flags & SLAB_POISON);
2153#endif
2154 if (flags & SLAB_DESTROY_BY_RCU)
2155 BUG_ON(dtor);
2156
2157 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002158 * Always checks flags, a caller might be expecting debug support which
2159 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002161 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162
Andrew Mortona737b3e2006-03-22 00:08:11 -08002163 /*
2164 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 * unaligned accesses for some archs when redzoning is used, and makes
2166 * sure any on-slab bufctl's are also correctly aligned.
2167 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002168 if (size & (BYTES_PER_WORD - 1)) {
2169 size += (BYTES_PER_WORD - 1);
2170 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171 }
2172
Andrew Mortona737b3e2006-03-22 00:08:11 -08002173 /* calculate the final buffer alignment: */
2174
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175 /* 1) arch recommendation: can be overridden for debug */
2176 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002177 /*
2178 * Default alignment: as specified by the arch code. Except if
2179 * an object is really small, then squeeze multiple objects into
2180 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002181 */
2182 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002183 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 ralign /= 2;
2185 } else {
2186 ralign = BYTES_PER_WORD;
2187 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002188
2189 /*
2190 * Redzoning and user store require word alignment. Note this will be
2191 * overridden by architecture or caller mandated alignment if either
2192 * is greater than BYTES_PER_WORD.
2193 */
2194 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2195 ralign = BYTES_PER_WORD;
2196
Linus Torvalds1da177e2005-04-16 15:20:36 -07002197 /* 2) arch mandated alignment: disables debug if necessary */
2198 if (ralign < ARCH_SLAB_MINALIGN) {
2199 ralign = ARCH_SLAB_MINALIGN;
2200 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002201 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002202 }
2203 /* 3) caller mandated alignment: disables debug if necessary */
2204 if (ralign < align) {
2205 ralign = align;
2206 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002207 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002209 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002210 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211 */
2212 align = ralign;
2213
2214 /* Get cache's description obj. */
Pekka Enbergc5e3b832006-03-25 03:06:43 -08002215 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002217 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002218
2219#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002220 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221
Pekka Enbergca5f9702006-09-25 23:31:25 -07002222 /*
2223 * Both debugging options require word-alignment which is calculated
2224 * into align above.
2225 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002226 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002227 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002228 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002229 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002230 }
2231 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002232 /* user store requires one word storage behind the end of
2233 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002235 size += BYTES_PER_WORD;
2236 }
2237#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002238 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002239 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2240 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002241 size = PAGE_SIZE;
2242 }
2243#endif
2244#endif
2245
Ingo Molnare0a42722006-06-23 02:03:46 -07002246 /*
2247 * Determine if the slab management is 'on' or 'off' slab.
2248 * (bootstrapping cannot cope with offslab caches so don't do
2249 * it too early on.)
2250 */
2251 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 /*
2253 * Size is large, assume best to place the slab management obj
2254 * off-slab (should allow better packing of objs).
2255 */
2256 flags |= CFLGS_OFF_SLAB;
2257
2258 size = ALIGN(size, align);
2259
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002260 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261
2262 if (!cachep->num) {
2263 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2264 kmem_cache_free(&cache_cache, cachep);
2265 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002266 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002267 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002268 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2269 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002270
2271 /*
2272 * If the slab has been placed off-slab, and we have enough space then
2273 * move it on-slab. This is at the expense of any extra colouring.
2274 */
2275 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2276 flags &= ~CFLGS_OFF_SLAB;
2277 left_over -= slab_size;
2278 }
2279
2280 if (flags & CFLGS_OFF_SLAB) {
2281 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002282 slab_size =
2283 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002284 }
2285
2286 cachep->colour_off = cache_line_size();
2287 /* Offset must be a multiple of the alignment. */
2288 if (cachep->colour_off < align)
2289 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002290 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291 cachep->slab_size = slab_size;
2292 cachep->flags = flags;
2293 cachep->gfpflags = 0;
2294 if (flags & SLAB_CACHE_DMA)
2295 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002296 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002297
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002298 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002299 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002300 /*
2301 * This is a possibility for one of the malloc_sizes caches.
2302 * But since we go off slab only for object size greater than
2303 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2304 * this should not happen at all.
2305 * But leave a BUG_ON for some lucky dude.
2306 */
2307 BUG_ON(!cachep->slabp_cache);
2308 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002309 cachep->ctor = ctor;
2310 cachep->dtor = dtor;
2311 cachep->name = name;
2312
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002313 if (setup_cpu_cache(cachep)) {
2314 __kmem_cache_destroy(cachep);
2315 cachep = NULL;
2316 goto oops;
2317 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319 /* cache setup completed, link it into the list */
2320 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002321oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 if (!cachep && (flags & SLAB_PANIC))
2323 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002324 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002325 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002326 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002327 return cachep;
2328}
2329EXPORT_SYMBOL(kmem_cache_create);
2330
2331#if DEBUG
2332static void check_irq_off(void)
2333{
2334 BUG_ON(!irqs_disabled());
2335}
2336
2337static void check_irq_on(void)
2338{
2339 BUG_ON(irqs_disabled());
2340}
2341
Pekka Enberg343e0d72006-02-01 03:05:50 -08002342static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343{
2344#ifdef CONFIG_SMP
2345 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002346 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347#endif
2348}
Christoph Lametere498be72005-09-09 13:03:32 -07002349
Pekka Enberg343e0d72006-02-01 03:05:50 -08002350static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002351{
2352#ifdef CONFIG_SMP
2353 check_irq_off();
2354 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2355#endif
2356}
2357
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358#else
2359#define check_irq_off() do { } while(0)
2360#define check_irq_on() do { } while(0)
2361#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002362#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002363#endif
2364
Christoph Lameteraab22072006-03-22 00:09:06 -08002365static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2366 struct array_cache *ac,
2367 int force, int node);
2368
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369static void do_drain(void *arg)
2370{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002371 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002372 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002373 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374
2375 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002376 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002377 spin_lock(&cachep->nodelists[node]->list_lock);
2378 free_block(cachep, ac->entry, ac->avail, node);
2379 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002380 ac->avail = 0;
2381}
2382
Pekka Enberg343e0d72006-02-01 03:05:50 -08002383static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384{
Christoph Lametere498be72005-09-09 13:03:32 -07002385 struct kmem_list3 *l3;
2386 int node;
2387
Andrew Mortona07fa392006-03-22 00:08:17 -08002388 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002390 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002391 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002392 if (l3 && l3->alien)
2393 drain_alien_cache(cachep, l3->alien);
2394 }
2395
2396 for_each_online_node(node) {
2397 l3 = cachep->nodelists[node];
2398 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002399 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002400 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002401}
2402
Christoph Lametered11d9e2006-06-30 01:55:45 -07002403/*
2404 * Remove slabs from the list of free slabs.
2405 * Specify the number of slabs to drain in tofree.
2406 *
2407 * Returns the actual number of slabs released.
2408 */
2409static int drain_freelist(struct kmem_cache *cache,
2410 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002412 struct list_head *p;
2413 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002415
Christoph Lametered11d9e2006-06-30 01:55:45 -07002416 nr_freed = 0;
2417 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418
Christoph Lametered11d9e2006-06-30 01:55:45 -07002419 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002420 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002421 if (p == &l3->slabs_free) {
2422 spin_unlock_irq(&l3->list_lock);
2423 goto out;
2424 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002425
Christoph Lametered11d9e2006-06-30 01:55:45 -07002426 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002427#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002428 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002429#endif
2430 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002431 /*
2432 * Safe to drop the lock. The slab is no longer linked
2433 * to the cache.
2434 */
2435 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002436 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002437 slab_destroy(cache, slabp);
2438 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002439 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002440out:
2441 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442}
2443
Pekka Enberg343e0d72006-02-01 03:05:50 -08002444static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002445{
2446 int ret = 0, i = 0;
2447 struct kmem_list3 *l3;
2448
2449 drain_cpu_caches(cachep);
2450
2451 check_irq_on();
2452 for_each_online_node(i) {
2453 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002454 if (!l3)
2455 continue;
2456
2457 drain_freelist(cachep, l3, l3->free_objects);
2458
2459 ret += !list_empty(&l3->slabs_full) ||
2460 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002461 }
2462 return (ret ? 1 : 0);
2463}
2464
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465/**
2466 * kmem_cache_shrink - Shrink a cache.
2467 * @cachep: The cache to shrink.
2468 *
2469 * Releases as many slabs as possible for a cache.
2470 * To help debugging, a zero exit status indicates all slabs were released.
2471 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002472int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002473{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002474 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475
2476 return __cache_shrink(cachep);
2477}
2478EXPORT_SYMBOL(kmem_cache_shrink);
2479
2480/**
2481 * kmem_cache_destroy - delete a cache
2482 * @cachep: the cache to destroy
2483 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002484 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002485 *
2486 * It is expected this function will be called by a module when it is
2487 * unloaded. This will remove the cache completely, and avoid a duplicate
2488 * cache being allocated each time a module is loaded and unloaded, if the
2489 * module doesn't have persistent in-kernel storage across loads and unloads.
2490 *
2491 * The cache must be empty before calling this function.
2492 *
2493 * The caller must guarantee that noone will allocate memory from the cache
2494 * during the kmem_cache_destroy().
2495 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002496void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002498 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002499
2500 /* Don't let CPUs to come and go */
2501 lock_cpu_hotplug();
2502
2503 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002504 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505 /*
2506 * the chain is never empty, cache_cache is never destroyed
2507 */
2508 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002509 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002510
2511 if (__cache_shrink(cachep)) {
2512 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002513 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002514 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002515 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516 unlock_cpu_hotplug();
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002517 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002518 }
2519
2520 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002521 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002522
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002523 __kmem_cache_destroy(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002525}
2526EXPORT_SYMBOL(kmem_cache_destroy);
2527
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002528/*
2529 * Get the memory for a slab management obj.
2530 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2531 * always come from malloc_sizes caches. The slab descriptor cannot
2532 * come from the same cache which is getting created because,
2533 * when we are searching for an appropriate cache for these
2534 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2535 * If we are creating a malloc_sizes cache here it would not be visible to
2536 * kmem_find_general_cachep till the initialization is complete.
2537 * Hence we cannot have slabp_cache same as the original cache.
2538 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002539static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002540 int colour_off, gfp_t local_flags,
2541 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542{
2543 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002544
Linus Torvalds1da177e2005-04-16 15:20:36 -07002545 if (OFF_SLAB(cachep)) {
2546 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002547 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2548 local_flags, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549 if (!slabp)
2550 return NULL;
2551 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002552 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002553 colour_off += cachep->slab_size;
2554 }
2555 slabp->inuse = 0;
2556 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002557 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002558 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002559 return slabp;
2560}
2561
2562static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2563{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002564 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565}
2566
Pekka Enberg343e0d72006-02-01 03:05:50 -08002567static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002568 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002569{
2570 int i;
2571
2572 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002573 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002574#if DEBUG
2575 /* need to poison the objs? */
2576 if (cachep->flags & SLAB_POISON)
2577 poison_obj(cachep, objp, POISON_FREE);
2578 if (cachep->flags & SLAB_STORE_USER)
2579 *dbg_userword(cachep, objp) = NULL;
2580
2581 if (cachep->flags & SLAB_RED_ZONE) {
2582 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2583 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2584 }
2585 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002586 * Constructors are not allowed to allocate memory from the same
2587 * cache which they are a constructor for. Otherwise, deadlock.
2588 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002589 */
2590 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002591 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002592 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593
2594 if (cachep->flags & SLAB_RED_ZONE) {
2595 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2596 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002597 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002598 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2599 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002600 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002602 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2603 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002604 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002605 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002606#else
2607 if (cachep->ctor)
2608 cachep->ctor(objp, cachep, ctor_flags);
2609#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002610 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002611 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002612 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 slabp->free = 0;
2614}
2615
Pekka Enberg343e0d72006-02-01 03:05:50 -08002616static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002617{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002618 if (flags & SLAB_DMA)
2619 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2620 else
2621 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002622}
2623
Andrew Mortona737b3e2006-03-22 00:08:11 -08002624static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2625 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002626{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002627 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002628 kmem_bufctl_t next;
2629
2630 slabp->inuse++;
2631 next = slab_bufctl(slabp)[slabp->free];
2632#if DEBUG
2633 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2634 WARN_ON(slabp->nodeid != nodeid);
2635#endif
2636 slabp->free = next;
2637
2638 return objp;
2639}
2640
Andrew Mortona737b3e2006-03-22 00:08:11 -08002641static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2642 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002643{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002644 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002645
2646#if DEBUG
2647 /* Verify that the slab belongs to the intended node */
2648 WARN_ON(slabp->nodeid != nodeid);
2649
Al Viro871751e2006-03-25 03:06:39 -08002650 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002651 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002652 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002653 BUG();
2654 }
2655#endif
2656 slab_bufctl(slabp)[objnr] = slabp->free;
2657 slabp->free = objnr;
2658 slabp->inuse--;
2659}
2660
Pekka Enberg47768742006-06-23 02:03:07 -07002661/*
2662 * Map pages beginning at addr to the given cache and slab. This is required
2663 * for the slab allocator to be able to lookup the cache and slab of a
2664 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2665 */
2666static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2667 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668{
Pekka Enberg47768742006-06-23 02:03:07 -07002669 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670 struct page *page;
2671
Pekka Enberg47768742006-06-23 02:03:07 -07002672 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002673
Pekka Enberg47768742006-06-23 02:03:07 -07002674 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002675 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002676 nr_pages <<= cache->gfporder;
2677
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002679 page_set_cache(page, cache);
2680 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002681 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002682 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683}
2684
2685/*
2686 * Grow (by 1) the number of slabs within a cache. This is called by
2687 * kmem_cache_alloc() when there are no active objs left in a cache.
2688 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002689static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002691 struct slab *slabp;
2692 void *objp;
2693 size_t offset;
2694 gfp_t local_flags;
2695 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002696 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002697
Andrew Mortona737b3e2006-03-22 00:08:11 -08002698 /*
2699 * Be lazy and only check for valid flags here, keeping it out of the
2700 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002702 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 if (flags & SLAB_NO_GROW)
2704 return 0;
2705
2706 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2707 local_flags = (flags & SLAB_LEVEL_MASK);
2708 if (!(local_flags & __GFP_WAIT))
2709 /*
2710 * Not allowed to sleep. Need to tell a constructor about
2711 * this - it might need to know...
2712 */
2713 ctor_flags |= SLAB_CTOR_ATOMIC;
2714
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002715 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002717 l3 = cachep->nodelists[nodeid];
2718 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719
2720 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002721 offset = l3->colour_next;
2722 l3->colour_next++;
2723 if (l3->colour_next >= cachep->colour)
2724 l3->colour_next = 0;
2725 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002727 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002728
2729 if (local_flags & __GFP_WAIT)
2730 local_irq_enable();
2731
2732 /*
2733 * The test for missing atomic flag is performed here, rather than
2734 * the more obvious place, simply to reduce the critical path length
2735 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2736 * will eventually be caught here (where it matters).
2737 */
2738 kmem_flagcheck(cachep, flags);
2739
Andrew Mortona737b3e2006-03-22 00:08:11 -08002740 /*
2741 * Get mem for the objs. Attempt to allocate a physical page from
2742 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002743 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002744 objp = kmem_getpages(cachep, flags, nodeid);
2745 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 goto failed;
2747
2748 /* Get slab management. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002749 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002750 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002751 goto opps1;
2752
Christoph Lametere498be72005-09-09 13:03:32 -07002753 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002754 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755
2756 cache_init_objs(cachep, slabp, ctor_flags);
2757
2758 if (local_flags & __GFP_WAIT)
2759 local_irq_disable();
2760 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002761 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002762
2763 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002764 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002765 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002766 l3->free_objects += cachep->num;
2767 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002769opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002770 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002771failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002772 if (local_flags & __GFP_WAIT)
2773 local_irq_disable();
2774 return 0;
2775}
2776
2777#if DEBUG
2778
2779/*
2780 * Perform extra freeing checks:
2781 * - detect bad pointers.
2782 * - POISON/RED_ZONE checking
2783 * - destructor calls, for caches with POISON+dtor
2784 */
2785static void kfree_debugcheck(const void *objp)
2786{
2787 struct page *page;
2788
2789 if (!virt_addr_valid(objp)) {
2790 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002791 (unsigned long)objp);
2792 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 }
2794 page = virt_to_page(objp);
2795 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002796 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2797 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002798 BUG();
2799 }
2800}
2801
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002802static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2803{
2804 unsigned long redzone1, redzone2;
2805
2806 redzone1 = *dbg_redzone1(cache, obj);
2807 redzone2 = *dbg_redzone2(cache, obj);
2808
2809 /*
2810 * Redzone is ok.
2811 */
2812 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2813 return;
2814
2815 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2816 slab_error(cache, "double free detected");
2817 else
2818 slab_error(cache, "memory outside object was overwritten");
2819
2820 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2821 obj, redzone1, redzone2);
2822}
2823
Pekka Enberg343e0d72006-02-01 03:05:50 -08002824static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002825 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826{
2827 struct page *page;
2828 unsigned int objnr;
2829 struct slab *slabp;
2830
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002831 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832 kfree_debugcheck(objp);
2833 page = virt_to_page(objp);
2834
Pekka Enberg065d41c2005-11-13 16:06:46 -08002835 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002836
2837 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002838 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2840 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2841 }
2842 if (cachep->flags & SLAB_STORE_USER)
2843 *dbg_userword(cachep, objp) = caller;
2844
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002845 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002846
2847 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002848 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849
2850 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002851 /*
2852 * Need to call the slab's constructor so the caller can
2853 * perform a verify of its state (debugging). Called without
2854 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002855 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002856 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002857 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002858 }
2859 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2860 /* we want to cache poison the object,
2861 * call the destruction callback
2862 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002863 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864 }
Al Viro871751e2006-03-25 03:06:39 -08002865#ifdef CONFIG_DEBUG_SLAB_LEAK
2866 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2867#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868 if (cachep->flags & SLAB_POISON) {
2869#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002870 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002871 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002872 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002873 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002874 } else {
2875 poison_obj(cachep, objp, POISON_FREE);
2876 }
2877#else
2878 poison_obj(cachep, objp, POISON_FREE);
2879#endif
2880 }
2881 return objp;
2882}
2883
Pekka Enberg343e0d72006-02-01 03:05:50 -08002884static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885{
2886 kmem_bufctl_t i;
2887 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002888
Linus Torvalds1da177e2005-04-16 15:20:36 -07002889 /* Check slab's freelist to see if this obj is there. */
2890 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2891 entries++;
2892 if (entries > cachep->num || i >= cachep->num)
2893 goto bad;
2894 }
2895 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002896bad:
2897 printk(KERN_ERR "slab: Internal list corruption detected in "
2898 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2899 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002900 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002901 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002902 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002903 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002904 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002905 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002906 }
2907 printk("\n");
2908 BUG();
2909 }
2910}
2911#else
2912#define kfree_debugcheck(x) do { } while(0)
2913#define cache_free_debugcheck(x,objp,z) (objp)
2914#define check_slabp(x,y) do { } while(0)
2915#endif
2916
Pekka Enberg343e0d72006-02-01 03:05:50 -08002917static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918{
2919 int batchcount;
2920 struct kmem_list3 *l3;
2921 struct array_cache *ac;
2922
2923 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002924 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002925retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002926 batchcount = ac->batchcount;
2927 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002928 /*
2929 * If there was little recent activity on this cache, then
2930 * perform only a partial refill. Otherwise we could generate
2931 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002932 */
2933 batchcount = BATCHREFILL_LIMIT;
2934 }
Christoph Lametere498be72005-09-09 13:03:32 -07002935 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936
Christoph Lametere498be72005-09-09 13:03:32 -07002937 BUG_ON(ac->avail > 0 || !l3);
2938 spin_lock(&l3->list_lock);
2939
Christoph Lameter3ded1752006-03-25 03:06:44 -08002940 /* See if we can refill from the shared array */
2941 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2942 goto alloc_done;
2943
Linus Torvalds1da177e2005-04-16 15:20:36 -07002944 while (batchcount > 0) {
2945 struct list_head *entry;
2946 struct slab *slabp;
2947 /* Get slab alloc is to come from. */
2948 entry = l3->slabs_partial.next;
2949 if (entry == &l3->slabs_partial) {
2950 l3->free_touched = 1;
2951 entry = l3->slabs_free.next;
2952 if (entry == &l3->slabs_free)
2953 goto must_grow;
2954 }
2955
2956 slabp = list_entry(entry, struct slab, list);
2957 check_slabp(cachep, slabp);
2958 check_spinlock_acquired(cachep);
2959 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002960 STATS_INC_ALLOCED(cachep);
2961 STATS_INC_ACTIVE(cachep);
2962 STATS_SET_HIGH(cachep);
2963
Matthew Dobson78d382d2006-02-01 03:05:47 -08002964 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2965 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002966 }
2967 check_slabp(cachep, slabp);
2968
2969 /* move slabp to correct slabp list: */
2970 list_del(&slabp->list);
2971 if (slabp->free == BUFCTL_END)
2972 list_add(&slabp->list, &l3->slabs_full);
2973 else
2974 list_add(&slabp->list, &l3->slabs_partial);
2975 }
2976
Andrew Mortona737b3e2006-03-22 00:08:11 -08002977must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002979alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002980 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002981
2982 if (unlikely(!ac->avail)) {
2983 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002984 x = cache_grow(cachep, flags, numa_node_id());
2985
Andrew Mortona737b3e2006-03-22 00:08:11 -08002986 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002987 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002988 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002989 return NULL;
2990
Andrew Mortona737b3e2006-03-22 00:08:11 -08002991 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002992 goto retry;
2993 }
2994 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002995 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002996}
2997
Andrew Mortona737b3e2006-03-22 00:08:11 -08002998static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2999 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003000{
3001 might_sleep_if(flags & __GFP_WAIT);
3002#if DEBUG
3003 kmem_flagcheck(cachep, flags);
3004#endif
3005}
3006
3007#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003008static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3009 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003010{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003011 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003012 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003013 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003014#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003015 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003016 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003017 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018 else
3019 check_poison_obj(cachep, objp);
3020#else
3021 check_poison_obj(cachep, objp);
3022#endif
3023 poison_obj(cachep, objp, POISON_INUSE);
3024 }
3025 if (cachep->flags & SLAB_STORE_USER)
3026 *dbg_userword(cachep, objp) = caller;
3027
3028 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003029 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3030 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3031 slab_error(cachep, "double free, or memory outside"
3032 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003033 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08003034 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3035 objp, *dbg_redzone1(cachep, objp),
3036 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003037 }
3038 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3039 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3040 }
Al Viro871751e2006-03-25 03:06:39 -08003041#ifdef CONFIG_DEBUG_SLAB_LEAK
3042 {
3043 struct slab *slabp;
3044 unsigned objnr;
3045
3046 slabp = page_get_slab(virt_to_page(objp));
3047 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3048 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3049 }
3050#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003051 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003052 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003053 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003054
3055 if (!(flags & __GFP_WAIT))
3056 ctor_flags |= SLAB_CTOR_ATOMIC;
3057
3058 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003059 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060 return objp;
3061}
3062#else
3063#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3064#endif
3065
Pekka Enberg343e0d72006-02-01 03:05:50 -08003066static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003067{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003068 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003069 struct array_cache *ac;
3070
Alok N Kataria5c382302005-09-27 21:45:46 -07003071 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003072 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003073 if (likely(ac->avail)) {
3074 STATS_INC_ALLOCHIT(cachep);
3075 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003076 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003077 } else {
3078 STATS_INC_ALLOCMISS(cachep);
3079 objp = cache_alloc_refill(cachep, flags);
3080 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003081 return objp;
3082}
3083
Andrew Mortona737b3e2006-03-22 00:08:11 -08003084static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3085 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07003086{
3087 unsigned long save_flags;
Christoph Lameterde3083e2006-09-27 01:50:03 -07003088 void *objp = NULL;
Alok N Kataria5c382302005-09-27 21:45:46 -07003089
3090 cache_alloc_debugcheck_before(cachep, flags);
3091
3092 local_irq_save(save_flags);
Christoph Lameterde3083e2006-09-27 01:50:03 -07003093
Christoph Lameter765c4502006-09-27 01:50:08 -07003094 if (unlikely(NUMA_BUILD &&
3095 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
Christoph Lameterde3083e2006-09-27 01:50:03 -07003096 objp = alternate_node_alloc(cachep, flags);
Christoph Lameterde3083e2006-09-27 01:50:03 -07003097
3098 if (!objp)
3099 objp = ____cache_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003100 /*
3101 * We may just have run out of memory on the local node.
3102 * __cache_alloc_node() knows how to locate memory on other nodes
3103 */
3104 if (NUMA_BUILD && !objp)
3105 objp = __cache_alloc_node(cachep, flags, numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003106 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07003107 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003108 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07003109 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003110 return objp;
3111}
3112
Christoph Lametere498be72005-09-09 13:03:32 -07003113#ifdef CONFIG_NUMA
3114/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003115 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003116 *
3117 * If we are in_interrupt, then process context, including cpusets and
3118 * mempolicy, may not apply and should not be used for allocation policy.
3119 */
3120static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3121{
3122 int nid_alloc, nid_here;
3123
Christoph Lameter765c4502006-09-27 01:50:08 -07003124 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003125 return NULL;
3126 nid_alloc = nid_here = numa_node_id();
3127 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3128 nid_alloc = cpuset_mem_spread_node();
3129 else if (current->mempolicy)
3130 nid_alloc = slab_node(current->mempolicy);
3131 if (nid_alloc != nid_here)
3132 return __cache_alloc_node(cachep, flags, nid_alloc);
3133 return NULL;
3134}
3135
3136/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003137 * Fallback function if there was no memory available and no objects on a
3138 * certain node and we are allowed to fall back. We mimick the behavior of
3139 * the page allocator. We fall back according to a zonelist determined by
3140 * the policy layer while obeying cpuset constraints.
3141 */
3142void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3143{
3144 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3145 ->node_zonelists[gfp_zone(flags)];
3146 struct zone **z;
3147 void *obj = NULL;
3148
3149 for (z = zonelist->zones; *z && !obj; z++)
3150 if (zone_idx(*z) <= ZONE_NORMAL &&
3151 cpuset_zone_allowed(*z, flags))
3152 obj = __cache_alloc_node(cache,
3153 flags | __GFP_THISNODE,
3154 zone_to_nid(*z));
3155 return obj;
3156}
3157
3158/*
Christoph Lametere498be72005-09-09 13:03:32 -07003159 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003160 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003161static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3162 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003163{
3164 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003165 struct slab *slabp;
3166 struct kmem_list3 *l3;
3167 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003168 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003169
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003170 l3 = cachep->nodelists[nodeid];
3171 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003172
Andrew Mortona737b3e2006-03-22 00:08:11 -08003173retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003174 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003175 spin_lock(&l3->list_lock);
3176 entry = l3->slabs_partial.next;
3177 if (entry == &l3->slabs_partial) {
3178 l3->free_touched = 1;
3179 entry = l3->slabs_free.next;
3180 if (entry == &l3->slabs_free)
3181 goto must_grow;
3182 }
Christoph Lametere498be72005-09-09 13:03:32 -07003183
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003184 slabp = list_entry(entry, struct slab, list);
3185 check_spinlock_acquired_node(cachep, nodeid);
3186 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003187
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003188 STATS_INC_NODEALLOCS(cachep);
3189 STATS_INC_ACTIVE(cachep);
3190 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003191
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003192 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003193
Matthew Dobson78d382d2006-02-01 03:05:47 -08003194 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003195 check_slabp(cachep, slabp);
3196 l3->free_objects--;
3197 /* move slabp to correct slabp list: */
3198 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003199
Andrew Mortona737b3e2006-03-22 00:08:11 -08003200 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003201 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003202 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003203 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003204
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003205 spin_unlock(&l3->list_lock);
3206 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003207
Andrew Mortona737b3e2006-03-22 00:08:11 -08003208must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003209 spin_unlock(&l3->list_lock);
3210 x = cache_grow(cachep, flags, nodeid);
Christoph Lameter765c4502006-09-27 01:50:08 -07003211 if (x)
3212 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003213
Christoph Lameter765c4502006-09-27 01:50:08 -07003214 if (!(flags & __GFP_THISNODE))
3215 /* Unable to grow the cache. Fall back to other nodes. */
3216 return fallback_alloc(cachep, flags);
Christoph Lametere498be72005-09-09 13:03:32 -07003217
Christoph Lameter765c4502006-09-27 01:50:08 -07003218 return NULL;
3219
Andrew Mortona737b3e2006-03-22 00:08:11 -08003220done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003221 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003222}
3223#endif
3224
3225/*
3226 * Caller needs to acquire correct kmem_list's list_lock
3227 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003228static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003229 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003230{
3231 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003232 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233
3234 for (i = 0; i < nr_objects; i++) {
3235 void *objp = objpp[i];
3236 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003237
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003238 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003239 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003240 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003241 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003242 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003243 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003244 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003245 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003246 check_slabp(cachep, slabp);
3247
3248 /* fixup slab chains */
3249 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003250 if (l3->free_objects > l3->free_limit) {
3251 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003252 /* No need to drop any previously held
3253 * lock here, even if we have a off-slab slab
3254 * descriptor it is guaranteed to come from
3255 * a different cache, refer to comments before
3256 * alloc_slabmgmt.
3257 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003258 slab_destroy(cachep, slabp);
3259 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003260 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003261 }
3262 } else {
3263 /* Unconditionally move a slab to the end of the
3264 * partial list on free - maximum time for the
3265 * other objects to be freed, too.
3266 */
Christoph Lametere498be72005-09-09 13:03:32 -07003267 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003268 }
3269 }
3270}
3271
Pekka Enberg343e0d72006-02-01 03:05:50 -08003272static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003273{
3274 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003275 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003276 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003277
3278 batchcount = ac->batchcount;
3279#if DEBUG
3280 BUG_ON(!batchcount || batchcount > ac->avail);
3281#endif
3282 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003283 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003284 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003285 if (l3->shared) {
3286 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003287 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003288 if (max) {
3289 if (batchcount > max)
3290 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003291 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003292 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003293 shared_array->avail += batchcount;
3294 goto free_done;
3295 }
3296 }
3297
Christoph Lameterff694162005-09-22 21:44:02 -07003298 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003299free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003300#if STATS
3301 {
3302 int i = 0;
3303 struct list_head *p;
3304
Christoph Lametere498be72005-09-09 13:03:32 -07003305 p = l3->slabs_free.next;
3306 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003307 struct slab *slabp;
3308
3309 slabp = list_entry(p, struct slab, list);
3310 BUG_ON(slabp->inuse);
3311
3312 i++;
3313 p = p->next;
3314 }
3315 STATS_SET_FREEABLE(cachep, i);
3316 }
3317#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003318 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003319 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003320 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003321}
3322
3323/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003324 * Release an obj back to its cache. If the obj has a constructed state, it must
3325 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003326 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003327static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003328{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003329 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003330
3331 check_irq_off();
3332 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3333
Ingo Molnar873623d2006-07-13 14:44:38 +02003334 if (cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003335 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003336
Linus Torvalds1da177e2005-04-16 15:20:36 -07003337 if (likely(ac->avail < ac->limit)) {
3338 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003339 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003340 return;
3341 } else {
3342 STATS_INC_FREEMISS(cachep);
3343 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003344 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003345 }
3346}
3347
3348/**
3349 * kmem_cache_alloc - Allocate an object
3350 * @cachep: The cache to allocate from.
3351 * @flags: See kmalloc().
3352 *
3353 * Allocate an object from this cache. The flags are only relevant
3354 * if the cache has no available objects.
3355 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003356void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003357{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003358 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003359}
3360EXPORT_SYMBOL(kmem_cache_alloc);
3361
3362/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003363 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003364 * @cache: The cache to allocate from.
3365 * @flags: See kmalloc().
3366 *
3367 * Allocate an object from this cache and set the allocated memory to zero.
3368 * The flags are only relevant if the cache has no available objects.
3369 */
3370void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3371{
3372 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3373 if (ret)
3374 memset(ret, 0, obj_size(cache));
3375 return ret;
3376}
3377EXPORT_SYMBOL(kmem_cache_zalloc);
3378
3379/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003380 * kmem_ptr_validate - check if an untrusted pointer might
3381 * be a slab entry.
3382 * @cachep: the cache we're checking against
3383 * @ptr: pointer to validate
3384 *
3385 * This verifies that the untrusted pointer looks sane:
3386 * it is _not_ a guarantee that the pointer is actually
3387 * part of the slab cache in question, but it at least
3388 * validates that the pointer can be dereferenced and
3389 * looks half-way sane.
3390 *
3391 * Currently only used for dentry validation.
3392 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003393int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003394{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003395 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003396 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003397 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003398 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399 struct page *page;
3400
3401 if (unlikely(addr < min_addr))
3402 goto out;
3403 if (unlikely(addr > (unsigned long)high_memory - size))
3404 goto out;
3405 if (unlikely(addr & align_mask))
3406 goto out;
3407 if (unlikely(!kern_addr_valid(addr)))
3408 goto out;
3409 if (unlikely(!kern_addr_valid(addr + size - 1)))
3410 goto out;
3411 page = virt_to_page(ptr);
3412 if (unlikely(!PageSlab(page)))
3413 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003414 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003415 goto out;
3416 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003417out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003418 return 0;
3419}
3420
3421#ifdef CONFIG_NUMA
3422/**
3423 * kmem_cache_alloc_node - Allocate an object on the specified node
3424 * @cachep: The cache to allocate from.
3425 * @flags: See kmalloc().
3426 * @nodeid: node number of the target node.
3427 *
3428 * Identical to kmem_cache_alloc, except that this function is slow
3429 * and can sleep. And it will allocate memory on the given node, which
3430 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003431 * New and improved: it will now make sure that the object gets
3432 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003433 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003434void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003435{
Christoph Lametere498be72005-09-09 13:03:32 -07003436 unsigned long save_flags;
3437 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003438
Christoph Lametere498be72005-09-09 13:03:32 -07003439 cache_alloc_debugcheck_before(cachep, flags);
3440 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003441
3442 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003443 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003444 ptr = ____cache_alloc(cachep, flags);
3445 else
3446 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003447 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003448
3449 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3450 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451
Christoph Lametere498be72005-09-09 13:03:32 -07003452 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003453}
3454EXPORT_SYMBOL(kmem_cache_alloc_node);
3455
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003456void *__kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003457{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003458 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003459
3460 cachep = kmem_find_general_cachep(size, flags);
3461 if (unlikely(cachep == NULL))
3462 return NULL;
3463 return kmem_cache_alloc_node(cachep, flags, node);
3464}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003465EXPORT_SYMBOL(__kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003466#endif
3467
3468/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003469 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003470 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003471 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003472 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003474static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3475 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003477 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003478
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003479 /* If you want to save a few bytes .text space: replace
3480 * __ with kmem_.
3481 * Then kmalloc uses the uninlined functions instead of the inline
3482 * functions.
3483 */
3484 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003485 if (unlikely(cachep == NULL))
3486 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003487 return __cache_alloc(cachep, flags, caller);
3488}
3489
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003490
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003491#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003492void *__kmalloc(size_t size, gfp_t flags)
3493{
Al Viro871751e2006-03-25 03:06:39 -08003494 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003495}
3496EXPORT_SYMBOL(__kmalloc);
3497
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003498void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3499{
3500 return __do_kmalloc(size, flags, caller);
3501}
3502EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003503
3504#else
3505void *__kmalloc(size_t size, gfp_t flags)
3506{
3507 return __do_kmalloc(size, flags, NULL);
3508}
3509EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003510#endif
3511
Linus Torvalds1da177e2005-04-16 15:20:36 -07003512/**
3513 * kmem_cache_free - Deallocate an object
3514 * @cachep: The cache the allocation was from.
3515 * @objp: The previously allocated object.
3516 *
3517 * Free an object which was previously allocated from this
3518 * cache.
3519 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003520void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003521{
3522 unsigned long flags;
3523
Pekka Enbergddc2e812006-06-23 02:03:40 -07003524 BUG_ON(virt_to_cache(objp) != cachep);
3525
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526 local_irq_save(flags);
Ingo Molnar873623d2006-07-13 14:44:38 +02003527 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003528 local_irq_restore(flags);
3529}
3530EXPORT_SYMBOL(kmem_cache_free);
3531
3532/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003533 * kfree - free previously allocated memory
3534 * @objp: pointer returned by kmalloc.
3535 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003536 * If @objp is NULL, no operation is performed.
3537 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003538 * Don't free memory not originally allocated by kmalloc()
3539 * or you will run into trouble.
3540 */
3541void kfree(const void *objp)
3542{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003543 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544 unsigned long flags;
3545
3546 if (unlikely(!objp))
3547 return;
3548 local_irq_save(flags);
3549 kfree_debugcheck(objp);
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003550 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003551 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003552 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 local_irq_restore(flags);
3554}
3555EXPORT_SYMBOL(kfree);
3556
Pekka Enberg343e0d72006-02-01 03:05:50 -08003557unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003558{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003559 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003560}
3561EXPORT_SYMBOL(kmem_cache_size);
3562
Pekka Enberg343e0d72006-02-01 03:05:50 -08003563const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003564{
3565 return cachep->name;
3566}
3567EXPORT_SYMBOL_GPL(kmem_cache_name);
3568
Christoph Lametere498be72005-09-09 13:03:32 -07003569/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003570 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003571 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003572static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003573{
3574 int node;
3575 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003576 struct array_cache *new_shared;
3577 struct array_cache **new_alien;
Christoph Lametere498be72005-09-09 13:03:32 -07003578
3579 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003580
Andrew Mortona737b3e2006-03-22 00:08:11 -08003581 new_alien = alloc_alien_cache(node, cachep->limit);
3582 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003583 goto fail;
Christoph Lametercafeb022006-03-25 03:06:46 -08003584
Christoph Lameter0718dc22006-03-25 03:06:47 -08003585 new_shared = alloc_arraycache(node,
3586 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003587 0xbaadf00d);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003588 if (!new_shared) {
3589 free_alien_cache(new_alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003590 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003591 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003592
Andrew Mortona737b3e2006-03-22 00:08:11 -08003593 l3 = cachep->nodelists[node];
3594 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003595 struct array_cache *shared = l3->shared;
3596
Christoph Lametere498be72005-09-09 13:03:32 -07003597 spin_lock_irq(&l3->list_lock);
3598
Christoph Lametercafeb022006-03-25 03:06:46 -08003599 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003600 free_block(cachep, shared->entry,
3601 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003602
Christoph Lametercafeb022006-03-25 03:06:46 -08003603 l3->shared = new_shared;
3604 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003605 l3->alien = new_alien;
3606 new_alien = NULL;
3607 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003608 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003609 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003610 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003611 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003612 free_alien_cache(new_alien);
3613 continue;
3614 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003615 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003616 if (!l3) {
3617 free_alien_cache(new_alien);
3618 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003619 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003620 }
Christoph Lametere498be72005-09-09 13:03:32 -07003621
3622 kmem_list3_init(l3);
3623 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003624 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003625 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003626 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003627 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003628 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003629 cachep->nodelists[node] = l3;
3630 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003631 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003632
Andrew Mortona737b3e2006-03-22 00:08:11 -08003633fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003634 if (!cachep->next.next) {
3635 /* Cache is not active yet. Roll back what we did */
3636 node--;
3637 while (node >= 0) {
3638 if (cachep->nodelists[node]) {
3639 l3 = cachep->nodelists[node];
3640
3641 kfree(l3->shared);
3642 free_alien_cache(l3->alien);
3643 kfree(l3);
3644 cachep->nodelists[node] = NULL;
3645 }
3646 node--;
3647 }
3648 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003649 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003650}
3651
Linus Torvalds1da177e2005-04-16 15:20:36 -07003652struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003653 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003654 struct array_cache *new[NR_CPUS];
3655};
3656
3657static void do_ccupdate_local(void *info)
3658{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003659 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003660 struct array_cache *old;
3661
3662 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003663 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003664
Linus Torvalds1da177e2005-04-16 15:20:36 -07003665 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3666 new->new[smp_processor_id()] = old;
3667}
3668
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003669/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003670static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3671 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003672{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003673 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003674 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003676 new = kzalloc(sizeof(*new), GFP_KERNEL);
3677 if (!new)
3678 return -ENOMEM;
3679
Christoph Lametere498be72005-09-09 13:03:32 -07003680 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003681 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003682 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003683 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003684 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003685 kfree(new->new[i]);
3686 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003687 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688 }
3689 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003690 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003691
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003692 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003693
Linus Torvalds1da177e2005-04-16 15:20:36 -07003694 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695 cachep->batchcount = batchcount;
3696 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003697 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003698
Christoph Lametere498be72005-09-09 13:03:32 -07003699 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003700 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003701 if (!ccold)
3702 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003703 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003704 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003705 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706 kfree(ccold);
3707 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003708 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003709 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003710}
3711
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003712/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003713static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714{
3715 int err;
3716 int limit, shared;
3717
Andrew Mortona737b3e2006-03-22 00:08:11 -08003718 /*
3719 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003720 * - create a LIFO ordering, i.e. return objects that are cache-warm
3721 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003722 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003723 * bufctl chains: array operations are cheaper.
3724 * The numbers are guessed, we should auto-tune as described by
3725 * Bonwick.
3726 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003727 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003728 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003729 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003730 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003731 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003732 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003733 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003734 limit = 54;
3735 else
3736 limit = 120;
3737
Andrew Mortona737b3e2006-03-22 00:08:11 -08003738 /*
3739 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003740 * allocation behaviour: Most allocs on one cpu, most free operations
3741 * on another cpu. For these cases, an efficient object passing between
3742 * cpus is necessary. This is provided by a shared array. The array
3743 * replaces Bonwick's magazine layer.
3744 * On uniprocessor, it's functionally equivalent (but less efficient)
3745 * to a larger limit. Thus disabled by default.
3746 */
3747 shared = 0;
3748#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003749 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750 shared = 8;
3751#endif
3752
3753#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003754 /*
3755 * With debugging enabled, large batchcount lead to excessively long
3756 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003757 */
3758 if (limit > 32)
3759 limit = 32;
3760#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003761 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003762 if (err)
3763 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003764 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003765 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003766}
3767
Christoph Lameter1b552532006-03-22 00:09:07 -08003768/*
3769 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003770 * necessary. Note that the l3 listlock also protects the array_cache
3771 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08003772 */
3773void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3774 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003775{
3776 int tofree;
3777
Christoph Lameter1b552532006-03-22 00:09:07 -08003778 if (!ac || !ac->avail)
3779 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003780 if (ac->touched && !force) {
3781 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003782 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08003783 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003784 if (ac->avail) {
3785 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3786 if (tofree > ac->avail)
3787 tofree = (ac->avail + 1) / 2;
3788 free_block(cachep, ac->entry, tofree, node);
3789 ac->avail -= tofree;
3790 memmove(ac->entry, &(ac->entry[tofree]),
3791 sizeof(void *) * ac->avail);
3792 }
Christoph Lameter1b552532006-03-22 00:09:07 -08003793 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003794 }
3795}
3796
3797/**
3798 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003799 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003800 *
3801 * Called from workqueue/eventd every few seconds.
3802 * Purpose:
3803 * - clear the per-cpu caches for this CPU.
3804 * - return freeable pages to the main free memory pool.
3805 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003806 * If we cannot acquire the cache chain mutex then just give up - we'll try
3807 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003808 */
3809static void cache_reap(void *unused)
3810{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003811 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07003812 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08003813 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003814
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003815 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003816 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003817 schedule_delayed_work(&__get_cpu_var(reap_work),
3818 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003819 return;
3820 }
3821
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003822 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003823 check_irq_on();
3824
Christoph Lameter35386e32006-03-22 00:09:05 -08003825 /*
3826 * We only take the l3 lock if absolutely necessary and we
3827 * have established with reasonable certainty that
3828 * we can do some work if the lock was obtained.
3829 */
Christoph Lameteraab22072006-03-22 00:09:06 -08003830 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08003831
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003832 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833
Christoph Lameteraab22072006-03-22 00:09:06 -08003834 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003835
Christoph Lameter35386e32006-03-22 00:09:05 -08003836 /*
3837 * These are racy checks but it does not matter
3838 * if we skip one check or scan twice.
3839 */
Christoph Lametere498be72005-09-09 13:03:32 -07003840 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08003841 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003842
Christoph Lametere498be72005-09-09 13:03:32 -07003843 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003844
Christoph Lameteraab22072006-03-22 00:09:06 -08003845 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003846
Christoph Lametered11d9e2006-06-30 01:55:45 -07003847 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07003848 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07003849 else {
3850 int freed;
3851
3852 freed = drain_freelist(searchp, l3, (l3->free_limit +
3853 5 * searchp->num - 1) / (5 * searchp->num));
3854 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003855 }
Christoph Lameter35386e32006-03-22 00:09:05 -08003856next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857 cond_resched();
3858 }
3859 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003860 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003861 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07003862 refresh_cpu_vm_stats(smp_processor_id());
Andrew Mortona737b3e2006-03-22 00:08:11 -08003863 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003864 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003865}
3866
3867#ifdef CONFIG_PROC_FS
3868
Pekka Enberg85289f92006-01-08 01:00:36 -08003869static void print_slabinfo_header(struct seq_file *m)
3870{
3871 /*
3872 * Output format version, so at least we can change it
3873 * without _too_ many complaints.
3874 */
3875#if STATS
3876 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3877#else
3878 seq_puts(m, "slabinfo - version: 2.1\n");
3879#endif
3880 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3881 "<objperslab> <pagesperslab>");
3882 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3883 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3884#if STATS
3885 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003886 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08003887 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3888#endif
3889 seq_putc(m, '\n');
3890}
3891
Linus Torvalds1da177e2005-04-16 15:20:36 -07003892static void *s_start(struct seq_file *m, loff_t *pos)
3893{
3894 loff_t n = *pos;
3895 struct list_head *p;
3896
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003897 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003898 if (!n)
3899 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003900 p = cache_chain.next;
3901 while (n--) {
3902 p = p->next;
3903 if (p == &cache_chain)
3904 return NULL;
3905 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003906 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003907}
3908
3909static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3910{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003911 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003912 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003913 return cachep->next.next == &cache_chain ?
3914 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003915}
3916
3917static void s_stop(struct seq_file *m, void *p)
3918{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003919 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003920}
3921
3922static int s_show(struct seq_file *m, void *p)
3923{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003924 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003925 struct slab *slabp;
3926 unsigned long active_objs;
3927 unsigned long num_objs;
3928 unsigned long active_slabs = 0;
3929 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003930 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003932 int node;
3933 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003934
Linus Torvalds1da177e2005-04-16 15:20:36 -07003935 active_objs = 0;
3936 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003937 for_each_online_node(node) {
3938 l3 = cachep->nodelists[node];
3939 if (!l3)
3940 continue;
3941
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003942 check_irq_on();
3943 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003944
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003945 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003946 if (slabp->inuse != cachep->num && !error)
3947 error = "slabs_full accounting error";
3948 active_objs += cachep->num;
3949 active_slabs++;
3950 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003951 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003952 if (slabp->inuse == cachep->num && !error)
3953 error = "slabs_partial inuse accounting error";
3954 if (!slabp->inuse && !error)
3955 error = "slabs_partial/inuse accounting error";
3956 active_objs += slabp->inuse;
3957 active_slabs++;
3958 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003959 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003960 if (slabp->inuse && !error)
3961 error = "slabs_free/inuse accounting error";
3962 num_slabs++;
3963 }
3964 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003965 if (l3->shared)
3966 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003967
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003968 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003969 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003970 num_slabs += active_slabs;
3971 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003972 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003973 error = "free_objects accounting error";
3974
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003975 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003976 if (error)
3977 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3978
3979 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003980 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003981 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003982 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003983 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003984 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003985 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003987 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003988 unsigned long high = cachep->high_mark;
3989 unsigned long allocs = cachep->num_allocations;
3990 unsigned long grown = cachep->grown;
3991 unsigned long reaped = cachep->reaped;
3992 unsigned long errors = cachep->errors;
3993 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003994 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003995 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003996 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003997
Christoph Lametere498be72005-09-09 13:03:32 -07003998 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003999 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004000 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004001 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002 }
4003 /* cpu stats */
4004 {
4005 unsigned long allochit = atomic_read(&cachep->allochit);
4006 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4007 unsigned long freehit = atomic_read(&cachep->freehit);
4008 unsigned long freemiss = atomic_read(&cachep->freemiss);
4009
4010 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004011 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004012 }
4013#endif
4014 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004015 return 0;
4016}
4017
4018/*
4019 * slabinfo_op - iterator that generates /proc/slabinfo
4020 *
4021 * Output layout:
4022 * cache-name
4023 * num-active-objs
4024 * total-objs
4025 * object size
4026 * num-active-slabs
4027 * total-slabs
4028 * num-pages-per-slab
4029 * + further values on SMP and with statistics enabled
4030 */
4031
4032struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004033 .start = s_start,
4034 .next = s_next,
4035 .stop = s_stop,
4036 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004037};
4038
4039#define MAX_SLABINFO_WRITE 128
4040/**
4041 * slabinfo_write - Tuning for the slab allocator
4042 * @file: unused
4043 * @buffer: user buffer
4044 * @count: data length
4045 * @ppos: unused
4046 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004047ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4048 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004049{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004050 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004051 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004052 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004053
Linus Torvalds1da177e2005-04-16 15:20:36 -07004054 if (count > MAX_SLABINFO_WRITE)
4055 return -EINVAL;
4056 if (copy_from_user(&kbuf, buffer, count))
4057 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004058 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004059
4060 tmp = strchr(kbuf, ' ');
4061 if (!tmp)
4062 return -EINVAL;
4063 *tmp = '\0';
4064 tmp++;
4065 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4066 return -EINVAL;
4067
4068 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004069 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004070 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004071 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004072 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004073 if (limit < 1 || batchcount < 1 ||
4074 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004075 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004076 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004077 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004078 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004079 }
4080 break;
4081 }
4082 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004083 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084 if (res >= 0)
4085 res = count;
4086 return res;
4087}
Al Viro871751e2006-03-25 03:06:39 -08004088
4089#ifdef CONFIG_DEBUG_SLAB_LEAK
4090
4091static void *leaks_start(struct seq_file *m, loff_t *pos)
4092{
4093 loff_t n = *pos;
4094 struct list_head *p;
4095
4096 mutex_lock(&cache_chain_mutex);
4097 p = cache_chain.next;
4098 while (n--) {
4099 p = p->next;
4100 if (p == &cache_chain)
4101 return NULL;
4102 }
4103 return list_entry(p, struct kmem_cache, next);
4104}
4105
4106static inline int add_caller(unsigned long *n, unsigned long v)
4107{
4108 unsigned long *p;
4109 int l;
4110 if (!v)
4111 return 1;
4112 l = n[1];
4113 p = n + 2;
4114 while (l) {
4115 int i = l/2;
4116 unsigned long *q = p + 2 * i;
4117 if (*q == v) {
4118 q[1]++;
4119 return 1;
4120 }
4121 if (*q > v) {
4122 l = i;
4123 } else {
4124 p = q + 2;
4125 l -= i + 1;
4126 }
4127 }
4128 if (++n[1] == n[0])
4129 return 0;
4130 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4131 p[0] = v;
4132 p[1] = 1;
4133 return 1;
4134}
4135
4136static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4137{
4138 void *p;
4139 int i;
4140 if (n[0] == n[1])
4141 return;
4142 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4143 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4144 continue;
4145 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4146 return;
4147 }
4148}
4149
4150static void show_symbol(struct seq_file *m, unsigned long address)
4151{
4152#ifdef CONFIG_KALLSYMS
4153 char *modname;
4154 const char *name;
4155 unsigned long offset, size;
4156 char namebuf[KSYM_NAME_LEN+1];
4157
4158 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4159
4160 if (name) {
4161 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4162 if (modname)
4163 seq_printf(m, " [%s]", modname);
4164 return;
4165 }
4166#endif
4167 seq_printf(m, "%p", (void *)address);
4168}
4169
4170static int leaks_show(struct seq_file *m, void *p)
4171{
4172 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004173 struct slab *slabp;
4174 struct kmem_list3 *l3;
4175 const char *name;
4176 unsigned long *n = m->private;
4177 int node;
4178 int i;
4179
4180 if (!(cachep->flags & SLAB_STORE_USER))
4181 return 0;
4182 if (!(cachep->flags & SLAB_RED_ZONE))
4183 return 0;
4184
4185 /* OK, we can do it */
4186
4187 n[1] = 0;
4188
4189 for_each_online_node(node) {
4190 l3 = cachep->nodelists[node];
4191 if (!l3)
4192 continue;
4193
4194 check_irq_on();
4195 spin_lock_irq(&l3->list_lock);
4196
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004197 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004198 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004199 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004200 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004201 spin_unlock_irq(&l3->list_lock);
4202 }
4203 name = cachep->name;
4204 if (n[0] == n[1]) {
4205 /* Increase the buffer size */
4206 mutex_unlock(&cache_chain_mutex);
4207 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4208 if (!m->private) {
4209 /* Too bad, we are really out */
4210 m->private = n;
4211 mutex_lock(&cache_chain_mutex);
4212 return -ENOMEM;
4213 }
4214 *(unsigned long *)m->private = n[0] * 2;
4215 kfree(n);
4216 mutex_lock(&cache_chain_mutex);
4217 /* Now make sure this entry will be retried */
4218 m->count = m->size;
4219 return 0;
4220 }
4221 for (i = 0; i < n[1]; i++) {
4222 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4223 show_symbol(m, n[2*i+2]);
4224 seq_putc(m, '\n');
4225 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004226
Al Viro871751e2006-03-25 03:06:39 -08004227 return 0;
4228}
4229
4230struct seq_operations slabstats_op = {
4231 .start = leaks_start,
4232 .next = s_next,
4233 .stop = s_stop,
4234 .show = leaks_show,
4235};
4236#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004237#endif
4238
Manfred Spraul00e145b2005-09-03 15:55:07 -07004239/**
4240 * ksize - get the actual amount of memory allocated for a given object
4241 * @objp: Pointer to the object
4242 *
4243 * kmalloc may internally round up allocations and return more memory
4244 * than requested. ksize() can be used to determine the actual amount of
4245 * memory allocated. The caller may use this additional memory, even though
4246 * a smaller amount of memory was initially specified with the kmalloc call.
4247 * The caller must guarantee that objp points to a valid object previously
4248 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4249 * must not be freed during the duration of the call.
4250 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004251unsigned int ksize(const void *objp)
4252{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004253 if (unlikely(objp == NULL))
4254 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004255
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08004256 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004257}