blob: ec165af865edd76564ea359fdf0dc45d487d7e6a [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Nicolas Geoffrayf3e2cc42014-02-18 18:37:26 +000017#include <string>
18#include <inttypes.h>
19
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
Mark Mendelle19c91f2014-02-25 08:19:08 -080023#include "mirror/array.h"
24#include "mirror/string.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070025#include "x86_lir.h"
26
Brian Carlstrom7940e442013-07-12 13:46:57 -070027namespace art {
28
Vladimir Marko089142c2014-06-05 10:57:05 +010029static constexpr RegStorage core_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070030 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
Vladimir Marko089142c2014-06-05 10:57:05 +010032static constexpr RegStorage core_regs_arr_64[] = {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070033 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
buzbee091cc402014-03-31 10:14:40 -070034 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
Brian Carlstrom7940e442013-07-12 13:46:57 -070035};
Vladimir Marko089142c2014-06-05 10:57:05 +010036static constexpr RegStorage core_regs_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070037 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
Dmitry Petrochenkoa20468c2014-04-30 13:40:19 +070038 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070039};
Vladimir Marko089142c2014-06-05 10:57:05 +010040static constexpr RegStorage sp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070041 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
42};
Vladimir Marko089142c2014-06-05 10:57:05 +010043static constexpr RegStorage sp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070044 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070045 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070046};
Vladimir Marko089142c2014-06-05 10:57:05 +010047static constexpr RegStorage dp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070048 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
49};
Vladimir Marko089142c2014-06-05 10:57:05 +010050static constexpr RegStorage dp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070051 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070052 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070053};
Vladimir Marko089142c2014-06-05 10:57:05 +010054static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070055static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
Vladimir Marko089142c2014-06-05 10:57:05 +010056static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
57static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
58static constexpr RegStorage core_temps_arr_64[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070059 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070060 rs_r8, rs_r9, rs_r10, rs_r11
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070061};
Vladimir Marko089142c2014-06-05 10:57:05 +010062static constexpr RegStorage core_temps_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070063 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070064 rs_r8q, rs_r9q, rs_r10q, rs_r11q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070065};
Vladimir Marko089142c2014-06-05 10:57:05 +010066static constexpr RegStorage sp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070067 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
68};
Vladimir Marko089142c2014-06-05 10:57:05 +010069static constexpr RegStorage sp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070070 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070071 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
buzbee091cc402014-03-31 10:14:40 -070072};
Vladimir Marko089142c2014-06-05 10:57:05 +010073static constexpr RegStorage dp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070074 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
75};
Vladimir Marko089142c2014-06-05 10:57:05 +010076static constexpr RegStorage dp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070077 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070078 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
buzbee091cc402014-03-31 10:14:40 -070079};
80
Vladimir Marko089142c2014-06-05 10:57:05 +010081static constexpr RegStorage xp_temps_arr_32[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040082 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
83};
Vladimir Marko089142c2014-06-05 10:57:05 +010084static constexpr RegStorage xp_temps_arr_64[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040085 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
Mark Mendellfe945782014-05-22 09:52:36 -040086 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
Mark Mendellfe945782014-05-22 09:52:36 -040087};
88
Vladimir Marko089142c2014-06-05 10:57:05 +010089static constexpr ArrayRef<const RegStorage> empty_pool;
90static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
91static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
92static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
93static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
94static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
95static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
96static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
97static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
98static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
100static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
101static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
102static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
103static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
104static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
105static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
106static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700107
Vladimir Marko089142c2014-06-05 10:57:05 +0100108static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
109static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
Mark Mendellfe945782014-05-22 09:52:36 -0400110
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700111RegStorage rs_rX86_SP;
112
113X86NativeRegisterPool rX86_ARG0;
114X86NativeRegisterPool rX86_ARG1;
115X86NativeRegisterPool rX86_ARG2;
116X86NativeRegisterPool rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700117X86NativeRegisterPool rX86_ARG4;
118X86NativeRegisterPool rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700119X86NativeRegisterPool rX86_FARG0;
120X86NativeRegisterPool rX86_FARG1;
121X86NativeRegisterPool rX86_FARG2;
122X86NativeRegisterPool rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700123X86NativeRegisterPool rX86_FARG4;
124X86NativeRegisterPool rX86_FARG5;
125X86NativeRegisterPool rX86_FARG6;
126X86NativeRegisterPool rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700127X86NativeRegisterPool rX86_RET0;
128X86NativeRegisterPool rX86_RET1;
129X86NativeRegisterPool rX86_INVOKE_TGT;
130X86NativeRegisterPool rX86_COUNT;
131
132RegStorage rs_rX86_ARG0;
133RegStorage rs_rX86_ARG1;
134RegStorage rs_rX86_ARG2;
135RegStorage rs_rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700136RegStorage rs_rX86_ARG4;
137RegStorage rs_rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700138RegStorage rs_rX86_FARG0;
139RegStorage rs_rX86_FARG1;
140RegStorage rs_rX86_FARG2;
141RegStorage rs_rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700142RegStorage rs_rX86_FARG4;
143RegStorage rs_rX86_FARG5;
144RegStorage rs_rX86_FARG6;
145RegStorage rs_rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700146RegStorage rs_rX86_RET0;
147RegStorage rs_rX86_RET1;
148RegStorage rs_rX86_INVOKE_TGT;
149RegStorage rs_rX86_COUNT;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700150
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700151RegLocation X86Mir2Lir::LocCReturn() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000152 return x86_loc_c_return;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700153}
154
buzbeea0cd2d72014-06-01 09:33:49 -0700155RegLocation X86Mir2Lir::LocCReturnRef() {
156 // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
157 return x86_loc_c_return;
158}
159
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700160RegLocation X86Mir2Lir::LocCReturnWide() {
Chao-ying Fua0147762014-06-06 18:38:49 -0700161 return Gen64Bit() ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162}
163
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700164RegLocation X86Mir2Lir::LocCReturnFloat() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000165 return x86_loc_c_return_float;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700166}
167
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700168RegLocation X86Mir2Lir::LocCReturnDouble() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000169 return x86_loc_c_return_double;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700170}
171
172// Return a target-dependent special register.
buzbee2700f7e2014-03-07 09:46:20 -0800173RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
buzbee091cc402014-03-31 10:14:40 -0700174 RegStorage res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700175 switch (reg) {
buzbee091cc402014-03-31 10:14:40 -0700176 case kSelf: res_reg = RegStorage::InvalidReg(); break;
177 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
178 case kLr: res_reg = RegStorage::InvalidReg(); break;
179 case kPc: res_reg = RegStorage::InvalidReg(); break;
180 case kSp: res_reg = rs_rX86_SP; break;
181 case kArg0: res_reg = rs_rX86_ARG0; break;
182 case kArg1: res_reg = rs_rX86_ARG1; break;
183 case kArg2: res_reg = rs_rX86_ARG2; break;
184 case kArg3: res_reg = rs_rX86_ARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700185 case kArg4: res_reg = rs_rX86_ARG4; break;
186 case kArg5: res_reg = rs_rX86_ARG5; break;
buzbee091cc402014-03-31 10:14:40 -0700187 case kFArg0: res_reg = rs_rX86_FARG0; break;
188 case kFArg1: res_reg = rs_rX86_FARG1; break;
189 case kFArg2: res_reg = rs_rX86_FARG2; break;
190 case kFArg3: res_reg = rs_rX86_FARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700191 case kFArg4: res_reg = rs_rX86_FARG4; break;
192 case kFArg5: res_reg = rs_rX86_FARG5; break;
193 case kFArg6: res_reg = rs_rX86_FARG6; break;
194 case kFArg7: res_reg = rs_rX86_FARG7; break;
buzbee091cc402014-03-31 10:14:40 -0700195 case kRet0: res_reg = rs_rX86_RET0; break;
196 case kRet1: res_reg = rs_rX86_RET1; break;
197 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198 case kHiddenArg: res_reg = rs_rAX; break;
Mark Mendelld3703d82014-06-09 15:10:50 -0400199 case kHiddenFpArg: DCHECK(!Gen64Bit()); res_reg = rs_fr0; break;
buzbee091cc402014-03-31 10:14:40 -0700200 case kCount: res_reg = rs_rX86_COUNT; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700201 default: res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700202 }
buzbee091cc402014-03-31 10:14:40 -0700203 return res_reg;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700204}
205
Brian Carlstrom7940e442013-07-12 13:46:57 -0700206/*
207 * Decode the register id.
208 */
buzbee091cc402014-03-31 10:14:40 -0700209uint64_t X86Mir2Lir::GetRegMaskCommon(RegStorage reg) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700210 uint64_t seed;
211 int shift;
212 int reg_id;
213
buzbee091cc402014-03-31 10:14:40 -0700214 reg_id = reg.GetRegNum();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700215 /* Double registers in x86 are just a single FP register */
216 seed = 1;
217 /* FP register starts at bit position 16 */
Mark Mendellfe945782014-05-22 09:52:36 -0400218 shift = (reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700219 /* Expand the double register id into single offset */
220 shift += reg_id;
221 return (seed << shift);
222}
223
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700224uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700225 /*
226 * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
227 * able to clean up some of the x86/Arm_Mips differences
228 */
229 LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
230 return 0ULL;
231}
232
buzbeeb48819d2013-09-14 16:15:25 -0700233void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700234 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
buzbeeb48819d2013-09-14 16:15:25 -0700235 DCHECK(!lir->flags.use_def_invalid);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700236
237 // X86-specific resource map setup here.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700238 if (flags & REG_USE_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700239 lir->u.m.use_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700240 }
241
242 if (flags & REG_DEF_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700243 lir->u.m.def_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700244 }
245
246 if (flags & REG_DEFA) {
buzbee091cc402014-03-31 10:14:40 -0700247 SetupRegMask(&lir->u.m.def_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700248 }
249
250 if (flags & REG_DEFD) {
buzbee091cc402014-03-31 10:14:40 -0700251 SetupRegMask(&lir->u.m.def_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700252 }
253 if (flags & REG_USEA) {
buzbee091cc402014-03-31 10:14:40 -0700254 SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700255 }
256
257 if (flags & REG_USEC) {
buzbee091cc402014-03-31 10:14:40 -0700258 SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700259 }
260
261 if (flags & REG_USED) {
buzbee091cc402014-03-31 10:14:40 -0700262 SetupRegMask(&lir->u.m.use_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700263 }
Vladimir Marko70b797d2013-12-03 15:25:24 +0000264
265 if (flags & REG_USEB) {
buzbee091cc402014-03-31 10:14:40 -0700266 SetupRegMask(&lir->u.m.use_mask, rs_rBX.GetReg());
Vladimir Marko70b797d2013-12-03 15:25:24 +0000267 }
Mark Mendell4028a6c2014-02-19 20:06:20 -0800268
269 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
270 if (lir->opcode == kX86RepneScasw) {
buzbee091cc402014-03-31 10:14:40 -0700271 SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
272 SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
273 SetupRegMask(&lir->u.m.use_mask, rs_rDI.GetReg());
274 SetupRegMask(&lir->u.m.def_mask, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -0800275 }
Serguei Katkove90501d2014-03-12 15:56:54 +0700276
277 if (flags & USE_FP_STACK) {
278 lir->u.m.use_mask |= ENCODE_X86_FP_STACK;
279 lir->u.m.def_mask |= ENCODE_X86_FP_STACK;
280 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700281}
282
283/* For dumping instructions */
284static const char* x86RegName[] = {
285 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
286 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
287};
288
289static const char* x86CondName[] = {
290 "O",
291 "NO",
292 "B/NAE/C",
293 "NB/AE/NC",
294 "Z/EQ",
295 "NZ/NE",
296 "BE/NA",
297 "NBE/A",
298 "S",
299 "NS",
300 "P/PE",
301 "NP/PO",
302 "L/NGE",
303 "NL/GE",
304 "LE/NG",
305 "NLE/G"
306};
307
308/*
309 * Interpret a format string and build a string no longer than size
310 * See format key in Assemble.cc.
311 */
312std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
313 std::string buf;
314 size_t i = 0;
315 size_t fmt_len = strlen(fmt);
316 while (i < fmt_len) {
317 if (fmt[i] != '!') {
318 buf += fmt[i];
319 i++;
320 } else {
321 i++;
322 DCHECK_LT(i, fmt_len);
323 char operand_number_ch = fmt[i];
324 i++;
325 if (operand_number_ch == '!') {
326 buf += "!";
327 } else {
328 int operand_number = operand_number_ch - '0';
329 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
330 DCHECK_LT(i, fmt_len);
331 int operand = lir->operands[operand_number];
332 switch (fmt[i]) {
333 case 'c':
334 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
335 buf += x86CondName[operand];
336 break;
337 case 'd':
338 buf += StringPrintf("%d", operand);
339 break;
340 case 'p': {
buzbee0d829482013-10-11 15:24:55 -0700341 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700342 buf += StringPrintf("0x%08x", tab_rec->offset);
343 break;
344 }
345 case 'r':
buzbee091cc402014-03-31 10:14:40 -0700346 if (RegStorage::IsFloat(operand)) {
347 int fp_reg = RegStorage::RegNum(operand);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700348 buf += StringPrintf("xmm%d", fp_reg);
349 } else {
buzbee091cc402014-03-31 10:14:40 -0700350 int reg_num = RegStorage::RegNum(operand);
351 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
352 buf += x86RegName[reg_num];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700353 }
354 break;
355 case 't':
Ian Rogers107c31e2014-01-23 20:55:29 -0800356 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
357 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
358 lir->target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700359 break;
360 default:
361 buf += StringPrintf("DecodeError '%c'", fmt[i]);
362 break;
363 }
364 i++;
365 }
366 }
367 }
368 return buf;
369}
370
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700371void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700372 char buf[256];
373 buf[0] = 0;
374
375 if (mask == ENCODE_ALL) {
376 strcpy(buf, "all");
377 } else {
378 char num[8];
379 int i;
380
381 for (i = 0; i < kX86RegEnd; i++) {
382 if (mask & (1ULL << i)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800383 snprintf(num, arraysize(num), "%d ", i);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700384 strcat(buf, num);
385 }
386 }
387
388 if (mask & ENCODE_CCODE) {
389 strcat(buf, "cc ");
390 }
391 /* Memory bits */
392 if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800393 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
394 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
395 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
Brian Carlstrom7940e442013-07-12 13:46:57 -0700396 }
397 if (mask & ENCODE_LITERAL) {
398 strcat(buf, "lit ");
399 }
400
401 if (mask & ENCODE_HEAP_REF) {
402 strcat(buf, "heap ");
403 }
404 if (mask & ENCODE_MUST_NOT_ALIAS) {
405 strcat(buf, "noalias ");
406 }
407 }
408 if (buf[0]) {
409 LOG(INFO) << prefix << ": " << buf;
410 }
411}
412
413void X86Mir2Lir::AdjustSpillMask() {
414 // Adjustment for LR spilling, x86 has no LR so nothing to do here
buzbee091cc402014-03-31 10:14:40 -0700415 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700416 num_core_spills_++;
417}
418
419/*
420 * Mark a callee-save fp register as promoted. Note that
421 * vpush/vpop uses contiguous register lists so we must
422 * include any holes in the mask. Associate holes with
423 * Dalvik register INVALID_VREG (0xFFFFU).
424 */
buzbee091cc402014-03-31 10:14:40 -0700425void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
426 UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
Brian Carlstrom7940e442013-07-12 13:46:57 -0700427}
428
buzbee091cc402014-03-31 10:14:40 -0700429void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
430 UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
buzbee2700f7e2014-03-07 09:46:20 -0800431}
432
Mark Mendelle87f9b52014-04-30 14:13:18 -0400433RegStorage X86Mir2Lir::AllocateByteRegister() {
434 return AllocTypedTemp(false, kCoreReg);
435}
436
Brian Carlstrom7940e442013-07-12 13:46:57 -0700437/* Clobber all regs that might be used by an external C call */
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000438void X86Mir2Lir::ClobberCallerSave() {
buzbee091cc402014-03-31 10:14:40 -0700439 Clobber(rs_rAX);
440 Clobber(rs_rCX);
441 Clobber(rs_rDX);
442 Clobber(rs_rBX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700443}
444
445RegLocation X86Mir2Lir::GetReturnWideAlt() {
446 RegLocation res = LocCReturnWide();
buzbee091cc402014-03-31 10:14:40 -0700447 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
448 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
449 Clobber(rs_rAX);
450 Clobber(rs_rDX);
451 MarkInUse(rs_rAX);
452 MarkInUse(rs_rDX);
453 MarkWide(res.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700454 return res;
455}
456
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700457RegLocation X86Mir2Lir::GetReturnAlt() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700458 RegLocation res = LocCReturn();
buzbee091cc402014-03-31 10:14:40 -0700459 res.reg.SetReg(rs_rDX.GetReg());
460 Clobber(rs_rDX);
461 MarkInUse(rs_rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700462 return res;
463}
464
Brian Carlstrom7940e442013-07-12 13:46:57 -0700465/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700466void X86Mir2Lir::LockCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700467 LockTemp(rs_rX86_ARG0);
468 LockTemp(rs_rX86_ARG1);
469 LockTemp(rs_rX86_ARG2);
470 LockTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700471 if (Gen64Bit()) {
472 LockTemp(rs_rX86_ARG4);
473 LockTemp(rs_rX86_ARG5);
474 LockTemp(rs_rX86_FARG0);
475 LockTemp(rs_rX86_FARG1);
476 LockTemp(rs_rX86_FARG2);
477 LockTemp(rs_rX86_FARG3);
478 LockTemp(rs_rX86_FARG4);
479 LockTemp(rs_rX86_FARG5);
480 LockTemp(rs_rX86_FARG6);
481 LockTemp(rs_rX86_FARG7);
482 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700483}
484
485/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700486void X86Mir2Lir::FreeCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700487 FreeTemp(rs_rX86_ARG0);
488 FreeTemp(rs_rX86_ARG1);
489 FreeTemp(rs_rX86_ARG2);
490 FreeTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700491 if (Gen64Bit()) {
492 FreeTemp(rs_rX86_ARG4);
493 FreeTemp(rs_rX86_ARG5);
494 FreeTemp(rs_rX86_FARG0);
495 FreeTemp(rs_rX86_FARG1);
496 FreeTemp(rs_rX86_FARG2);
497 FreeTemp(rs_rX86_FARG3);
498 FreeTemp(rs_rX86_FARG4);
499 FreeTemp(rs_rX86_FARG5);
500 FreeTemp(rs_rX86_FARG6);
501 FreeTemp(rs_rX86_FARG7);
502 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700503}
504
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800505bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
506 switch (opcode) {
507 case kX86LockCmpxchgMR:
508 case kX86LockCmpxchgAR:
Ian Rogers0f9b9c52014-06-09 01:32:12 -0700509 case kX86LockCmpxchg64M:
510 case kX86LockCmpxchg64A:
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800511 case kX86XchgMR:
512 case kX86Mfence:
513 // Atomic memory instructions provide full barrier.
514 return true;
515 default:
516 break;
517 }
518
519 // Conservative if cannot prove it provides full barrier.
520 return false;
521}
522
Andreas Gampeb14329f2014-05-15 11:16:06 -0700523bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700524#if ANDROID_SMP != 0
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800525 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
526 LIR* mem_barrier = last_lir_insn_;
527
Andreas Gampeb14329f2014-05-15 11:16:06 -0700528 bool ret = false;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800529 /*
530 * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
531 * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
532 * to ensure is that there is a scheduling barrier in place.
533 */
534 if (barrier_kind == kStoreLoad) {
535 // If no LIR exists already that can be used a barrier, then generate an mfence.
536 if (mem_barrier == nullptr) {
537 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700538 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800539 }
540
541 // If last instruction does not provide full barrier, then insert an mfence.
542 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
543 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700544 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800545 }
546 }
547
548 // Now ensure that a scheduling barrier is in place.
549 if (mem_barrier == nullptr) {
550 GenBarrier();
551 } else {
552 // Mark as a scheduling barrier.
553 DCHECK(!mem_barrier->flags.use_def_invalid);
554 mem_barrier->u.m.def_mask = ENCODE_ALL;
555 }
Andreas Gampeb14329f2014-05-15 11:16:06 -0700556 return ret;
557#else
558 return false;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700559#endif
560}
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000561
Brian Carlstrom7940e442013-07-12 13:46:57 -0700562void X86Mir2Lir::CompilerInitializeRegAlloc() {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700563 if (Gen64Bit()) {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700564 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
565 dp_regs_64, reserved_regs_64, reserved_regs_64q,
566 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700567 } else {
buzbeeb01bf152014-05-13 15:59:07 -0700568 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
569 dp_regs_32, reserved_regs_32, empty_pool,
570 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700571 }
buzbee091cc402014-03-31 10:14:40 -0700572
573 // Target-specific adjustments.
574
Mark Mendellfe945782014-05-22 09:52:36 -0400575 // Add in XMM registers.
Vladimir Marko089142c2014-06-05 10:57:05 +0100576 const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
Mark Mendellfe945782014-05-22 09:52:36 -0400577 for (RegStorage reg : *xp_temps) {
578 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
579 reginfo_map_.Put(reg.GetReg(), info);
580 info->SetIsTemp(true);
581 }
582
buzbee091cc402014-03-31 10:14:40 -0700583 // Alias single precision xmm to double xmms.
584 // TODO: as needed, add larger vector sizes - alias all to the largest.
585 GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
586 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
587 int sp_reg_num = info->GetReg().GetRegNum();
Mark Mendellfe945782014-05-22 09:52:36 -0400588 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
589 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
590 // 128-bit xmm vector register's master storage should refer to itself.
591 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
592
593 // Redirect 32-bit vector's master storage to 128-bit vector.
594 info->SetMaster(xp_reg_info);
595
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700596 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
buzbee091cc402014-03-31 10:14:40 -0700597 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
Mark Mendellfe945782014-05-22 09:52:36 -0400598 // Redirect 64-bit vector's master storage to 128-bit vector.
599 dp_reg_info->SetMaster(xp_reg_info);
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700600 // Singles should show a single 32-bit mask bit, at first referring to the low half.
601 DCHECK_EQ(info->StorageMask(), 0x1U);
602 }
603
604 if (Gen64Bit()) {
605 // Alias 32bit W registers to corresponding 64bit X registers.
606 GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
607 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
608 int x_reg_num = info->GetReg().GetRegNum();
609 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
610 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
611 // 64bit X register's master storage should refer to itself.
612 DCHECK_EQ(x_reg_info, x_reg_info->Master());
613 // Redirect 32bit W master storage to 64bit X.
614 info->SetMaster(x_reg_info);
615 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
616 DCHECK_EQ(info->StorageMask(), 0x1U);
617 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700618 }
buzbee091cc402014-03-31 10:14:40 -0700619
620 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
621 // TODO: adjust for x86/hard float calling convention.
622 reg_pool_->next_core_reg_ = 2;
623 reg_pool_->next_sp_reg_ = 2;
624 reg_pool_->next_dp_reg_ = 1;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700625}
626
Brian Carlstrom7940e442013-07-12 13:46:57 -0700627void X86Mir2Lir::SpillCoreRegs() {
628 if (num_core_spills_ == 0) {
629 return;
630 }
631 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700632 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700633 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700634 for (int reg = 0; mask; mask >>= 1, reg++) {
635 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800636 StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700637 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700638 }
639 }
640}
641
642void X86Mir2Lir::UnSpillCoreRegs() {
643 if (num_core_spills_ == 0) {
644 return;
645 }
646 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700647 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700648 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700649 for (int reg = 0; mask; mask >>= 1, reg++) {
650 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800651 LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700652 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700653 }
654 }
655}
656
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700657bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700658 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
659}
660
Vladimir Marko674744e2014-04-24 15:18:26 +0100661bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
662 return true;
663}
664
665RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
Chao-ying Fue0ccdc02014-06-06 17:32:37 -0700666 // X86_64 can handle any size.
667 if (Gen64Bit()) {
668 if (size == kReference) {
669 return kRefReg;
670 }
671 return kCoreReg;
672 }
673
Vladimir Marko674744e2014-04-24 15:18:26 +0100674 if (UNLIKELY(is_volatile)) {
675 // On x86, atomic 64-bit load/store requires an fp register.
676 // Smaller aligned load/store is atomic for both core and fp registers.
677 if (size == k64 || size == kDouble) {
678 return kFPReg;
679 }
680 }
681 return RegClassBySize(size);
682}
683
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700684X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
Mark Mendell55d0eac2014-02-06 11:02:52 -0800685 : Mir2Lir(cu, mir_graph, arena),
Ian Rogersdd7624d2014-03-14 17:43:00 -0700686 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800687 method_address_insns_(arena, 100, kGrowableArrayMisc),
688 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendellae9fd932014-02-10 16:14:35 -0800689 call_method_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendelld65c51a2014-04-29 16:55:20 -0400690 stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
691 const_vectors_(nullptr) {
692 store_method_addr_used_ = false;
Ian Rogersdd7624d2014-03-14 17:43:00 -0700693 if (kIsDebugBuild) {
694 for (int i = 0; i < kX86Last; i++) {
695 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
696 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
Mark Mendelld65c51a2014-04-29 16:55:20 -0400697 << " is wrong: expecting " << i << ", seeing "
698 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
Ian Rogersdd7624d2014-03-14 17:43:00 -0700699 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700700 }
701 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700702 if (Gen64Bit()) {
703 rs_rX86_SP = rs_rX86_SP_64;
704
705 rs_rX86_ARG0 = rs_rDI;
706 rs_rX86_ARG1 = rs_rSI;
707 rs_rX86_ARG2 = rs_rDX;
708 rs_rX86_ARG3 = rs_rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700709 rs_rX86_ARG4 = rs_r8;
710 rs_rX86_ARG5 = rs_r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700711 rs_rX86_FARG0 = rs_fr0;
712 rs_rX86_FARG1 = rs_fr1;
713 rs_rX86_FARG2 = rs_fr2;
714 rs_rX86_FARG3 = rs_fr3;
715 rs_rX86_FARG4 = rs_fr4;
716 rs_rX86_FARG5 = rs_fr5;
717 rs_rX86_FARG6 = rs_fr6;
718 rs_rX86_FARG7 = rs_fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700719 rX86_ARG0 = rDI;
720 rX86_ARG1 = rSI;
721 rX86_ARG2 = rDX;
722 rX86_ARG3 = rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700723 rX86_ARG4 = r8;
724 rX86_ARG5 = r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700725 rX86_FARG0 = fr0;
726 rX86_FARG1 = fr1;
727 rX86_FARG2 = fr2;
728 rX86_FARG3 = fr3;
729 rX86_FARG4 = fr4;
730 rX86_FARG5 = fr5;
731 rX86_FARG6 = fr6;
732 rX86_FARG7 = fr7;
Mark Mendell55884bc2014-06-10 10:21:29 -0400733 rs_rX86_INVOKE_TGT = rs_rDI;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700734 } else {
735 rs_rX86_SP = rs_rX86_SP_32;
736
737 rs_rX86_ARG0 = rs_rAX;
738 rs_rX86_ARG1 = rs_rCX;
739 rs_rX86_ARG2 = rs_rDX;
740 rs_rX86_ARG3 = rs_rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700741 rs_rX86_ARG4 = RegStorage::InvalidReg();
742 rs_rX86_ARG5 = RegStorage::InvalidReg();
743 rs_rX86_FARG0 = rs_rAX;
744 rs_rX86_FARG1 = rs_rCX;
745 rs_rX86_FARG2 = rs_rDX;
746 rs_rX86_FARG3 = rs_rBX;
747 rs_rX86_FARG4 = RegStorage::InvalidReg();
748 rs_rX86_FARG5 = RegStorage::InvalidReg();
749 rs_rX86_FARG6 = RegStorage::InvalidReg();
750 rs_rX86_FARG7 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700751 rX86_ARG0 = rAX;
752 rX86_ARG1 = rCX;
753 rX86_ARG2 = rDX;
754 rX86_ARG3 = rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700755 rX86_FARG0 = rAX;
756 rX86_FARG1 = rCX;
757 rX86_FARG2 = rDX;
758 rX86_FARG3 = rBX;
Mark Mendell55884bc2014-06-10 10:21:29 -0400759 rs_rX86_INVOKE_TGT = rs_rAX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700760 // TODO(64): Initialize with invalid reg
761// rX86_ARG4 = RegStorage::InvalidReg();
762// rX86_ARG5 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700763 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700764 rs_rX86_RET0 = rs_rAX;
765 rs_rX86_RET1 = rs_rDX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700766 rs_rX86_COUNT = rs_rCX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700767 rX86_RET0 = rAX;
768 rX86_RET1 = rDX;
769 rX86_INVOKE_TGT = rAX;
770 rX86_COUNT = rCX;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700771}
772
773Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
774 ArenaAllocator* const arena) {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700775 return new X86Mir2Lir(cu, mir_graph, arena, false);
776}
777
778Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
779 ArenaAllocator* const arena) {
780 return new X86Mir2Lir(cu, mir_graph, arena, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700781}
782
783// Not used in x86
Ian Rogersdd7624d2014-03-14 17:43:00 -0700784RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700785 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
buzbee2700f7e2014-03-07 09:46:20 -0800786 return RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700787}
788
Andreas Gampe2f244e92014-05-08 03:35:25 -0700789// Not used in x86
790RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
791 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
792 return RegStorage::InvalidReg();
793}
794
Dave Allisonb373e092014-02-20 16:06:36 -0800795LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
796 LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
797 return nullptr;
798}
799
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700800uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700801 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700802 return X86Mir2Lir::EncodingMap[opcode].flags;
803}
804
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700805const char* X86Mir2Lir::GetTargetInstName(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700806 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700807 return X86Mir2Lir::EncodingMap[opcode].name;
808}
809
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700810const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700811 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700812 return X86Mir2Lir::EncodingMap[opcode].fmt;
813}
814
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000815void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
816 // Can we do this directly to memory?
817 rl_dest = UpdateLocWide(rl_dest);
818 if ((rl_dest.location == kLocDalvikFrame) ||
819 (rl_dest.location == kLocCompilerTemp)) {
820 int32_t val_lo = Low32Bits(value);
821 int32_t val_hi = High32Bits(value);
buzbee2700f7e2014-03-07 09:46:20 -0800822 int r_base = TargetReg(kSp).GetReg();
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000823 int displacement = SRegOffset(rl_dest.s_reg_low);
824
buzbee2700f7e2014-03-07 09:46:20 -0800825 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000826 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
827 false /* is_load */, true /* is64bit */);
buzbee2700f7e2014-03-07 09:46:20 -0800828 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000829 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
830 false /* is_load */, true /* is64bit */);
831 return;
832 }
833
834 // Just use the standard code to do the generation.
835 Mir2Lir::GenConstWide(rl_dest, value);
836}
Mark Mendelle02d48f2014-01-15 11:19:23 -0800837
838// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
839void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
840 LOG(INFO) << "location: " << loc.location << ','
841 << (loc.wide ? " w" : " ")
842 << (loc.defined ? " D" : " ")
843 << (loc.is_const ? " c" : " ")
844 << (loc.fp ? " F" : " ")
845 << (loc.core ? " C" : " ")
846 << (loc.ref ? " r" : " ")
847 << (loc.high_word ? " h" : " ")
848 << (loc.home ? " H" : " ")
buzbee2700f7e2014-03-07 09:46:20 -0800849 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000850 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
Mark Mendelle02d48f2014-01-15 11:19:23 -0800851 << ", s_reg: " << loc.s_reg_low
852 << ", orig: " << loc.orig_sreg;
853}
854
Mark Mendell67c39c42014-01-31 17:28:00 -0800855void X86Mir2Lir::Materialize() {
856 // A good place to put the analysis before starting.
857 AnalyzeMIR();
858
859 // Now continue with regular code generation.
860 Mir2Lir::Materialize();
861}
862
Jeff Hao49161ce2014-03-12 11:05:25 -0700863void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
Mark Mendell55d0eac2014-02-06 11:02:52 -0800864 SpecialTargetRegister symbolic_reg) {
865 /*
866 * For x86, just generate a 32 bit move immediate instruction, that will be filled
867 * in at 'link time'. For now, put a unique value based on target to ensure that
868 * code deduplication works.
869 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700870 int target_method_idx = target_method.dex_method_index;
871 const DexFile* target_dex_file = target_method.dex_file;
872 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
873 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800874
Jeff Hao49161ce2014-03-12 11:05:25 -0700875 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
buzbee2700f7e2014-03-07 09:46:20 -0800876 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Jeff Hao49161ce2014-03-12 11:05:25 -0700877 static_cast<int>(target_method_id_ptr), target_method_idx,
878 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800879 AppendLIR(move);
880 method_address_insns_.Insert(move);
881}
882
883void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
884 /*
885 * For x86, just generate a 32 bit move immediate instruction, that will be filled
886 * in at 'link time'. For now, put a unique value based on target to ensure that
887 * code deduplication works.
888 */
889 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
890 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
891
892 // Generate the move instruction with the unique pointer and save index and type.
buzbee2700f7e2014-03-07 09:46:20 -0800893 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800894 static_cast<int>(ptr), type_idx);
895 AppendLIR(move);
896 class_type_address_insns_.Insert(move);
897}
898
Jeff Hao49161ce2014-03-12 11:05:25 -0700899LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800900 /*
901 * For x86, just generate a 32 bit call relative instruction, that will be filled
902 * in at 'link time'. For now, put a unique value based on target to ensure that
903 * code deduplication works.
904 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700905 int target_method_idx = target_method.dex_method_index;
906 const DexFile* target_dex_file = target_method.dex_file;
907 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
908 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800909
Jeff Hao49161ce2014-03-12 11:05:25 -0700910 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
911 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
912 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800913 AppendLIR(call);
914 call_method_insns_.Insert(call);
915 return call;
916}
917
Mark Mendelld65c51a2014-04-29 16:55:20 -0400918/*
919 * @brief Enter a 32 bit quantity into a buffer
920 * @param buf buffer.
921 * @param data Data value.
922 */
923
924static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
925 buf.push_back(data & 0xff);
926 buf.push_back((data >> 8) & 0xff);
927 buf.push_back((data >> 16) & 0xff);
928 buf.push_back((data >> 24) & 0xff);
929}
930
Mark Mendell55d0eac2014-02-06 11:02:52 -0800931void X86Mir2Lir::InstallLiteralPools() {
932 // These are handled differently for x86.
933 DCHECK(code_literal_list_ == nullptr);
934 DCHECK(method_literal_list_ == nullptr);
935 DCHECK(class_literal_list_ == nullptr);
936
Mark Mendelld65c51a2014-04-29 16:55:20 -0400937 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
938 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
939 // will fail at runtime)?
940 if (const_vectors_ != nullptr) {
941 int align_size = (16-4) - (code_buffer_.size() & 0xF);
942 if (align_size < 0) {
943 align_size += 16;
944 }
945
946 while (align_size > 0) {
947 code_buffer_.push_back(0);
948 align_size--;
949 }
950 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
951 PushWord(code_buffer_, p->operands[0]);
952 PushWord(code_buffer_, p->operands[1]);
953 PushWord(code_buffer_, p->operands[2]);
954 PushWord(code_buffer_, p->operands[3]);
955 }
956 }
957
Mark Mendell55d0eac2014-02-06 11:02:52 -0800958 // Handle the fixups for methods.
959 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
960 LIR* p = method_address_insns_.Get(i);
961 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700962 uint32_t target_method_idx = p->operands[2];
963 const DexFile* target_dex_file =
964 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800965
966 // The offset to patch is the last 4 bytes of the instruction.
967 int patch_offset = p->offset + p->flags.size - 4;
968 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
969 cu_->method_idx, cu_->invoke_type,
Jeff Hao49161ce2014-03-12 11:05:25 -0700970 target_method_idx, target_dex_file,
971 static_cast<InvokeType>(p->operands[4]),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800972 patch_offset);
973 }
974
975 // Handle the fixups for class types.
976 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
977 LIR* p = class_type_address_insns_.Get(i);
978 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700979 uint32_t target_method_idx = p->operands[2];
Mark Mendell55d0eac2014-02-06 11:02:52 -0800980
981 // The offset to patch is the last 4 bytes of the instruction.
982 int patch_offset = p->offset + p->flags.size - 4;
983 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -0700984 cu_->method_idx, target_method_idx, patch_offset);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800985 }
986
987 // And now the PC-relative calls to methods.
988 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
989 LIR* p = call_method_insns_.Get(i);
990 DCHECK_EQ(p->opcode, kX86CallI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700991 uint32_t target_method_idx = p->operands[1];
992 const DexFile* target_dex_file =
993 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800994
995 // The offset to patch is the last 4 bytes of the instruction.
996 int patch_offset = p->offset + p->flags.size - 4;
997 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -0700998 cu_->method_idx, cu_->invoke_type,
999 target_method_idx, target_dex_file,
1000 static_cast<InvokeType>(p->operands[3]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001001 patch_offset, -4 /* offset */);
1002 }
1003
1004 // And do the normal processing.
1005 Mir2Lir::InstallLiteralPools();
1006}
1007
Mark Mendell4028a6c2014-02-19 20:06:20 -08001008/*
1009 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1010 * otherwise bails to standard library code.
1011 */
1012bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1013 ClobberCallerSave();
1014 LockCallTemps(); // Using fixed registers
1015
1016 // EAX: 16 bit character being searched.
1017 // ECX: count: number of words to be searched.
1018 // EDI: String being searched.
1019 // EDX: temporary during execution.
1020 // EBX: temporary during execution.
1021
1022 RegLocation rl_obj = info->args[0];
1023 RegLocation rl_char = info->args[1];
buzbeea44d4f52014-03-05 11:26:39 -08001024 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001025
1026 uint32_t char_value =
1027 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1028
1029 if (char_value > 0xFFFF) {
1030 // We have to punt to the real String.indexOf.
1031 return false;
1032 }
1033
1034 // Okay, we are commited to inlining this.
buzbeea0cd2d72014-06-01 09:33:49 -07001035 RegLocation rl_return = GetReturn(kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001036 RegLocation rl_dest = InlineTarget(info);
1037
1038 // Is the string non-NULL?
buzbee2700f7e2014-03-07 09:46:20 -08001039 LoadValueDirectFixed(rl_obj, rs_rDX);
1040 GenNullCheck(rs_rDX, info->opt_flags);
Vladimir Marko3bc86152014-03-13 14:11:28 +00001041 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001042
1043 // Does the character fit in 16 bits?
Mingyao Yang3a74d152014-04-21 15:39:44 -07001044 LIR* slowpath_branch = nullptr;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001045 if (rl_char.is_const) {
1046 // We need the value in EAX.
buzbee2700f7e2014-03-07 09:46:20 -08001047 LoadConstantNoClobber(rs_rAX, char_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001048 } else {
1049 // Character is not a constant; compare at runtime.
buzbee2700f7e2014-03-07 09:46:20 -08001050 LoadValueDirectFixed(rl_char, rs_rAX);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001051 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001052 }
1053
1054 // From here down, we know that we are looking for a char that fits in 16 bits.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001055 // Location of reference to data array within the String object.
1056 int value_offset = mirror::String::ValueOffset().Int32Value();
1057 // Location of count within the String object.
1058 int count_offset = mirror::String::CountOffset().Int32Value();
1059 // Starting offset within data array.
1060 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1061 // Start of char data with array_.
1062 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
Mark Mendell4028a6c2014-02-19 20:06:20 -08001063
1064 // Character is in EAX.
1065 // Object pointer is in EDX.
1066
1067 // We need to preserve EDI, but have no spare registers, so push it on the stack.
1068 // We have to remember that all stack addresses after this are offset by sizeof(EDI).
buzbee091cc402014-03-31 10:14:40 -07001069 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001070
1071 // Compute the number of words to search in to rCX.
buzbee695d13a2014-04-19 13:32:20 -07001072 Load32Disp(rs_rDX, count_offset, rs_rCX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001073 LIR *length_compare = nullptr;
1074 int start_value = 0;
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001075 bool is_index_on_stack = false;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001076 if (zero_based) {
1077 // We have to handle an empty string. Use special instruction JECXZ.
1078 length_compare = NewLIR0(kX86Jecxz8);
1079 } else {
buzbeea44d4f52014-03-05 11:26:39 -08001080 rl_start = info->args[2];
Mark Mendell4028a6c2014-02-19 20:06:20 -08001081 // We have to offset by the start index.
1082 if (rl_start.is_const) {
1083 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1084 start_value = std::max(start_value, 0);
1085
1086 // Is the start > count?
buzbee2700f7e2014-03-07 09:46:20 -08001087 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001088
1089 if (start_value != 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001090 OpRegImm(kOpSub, rs_rCX, start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001091 }
1092 } else {
1093 // Runtime start index.
buzbee30adc732014-05-09 15:10:18 -07001094 rl_start = UpdateLocTyped(rl_start, kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001095 if (rl_start.location == kLocPhysReg) {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001096 // Handle "start index < 0" case.
1097 OpRegReg(kOpXor, rs_rBX, rs_rBX);
1098 OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1099 OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1100
1101 // The length of the string should be greater than the start index.
buzbee2700f7e2014-03-07 09:46:20 -08001102 length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1103 OpRegReg(kOpSub, rs_rCX, rl_start.reg);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001104 if (rl_start.reg == rs_rDI) {
1105 // The special case. We will use EDI further, so lets put start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001106 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001107 is_index_on_stack = true;
1108 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001109 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001110 // Load the start index from stack, remembering that we pushed EDI.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001111 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
buzbee695d13a2014-04-19 13:32:20 -07001112 Load32Disp(rs_rX86_SP, displacement, rs_rBX);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001113 OpRegReg(kOpXor, rs_rDI, rs_rDI);
1114 OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1115 OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1116
1117 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1118 OpRegReg(kOpSub, rs_rCX, rs_rBX);
1119 // Put the start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001120 NewLIR1(kX86Push32R, rs_rBX.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001121 is_index_on_stack = true;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001122 }
1123 }
1124 }
1125 DCHECK(length_compare != nullptr);
1126
1127 // ECX now contains the count in words to be searched.
1128
1129 // Load the address of the string into EBX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001130 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
buzbee695d13a2014-04-19 13:32:20 -07001131 Load32Disp(rs_rDX, value_offset, rs_rDI);
1132 Load32Disp(rs_rDX, offset_offset, rs_rBX);
buzbee2700f7e2014-03-07 09:46:20 -08001133 OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001134
1135 // Now compute into EDI where the search will start.
1136 if (zero_based || rl_start.is_const) {
1137 if (start_value == 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001138 OpRegCopy(rs_rDI, rs_rBX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001139 } else {
buzbee091cc402014-03-31 10:14:40 -07001140 NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001141 }
1142 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001143 if (is_index_on_stack == true) {
1144 // Load the start index from stack.
buzbee091cc402014-03-31 10:14:40 -07001145 NewLIR1(kX86Pop32R, rs_rDX.GetReg());
buzbee2700f7e2014-03-07 09:46:20 -08001146 OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001147 } else {
1148 OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001149 }
1150 }
1151
1152 // EDI now contains the start of the string to be searched.
1153 // We are all prepared to do the search for the character.
1154 NewLIR0(kX86RepneScasw);
1155
1156 // Did we find a match?
1157 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1158
1159 // yes, we matched. Compute the index of the result.
1160 // index = ((curr_ptr - orig_ptr) / 2) - 1.
buzbee2700f7e2014-03-07 09:46:20 -08001161 OpRegReg(kOpSub, rs_rDI, rs_rBX);
1162 OpRegImm(kOpAsr, rs_rDI, 1);
buzbee091cc402014-03-31 10:14:40 -07001163 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001164 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1165
1166 // Failed to match; return -1.
1167 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1168 length_compare->target = not_found;
1169 failed_branch->target = not_found;
buzbee2700f7e2014-03-07 09:46:20 -08001170 LoadConstantNoClobber(rl_return.reg, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001171
1172 // And join up at the end.
1173 all_done->target = NewLIR0(kPseudoTargetLabel);
1174 // Restore EDI from the stack.
buzbee091cc402014-03-31 10:14:40 -07001175 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001176
1177 // Out of line code returns here.
Mingyao Yang3a74d152014-04-21 15:39:44 -07001178 if (slowpath_branch != nullptr) {
Mark Mendell4028a6c2014-02-19 20:06:20 -08001179 LIR *return_point = NewLIR0(kPseudoTargetLabel);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001180 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001181 }
1182
1183 StoreValue(rl_dest, rl_return);
1184 return true;
1185}
1186
Mark Mendellae9fd932014-02-10 16:14:35 -08001187/*
Mark Mendellae9fd932014-02-10 16:14:35 -08001188 * @brief Enter an 'advance LOC' into the FDE buffer
1189 * @param buf FDE buffer.
1190 * @param increment Amount by which to increase the current location.
1191 */
1192static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1193 if (increment < 64) {
1194 // Encoding in opcode.
1195 buf.push_back(0x1 << 6 | increment);
1196 } else if (increment < 256) {
1197 // Single byte delta.
1198 buf.push_back(0x02);
1199 buf.push_back(increment);
1200 } else if (increment < 256 * 256) {
1201 // Two byte delta.
1202 buf.push_back(0x03);
1203 buf.push_back(increment & 0xff);
1204 buf.push_back((increment >> 8) & 0xff);
1205 } else {
1206 // Four byte delta.
1207 buf.push_back(0x04);
1208 PushWord(buf, increment);
1209 }
1210}
1211
1212
1213std::vector<uint8_t>* X86CFIInitialization() {
1214 return X86Mir2Lir::ReturnCommonCallFrameInformation();
1215}
1216
1217std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1218 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1219
1220 // Length of the CIE (except for this field).
1221 PushWord(*cfi_info, 16);
1222
1223 // CIE id.
1224 PushWord(*cfi_info, 0xFFFFFFFFU);
1225
1226 // Version: 3.
1227 cfi_info->push_back(0x03);
1228
1229 // Augmentation: empty string.
1230 cfi_info->push_back(0x0);
1231
1232 // Code alignment: 1.
1233 cfi_info->push_back(0x01);
1234
1235 // Data alignment: -4.
1236 cfi_info->push_back(0x7C);
1237
1238 // Return address register (R8).
1239 cfi_info->push_back(0x08);
1240
1241 // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1242 cfi_info->push_back(0x0C);
1243 cfi_info->push_back(0x04);
1244 cfi_info->push_back(0x04);
1245
1246 // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1247 cfi_info->push_back(0x2 << 6 | 0x08);
1248 cfi_info->push_back(0x01);
1249
1250 // And 2 Noops to align to 4 byte boundary.
1251 cfi_info->push_back(0x0);
1252 cfi_info->push_back(0x0);
1253
1254 DCHECK_EQ(cfi_info->size() & 3, 0U);
1255 return cfi_info;
1256}
1257
1258static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1259 uint8_t buffer[12];
1260 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1261 for (uint8_t *p = buffer; p < ptr; p++) {
1262 buf.push_back(*p);
1263 }
1264}
1265
1266std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1267 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1268
1269 // Generate the FDE for the method.
1270 DCHECK_NE(data_offset_, 0U);
1271
1272 // Length (will be filled in later in this routine).
1273 PushWord(*cfi_info, 0);
1274
1275 // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1276 // one CIE for the whole debug_frame section.
1277 PushWord(*cfi_info, 0);
1278
1279 // 'initial_location' (filled in by linker).
1280 PushWord(*cfi_info, 0);
1281
1282 // 'address_range' (number of bytes in the method).
1283 PushWord(*cfi_info, data_offset_);
1284
1285 // The instructions in the FDE.
1286 if (stack_decrement_ != nullptr) {
1287 // Advance LOC to just past the stack decrement.
1288 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1289 AdvanceLoc(*cfi_info, pc);
1290
1291 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1292 cfi_info->push_back(0x0e);
1293 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1294
1295 // We continue with that stack until the epilogue.
1296 if (stack_increment_ != nullptr) {
1297 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1298 AdvanceLoc(*cfi_info, new_pc - pc);
1299
1300 // We probably have code snippets after the epilogue, so save the
1301 // current state: DW_CFA_remember_state.
1302 cfi_info->push_back(0x0a);
1303
1304 // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
1305 // PC on the stack now.
1306 cfi_info->push_back(0x0e);
1307 EncodeUnsignedLeb128(*cfi_info, 4);
1308
1309 // Everything after that is the same as before the epilogue.
1310 // Stack bump was followed by RET instruction.
1311 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1312 if (post_ret_insn != nullptr) {
1313 pc = new_pc;
1314 new_pc = post_ret_insn->offset;
1315 AdvanceLoc(*cfi_info, new_pc - pc);
1316 // Restore the state: DW_CFA_restore_state.
1317 cfi_info->push_back(0x0b);
1318 }
1319 }
1320 }
1321
1322 // Padding to a multiple of 4
1323 while ((cfi_info->size() & 3) != 0) {
1324 // DW_CFA_nop is encoded as 0.
1325 cfi_info->push_back(0);
1326 }
1327
1328 // Set the length of the FDE inside the generated bytes.
1329 uint32_t length = cfi_info->size() - 4;
1330 (*cfi_info)[0] = length;
1331 (*cfi_info)[1] = length >> 8;
1332 (*cfi_info)[2] = length >> 16;
1333 (*cfi_info)[3] = length >> 24;
1334 return cfi_info;
1335}
1336
Mark Mendelld65c51a2014-04-29 16:55:20 -04001337void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1338 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1339 case kMirOpConstVector:
1340 GenConst128(bb, mir);
1341 break;
Mark Mendellfe945782014-05-22 09:52:36 -04001342 case kMirOpMoveVector:
1343 GenMoveVector(bb, mir);
1344 break;
1345 case kMirOpPackedMultiply:
1346 GenMultiplyVector(bb, mir);
1347 break;
1348 case kMirOpPackedAddition:
1349 GenAddVector(bb, mir);
1350 break;
1351 case kMirOpPackedSubtract:
1352 GenSubtractVector(bb, mir);
1353 break;
1354 case kMirOpPackedShiftLeft:
1355 GenShiftLeftVector(bb, mir);
1356 break;
1357 case kMirOpPackedSignedShiftRight:
1358 GenSignedShiftRightVector(bb, mir);
1359 break;
1360 case kMirOpPackedUnsignedShiftRight:
1361 GenUnsignedShiftRightVector(bb, mir);
1362 break;
1363 case kMirOpPackedAnd:
1364 GenAndVector(bb, mir);
1365 break;
1366 case kMirOpPackedOr:
1367 GenOrVector(bb, mir);
1368 break;
1369 case kMirOpPackedXor:
1370 GenXorVector(bb, mir);
1371 break;
1372 case kMirOpPackedAddReduce:
1373 GenAddReduceVector(bb, mir);
1374 break;
1375 case kMirOpPackedReduce:
1376 GenReduceVector(bb, mir);
1377 break;
1378 case kMirOpPackedSet:
1379 GenSetVector(bb, mir);
1380 break;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001381 default:
1382 break;
1383 }
1384}
1385
1386void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1387 int type_size = mir->dalvikInsn.vA;
1388 // We support 128 bit vectors.
1389 DCHECK_EQ(type_size & 0xFFFF, 128);
Mark Mendellfe945782014-05-22 09:52:36 -04001390 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001391 uint32_t *args = mir->dalvikInsn.arg;
Mark Mendellfe945782014-05-22 09:52:36 -04001392 int reg = rs_dest.GetReg();
Mark Mendelld65c51a2014-04-29 16:55:20 -04001393 // Check for all 0 case.
1394 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1395 NewLIR2(kX86XorpsRR, reg, reg);
1396 return;
1397 }
1398 // Okay, load it from the constant vector area.
1399 LIR *data_target = ScanVectorLiteral(mir);
1400 if (data_target == nullptr) {
1401 data_target = AddVectorLiteral(mir);
1402 }
1403
1404 // Address the start of the method.
1405 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
Chao-ying Fue0ccdc02014-06-06 17:32:37 -07001406 if (rl_method.wide) {
1407 rl_method = LoadValueWide(rl_method, kCoreReg);
1408 } else {
1409 rl_method = LoadValue(rl_method, kCoreReg);
1410 }
Mark Mendelld65c51a2014-04-29 16:55:20 -04001411
1412 // Load the proper value from the literal area.
1413 // We don't know the proper offset for the value, so pick one that will force
1414 // 4 byte offset. We will fix this up in the assembler later to have the right
1415 // value.
1416 LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */);
1417 load->flags.fixup = kFixupLoad;
1418 load->target = data_target;
1419 SetMemRefType(load, true, kLiteral);
1420}
1421
Mark Mendellfe945782014-05-22 09:52:36 -04001422void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1423 // We only support 128 bit registers.
1424 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1425 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1426 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1427 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1428}
1429
1430void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1431 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1432 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1433 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1434 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1435 int opcode = 0;
1436 switch (opsize) {
1437 case k32:
1438 opcode = kX86PmulldRR;
1439 break;
1440 case kSignedHalf:
1441 opcode = kX86PmullwRR;
1442 break;
1443 case kSingle:
1444 opcode = kX86MulpsRR;
1445 break;
1446 case kDouble:
1447 opcode = kX86MulpdRR;
1448 break;
1449 default:
1450 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1451 break;
1452 }
1453 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1454}
1455
1456void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1457 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1458 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1459 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1460 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1461 int opcode = 0;
1462 switch (opsize) {
1463 case k32:
1464 opcode = kX86PadddRR;
1465 break;
1466 case kSignedHalf:
1467 case kUnsignedHalf:
1468 opcode = kX86PaddwRR;
1469 break;
1470 case kUnsignedByte:
1471 case kSignedByte:
1472 opcode = kX86PaddbRR;
1473 break;
1474 case kSingle:
1475 opcode = kX86AddpsRR;
1476 break;
1477 case kDouble:
1478 opcode = kX86AddpdRR;
1479 break;
1480 default:
1481 LOG(FATAL) << "Unsupported vector addition " << opsize;
1482 break;
1483 }
1484 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1485}
1486
1487void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1488 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1489 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1490 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1491 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1492 int opcode = 0;
1493 switch (opsize) {
1494 case k32:
1495 opcode = kX86PsubdRR;
1496 break;
1497 case kSignedHalf:
1498 case kUnsignedHalf:
1499 opcode = kX86PsubwRR;
1500 break;
1501 case kUnsignedByte:
1502 case kSignedByte:
1503 opcode = kX86PsubbRR;
1504 break;
1505 case kSingle:
1506 opcode = kX86SubpsRR;
1507 break;
1508 case kDouble:
1509 opcode = kX86SubpdRR;
1510 break;
1511 default:
1512 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1513 break;
1514 }
1515 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1516}
1517
1518void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1519 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1520 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1521 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1522 int imm = mir->dalvikInsn.vC;
1523 int opcode = 0;
1524 switch (opsize) {
1525 case k32:
1526 opcode = kX86PslldRI;
1527 break;
1528 case k64:
1529 opcode = kX86PsllqRI;
1530 break;
1531 case kSignedHalf:
1532 case kUnsignedHalf:
1533 opcode = kX86PsllwRI;
1534 break;
1535 default:
1536 LOG(FATAL) << "Unsupported vector shift left " << opsize;
1537 break;
1538 }
1539 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1540}
1541
1542void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1543 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1544 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1545 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1546 int imm = mir->dalvikInsn.vC;
1547 int opcode = 0;
1548 switch (opsize) {
1549 case k32:
1550 opcode = kX86PsradRI;
1551 break;
1552 case kSignedHalf:
1553 case kUnsignedHalf:
1554 opcode = kX86PsrawRI;
1555 break;
1556 default:
1557 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1558 break;
1559 }
1560 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1561}
1562
1563void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1564 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1565 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1566 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1567 int imm = mir->dalvikInsn.vC;
1568 int opcode = 0;
1569 switch (opsize) {
1570 case k32:
1571 opcode = kX86PsrldRI;
1572 break;
1573 case k64:
1574 opcode = kX86PsrlqRI;
1575 break;
1576 case kSignedHalf:
1577 case kUnsignedHalf:
1578 opcode = kX86PsrlwRI;
1579 break;
1580 default:
1581 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1582 break;
1583 }
1584 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1585}
1586
1587void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1588 // We only support 128 bit registers.
1589 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1590 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1591 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1592 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1593}
1594
1595void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1596 // We only support 128 bit registers.
1597 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1598 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1599 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1600 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1601}
1602
1603void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1604 // We only support 128 bit registers.
1605 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1606 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1607 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1608 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1609}
1610
1611void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1612 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1613 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1614 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1615 int imm = mir->dalvikInsn.vC;
1616 int opcode = 0;
1617 switch (opsize) {
1618 case k32:
1619 opcode = kX86PhadddRR;
1620 break;
1621 case kSignedHalf:
1622 case kUnsignedHalf:
1623 opcode = kX86PhaddwRR;
1624 break;
1625 default:
1626 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1627 break;
1628 }
1629 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1630}
1631
1632void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1633 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1634 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1635 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1636 int index = mir->dalvikInsn.arg[0];
1637 int opcode = 0;
1638 switch (opsize) {
1639 case k32:
1640 opcode = kX86PextrdRRI;
1641 break;
1642 case kSignedHalf:
1643 case kUnsignedHalf:
1644 opcode = kX86PextrwRRI;
1645 break;
1646 case kUnsignedByte:
1647 case kSignedByte:
1648 opcode = kX86PextrbRRI;
1649 break;
1650 default:
1651 LOG(FATAL) << "Unsupported vector reduce " << opsize;
1652 break;
1653 }
1654 // We need to extract to a GPR.
1655 RegStorage temp = AllocTemp();
1656 NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1657
1658 // Assume that the destination VR is in the def for the mir.
1659 RegLocation rl_dest = mir_graph_->GetDest(mir);
1660 RegLocation rl_temp =
1661 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1662 StoreValue(rl_dest, rl_temp);
1663}
1664
1665void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1666 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1667 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1668 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1669 int op_low = 0, op_high = 0;
1670 switch (opsize) {
1671 case k32:
1672 op_low = kX86PshufdRRI;
1673 break;
1674 case kSignedHalf:
1675 case kUnsignedHalf:
1676 // Handles low quadword.
1677 op_low = kX86PshuflwRRI;
1678 // Handles upper quadword.
1679 op_high = kX86PshufdRRI;
1680 break;
1681 default:
1682 LOG(FATAL) << "Unsupported vector set " << opsize;
1683 break;
1684 }
1685
1686 // Load the value from the VR into a GPR.
1687 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1688 rl_src = LoadValue(rl_src, kCoreReg);
1689
1690 // Load the value into the XMM register.
1691 NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1692
1693 // Now shuffle the value across the destination.
1694 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1695
1696 // And then repeat as needed.
1697 if (op_high != 0) {
1698 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1699 }
1700}
1701
1702
Mark Mendelld65c51a2014-04-29 16:55:20 -04001703LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1704 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1705 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1706 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1707 args[2] == p->operands[2] && args[3] == p->operands[3]) {
1708 return p;
1709 }
1710 }
1711 return nullptr;
1712}
1713
1714LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1715 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1716 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1717 new_value->operands[0] = args[0];
1718 new_value->operands[1] = args[1];
1719 new_value->operands[2] = args[2];
1720 new_value->operands[3] = args[3];
1721 new_value->next = const_vectors_;
1722 if (const_vectors_ == nullptr) {
1723 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
1724 }
1725 estimated_native_code_size_ += 16; // Space for one vector.
1726 const_vectors_ = new_value;
1727 return new_value;
1728}
1729
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001730// ------------ ABI support: mapping of args to physical registers -------------
1731RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1732 const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1733 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1734 const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1735 rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1736 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1737
1738 RegStorage result = RegStorage::InvalidReg();
1739 if (is_double_or_float) {
1740 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1741 result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1742 if (result.Valid()) {
1743 result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1744 }
1745 }
1746 } else {
1747 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1748 result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1749 if (result.Valid()) {
1750 result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1751 }
1752 }
1753 }
1754 return result;
1755}
1756
1757RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1758 DCHECK(IsInitialized());
1759 auto res = mapping_.find(in_position);
1760 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1761}
1762
1763void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1764 DCHECK(mapper != nullptr);
1765 max_mapped_in_ = -1;
1766 is_there_stack_mapped_ = false;
1767 for (int in_position = 0; in_position < count; in_position++) {
1768 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1769 if (reg.Valid()) {
1770 mapping_[in_position] = reg;
1771 max_mapped_in_ = std::max(max_mapped_in_, in_position);
1772 if (reg.Is64BitSolo()) {
1773 // We covered 2 args, so skip the next one
1774 in_position++;
1775 }
1776 } else {
1777 is_there_stack_mapped_ = true;
1778 }
1779 }
1780 initialized_ = true;
1781}
1782
1783RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1784 if (!Gen64Bit()) {
1785 return GetCoreArgMappingToPhysicalReg(arg_num);
1786 }
1787
1788 if (!in_to_reg_storage_mapping_.IsInitialized()) {
1789 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1790 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1791
1792 InToRegStorageX86_64Mapper mapper;
1793 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1794 }
1795 return in_to_reg_storage_mapping_.Get(arg_num);
1796}
1797
1798RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1799 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1800 // Not used for 64-bit, TODO: Move X86_32 to the same framework
1801 switch (core_arg_num) {
1802 case 0:
1803 return rs_rX86_ARG1;
1804 case 1:
1805 return rs_rX86_ARG2;
1806 case 2:
1807 return rs_rX86_ARG3;
1808 default:
1809 return RegStorage::InvalidReg();
1810 }
1811}
1812
1813// ---------End of ABI support: mapping of args to physical registers -------------
1814
1815/*
1816 * If there are any ins passed in registers that have not been promoted
1817 * to a callee-save register, flush them to the frame. Perform initial
1818 * assignment of promoted arguments.
1819 *
1820 * ArgLocs is an array of location records describing the incoming arguments
1821 * with one location record per word of argument.
1822 */
1823void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1824 if (!Gen64Bit()) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1825 /*
1826 * Dummy up a RegLocation for the incoming Method*
1827 * It will attempt to keep kArg0 live (or copy it to home location
1828 * if promoted).
1829 */
1830
1831 RegLocation rl_src = rl_method;
1832 rl_src.location = kLocPhysReg;
1833 rl_src.reg = TargetReg(kArg0);
1834 rl_src.home = false;
1835 MarkLive(rl_src);
1836 StoreValue(rl_method, rl_src);
1837 // If Method* has been promoted, explicitly flush
1838 if (rl_method.location == kLocPhysReg) {
1839 StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0));
1840 }
1841
1842 if (cu_->num_ins == 0) {
1843 return;
1844 }
1845
1846 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1847 /*
1848 * Copy incoming arguments to their proper home locations.
1849 * NOTE: an older version of dx had an issue in which
1850 * it would reuse static method argument registers.
1851 * This could result in the same Dalvik virtual register
1852 * being promoted to both core and fp regs. To account for this,
1853 * we only copy to the corresponding promoted physical register
1854 * if it matches the type of the SSA name for the incoming
1855 * argument. It is also possible that long and double arguments
1856 * end up half-promoted. In those cases, we must flush the promoted
1857 * half to memory as well.
1858 */
1859 for (int i = 0; i < cu_->num_ins; i++) {
1860 PromotionMap* v_map = &promotion_map_[start_vreg + i];
1861 RegStorage reg = RegStorage::InvalidReg();
1862 // get reg corresponding to input
1863 reg = GetArgMappingToPhysicalReg(i);
1864
1865 if (reg.Valid()) {
1866 // If arriving in register
1867 bool need_flush = true;
1868 RegLocation* t_loc = &ArgLocs[i];
1869 if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
1870 OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
1871 need_flush = false;
1872 } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
1873 OpRegCopy(RegStorage::Solo32(v_map->FpReg), reg);
1874 need_flush = false;
1875 } else {
1876 need_flush = true;
1877 }
1878
1879 // For wide args, force flush if not fully promoted
1880 if (t_loc->wide) {
1881 PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
1882 // Is only half promoted?
1883 need_flush |= (p_map->core_location != v_map->core_location) ||
1884 (p_map->fp_location != v_map->fp_location);
1885 }
1886 if (need_flush) {
1887 if (t_loc->wide && t_loc->fp) {
1888 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1889 // Increment i to skip the next one
1890 i++;
1891 } else if (t_loc->wide && !t_loc->fp) {
1892 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1893 // Increment i to skip the next one
1894 i++;
1895 } else {
1896 Store32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), reg);
1897 }
1898 }
1899 } else {
1900 // If arriving in frame & promoted
1901 if (v_map->core_location == kLocPhysReg) {
1902 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->core_reg));
1903 }
1904 if (v_map->fp_location == kLocPhysReg) {
1905 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->FpReg));
1906 }
1907 }
1908 }
1909}
1910
1911/*
1912 * Load up to 5 arguments, the first three of which will be in
1913 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
1914 * and as part of the load sequence, it must be replaced with
1915 * the target method pointer. Note, this may also be called
1916 * for "range" variants if the number of arguments is 5 or fewer.
1917 */
1918int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1919 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1920 const MethodReference& target_method,
1921 uint32_t vtable_idx, uintptr_t direct_code,
1922 uintptr_t direct_method, InvokeType type, bool skip_this) {
1923 if (!Gen64Bit()) {
1924 return Mir2Lir::GenDalvikArgsNoRange(info,
1925 call_state, pcrLabel, next_call_insn,
1926 target_method,
1927 vtable_idx, direct_code,
1928 direct_method, type, skip_this);
1929 }
1930 return GenDalvikArgsRange(info,
1931 call_state, pcrLabel, next_call_insn,
1932 target_method,
1933 vtable_idx, direct_code,
1934 direct_method, type, skip_this);
1935}
1936
1937/*
1938 * May have 0+ arguments (also used for jumbo). Note that
1939 * source virtual registers may be in physical registers, so may
1940 * need to be flushed to home location before copying. This
1941 * applies to arg3 and above (see below).
1942 *
1943 * Two general strategies:
1944 * If < 20 arguments
1945 * Pass args 3-18 using vldm/vstm block copy
1946 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1947 * If 20+ arguments
1948 * Pass args arg19+ using memcpy block copy
1949 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1950 *
1951 */
1952int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1953 LIR** pcrLabel, NextCallInsn next_call_insn,
1954 const MethodReference& target_method,
1955 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1956 InvokeType type, bool skip_this) {
1957 if (!Gen64Bit()) {
1958 return Mir2Lir::GenDalvikArgsRange(info, call_state,
1959 pcrLabel, next_call_insn,
1960 target_method,
1961 vtable_idx, direct_code, direct_method,
1962 type, skip_this);
1963 }
1964
1965 /* If no arguments, just return */
1966 if (info->num_arg_words == 0)
1967 return call_state;
1968
1969 const int start_index = skip_this ? 1 : 0;
1970
1971 InToRegStorageX86_64Mapper mapper;
1972 InToRegStorageMapping in_to_reg_storage_mapping;
1973 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1974 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1975 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
1976 in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
1977 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
1978
1979 // Fisrt of all, check whether it make sense to use bulk copying
1980 // Optimization is aplicable only for range case
1981 // TODO: make a constant instead of 2
1982 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1983 // Scan the rest of the args - if in phys_reg flush to memory
1984 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
1985 RegLocation loc = info->args[next_arg];
1986 if (loc.wide) {
1987 loc = UpdateLocWide(loc);
1988 if (loc.location == kLocPhysReg) {
1989 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64);
1990 }
1991 next_arg += 2;
1992 } else {
1993 loc = UpdateLoc(loc);
1994 if (loc.location == kLocPhysReg) {
1995 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32);
1996 }
1997 next_arg++;
1998 }
1999 }
2000
2001 // Logic below assumes that Method pointer is at offset zero from SP.
2002 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2003
2004 // The rest can be copied together
2005 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2006 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2007
2008 int current_src_offset = start_offset;
2009 int current_dest_offset = outs_offset;
2010
2011 while (regs_left_to_pass_via_stack > 0) {
2012 // This is based on the knowledge that the stack itself is 16-byte aligned.
2013 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2014 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2015 size_t bytes_to_move;
2016
2017 /*
2018 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2019 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2020 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2021 * We do this because we could potentially do a smaller move to align.
2022 */
2023 if (regs_left_to_pass_via_stack == 4 ||
2024 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2025 // Moving 128-bits via xmm register.
2026 bytes_to_move = sizeof(uint32_t) * 4;
2027
2028 // Allocate a free xmm temp. Since we are working through the calling sequence,
2029 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2030 // there are no free registers.
2031 RegStorage temp = AllocTempDouble();
2032
2033 LIR* ld1 = nullptr;
2034 LIR* ld2 = nullptr;
2035 LIR* st1 = nullptr;
2036 LIR* st2 = nullptr;
2037
2038 /*
2039 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2040 * do an aligned move. If we have 8-byte alignment, then do the move in two
2041 * parts. This approach prevents possible cache line splits. Finally, fall back
2042 * to doing an unaligned move. In most cases we likely won't split the cache
2043 * line but we cannot prove it and thus take a conservative approach.
2044 */
2045 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2046 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2047
2048 if (src_is_16b_aligned) {
2049 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2050 } else if (src_is_8b_aligned) {
2051 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2052 ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2053 kMovHi128FP);
2054 } else {
2055 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2056 }
2057
2058 if (dest_is_16b_aligned) {
2059 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2060 } else if (dest_is_8b_aligned) {
2061 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2062 st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2063 temp, kMovHi128FP);
2064 } else {
2065 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2066 }
2067
2068 // TODO If we could keep track of aliasing information for memory accesses that are wider
2069 // than 64-bit, we wouldn't need to set up a barrier.
2070 if (ld1 != nullptr) {
2071 if (ld2 != nullptr) {
2072 // For 64-bit load we can actually set up the aliasing information.
2073 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2074 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2075 } else {
2076 // Set barrier for 128-bit load.
2077 SetMemRefType(ld1, true /* is_load */, kDalvikReg);
2078 ld1->u.m.def_mask = ENCODE_ALL;
2079 }
2080 }
2081 if (st1 != nullptr) {
2082 if (st2 != nullptr) {
2083 // For 64-bit store we can actually set up the aliasing information.
2084 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2085 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2086 } else {
2087 // Set barrier for 128-bit store.
2088 SetMemRefType(st1, false /* is_load */, kDalvikReg);
2089 st1->u.m.def_mask = ENCODE_ALL;
2090 }
2091 }
2092
2093 // Free the temporary used for the data movement.
2094 FreeTemp(temp);
2095 } else {
2096 // Moving 32-bits via general purpose register.
2097 bytes_to_move = sizeof(uint32_t);
2098
2099 // Instead of allocating a new temp, simply reuse one of the registers being used
2100 // for argument passing.
2101 RegStorage temp = TargetReg(kArg3);
2102
2103 // Now load the argument VR and store to the outs.
2104 Load32Disp(TargetReg(kSp), current_src_offset, temp);
2105 Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2106 }
2107
2108 current_src_offset += bytes_to_move;
2109 current_dest_offset += bytes_to_move;
2110 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2111 }
2112 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2113 }
2114
2115 // Now handle rest not registers if they are
2116 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2117 RegStorage regSingle = TargetReg(kArg2);
2118 RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
2119 for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
2120 RegLocation rl_arg = info->args[i];
2121 rl_arg = UpdateRawLoc(rl_arg);
2122 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2123 if (!reg.Valid()) {
2124 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2125
2126 if (rl_arg.wide) {
2127 if (rl_arg.location == kLocPhysReg) {
2128 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64);
2129 } else {
2130 LoadValueDirectWideFixed(rl_arg, regWide);
2131 StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64);
2132 }
2133 i++;
2134 } else {
2135 if (rl_arg.location == kLocPhysReg) {
2136 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32);
2137 } else {
2138 LoadValueDirectFixed(rl_arg, regSingle);
2139 StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32);
2140 }
2141 }
2142 call_state = next_call_insn(cu_, info, call_state, target_method,
2143 vtable_idx, direct_code, direct_method, type);
2144 }
2145 }
2146 }
2147
2148 // Finish with mapped registers
2149 for (int i = start_index; i <= last_mapped_in; i++) {
2150 RegLocation rl_arg = info->args[i];
2151 rl_arg = UpdateRawLoc(rl_arg);
2152 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2153 if (reg.Valid()) {
2154 if (rl_arg.wide) {
2155 LoadValueDirectWideFixed(rl_arg, reg);
2156 i++;
2157 } else {
2158 LoadValueDirectFixed(rl_arg, reg);
2159 }
2160 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2161 direct_code, direct_method, type);
2162 }
2163 }
2164
2165 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2166 direct_code, direct_method, type);
2167 if (pcrLabel) {
2168 if (Runtime::Current()->ExplicitNullChecks()) {
2169 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2170 } else {
2171 *pcrLabel = nullptr;
2172 // In lieu of generating a check for kArg1 being null, we need to
2173 // perform a load when doing implicit checks.
2174 RegStorage tmp = AllocTemp();
2175 Load32Disp(TargetReg(kArg1), 0, tmp);
2176 MarkPossibleNullPointerException(info->opt_flags);
2177 FreeTemp(tmp);
2178 }
2179 }
2180 return call_state;
2181}
2182
Brian Carlstrom7934ac22013-07-26 10:54:15 -07002183} // namespace art
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002184