blob: 2948e566f61b4954ee273bbc6dc88d058cf38514 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Nicolas Geoffrayf3e2cc42014-02-18 18:37:26 +000017#include <string>
18#include <inttypes.h>
19
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
Mark Mendelle19c91f2014-02-25 08:19:08 -080023#include "mirror/array.h"
24#include "mirror/string.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070025#include "x86_lir.h"
26
Brian Carlstrom7940e442013-07-12 13:46:57 -070027namespace art {
28
Vladimir Marko089142c2014-06-05 10:57:05 +010029static constexpr RegStorage core_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070030 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
Vladimir Marko089142c2014-06-05 10:57:05 +010032static constexpr RegStorage core_regs_arr_64[] = {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070033 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
buzbee091cc402014-03-31 10:14:40 -070034 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
Brian Carlstrom7940e442013-07-12 13:46:57 -070035};
Vladimir Marko089142c2014-06-05 10:57:05 +010036static constexpr RegStorage core_regs_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070037 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
Dmitry Petrochenkoa20468c2014-04-30 13:40:19 +070038 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070039};
Vladimir Marko089142c2014-06-05 10:57:05 +010040static constexpr RegStorage sp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070041 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
42};
Vladimir Marko089142c2014-06-05 10:57:05 +010043static constexpr RegStorage sp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070044 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070045 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070046};
Vladimir Marko089142c2014-06-05 10:57:05 +010047static constexpr RegStorage dp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070048 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
49};
Vladimir Marko089142c2014-06-05 10:57:05 +010050static constexpr RegStorage dp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070051 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070052 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070053};
Vladimir Marko089142c2014-06-05 10:57:05 +010054static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070055static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
Vladimir Marko089142c2014-06-05 10:57:05 +010056static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
57static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
58static constexpr RegStorage core_temps_arr_64[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070059 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070060 rs_r8, rs_r9, rs_r10, rs_r11
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070061};
Vladimir Marko089142c2014-06-05 10:57:05 +010062static constexpr RegStorage core_temps_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070063 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070064 rs_r8q, rs_r9q, rs_r10q, rs_r11q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070065};
Vladimir Marko089142c2014-06-05 10:57:05 +010066static constexpr RegStorage sp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070067 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
68};
Vladimir Marko089142c2014-06-05 10:57:05 +010069static constexpr RegStorage sp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070070 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070071 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
buzbee091cc402014-03-31 10:14:40 -070072};
Vladimir Marko089142c2014-06-05 10:57:05 +010073static constexpr RegStorage dp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070074 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
75};
Vladimir Marko089142c2014-06-05 10:57:05 +010076static constexpr RegStorage dp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070077 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070078 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
buzbee091cc402014-03-31 10:14:40 -070079};
80
Vladimir Marko089142c2014-06-05 10:57:05 +010081static constexpr RegStorage xp_temps_arr_32[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040082 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
83};
Vladimir Marko089142c2014-06-05 10:57:05 +010084static constexpr RegStorage xp_temps_arr_64[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040085 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
Mark Mendellfe945782014-05-22 09:52:36 -040086 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
Mark Mendellfe945782014-05-22 09:52:36 -040087};
88
Vladimir Marko089142c2014-06-05 10:57:05 +010089static constexpr ArrayRef<const RegStorage> empty_pool;
90static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
91static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
92static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
93static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
94static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
95static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
96static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
97static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
98static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
100static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
101static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
102static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
103static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
104static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
105static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
106static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700107
Vladimir Marko089142c2014-06-05 10:57:05 +0100108static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
109static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
Mark Mendellfe945782014-05-22 09:52:36 -0400110
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700111RegStorage rs_rX86_SP;
112
113X86NativeRegisterPool rX86_ARG0;
114X86NativeRegisterPool rX86_ARG1;
115X86NativeRegisterPool rX86_ARG2;
116X86NativeRegisterPool rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700117X86NativeRegisterPool rX86_ARG4;
118X86NativeRegisterPool rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700119X86NativeRegisterPool rX86_FARG0;
120X86NativeRegisterPool rX86_FARG1;
121X86NativeRegisterPool rX86_FARG2;
122X86NativeRegisterPool rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700123X86NativeRegisterPool rX86_FARG4;
124X86NativeRegisterPool rX86_FARG5;
125X86NativeRegisterPool rX86_FARG6;
126X86NativeRegisterPool rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700127X86NativeRegisterPool rX86_RET0;
128X86NativeRegisterPool rX86_RET1;
129X86NativeRegisterPool rX86_INVOKE_TGT;
130X86NativeRegisterPool rX86_COUNT;
131
132RegStorage rs_rX86_ARG0;
133RegStorage rs_rX86_ARG1;
134RegStorage rs_rX86_ARG2;
135RegStorage rs_rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700136RegStorage rs_rX86_ARG4;
137RegStorage rs_rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700138RegStorage rs_rX86_FARG0;
139RegStorage rs_rX86_FARG1;
140RegStorage rs_rX86_FARG2;
141RegStorage rs_rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700142RegStorage rs_rX86_FARG4;
143RegStorage rs_rX86_FARG5;
144RegStorage rs_rX86_FARG6;
145RegStorage rs_rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700146RegStorage rs_rX86_RET0;
147RegStorage rs_rX86_RET1;
148RegStorage rs_rX86_INVOKE_TGT;
149RegStorage rs_rX86_COUNT;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700150
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700151RegLocation X86Mir2Lir::LocCReturn() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000152 return x86_loc_c_return;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700153}
154
buzbeea0cd2d72014-06-01 09:33:49 -0700155RegLocation X86Mir2Lir::LocCReturnRef() {
156 // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
157 return x86_loc_c_return;
158}
159
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700160RegLocation X86Mir2Lir::LocCReturnWide() {
Chao-ying Fua0147762014-06-06 18:38:49 -0700161 return Gen64Bit() ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162}
163
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700164RegLocation X86Mir2Lir::LocCReturnFloat() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000165 return x86_loc_c_return_float;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700166}
167
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700168RegLocation X86Mir2Lir::LocCReturnDouble() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000169 return x86_loc_c_return_double;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700170}
171
172// Return a target-dependent special register.
buzbee2700f7e2014-03-07 09:46:20 -0800173RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
buzbee091cc402014-03-31 10:14:40 -0700174 RegStorage res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700175 switch (reg) {
buzbee091cc402014-03-31 10:14:40 -0700176 case kSelf: res_reg = RegStorage::InvalidReg(); break;
177 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
178 case kLr: res_reg = RegStorage::InvalidReg(); break;
179 case kPc: res_reg = RegStorage::InvalidReg(); break;
180 case kSp: res_reg = rs_rX86_SP; break;
181 case kArg0: res_reg = rs_rX86_ARG0; break;
182 case kArg1: res_reg = rs_rX86_ARG1; break;
183 case kArg2: res_reg = rs_rX86_ARG2; break;
184 case kArg3: res_reg = rs_rX86_ARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700185 case kArg4: res_reg = rs_rX86_ARG4; break;
186 case kArg5: res_reg = rs_rX86_ARG5; break;
buzbee091cc402014-03-31 10:14:40 -0700187 case kFArg0: res_reg = rs_rX86_FARG0; break;
188 case kFArg1: res_reg = rs_rX86_FARG1; break;
189 case kFArg2: res_reg = rs_rX86_FARG2; break;
190 case kFArg3: res_reg = rs_rX86_FARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700191 case kFArg4: res_reg = rs_rX86_FARG4; break;
192 case kFArg5: res_reg = rs_rX86_FARG5; break;
193 case kFArg6: res_reg = rs_rX86_FARG6; break;
194 case kFArg7: res_reg = rs_rX86_FARG7; break;
buzbee091cc402014-03-31 10:14:40 -0700195 case kRet0: res_reg = rs_rX86_RET0; break;
196 case kRet1: res_reg = rs_rX86_RET1; break;
197 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198 case kHiddenArg: res_reg = rs_rAX; break;
Mark Mendelld3703d82014-06-09 15:10:50 -0400199 case kHiddenFpArg: DCHECK(!Gen64Bit()); res_reg = rs_fr0; break;
buzbee091cc402014-03-31 10:14:40 -0700200 case kCount: res_reg = rs_rX86_COUNT; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700201 default: res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700202 }
buzbee091cc402014-03-31 10:14:40 -0700203 return res_reg;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700204}
205
Brian Carlstrom7940e442013-07-12 13:46:57 -0700206/*
207 * Decode the register id.
208 */
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100209ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
210 /* Double registers in x86 are just a single FP register. This is always just a single bit. */
211 return ResourceMask::Bit(
212 /* FP register starts at bit position 16 */
213 ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700214}
215
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100216ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700217 /*
218 * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
219 * able to clean up some of the x86/Arm_Mips differences
220 */
221 LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100222 return kEncodeNone;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700223}
224
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100225void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
226 ResourceMask* use_mask, ResourceMask* def_mask) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700227 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
buzbeeb48819d2013-09-14 16:15:25 -0700228 DCHECK(!lir->flags.use_def_invalid);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700229
230 // X86-specific resource map setup here.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700231 if (flags & REG_USE_SP) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100232 use_mask->SetBit(kX86RegSP);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700233 }
234
235 if (flags & REG_DEF_SP) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100236 def_mask->SetBit(kX86RegSP);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700237 }
238
239 if (flags & REG_DEFA) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100240 SetupRegMask(def_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700241 }
242
243 if (flags & REG_DEFD) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100244 SetupRegMask(def_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700245 }
246 if (flags & REG_USEA) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100247 SetupRegMask(use_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700248 }
249
250 if (flags & REG_USEC) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100251 SetupRegMask(use_mask, rs_rCX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700252 }
253
254 if (flags & REG_USED) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100255 SetupRegMask(use_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700256 }
Vladimir Marko70b797d2013-12-03 15:25:24 +0000257
258 if (flags & REG_USEB) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100259 SetupRegMask(use_mask, rs_rBX.GetReg());
Vladimir Marko70b797d2013-12-03 15:25:24 +0000260 }
Mark Mendell4028a6c2014-02-19 20:06:20 -0800261
262 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
263 if (lir->opcode == kX86RepneScasw) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100264 SetupRegMask(use_mask, rs_rAX.GetReg());
265 SetupRegMask(use_mask, rs_rCX.GetReg());
266 SetupRegMask(use_mask, rs_rDI.GetReg());
267 SetupRegMask(def_mask, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -0800268 }
Serguei Katkove90501d2014-03-12 15:56:54 +0700269
270 if (flags & USE_FP_STACK) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100271 use_mask->SetBit(kX86FPStack);
272 def_mask->SetBit(kX86FPStack);
Serguei Katkove90501d2014-03-12 15:56:54 +0700273 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700274}
275
276/* For dumping instructions */
277static const char* x86RegName[] = {
278 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
279 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
280};
281
282static const char* x86CondName[] = {
283 "O",
284 "NO",
285 "B/NAE/C",
286 "NB/AE/NC",
287 "Z/EQ",
288 "NZ/NE",
289 "BE/NA",
290 "NBE/A",
291 "S",
292 "NS",
293 "P/PE",
294 "NP/PO",
295 "L/NGE",
296 "NL/GE",
297 "LE/NG",
298 "NLE/G"
299};
300
301/*
302 * Interpret a format string and build a string no longer than size
303 * See format key in Assemble.cc.
304 */
305std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
306 std::string buf;
307 size_t i = 0;
308 size_t fmt_len = strlen(fmt);
309 while (i < fmt_len) {
310 if (fmt[i] != '!') {
311 buf += fmt[i];
312 i++;
313 } else {
314 i++;
315 DCHECK_LT(i, fmt_len);
316 char operand_number_ch = fmt[i];
317 i++;
318 if (operand_number_ch == '!') {
319 buf += "!";
320 } else {
321 int operand_number = operand_number_ch - '0';
322 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
323 DCHECK_LT(i, fmt_len);
324 int operand = lir->operands[operand_number];
325 switch (fmt[i]) {
326 case 'c':
327 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
328 buf += x86CondName[operand];
329 break;
330 case 'd':
331 buf += StringPrintf("%d", operand);
332 break;
333 case 'p': {
buzbee0d829482013-10-11 15:24:55 -0700334 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700335 buf += StringPrintf("0x%08x", tab_rec->offset);
336 break;
337 }
338 case 'r':
buzbee091cc402014-03-31 10:14:40 -0700339 if (RegStorage::IsFloat(operand)) {
340 int fp_reg = RegStorage::RegNum(operand);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700341 buf += StringPrintf("xmm%d", fp_reg);
342 } else {
buzbee091cc402014-03-31 10:14:40 -0700343 int reg_num = RegStorage::RegNum(operand);
344 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
345 buf += x86RegName[reg_num];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700346 }
347 break;
348 case 't':
Ian Rogers107c31e2014-01-23 20:55:29 -0800349 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
350 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
351 lir->target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700352 break;
353 default:
354 buf += StringPrintf("DecodeError '%c'", fmt[i]);
355 break;
356 }
357 i++;
358 }
359 }
360 }
361 return buf;
362}
363
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100364void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700365 char buf[256];
366 buf[0] = 0;
367
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100368 if (mask.Equals(kEncodeAll)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700369 strcpy(buf, "all");
370 } else {
371 char num[8];
372 int i;
373
374 for (i = 0; i < kX86RegEnd; i++) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100375 if (mask.HasBit(i)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800376 snprintf(num, arraysize(num), "%d ", i);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700377 strcat(buf, num);
378 }
379 }
380
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100381 if (mask.HasBit(ResourceMask::kCCode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700382 strcat(buf, "cc ");
383 }
384 /* Memory bits */
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100385 if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800386 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
387 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
388 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
Brian Carlstrom7940e442013-07-12 13:46:57 -0700389 }
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100390 if (mask.HasBit(ResourceMask::kLiteral)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700391 strcat(buf, "lit ");
392 }
393
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100394 if (mask.HasBit(ResourceMask::kHeapRef)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700395 strcat(buf, "heap ");
396 }
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100397 if (mask.HasBit(ResourceMask::kMustNotAlias)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700398 strcat(buf, "noalias ");
399 }
400 }
401 if (buf[0]) {
402 LOG(INFO) << prefix << ": " << buf;
403 }
404}
405
406void X86Mir2Lir::AdjustSpillMask() {
407 // Adjustment for LR spilling, x86 has no LR so nothing to do here
buzbee091cc402014-03-31 10:14:40 -0700408 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700409 num_core_spills_++;
410}
411
412/*
413 * Mark a callee-save fp register as promoted. Note that
414 * vpush/vpop uses contiguous register lists so we must
415 * include any holes in the mask. Associate holes with
416 * Dalvik register INVALID_VREG (0xFFFFU).
417 */
buzbee091cc402014-03-31 10:14:40 -0700418void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
419 UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
Brian Carlstrom7940e442013-07-12 13:46:57 -0700420}
421
buzbee091cc402014-03-31 10:14:40 -0700422void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
423 UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
buzbee2700f7e2014-03-07 09:46:20 -0800424}
425
Mark Mendelle87f9b52014-04-30 14:13:18 -0400426RegStorage X86Mir2Lir::AllocateByteRegister() {
Chao-ying Fu7e399fd2014-06-10 18:11:11 -0700427 RegStorage reg = AllocTypedTemp(false, kCoreReg);
428 if (!Gen64Bit()) {
429 DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
430 }
431 return reg;
432}
433
434bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
435 return Gen64Bit() || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
Mark Mendelle87f9b52014-04-30 14:13:18 -0400436}
437
Brian Carlstrom7940e442013-07-12 13:46:57 -0700438/* Clobber all regs that might be used by an external C call */
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000439void X86Mir2Lir::ClobberCallerSave() {
buzbee091cc402014-03-31 10:14:40 -0700440 Clobber(rs_rAX);
441 Clobber(rs_rCX);
442 Clobber(rs_rDX);
443 Clobber(rs_rBX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700444}
445
446RegLocation X86Mir2Lir::GetReturnWideAlt() {
447 RegLocation res = LocCReturnWide();
buzbee091cc402014-03-31 10:14:40 -0700448 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
449 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
450 Clobber(rs_rAX);
451 Clobber(rs_rDX);
452 MarkInUse(rs_rAX);
453 MarkInUse(rs_rDX);
454 MarkWide(res.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700455 return res;
456}
457
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700458RegLocation X86Mir2Lir::GetReturnAlt() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700459 RegLocation res = LocCReturn();
buzbee091cc402014-03-31 10:14:40 -0700460 res.reg.SetReg(rs_rDX.GetReg());
461 Clobber(rs_rDX);
462 MarkInUse(rs_rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700463 return res;
464}
465
Brian Carlstrom7940e442013-07-12 13:46:57 -0700466/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700467void X86Mir2Lir::LockCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700468 LockTemp(rs_rX86_ARG0);
469 LockTemp(rs_rX86_ARG1);
470 LockTemp(rs_rX86_ARG2);
471 LockTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700472 if (Gen64Bit()) {
473 LockTemp(rs_rX86_ARG4);
474 LockTemp(rs_rX86_ARG5);
475 LockTemp(rs_rX86_FARG0);
476 LockTemp(rs_rX86_FARG1);
477 LockTemp(rs_rX86_FARG2);
478 LockTemp(rs_rX86_FARG3);
479 LockTemp(rs_rX86_FARG4);
480 LockTemp(rs_rX86_FARG5);
481 LockTemp(rs_rX86_FARG6);
482 LockTemp(rs_rX86_FARG7);
483 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700484}
485
486/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700487void X86Mir2Lir::FreeCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700488 FreeTemp(rs_rX86_ARG0);
489 FreeTemp(rs_rX86_ARG1);
490 FreeTemp(rs_rX86_ARG2);
491 FreeTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700492 if (Gen64Bit()) {
493 FreeTemp(rs_rX86_ARG4);
494 FreeTemp(rs_rX86_ARG5);
495 FreeTemp(rs_rX86_FARG0);
496 FreeTemp(rs_rX86_FARG1);
497 FreeTemp(rs_rX86_FARG2);
498 FreeTemp(rs_rX86_FARG3);
499 FreeTemp(rs_rX86_FARG4);
500 FreeTemp(rs_rX86_FARG5);
501 FreeTemp(rs_rX86_FARG6);
502 FreeTemp(rs_rX86_FARG7);
503 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700504}
505
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800506bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
507 switch (opcode) {
508 case kX86LockCmpxchgMR:
509 case kX86LockCmpxchgAR:
Ian Rogers0f9b9c52014-06-09 01:32:12 -0700510 case kX86LockCmpxchg64M:
511 case kX86LockCmpxchg64A:
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800512 case kX86XchgMR:
513 case kX86Mfence:
514 // Atomic memory instructions provide full barrier.
515 return true;
516 default:
517 break;
518 }
519
520 // Conservative if cannot prove it provides full barrier.
521 return false;
522}
523
Andreas Gampeb14329f2014-05-15 11:16:06 -0700524bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700525#if ANDROID_SMP != 0
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800526 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
527 LIR* mem_barrier = last_lir_insn_;
528
Andreas Gampeb14329f2014-05-15 11:16:06 -0700529 bool ret = false;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800530 /*
531 * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
532 * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
533 * to ensure is that there is a scheduling barrier in place.
534 */
535 if (barrier_kind == kStoreLoad) {
536 // If no LIR exists already that can be used a barrier, then generate an mfence.
537 if (mem_barrier == nullptr) {
538 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700539 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800540 }
541
542 // If last instruction does not provide full barrier, then insert an mfence.
543 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
544 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700545 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800546 }
547 }
548
549 // Now ensure that a scheduling barrier is in place.
550 if (mem_barrier == nullptr) {
551 GenBarrier();
552 } else {
553 // Mark as a scheduling barrier.
554 DCHECK(!mem_barrier->flags.use_def_invalid);
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100555 mem_barrier->u.m.def_mask = &kEncodeAll;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800556 }
Andreas Gampeb14329f2014-05-15 11:16:06 -0700557 return ret;
558#else
559 return false;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700560#endif
561}
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000562
Brian Carlstrom7940e442013-07-12 13:46:57 -0700563void X86Mir2Lir::CompilerInitializeRegAlloc() {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700564 if (Gen64Bit()) {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700565 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
566 dp_regs_64, reserved_regs_64, reserved_regs_64q,
567 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700568 } else {
buzbeeb01bf152014-05-13 15:59:07 -0700569 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
570 dp_regs_32, reserved_regs_32, empty_pool,
571 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700572 }
buzbee091cc402014-03-31 10:14:40 -0700573
574 // Target-specific adjustments.
575
Mark Mendellfe945782014-05-22 09:52:36 -0400576 // Add in XMM registers.
Vladimir Marko089142c2014-06-05 10:57:05 +0100577 const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
Mark Mendellfe945782014-05-22 09:52:36 -0400578 for (RegStorage reg : *xp_temps) {
579 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
580 reginfo_map_.Put(reg.GetReg(), info);
581 info->SetIsTemp(true);
582 }
583
buzbee091cc402014-03-31 10:14:40 -0700584 // Alias single precision xmm to double xmms.
585 // TODO: as needed, add larger vector sizes - alias all to the largest.
586 GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
587 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
588 int sp_reg_num = info->GetReg().GetRegNum();
Mark Mendellfe945782014-05-22 09:52:36 -0400589 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
590 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
591 // 128-bit xmm vector register's master storage should refer to itself.
592 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
593
594 // Redirect 32-bit vector's master storage to 128-bit vector.
595 info->SetMaster(xp_reg_info);
596
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700597 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
buzbee091cc402014-03-31 10:14:40 -0700598 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
Mark Mendellfe945782014-05-22 09:52:36 -0400599 // Redirect 64-bit vector's master storage to 128-bit vector.
600 dp_reg_info->SetMaster(xp_reg_info);
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700601 // Singles should show a single 32-bit mask bit, at first referring to the low half.
602 DCHECK_EQ(info->StorageMask(), 0x1U);
603 }
604
605 if (Gen64Bit()) {
606 // Alias 32bit W registers to corresponding 64bit X registers.
607 GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
608 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
609 int x_reg_num = info->GetReg().GetRegNum();
610 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
611 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
612 // 64bit X register's master storage should refer to itself.
613 DCHECK_EQ(x_reg_info, x_reg_info->Master());
614 // Redirect 32bit W master storage to 64bit X.
615 info->SetMaster(x_reg_info);
616 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
617 DCHECK_EQ(info->StorageMask(), 0x1U);
618 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700619 }
buzbee091cc402014-03-31 10:14:40 -0700620
621 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
622 // TODO: adjust for x86/hard float calling convention.
623 reg_pool_->next_core_reg_ = 2;
624 reg_pool_->next_sp_reg_ = 2;
625 reg_pool_->next_dp_reg_ = 1;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700626}
627
Brian Carlstrom7940e442013-07-12 13:46:57 -0700628void X86Mir2Lir::SpillCoreRegs() {
629 if (num_core_spills_ == 0) {
630 return;
631 }
632 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700633 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700634 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700635 for (int reg = 0; mask; mask >>= 1, reg++) {
636 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800637 StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700638 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700639 }
640 }
641}
642
643void X86Mir2Lir::UnSpillCoreRegs() {
644 if (num_core_spills_ == 0) {
645 return;
646 }
647 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700648 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700649 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700650 for (int reg = 0; mask; mask >>= 1, reg++) {
651 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800652 LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700653 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700654 }
655 }
656}
657
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700658bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700659 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
660}
661
Vladimir Marko674744e2014-04-24 15:18:26 +0100662bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
663 return true;
664}
665
666RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
Chao-ying Fue0ccdc02014-06-06 17:32:37 -0700667 // X86_64 can handle any size.
668 if (Gen64Bit()) {
669 if (size == kReference) {
670 return kRefReg;
671 }
672 return kCoreReg;
673 }
674
Vladimir Marko674744e2014-04-24 15:18:26 +0100675 if (UNLIKELY(is_volatile)) {
676 // On x86, atomic 64-bit load/store requires an fp register.
677 // Smaller aligned load/store is atomic for both core and fp registers.
678 if (size == k64 || size == kDouble) {
679 return kFPReg;
680 }
681 }
682 return RegClassBySize(size);
683}
684
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700685X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
Mark Mendell55d0eac2014-02-06 11:02:52 -0800686 : Mir2Lir(cu, mir_graph, arena),
Ian Rogersdd7624d2014-03-14 17:43:00 -0700687 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800688 method_address_insns_(arena, 100, kGrowableArrayMisc),
689 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendellae9fd932014-02-10 16:14:35 -0800690 call_method_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendelld65c51a2014-04-29 16:55:20 -0400691 stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
692 const_vectors_(nullptr) {
693 store_method_addr_used_ = false;
Ian Rogersdd7624d2014-03-14 17:43:00 -0700694 if (kIsDebugBuild) {
695 for (int i = 0; i < kX86Last; i++) {
696 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
697 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
Mark Mendelld65c51a2014-04-29 16:55:20 -0400698 << " is wrong: expecting " << i << ", seeing "
699 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
Ian Rogersdd7624d2014-03-14 17:43:00 -0700700 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700701 }
702 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700703 if (Gen64Bit()) {
704 rs_rX86_SP = rs_rX86_SP_64;
705
706 rs_rX86_ARG0 = rs_rDI;
707 rs_rX86_ARG1 = rs_rSI;
708 rs_rX86_ARG2 = rs_rDX;
709 rs_rX86_ARG3 = rs_rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700710 rs_rX86_ARG4 = rs_r8;
711 rs_rX86_ARG5 = rs_r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700712 rs_rX86_FARG0 = rs_fr0;
713 rs_rX86_FARG1 = rs_fr1;
714 rs_rX86_FARG2 = rs_fr2;
715 rs_rX86_FARG3 = rs_fr3;
716 rs_rX86_FARG4 = rs_fr4;
717 rs_rX86_FARG5 = rs_fr5;
718 rs_rX86_FARG6 = rs_fr6;
719 rs_rX86_FARG7 = rs_fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700720 rX86_ARG0 = rDI;
721 rX86_ARG1 = rSI;
722 rX86_ARG2 = rDX;
723 rX86_ARG3 = rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700724 rX86_ARG4 = r8;
725 rX86_ARG5 = r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700726 rX86_FARG0 = fr0;
727 rX86_FARG1 = fr1;
728 rX86_FARG2 = fr2;
729 rX86_FARG3 = fr3;
730 rX86_FARG4 = fr4;
731 rX86_FARG5 = fr5;
732 rX86_FARG6 = fr6;
733 rX86_FARG7 = fr7;
Mark Mendell55884bc2014-06-10 10:21:29 -0400734 rs_rX86_INVOKE_TGT = rs_rDI;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700735 } else {
736 rs_rX86_SP = rs_rX86_SP_32;
737
738 rs_rX86_ARG0 = rs_rAX;
739 rs_rX86_ARG1 = rs_rCX;
740 rs_rX86_ARG2 = rs_rDX;
741 rs_rX86_ARG3 = rs_rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700742 rs_rX86_ARG4 = RegStorage::InvalidReg();
743 rs_rX86_ARG5 = RegStorage::InvalidReg();
744 rs_rX86_FARG0 = rs_rAX;
745 rs_rX86_FARG1 = rs_rCX;
746 rs_rX86_FARG2 = rs_rDX;
747 rs_rX86_FARG3 = rs_rBX;
748 rs_rX86_FARG4 = RegStorage::InvalidReg();
749 rs_rX86_FARG5 = RegStorage::InvalidReg();
750 rs_rX86_FARG6 = RegStorage::InvalidReg();
751 rs_rX86_FARG7 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700752 rX86_ARG0 = rAX;
753 rX86_ARG1 = rCX;
754 rX86_ARG2 = rDX;
755 rX86_ARG3 = rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700756 rX86_FARG0 = rAX;
757 rX86_FARG1 = rCX;
758 rX86_FARG2 = rDX;
759 rX86_FARG3 = rBX;
Mark Mendell55884bc2014-06-10 10:21:29 -0400760 rs_rX86_INVOKE_TGT = rs_rAX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700761 // TODO(64): Initialize with invalid reg
762// rX86_ARG4 = RegStorage::InvalidReg();
763// rX86_ARG5 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700764 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700765 rs_rX86_RET0 = rs_rAX;
766 rs_rX86_RET1 = rs_rDX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700767 rs_rX86_COUNT = rs_rCX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700768 rX86_RET0 = rAX;
769 rX86_RET1 = rDX;
770 rX86_INVOKE_TGT = rAX;
771 rX86_COUNT = rCX;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700772}
773
774Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
775 ArenaAllocator* const arena) {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700776 return new X86Mir2Lir(cu, mir_graph, arena, false);
777}
778
779Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
780 ArenaAllocator* const arena) {
781 return new X86Mir2Lir(cu, mir_graph, arena, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700782}
783
784// Not used in x86
Ian Rogersdd7624d2014-03-14 17:43:00 -0700785RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700786 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
buzbee2700f7e2014-03-07 09:46:20 -0800787 return RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700788}
789
Andreas Gampe2f244e92014-05-08 03:35:25 -0700790// Not used in x86
791RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
792 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
793 return RegStorage::InvalidReg();
794}
795
Dave Allisonb373e092014-02-20 16:06:36 -0800796LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
797 LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
798 return nullptr;
799}
800
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700801uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700802 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700803 return X86Mir2Lir::EncodingMap[opcode].flags;
804}
805
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700806const char* X86Mir2Lir::GetTargetInstName(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700807 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700808 return X86Mir2Lir::EncodingMap[opcode].name;
809}
810
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700811const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700812 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700813 return X86Mir2Lir::EncodingMap[opcode].fmt;
814}
815
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000816void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
817 // Can we do this directly to memory?
818 rl_dest = UpdateLocWide(rl_dest);
819 if ((rl_dest.location == kLocDalvikFrame) ||
820 (rl_dest.location == kLocCompilerTemp)) {
821 int32_t val_lo = Low32Bits(value);
822 int32_t val_hi = High32Bits(value);
buzbee2700f7e2014-03-07 09:46:20 -0800823 int r_base = TargetReg(kSp).GetReg();
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000824 int displacement = SRegOffset(rl_dest.s_reg_low);
825
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100826 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
buzbee2700f7e2014-03-07 09:46:20 -0800827 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000828 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
829 false /* is_load */, true /* is64bit */);
buzbee2700f7e2014-03-07 09:46:20 -0800830 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000831 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
832 false /* is_load */, true /* is64bit */);
833 return;
834 }
835
836 // Just use the standard code to do the generation.
837 Mir2Lir::GenConstWide(rl_dest, value);
838}
Mark Mendelle02d48f2014-01-15 11:19:23 -0800839
840// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
841void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
842 LOG(INFO) << "location: " << loc.location << ','
843 << (loc.wide ? " w" : " ")
844 << (loc.defined ? " D" : " ")
845 << (loc.is_const ? " c" : " ")
846 << (loc.fp ? " F" : " ")
847 << (loc.core ? " C" : " ")
848 << (loc.ref ? " r" : " ")
849 << (loc.high_word ? " h" : " ")
850 << (loc.home ? " H" : " ")
buzbee2700f7e2014-03-07 09:46:20 -0800851 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000852 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
Mark Mendelle02d48f2014-01-15 11:19:23 -0800853 << ", s_reg: " << loc.s_reg_low
854 << ", orig: " << loc.orig_sreg;
855}
856
Mark Mendell67c39c42014-01-31 17:28:00 -0800857void X86Mir2Lir::Materialize() {
858 // A good place to put the analysis before starting.
859 AnalyzeMIR();
860
861 // Now continue with regular code generation.
862 Mir2Lir::Materialize();
863}
864
Jeff Hao49161ce2014-03-12 11:05:25 -0700865void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
Mark Mendell55d0eac2014-02-06 11:02:52 -0800866 SpecialTargetRegister symbolic_reg) {
867 /*
868 * For x86, just generate a 32 bit move immediate instruction, that will be filled
869 * in at 'link time'. For now, put a unique value based on target to ensure that
870 * code deduplication works.
871 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700872 int target_method_idx = target_method.dex_method_index;
873 const DexFile* target_dex_file = target_method.dex_file;
874 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
875 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800876
Jeff Hao49161ce2014-03-12 11:05:25 -0700877 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
buzbee2700f7e2014-03-07 09:46:20 -0800878 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Jeff Hao49161ce2014-03-12 11:05:25 -0700879 static_cast<int>(target_method_id_ptr), target_method_idx,
880 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800881 AppendLIR(move);
882 method_address_insns_.Insert(move);
883}
884
885void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
886 /*
887 * For x86, just generate a 32 bit move immediate instruction, that will be filled
888 * in at 'link time'. For now, put a unique value based on target to ensure that
889 * code deduplication works.
890 */
891 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
892 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
893
894 // Generate the move instruction with the unique pointer and save index and type.
buzbee2700f7e2014-03-07 09:46:20 -0800895 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800896 static_cast<int>(ptr), type_idx);
897 AppendLIR(move);
898 class_type_address_insns_.Insert(move);
899}
900
Jeff Hao49161ce2014-03-12 11:05:25 -0700901LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800902 /*
903 * For x86, just generate a 32 bit call relative instruction, that will be filled
904 * in at 'link time'. For now, put a unique value based on target to ensure that
905 * code deduplication works.
906 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700907 int target_method_idx = target_method.dex_method_index;
908 const DexFile* target_dex_file = target_method.dex_file;
909 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
910 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800911
Jeff Hao49161ce2014-03-12 11:05:25 -0700912 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
913 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
914 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800915 AppendLIR(call);
916 call_method_insns_.Insert(call);
917 return call;
918}
919
Mark Mendelld65c51a2014-04-29 16:55:20 -0400920/*
921 * @brief Enter a 32 bit quantity into a buffer
922 * @param buf buffer.
923 * @param data Data value.
924 */
925
926static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
927 buf.push_back(data & 0xff);
928 buf.push_back((data >> 8) & 0xff);
929 buf.push_back((data >> 16) & 0xff);
930 buf.push_back((data >> 24) & 0xff);
931}
932
Mark Mendell55d0eac2014-02-06 11:02:52 -0800933void X86Mir2Lir::InstallLiteralPools() {
934 // These are handled differently for x86.
935 DCHECK(code_literal_list_ == nullptr);
936 DCHECK(method_literal_list_ == nullptr);
937 DCHECK(class_literal_list_ == nullptr);
938
Mark Mendelld65c51a2014-04-29 16:55:20 -0400939 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
940 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
941 // will fail at runtime)?
942 if (const_vectors_ != nullptr) {
943 int align_size = (16-4) - (code_buffer_.size() & 0xF);
944 if (align_size < 0) {
945 align_size += 16;
946 }
947
948 while (align_size > 0) {
949 code_buffer_.push_back(0);
950 align_size--;
951 }
952 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
953 PushWord(code_buffer_, p->operands[0]);
954 PushWord(code_buffer_, p->operands[1]);
955 PushWord(code_buffer_, p->operands[2]);
956 PushWord(code_buffer_, p->operands[3]);
957 }
958 }
959
Mark Mendell55d0eac2014-02-06 11:02:52 -0800960 // Handle the fixups for methods.
961 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
962 LIR* p = method_address_insns_.Get(i);
963 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700964 uint32_t target_method_idx = p->operands[2];
965 const DexFile* target_dex_file =
966 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800967
968 // The offset to patch is the last 4 bytes of the instruction.
969 int patch_offset = p->offset + p->flags.size - 4;
970 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
971 cu_->method_idx, cu_->invoke_type,
Jeff Hao49161ce2014-03-12 11:05:25 -0700972 target_method_idx, target_dex_file,
973 static_cast<InvokeType>(p->operands[4]),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800974 patch_offset);
975 }
976
977 // Handle the fixups for class types.
978 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
979 LIR* p = class_type_address_insns_.Get(i);
980 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700981 uint32_t target_method_idx = p->operands[2];
Mark Mendell55d0eac2014-02-06 11:02:52 -0800982
983 // The offset to patch is the last 4 bytes of the instruction.
984 int patch_offset = p->offset + p->flags.size - 4;
985 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -0700986 cu_->method_idx, target_method_idx, patch_offset);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800987 }
988
989 // And now the PC-relative calls to methods.
990 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
991 LIR* p = call_method_insns_.Get(i);
992 DCHECK_EQ(p->opcode, kX86CallI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700993 uint32_t target_method_idx = p->operands[1];
994 const DexFile* target_dex_file =
995 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800996
997 // The offset to patch is the last 4 bytes of the instruction.
998 int patch_offset = p->offset + p->flags.size - 4;
999 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -07001000 cu_->method_idx, cu_->invoke_type,
1001 target_method_idx, target_dex_file,
1002 static_cast<InvokeType>(p->operands[3]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001003 patch_offset, -4 /* offset */);
1004 }
1005
1006 // And do the normal processing.
1007 Mir2Lir::InstallLiteralPools();
1008}
1009
Mark Mendell4028a6c2014-02-19 20:06:20 -08001010/*
1011 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1012 * otherwise bails to standard library code.
1013 */
1014bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1015 ClobberCallerSave();
1016 LockCallTemps(); // Using fixed registers
1017
1018 // EAX: 16 bit character being searched.
1019 // ECX: count: number of words to be searched.
1020 // EDI: String being searched.
1021 // EDX: temporary during execution.
1022 // EBX: temporary during execution.
1023
1024 RegLocation rl_obj = info->args[0];
1025 RegLocation rl_char = info->args[1];
buzbeea44d4f52014-03-05 11:26:39 -08001026 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001027
1028 uint32_t char_value =
1029 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1030
1031 if (char_value > 0xFFFF) {
1032 // We have to punt to the real String.indexOf.
1033 return false;
1034 }
1035
1036 // Okay, we are commited to inlining this.
buzbeea0cd2d72014-06-01 09:33:49 -07001037 RegLocation rl_return = GetReturn(kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001038 RegLocation rl_dest = InlineTarget(info);
1039
1040 // Is the string non-NULL?
buzbee2700f7e2014-03-07 09:46:20 -08001041 LoadValueDirectFixed(rl_obj, rs_rDX);
1042 GenNullCheck(rs_rDX, info->opt_flags);
Vladimir Marko3bc86152014-03-13 14:11:28 +00001043 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001044
1045 // Does the character fit in 16 bits?
Mingyao Yang3a74d152014-04-21 15:39:44 -07001046 LIR* slowpath_branch = nullptr;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001047 if (rl_char.is_const) {
1048 // We need the value in EAX.
buzbee2700f7e2014-03-07 09:46:20 -08001049 LoadConstantNoClobber(rs_rAX, char_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001050 } else {
1051 // Character is not a constant; compare at runtime.
buzbee2700f7e2014-03-07 09:46:20 -08001052 LoadValueDirectFixed(rl_char, rs_rAX);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001053 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001054 }
1055
1056 // From here down, we know that we are looking for a char that fits in 16 bits.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001057 // Location of reference to data array within the String object.
1058 int value_offset = mirror::String::ValueOffset().Int32Value();
1059 // Location of count within the String object.
1060 int count_offset = mirror::String::CountOffset().Int32Value();
1061 // Starting offset within data array.
1062 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1063 // Start of char data with array_.
1064 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
Mark Mendell4028a6c2014-02-19 20:06:20 -08001065
1066 // Character is in EAX.
1067 // Object pointer is in EDX.
1068
1069 // We need to preserve EDI, but have no spare registers, so push it on the stack.
1070 // We have to remember that all stack addresses after this are offset by sizeof(EDI).
buzbee091cc402014-03-31 10:14:40 -07001071 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001072
1073 // Compute the number of words to search in to rCX.
buzbee695d13a2014-04-19 13:32:20 -07001074 Load32Disp(rs_rDX, count_offset, rs_rCX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001075 LIR *length_compare = nullptr;
1076 int start_value = 0;
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001077 bool is_index_on_stack = false;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001078 if (zero_based) {
1079 // We have to handle an empty string. Use special instruction JECXZ.
1080 length_compare = NewLIR0(kX86Jecxz8);
1081 } else {
buzbeea44d4f52014-03-05 11:26:39 -08001082 rl_start = info->args[2];
Mark Mendell4028a6c2014-02-19 20:06:20 -08001083 // We have to offset by the start index.
1084 if (rl_start.is_const) {
1085 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1086 start_value = std::max(start_value, 0);
1087
1088 // Is the start > count?
buzbee2700f7e2014-03-07 09:46:20 -08001089 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001090
1091 if (start_value != 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001092 OpRegImm(kOpSub, rs_rCX, start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001093 }
1094 } else {
1095 // Runtime start index.
buzbee30adc732014-05-09 15:10:18 -07001096 rl_start = UpdateLocTyped(rl_start, kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001097 if (rl_start.location == kLocPhysReg) {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001098 // Handle "start index < 0" case.
1099 OpRegReg(kOpXor, rs_rBX, rs_rBX);
1100 OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1101 OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1102
1103 // The length of the string should be greater than the start index.
buzbee2700f7e2014-03-07 09:46:20 -08001104 length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1105 OpRegReg(kOpSub, rs_rCX, rl_start.reg);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001106 if (rl_start.reg == rs_rDI) {
1107 // The special case. We will use EDI further, so lets put start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001108 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001109 is_index_on_stack = true;
1110 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001111 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001112 // Load the start index from stack, remembering that we pushed EDI.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001113 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001114 {
1115 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1116 Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1117 }
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001118 OpRegReg(kOpXor, rs_rDI, rs_rDI);
1119 OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1120 OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1121
1122 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1123 OpRegReg(kOpSub, rs_rCX, rs_rBX);
1124 // Put the start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001125 NewLIR1(kX86Push32R, rs_rBX.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001126 is_index_on_stack = true;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001127 }
1128 }
1129 }
1130 DCHECK(length_compare != nullptr);
1131
1132 // ECX now contains the count in words to be searched.
1133
1134 // Load the address of the string into EBX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001135 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
buzbee695d13a2014-04-19 13:32:20 -07001136 Load32Disp(rs_rDX, value_offset, rs_rDI);
1137 Load32Disp(rs_rDX, offset_offset, rs_rBX);
buzbee2700f7e2014-03-07 09:46:20 -08001138 OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001139
1140 // Now compute into EDI where the search will start.
1141 if (zero_based || rl_start.is_const) {
1142 if (start_value == 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001143 OpRegCopy(rs_rDI, rs_rBX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001144 } else {
buzbee091cc402014-03-31 10:14:40 -07001145 NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001146 }
1147 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001148 if (is_index_on_stack == true) {
1149 // Load the start index from stack.
buzbee091cc402014-03-31 10:14:40 -07001150 NewLIR1(kX86Pop32R, rs_rDX.GetReg());
buzbee2700f7e2014-03-07 09:46:20 -08001151 OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001152 } else {
1153 OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001154 }
1155 }
1156
1157 // EDI now contains the start of the string to be searched.
1158 // We are all prepared to do the search for the character.
1159 NewLIR0(kX86RepneScasw);
1160
1161 // Did we find a match?
1162 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1163
1164 // yes, we matched. Compute the index of the result.
1165 // index = ((curr_ptr - orig_ptr) / 2) - 1.
buzbee2700f7e2014-03-07 09:46:20 -08001166 OpRegReg(kOpSub, rs_rDI, rs_rBX);
1167 OpRegImm(kOpAsr, rs_rDI, 1);
buzbee091cc402014-03-31 10:14:40 -07001168 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001169 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1170
1171 // Failed to match; return -1.
1172 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1173 length_compare->target = not_found;
1174 failed_branch->target = not_found;
buzbee2700f7e2014-03-07 09:46:20 -08001175 LoadConstantNoClobber(rl_return.reg, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001176
1177 // And join up at the end.
1178 all_done->target = NewLIR0(kPseudoTargetLabel);
1179 // Restore EDI from the stack.
buzbee091cc402014-03-31 10:14:40 -07001180 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001181
1182 // Out of line code returns here.
Mingyao Yang3a74d152014-04-21 15:39:44 -07001183 if (slowpath_branch != nullptr) {
Mark Mendell4028a6c2014-02-19 20:06:20 -08001184 LIR *return_point = NewLIR0(kPseudoTargetLabel);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001185 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001186 }
1187
1188 StoreValue(rl_dest, rl_return);
1189 return true;
1190}
1191
Mark Mendellae9fd932014-02-10 16:14:35 -08001192/*
Mark Mendellae9fd932014-02-10 16:14:35 -08001193 * @brief Enter an 'advance LOC' into the FDE buffer
1194 * @param buf FDE buffer.
1195 * @param increment Amount by which to increase the current location.
1196 */
1197static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1198 if (increment < 64) {
1199 // Encoding in opcode.
1200 buf.push_back(0x1 << 6 | increment);
1201 } else if (increment < 256) {
1202 // Single byte delta.
1203 buf.push_back(0x02);
1204 buf.push_back(increment);
1205 } else if (increment < 256 * 256) {
1206 // Two byte delta.
1207 buf.push_back(0x03);
1208 buf.push_back(increment & 0xff);
1209 buf.push_back((increment >> 8) & 0xff);
1210 } else {
1211 // Four byte delta.
1212 buf.push_back(0x04);
1213 PushWord(buf, increment);
1214 }
1215}
1216
1217
1218std::vector<uint8_t>* X86CFIInitialization() {
1219 return X86Mir2Lir::ReturnCommonCallFrameInformation();
1220}
1221
1222std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1223 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1224
1225 // Length of the CIE (except for this field).
1226 PushWord(*cfi_info, 16);
1227
1228 // CIE id.
1229 PushWord(*cfi_info, 0xFFFFFFFFU);
1230
1231 // Version: 3.
1232 cfi_info->push_back(0x03);
1233
1234 // Augmentation: empty string.
1235 cfi_info->push_back(0x0);
1236
1237 // Code alignment: 1.
1238 cfi_info->push_back(0x01);
1239
1240 // Data alignment: -4.
1241 cfi_info->push_back(0x7C);
1242
1243 // Return address register (R8).
1244 cfi_info->push_back(0x08);
1245
1246 // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1247 cfi_info->push_back(0x0C);
1248 cfi_info->push_back(0x04);
1249 cfi_info->push_back(0x04);
1250
1251 // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1252 cfi_info->push_back(0x2 << 6 | 0x08);
1253 cfi_info->push_back(0x01);
1254
1255 // And 2 Noops to align to 4 byte boundary.
1256 cfi_info->push_back(0x0);
1257 cfi_info->push_back(0x0);
1258
1259 DCHECK_EQ(cfi_info->size() & 3, 0U);
1260 return cfi_info;
1261}
1262
1263static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1264 uint8_t buffer[12];
1265 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1266 for (uint8_t *p = buffer; p < ptr; p++) {
1267 buf.push_back(*p);
1268 }
1269}
1270
1271std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1272 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1273
1274 // Generate the FDE for the method.
1275 DCHECK_NE(data_offset_, 0U);
1276
1277 // Length (will be filled in later in this routine).
1278 PushWord(*cfi_info, 0);
1279
1280 // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1281 // one CIE for the whole debug_frame section.
1282 PushWord(*cfi_info, 0);
1283
1284 // 'initial_location' (filled in by linker).
1285 PushWord(*cfi_info, 0);
1286
1287 // 'address_range' (number of bytes in the method).
1288 PushWord(*cfi_info, data_offset_);
1289
1290 // The instructions in the FDE.
1291 if (stack_decrement_ != nullptr) {
1292 // Advance LOC to just past the stack decrement.
1293 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1294 AdvanceLoc(*cfi_info, pc);
1295
1296 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1297 cfi_info->push_back(0x0e);
1298 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1299
1300 // We continue with that stack until the epilogue.
1301 if (stack_increment_ != nullptr) {
1302 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1303 AdvanceLoc(*cfi_info, new_pc - pc);
1304
1305 // We probably have code snippets after the epilogue, so save the
1306 // current state: DW_CFA_remember_state.
1307 cfi_info->push_back(0x0a);
1308
1309 // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
1310 // PC on the stack now.
1311 cfi_info->push_back(0x0e);
1312 EncodeUnsignedLeb128(*cfi_info, 4);
1313
1314 // Everything after that is the same as before the epilogue.
1315 // Stack bump was followed by RET instruction.
1316 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1317 if (post_ret_insn != nullptr) {
1318 pc = new_pc;
1319 new_pc = post_ret_insn->offset;
1320 AdvanceLoc(*cfi_info, new_pc - pc);
1321 // Restore the state: DW_CFA_restore_state.
1322 cfi_info->push_back(0x0b);
1323 }
1324 }
1325 }
1326
1327 // Padding to a multiple of 4
1328 while ((cfi_info->size() & 3) != 0) {
1329 // DW_CFA_nop is encoded as 0.
1330 cfi_info->push_back(0);
1331 }
1332
1333 // Set the length of the FDE inside the generated bytes.
1334 uint32_t length = cfi_info->size() - 4;
1335 (*cfi_info)[0] = length;
1336 (*cfi_info)[1] = length >> 8;
1337 (*cfi_info)[2] = length >> 16;
1338 (*cfi_info)[3] = length >> 24;
1339 return cfi_info;
1340}
1341
Mark Mendelld65c51a2014-04-29 16:55:20 -04001342void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1343 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1344 case kMirOpConstVector:
1345 GenConst128(bb, mir);
1346 break;
Mark Mendellfe945782014-05-22 09:52:36 -04001347 case kMirOpMoveVector:
1348 GenMoveVector(bb, mir);
1349 break;
1350 case kMirOpPackedMultiply:
1351 GenMultiplyVector(bb, mir);
1352 break;
1353 case kMirOpPackedAddition:
1354 GenAddVector(bb, mir);
1355 break;
1356 case kMirOpPackedSubtract:
1357 GenSubtractVector(bb, mir);
1358 break;
1359 case kMirOpPackedShiftLeft:
1360 GenShiftLeftVector(bb, mir);
1361 break;
1362 case kMirOpPackedSignedShiftRight:
1363 GenSignedShiftRightVector(bb, mir);
1364 break;
1365 case kMirOpPackedUnsignedShiftRight:
1366 GenUnsignedShiftRightVector(bb, mir);
1367 break;
1368 case kMirOpPackedAnd:
1369 GenAndVector(bb, mir);
1370 break;
1371 case kMirOpPackedOr:
1372 GenOrVector(bb, mir);
1373 break;
1374 case kMirOpPackedXor:
1375 GenXorVector(bb, mir);
1376 break;
1377 case kMirOpPackedAddReduce:
1378 GenAddReduceVector(bb, mir);
1379 break;
1380 case kMirOpPackedReduce:
1381 GenReduceVector(bb, mir);
1382 break;
1383 case kMirOpPackedSet:
1384 GenSetVector(bb, mir);
1385 break;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001386 default:
1387 break;
1388 }
1389}
1390
1391void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1392 int type_size = mir->dalvikInsn.vA;
1393 // We support 128 bit vectors.
1394 DCHECK_EQ(type_size & 0xFFFF, 128);
Mark Mendellfe945782014-05-22 09:52:36 -04001395 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001396 uint32_t *args = mir->dalvikInsn.arg;
Mark Mendellfe945782014-05-22 09:52:36 -04001397 int reg = rs_dest.GetReg();
Mark Mendelld65c51a2014-04-29 16:55:20 -04001398 // Check for all 0 case.
1399 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1400 NewLIR2(kX86XorpsRR, reg, reg);
1401 return;
1402 }
1403 // Okay, load it from the constant vector area.
1404 LIR *data_target = ScanVectorLiteral(mir);
1405 if (data_target == nullptr) {
1406 data_target = AddVectorLiteral(mir);
1407 }
1408
1409 // Address the start of the method.
1410 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
Chao-ying Fue0ccdc02014-06-06 17:32:37 -07001411 if (rl_method.wide) {
1412 rl_method = LoadValueWide(rl_method, kCoreReg);
1413 } else {
1414 rl_method = LoadValue(rl_method, kCoreReg);
1415 }
Mark Mendelld65c51a2014-04-29 16:55:20 -04001416
1417 // Load the proper value from the literal area.
1418 // We don't know the proper offset for the value, so pick one that will force
1419 // 4 byte offset. We will fix this up in the assembler later to have the right
1420 // value.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001421 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001422 LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */);
1423 load->flags.fixup = kFixupLoad;
1424 load->target = data_target;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001425}
1426
Mark Mendellfe945782014-05-22 09:52:36 -04001427void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1428 // We only support 128 bit registers.
1429 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1430 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1431 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1432 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1433}
1434
1435void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1436 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1437 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1438 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1439 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1440 int opcode = 0;
1441 switch (opsize) {
1442 case k32:
1443 opcode = kX86PmulldRR;
1444 break;
1445 case kSignedHalf:
1446 opcode = kX86PmullwRR;
1447 break;
1448 case kSingle:
1449 opcode = kX86MulpsRR;
1450 break;
1451 case kDouble:
1452 opcode = kX86MulpdRR;
1453 break;
1454 default:
1455 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1456 break;
1457 }
1458 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1459}
1460
1461void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1462 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1463 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1464 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1465 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1466 int opcode = 0;
1467 switch (opsize) {
1468 case k32:
1469 opcode = kX86PadddRR;
1470 break;
1471 case kSignedHalf:
1472 case kUnsignedHalf:
1473 opcode = kX86PaddwRR;
1474 break;
1475 case kUnsignedByte:
1476 case kSignedByte:
1477 opcode = kX86PaddbRR;
1478 break;
1479 case kSingle:
1480 opcode = kX86AddpsRR;
1481 break;
1482 case kDouble:
1483 opcode = kX86AddpdRR;
1484 break;
1485 default:
1486 LOG(FATAL) << "Unsupported vector addition " << opsize;
1487 break;
1488 }
1489 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1490}
1491
1492void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1493 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1494 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1495 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1496 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1497 int opcode = 0;
1498 switch (opsize) {
1499 case k32:
1500 opcode = kX86PsubdRR;
1501 break;
1502 case kSignedHalf:
1503 case kUnsignedHalf:
1504 opcode = kX86PsubwRR;
1505 break;
1506 case kUnsignedByte:
1507 case kSignedByte:
1508 opcode = kX86PsubbRR;
1509 break;
1510 case kSingle:
1511 opcode = kX86SubpsRR;
1512 break;
1513 case kDouble:
1514 opcode = kX86SubpdRR;
1515 break;
1516 default:
1517 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1518 break;
1519 }
1520 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1521}
1522
1523void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1524 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1525 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1526 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1527 int imm = mir->dalvikInsn.vC;
1528 int opcode = 0;
1529 switch (opsize) {
1530 case k32:
1531 opcode = kX86PslldRI;
1532 break;
1533 case k64:
1534 opcode = kX86PsllqRI;
1535 break;
1536 case kSignedHalf:
1537 case kUnsignedHalf:
1538 opcode = kX86PsllwRI;
1539 break;
1540 default:
1541 LOG(FATAL) << "Unsupported vector shift left " << opsize;
1542 break;
1543 }
1544 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1545}
1546
1547void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1548 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1549 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1550 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1551 int imm = mir->dalvikInsn.vC;
1552 int opcode = 0;
1553 switch (opsize) {
1554 case k32:
1555 opcode = kX86PsradRI;
1556 break;
1557 case kSignedHalf:
1558 case kUnsignedHalf:
1559 opcode = kX86PsrawRI;
1560 break;
1561 default:
1562 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1563 break;
1564 }
1565 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1566}
1567
1568void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1569 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1570 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1571 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1572 int imm = mir->dalvikInsn.vC;
1573 int opcode = 0;
1574 switch (opsize) {
1575 case k32:
1576 opcode = kX86PsrldRI;
1577 break;
1578 case k64:
1579 opcode = kX86PsrlqRI;
1580 break;
1581 case kSignedHalf:
1582 case kUnsignedHalf:
1583 opcode = kX86PsrlwRI;
1584 break;
1585 default:
1586 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1587 break;
1588 }
1589 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1590}
1591
1592void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1593 // We only support 128 bit registers.
1594 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1595 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1596 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1597 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1598}
1599
1600void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1601 // We only support 128 bit registers.
1602 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1603 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1604 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1605 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1606}
1607
1608void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1609 // We only support 128 bit registers.
1610 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1611 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1612 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1613 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1614}
1615
1616void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1617 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1618 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1619 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1620 int imm = mir->dalvikInsn.vC;
1621 int opcode = 0;
1622 switch (opsize) {
1623 case k32:
1624 opcode = kX86PhadddRR;
1625 break;
1626 case kSignedHalf:
1627 case kUnsignedHalf:
1628 opcode = kX86PhaddwRR;
1629 break;
1630 default:
1631 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1632 break;
1633 }
1634 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1635}
1636
1637void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1638 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1639 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1640 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1641 int index = mir->dalvikInsn.arg[0];
1642 int opcode = 0;
1643 switch (opsize) {
1644 case k32:
1645 opcode = kX86PextrdRRI;
1646 break;
1647 case kSignedHalf:
1648 case kUnsignedHalf:
1649 opcode = kX86PextrwRRI;
1650 break;
1651 case kUnsignedByte:
1652 case kSignedByte:
1653 opcode = kX86PextrbRRI;
1654 break;
1655 default:
1656 LOG(FATAL) << "Unsupported vector reduce " << opsize;
1657 break;
1658 }
1659 // We need to extract to a GPR.
1660 RegStorage temp = AllocTemp();
1661 NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1662
1663 // Assume that the destination VR is in the def for the mir.
1664 RegLocation rl_dest = mir_graph_->GetDest(mir);
1665 RegLocation rl_temp =
1666 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1667 StoreValue(rl_dest, rl_temp);
1668}
1669
1670void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1671 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1672 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1673 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1674 int op_low = 0, op_high = 0;
1675 switch (opsize) {
1676 case k32:
1677 op_low = kX86PshufdRRI;
1678 break;
1679 case kSignedHalf:
1680 case kUnsignedHalf:
1681 // Handles low quadword.
1682 op_low = kX86PshuflwRRI;
1683 // Handles upper quadword.
1684 op_high = kX86PshufdRRI;
1685 break;
1686 default:
1687 LOG(FATAL) << "Unsupported vector set " << opsize;
1688 break;
1689 }
1690
1691 // Load the value from the VR into a GPR.
1692 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1693 rl_src = LoadValue(rl_src, kCoreReg);
1694
1695 // Load the value into the XMM register.
1696 NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1697
1698 // Now shuffle the value across the destination.
1699 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1700
1701 // And then repeat as needed.
1702 if (op_high != 0) {
1703 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1704 }
1705}
1706
1707
Mark Mendelld65c51a2014-04-29 16:55:20 -04001708LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1709 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1710 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1711 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1712 args[2] == p->operands[2] && args[3] == p->operands[3]) {
1713 return p;
1714 }
1715 }
1716 return nullptr;
1717}
1718
1719LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1720 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1721 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1722 new_value->operands[0] = args[0];
1723 new_value->operands[1] = args[1];
1724 new_value->operands[2] = args[2];
1725 new_value->operands[3] = args[3];
1726 new_value->next = const_vectors_;
1727 if (const_vectors_ == nullptr) {
1728 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
1729 }
1730 estimated_native_code_size_ += 16; // Space for one vector.
1731 const_vectors_ = new_value;
1732 return new_value;
1733}
1734
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001735// ------------ ABI support: mapping of args to physical registers -------------
1736RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1737 const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1738 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1739 const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1740 rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1741 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1742
1743 RegStorage result = RegStorage::InvalidReg();
1744 if (is_double_or_float) {
1745 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1746 result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1747 if (result.Valid()) {
1748 result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1749 }
1750 }
1751 } else {
1752 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1753 result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1754 if (result.Valid()) {
1755 result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1756 }
1757 }
1758 }
1759 return result;
1760}
1761
1762RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1763 DCHECK(IsInitialized());
1764 auto res = mapping_.find(in_position);
1765 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1766}
1767
1768void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1769 DCHECK(mapper != nullptr);
1770 max_mapped_in_ = -1;
1771 is_there_stack_mapped_ = false;
1772 for (int in_position = 0; in_position < count; in_position++) {
1773 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1774 if (reg.Valid()) {
1775 mapping_[in_position] = reg;
1776 max_mapped_in_ = std::max(max_mapped_in_, in_position);
1777 if (reg.Is64BitSolo()) {
1778 // We covered 2 args, so skip the next one
1779 in_position++;
1780 }
1781 } else {
1782 is_there_stack_mapped_ = true;
1783 }
1784 }
1785 initialized_ = true;
1786}
1787
1788RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1789 if (!Gen64Bit()) {
1790 return GetCoreArgMappingToPhysicalReg(arg_num);
1791 }
1792
1793 if (!in_to_reg_storage_mapping_.IsInitialized()) {
1794 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1795 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1796
1797 InToRegStorageX86_64Mapper mapper;
1798 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1799 }
1800 return in_to_reg_storage_mapping_.Get(arg_num);
1801}
1802
1803RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1804 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1805 // Not used for 64-bit, TODO: Move X86_32 to the same framework
1806 switch (core_arg_num) {
1807 case 0:
1808 return rs_rX86_ARG1;
1809 case 1:
1810 return rs_rX86_ARG2;
1811 case 2:
1812 return rs_rX86_ARG3;
1813 default:
1814 return RegStorage::InvalidReg();
1815 }
1816}
1817
1818// ---------End of ABI support: mapping of args to physical registers -------------
1819
1820/*
1821 * If there are any ins passed in registers that have not been promoted
1822 * to a callee-save register, flush them to the frame. Perform initial
1823 * assignment of promoted arguments.
1824 *
1825 * ArgLocs is an array of location records describing the incoming arguments
1826 * with one location record per word of argument.
1827 */
1828void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1829 if (!Gen64Bit()) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1830 /*
1831 * Dummy up a RegLocation for the incoming Method*
1832 * It will attempt to keep kArg0 live (or copy it to home location
1833 * if promoted).
1834 */
1835
1836 RegLocation rl_src = rl_method;
1837 rl_src.location = kLocPhysReg;
1838 rl_src.reg = TargetReg(kArg0);
1839 rl_src.home = false;
1840 MarkLive(rl_src);
1841 StoreValue(rl_method, rl_src);
1842 // If Method* has been promoted, explicitly flush
1843 if (rl_method.location == kLocPhysReg) {
1844 StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0));
1845 }
1846
1847 if (cu_->num_ins == 0) {
1848 return;
1849 }
1850
1851 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1852 /*
1853 * Copy incoming arguments to their proper home locations.
1854 * NOTE: an older version of dx had an issue in which
1855 * it would reuse static method argument registers.
1856 * This could result in the same Dalvik virtual register
1857 * being promoted to both core and fp regs. To account for this,
1858 * we only copy to the corresponding promoted physical register
1859 * if it matches the type of the SSA name for the incoming
1860 * argument. It is also possible that long and double arguments
1861 * end up half-promoted. In those cases, we must flush the promoted
1862 * half to memory as well.
1863 */
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001864 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001865 for (int i = 0; i < cu_->num_ins; i++) {
1866 PromotionMap* v_map = &promotion_map_[start_vreg + i];
1867 RegStorage reg = RegStorage::InvalidReg();
1868 // get reg corresponding to input
1869 reg = GetArgMappingToPhysicalReg(i);
1870
1871 if (reg.Valid()) {
1872 // If arriving in register
1873 bool need_flush = true;
1874 RegLocation* t_loc = &ArgLocs[i];
1875 if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
1876 OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
1877 need_flush = false;
1878 } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
1879 OpRegCopy(RegStorage::Solo32(v_map->FpReg), reg);
1880 need_flush = false;
1881 } else {
1882 need_flush = true;
1883 }
1884
1885 // For wide args, force flush if not fully promoted
1886 if (t_loc->wide) {
1887 PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
1888 // Is only half promoted?
1889 need_flush |= (p_map->core_location != v_map->core_location) ||
1890 (p_map->fp_location != v_map->fp_location);
1891 }
1892 if (need_flush) {
1893 if (t_loc->wide && t_loc->fp) {
1894 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1895 // Increment i to skip the next one
1896 i++;
1897 } else if (t_loc->wide && !t_loc->fp) {
1898 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1899 // Increment i to skip the next one
1900 i++;
1901 } else {
1902 Store32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), reg);
1903 }
1904 }
1905 } else {
1906 // If arriving in frame & promoted
1907 if (v_map->core_location == kLocPhysReg) {
1908 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->core_reg));
1909 }
1910 if (v_map->fp_location == kLocPhysReg) {
1911 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->FpReg));
1912 }
1913 }
1914 }
1915}
1916
1917/*
1918 * Load up to 5 arguments, the first three of which will be in
1919 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
1920 * and as part of the load sequence, it must be replaced with
1921 * the target method pointer. Note, this may also be called
1922 * for "range" variants if the number of arguments is 5 or fewer.
1923 */
1924int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1925 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1926 const MethodReference& target_method,
1927 uint32_t vtable_idx, uintptr_t direct_code,
1928 uintptr_t direct_method, InvokeType type, bool skip_this) {
1929 if (!Gen64Bit()) {
1930 return Mir2Lir::GenDalvikArgsNoRange(info,
1931 call_state, pcrLabel, next_call_insn,
1932 target_method,
1933 vtable_idx, direct_code,
1934 direct_method, type, skip_this);
1935 }
1936 return GenDalvikArgsRange(info,
1937 call_state, pcrLabel, next_call_insn,
1938 target_method,
1939 vtable_idx, direct_code,
1940 direct_method, type, skip_this);
1941}
1942
1943/*
1944 * May have 0+ arguments (also used for jumbo). Note that
1945 * source virtual registers may be in physical registers, so may
1946 * need to be flushed to home location before copying. This
1947 * applies to arg3 and above (see below).
1948 *
1949 * Two general strategies:
1950 * If < 20 arguments
1951 * Pass args 3-18 using vldm/vstm block copy
1952 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1953 * If 20+ arguments
1954 * Pass args arg19+ using memcpy block copy
1955 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1956 *
1957 */
1958int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1959 LIR** pcrLabel, NextCallInsn next_call_insn,
1960 const MethodReference& target_method,
1961 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1962 InvokeType type, bool skip_this) {
1963 if (!Gen64Bit()) {
1964 return Mir2Lir::GenDalvikArgsRange(info, call_state,
1965 pcrLabel, next_call_insn,
1966 target_method,
1967 vtable_idx, direct_code, direct_method,
1968 type, skip_this);
1969 }
1970
1971 /* If no arguments, just return */
1972 if (info->num_arg_words == 0)
1973 return call_state;
1974
1975 const int start_index = skip_this ? 1 : 0;
1976
1977 InToRegStorageX86_64Mapper mapper;
1978 InToRegStorageMapping in_to_reg_storage_mapping;
1979 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1980 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1981 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
1982 in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
1983 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
1984
1985 // Fisrt of all, check whether it make sense to use bulk copying
1986 // Optimization is aplicable only for range case
1987 // TODO: make a constant instead of 2
1988 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1989 // Scan the rest of the args - if in phys_reg flush to memory
1990 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
1991 RegLocation loc = info->args[next_arg];
1992 if (loc.wide) {
1993 loc = UpdateLocWide(loc);
1994 if (loc.location == kLocPhysReg) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001995 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001996 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64);
1997 }
1998 next_arg += 2;
1999 } else {
2000 loc = UpdateLoc(loc);
2001 if (loc.location == kLocPhysReg) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002002 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002003 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32);
2004 }
2005 next_arg++;
2006 }
2007 }
2008
2009 // Logic below assumes that Method pointer is at offset zero from SP.
2010 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2011
2012 // The rest can be copied together
2013 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2014 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2015
2016 int current_src_offset = start_offset;
2017 int current_dest_offset = outs_offset;
2018
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002019 // Only davik regs are accessed in this loop; no next_call_insn() calls.
2020 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002021 while (regs_left_to_pass_via_stack > 0) {
2022 // This is based on the knowledge that the stack itself is 16-byte aligned.
2023 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2024 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2025 size_t bytes_to_move;
2026
2027 /*
2028 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2029 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2030 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2031 * We do this because we could potentially do a smaller move to align.
2032 */
2033 if (regs_left_to_pass_via_stack == 4 ||
2034 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2035 // Moving 128-bits via xmm register.
2036 bytes_to_move = sizeof(uint32_t) * 4;
2037
2038 // Allocate a free xmm temp. Since we are working through the calling sequence,
2039 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2040 // there are no free registers.
2041 RegStorage temp = AllocTempDouble();
2042
2043 LIR* ld1 = nullptr;
2044 LIR* ld2 = nullptr;
2045 LIR* st1 = nullptr;
2046 LIR* st2 = nullptr;
2047
2048 /*
2049 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2050 * do an aligned move. If we have 8-byte alignment, then do the move in two
2051 * parts. This approach prevents possible cache line splits. Finally, fall back
2052 * to doing an unaligned move. In most cases we likely won't split the cache
2053 * line but we cannot prove it and thus take a conservative approach.
2054 */
2055 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2056 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2057
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002058 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002059 if (src_is_16b_aligned) {
2060 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2061 } else if (src_is_8b_aligned) {
2062 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2063 ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2064 kMovHi128FP);
2065 } else {
2066 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2067 }
2068
2069 if (dest_is_16b_aligned) {
2070 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2071 } else if (dest_is_8b_aligned) {
2072 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2073 st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2074 temp, kMovHi128FP);
2075 } else {
2076 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2077 }
2078
2079 // TODO If we could keep track of aliasing information for memory accesses that are wider
2080 // than 64-bit, we wouldn't need to set up a barrier.
2081 if (ld1 != nullptr) {
2082 if (ld2 != nullptr) {
2083 // For 64-bit load we can actually set up the aliasing information.
2084 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2085 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2086 } else {
2087 // Set barrier for 128-bit load.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002088 ld1->u.m.def_mask = &kEncodeAll;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002089 }
2090 }
2091 if (st1 != nullptr) {
2092 if (st2 != nullptr) {
2093 // For 64-bit store we can actually set up the aliasing information.
2094 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2095 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2096 } else {
2097 // Set barrier for 128-bit store.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002098 st1->u.m.def_mask = &kEncodeAll;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002099 }
2100 }
2101
2102 // Free the temporary used for the data movement.
2103 FreeTemp(temp);
2104 } else {
2105 // Moving 32-bits via general purpose register.
2106 bytes_to_move = sizeof(uint32_t);
2107
2108 // Instead of allocating a new temp, simply reuse one of the registers being used
2109 // for argument passing.
2110 RegStorage temp = TargetReg(kArg3);
2111
2112 // Now load the argument VR and store to the outs.
2113 Load32Disp(TargetReg(kSp), current_src_offset, temp);
2114 Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2115 }
2116
2117 current_src_offset += bytes_to_move;
2118 current_dest_offset += bytes_to_move;
2119 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2120 }
2121 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2122 }
2123
2124 // Now handle rest not registers if they are
2125 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2126 RegStorage regSingle = TargetReg(kArg2);
2127 RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
2128 for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
2129 RegLocation rl_arg = info->args[i];
2130 rl_arg = UpdateRawLoc(rl_arg);
2131 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2132 if (!reg.Valid()) {
2133 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2134
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002135 {
2136 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2137 if (rl_arg.wide) {
2138 if (rl_arg.location == kLocPhysReg) {
2139 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64);
2140 } else {
2141 LoadValueDirectWideFixed(rl_arg, regWide);
2142 StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64);
2143 }
2144 i++;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002145 } else {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002146 if (rl_arg.location == kLocPhysReg) {
2147 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32);
2148 } else {
2149 LoadValueDirectFixed(rl_arg, regSingle);
2150 StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32);
2151 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002152 }
2153 }
2154 call_state = next_call_insn(cu_, info, call_state, target_method,
2155 vtable_idx, direct_code, direct_method, type);
2156 }
2157 }
2158 }
2159
2160 // Finish with mapped registers
2161 for (int i = start_index; i <= last_mapped_in; i++) {
2162 RegLocation rl_arg = info->args[i];
2163 rl_arg = UpdateRawLoc(rl_arg);
2164 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2165 if (reg.Valid()) {
2166 if (rl_arg.wide) {
2167 LoadValueDirectWideFixed(rl_arg, reg);
2168 i++;
2169 } else {
2170 LoadValueDirectFixed(rl_arg, reg);
2171 }
2172 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2173 direct_code, direct_method, type);
2174 }
2175 }
2176
2177 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2178 direct_code, direct_method, type);
2179 if (pcrLabel) {
Andreas Gampe5655e842014-06-17 16:36:07 -07002180 if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002181 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2182 } else {
2183 *pcrLabel = nullptr;
2184 // In lieu of generating a check for kArg1 being null, we need to
2185 // perform a load when doing implicit checks.
2186 RegStorage tmp = AllocTemp();
2187 Load32Disp(TargetReg(kArg1), 0, tmp);
2188 MarkPossibleNullPointerException(info->opt_flags);
2189 FreeTemp(tmp);
2190 }
2191 }
2192 return call_state;
2193}
2194
Brian Carlstrom7934ac22013-07-26 10:54:15 -07002195} // namespace art
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002196