blob: 72b2cea7fc5eb569c290350b063108b39eca8c81 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Nicolas Geoffrayf3e2cc42014-02-18 18:37:26 +000017#include <string>
18#include <inttypes.h>
19
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
buzbeeb5860fb2014-06-21 15:31:01 -070023#include "dex/reg_storage_eq.h"
Mark Mendelle19c91f2014-02-25 08:19:08 -080024#include "mirror/array.h"
25#include "mirror/string.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070026#include "x86_lir.h"
27
Brian Carlstrom7940e442013-07-12 13:46:57 -070028namespace art {
29
Vladimir Marko089142c2014-06-05 10:57:05 +010030static constexpr RegStorage core_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070031 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
Vladimir Marko089142c2014-06-05 10:57:05 +010033static constexpr RegStorage core_regs_arr_64[] = {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070034 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
buzbee091cc402014-03-31 10:14:40 -070035 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
Brian Carlstrom7940e442013-07-12 13:46:57 -070036};
Vladimir Marko089142c2014-06-05 10:57:05 +010037static constexpr RegStorage core_regs_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070038 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
Dmitry Petrochenkoa20468c2014-04-30 13:40:19 +070039 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070040};
Vladimir Marko089142c2014-06-05 10:57:05 +010041static constexpr RegStorage sp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070042 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
Vladimir Marko089142c2014-06-05 10:57:05 +010044static constexpr RegStorage sp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070045 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070046 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070047};
Vladimir Marko089142c2014-06-05 10:57:05 +010048static constexpr RegStorage dp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070049 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
Vladimir Marko089142c2014-06-05 10:57:05 +010051static constexpr RegStorage dp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070052 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070053 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070054};
Vladimir Marko089142c2014-06-05 10:57:05 +010055static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070056static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
Vladimir Marko089142c2014-06-05 10:57:05 +010057static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
58static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
59static constexpr RegStorage core_temps_arr_64[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070060 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070061 rs_r8, rs_r9, rs_r10, rs_r11
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070062};
Vladimir Marko089142c2014-06-05 10:57:05 +010063static constexpr RegStorage core_temps_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070064 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070065 rs_r8q, rs_r9q, rs_r10q, rs_r11q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070066};
Vladimir Marko089142c2014-06-05 10:57:05 +010067static constexpr RegStorage sp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070068 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
69};
Vladimir Marko089142c2014-06-05 10:57:05 +010070static constexpr RegStorage sp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070071 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
buzbee091cc402014-03-31 10:14:40 -070072 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
buzbee091cc402014-03-31 10:14:40 -070073};
Vladimir Marko089142c2014-06-05 10:57:05 +010074static constexpr RegStorage dp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070075 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
76};
Vladimir Marko089142c2014-06-05 10:57:05 +010077static constexpr RegStorage dp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070078 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
buzbee091cc402014-03-31 10:14:40 -070079 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
buzbee091cc402014-03-31 10:14:40 -070080};
81
Vladimir Marko089142c2014-06-05 10:57:05 +010082static constexpr RegStorage xp_temps_arr_32[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040083 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
84};
Vladimir Marko089142c2014-06-05 10:57:05 +010085static constexpr RegStorage xp_temps_arr_64[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040086 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
Mark Mendellfe945782014-05-22 09:52:36 -040087 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
Mark Mendellfe945782014-05-22 09:52:36 -040088};
89
Vladimir Marko089142c2014-06-05 10:57:05 +010090static constexpr ArrayRef<const RegStorage> empty_pool;
91static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
92static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
93static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
94static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
95static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
96static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
97static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
98static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
100static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
101static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
102static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
103static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
104static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
105static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
106static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
107static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700108
Vladimir Marko089142c2014-06-05 10:57:05 +0100109static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
110static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
Mark Mendellfe945782014-05-22 09:52:36 -0400111
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700112RegStorage rs_rX86_SP;
113
114X86NativeRegisterPool rX86_ARG0;
115X86NativeRegisterPool rX86_ARG1;
116X86NativeRegisterPool rX86_ARG2;
117X86NativeRegisterPool rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700118X86NativeRegisterPool rX86_ARG4;
119X86NativeRegisterPool rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700120X86NativeRegisterPool rX86_FARG0;
121X86NativeRegisterPool rX86_FARG1;
122X86NativeRegisterPool rX86_FARG2;
123X86NativeRegisterPool rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700124X86NativeRegisterPool rX86_FARG4;
125X86NativeRegisterPool rX86_FARG5;
126X86NativeRegisterPool rX86_FARG6;
127X86NativeRegisterPool rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700128X86NativeRegisterPool rX86_RET0;
129X86NativeRegisterPool rX86_RET1;
130X86NativeRegisterPool rX86_INVOKE_TGT;
131X86NativeRegisterPool rX86_COUNT;
132
133RegStorage rs_rX86_ARG0;
134RegStorage rs_rX86_ARG1;
135RegStorage rs_rX86_ARG2;
136RegStorage rs_rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700137RegStorage rs_rX86_ARG4;
138RegStorage rs_rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700139RegStorage rs_rX86_FARG0;
140RegStorage rs_rX86_FARG1;
141RegStorage rs_rX86_FARG2;
142RegStorage rs_rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700143RegStorage rs_rX86_FARG4;
144RegStorage rs_rX86_FARG5;
145RegStorage rs_rX86_FARG6;
146RegStorage rs_rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700147RegStorage rs_rX86_RET0;
148RegStorage rs_rX86_RET1;
149RegStorage rs_rX86_INVOKE_TGT;
150RegStorage rs_rX86_COUNT;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700151
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700152RegLocation X86Mir2Lir::LocCReturn() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000153 return x86_loc_c_return;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700154}
155
buzbeea0cd2d72014-06-01 09:33:49 -0700156RegLocation X86Mir2Lir::LocCReturnRef() {
157 // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
158 return x86_loc_c_return;
159}
160
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700161RegLocation X86Mir2Lir::LocCReturnWide() {
Elena Sayapinadd644502014-07-01 18:39:52 +0700162 return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700163}
164
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700165RegLocation X86Mir2Lir::LocCReturnFloat() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000166 return x86_loc_c_return_float;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700167}
168
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700169RegLocation X86Mir2Lir::LocCReturnDouble() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000170 return x86_loc_c_return_double;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700171}
172
173// Return a target-dependent special register.
buzbee2700f7e2014-03-07 09:46:20 -0800174RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
buzbee091cc402014-03-31 10:14:40 -0700175 RegStorage res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700176 switch (reg) {
buzbee091cc402014-03-31 10:14:40 -0700177 case kSelf: res_reg = RegStorage::InvalidReg(); break;
178 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
179 case kLr: res_reg = RegStorage::InvalidReg(); break;
180 case kPc: res_reg = RegStorage::InvalidReg(); break;
181 case kSp: res_reg = rs_rX86_SP; break;
182 case kArg0: res_reg = rs_rX86_ARG0; break;
183 case kArg1: res_reg = rs_rX86_ARG1; break;
184 case kArg2: res_reg = rs_rX86_ARG2; break;
185 case kArg3: res_reg = rs_rX86_ARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700186 case kArg4: res_reg = rs_rX86_ARG4; break;
187 case kArg5: res_reg = rs_rX86_ARG5; break;
buzbee091cc402014-03-31 10:14:40 -0700188 case kFArg0: res_reg = rs_rX86_FARG0; break;
189 case kFArg1: res_reg = rs_rX86_FARG1; break;
190 case kFArg2: res_reg = rs_rX86_FARG2; break;
191 case kFArg3: res_reg = rs_rX86_FARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700192 case kFArg4: res_reg = rs_rX86_FARG4; break;
193 case kFArg5: res_reg = rs_rX86_FARG5; break;
194 case kFArg6: res_reg = rs_rX86_FARG6; break;
195 case kFArg7: res_reg = rs_rX86_FARG7; break;
buzbee091cc402014-03-31 10:14:40 -0700196 case kRet0: res_reg = rs_rX86_RET0; break;
197 case kRet1: res_reg = rs_rX86_RET1; break;
198 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
199 case kHiddenArg: res_reg = rs_rAX; break;
Elena Sayapinadd644502014-07-01 18:39:52 +0700200 case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
buzbee091cc402014-03-31 10:14:40 -0700201 case kCount: res_reg = rs_rX86_COUNT; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700202 default: res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700203 }
buzbee091cc402014-03-31 10:14:40 -0700204 return res_reg;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700205}
206
Brian Carlstrom7940e442013-07-12 13:46:57 -0700207/*
208 * Decode the register id.
209 */
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100210ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
211 /* Double registers in x86 are just a single FP register. This is always just a single bit. */
212 return ResourceMask::Bit(
213 /* FP register starts at bit position 16 */
214 ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700215}
216
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100217ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700218 /*
219 * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
220 * able to clean up some of the x86/Arm_Mips differences
221 */
222 LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100223 return kEncodeNone;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700224}
225
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100226void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
227 ResourceMask* use_mask, ResourceMask* def_mask) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700228 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
buzbeeb48819d2013-09-14 16:15:25 -0700229 DCHECK(!lir->flags.use_def_invalid);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700230
231 // X86-specific resource map setup here.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700232 if (flags & REG_USE_SP) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100233 use_mask->SetBit(kX86RegSP);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700234 }
235
236 if (flags & REG_DEF_SP) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100237 def_mask->SetBit(kX86RegSP);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700238 }
239
240 if (flags & REG_DEFA) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100241 SetupRegMask(def_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700242 }
243
244 if (flags & REG_DEFD) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100245 SetupRegMask(def_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700246 }
247 if (flags & REG_USEA) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100248 SetupRegMask(use_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700249 }
250
251 if (flags & REG_USEC) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100252 SetupRegMask(use_mask, rs_rCX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700253 }
254
255 if (flags & REG_USED) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100256 SetupRegMask(use_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700257 }
Vladimir Marko70b797d2013-12-03 15:25:24 +0000258
259 if (flags & REG_USEB) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100260 SetupRegMask(use_mask, rs_rBX.GetReg());
Vladimir Marko70b797d2013-12-03 15:25:24 +0000261 }
Mark Mendell4028a6c2014-02-19 20:06:20 -0800262
263 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
264 if (lir->opcode == kX86RepneScasw) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100265 SetupRegMask(use_mask, rs_rAX.GetReg());
266 SetupRegMask(use_mask, rs_rCX.GetReg());
267 SetupRegMask(use_mask, rs_rDI.GetReg());
268 SetupRegMask(def_mask, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -0800269 }
Serguei Katkove90501d2014-03-12 15:56:54 +0700270
271 if (flags & USE_FP_STACK) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100272 use_mask->SetBit(kX86FPStack);
273 def_mask->SetBit(kX86FPStack);
Serguei Katkove90501d2014-03-12 15:56:54 +0700274 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700275}
276
277/* For dumping instructions */
278static const char* x86RegName[] = {
279 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
280 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
281};
282
283static const char* x86CondName[] = {
284 "O",
285 "NO",
286 "B/NAE/C",
287 "NB/AE/NC",
288 "Z/EQ",
289 "NZ/NE",
290 "BE/NA",
291 "NBE/A",
292 "S",
293 "NS",
294 "P/PE",
295 "NP/PO",
296 "L/NGE",
297 "NL/GE",
298 "LE/NG",
299 "NLE/G"
300};
301
302/*
303 * Interpret a format string and build a string no longer than size
304 * See format key in Assemble.cc.
305 */
306std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
307 std::string buf;
308 size_t i = 0;
309 size_t fmt_len = strlen(fmt);
310 while (i < fmt_len) {
311 if (fmt[i] != '!') {
312 buf += fmt[i];
313 i++;
314 } else {
315 i++;
316 DCHECK_LT(i, fmt_len);
317 char operand_number_ch = fmt[i];
318 i++;
319 if (operand_number_ch == '!') {
320 buf += "!";
321 } else {
322 int operand_number = operand_number_ch - '0';
323 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
324 DCHECK_LT(i, fmt_len);
325 int operand = lir->operands[operand_number];
326 switch (fmt[i]) {
327 case 'c':
328 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
329 buf += x86CondName[operand];
330 break;
331 case 'd':
332 buf += StringPrintf("%d", operand);
333 break;
334 case 'p': {
buzbee0d829482013-10-11 15:24:55 -0700335 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700336 buf += StringPrintf("0x%08x", tab_rec->offset);
337 break;
338 }
339 case 'r':
buzbee091cc402014-03-31 10:14:40 -0700340 if (RegStorage::IsFloat(operand)) {
341 int fp_reg = RegStorage::RegNum(operand);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700342 buf += StringPrintf("xmm%d", fp_reg);
343 } else {
buzbee091cc402014-03-31 10:14:40 -0700344 int reg_num = RegStorage::RegNum(operand);
345 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
346 buf += x86RegName[reg_num];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700347 }
348 break;
349 case 't':
Ian Rogers107c31e2014-01-23 20:55:29 -0800350 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
351 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
352 lir->target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700353 break;
354 default:
355 buf += StringPrintf("DecodeError '%c'", fmt[i]);
356 break;
357 }
358 i++;
359 }
360 }
361 }
362 return buf;
363}
364
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100365void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700366 char buf[256];
367 buf[0] = 0;
368
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100369 if (mask.Equals(kEncodeAll)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700370 strcpy(buf, "all");
371 } else {
372 char num[8];
373 int i;
374
375 for (i = 0; i < kX86RegEnd; i++) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100376 if (mask.HasBit(i)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800377 snprintf(num, arraysize(num), "%d ", i);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700378 strcat(buf, num);
379 }
380 }
381
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100382 if (mask.HasBit(ResourceMask::kCCode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700383 strcat(buf, "cc ");
384 }
385 /* Memory bits */
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100386 if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800387 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
388 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
389 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
Brian Carlstrom7940e442013-07-12 13:46:57 -0700390 }
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100391 if (mask.HasBit(ResourceMask::kLiteral)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700392 strcat(buf, "lit ");
393 }
394
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100395 if (mask.HasBit(ResourceMask::kHeapRef)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700396 strcat(buf, "heap ");
397 }
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100398 if (mask.HasBit(ResourceMask::kMustNotAlias)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700399 strcat(buf, "noalias ");
400 }
401 }
402 if (buf[0]) {
403 LOG(INFO) << prefix << ": " << buf;
404 }
405}
406
407void X86Mir2Lir::AdjustSpillMask() {
408 // Adjustment for LR spilling, x86 has no LR so nothing to do here
buzbee091cc402014-03-31 10:14:40 -0700409 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700410 num_core_spills_++;
411}
412
Mark Mendelle87f9b52014-04-30 14:13:18 -0400413RegStorage X86Mir2Lir::AllocateByteRegister() {
Chao-ying Fu7e399fd2014-06-10 18:11:11 -0700414 RegStorage reg = AllocTypedTemp(false, kCoreReg);
Elena Sayapinadd644502014-07-01 18:39:52 +0700415 if (!cu_->target64) {
Chao-ying Fu7e399fd2014-06-10 18:11:11 -0700416 DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
417 }
418 return reg;
419}
420
421bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
Elena Sayapinadd644502014-07-01 18:39:52 +0700422 return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
Mark Mendelle87f9b52014-04-30 14:13:18 -0400423}
424
Brian Carlstrom7940e442013-07-12 13:46:57 -0700425/* Clobber all regs that might be used by an external C call */
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000426void X86Mir2Lir::ClobberCallerSave() {
buzbee091cc402014-03-31 10:14:40 -0700427 Clobber(rs_rAX);
428 Clobber(rs_rCX);
429 Clobber(rs_rDX);
430 Clobber(rs_rBX);
Chao-ying Fu35ec2b52014-06-16 16:40:31 -0700431
432 Clobber(rs_fr0);
433 Clobber(rs_fr1);
434 Clobber(rs_fr2);
435 Clobber(rs_fr3);
436 Clobber(rs_fr4);
437 Clobber(rs_fr5);
438 Clobber(rs_fr6);
439 Clobber(rs_fr7);
440
Elena Sayapinadd644502014-07-01 18:39:52 +0700441 if (cu_->target64) {
Chao-ying Fu35ec2b52014-06-16 16:40:31 -0700442 Clobber(rs_r8);
443 Clobber(rs_r9);
444 Clobber(rs_r10);
445 Clobber(rs_r11);
446
447 Clobber(rs_fr8);
448 Clobber(rs_fr9);
449 Clobber(rs_fr10);
450 Clobber(rs_fr11);
451 Clobber(rs_fr12);
452 Clobber(rs_fr13);
453 Clobber(rs_fr14);
454 Clobber(rs_fr15);
455 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700456}
457
458RegLocation X86Mir2Lir::GetReturnWideAlt() {
459 RegLocation res = LocCReturnWide();
buzbee091cc402014-03-31 10:14:40 -0700460 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
461 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
462 Clobber(rs_rAX);
463 Clobber(rs_rDX);
464 MarkInUse(rs_rAX);
465 MarkInUse(rs_rDX);
466 MarkWide(res.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700467 return res;
468}
469
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700470RegLocation X86Mir2Lir::GetReturnAlt() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700471 RegLocation res = LocCReturn();
buzbee091cc402014-03-31 10:14:40 -0700472 res.reg.SetReg(rs_rDX.GetReg());
473 Clobber(rs_rDX);
474 MarkInUse(rs_rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700475 return res;
476}
477
Brian Carlstrom7940e442013-07-12 13:46:57 -0700478/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700479void X86Mir2Lir::LockCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700480 LockTemp(rs_rX86_ARG0);
481 LockTemp(rs_rX86_ARG1);
482 LockTemp(rs_rX86_ARG2);
483 LockTemp(rs_rX86_ARG3);
Elena Sayapinadd644502014-07-01 18:39:52 +0700484 if (cu_->target64) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700485 LockTemp(rs_rX86_ARG4);
486 LockTemp(rs_rX86_ARG5);
487 LockTemp(rs_rX86_FARG0);
488 LockTemp(rs_rX86_FARG1);
489 LockTemp(rs_rX86_FARG2);
490 LockTemp(rs_rX86_FARG3);
491 LockTemp(rs_rX86_FARG4);
492 LockTemp(rs_rX86_FARG5);
493 LockTemp(rs_rX86_FARG6);
494 LockTemp(rs_rX86_FARG7);
495 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700496}
497
498/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700499void X86Mir2Lir::FreeCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700500 FreeTemp(rs_rX86_ARG0);
501 FreeTemp(rs_rX86_ARG1);
502 FreeTemp(rs_rX86_ARG2);
503 FreeTemp(rs_rX86_ARG3);
Elena Sayapinadd644502014-07-01 18:39:52 +0700504 if (cu_->target64) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700505 FreeTemp(rs_rX86_ARG4);
506 FreeTemp(rs_rX86_ARG5);
507 FreeTemp(rs_rX86_FARG0);
508 FreeTemp(rs_rX86_FARG1);
509 FreeTemp(rs_rX86_FARG2);
510 FreeTemp(rs_rX86_FARG3);
511 FreeTemp(rs_rX86_FARG4);
512 FreeTemp(rs_rX86_FARG5);
513 FreeTemp(rs_rX86_FARG6);
514 FreeTemp(rs_rX86_FARG7);
515 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700516}
517
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800518bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
519 switch (opcode) {
520 case kX86LockCmpxchgMR:
521 case kX86LockCmpxchgAR:
Ian Rogers0f9b9c52014-06-09 01:32:12 -0700522 case kX86LockCmpxchg64M:
523 case kX86LockCmpxchg64A:
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800524 case kX86XchgMR:
525 case kX86Mfence:
526 // Atomic memory instructions provide full barrier.
527 return true;
528 default:
529 break;
530 }
531
532 // Conservative if cannot prove it provides full barrier.
533 return false;
534}
535
Andreas Gampeb14329f2014-05-15 11:16:06 -0700536bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700537#if ANDROID_SMP != 0
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800538 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
539 LIR* mem_barrier = last_lir_insn_;
540
Andreas Gampeb14329f2014-05-15 11:16:06 -0700541 bool ret = false;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800542 /*
543 * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
544 * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
545 * to ensure is that there is a scheduling barrier in place.
546 */
547 if (barrier_kind == kStoreLoad) {
548 // If no LIR exists already that can be used a barrier, then generate an mfence.
549 if (mem_barrier == nullptr) {
550 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700551 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800552 }
553
554 // If last instruction does not provide full barrier, then insert an mfence.
555 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
556 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700557 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800558 }
559 }
560
561 // Now ensure that a scheduling barrier is in place.
562 if (mem_barrier == nullptr) {
563 GenBarrier();
564 } else {
565 // Mark as a scheduling barrier.
566 DCHECK(!mem_barrier->flags.use_def_invalid);
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100567 mem_barrier->u.m.def_mask = &kEncodeAll;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800568 }
Andreas Gampeb14329f2014-05-15 11:16:06 -0700569 return ret;
570#else
571 return false;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700572#endif
573}
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000574
Brian Carlstrom7940e442013-07-12 13:46:57 -0700575void X86Mir2Lir::CompilerInitializeRegAlloc() {
Elena Sayapinadd644502014-07-01 18:39:52 +0700576 if (cu_->target64) {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700577 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
578 dp_regs_64, reserved_regs_64, reserved_regs_64q,
579 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700580 } else {
buzbeeb01bf152014-05-13 15:59:07 -0700581 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
582 dp_regs_32, reserved_regs_32, empty_pool,
583 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700584 }
buzbee091cc402014-03-31 10:14:40 -0700585
586 // Target-specific adjustments.
587
Mark Mendellfe945782014-05-22 09:52:36 -0400588 // Add in XMM registers.
Elena Sayapinadd644502014-07-01 18:39:52 +0700589 const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
Mark Mendellfe945782014-05-22 09:52:36 -0400590 for (RegStorage reg : *xp_temps) {
591 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
592 reginfo_map_.Put(reg.GetReg(), info);
593 info->SetIsTemp(true);
594 }
595
buzbee091cc402014-03-31 10:14:40 -0700596 // Alias single precision xmm to double xmms.
597 // TODO: as needed, add larger vector sizes - alias all to the largest.
598 GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
599 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
600 int sp_reg_num = info->GetReg().GetRegNum();
Mark Mendellfe945782014-05-22 09:52:36 -0400601 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
602 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
603 // 128-bit xmm vector register's master storage should refer to itself.
604 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
605
606 // Redirect 32-bit vector's master storage to 128-bit vector.
607 info->SetMaster(xp_reg_info);
608
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700609 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
buzbee091cc402014-03-31 10:14:40 -0700610 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
Mark Mendellfe945782014-05-22 09:52:36 -0400611 // Redirect 64-bit vector's master storage to 128-bit vector.
612 dp_reg_info->SetMaster(xp_reg_info);
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700613 // Singles should show a single 32-bit mask bit, at first referring to the low half.
614 DCHECK_EQ(info->StorageMask(), 0x1U);
615 }
616
Elena Sayapinadd644502014-07-01 18:39:52 +0700617 if (cu_->target64) {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700618 // Alias 32bit W registers to corresponding 64bit X registers.
619 GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
620 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
621 int x_reg_num = info->GetReg().GetRegNum();
622 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
623 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
624 // 64bit X register's master storage should refer to itself.
625 DCHECK_EQ(x_reg_info, x_reg_info->Master());
626 // Redirect 32bit W master storage to 64bit X.
627 info->SetMaster(x_reg_info);
628 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
629 DCHECK_EQ(info->StorageMask(), 0x1U);
630 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700631 }
buzbee091cc402014-03-31 10:14:40 -0700632
633 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
634 // TODO: adjust for x86/hard float calling convention.
635 reg_pool_->next_core_reg_ = 2;
636 reg_pool_->next_sp_reg_ = 2;
637 reg_pool_->next_dp_reg_ = 1;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700638}
639
Brian Carlstrom7940e442013-07-12 13:46:57 -0700640void X86Mir2Lir::SpillCoreRegs() {
641 if (num_core_spills_ == 0) {
642 return;
643 }
644 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700645 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700646 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700647 for (int reg = 0; mask; mask >>= 1, reg++) {
648 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800649 StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700650 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700651 }
652 }
653}
654
655void X86Mir2Lir::UnSpillCoreRegs() {
656 if (num_core_spills_ == 0) {
657 return;
658 }
659 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700660 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700661 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700662 for (int reg = 0; mask; mask >>= 1, reg++) {
663 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800664 LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700665 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700666 }
667 }
668}
669
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700670bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700671 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
672}
673
Vladimir Marko674744e2014-04-24 15:18:26 +0100674bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
675 return true;
676}
677
678RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
Chao-ying Fue0ccdc02014-06-06 17:32:37 -0700679 // X86_64 can handle any size.
Elena Sayapinadd644502014-07-01 18:39:52 +0700680 if (cu_->target64) {
Chao-ying Fue0ccdc02014-06-06 17:32:37 -0700681 if (size == kReference) {
682 return kRefReg;
683 }
684 return kCoreReg;
685 }
686
Vladimir Marko674744e2014-04-24 15:18:26 +0100687 if (UNLIKELY(is_volatile)) {
688 // On x86, atomic 64-bit load/store requires an fp register.
689 // Smaller aligned load/store is atomic for both core and fp registers.
690 if (size == k64 || size == kDouble) {
691 return kFPReg;
692 }
693 }
694 return RegClassBySize(size);
695}
696
Elena Sayapinadd644502014-07-01 18:39:52 +0700697X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
Mark Mendell55d0eac2014-02-06 11:02:52 -0800698 : Mir2Lir(cu, mir_graph, arena),
Ian Rogersdd7624d2014-03-14 17:43:00 -0700699 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800700 method_address_insns_(arena, 100, kGrowableArrayMisc),
701 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendellae9fd932014-02-10 16:14:35 -0800702 call_method_insns_(arena, 100, kGrowableArrayMisc),
Elena Sayapinadd644502014-07-01 18:39:52 +0700703 stack_decrement_(nullptr), stack_increment_(nullptr),
Mark Mendelld65c51a2014-04-29 16:55:20 -0400704 const_vectors_(nullptr) {
705 store_method_addr_used_ = false;
Ian Rogersdd7624d2014-03-14 17:43:00 -0700706 if (kIsDebugBuild) {
707 for (int i = 0; i < kX86Last; i++) {
708 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
709 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
Mark Mendelld65c51a2014-04-29 16:55:20 -0400710 << " is wrong: expecting " << i << ", seeing "
711 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
Ian Rogersdd7624d2014-03-14 17:43:00 -0700712 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700713 }
714 }
Elena Sayapinadd644502014-07-01 18:39:52 +0700715 if (cu_->target64) {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700716 rs_rX86_SP = rs_rX86_SP_64;
717
718 rs_rX86_ARG0 = rs_rDI;
719 rs_rX86_ARG1 = rs_rSI;
720 rs_rX86_ARG2 = rs_rDX;
721 rs_rX86_ARG3 = rs_rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700722 rs_rX86_ARG4 = rs_r8;
723 rs_rX86_ARG5 = rs_r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700724 rs_rX86_FARG0 = rs_fr0;
725 rs_rX86_FARG1 = rs_fr1;
726 rs_rX86_FARG2 = rs_fr2;
727 rs_rX86_FARG3 = rs_fr3;
728 rs_rX86_FARG4 = rs_fr4;
729 rs_rX86_FARG5 = rs_fr5;
730 rs_rX86_FARG6 = rs_fr6;
731 rs_rX86_FARG7 = rs_fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700732 rX86_ARG0 = rDI;
733 rX86_ARG1 = rSI;
734 rX86_ARG2 = rDX;
735 rX86_ARG3 = rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700736 rX86_ARG4 = r8;
737 rX86_ARG5 = r9;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700738 rX86_FARG0 = fr0;
739 rX86_FARG1 = fr1;
740 rX86_FARG2 = fr2;
741 rX86_FARG3 = fr3;
742 rX86_FARG4 = fr4;
743 rX86_FARG5 = fr5;
744 rX86_FARG6 = fr6;
745 rX86_FARG7 = fr7;
Mark Mendell55884bc2014-06-10 10:21:29 -0400746 rs_rX86_INVOKE_TGT = rs_rDI;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700747 } else {
748 rs_rX86_SP = rs_rX86_SP_32;
749
750 rs_rX86_ARG0 = rs_rAX;
751 rs_rX86_ARG1 = rs_rCX;
752 rs_rX86_ARG2 = rs_rDX;
753 rs_rX86_ARG3 = rs_rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700754 rs_rX86_ARG4 = RegStorage::InvalidReg();
755 rs_rX86_ARG5 = RegStorage::InvalidReg();
756 rs_rX86_FARG0 = rs_rAX;
757 rs_rX86_FARG1 = rs_rCX;
758 rs_rX86_FARG2 = rs_rDX;
759 rs_rX86_FARG3 = rs_rBX;
760 rs_rX86_FARG4 = RegStorage::InvalidReg();
761 rs_rX86_FARG5 = RegStorage::InvalidReg();
762 rs_rX86_FARG6 = RegStorage::InvalidReg();
763 rs_rX86_FARG7 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700764 rX86_ARG0 = rAX;
765 rX86_ARG1 = rCX;
766 rX86_ARG2 = rDX;
767 rX86_ARG3 = rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700768 rX86_FARG0 = rAX;
769 rX86_FARG1 = rCX;
770 rX86_FARG2 = rDX;
771 rX86_FARG3 = rBX;
Mark Mendell55884bc2014-06-10 10:21:29 -0400772 rs_rX86_INVOKE_TGT = rs_rAX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700773 // TODO(64): Initialize with invalid reg
774// rX86_ARG4 = RegStorage::InvalidReg();
775// rX86_ARG5 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700776 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700777 rs_rX86_RET0 = rs_rAX;
778 rs_rX86_RET1 = rs_rDX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700779 rs_rX86_COUNT = rs_rCX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700780 rX86_RET0 = rAX;
781 rX86_RET1 = rDX;
782 rX86_INVOKE_TGT = rAX;
783 rX86_COUNT = rCX;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700784}
785
786Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
787 ArenaAllocator* const arena) {
Elena Sayapinadd644502014-07-01 18:39:52 +0700788 return new X86Mir2Lir(cu, mir_graph, arena);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700789}
790
791// Not used in x86
Ian Rogersdd7624d2014-03-14 17:43:00 -0700792RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700793 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
buzbee2700f7e2014-03-07 09:46:20 -0800794 return RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700795}
796
Andreas Gampe2f244e92014-05-08 03:35:25 -0700797// Not used in x86
798RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
799 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
800 return RegStorage::InvalidReg();
801}
802
Dave Allisonb373e092014-02-20 16:06:36 -0800803LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
804 LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
805 return nullptr;
806}
807
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700808uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700809 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700810 return X86Mir2Lir::EncodingMap[opcode].flags;
811}
812
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700813const char* X86Mir2Lir::GetTargetInstName(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700814 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815 return X86Mir2Lir::EncodingMap[opcode].name;
816}
817
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700818const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700819 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700820 return X86Mir2Lir::EncodingMap[opcode].fmt;
821}
822
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000823void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
824 // Can we do this directly to memory?
825 rl_dest = UpdateLocWide(rl_dest);
826 if ((rl_dest.location == kLocDalvikFrame) ||
827 (rl_dest.location == kLocCompilerTemp)) {
828 int32_t val_lo = Low32Bits(value);
829 int32_t val_hi = High32Bits(value);
buzbee2700f7e2014-03-07 09:46:20 -0800830 int r_base = TargetReg(kSp).GetReg();
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000831 int displacement = SRegOffset(rl_dest.s_reg_low);
832
Vladimir Marko8dea81c2014-06-06 14:50:36 +0100833 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
buzbee2700f7e2014-03-07 09:46:20 -0800834 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000835 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
836 false /* is_load */, true /* is64bit */);
buzbee2700f7e2014-03-07 09:46:20 -0800837 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000838 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
839 false /* is_load */, true /* is64bit */);
840 return;
841 }
842
843 // Just use the standard code to do the generation.
844 Mir2Lir::GenConstWide(rl_dest, value);
845}
Mark Mendelle02d48f2014-01-15 11:19:23 -0800846
847// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
848void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
849 LOG(INFO) << "location: " << loc.location << ','
850 << (loc.wide ? " w" : " ")
851 << (loc.defined ? " D" : " ")
852 << (loc.is_const ? " c" : " ")
853 << (loc.fp ? " F" : " ")
854 << (loc.core ? " C" : " ")
855 << (loc.ref ? " r" : " ")
856 << (loc.high_word ? " h" : " ")
857 << (loc.home ? " H" : " ")
buzbee2700f7e2014-03-07 09:46:20 -0800858 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000859 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
Mark Mendelle02d48f2014-01-15 11:19:23 -0800860 << ", s_reg: " << loc.s_reg_low
861 << ", orig: " << loc.orig_sreg;
862}
863
Mark Mendell67c39c42014-01-31 17:28:00 -0800864void X86Mir2Lir::Materialize() {
865 // A good place to put the analysis before starting.
866 AnalyzeMIR();
867
868 // Now continue with regular code generation.
869 Mir2Lir::Materialize();
870}
871
Jeff Hao49161ce2014-03-12 11:05:25 -0700872void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
Mark Mendell55d0eac2014-02-06 11:02:52 -0800873 SpecialTargetRegister symbolic_reg) {
874 /*
875 * For x86, just generate a 32 bit move immediate instruction, that will be filled
876 * in at 'link time'. For now, put a unique value based on target to ensure that
877 * code deduplication works.
878 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700879 int target_method_idx = target_method.dex_method_index;
880 const DexFile* target_dex_file = target_method.dex_file;
881 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
882 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800883
Jeff Hao49161ce2014-03-12 11:05:25 -0700884 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
buzbee2700f7e2014-03-07 09:46:20 -0800885 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Jeff Hao49161ce2014-03-12 11:05:25 -0700886 static_cast<int>(target_method_id_ptr), target_method_idx,
887 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800888 AppendLIR(move);
889 method_address_insns_.Insert(move);
890}
891
892void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
893 /*
894 * For x86, just generate a 32 bit move immediate instruction, that will be filled
895 * in at 'link time'. For now, put a unique value based on target to ensure that
896 * code deduplication works.
897 */
898 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
899 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
900
901 // Generate the move instruction with the unique pointer and save index and type.
buzbee2700f7e2014-03-07 09:46:20 -0800902 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800903 static_cast<int>(ptr), type_idx);
904 AppendLIR(move);
905 class_type_address_insns_.Insert(move);
906}
907
Jeff Hao49161ce2014-03-12 11:05:25 -0700908LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800909 /*
910 * For x86, just generate a 32 bit call relative instruction, that will be filled
911 * in at 'link time'. For now, put a unique value based on target to ensure that
912 * code deduplication works.
913 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700914 int target_method_idx = target_method.dex_method_index;
915 const DexFile* target_dex_file = target_method.dex_file;
916 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
917 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800918
Jeff Hao49161ce2014-03-12 11:05:25 -0700919 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
920 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
921 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800922 AppendLIR(call);
923 call_method_insns_.Insert(call);
924 return call;
925}
926
Mark Mendelld65c51a2014-04-29 16:55:20 -0400927/*
928 * @brief Enter a 32 bit quantity into a buffer
929 * @param buf buffer.
930 * @param data Data value.
931 */
932
933static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
934 buf.push_back(data & 0xff);
935 buf.push_back((data >> 8) & 0xff);
936 buf.push_back((data >> 16) & 0xff);
937 buf.push_back((data >> 24) & 0xff);
938}
939
Mark Mendell55d0eac2014-02-06 11:02:52 -0800940void X86Mir2Lir::InstallLiteralPools() {
941 // These are handled differently for x86.
942 DCHECK(code_literal_list_ == nullptr);
943 DCHECK(method_literal_list_ == nullptr);
944 DCHECK(class_literal_list_ == nullptr);
945
Mark Mendelld65c51a2014-04-29 16:55:20 -0400946 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
947 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
948 // will fail at runtime)?
949 if (const_vectors_ != nullptr) {
950 int align_size = (16-4) - (code_buffer_.size() & 0xF);
951 if (align_size < 0) {
952 align_size += 16;
953 }
954
955 while (align_size > 0) {
956 code_buffer_.push_back(0);
957 align_size--;
958 }
959 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
960 PushWord(code_buffer_, p->operands[0]);
961 PushWord(code_buffer_, p->operands[1]);
962 PushWord(code_buffer_, p->operands[2]);
963 PushWord(code_buffer_, p->operands[3]);
964 }
965 }
966
Mark Mendell55d0eac2014-02-06 11:02:52 -0800967 // Handle the fixups for methods.
968 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
969 LIR* p = method_address_insns_.Get(i);
970 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700971 uint32_t target_method_idx = p->operands[2];
972 const DexFile* target_dex_file =
973 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800974
975 // The offset to patch is the last 4 bytes of the instruction.
976 int patch_offset = p->offset + p->flags.size - 4;
977 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
978 cu_->method_idx, cu_->invoke_type,
Jeff Hao49161ce2014-03-12 11:05:25 -0700979 target_method_idx, target_dex_file,
980 static_cast<InvokeType>(p->operands[4]),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800981 patch_offset);
982 }
983
984 // Handle the fixups for class types.
985 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
986 LIR* p = class_type_address_insns_.Get(i);
987 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700988 uint32_t target_method_idx = p->operands[2];
Mark Mendell55d0eac2014-02-06 11:02:52 -0800989
990 // The offset to patch is the last 4 bytes of the instruction.
991 int patch_offset = p->offset + p->flags.size - 4;
992 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -0700993 cu_->method_idx, target_method_idx, patch_offset);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800994 }
995
996 // And now the PC-relative calls to methods.
997 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
998 LIR* p = call_method_insns_.Get(i);
999 DCHECK_EQ(p->opcode, kX86CallI);
Jeff Hao49161ce2014-03-12 11:05:25 -07001000 uint32_t target_method_idx = p->operands[1];
1001 const DexFile* target_dex_file =
1002 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
Mark Mendell55d0eac2014-02-06 11:02:52 -08001003
1004 // The offset to patch is the last 4 bytes of the instruction.
1005 int patch_offset = p->offset + p->flags.size - 4;
1006 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -07001007 cu_->method_idx, cu_->invoke_type,
1008 target_method_idx, target_dex_file,
1009 static_cast<InvokeType>(p->operands[3]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001010 patch_offset, -4 /* offset */);
1011 }
1012
1013 // And do the normal processing.
1014 Mir2Lir::InstallLiteralPools();
1015}
1016
Mark Mendell4028a6c2014-02-19 20:06:20 -08001017/*
1018 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1019 * otherwise bails to standard library code.
1020 */
1021bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1022 ClobberCallerSave();
1023 LockCallTemps(); // Using fixed registers
1024
1025 // EAX: 16 bit character being searched.
1026 // ECX: count: number of words to be searched.
1027 // EDI: String being searched.
1028 // EDX: temporary during execution.
1029 // EBX: temporary during execution.
1030
1031 RegLocation rl_obj = info->args[0];
1032 RegLocation rl_char = info->args[1];
buzbeea44d4f52014-03-05 11:26:39 -08001033 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001034
1035 uint32_t char_value =
1036 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1037
1038 if (char_value > 0xFFFF) {
1039 // We have to punt to the real String.indexOf.
1040 return false;
1041 }
1042
1043 // Okay, we are commited to inlining this.
buzbeea0cd2d72014-06-01 09:33:49 -07001044 RegLocation rl_return = GetReturn(kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001045 RegLocation rl_dest = InlineTarget(info);
1046
1047 // Is the string non-NULL?
buzbee2700f7e2014-03-07 09:46:20 -08001048 LoadValueDirectFixed(rl_obj, rs_rDX);
1049 GenNullCheck(rs_rDX, info->opt_flags);
Vladimir Marko3bc86152014-03-13 14:11:28 +00001050 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001051
1052 // Does the character fit in 16 bits?
Mingyao Yang3a74d152014-04-21 15:39:44 -07001053 LIR* slowpath_branch = nullptr;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001054 if (rl_char.is_const) {
1055 // We need the value in EAX.
buzbee2700f7e2014-03-07 09:46:20 -08001056 LoadConstantNoClobber(rs_rAX, char_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001057 } else {
1058 // Character is not a constant; compare at runtime.
buzbee2700f7e2014-03-07 09:46:20 -08001059 LoadValueDirectFixed(rl_char, rs_rAX);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001060 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001061 }
1062
1063 // From here down, we know that we are looking for a char that fits in 16 bits.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001064 // Location of reference to data array within the String object.
1065 int value_offset = mirror::String::ValueOffset().Int32Value();
1066 // Location of count within the String object.
1067 int count_offset = mirror::String::CountOffset().Int32Value();
1068 // Starting offset within data array.
1069 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1070 // Start of char data with array_.
1071 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
Mark Mendell4028a6c2014-02-19 20:06:20 -08001072
1073 // Character is in EAX.
1074 // Object pointer is in EDX.
1075
1076 // We need to preserve EDI, but have no spare registers, so push it on the stack.
1077 // We have to remember that all stack addresses after this are offset by sizeof(EDI).
buzbee091cc402014-03-31 10:14:40 -07001078 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001079
1080 // Compute the number of words to search in to rCX.
buzbee695d13a2014-04-19 13:32:20 -07001081 Load32Disp(rs_rDX, count_offset, rs_rCX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001082 LIR *length_compare = nullptr;
1083 int start_value = 0;
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001084 bool is_index_on_stack = false;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001085 if (zero_based) {
1086 // We have to handle an empty string. Use special instruction JECXZ.
1087 length_compare = NewLIR0(kX86Jecxz8);
1088 } else {
buzbeea44d4f52014-03-05 11:26:39 -08001089 rl_start = info->args[2];
Mark Mendell4028a6c2014-02-19 20:06:20 -08001090 // We have to offset by the start index.
1091 if (rl_start.is_const) {
1092 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1093 start_value = std::max(start_value, 0);
1094
1095 // Is the start > count?
buzbee2700f7e2014-03-07 09:46:20 -08001096 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001097
1098 if (start_value != 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001099 OpRegImm(kOpSub, rs_rCX, start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001100 }
1101 } else {
1102 // Runtime start index.
buzbee30adc732014-05-09 15:10:18 -07001103 rl_start = UpdateLocTyped(rl_start, kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001104 if (rl_start.location == kLocPhysReg) {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001105 // Handle "start index < 0" case.
1106 OpRegReg(kOpXor, rs_rBX, rs_rBX);
1107 OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1108 OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1109
1110 // The length of the string should be greater than the start index.
buzbee2700f7e2014-03-07 09:46:20 -08001111 length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1112 OpRegReg(kOpSub, rs_rCX, rl_start.reg);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001113 if (rl_start.reg == rs_rDI) {
1114 // The special case. We will use EDI further, so lets put start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001115 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001116 is_index_on_stack = true;
1117 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001118 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001119 // Load the start index from stack, remembering that we pushed EDI.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001120 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001121 {
1122 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1123 Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1124 }
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001125 OpRegReg(kOpXor, rs_rDI, rs_rDI);
1126 OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1127 OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1128
1129 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1130 OpRegReg(kOpSub, rs_rCX, rs_rBX);
1131 // Put the start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001132 NewLIR1(kX86Push32R, rs_rBX.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001133 is_index_on_stack = true;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001134 }
1135 }
1136 }
1137 DCHECK(length_compare != nullptr);
1138
1139 // ECX now contains the count in words to be searched.
1140
1141 // Load the address of the string into EBX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001142 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
buzbee695d13a2014-04-19 13:32:20 -07001143 Load32Disp(rs_rDX, value_offset, rs_rDI);
1144 Load32Disp(rs_rDX, offset_offset, rs_rBX);
buzbee2700f7e2014-03-07 09:46:20 -08001145 OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001146
1147 // Now compute into EDI where the search will start.
1148 if (zero_based || rl_start.is_const) {
1149 if (start_value == 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001150 OpRegCopy(rs_rDI, rs_rBX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001151 } else {
buzbee091cc402014-03-31 10:14:40 -07001152 NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001153 }
1154 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001155 if (is_index_on_stack == true) {
1156 // Load the start index from stack.
buzbee091cc402014-03-31 10:14:40 -07001157 NewLIR1(kX86Pop32R, rs_rDX.GetReg());
buzbee2700f7e2014-03-07 09:46:20 -08001158 OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001159 } else {
1160 OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001161 }
1162 }
1163
1164 // EDI now contains the start of the string to be searched.
1165 // We are all prepared to do the search for the character.
1166 NewLIR0(kX86RepneScasw);
1167
1168 // Did we find a match?
1169 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1170
1171 // yes, we matched. Compute the index of the result.
1172 // index = ((curr_ptr - orig_ptr) / 2) - 1.
buzbee2700f7e2014-03-07 09:46:20 -08001173 OpRegReg(kOpSub, rs_rDI, rs_rBX);
1174 OpRegImm(kOpAsr, rs_rDI, 1);
buzbee091cc402014-03-31 10:14:40 -07001175 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001176 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1177
1178 // Failed to match; return -1.
1179 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1180 length_compare->target = not_found;
1181 failed_branch->target = not_found;
buzbee2700f7e2014-03-07 09:46:20 -08001182 LoadConstantNoClobber(rl_return.reg, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001183
1184 // And join up at the end.
1185 all_done->target = NewLIR0(kPseudoTargetLabel);
1186 // Restore EDI from the stack.
buzbee091cc402014-03-31 10:14:40 -07001187 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001188
1189 // Out of line code returns here.
Mingyao Yang3a74d152014-04-21 15:39:44 -07001190 if (slowpath_branch != nullptr) {
Mark Mendell4028a6c2014-02-19 20:06:20 -08001191 LIR *return_point = NewLIR0(kPseudoTargetLabel);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001192 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001193 }
1194
1195 StoreValue(rl_dest, rl_return);
1196 return true;
1197}
1198
Mark Mendellae9fd932014-02-10 16:14:35 -08001199/*
Mark Mendellae9fd932014-02-10 16:14:35 -08001200 * @brief Enter an 'advance LOC' into the FDE buffer
1201 * @param buf FDE buffer.
1202 * @param increment Amount by which to increase the current location.
1203 */
1204static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1205 if (increment < 64) {
1206 // Encoding in opcode.
1207 buf.push_back(0x1 << 6 | increment);
1208 } else if (increment < 256) {
1209 // Single byte delta.
1210 buf.push_back(0x02);
1211 buf.push_back(increment);
1212 } else if (increment < 256 * 256) {
1213 // Two byte delta.
1214 buf.push_back(0x03);
1215 buf.push_back(increment & 0xff);
1216 buf.push_back((increment >> 8) & 0xff);
1217 } else {
1218 // Four byte delta.
1219 buf.push_back(0x04);
1220 PushWord(buf, increment);
1221 }
1222}
1223
1224
1225std::vector<uint8_t>* X86CFIInitialization() {
1226 return X86Mir2Lir::ReturnCommonCallFrameInformation();
1227}
1228
1229std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1230 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1231
1232 // Length of the CIE (except for this field).
1233 PushWord(*cfi_info, 16);
1234
1235 // CIE id.
1236 PushWord(*cfi_info, 0xFFFFFFFFU);
1237
1238 // Version: 3.
1239 cfi_info->push_back(0x03);
1240
1241 // Augmentation: empty string.
1242 cfi_info->push_back(0x0);
1243
1244 // Code alignment: 1.
1245 cfi_info->push_back(0x01);
1246
1247 // Data alignment: -4.
1248 cfi_info->push_back(0x7C);
1249
1250 // Return address register (R8).
1251 cfi_info->push_back(0x08);
1252
1253 // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1254 cfi_info->push_back(0x0C);
1255 cfi_info->push_back(0x04);
1256 cfi_info->push_back(0x04);
1257
1258 // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1259 cfi_info->push_back(0x2 << 6 | 0x08);
1260 cfi_info->push_back(0x01);
1261
1262 // And 2 Noops to align to 4 byte boundary.
1263 cfi_info->push_back(0x0);
1264 cfi_info->push_back(0x0);
1265
1266 DCHECK_EQ(cfi_info->size() & 3, 0U);
1267 return cfi_info;
1268}
1269
1270static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1271 uint8_t buffer[12];
1272 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1273 for (uint8_t *p = buffer; p < ptr; p++) {
1274 buf.push_back(*p);
1275 }
1276}
1277
1278std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1279 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1280
1281 // Generate the FDE for the method.
1282 DCHECK_NE(data_offset_, 0U);
1283
1284 // Length (will be filled in later in this routine).
1285 PushWord(*cfi_info, 0);
1286
1287 // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1288 // one CIE for the whole debug_frame section.
1289 PushWord(*cfi_info, 0);
1290
1291 // 'initial_location' (filled in by linker).
1292 PushWord(*cfi_info, 0);
1293
1294 // 'address_range' (number of bytes in the method).
1295 PushWord(*cfi_info, data_offset_);
1296
1297 // The instructions in the FDE.
1298 if (stack_decrement_ != nullptr) {
1299 // Advance LOC to just past the stack decrement.
1300 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1301 AdvanceLoc(*cfi_info, pc);
1302
1303 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1304 cfi_info->push_back(0x0e);
1305 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1306
1307 // We continue with that stack until the epilogue.
1308 if (stack_increment_ != nullptr) {
1309 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1310 AdvanceLoc(*cfi_info, new_pc - pc);
1311
1312 // We probably have code snippets after the epilogue, so save the
1313 // current state: DW_CFA_remember_state.
1314 cfi_info->push_back(0x0a);
1315
1316 // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
1317 // PC on the stack now.
1318 cfi_info->push_back(0x0e);
1319 EncodeUnsignedLeb128(*cfi_info, 4);
1320
1321 // Everything after that is the same as before the epilogue.
1322 // Stack bump was followed by RET instruction.
1323 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1324 if (post_ret_insn != nullptr) {
1325 pc = new_pc;
1326 new_pc = post_ret_insn->offset;
1327 AdvanceLoc(*cfi_info, new_pc - pc);
1328 // Restore the state: DW_CFA_restore_state.
1329 cfi_info->push_back(0x0b);
1330 }
1331 }
1332 }
1333
1334 // Padding to a multiple of 4
1335 while ((cfi_info->size() & 3) != 0) {
1336 // DW_CFA_nop is encoded as 0.
1337 cfi_info->push_back(0);
1338 }
1339
1340 // Set the length of the FDE inside the generated bytes.
1341 uint32_t length = cfi_info->size() - 4;
1342 (*cfi_info)[0] = length;
1343 (*cfi_info)[1] = length >> 8;
1344 (*cfi_info)[2] = length >> 16;
1345 (*cfi_info)[3] = length >> 24;
1346 return cfi_info;
1347}
1348
Mark Mendelld65c51a2014-04-29 16:55:20 -04001349void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1350 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1351 case kMirOpConstVector:
1352 GenConst128(bb, mir);
1353 break;
Mark Mendellfe945782014-05-22 09:52:36 -04001354 case kMirOpMoveVector:
1355 GenMoveVector(bb, mir);
1356 break;
1357 case kMirOpPackedMultiply:
1358 GenMultiplyVector(bb, mir);
1359 break;
1360 case kMirOpPackedAddition:
1361 GenAddVector(bb, mir);
1362 break;
1363 case kMirOpPackedSubtract:
1364 GenSubtractVector(bb, mir);
1365 break;
1366 case kMirOpPackedShiftLeft:
1367 GenShiftLeftVector(bb, mir);
1368 break;
1369 case kMirOpPackedSignedShiftRight:
1370 GenSignedShiftRightVector(bb, mir);
1371 break;
1372 case kMirOpPackedUnsignedShiftRight:
1373 GenUnsignedShiftRightVector(bb, mir);
1374 break;
1375 case kMirOpPackedAnd:
1376 GenAndVector(bb, mir);
1377 break;
1378 case kMirOpPackedOr:
1379 GenOrVector(bb, mir);
1380 break;
1381 case kMirOpPackedXor:
1382 GenXorVector(bb, mir);
1383 break;
1384 case kMirOpPackedAddReduce:
1385 GenAddReduceVector(bb, mir);
1386 break;
1387 case kMirOpPackedReduce:
1388 GenReduceVector(bb, mir);
1389 break;
1390 case kMirOpPackedSet:
1391 GenSetVector(bb, mir);
1392 break;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001393 default:
1394 break;
1395 }
1396}
1397
1398void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1399 int type_size = mir->dalvikInsn.vA;
1400 // We support 128 bit vectors.
1401 DCHECK_EQ(type_size & 0xFFFF, 128);
Mark Mendellfe945782014-05-22 09:52:36 -04001402 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001403 uint32_t *args = mir->dalvikInsn.arg;
Mark Mendellfe945782014-05-22 09:52:36 -04001404 int reg = rs_dest.GetReg();
Mark Mendelld65c51a2014-04-29 16:55:20 -04001405 // Check for all 0 case.
1406 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1407 NewLIR2(kX86XorpsRR, reg, reg);
1408 return;
1409 }
1410 // Okay, load it from the constant vector area.
1411 LIR *data_target = ScanVectorLiteral(mir);
1412 if (data_target == nullptr) {
1413 data_target = AddVectorLiteral(mir);
1414 }
1415
1416 // Address the start of the method.
1417 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
Chao-ying Fue0ccdc02014-06-06 17:32:37 -07001418 if (rl_method.wide) {
1419 rl_method = LoadValueWide(rl_method, kCoreReg);
1420 } else {
1421 rl_method = LoadValue(rl_method, kCoreReg);
1422 }
Mark Mendelld65c51a2014-04-29 16:55:20 -04001423
1424 // Load the proper value from the literal area.
1425 // We don't know the proper offset for the value, so pick one that will force
1426 // 4 byte offset. We will fix this up in the assembler later to have the right
1427 // value.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001428 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001429 LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */);
1430 load->flags.fixup = kFixupLoad;
1431 load->target = data_target;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001432}
1433
Mark Mendellfe945782014-05-22 09:52:36 -04001434void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1435 // We only support 128 bit registers.
1436 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1437 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1438 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1439 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1440}
1441
1442void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1443 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1444 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1445 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1446 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1447 int opcode = 0;
1448 switch (opsize) {
1449 case k32:
1450 opcode = kX86PmulldRR;
1451 break;
1452 case kSignedHalf:
1453 opcode = kX86PmullwRR;
1454 break;
1455 case kSingle:
1456 opcode = kX86MulpsRR;
1457 break;
1458 case kDouble:
1459 opcode = kX86MulpdRR;
1460 break;
1461 default:
1462 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1463 break;
1464 }
1465 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1466}
1467
1468void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1469 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1470 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1471 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1472 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1473 int opcode = 0;
1474 switch (opsize) {
1475 case k32:
1476 opcode = kX86PadddRR;
1477 break;
1478 case kSignedHalf:
1479 case kUnsignedHalf:
1480 opcode = kX86PaddwRR;
1481 break;
1482 case kUnsignedByte:
1483 case kSignedByte:
1484 opcode = kX86PaddbRR;
1485 break;
1486 case kSingle:
1487 opcode = kX86AddpsRR;
1488 break;
1489 case kDouble:
1490 opcode = kX86AddpdRR;
1491 break;
1492 default:
1493 LOG(FATAL) << "Unsupported vector addition " << opsize;
1494 break;
1495 }
1496 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1497}
1498
1499void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1500 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1501 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1502 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1503 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1504 int opcode = 0;
1505 switch (opsize) {
1506 case k32:
1507 opcode = kX86PsubdRR;
1508 break;
1509 case kSignedHalf:
1510 case kUnsignedHalf:
1511 opcode = kX86PsubwRR;
1512 break;
1513 case kUnsignedByte:
1514 case kSignedByte:
1515 opcode = kX86PsubbRR;
1516 break;
1517 case kSingle:
1518 opcode = kX86SubpsRR;
1519 break;
1520 case kDouble:
1521 opcode = kX86SubpdRR;
1522 break;
1523 default:
1524 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1525 break;
1526 }
1527 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1528}
1529
1530void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1531 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1532 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1533 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1534 int imm = mir->dalvikInsn.vC;
1535 int opcode = 0;
1536 switch (opsize) {
1537 case k32:
1538 opcode = kX86PslldRI;
1539 break;
1540 case k64:
1541 opcode = kX86PsllqRI;
1542 break;
1543 case kSignedHalf:
1544 case kUnsignedHalf:
1545 opcode = kX86PsllwRI;
1546 break;
1547 default:
1548 LOG(FATAL) << "Unsupported vector shift left " << opsize;
1549 break;
1550 }
1551 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1552}
1553
1554void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1555 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1556 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1557 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1558 int imm = mir->dalvikInsn.vC;
1559 int opcode = 0;
1560 switch (opsize) {
1561 case k32:
1562 opcode = kX86PsradRI;
1563 break;
1564 case kSignedHalf:
1565 case kUnsignedHalf:
1566 opcode = kX86PsrawRI;
1567 break;
1568 default:
1569 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1570 break;
1571 }
1572 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1573}
1574
1575void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1576 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1577 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1578 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1579 int imm = mir->dalvikInsn.vC;
1580 int opcode = 0;
1581 switch (opsize) {
1582 case k32:
1583 opcode = kX86PsrldRI;
1584 break;
1585 case k64:
1586 opcode = kX86PsrlqRI;
1587 break;
1588 case kSignedHalf:
1589 case kUnsignedHalf:
1590 opcode = kX86PsrlwRI;
1591 break;
1592 default:
1593 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1594 break;
1595 }
1596 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1597}
1598
1599void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1600 // We only support 128 bit registers.
1601 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1602 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1603 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1604 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1605}
1606
1607void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1608 // We only support 128 bit registers.
1609 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1610 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1611 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1612 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1613}
1614
1615void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1616 // We only support 128 bit registers.
1617 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1618 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1619 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1620 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1621}
1622
1623void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1624 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1625 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1626 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1627 int imm = mir->dalvikInsn.vC;
1628 int opcode = 0;
1629 switch (opsize) {
1630 case k32:
1631 opcode = kX86PhadddRR;
1632 break;
1633 case kSignedHalf:
1634 case kUnsignedHalf:
1635 opcode = kX86PhaddwRR;
1636 break;
1637 default:
1638 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1639 break;
1640 }
1641 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1642}
1643
1644void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1645 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1646 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1647 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1648 int index = mir->dalvikInsn.arg[0];
1649 int opcode = 0;
1650 switch (opsize) {
1651 case k32:
1652 opcode = kX86PextrdRRI;
1653 break;
1654 case kSignedHalf:
1655 case kUnsignedHalf:
1656 opcode = kX86PextrwRRI;
1657 break;
1658 case kUnsignedByte:
1659 case kSignedByte:
1660 opcode = kX86PextrbRRI;
1661 break;
1662 default:
1663 LOG(FATAL) << "Unsupported vector reduce " << opsize;
1664 break;
1665 }
1666 // We need to extract to a GPR.
1667 RegStorage temp = AllocTemp();
1668 NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1669
1670 // Assume that the destination VR is in the def for the mir.
1671 RegLocation rl_dest = mir_graph_->GetDest(mir);
1672 RegLocation rl_temp =
1673 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1674 StoreValue(rl_dest, rl_temp);
1675}
1676
1677void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1678 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1679 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1680 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1681 int op_low = 0, op_high = 0;
1682 switch (opsize) {
1683 case k32:
1684 op_low = kX86PshufdRRI;
1685 break;
1686 case kSignedHalf:
1687 case kUnsignedHalf:
1688 // Handles low quadword.
1689 op_low = kX86PshuflwRRI;
1690 // Handles upper quadword.
1691 op_high = kX86PshufdRRI;
1692 break;
1693 default:
1694 LOG(FATAL) << "Unsupported vector set " << opsize;
1695 break;
1696 }
1697
1698 // Load the value from the VR into a GPR.
1699 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1700 rl_src = LoadValue(rl_src, kCoreReg);
1701
1702 // Load the value into the XMM register.
1703 NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1704
1705 // Now shuffle the value across the destination.
1706 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1707
1708 // And then repeat as needed.
1709 if (op_high != 0) {
1710 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1711 }
1712}
1713
1714
Mark Mendelld65c51a2014-04-29 16:55:20 -04001715LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1716 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1717 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1718 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1719 args[2] == p->operands[2] && args[3] == p->operands[3]) {
1720 return p;
1721 }
1722 }
1723 return nullptr;
1724}
1725
1726LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1727 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1728 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1729 new_value->operands[0] = args[0];
1730 new_value->operands[1] = args[1];
1731 new_value->operands[2] = args[2];
1732 new_value->operands[3] = args[3];
1733 new_value->next = const_vectors_;
1734 if (const_vectors_ == nullptr) {
1735 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
1736 }
1737 estimated_native_code_size_ += 16; // Space for one vector.
1738 const_vectors_ = new_value;
1739 return new_value;
1740}
1741
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001742// ------------ ABI support: mapping of args to physical registers -------------
1743RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1744 const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1745 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1746 const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1747 rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1748 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1749
1750 RegStorage result = RegStorage::InvalidReg();
1751 if (is_double_or_float) {
1752 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1753 result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1754 if (result.Valid()) {
1755 result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1756 }
1757 }
1758 } else {
1759 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1760 result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1761 if (result.Valid()) {
1762 result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1763 }
1764 }
1765 }
1766 return result;
1767}
1768
1769RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1770 DCHECK(IsInitialized());
1771 auto res = mapping_.find(in_position);
1772 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1773}
1774
1775void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1776 DCHECK(mapper != nullptr);
1777 max_mapped_in_ = -1;
1778 is_there_stack_mapped_ = false;
1779 for (int in_position = 0; in_position < count; in_position++) {
1780 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1781 if (reg.Valid()) {
1782 mapping_[in_position] = reg;
1783 max_mapped_in_ = std::max(max_mapped_in_, in_position);
1784 if (reg.Is64BitSolo()) {
1785 // We covered 2 args, so skip the next one
1786 in_position++;
1787 }
1788 } else {
1789 is_there_stack_mapped_ = true;
1790 }
1791 }
1792 initialized_ = true;
1793}
1794
1795RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
Elena Sayapinadd644502014-07-01 18:39:52 +07001796 if (!cu_->target64) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001797 return GetCoreArgMappingToPhysicalReg(arg_num);
1798 }
1799
1800 if (!in_to_reg_storage_mapping_.IsInitialized()) {
1801 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1802 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1803
1804 InToRegStorageX86_64Mapper mapper;
1805 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1806 }
1807 return in_to_reg_storage_mapping_.Get(arg_num);
1808}
1809
1810RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1811 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1812 // Not used for 64-bit, TODO: Move X86_32 to the same framework
1813 switch (core_arg_num) {
1814 case 0:
1815 return rs_rX86_ARG1;
1816 case 1:
1817 return rs_rX86_ARG2;
1818 case 2:
1819 return rs_rX86_ARG3;
1820 default:
1821 return RegStorage::InvalidReg();
1822 }
1823}
1824
1825// ---------End of ABI support: mapping of args to physical registers -------------
1826
1827/*
1828 * If there are any ins passed in registers that have not been promoted
1829 * to a callee-save register, flush them to the frame. Perform initial
1830 * assignment of promoted arguments.
1831 *
1832 * ArgLocs is an array of location records describing the incoming arguments
1833 * with one location record per word of argument.
1834 */
1835void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
Elena Sayapinadd644502014-07-01 18:39:52 +07001836 if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001837 /*
1838 * Dummy up a RegLocation for the incoming Method*
1839 * It will attempt to keep kArg0 live (or copy it to home location
1840 * if promoted).
1841 */
1842
1843 RegLocation rl_src = rl_method;
1844 rl_src.location = kLocPhysReg;
1845 rl_src.reg = TargetReg(kArg0);
1846 rl_src.home = false;
1847 MarkLive(rl_src);
1848 StoreValue(rl_method, rl_src);
1849 // If Method* has been promoted, explicitly flush
1850 if (rl_method.location == kLocPhysReg) {
Andreas Gampe3c12c512014-06-24 18:46:29 +00001851 StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0), kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001852 }
1853
1854 if (cu_->num_ins == 0) {
1855 return;
1856 }
1857
1858 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1859 /*
1860 * Copy incoming arguments to their proper home locations.
1861 * NOTE: an older version of dx had an issue in which
1862 * it would reuse static method argument registers.
1863 * This could result in the same Dalvik virtual register
1864 * being promoted to both core and fp regs. To account for this,
1865 * we only copy to the corresponding promoted physical register
1866 * if it matches the type of the SSA name for the incoming
1867 * argument. It is also possible that long and double arguments
1868 * end up half-promoted. In those cases, we must flush the promoted
1869 * half to memory as well.
1870 */
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001871 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001872 for (int i = 0; i < cu_->num_ins; i++) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001873 // get reg corresponding to input
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001874 RegStorage reg = GetArgMappingToPhysicalReg(i);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001875
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001876 RegLocation* t_loc = &ArgLocs[i];
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001877 if (reg.Valid()) {
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001878 // If arriving in register.
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001879
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001880 // We have already updated the arg location with promoted info
1881 // so we can be based on it.
1882 if (t_loc->location == kLocPhysReg) {
1883 // Just copy it.
1884 OpRegCopy(t_loc->reg, reg);
1885 } else {
1886 // Needs flush.
1887 if (t_loc->ref) {
1888 StoreRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001889 } else {
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001890 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
1891 kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001892 }
1893 }
1894 } else {
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001895 // If arriving in frame & promoted.
1896 if (t_loc->location == kLocPhysReg) {
1897 if (t_loc->ref) {
1898 LoadRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
1899 } else {
1900 LoadBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
1901 t_loc->wide ? k64 : k32, kNotVolatile);
1902 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001903 }
Dmitry Petrochenko4d5d7942014-06-27 12:25:01 +07001904 }
1905 if (t_loc->wide) {
1906 // Increment i to skip the next one.
1907 i++;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001908 }
1909 }
1910}
1911
1912/*
1913 * Load up to 5 arguments, the first three of which will be in
1914 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
1915 * and as part of the load sequence, it must be replaced with
1916 * the target method pointer. Note, this may also be called
1917 * for "range" variants if the number of arguments is 5 or fewer.
1918 */
1919int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1920 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1921 const MethodReference& target_method,
1922 uint32_t vtable_idx, uintptr_t direct_code,
1923 uintptr_t direct_method, InvokeType type, bool skip_this) {
Elena Sayapinadd644502014-07-01 18:39:52 +07001924 if (!cu_->target64) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001925 return Mir2Lir::GenDalvikArgsNoRange(info,
1926 call_state, pcrLabel, next_call_insn,
1927 target_method,
1928 vtable_idx, direct_code,
1929 direct_method, type, skip_this);
1930 }
1931 return GenDalvikArgsRange(info,
1932 call_state, pcrLabel, next_call_insn,
1933 target_method,
1934 vtable_idx, direct_code,
1935 direct_method, type, skip_this);
1936}
1937
1938/*
1939 * May have 0+ arguments (also used for jumbo). Note that
1940 * source virtual registers may be in physical registers, so may
1941 * need to be flushed to home location before copying. This
1942 * applies to arg3 and above (see below).
1943 *
1944 * Two general strategies:
1945 * If < 20 arguments
1946 * Pass args 3-18 using vldm/vstm block copy
1947 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1948 * If 20+ arguments
1949 * Pass args arg19+ using memcpy block copy
1950 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1951 *
1952 */
1953int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1954 LIR** pcrLabel, NextCallInsn next_call_insn,
1955 const MethodReference& target_method,
1956 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1957 InvokeType type, bool skip_this) {
Elena Sayapinadd644502014-07-01 18:39:52 +07001958 if (!cu_->target64) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001959 return Mir2Lir::GenDalvikArgsRange(info, call_state,
1960 pcrLabel, next_call_insn,
1961 target_method,
1962 vtable_idx, direct_code, direct_method,
1963 type, skip_this);
1964 }
1965
1966 /* If no arguments, just return */
1967 if (info->num_arg_words == 0)
1968 return call_state;
1969
1970 const int start_index = skip_this ? 1 : 0;
1971
1972 InToRegStorageX86_64Mapper mapper;
1973 InToRegStorageMapping in_to_reg_storage_mapping;
1974 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1975 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1976 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
1977 in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
1978 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
1979
1980 // Fisrt of all, check whether it make sense to use bulk copying
1981 // Optimization is aplicable only for range case
1982 // TODO: make a constant instead of 2
1983 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1984 // Scan the rest of the args - if in phys_reg flush to memory
1985 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
1986 RegLocation loc = info->args[next_arg];
1987 if (loc.wide) {
1988 loc = UpdateLocWide(loc);
1989 if (loc.location == kLocPhysReg) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001990 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Andreas Gampe3c12c512014-06-24 18:46:29 +00001991 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001992 }
1993 next_arg += 2;
1994 } else {
1995 loc = UpdateLoc(loc);
1996 if (loc.location == kLocPhysReg) {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01001997 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Andreas Gampe3c12c512014-06-24 18:46:29 +00001998 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001999 }
2000 next_arg++;
2001 }
2002 }
2003
2004 // Logic below assumes that Method pointer is at offset zero from SP.
2005 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2006
2007 // The rest can be copied together
2008 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2009 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2010
2011 int current_src_offset = start_offset;
2012 int current_dest_offset = outs_offset;
2013
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002014 // Only davik regs are accessed in this loop; no next_call_insn() calls.
2015 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002016 while (regs_left_to_pass_via_stack > 0) {
2017 // This is based on the knowledge that the stack itself is 16-byte aligned.
2018 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2019 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2020 size_t bytes_to_move;
2021
2022 /*
2023 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2024 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2025 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2026 * We do this because we could potentially do a smaller move to align.
2027 */
2028 if (regs_left_to_pass_via_stack == 4 ||
2029 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2030 // Moving 128-bits via xmm register.
2031 bytes_to_move = sizeof(uint32_t) * 4;
2032
2033 // Allocate a free xmm temp. Since we are working through the calling sequence,
2034 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2035 // there are no free registers.
2036 RegStorage temp = AllocTempDouble();
2037
2038 LIR* ld1 = nullptr;
2039 LIR* ld2 = nullptr;
2040 LIR* st1 = nullptr;
2041 LIR* st2 = nullptr;
2042
2043 /*
2044 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2045 * do an aligned move. If we have 8-byte alignment, then do the move in two
2046 * parts. This approach prevents possible cache line splits. Finally, fall back
2047 * to doing an unaligned move. In most cases we likely won't split the cache
2048 * line but we cannot prove it and thus take a conservative approach.
2049 */
2050 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2051 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2052
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002053 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002054 if (src_is_16b_aligned) {
2055 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2056 } else if (src_is_8b_aligned) {
2057 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2058 ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2059 kMovHi128FP);
2060 } else {
2061 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2062 }
2063
2064 if (dest_is_16b_aligned) {
2065 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2066 } else if (dest_is_8b_aligned) {
2067 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2068 st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2069 temp, kMovHi128FP);
2070 } else {
2071 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2072 }
2073
2074 // TODO If we could keep track of aliasing information for memory accesses that are wider
2075 // than 64-bit, we wouldn't need to set up a barrier.
2076 if (ld1 != nullptr) {
2077 if (ld2 != nullptr) {
2078 // For 64-bit load we can actually set up the aliasing information.
2079 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2080 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2081 } else {
2082 // Set barrier for 128-bit load.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002083 ld1->u.m.def_mask = &kEncodeAll;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002084 }
2085 }
2086 if (st1 != nullptr) {
2087 if (st2 != nullptr) {
2088 // For 64-bit store we can actually set up the aliasing information.
2089 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2090 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2091 } else {
2092 // Set barrier for 128-bit store.
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002093 st1->u.m.def_mask = &kEncodeAll;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002094 }
2095 }
2096
2097 // Free the temporary used for the data movement.
2098 FreeTemp(temp);
2099 } else {
2100 // Moving 32-bits via general purpose register.
2101 bytes_to_move = sizeof(uint32_t);
2102
2103 // Instead of allocating a new temp, simply reuse one of the registers being used
2104 // for argument passing.
2105 RegStorage temp = TargetReg(kArg3);
2106
2107 // Now load the argument VR and store to the outs.
2108 Load32Disp(TargetReg(kSp), current_src_offset, temp);
2109 Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2110 }
2111
2112 current_src_offset += bytes_to_move;
2113 current_dest_offset += bytes_to_move;
2114 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2115 }
2116 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2117 }
2118
2119 // Now handle rest not registers if they are
2120 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2121 RegStorage regSingle = TargetReg(kArg2);
2122 RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
Chao-ying Fub6564c12014-06-24 13:24:36 -07002123 for (int i = start_index;
2124 i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002125 RegLocation rl_arg = info->args[i];
2126 rl_arg = UpdateRawLoc(rl_arg);
2127 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2128 if (!reg.Valid()) {
2129 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2130
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002131 {
2132 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2133 if (rl_arg.wide) {
2134 if (rl_arg.location == kLocPhysReg) {
Andreas Gampe3c12c512014-06-24 18:46:29 +00002135 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002136 } else {
2137 LoadValueDirectWideFixed(rl_arg, regWide);
Andreas Gampe3c12c512014-06-24 18:46:29 +00002138 StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002139 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002140 } else {
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002141 if (rl_arg.location == kLocPhysReg) {
Andreas Gampe3c12c512014-06-24 18:46:29 +00002142 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002143 } else {
2144 LoadValueDirectFixed(rl_arg, regSingle);
Andreas Gampe3c12c512014-06-24 18:46:29 +00002145 StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32, kNotVolatile);
Vladimir Marko8dea81c2014-06-06 14:50:36 +01002146 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002147 }
2148 }
2149 call_state = next_call_insn(cu_, info, call_state, target_method,
2150 vtable_idx, direct_code, direct_method, type);
2151 }
Chao-ying Fub6564c12014-06-24 13:24:36 -07002152 if (rl_arg.wide) {
2153 i++;
2154 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002155 }
2156 }
2157
2158 // Finish with mapped registers
2159 for (int i = start_index; i <= last_mapped_in; i++) {
2160 RegLocation rl_arg = info->args[i];
2161 rl_arg = UpdateRawLoc(rl_arg);
2162 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2163 if (reg.Valid()) {
2164 if (rl_arg.wide) {
2165 LoadValueDirectWideFixed(rl_arg, reg);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002166 } else {
2167 LoadValueDirectFixed(rl_arg, reg);
2168 }
2169 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2170 direct_code, direct_method, type);
2171 }
Chao-ying Fub6564c12014-06-24 13:24:36 -07002172 if (rl_arg.wide) {
2173 i++;
2174 }
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002175 }
2176
2177 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2178 direct_code, direct_method, type);
2179 if (pcrLabel) {
Andreas Gampe5655e842014-06-17 16:36:07 -07002180 if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002181 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2182 } else {
2183 *pcrLabel = nullptr;
2184 // In lieu of generating a check for kArg1 being null, we need to
2185 // perform a load when doing implicit checks.
2186 RegStorage tmp = AllocTemp();
2187 Load32Disp(TargetReg(kArg1), 0, tmp);
2188 MarkPossibleNullPointerException(info->opt_flags);
2189 FreeTemp(tmp);
2190 }
2191 }
2192 return call_state;
2193}
2194
Brian Carlstrom7934ac22013-07-26 10:54:15 -07002195} // namespace art