blob: 40bbee1d68ea2ab0be700e3297165ee2b1521de4 [file] [log] [blame]
Kaizenbf8b01d2017-10-12 14:26:51 +01001/*
Jenkins18b685f2020-08-21 10:26:22 +01002 * Copyright (c) 2017-2020 Arm Limited.
Kaizenbf8b01d2017-10-12 14:26:51 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Jenkins6a7771e2020-05-28 11:28:36 +010025#ifdef ARM_COMPUTE_CL
26#include "arm_compute/runtime/CL/Utils.h"
27#endif /* ARM_COMPUTE_CL */
Kaizenbf8b01d2017-10-12 14:26:51 +010028#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000029#include "utils/CommonGraphOptions.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010030#include "utils/GraphUtils.h"
31#include "utils/Utils.h"
32
Jenkins6a7771e2020-05-28 11:28:36 +010033using namespace arm_compute;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000034using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010035using namespace arm_compute::graph::frontend;
Kaizenbf8b01d2017-10-12 14:26:51 +010036using namespace arm_compute::graph_utils;
37
Jenkinsb9abeae2018-11-22 11:58:08 +000038/** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000039class GraphAlexnetExample : public Example
Kaizenbf8b01d2017-10-12 14:26:51 +010040{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000041public:
Jenkins52ba29e2018-08-29 15:32:11 +000042 GraphAlexnetExample()
43 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "AlexNet")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000044 {
Jenkins52ba29e2018-08-29 15:32:11 +000045 }
46 bool do_setup(int argc, char **argv) override
47 {
48 // Parse arguments
49 cmd_parser.parse(argc, argv);
Jenkins0e205f72019-11-28 16:53:35 +000050 cmd_parser.validate();
Jenkins52ba29e2018-08-29 15:32:11 +000051
52 // Consume common parameters
53 common_params = consume_common_graph_parameters(common_opts);
54
55 // Return when help menu is requested
56 if(common_params.help)
57 {
58 cmd_parser.print_help(argv[0]);
59 return false;
60 }
61
Jenkins52ba29e2018-08-29 15:32:11 +000062 // Checks
63 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
64
65 // Print parameter values
66 std::cout << common_params << std::endl;
67
68 // Get trainable parameters data path
69 std::string data_path = common_params.data_path;
Anthony Barbier8a3da6f2017-10-23 18:55:17 +010070
Anthony Barbier06ea0482018-02-22 15:45:35 +000071 // Create a preprocessor object
72 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
73 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Kaizenbf8b01d2017-10-12 14:26:51 +010074
Jenkins52ba29e2018-08-29 15:32:11 +000075 // Create input descriptor
Jenkins36ccc902020-02-21 11:10:48 +000076 const auto operation_layout = common_params.data_layout;
77 const TensorShape tensor_shape = permute_shape(TensorShape(227U, 227U, 3U, 1U), DataLayout::NCHW, operation_layout);
78 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
Anthony Barbier06ea0482018-02-22 15:45:35 +000079
Jenkins52ba29e2018-08-29 15:32:11 +000080 // Set weights trained layout
81 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000082
Jenkins52ba29e2018-08-29 15:32:11 +000083 graph << common_params.target
84 << common_params.fast_math_hint
85 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000086 // Layer 1
87 << ConvolutionLayer(
88 11U, 11U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000089 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000090 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
91 PadStrideInfo(4, 4, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010092 .set_name("conv1")
93 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
94 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
Jenkins36ccc902020-02-21 11:10:48 +000095 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000096 // Layer 2
Anthony Barbierf45d5a92018-01-24 16:23:15 +000097 << ConvolutionLayer(
98 5U, 5U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +000099 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000100 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
101 PadStrideInfo(1, 1, 2, 2), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100102 .set_name("conv2")
103 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
104 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
Jenkins36ccc902020-02-21 11:10:48 +0000105 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000106 // Layer 3
107 << ConvolutionLayer(
108 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000109 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000110 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
111 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100112 .set_name("conv3")
113 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000114 // Layer 4
115 << ConvolutionLayer(
116 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000117 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000118 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
119 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100120 .set_name("conv4")
121 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000122 // Layer 5
123 << ConvolutionLayer(
124 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000125 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000126 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
127 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100128 .set_name("conv5")
129 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
Jenkins36ccc902020-02-21 11:10:48 +0000130 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000131 // Layer 6
132 << FullyConnectedLayer(
133 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000134 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000135 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100136 .set_name("fc6")
137 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000138 // Layer 7
139 << FullyConnectedLayer(
140 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000141 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000142 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100143 .set_name("fc7")
144 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000145 // Layer 8
146 << FullyConnectedLayer(
147 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000148 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000149 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100150 .set_name("fc8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000151 // Softmax
Jenkinsb3a371b2018-05-23 11:36:53 +0100152 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000153 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000154
Jenkinsb3a371b2018-05-23 11:36:53 +0100155 // Finalize graph
156 GraphConfig config;
Jenkins975dfe12019-09-02 11:47:54 +0100157
Jenkins52ba29e2018-08-29 15:32:11 +0000158 config.num_threads = common_params.threads;
159 config.use_tuner = common_params.enable_tuner;
Jenkins4ba87db2019-05-23 17:11:51 +0100160 config.tuner_mode = common_params.tuner_mode;
Jenkins52ba29e2018-08-29 15:32:11 +0000161 config.tuner_file = common_params.tuner_file;
162
Jenkins975dfe12019-09-02 11:47:54 +0100163 // Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
164 // compilation won't be required.
165 if(common_params.enable_cl_cache)
166 {
Jenkins6a7771e2020-05-28 11:28:36 +0100167#ifdef ARM_COMPUTE_CL
Jenkins975dfe12019-09-02 11:47:54 +0100168 restore_program_cache_from_file();
Jenkins6a7771e2020-05-28 11:28:36 +0100169#endif /* ARM_COMPUTE_CL */
Jenkins975dfe12019-09-02 11:47:54 +0100170 }
171
Jenkins52ba29e2018-08-29 15:32:11 +0000172 graph.finalize(common_params.target, config);
173
Jenkins975dfe12019-09-02 11:47:54 +0100174 // Save the opencl kernels to a file
175 if(common_opts.enable_cl_cache)
176 {
Jenkins6a7771e2020-05-28 11:28:36 +0100177#ifdef ARM_COMPUTE_CL
Jenkins975dfe12019-09-02 11:47:54 +0100178 save_program_cache_to_file();
Jenkins6a7771e2020-05-28 11:28:36 +0100179#endif /* ARM_COMPUTE_CL */
Jenkins975dfe12019-09-02 11:47:54 +0100180 }
181
Jenkins52ba29e2018-08-29 15:32:11 +0000182 return true;
Kaizenbf8b01d2017-10-12 14:26:51 +0100183 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000184 void do_run() override
Kaizenbf8b01d2017-10-12 14:26:51 +0100185 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000186 // Run graph
187 graph.run();
Kaizenbf8b01d2017-10-12 14:26:51 +0100188 }
189
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000190private:
Jenkins52ba29e2018-08-29 15:32:11 +0000191 CommandLineParser cmd_parser;
192 CommonGraphOptions common_opts;
193 CommonGraphParams common_params;
194 Stream graph;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000195};
Kaizenbf8b01d2017-10-12 14:26:51 +0100196
197/** Main program for AlexNet
198 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000199 * Model is based on:
200 * https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
201 * "ImageNet Classification with Deep Convolutional Neural Networks"
202 * Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E
203 *
Jenkins514be652019-02-28 12:25:18 +0000204 * Provenance: https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
205 *
Jenkins52ba29e2018-08-29 15:32:11 +0000206 * @note To list all the possible arguments execute the binary appended with the --help option
207 *
Kaizenbf8b01d2017-10-12 14:26:51 +0100208 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000209 * @param[in] argv Arguments
210 *
211 * @return Return code
Kaizenbf8b01d2017-10-12 14:26:51 +0100212 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000213int main(int argc, char **argv)
Kaizenbf8b01d2017-10-12 14:26:51 +0100214{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000215 return arm_compute::utils::run_example<GraphAlexnetExample>(argc, argv);
Kaizenbf8b01d2017-10-12 14:26:51 +0100216}