blob: 010985db06a8e63203f30fa81fd33e79a994da9a [file] [log] [blame]
Anthony Barbier871448e2017-03-24 14:54:29 +00001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier871448e2017-03-24 14:54:29 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h"
25
Kaizen8938bd32017-09-28 14:38:23 +010026#include "arm_compute/core/Size2D.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000027#include "arm_compute/core/Validate.h"
Anthony Barbierf45d5a92018-01-24 16:23:15 +000028#include "arm_compute/core/utils/misc/ShapeCalculator.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000029#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000030#include "arm_compute/runtime/CL/CLScheduler.h"
Kaizen8938bd32017-09-28 14:38:23 +010031#include "support/ToolchainSupport.h"
Anthony Barbier871448e2017-03-24 14:54:29 +000032
Anthony Barbiera4376382017-04-12 15:12:46 +010033#include <algorithm>
Anthony Barbiera4376382017-04-12 15:12:46 +010034
Anthony Barbier871448e2017-03-24 14:54:29 +000035using namespace arm_compute;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000036using namespace arm_compute::misc::shape_calculator;
37
38namespace
39{
Jenkinsb3a371b2018-05-23 11:36:53 +010040Status validate_mm(const ITensorInfo &input, const ITensorInfo &weights, const ITensorInfo &output)
Anthony Barbierf45d5a92018-01-24 16:23:15 +000041{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000042 if(is_data_type_quantized_asymmetric(input.data_type()))
43 {
44 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
45 // Extract and negate input and weights offset
46 const QuantizationInfo input_quantization_info(input.quantization_info().scale, -input.quantization_info().offset);
47 const QuantizationInfo weights_quantization_info(weights.quantization_info().scale, -weights.quantization_info().offset);
48
49 // Validate gemmlowp function
50 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(&input.clone()->set_quantization_info(input_quantization_info),
51 &weights.clone()->set_quantization_info(weights_quantization_info),
52 &output));
53 }
54 else
55 {
Jenkinsb3a371b2018-05-23 11:36:53 +010056 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input, &weights, nullptr, &output, 1.f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */)));
Anthony Barbierf45d5a92018-01-24 16:23:15 +000057 }
58
59 return Status{};
60}
61} // namespace
Anthony Barbier871448e2017-03-24 14:54:29 +000062
Kaizen8938bd32017-09-28 14:38:23 +010063void CLFullyConnectedLayerReshapeWeights::configure(const ICLTensor *input, ICLTensor *output)
64{
65 auto k = arm_compute::support::cpp14::make_unique<CLTransposeKernel>();
66 k->configure(input, output);
67 _kernel = std::move(k);
68}
69
Anthony Barbierf45d5a92018-01-24 16:23:15 +000070Status CLFullyConnectedLayerReshapeWeights::validate(const ITensorInfo *input, const ITensorInfo *output)
71{
72 return CLTransposeKernel::validate(input, output);
73}
74
Kaizen8938bd32017-09-28 14:38:23 +010075CLFullyConnectedLayer::CLFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager)
Jenkins52ba29e2018-08-29 15:32:11 +000076 : _memory_group(memory_manager), _convert_weights(), _flatten_layer(), _reshape_weights_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(),
77 _accumulate_biases_kernel(), _flatten_output(), _gemmlowp_output(), _converted_weights_output(), _reshape_weights_output(), _are_weights_converted(true), _are_weights_reshaped(true),
78 _is_fc_after_conv(true), _accumulate_biases(false), _is_quantized(false), _is_prepared(false), _original_weights(nullptr)
Anthony Barbierdbdab852017-06-23 15:42:00 +010079{
80}
Jenkins52ba29e2018-08-29 15:32:11 +000081void CLFullyConnectedLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, bool retain_internal_weights)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000082{
83 if(_is_quantized)
84 {
85 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
86 // Extract and negate input and weights offset
87 const QuantizationInfo input_quantization_info = input->info()->quantization_info();
88 const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
89
90 input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
91 weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
92
93 // Configure gemmlowp function
94 _mm_gemmlowp.configure(input, weights, output);
95
96 // Revert back QuantizatioInfo as input and weights could be used in other fully connected layers
97 input->info()->set_quantization_info(input_quantization_info);
98 weights->info()->set_quantization_info(weights_quantization_info);
99 }
100 else
101 {
102 // Configure matrix multiply kernel
Jenkins52ba29e2018-08-29 15:32:11 +0000103 _mm_gemm.configure(input, weights, nullptr, output, 1.f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */, 1, false, retain_internal_weights));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000104 }
105}
106
Jenkins52ba29e2018-08-29 15:32:11 +0000107void CLFullyConnectedLayer::configure_conv_fc(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, bool retain_internal_weights)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100108{
Kaizen8938bd32017-09-28 14:38:23 +0100109 ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
Anthony Barbierdbdab852017-06-23 15:42:00 +0100110
Anthony Barbiera4376382017-04-12 15:12:46 +0100111 // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
Anthony Barbier871448e2017-03-24 14:54:29 +0000112
Jenkins52ba29e2018-08-29 15:32:11 +0000113 // Initialize output tensor for flatten
114 TensorShape shape_flatten = compute_flatten_shape(input->info());
115 _flatten_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten).set_data_layout(DataLayout::NCHW));
Anthony Barbier871448e2017-03-24 14:54:29 +0000116
Jenkins52ba29e2018-08-29 15:32:11 +0000117 // Configure flatten kernel
118 _memory_group.manage(&_flatten_output);
119 _flatten_layer.configure(input, &_flatten_output);
Anthony Barbiera4376382017-04-12 15:12:46 +0100120
Anthony Barbiera4376382017-04-12 15:12:46 +0100121 // Configure matrix multiply kernel
Jenkins52ba29e2018-08-29 15:32:11 +0000122 configure_mm(&_flatten_output, weights, output, retain_internal_weights);
Anthony Barbiera4376382017-04-12 15:12:46 +0100123
Jenkins52ba29e2018-08-29 15:32:11 +0000124 // Allocate the output tensor for flatten once all the configure methods have been called
125 _flatten_output.allocator()->allocate();
Anthony Barbiera4376382017-04-12 15:12:46 +0100126}
127
Jenkins52ba29e2018-08-29 15:32:11 +0000128void CLFullyConnectedLayer::configure_fc_fc(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, bool retain_internal_weights)
Anthony Barbiera4376382017-04-12 15:12:46 +0100129{
130 ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
131
132 // Configure matrix multiply kernel
Jenkins52ba29e2018-08-29 15:32:11 +0000133 configure_mm(input, weights, output, retain_internal_weights);
Anthony Barbiera4376382017-04-12 15:12:46 +0100134}
135
Jenkins52ba29e2018-08-29 15:32:11 +0000136void CLFullyConnectedLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
137 FullyConnectedLayerInfo fc_info)
Anthony Barbiera4376382017-04-12 15:12:46 +0100138{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000139 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
140
141 // Perform validate step
142 ARM_COMPUTE_ERROR_THROW_ON(CLFullyConnectedLayer::validate(input->info(),
143 weights->info(),
144 biases != nullptr ? biases->info() : nullptr,
145 output->info(),
Jenkins52ba29e2018-08-29 15:32:11 +0000146 fc_info));
Anthony Barbiera4376382017-04-12 15:12:46 +0100147
Jenkins52ba29e2018-08-29 15:32:11 +0000148 _are_weights_converted = true;
149 _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
150 _is_fc_after_conv = true;
151 _accumulate_biases = false;
152 _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
153 _is_prepared = fc_info.retain_internal_weights;
154 _original_weights = weights;
Anthony Barbiera4376382017-04-12 15:12:46 +0100155
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000156 // Configure gemmlowp output
157 if(_is_quantized)
158 {
159 _gemmlowp_output.allocator()->init(output->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
160 }
161
162 // Configure accumulate biases kernel for non quantized asymmetric types
163 if(biases != nullptr && !_is_quantized)
Anthony Barbier871448e2017-03-24 14:54:29 +0000164 {
Anthony Barbiera4376382017-04-12 15:12:46 +0100165 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
166
167 _accumulate_biases = true;
168
169 // Configure accumulate biases kernel
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000170 _accumulate_biases_kernel.set_target(CLScheduler::get().target());
Anthony Barbiera4376382017-04-12 15:12:46 +0100171 _accumulate_biases_kernel.configure(output, biases);
Anthony Barbier871448e2017-03-24 14:54:29 +0000172 }
173
Jenkins52ba29e2018-08-29 15:32:11 +0000174 const ICLTensor *weights_to_use = weights;
175
Anthony Barbiera4376382017-04-12 15:12:46 +0100176 // With the Fully Connected layer we can have 4 different cases:
177 // 1) Convolution layer -> Fully Connected layer without batches
178 // 2) Fully Connected layer -> Fully Connected layer without batches
179 // 3) Convolution layer -> Fully Connected layer with batches
180 // 4) Fully Connected layer -> Fully Connected layer with batches
Anthony Barbier871448e2017-03-24 14:54:29 +0000181
Kaizen8938bd32017-09-28 14:38:23 +0100182 // Check if we have a fully connected layer with batches
183 const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
Kaizen8938bd32017-09-28 14:38:23 +0100184 if(is_batched_fc_layer)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100185 {
186 _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
187 input->info()->tensor_shape().cend(),
188 output->info()->tensor_shape().cbegin() + 1));
Anthony Barbiera4376382017-04-12 15:12:46 +0100189 }
190 else
191 {
Kaizen8938bd32017-09-28 14:38:23 +0100192 _is_fc_after_conv = input->info()->num_dimensions() > 1;
193 }
Anthony Barbiera4376382017-04-12 15:12:46 +0100194
Jenkins52ba29e2018-08-29 15:32:11 +0000195 // Reshape weights if needed
196 if(!_are_weights_reshaped)
197 {
198 // Reshape the weights
199 _reshape_weights_kernel.configure(weights, &_reshape_weights_output);
200 weights_to_use = &_reshape_weights_output;
201 }
202
203 // Convert weights if needed
204 if(_is_fc_after_conv && (input->info()->data_layout() != fc_info.weights_trained_layout))
205 {
206 // Convert weights
207 _convert_weights.configure(weights_to_use,
208 &_converted_weights_output,
209 input->info()->tensor_shape(),
210 fc_info.weights_trained_layout);
211
212 weights_to_use = &_converted_weights_output;
213 _are_weights_converted = false;
214 }
215
216 // Configure fc core
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000217 ICLTensor *tmp_output = (_is_quantized) ? &_gemmlowp_output : output;
Kaizen8938bd32017-09-28 14:38:23 +0100218 if(_is_fc_after_conv)
219 {
220 // Fully Connected layer after a Convolution Layer without batches
Jenkins52ba29e2018-08-29 15:32:11 +0000221 configure_conv_fc(input, weights_to_use, tmp_output, fc_info.retain_internal_weights);
Kaizen8938bd32017-09-28 14:38:23 +0100222 }
223 else
224 {
225 // Fully Connected layer after a Fully Connected Layer without batches
Jenkins52ba29e2018-08-29 15:32:11 +0000226 configure_fc_fc(input, weights_to_use, tmp_output, fc_info.retain_internal_weights);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000227 }
228
229 // Configure output stage for asymmetric quantized types
230 if(_is_quantized)
231 {
232 float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output->info()->quantization_info().scale;
233 int output_multiplier, output_shift;
234 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
235 _gemmlowp_output_stage.configure(&_gemmlowp_output, biases, output, output_multiplier, output_shift, output->info()->quantization_info().offset);
236 _gemmlowp_output.allocator()->allocate();
Anthony Barbiera4376382017-04-12 15:12:46 +0100237 }
Anthony Barbier871448e2017-03-24 14:54:29 +0000238}
239
Jenkins52ba29e2018-08-29 15:32:11 +0000240Status CLFullyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
241 FullyConnectedLayerInfo fc_info)
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000242{
243 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
Jenkins52ba29e2018-08-29 15:32:11 +0000244 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000245 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
246 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
247
Jenkins52ba29e2018-08-29 15:32:11 +0000248 bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000249 bool is_fc_after_conv = true;
250 bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
251 const GPUTarget gpu_target = CLScheduler::get().target();
252
Jenkins52ba29e2018-08-29 15:32:11 +0000253 const ITensorInfo &flatten_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(input)).set_data_layout(DataLayout::NCHW));
254 const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
255 const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
256 const ITensorInfo &gemmlowp_output = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000257
258 // Configure accumulate biases kernel for non quantized asymmetric types
259 if(biases != nullptr && !is_quantized)
260 {
261 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
262 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixAccumulateBiasesKernel::validate(output, biases, gpu_target));
263 }
264
265 // With the Fully Connected layer we can have 4 different cases:
266 // 1) Convolution layer -> Fully Connected layer without batches
267 // 2) Fully Connected layer -> Fully Connected layer without batches
268 // 3) Convolution layer -> Fully Connected layer with batches
269 // 4) Fully Connected layer -> Fully Connected layer with batches
270
271 const ITensorInfo *input_to_use = input;
272 const ITensorInfo *weights_to_use = weights;
273 const ITensorInfo *tmp_output = (is_quantized) ? &gemmlowp_output : output;
274
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000275 // Check if we have a fully connected layer with batches
276 const bool is_batched_fc_layer = output->dimension(1) > 1;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000277 if(is_batched_fc_layer)
278 {
279 is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->tensor_shape().cbegin() + 3,
280 input->tensor_shape().cend(),
281 output->tensor_shape().cbegin() + 1));
282 }
283 else
284 {
285 is_fc_after_conv = input->num_dimensions() > 1;
286 }
287
Jenkins52ba29e2018-08-29 15:32:11 +0000288 if(!weights_reshaped)
289 {
290 // Validate reshape weights kernel
291 ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayerReshapeWeights::validate(weights, &reshaped_weights));
292 weights_to_use = &reshaped_weights;
293 }
294
295 if(is_fc_after_conv && (input->data_layout() != fc_info.weights_trained_layout))
296 {
297 // Validate convert weights kernel
298 ARM_COMPUTE_RETURN_ON_ERROR(CLConvertFullyConnectedWeights::validate(weights_to_use,
299 &converted_weights,
300 input->tensor_shape(),
301 fc_info.weights_trained_layout));
302 weights_to_use = &converted_weights;
303 }
304
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000305 if(is_fc_after_conv)
306 {
307 // Fully Connected layer after a Convolution Layer without batches
308 ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (input->dimension(0) * input->dimension(1) * input->dimension(2))));
309
Jenkins52ba29e2018-08-29 15:32:11 +0000310 // Validate flatten kernel
311 ARM_COMPUTE_RETURN_ON_ERROR(CLFlattenLayer::validate(input, &flatten_input));
312 input_to_use = &flatten_input;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000313 }
314 else
315 {
316 // Fully Connected layer after a Fully Connected Layer without batches
317 ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != weights_to_use->dimension(1));
318 }
319 // Validate matrix multiply kernel
Jenkinsb3a371b2018-05-23 11:36:53 +0100320 ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*input_to_use, *weights_to_use, *tmp_output));
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000321
322 // Validate output stage for asymmetric quantized types
323 if(is_quantized)
324 {
325 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&gemmlowp_output, biases, output));
326 }
327
328 return Status{};
329}
330
Anthony Barbier871448e2017-03-24 14:54:29 +0000331void CLFullyConnectedLayer::run()
332{
Jenkinsb3a371b2018-05-23 11:36:53 +0100333 prepare();
Anthony Barbiera4376382017-04-12 15:12:46 +0100334
Kaizen8938bd32017-09-28 14:38:23 +0100335 _memory_group.acquire();
336
Anthony Barbiera4376382017-04-12 15:12:46 +0100337 // Linearize input if it comes from a convolutional layer
Anthony Barbierdbdab852017-06-23 15:42:00 +0100338 if(_is_fc_after_conv)
Anthony Barbiera4376382017-04-12 15:12:46 +0100339 {
Jenkins52ba29e2018-08-29 15:32:11 +0000340 _flatten_layer.run();
Anthony Barbiera4376382017-04-12 15:12:46 +0100341 }
342
Anthony Barbiera4376382017-04-12 15:12:46 +0100343 // Run matrix multiply
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000344 if(_is_quantized)
345 {
346 _mm_gemmlowp.run();
347 }
348 else
349 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100350 _mm_gemm.run();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000351 }
Anthony Barbiera4376382017-04-12 15:12:46 +0100352
353 // Accumulate biases if provided
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000354 if(_is_quantized)
Anthony Barbiera4376382017-04-12 15:12:46 +0100355 {
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000356 _gemmlowp_output_stage.run();
357 }
358 else
359 {
360 if(_accumulate_biases)
361 {
362 CLScheduler::get().enqueue(_accumulate_biases_kernel);
363 }
Anthony Barbiera4376382017-04-12 15:12:46 +0100364 }
Kaizen8938bd32017-09-28 14:38:23 +0100365
366 _memory_group.release();
Anthony Barbier871448e2017-03-24 14:54:29 +0000367}
Jenkinsb3a371b2018-05-23 11:36:53 +0100368
369void CLFullyConnectedLayer::prepare()
370{
Jenkins52ba29e2018-08-29 15:32:11 +0000371 if(!_is_prepared)
Jenkinsb3a371b2018-05-23 11:36:53 +0100372 {
373 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
374
Jenkins52ba29e2018-08-29 15:32:11 +0000375 auto release_unused = [](CLTensor * w)
376 {
377 if(!w->is_used())
378 {
379 CLScheduler::get().queue().finish();
380 w->allocator()->free();
381 }
382 };
383
384 // Pointer to current weights
385 const ICLTensor *cur_weights = _original_weights;
386
387 // Reshape of the weights if needed (happens only once)
388 if(!_are_weights_reshaped)
389 {
390 // Run reshape weights kernel and mark weights as unused
391 _reshape_weights_output.allocator()->allocate();
392 _reshape_weights_kernel.run();
393
394 cur_weights->mark_as_unused();
395 cur_weights = &_reshape_weights_output;
396 _are_weights_reshaped = true;
397 }
398
399 // Convert weights if needed (happens only once)
400 if(!_are_weights_converted)
401 {
402 _converted_weights_output.allocator()->allocate();
403 _convert_weights.run();
404
405 cur_weights->mark_as_unused();
406 _are_weights_converted = true;
407 }
408
409 // Release reshaped weights if unused
410 release_unused(&_reshape_weights_output);
Jenkinsb3a371b2018-05-23 11:36:53 +0100411
412 // Prepare GEMM prepare and release unused weights
413 if(!_is_quantized)
414 {
415 _mm_gemm.prepare();
Jenkinsb3a371b2018-05-23 11:36:53 +0100416 }
417
Jenkins52ba29e2018-08-29 15:32:11 +0000418 // Release converted weights if unused
419 release_unused(&_reshape_weights_output);
420 release_unused(&_converted_weights_output);
421
422 _is_prepared = true;
Jenkinsb3a371b2018-05-23 11:36:53 +0100423 }
424}