blob: df92634745bc989562bcb3c368dcc0b20c19fc5a [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregor10f3c502008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregor3d4492e2008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregorddfd9d52008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregore819caf2009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorfcb19192009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000121}
122
Douglas Gregord2baafd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor80402cf2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregor14046502008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
Douglas Gregor14046502008-10-23 00:40:37 +0000177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregord2baafd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattner271d4c22008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
Douglas Gregorb60eb752009-06-25 22:08:12 +0000303 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000306 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309 // C++ [temp.fct]p2:
310 // A function template can be overloaded with other function templates
311 // and with normal (non-template) functions.
312 if ((OldTemplate == 0) != (NewTemplate == 0))
313 return true;
314
Douglas Gregord2baafd2008-10-21 16:13:35 +0000315 // Is the function New an overload of the function Old?
316 QualType OldQType = Context.getCanonicalType(Old->getType());
317 QualType NewQType = Context.getCanonicalType(New->getType());
318
319 // Compare the signatures (C++ 1.3.10) of the two functions to
320 // determine whether they are overloads. If we find any mismatch
321 // in the signature, they are overloads.
322
323 // If either of these functions is a K&R-style function (no
324 // prototype), then we consider them to have matching signatures.
Douglas Gregor4fa58902009-02-26 23:50:07 +0000325 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregord2baafd2008-10-21 16:13:35 +0000327 return false;
328
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000329 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000331
332 // The signature of a function includes the types of its
333 // parameters (C++ 1.3.10), which includes the presence or absence
334 // of the ellipsis; see C++ DR 357).
335 if (OldQType != NewQType &&
336 (OldType->getNumArgs() != NewType->getNumArgs() ||
337 OldType->isVariadic() != NewType->isVariadic() ||
338 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339 NewType->arg_type_begin())))
340 return true;
341
Douglas Gregorbf6bc302009-06-24 16:50:40 +0000342 // C++ [temp.over.link]p4:
343 // The signature of a function template consists of its function
344 // signature, its return type and its template parameter list. The names
345 // of the template parameters are significant only for establishing the
346 // relationship between the template parameters and the rest of the
347 // signature.
348 //
349 // We check the return type and template parameter lists for function
350 // templates first; the remaining checks follow.
351 if (NewTemplate &&
352 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353 OldTemplate->getTemplateParameters(),
354 false, false, SourceLocation()) ||
355 OldType->getResultType() != NewType->getResultType()))
356 return true;
357
Douglas Gregord2baafd2008-10-21 16:13:35 +0000358 // If the function is a class member, its signature includes the
359 // cv-qualifiers (if any) on the function itself.
360 //
361 // As part of this, also check whether one of the member functions
362 // is static, in which case they are not overloads (C++
363 // 13.1p2). While not part of the definition of the signature,
364 // this check is important to determine whether these functions
365 // can be overloaded.
366 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368 if (OldMethod && NewMethod &&
369 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregora7b56a32008-11-21 15:36:28 +0000370 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregord2baafd2008-10-21 16:13:35 +0000371 return true;
372
373 // The signatures match; this is not an overload.
374 return false;
375 } else {
376 // (C++ 13p1):
377 // Only function declarations can be overloaded; object and type
378 // declarations cannot be overloaded.
379 return false;
380 }
381}
382
Douglas Gregor81c29152008-10-29 00:13:59 +0000383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000387///
388/// void f(float f);
389/// void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
Sebastian Redla55834a2009-04-12 17:16:29 +0000406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000408ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000409Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000410 bool SuppressUserConversions,
Sebastian Redla55834a2009-04-12 17:16:29 +0000411 bool AllowExplicit, bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000412{
413 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000414 if (IsStandardConversion(From, ToType, ICS.Standard))
415 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000416 else if (getLangOptions().CPlusPlus &&
417 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redla55834a2009-04-12 17:16:29 +0000418 !SuppressUserConversions, AllowExplicit,
419 ForceRValue)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000420 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000421 // C++ [over.ics.user]p4:
422 // A conversion of an expression of class type to the same class
423 // type is given Exact Match rank, and a conversion of an
424 // expression of class type to a base class of that type is
425 // given Conversion rank, in spite of the fact that a copy
426 // constructor (i.e., a user-defined conversion function) is
427 // called for those cases.
428 if (CXXConstructorDecl *Constructor
429 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregord9176392009-02-02 22:11:10 +0000430 QualType FromCanon
431 = Context.getCanonicalType(From->getType().getUnqualifiedType());
432 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000434 // Turn this into a "standard" conversion sequence, so that it
435 // gets ranked with standard conversion sequences.
Douglas Gregore640ab62008-11-03 17:51:48 +0000436 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437 ICS.Standard.setAsIdentityConversion();
438 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000440 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregord9176392009-02-02 22:11:10 +0000441 if (ToCanon != FromCanon)
Douglas Gregore640ab62008-11-03 17:51:48 +0000442 ICS.Standard.Second = ICK_Derived_To_Base;
443 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000444 }
Douglas Gregorb206cc42009-01-30 23:27:23 +0000445
446 // C++ [over.best.ics]p4:
447 // However, when considering the argument of a user-defined
448 // conversion function that is a candidate by 13.3.1.3 when
449 // invoked for the copying of the temporary in the second step
450 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451 // 13.3.1.6 in all cases, only standard conversion sequences and
452 // ellipsis conversion sequences are allowed.
453 if (SuppressUserConversions &&
454 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000456 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000457 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000458
459 return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472 StandardConversionSequence &SCS)
473{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000474 QualType FromType = From->getType();
475
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000476 // Standard conversions (C++ [conv])
Douglas Gregor70d26122008-11-12 17:17:38 +0000477 SCS.setAsIdentityConversion();
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000478 SCS.Deprecated = false;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000479 SCS.IncompatibleObjC = false;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000480 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000481 SCS.CopyConstructor = 0;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000482
Douglas Gregorfcb19192009-02-11 23:02:49 +0000483 // There are no standard conversions for class types in C++, so
484 // abort early. When overloading in C, however, we do permit
485 if (FromType->isRecordType() || ToType->isRecordType()) {
486 if (getLangOptions().CPlusPlus)
487 return false;
488
489 // When we're overloading in C, we allow, as standard conversions,
490 }
491
Douglas Gregord2baafd2008-10-21 16:13:35 +0000492 // The first conversion can be an lvalue-to-rvalue conversion,
493 // array-to-pointer conversion, or function-to-pointer conversion
494 // (C++ 4p1).
495
496 // Lvalue-to-rvalue conversion (C++ 4.1):
497 // An lvalue (3.10) of a non-function, non-array type T can be
498 // converted to an rvalue.
499 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor45014fd2008-11-10 20:40:00 +0000501 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor00fe3f62009-03-13 18:40:31 +0000502 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000503 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000504
505 // If T is a non-class type, the type of the rvalue is the
506 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorfcb19192009-02-11 23:02:49 +0000507 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508 // just strip the qualifiers because they don't matter.
509
510 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000511 FromType = FromType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000512 } else if (FromType->isArrayType()) {
513 // Array-to-pointer conversion (C++ 4.2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000514 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000515
516 // An lvalue or rvalue of type "array of N T" or "array of unknown
517 // bound of T" can be converted to an rvalue of type "pointer to
518 // T" (C++ 4.2p1).
519 FromType = Context.getArrayDecayedType(FromType);
520
521 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
522 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000523 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000524
525 // For the purpose of ranking in overload resolution
526 // (13.3.3.1.1), this conversion is considered an
527 // array-to-pointer conversion followed by a qualification
528 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000529 SCS.Second = ICK_Identity;
530 SCS.Third = ICK_Qualification;
531 SCS.ToTypePtr = ToType.getAsOpaquePtr();
532 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000533 }
Mike Stump90fc78e2009-08-04 21:02:39 +0000534 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
535 // Function-to-pointer conversion (C++ 4.3).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000536 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000537
538 // An lvalue of function type T can be converted to an rvalue of
539 // type "pointer to T." The result is a pointer to the
540 // function. (C++ 4.3p1).
541 FromType = Context.getPointerType(FromType);
Mike Stump90fc78e2009-08-04 21:02:39 +0000542 } else if (FunctionDecl *Fn
Douglas Gregor45014fd2008-11-10 20:40:00 +0000543 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
Mike Stump90fc78e2009-08-04 21:02:39 +0000544 // Address of overloaded function (C++ [over.over]).
Douglas Gregor45014fd2008-11-10 20:40:00 +0000545 SCS.First = ICK_Function_To_Pointer;
546
547 // We were able to resolve the address of the overloaded function,
548 // so we can convert to the type of that function.
549 FromType = Fn->getType();
Sebastian Redlce6fff02009-03-16 23:22:08 +0000550 if (ToType->isLValueReferenceType())
551 FromType = Context.getLValueReferenceType(FromType);
552 else if (ToType->isRValueReferenceType())
553 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000554 else if (ToType->isMemberPointerType()) {
555 // Resolve address only succeeds if both sides are member pointers,
556 // but it doesn't have to be the same class. See DR 247.
557 // Note that this means that the type of &Derived::fn can be
558 // Ret (Base::*)(Args) if the fn overload actually found is from the
559 // base class, even if it was brought into the derived class via a
560 // using declaration. The standard isn't clear on this issue at all.
561 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
562 FromType = Context.getMemberPointerType(FromType,
563 Context.getTypeDeclType(M->getParent()).getTypePtr());
564 } else
Douglas Gregor45014fd2008-11-10 20:40:00 +0000565 FromType = Context.getPointerType(FromType);
Mike Stump90fc78e2009-08-04 21:02:39 +0000566 } else {
567 // We don't require any conversions for the first step.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000568 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000569 }
570
571 // The second conversion can be an integral promotion, floating
572 // point promotion, integral conversion, floating point conversion,
573 // floating-integral conversion, pointer conversion,
574 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorfcb19192009-02-11 23:02:49 +0000575 // For overloading in C, this can also be a "compatible-type"
576 // conversion.
Douglas Gregor6fd35572008-12-19 17:40:08 +0000577 bool IncompatibleObjC = false;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000578 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000579 // The unqualified versions of the types are the same: there's no
580 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000581 SCS.Second = ICK_Identity;
Mike Stump90fc78e2009-08-04 21:02:39 +0000582 } else if (IsIntegralPromotion(From, FromType, ToType)) {
583 // Integral promotion (C++ 4.5).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000584 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000585 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000586 } else if (IsFloatingPointPromotion(FromType, ToType)) {
587 // Floating point promotion (C++ 4.6).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000588 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000589 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000590 } else if (IsComplexPromotion(FromType, ToType)) {
591 // Complex promotion (Clang extension)
Douglas Gregore819caf2009-02-12 00:15:05 +0000592 SCS.Second = ICK_Complex_Promotion;
593 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000594 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000595 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Mike Stump90fc78e2009-08-04 21:02:39 +0000596 // Integral conversions (C++ 4.7).
597 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000598 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000599 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000600 } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
601 // Floating point conversions (C++ 4.8).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000602 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000603 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000604 } else if (FromType->isComplexType() && ToType->isComplexType()) {
605 // Complex conversions (C99 6.3.1.6)
Douglas Gregore819caf2009-02-12 00:15:05 +0000606 SCS.Second = ICK_Complex_Conversion;
607 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000608 } else if ((FromType->isFloatingType() &&
609 ToType->isIntegralType() && (!ToType->isBooleanType() &&
610 !ToType->isEnumeralType())) ||
611 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
612 ToType->isFloatingType())) {
613 // Floating-integral conversions (C++ 4.9).
614 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000615 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000616 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000617 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
618 (ToType->isComplexType() && FromType->isArithmeticType())) {
619 // Complex-real conversions (C99 6.3.1.7)
Douglas Gregore819caf2009-02-12 00:15:05 +0000620 SCS.Second = ICK_Complex_Real;
621 FromType = ToType.getUnqualifiedType();
Mike Stump90fc78e2009-08-04 21:02:39 +0000622 } else if (IsPointerConversion(From, FromType, ToType, FromType,
623 IncompatibleObjC)) {
624 // Pointer conversions (C++ 4.10).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000625 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000626 SCS.IncompatibleObjC = IncompatibleObjC;
Mike Stump90fc78e2009-08-04 21:02:39 +0000627 } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
628 // Pointer to member conversions (4.11).
Sebastian Redlba387562009-01-25 19:43:20 +0000629 SCS.Second = ICK_Pointer_Member;
Mike Stump90fc78e2009-08-04 21:02:39 +0000630 } else if (ToType->isBooleanType() &&
631 (FromType->isArithmeticType() ||
632 FromType->isEnumeralType() ||
633 FromType->isPointerType() ||
634 FromType->isBlockPointerType() ||
635 FromType->isMemberPointerType() ||
636 FromType->isNullPtrType())) {
637 // Boolean conversions (C++ 4.12).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000638 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000639 FromType = Context.BoolTy;
Mike Stump90fc78e2009-08-04 21:02:39 +0000640 } else if (!getLangOptions().CPlusPlus &&
641 Context.typesAreCompatible(ToType, FromType)) {
642 // Compatible conversions (Clang extension for C function overloading)
Douglas Gregorfcb19192009-02-11 23:02:49 +0000643 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000644 } else {
645 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000646 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000647 }
648
Douglas Gregor81c29152008-10-29 00:13:59 +0000649 QualType CanonFrom;
650 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000651 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000652 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000653 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000654 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000655 CanonFrom = Context.getCanonicalType(FromType);
656 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000657 } else {
658 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000659 SCS.Third = ICK_Identity;
660
661 // C++ [over.best.ics]p6:
662 // [...] Any difference in top-level cv-qualification is
663 // subsumed by the initialization itself and does not constitute
664 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000665 CanonFrom = Context.getCanonicalType(FromType);
666 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000667 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000668 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
669 FromType = ToType;
670 CanonFrom = CanonTo;
671 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000672 }
673
674 // If we have not converted the argument type to the parameter type,
675 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000676 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000677 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000678
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000679 SCS.ToTypePtr = FromType.getAsOpaquePtr();
680 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000681}
682
683/// IsIntegralPromotion - Determines whether the conversion from the
684/// expression From (whose potentially-adjusted type is FromType) to
685/// ToType is an integral promotion (C++ 4.5). If so, returns true and
686/// sets PromotedType to the promoted type.
687bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
688{
689 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl12aee862008-11-04 15:59:10 +0000690 // All integers are built-in.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000691 if (!To) {
692 return false;
693 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000694
695 // An rvalue of type char, signed char, unsigned char, short int, or
696 // unsigned short int can be converted to an rvalue of type int if
697 // int can represent all the values of the source type; otherwise,
698 // the source rvalue can be converted to an rvalue of type unsigned
699 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000700 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000701 if (// We can promote any signed, promotable integer type to an int
702 (FromType->isSignedIntegerType() ||
703 // We can promote any unsigned integer type whose size is
704 // less than int to an int.
705 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000706 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000707 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000708 }
709
Douglas Gregord2baafd2008-10-21 16:13:35 +0000710 return To->getKind() == BuiltinType::UInt;
711 }
712
713 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
714 // can be converted to an rvalue of the first of the following types
715 // that can represent all the values of its underlying type: int,
716 // unsigned int, long, or unsigned long (C++ 4.5p2).
717 if ((FromType->isEnumeralType() || FromType->isWideCharType())
718 && ToType->isIntegerType()) {
719 // Determine whether the type we're converting from is signed or
720 // unsigned.
721 bool FromIsSigned;
722 uint64_t FromSize = Context.getTypeSize(FromType);
723 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
724 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
725 FromIsSigned = UnderlyingType->isSignedIntegerType();
726 } else {
727 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
728 FromIsSigned = true;
729 }
730
731 // The types we'll try to promote to, in the appropriate
732 // order. Try each of these types.
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000733 QualType PromoteTypes[6] = {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000734 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000735 Context.LongTy, Context.UnsignedLongTy ,
736 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregord2baafd2008-10-21 16:13:35 +0000737 };
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000738 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000739 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
740 if (FromSize < ToSize ||
741 (FromSize == ToSize &&
742 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
743 // We found the type that we can promote to. If this is the
744 // type we wanted, we have a promotion. Otherwise, no
745 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000746 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000747 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
748 }
749 }
750 }
751
752 // An rvalue for an integral bit-field (9.6) can be converted to an
753 // rvalue of type int if int can represent all the values of the
754 // bit-field; otherwise, it can be converted to unsigned int if
755 // unsigned int can represent all the values of the bit-field. If
756 // the bit-field is larger yet, no integral promotion applies to
757 // it. If the bit-field has an enumerated type, it is treated as any
758 // other value of that type for promotion purposes (C++ 4.5p3).
Mike Stumpe127ae32009-05-16 07:39:55 +0000759 // FIXME: We should delay checking of bit-fields until we actually perform the
760 // conversion.
Douglas Gregor531434b2009-05-02 02:18:30 +0000761 using llvm::APSInt;
762 if (From)
763 if (FieldDecl *MemberDecl = From->getBitField()) {
Douglas Gregor82d44772008-12-20 23:49:58 +0000764 APSInt BitWidth;
Douglas Gregor531434b2009-05-02 02:18:30 +0000765 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
766 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
767 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
768 ToSize = Context.getTypeSize(ToType);
Douglas Gregor82d44772008-12-20 23:49:58 +0000769
770 // Are we promoting to an int from a bitfield that fits in an int?
771 if (BitWidth < ToSize ||
772 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
773 return To->getKind() == BuiltinType::Int;
774 }
775
776 // Are we promoting to an unsigned int from an unsigned bitfield
777 // that fits into an unsigned int?
778 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
779 return To->getKind() == BuiltinType::UInt;
780 }
781
782 return false;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000783 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000784 }
Douglas Gregor531434b2009-05-02 02:18:30 +0000785
Douglas Gregord2baafd2008-10-21 16:13:35 +0000786 // An rvalue of type bool can be converted to an rvalue of type int,
787 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000788 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000789 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000790 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000791
792 return false;
793}
794
795/// IsFloatingPointPromotion - Determines whether the conversion from
796/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
797/// returns true and sets PromotedType to the promoted type.
798bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
799{
800 /// An rvalue of type float can be converted to an rvalue of type
801 /// double. (C++ 4.6p1).
802 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregore819caf2009-02-12 00:15:05 +0000803 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000804 if (FromBuiltin->getKind() == BuiltinType::Float &&
805 ToBuiltin->getKind() == BuiltinType::Double)
806 return true;
807
Douglas Gregore819caf2009-02-12 00:15:05 +0000808 // C99 6.3.1.5p1:
809 // When a float is promoted to double or long double, or a
810 // double is promoted to long double [...].
811 if (!getLangOptions().CPlusPlus &&
812 (FromBuiltin->getKind() == BuiltinType::Float ||
813 FromBuiltin->getKind() == BuiltinType::Double) &&
814 (ToBuiltin->getKind() == BuiltinType::LongDouble))
815 return true;
816 }
817
Douglas Gregord2baafd2008-10-21 16:13:35 +0000818 return false;
819}
820
Douglas Gregore819caf2009-02-12 00:15:05 +0000821/// \brief Determine if a conversion is a complex promotion.
822///
823/// A complex promotion is defined as a complex -> complex conversion
824/// where the conversion between the underlying real types is a
Douglas Gregor4ff48512009-02-12 00:26:06 +0000825/// floating-point or integral promotion.
Douglas Gregore819caf2009-02-12 00:15:05 +0000826bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
827 const ComplexType *FromComplex = FromType->getAsComplexType();
828 if (!FromComplex)
829 return false;
830
831 const ComplexType *ToComplex = ToType->getAsComplexType();
832 if (!ToComplex)
833 return false;
834
835 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregor4ff48512009-02-12 00:26:06 +0000836 ToComplex->getElementType()) ||
837 IsIntegralPromotion(0, FromComplex->getElementType(),
838 ToComplex->getElementType());
Douglas Gregore819caf2009-02-12 00:15:05 +0000839}
840
Douglas Gregor24a90a52008-11-26 23:31:11 +0000841/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
842/// the pointer type FromPtr to a pointer to type ToPointee, with the
843/// same type qualifiers as FromPtr has on its pointee type. ToType,
844/// if non-empty, will be a pointer to ToType that may or may not have
845/// the right set of qualifiers on its pointee.
846static QualType
847BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
848 QualType ToPointee, QualType ToType,
849 ASTContext &Context) {
850 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
851 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
852 unsigned Quals = CanonFromPointee.getCVRQualifiers();
853
854 // Exact qualifier match -> return the pointer type we're converting to.
855 if (CanonToPointee.getCVRQualifiers() == Quals) {
856 // ToType is exactly what we need. Return it.
857 if (ToType.getTypePtr())
858 return ToType;
859
860 // Build a pointer to ToPointee. It has the right qualifiers
861 // already.
862 return Context.getPointerType(ToPointee);
863 }
864
865 // Just build a canonical type that has the right qualifiers.
866 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
867}
868
Douglas Gregord2baafd2008-10-21 16:13:35 +0000869/// IsPointerConversion - Determines whether the conversion of the
870/// expression From, which has the (possibly adjusted) type FromType,
871/// can be converted to the type ToType via a pointer conversion (C++
872/// 4.10). If so, returns true and places the converted type (that
873/// might differ from ToType in its cv-qualifiers at some level) into
874/// ConvertedType.
Douglas Gregor9036ef72008-11-27 00:15:41 +0000875///
Douglas Gregor3f5a00c2008-11-27 01:19:21 +0000876/// This routine also supports conversions to and from block pointers
877/// and conversions with Objective-C's 'id', 'id<protocols...>', and
878/// pointers to interfaces. FIXME: Once we've determined the
879/// appropriate overloading rules for Objective-C, we may want to
880/// split the Objective-C checks into a different routine; however,
881/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor6fd35572008-12-19 17:40:08 +0000882/// conversions, so for now they live here. IncompatibleObjC will be
883/// set if the conversion is an allowed Objective-C conversion that
884/// should result in a warning.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000885bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor6fd35572008-12-19 17:40:08 +0000886 QualType& ConvertedType,
887 bool &IncompatibleObjC)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000888{
Douglas Gregor6fd35572008-12-19 17:40:08 +0000889 IncompatibleObjC = false;
Douglas Gregor932778b2008-12-19 19:13:09 +0000890 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
891 return true;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000892
Douglas Gregorf1d75712008-12-22 20:51:52 +0000893 // Conversion from a null pointer constant to any Objective-C pointer type.
Steve Naroffad75bd22009-07-16 15:41:00 +0000894 if (ToType->isObjCObjectPointerType() &&
Douglas Gregorf1d75712008-12-22 20:51:52 +0000895 From->isNullPointerConstant(Context)) {
896 ConvertedType = ToType;
897 return true;
898 }
899
Douglas Gregor9036ef72008-11-27 00:15:41 +0000900 // Blocks: Block pointers can be converted to void*.
901 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000902 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
Douglas Gregor9036ef72008-11-27 00:15:41 +0000903 ConvertedType = ToType;
904 return true;
905 }
906 // Blocks: A null pointer constant can be converted to a block
907 // pointer type.
908 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
909 ConvertedType = ToType;
910 return true;
911 }
912
Sebastian Redl5d0ead72009-05-10 18:38:11 +0000913 // If the left-hand-side is nullptr_t, the right side can be a null
914 // pointer constant.
915 if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
916 ConvertedType = ToType;
917 return true;
918 }
919
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000920 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000921 if (!ToTypePtr)
922 return false;
923
924 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
925 if (From->isNullPointerConstant(Context)) {
926 ConvertedType = ToType;
927 return true;
928 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000929
Douglas Gregor24a90a52008-11-26 23:31:11 +0000930 // Beyond this point, both types need to be pointers.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +0000931 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
Douglas Gregor24a90a52008-11-26 23:31:11 +0000932 if (!FromTypePtr)
933 return false;
934
935 QualType FromPointeeType = FromTypePtr->getPointeeType();
936 QualType ToPointeeType = ToTypePtr->getPointeeType();
937
Douglas Gregord2baafd2008-10-21 16:13:35 +0000938 // An rvalue of type "pointer to cv T," where T is an object type,
939 // can be converted to an rvalue of type "pointer to cv void" (C++
940 // 4.10p2).
Douglas Gregor26ea1222009-03-24 20:32:41 +0000941 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000942 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
943 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000944 ToType, Context);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000945 return true;
946 }
947
Douglas Gregorfcb19192009-02-11 23:02:49 +0000948 // When we're overloading in C, we allow a special kind of pointer
949 // conversion for compatible-but-not-identical pointee types.
950 if (!getLangOptions().CPlusPlus &&
951 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
952 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
953 ToPointeeType,
954 ToType, Context);
955 return true;
956 }
957
Douglas Gregor14046502008-10-23 00:40:37 +0000958 // C++ [conv.ptr]p3:
959 //
960 // An rvalue of type "pointer to cv D," where D is a class type,
961 // can be converted to an rvalue of type "pointer to cv B," where
962 // B is a base class (clause 10) of D. If B is an inaccessible
963 // (clause 11) or ambiguous (10.2) base class of D, a program that
964 // necessitates this conversion is ill-formed. The result of the
965 // conversion is a pointer to the base class sub-object of the
966 // derived class object. The null pointer value is converted to
967 // the null pointer value of the destination type.
968 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000969 // Note that we do not check for ambiguity or inaccessibility
970 // here. That is handled by CheckPointerConversion.
Douglas Gregorfcb19192009-02-11 23:02:49 +0000971 if (getLangOptions().CPlusPlus &&
972 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregor24a90a52008-11-26 23:31:11 +0000973 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000974 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
975 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000976 ToType, Context);
977 return true;
978 }
Douglas Gregor14046502008-10-23 00:40:37 +0000979
Douglas Gregor932778b2008-12-19 19:13:09 +0000980 return false;
981}
982
983/// isObjCPointerConversion - Determines whether this is an
984/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
985/// with the same arguments and return values.
986bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
987 QualType& ConvertedType,
988 bool &IncompatibleObjC) {
989 if (!getLangOptions().ObjC1)
990 return false;
991
Steve Naroff329ec222009-07-10 23:34:53 +0000992 // First, we handle all conversions on ObjC object pointer types.
993 const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
994 const ObjCObjectPointerType *FromObjCPtr =
995 FromType->getAsObjCObjectPointerType();
Douglas Gregor932778b2008-12-19 19:13:09 +0000996
Steve Naroff329ec222009-07-10 23:34:53 +0000997 if (ToObjCPtr && FromObjCPtr) {
Steve Naroff7bffd372009-07-15 18:40:39 +0000998 // Objective C++: We're able to convert between "id" or "Class" and a
Steve Naroff329ec222009-07-10 23:34:53 +0000999 // pointer to any interface (in both directions).
Steve Naroff7bffd372009-07-15 18:40:39 +00001000 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
Steve Naroff329ec222009-07-10 23:34:53 +00001001 ConvertedType = ToType;
1002 return true;
1003 }
1004 // Conversions with Objective-C's id<...>.
1005 if ((FromObjCPtr->isObjCQualifiedIdType() ||
1006 ToObjCPtr->isObjCQualifiedIdType()) &&
Steve Naroff99eb86b2009-07-23 01:01:38 +00001007 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1008 /*compare=*/false)) {
Steve Naroff329ec222009-07-10 23:34:53 +00001009 ConvertedType = ToType;
1010 return true;
1011 }
1012 // Objective C++: We're able to convert from a pointer to an
1013 // interface to a pointer to a different interface.
1014 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1015 ConvertedType = ToType;
1016 return true;
1017 }
1018
1019 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1020 // Okay: this is some kind of implicit downcast of Objective-C
1021 // interfaces, which is permitted. However, we're going to
1022 // complain about it.
1023 IncompatibleObjC = true;
1024 ConvertedType = FromType;
1025 return true;
1026 }
1027 }
1028 // Beyond this point, both types need to be C pointers or block pointers.
Douglas Gregor80402cf2008-12-23 00:53:59 +00001029 QualType ToPointeeType;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001030 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
Steve Naroff329ec222009-07-10 23:34:53 +00001031 ToPointeeType = ToCPtr->getPointeeType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001032 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
Douglas Gregor80402cf2008-12-23 00:53:59 +00001033 ToPointeeType = ToBlockPtr->getPointeeType();
1034 else
Douglas Gregor932778b2008-12-19 19:13:09 +00001035 return false;
1036
Douglas Gregor80402cf2008-12-23 00:53:59 +00001037 QualType FromPointeeType;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001038 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
Steve Naroff329ec222009-07-10 23:34:53 +00001039 FromPointeeType = FromCPtr->getPointeeType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001040 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
Douglas Gregor80402cf2008-12-23 00:53:59 +00001041 FromPointeeType = FromBlockPtr->getPointeeType();
1042 else
Douglas Gregor932778b2008-12-19 19:13:09 +00001043 return false;
1044
Douglas Gregor932778b2008-12-19 19:13:09 +00001045 // If we have pointers to pointers, recursively check whether this
1046 // is an Objective-C conversion.
1047 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1048 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1049 IncompatibleObjC)) {
1050 // We always complain about this conversion.
1051 IncompatibleObjC = true;
1052 ConvertedType = ToType;
1053 return true;
1054 }
Douglas Gregor80402cf2008-12-23 00:53:59 +00001055 // If we have pointers to functions or blocks, check whether the only
Douglas Gregor932778b2008-12-19 19:13:09 +00001056 // differences in the argument and result types are in Objective-C
1057 // pointer conversions. If so, we permit the conversion (but
1058 // complain about it).
Douglas Gregor4fa58902009-02-26 23:50:07 +00001059 const FunctionProtoType *FromFunctionType
1060 = FromPointeeType->getAsFunctionProtoType();
1061 const FunctionProtoType *ToFunctionType
1062 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregor932778b2008-12-19 19:13:09 +00001063 if (FromFunctionType && ToFunctionType) {
1064 // If the function types are exactly the same, this isn't an
1065 // Objective-C pointer conversion.
1066 if (Context.getCanonicalType(FromPointeeType)
1067 == Context.getCanonicalType(ToPointeeType))
1068 return false;
1069
1070 // Perform the quick checks that will tell us whether these
1071 // function types are obviously different.
1072 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1073 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1074 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1075 return false;
1076
1077 bool HasObjCConversion = false;
1078 if (Context.getCanonicalType(FromFunctionType->getResultType())
1079 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1080 // Okay, the types match exactly. Nothing to do.
1081 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1082 ToFunctionType->getResultType(),
1083 ConvertedType, IncompatibleObjC)) {
1084 // Okay, we have an Objective-C pointer conversion.
1085 HasObjCConversion = true;
1086 } else {
1087 // Function types are too different. Abort.
1088 return false;
1089 }
1090
1091 // Check argument types.
1092 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1093 ArgIdx != NumArgs; ++ArgIdx) {
1094 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1095 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1096 if (Context.getCanonicalType(FromArgType)
1097 == Context.getCanonicalType(ToArgType)) {
1098 // Okay, the types match exactly. Nothing to do.
1099 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1100 ConvertedType, IncompatibleObjC)) {
1101 // Okay, we have an Objective-C pointer conversion.
1102 HasObjCConversion = true;
1103 } else {
1104 // Argument types are too different. Abort.
1105 return false;
1106 }
1107 }
1108
1109 if (HasObjCConversion) {
1110 // We had an Objective-C conversion. Allow this pointer
1111 // conversion, but complain about it.
1112 ConvertedType = ToType;
1113 IncompatibleObjC = true;
1114 return true;
1115 }
1116 }
1117
Sebastian Redlba387562009-01-25 19:43:20 +00001118 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001119}
1120
Douglas Gregorbb461502008-10-24 04:54:22 +00001121/// CheckPointerConversion - Check the pointer conversion from the
1122/// expression From to the type ToType. This routine checks for
Sebastian Redl0e35d042009-07-25 15:41:38 +00001123/// ambiguous or inaccessible derived-to-base pointer
Douglas Gregorbb461502008-10-24 04:54:22 +00001124/// conversions for which IsPointerConversion has already returned
1125/// true. It returns true and produces a diagnostic if there was an
1126/// error, or returns false otherwise.
1127bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1128 QualType FromType = From->getType();
1129
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001130 if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1131 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
Douglas Gregorbb461502008-10-24 04:54:22 +00001132 QualType FromPointeeType = FromPtrType->getPointeeType(),
1133 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregord0c653a2008-12-18 23:43:31 +00001134
Douglas Gregorbb461502008-10-24 04:54:22 +00001135 if (FromPointeeType->isRecordType() &&
1136 ToPointeeType->isRecordType()) {
1137 // We must have a derived-to-base conversion. Check an
1138 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +00001139 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1140 From->getExprLoc(),
1141 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +00001142 }
1143 }
Steve Naroff329ec222009-07-10 23:34:53 +00001144 if (const ObjCObjectPointerType *FromPtrType =
1145 FromType->getAsObjCObjectPointerType())
1146 if (const ObjCObjectPointerType *ToPtrType =
1147 ToType->getAsObjCObjectPointerType()) {
1148 // Objective-C++ conversions are always okay.
1149 // FIXME: We should have a different class of conversions for the
1150 // Objective-C++ implicit conversions.
Steve Naroff7bffd372009-07-15 18:40:39 +00001151 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
Steve Naroff329ec222009-07-10 23:34:53 +00001152 return false;
Douglas Gregorbb461502008-10-24 04:54:22 +00001153
Steve Naroff329ec222009-07-10 23:34:53 +00001154 }
Douglas Gregorbb461502008-10-24 04:54:22 +00001155 return false;
1156}
1157
Sebastian Redlba387562009-01-25 19:43:20 +00001158/// IsMemberPointerConversion - Determines whether the conversion of the
1159/// expression From, which has the (possibly adjusted) type FromType, can be
1160/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1161/// If so, returns true and places the converted type (that might differ from
1162/// ToType in its cv-qualifiers at some level) into ConvertedType.
1163bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1164 QualType ToType, QualType &ConvertedType)
1165{
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001166 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
Sebastian Redlba387562009-01-25 19:43:20 +00001167 if (!ToTypePtr)
1168 return false;
1169
1170 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1171 if (From->isNullPointerConstant(Context)) {
1172 ConvertedType = ToType;
1173 return true;
1174 }
1175
1176 // Otherwise, both types have to be member pointers.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001177 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
Sebastian Redlba387562009-01-25 19:43:20 +00001178 if (!FromTypePtr)
1179 return false;
1180
1181 // A pointer to member of B can be converted to a pointer to member of D,
1182 // where D is derived from B (C++ 4.11p2).
1183 QualType FromClass(FromTypePtr->getClass(), 0);
1184 QualType ToClass(ToTypePtr->getClass(), 0);
1185 // FIXME: What happens when these are dependent? Is this function even called?
1186
1187 if (IsDerivedFrom(ToClass, FromClass)) {
1188 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1189 ToClass.getTypePtr());
1190 return true;
1191 }
1192
1193 return false;
1194}
1195
1196/// CheckMemberPointerConversion - Check the member pointer conversion from the
1197/// expression From to the type ToType. This routine checks for ambiguous or
1198/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1199/// for which IsMemberPointerConversion has already returned true. It returns
1200/// true and produces a diagnostic if there was an error, or returns false
1201/// otherwise.
1202bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1203 QualType FromType = From->getType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001204 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001205 if (!FromPtrType)
1206 return false;
Sebastian Redlba387562009-01-25 19:43:20 +00001207
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001208 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001209 assert(ToPtrType && "No member pointer cast has a target type "
1210 "that is not a member pointer.");
Sebastian Redlba387562009-01-25 19:43:20 +00001211
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001212 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1213 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redlba387562009-01-25 19:43:20 +00001214
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001215 // FIXME: What about dependent types?
1216 assert(FromClass->isRecordType() && "Pointer into non-class.");
1217 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redlba387562009-01-25 19:43:20 +00001218
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001219 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1220 /*DetectVirtual=*/true);
1221 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1222 assert(DerivationOkay &&
1223 "Should not have been called if derivation isn't OK.");
1224 (void)DerivationOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001225
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001226 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1227 getUnqualifiedType())) {
1228 // Derivation is ambiguous. Redo the check to find the exact paths.
1229 Paths.clear();
1230 Paths.setRecordingPaths(true);
1231 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1232 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1233 (void)StillOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001234
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001235 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1236 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1237 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1238 return true;
Sebastian Redlba387562009-01-25 19:43:20 +00001239 }
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001240
Douglas Gregor2e047592009-02-28 01:32:25 +00001241 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001242 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1243 << FromClass << ToClass << QualType(VBase, 0)
1244 << From->getSourceRange();
1245 return true;
1246 }
1247
Sebastian Redlba387562009-01-25 19:43:20 +00001248 return false;
1249}
1250
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001251/// IsQualificationConversion - Determines whether the conversion from
1252/// an rvalue of type FromType to ToType is a qualification conversion
1253/// (C++ 4.4).
1254bool
1255Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1256{
1257 FromType = Context.getCanonicalType(FromType);
1258 ToType = Context.getCanonicalType(ToType);
1259
1260 // If FromType and ToType are the same type, this is not a
1261 // qualification conversion.
1262 if (FromType == ToType)
1263 return false;
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001264
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001265 // (C++ 4.4p4):
1266 // A conversion can add cv-qualifiers at levels other than the first
1267 // in multi-level pointers, subject to the following rules: [...]
1268 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001269 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001270 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001271 // Within each iteration of the loop, we check the qualifiers to
1272 // determine if this still looks like a qualification
1273 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001274 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001275 // until there are no more pointers or pointers-to-members left to
1276 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001277 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001278
1279 // -- for every j > 0, if const is in cv 1,j then const is in cv
1280 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +00001281 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001282 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001283
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001284 // -- if the cv 1,j and cv 2,j are different, then const is in
1285 // every cv for 0 < k < j.
1286 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001287 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001288 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001289
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001290 // Keep track of whether all prior cv-qualifiers in the "to" type
1291 // include const.
1292 PreviousToQualsIncludeConst
1293 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001294 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001295
1296 // We are left with FromType and ToType being the pointee types
1297 // after unwrapping the original FromType and ToType the same number
1298 // of types. If we unwrapped any pointers, and if FromType and
1299 // ToType have the same unqualified type (since we checked
1300 // qualifiers above), then this is a qualification conversion.
1301 return UnwrappedAnyPointer &&
1302 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1303}
1304
Douglas Gregorb206cc42009-01-30 23:27:23 +00001305/// Determines whether there is a user-defined conversion sequence
1306/// (C++ [over.ics.user]) that converts expression From to the type
1307/// ToType. If such a conversion exists, User will contain the
1308/// user-defined conversion sequence that performs such a conversion
1309/// and this routine will return true. Otherwise, this routine returns
1310/// false and User is unspecified.
1311///
1312/// \param AllowConversionFunctions true if the conversion should
1313/// consider conversion functions at all. If false, only constructors
1314/// will be considered.
1315///
1316/// \param AllowExplicit true if the conversion should consider C++0x
1317/// "explicit" conversion functions as well as non-explicit conversion
1318/// functions (C++0x [class.conv.fct]p2).
Sebastian Redla55834a2009-04-12 17:16:29 +00001319///
1320/// \param ForceRValue true if the expression should be treated as an rvalue
1321/// for overload resolution.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001322bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00001323 UserDefinedConversionSequence& User,
Douglas Gregorb206cc42009-01-30 23:27:23 +00001324 bool AllowConversionFunctions,
Sebastian Redla55834a2009-04-12 17:16:29 +00001325 bool AllowExplicit, bool ForceRValue)
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001326{
1327 OverloadCandidateSet CandidateSet;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001328 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
Douglas Gregor2e047592009-02-28 01:32:25 +00001329 if (CXXRecordDecl *ToRecordDecl
1330 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1331 // C++ [over.match.ctor]p1:
1332 // When objects of class type are direct-initialized (8.5), or
1333 // copy-initialized from an expression of the same or a
1334 // derived class type (8.5), overload resolution selects the
1335 // constructor. [...] For copy-initialization, the candidate
1336 // functions are all the converting constructors (12.3.1) of
1337 // that class. The argument list is the expression-list within
1338 // the parentheses of the initializer.
1339 DeclarationName ConstructorName
1340 = Context.DeclarationNames.getCXXConstructorName(
1341 Context.getCanonicalType(ToType).getUnqualifiedType());
1342 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00001343 for (llvm::tie(Con, ConEnd)
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00001344 = ToRecordDecl->lookup(ConstructorName);
Douglas Gregor2e047592009-02-28 01:32:25 +00001345 Con != ConEnd; ++Con) {
1346 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
Fariborz Jahanian625fb9d2009-08-06 17:22:51 +00001347 if (!Constructor->isInvalidDecl() &&
1348 Constructor->isConvertingConstructor())
Douglas Gregor2e047592009-02-28 01:32:25 +00001349 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00001350 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregor2e047592009-02-28 01:32:25 +00001351 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001352 }
1353 }
1354
Douglas Gregorb206cc42009-01-30 23:27:23 +00001355 if (!AllowConversionFunctions) {
1356 // Don't allow any conversion functions to enter the overload set.
Douglas Gregor2e047592009-02-28 01:32:25 +00001357 } else if (const RecordType *FromRecordType
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001358 = From->getType()->getAs<RecordType>()) {
Douglas Gregor2e047592009-02-28 01:32:25 +00001359 if (CXXRecordDecl *FromRecordDecl
1360 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1361 // Add all of the conversion functions as candidates.
1362 // FIXME: Look for conversions in base classes!
1363 OverloadedFunctionDecl *Conversions
1364 = FromRecordDecl->getConversionFunctions();
1365 for (OverloadedFunctionDecl::function_iterator Func
1366 = Conversions->function_begin();
1367 Func != Conversions->function_end(); ++Func) {
1368 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1369 if (AllowExplicit || !Conv->isExplicit())
1370 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1371 }
Douglas Gregor60714f92008-11-07 22:36:19 +00001372 }
1373 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001374
1375 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00001376 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001377 case OR_Success:
1378 // Record the standard conversion we used and the conversion function.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001379 if (CXXConstructorDecl *Constructor
1380 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1381 // C++ [over.ics.user]p1:
1382 // If the user-defined conversion is specified by a
1383 // constructor (12.3.1), the initial standard conversion
1384 // sequence converts the source type to the type required by
1385 // the argument of the constructor.
1386 //
1387 // FIXME: What about ellipsis conversions?
1388 QualType ThisType = Constructor->getThisType(Context);
1389 User.Before = Best->Conversions[0].Standard;
1390 User.ConversionFunction = Constructor;
1391 User.After.setAsIdentityConversion();
1392 User.After.FromTypePtr
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001393 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001394 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1395 return true;
Douglas Gregor60714f92008-11-07 22:36:19 +00001396 } else if (CXXConversionDecl *Conversion
1397 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1398 // C++ [over.ics.user]p1:
1399 //
1400 // [...] If the user-defined conversion is specified by a
1401 // conversion function (12.3.2), the initial standard
1402 // conversion sequence converts the source type to the
1403 // implicit object parameter of the conversion function.
1404 User.Before = Best->Conversions[0].Standard;
1405 User.ConversionFunction = Conversion;
1406
1407 // C++ [over.ics.user]p2:
1408 // The second standard conversion sequence converts the
1409 // result of the user-defined conversion to the target type
1410 // for the sequence. Since an implicit conversion sequence
1411 // is an initialization, the special rules for
1412 // initialization by user-defined conversion apply when
1413 // selecting the best user-defined conversion for a
1414 // user-defined conversion sequence (see 13.3.3 and
1415 // 13.3.3.1).
1416 User.After = Best->FinalConversion;
1417 return true;
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001418 } else {
Douglas Gregor60714f92008-11-07 22:36:19 +00001419 assert(false && "Not a constructor or conversion function?");
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001420 return false;
1421 }
1422
1423 case OR_No_Viable_Function:
Douglas Gregoraa57e862009-02-18 21:56:37 +00001424 case OR_Deleted:
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001425 // No conversion here! We're done.
1426 return false;
1427
1428 case OR_Ambiguous:
1429 // FIXME: See C++ [over.best.ics]p10 for the handling of
1430 // ambiguous conversion sequences.
1431 return false;
1432 }
1433
1434 return false;
1435}
1436
Douglas Gregord2baafd2008-10-21 16:13:35 +00001437/// CompareImplicitConversionSequences - Compare two implicit
1438/// conversion sequences to determine whether one is better than the
1439/// other or if they are indistinguishable (C++ 13.3.3.2).
1440ImplicitConversionSequence::CompareKind
1441Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1442 const ImplicitConversionSequence& ICS2)
1443{
1444 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1445 // conversion sequences (as defined in 13.3.3.1)
1446 // -- a standard conversion sequence (13.3.3.1.1) is a better
1447 // conversion sequence than a user-defined conversion sequence or
1448 // an ellipsis conversion sequence, and
1449 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1450 // conversion sequence than an ellipsis conversion sequence
1451 // (13.3.3.1.3).
1452 //
1453 if (ICS1.ConversionKind < ICS2.ConversionKind)
1454 return ImplicitConversionSequence::Better;
1455 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1456 return ImplicitConversionSequence::Worse;
1457
1458 // Two implicit conversion sequences of the same form are
1459 // indistinguishable conversion sequences unless one of the
1460 // following rules apply: (C++ 13.3.3.2p3):
1461 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1462 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1463 else if (ICS1.ConversionKind ==
1464 ImplicitConversionSequence::UserDefinedConversion) {
1465 // User-defined conversion sequence U1 is a better conversion
1466 // sequence than another user-defined conversion sequence U2 if
1467 // they contain the same user-defined conversion function or
1468 // constructor and if the second standard conversion sequence of
1469 // U1 is better than the second standard conversion sequence of
1470 // U2 (C++ 13.3.3.2p3).
1471 if (ICS1.UserDefined.ConversionFunction ==
1472 ICS2.UserDefined.ConversionFunction)
1473 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1474 ICS2.UserDefined.After);
1475 }
1476
1477 return ImplicitConversionSequence::Indistinguishable;
1478}
1479
1480/// CompareStandardConversionSequences - Compare two standard
1481/// conversion sequences to determine whether one is better than the
1482/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1483ImplicitConversionSequence::CompareKind
1484Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1485 const StandardConversionSequence& SCS2)
1486{
1487 // Standard conversion sequence S1 is a better conversion sequence
1488 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1489
1490 // -- S1 is a proper subsequence of S2 (comparing the conversion
1491 // sequences in the canonical form defined by 13.3.3.1.1,
1492 // excluding any Lvalue Transformation; the identity conversion
1493 // sequence is considered to be a subsequence of any
1494 // non-identity conversion sequence) or, if not that,
1495 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1496 // Neither is a proper subsequence of the other. Do nothing.
1497 ;
1498 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1499 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1500 (SCS1.Second == ICK_Identity &&
1501 SCS1.Third == ICK_Identity))
1502 // SCS1 is a proper subsequence of SCS2.
1503 return ImplicitConversionSequence::Better;
1504 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1505 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1506 (SCS2.Second == ICK_Identity &&
1507 SCS2.Third == ICK_Identity))
1508 // SCS2 is a proper subsequence of SCS1.
1509 return ImplicitConversionSequence::Worse;
1510
1511 // -- the rank of S1 is better than the rank of S2 (by the rules
1512 // defined below), or, if not that,
1513 ImplicitConversionRank Rank1 = SCS1.getRank();
1514 ImplicitConversionRank Rank2 = SCS2.getRank();
1515 if (Rank1 < Rank2)
1516 return ImplicitConversionSequence::Better;
1517 else if (Rank2 < Rank1)
1518 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001519
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001520 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1521 // are indistinguishable unless one of the following rules
1522 // applies:
1523
1524 // A conversion that is not a conversion of a pointer, or
1525 // pointer to member, to bool is better than another conversion
1526 // that is such a conversion.
1527 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1528 return SCS2.isPointerConversionToBool()
1529 ? ImplicitConversionSequence::Better
1530 : ImplicitConversionSequence::Worse;
1531
Douglas Gregor14046502008-10-23 00:40:37 +00001532 // C++ [over.ics.rank]p4b2:
1533 //
1534 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001535 // conversion of B* to A* is better than conversion of B* to
1536 // void*, and conversion of A* to void* is better than conversion
1537 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001538 bool SCS1ConvertsToVoid
1539 = SCS1.isPointerConversionToVoidPointer(Context);
1540 bool SCS2ConvertsToVoid
1541 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001542 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1543 // Exactly one of the conversion sequences is a conversion to
1544 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001545 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1546 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001547 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1548 // Neither conversion sequence converts to a void pointer; compare
1549 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001550 if (ImplicitConversionSequence::CompareKind DerivedCK
1551 = CompareDerivedToBaseConversions(SCS1, SCS2))
1552 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001553 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1554 // Both conversion sequences are conversions to void
1555 // pointers. Compare the source types to determine if there's an
1556 // inheritance relationship in their sources.
1557 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1558 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1559
1560 // Adjust the types we're converting from via the array-to-pointer
1561 // conversion, if we need to.
1562 if (SCS1.First == ICK_Array_To_Pointer)
1563 FromType1 = Context.getArrayDecayedType(FromType1);
1564 if (SCS2.First == ICK_Array_To_Pointer)
1565 FromType2 = Context.getArrayDecayedType(FromType2);
1566
1567 QualType FromPointee1
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001568 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor0e343382008-10-29 14:50:44 +00001569 QualType FromPointee2
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001570 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor0e343382008-10-29 14:50:44 +00001571
1572 if (IsDerivedFrom(FromPointee2, FromPointee1))
1573 return ImplicitConversionSequence::Better;
1574 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1575 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001576
1577 // Objective-C++: If one interface is more specific than the
1578 // other, it is the better one.
1579 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1580 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1581 if (FromIface1 && FromIface1) {
1582 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1583 return ImplicitConversionSequence::Better;
1584 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1585 return ImplicitConversionSequence::Worse;
1586 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001587 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001588
1589 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1590 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001591 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001592 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001593 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001594
Douglas Gregor0e343382008-10-29 14:50:44 +00001595 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001596 // C++0x [over.ics.rank]p3b4:
1597 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1598 // implicit object parameter of a non-static member function declared
1599 // without a ref-qualifier, and S1 binds an rvalue reference to an
1600 // rvalue and S2 binds an lvalue reference.
Sebastian Redldfc30332009-03-29 15:27:50 +00001601 // FIXME: We don't know if we're dealing with the implicit object parameter,
1602 // or if the member function in this case has a ref qualifier.
1603 // (Of course, we don't have ref qualifiers yet.)
1604 if (SCS1.RRefBinding != SCS2.RRefBinding)
1605 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1606 : ImplicitConversionSequence::Worse;
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001607
1608 // C++ [over.ics.rank]p3b4:
1609 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1610 // which the references refer are the same type except for
1611 // top-level cv-qualifiers, and the type to which the reference
1612 // initialized by S2 refers is more cv-qualified than the type
1613 // to which the reference initialized by S1 refers.
Sebastian Redldfc30332009-03-29 15:27:50 +00001614 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1615 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregor0e343382008-10-29 14:50:44 +00001616 T1 = Context.getCanonicalType(T1);
1617 T2 = Context.getCanonicalType(T2);
1618 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1619 if (T2.isMoreQualifiedThan(T1))
1620 return ImplicitConversionSequence::Better;
1621 else if (T1.isMoreQualifiedThan(T2))
1622 return ImplicitConversionSequence::Worse;
1623 }
1624 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001625
1626 return ImplicitConversionSequence::Indistinguishable;
1627}
1628
1629/// CompareQualificationConversions - Compares two standard conversion
1630/// sequences to determine whether they can be ranked based on their
1631/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1632ImplicitConversionSequence::CompareKind
1633Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1634 const StandardConversionSequence& SCS2)
1635{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001636 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001637 // -- S1 and S2 differ only in their qualification conversion and
1638 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1639 // cv-qualification signature of type T1 is a proper subset of
1640 // the cv-qualification signature of type T2, and S1 is not the
1641 // deprecated string literal array-to-pointer conversion (4.2).
1642 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1643 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1644 return ImplicitConversionSequence::Indistinguishable;
1645
1646 // FIXME: the example in the standard doesn't use a qualification
1647 // conversion (!)
1648 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1649 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1650 T1 = Context.getCanonicalType(T1);
1651 T2 = Context.getCanonicalType(T2);
1652
1653 // If the types are the same, we won't learn anything by unwrapped
1654 // them.
1655 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1656 return ImplicitConversionSequence::Indistinguishable;
1657
1658 ImplicitConversionSequence::CompareKind Result
1659 = ImplicitConversionSequence::Indistinguishable;
1660 while (UnwrapSimilarPointerTypes(T1, T2)) {
1661 // Within each iteration of the loop, we check the qualifiers to
1662 // determine if this still looks like a qualification
1663 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001664 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001665 // until there are no more pointers or pointers-to-members left
1666 // to unwrap. This essentially mimics what
1667 // IsQualificationConversion does, but here we're checking for a
1668 // strict subset of qualifiers.
1669 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1670 // The qualifiers are the same, so this doesn't tell us anything
1671 // about how the sequences rank.
1672 ;
1673 else if (T2.isMoreQualifiedThan(T1)) {
1674 // T1 has fewer qualifiers, so it could be the better sequence.
1675 if (Result == ImplicitConversionSequence::Worse)
1676 // Neither has qualifiers that are a subset of the other's
1677 // qualifiers.
1678 return ImplicitConversionSequence::Indistinguishable;
1679
1680 Result = ImplicitConversionSequence::Better;
1681 } else if (T1.isMoreQualifiedThan(T2)) {
1682 // T2 has fewer qualifiers, so it could be the better sequence.
1683 if (Result == ImplicitConversionSequence::Better)
1684 // Neither has qualifiers that are a subset of the other's
1685 // qualifiers.
1686 return ImplicitConversionSequence::Indistinguishable;
1687
1688 Result = ImplicitConversionSequence::Worse;
1689 } else {
1690 // Qualifiers are disjoint.
1691 return ImplicitConversionSequence::Indistinguishable;
1692 }
1693
1694 // If the types after this point are equivalent, we're done.
1695 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1696 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001697 }
1698
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001699 // Check that the winning standard conversion sequence isn't using
1700 // the deprecated string literal array to pointer conversion.
1701 switch (Result) {
1702 case ImplicitConversionSequence::Better:
1703 if (SCS1.Deprecated)
1704 Result = ImplicitConversionSequence::Indistinguishable;
1705 break;
1706
1707 case ImplicitConversionSequence::Indistinguishable:
1708 break;
1709
1710 case ImplicitConversionSequence::Worse:
1711 if (SCS2.Deprecated)
1712 Result = ImplicitConversionSequence::Indistinguishable;
1713 break;
1714 }
1715
1716 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001717}
1718
Douglas Gregor14046502008-10-23 00:40:37 +00001719/// CompareDerivedToBaseConversions - Compares two standard conversion
1720/// sequences to determine whether they can be ranked based on their
Douglas Gregor24a90a52008-11-26 23:31:11 +00001721/// various kinds of derived-to-base conversions (C++
1722/// [over.ics.rank]p4b3). As part of these checks, we also look at
1723/// conversions between Objective-C interface types.
Douglas Gregor14046502008-10-23 00:40:37 +00001724ImplicitConversionSequence::CompareKind
1725Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1726 const StandardConversionSequence& SCS2) {
1727 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1728 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1729 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1730 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1731
1732 // Adjust the types we're converting from via the array-to-pointer
1733 // conversion, if we need to.
1734 if (SCS1.First == ICK_Array_To_Pointer)
1735 FromType1 = Context.getArrayDecayedType(FromType1);
1736 if (SCS2.First == ICK_Array_To_Pointer)
1737 FromType2 = Context.getArrayDecayedType(FromType2);
1738
1739 // Canonicalize all of the types.
1740 FromType1 = Context.getCanonicalType(FromType1);
1741 ToType1 = Context.getCanonicalType(ToType1);
1742 FromType2 = Context.getCanonicalType(FromType2);
1743 ToType2 = Context.getCanonicalType(ToType2);
1744
Douglas Gregor0e343382008-10-29 14:50:44 +00001745 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001746 //
1747 // If class B is derived directly or indirectly from class A and
1748 // class C is derived directly or indirectly from B,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001749 //
1750 // For Objective-C, we let A, B, and C also be Objective-C
1751 // interfaces.
Douglas Gregor0e343382008-10-29 14:50:44 +00001752
1753 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001754 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor3f5a00c2008-11-27 01:19:21 +00001755 SCS2.Second == ICK_Pointer_Conversion &&
1756 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1757 FromType1->isPointerType() && FromType2->isPointerType() &&
1758 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregor14046502008-10-23 00:40:37 +00001759 QualType FromPointee1
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001760 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor14046502008-10-23 00:40:37 +00001761 QualType ToPointee1
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001762 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor14046502008-10-23 00:40:37 +00001763 QualType FromPointee2
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001764 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor14046502008-10-23 00:40:37 +00001765 QualType ToPointee2
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001766 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregor24a90a52008-11-26 23:31:11 +00001767
1768 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1769 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1770 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1771 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1772
Douglas Gregor0e343382008-10-29 14:50:44 +00001773 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001774 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1775 if (IsDerivedFrom(ToPointee1, ToPointee2))
1776 return ImplicitConversionSequence::Better;
1777 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1778 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001779
1780 if (ToIface1 && ToIface2) {
1781 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1782 return ImplicitConversionSequence::Better;
1783 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1784 return ImplicitConversionSequence::Worse;
1785 }
Douglas Gregor14046502008-10-23 00:40:37 +00001786 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001787
1788 // -- conversion of B* to A* is better than conversion of C* to A*,
1789 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1790 if (IsDerivedFrom(FromPointee2, FromPointee1))
1791 return ImplicitConversionSequence::Better;
1792 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1793 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001794
1795 if (FromIface1 && FromIface2) {
1796 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1797 return ImplicitConversionSequence::Better;
1798 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1799 return ImplicitConversionSequence::Worse;
1800 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001801 }
Douglas Gregor14046502008-10-23 00:40:37 +00001802 }
1803
Douglas Gregor0e343382008-10-29 14:50:44 +00001804 // Compare based on reference bindings.
1805 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1806 SCS1.Second == ICK_Derived_To_Base) {
1807 // -- binding of an expression of type C to a reference of type
1808 // B& is better than binding an expression of type C to a
1809 // reference of type A&,
1810 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1811 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1812 if (IsDerivedFrom(ToType1, ToType2))
1813 return ImplicitConversionSequence::Better;
1814 else if (IsDerivedFrom(ToType2, ToType1))
1815 return ImplicitConversionSequence::Worse;
1816 }
1817
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001818 // -- binding of an expression of type B to a reference of type
1819 // A& is better than binding an expression of type C to a
1820 // reference of type A&,
Douglas Gregor0e343382008-10-29 14:50:44 +00001821 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1822 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1823 if (IsDerivedFrom(FromType2, FromType1))
1824 return ImplicitConversionSequence::Better;
1825 else if (IsDerivedFrom(FromType1, FromType2))
1826 return ImplicitConversionSequence::Worse;
1827 }
1828 }
1829
1830
1831 // FIXME: conversion of A::* to B::* is better than conversion of
1832 // A::* to C::*,
1833
1834 // FIXME: conversion of B::* to C::* is better than conversion of
1835 // A::* to C::*, and
1836
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001837 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1838 SCS1.Second == ICK_Derived_To_Base) {
1839 // -- conversion of C to B is better than conversion of C to A,
1840 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1841 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1842 if (IsDerivedFrom(ToType1, ToType2))
1843 return ImplicitConversionSequence::Better;
1844 else if (IsDerivedFrom(ToType2, ToType1))
1845 return ImplicitConversionSequence::Worse;
1846 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001847
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001848 // -- conversion of B to A is better than conversion of C to A.
1849 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1850 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1851 if (IsDerivedFrom(FromType2, FromType1))
1852 return ImplicitConversionSequence::Better;
1853 else if (IsDerivedFrom(FromType1, FromType2))
1854 return ImplicitConversionSequence::Worse;
1855 }
1856 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001857
Douglas Gregor14046502008-10-23 00:40:37 +00001858 return ImplicitConversionSequence::Indistinguishable;
1859}
1860
Douglas Gregor81c29152008-10-29 00:13:59 +00001861/// TryCopyInitialization - Try to copy-initialize a value of type
1862/// ToType from the expression From. Return the implicit conversion
1863/// sequence required to pass this argument, which may be a bad
1864/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001865/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redla55834a2009-04-12 17:16:29 +00001866/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1867/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor81c29152008-10-29 00:13:59 +00001868ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001869Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001870 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorfcb19192009-02-11 23:02:49 +00001871 if (ToType->isReferenceType()) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001872 ImplicitConversionSequence ICS;
Sebastian Redla55834a2009-04-12 17:16:29 +00001873 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1874 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001875 return ICS;
1876 } else {
Sebastian Redla55834a2009-04-12 17:16:29 +00001877 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1878 ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001879 }
1880}
1881
Sebastian Redla55834a2009-04-12 17:16:29 +00001882/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1883/// the expression @p From. Returns true (and emits a diagnostic) if there was
1884/// an error, returns false if the initialization succeeded. Elidable should
1885/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1886/// differently in C++0x for this case.
Douglas Gregor81c29152008-10-29 00:13:59 +00001887bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001888 const char* Flavor, bool Elidable) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001889 if (!getLangOptions().CPlusPlus) {
1890 // In C, argument passing is the same as performing an assignment.
1891 QualType FromType = From->getType();
Douglas Gregor144b06c2009-04-29 22:16:16 +00001892
Douglas Gregor81c29152008-10-29 00:13:59 +00001893 AssignConvertType ConvTy =
1894 CheckSingleAssignmentConstraints(ToType, From);
Douglas Gregor144b06c2009-04-29 22:16:16 +00001895 if (ConvTy != Compatible &&
1896 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1897 ConvTy = Compatible;
1898
Douglas Gregor81c29152008-10-29 00:13:59 +00001899 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1900 FromType, From, Flavor);
Douglas Gregor81c29152008-10-29 00:13:59 +00001901 }
Sebastian Redla55834a2009-04-12 17:16:29 +00001902
Chris Lattner271d4c22008-11-24 05:29:24 +00001903 if (ToType->isReferenceType())
1904 return CheckReferenceInit(From, ToType);
1905
Sebastian Redla55834a2009-04-12 17:16:29 +00001906 if (!PerformImplicitConversion(From, ToType, Flavor,
1907 /*AllowExplicit=*/false, Elidable))
Chris Lattner271d4c22008-11-24 05:29:24 +00001908 return false;
Sebastian Redla55834a2009-04-12 17:16:29 +00001909
Chris Lattner271d4c22008-11-24 05:29:24 +00001910 return Diag(From->getSourceRange().getBegin(),
1911 diag::err_typecheck_convert_incompatible)
1912 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor81c29152008-10-29 00:13:59 +00001913}
1914
Douglas Gregor5ed15042008-11-18 23:14:02 +00001915/// TryObjectArgumentInitialization - Try to initialize the object
1916/// parameter of the given member function (@c Method) from the
1917/// expression @p From.
1918ImplicitConversionSequence
1919Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1920 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1921 unsigned MethodQuals = Method->getTypeQualifiers();
1922 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1923
1924 // Set up the conversion sequence as a "bad" conversion, to allow us
1925 // to exit early.
1926 ImplicitConversionSequence ICS;
1927 ICS.Standard.setAsIdentityConversion();
1928 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1929
1930 // We need to have an object of class type.
1931 QualType FromType = From->getType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001932 if (const PointerType *PT = FromType->getAs<PointerType>())
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001933 FromType = PT->getPointeeType();
1934
1935 assert(FromType->isRecordType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00001936
1937 // The implicit object parmeter is has the type "reference to cv X",
1938 // where X is the class of which the function is a member
1939 // (C++ [over.match.funcs]p4). However, when finding an implicit
1940 // conversion sequence for the argument, we are not allowed to
1941 // create temporaries or perform user-defined conversions
1942 // (C++ [over.match.funcs]p5). We perform a simplified version of
1943 // reference binding here, that allows class rvalues to bind to
1944 // non-constant references.
1945
1946 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1947 // with the implicit object parameter (C++ [over.match.funcs]p5).
1948 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1949 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1950 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1951 return ICS;
1952
1953 // Check that we have either the same type or a derived type. It
1954 // affects the conversion rank.
1955 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1956 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1957 ICS.Standard.Second = ICK_Identity;
1958 else if (IsDerivedFrom(FromType, ClassType))
1959 ICS.Standard.Second = ICK_Derived_To_Base;
1960 else
1961 return ICS;
1962
1963 // Success. Mark this as a reference binding.
1964 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1965 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1966 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1967 ICS.Standard.ReferenceBinding = true;
1968 ICS.Standard.DirectBinding = true;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +00001969 ICS.Standard.RRefBinding = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001970 return ICS;
1971}
1972
1973/// PerformObjectArgumentInitialization - Perform initialization of
1974/// the implicit object parameter for the given Method with the given
1975/// expression.
1976bool
1977Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001978 QualType FromRecordType, DestType;
1979 QualType ImplicitParamRecordType =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001980 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001981
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00001982 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001983 FromRecordType = PT->getPointeeType();
1984 DestType = Method->getThisType(Context);
1985 } else {
1986 FromRecordType = From->getType();
1987 DestType = ImplicitParamRecordType;
1988 }
1989
Douglas Gregor5ed15042008-11-18 23:14:02 +00001990 ImplicitConversionSequence ICS
1991 = TryObjectArgumentInitialization(From, Method);
1992 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1993 return Diag(From->getSourceRange().getBegin(),
Chris Lattner8ba580c2008-11-19 05:08:23 +00001994 diag::err_implicit_object_parameter_init)
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001995 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
1996
Douglas Gregor5ed15042008-11-18 23:14:02 +00001997 if (ICS.Standard.Second == ICK_Derived_To_Base &&
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001998 CheckDerivedToBaseConversion(FromRecordType,
1999 ImplicitParamRecordType,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002000 From->getSourceRange().getBegin(),
2001 From->getSourceRange()))
2002 return true;
2003
Anders Carlssone25b6cd2009-08-07 18:45:49 +00002004 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2005 /*isLvalue=*/true);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002006 return false;
2007}
2008
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002009/// TryContextuallyConvertToBool - Attempt to contextually convert the
2010/// expression From to bool (C++0x [conv]p3).
2011ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2012 return TryImplicitConversion(From, Context.BoolTy, false, true);
2013}
2014
2015/// PerformContextuallyConvertToBool - Perform a contextual conversion
2016/// of the expression From to bool (C++0x [conv]p3).
2017bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2018 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2019 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2020 return false;
2021
2022 return Diag(From->getSourceRange().getBegin(),
2023 diag::err_typecheck_bool_condition)
2024 << From->getType() << From->getSourceRange();
2025}
2026
Douglas Gregord2baafd2008-10-21 16:13:35 +00002027/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002028/// candidate functions, using the given function call arguments. If
2029/// @p SuppressUserConversions, then don't allow user-defined
2030/// conversions via constructors or conversion operators.
Sebastian Redla55834a2009-04-12 17:16:29 +00002031/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2032/// hacky way to implement the overloading rules for elidable copy
2033/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregord2baafd2008-10-21 16:13:35 +00002034void
2035Sema::AddOverloadCandidate(FunctionDecl *Function,
2036 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002037 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002038 bool SuppressUserConversions,
2039 bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +00002040{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002041 const FunctionProtoType* Proto
2042 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregord2baafd2008-10-21 16:13:35 +00002043 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregor60714f92008-11-07 22:36:19 +00002044 assert(!isa<CXXConversionDecl>(Function) &&
2045 "Use AddConversionCandidate for conversion functions");
Douglas Gregorb60eb752009-06-25 22:08:12 +00002046 assert(!Function->getDescribedFunctionTemplate() &&
2047 "Use AddTemplateOverloadCandidate for function templates");
2048
Douglas Gregor3257fb52008-12-22 05:46:06 +00002049 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00002050 if (!isa<CXXConstructorDecl>(Method)) {
2051 // If we get here, it's because we're calling a member function
2052 // that is named without a member access expression (e.g.,
2053 // "this->f") that was either written explicitly or created
2054 // implicitly. This can happen with a qualified call to a member
2055 // function, e.g., X::f(). We use a NULL object as the implied
2056 // object argument (C++ [over.call.func]p3).
2057 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2058 SuppressUserConversions, ForceRValue);
2059 return;
2060 }
2061 // We treat a constructor like a non-member function, since its object
2062 // argument doesn't participate in overload resolution.
Douglas Gregor3257fb52008-12-22 05:46:06 +00002063 }
2064
2065
Douglas Gregord2baafd2008-10-21 16:13:35 +00002066 // Add this candidate
2067 CandidateSet.push_back(OverloadCandidate());
2068 OverloadCandidate& Candidate = CandidateSet.back();
2069 Candidate.Function = Function;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002070 Candidate.Viable = true;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002071 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002072 Candidate.IgnoreObjectArgument = false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00002073
2074 unsigned NumArgsInProto = Proto->getNumArgs();
2075
2076 // (C++ 13.3.2p2): A candidate function having fewer than m
2077 // parameters is viable only if it has an ellipsis in its parameter
2078 // list (8.3.5).
2079 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2080 Candidate.Viable = false;
2081 return;
2082 }
2083
2084 // (C++ 13.3.2p2): A candidate function having more than m parameters
2085 // is viable only if the (m+1)st parameter has a default argument
2086 // (8.3.6). For the purposes of overload resolution, the
2087 // parameter list is truncated on the right, so that there are
2088 // exactly m parameters.
2089 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2090 if (NumArgs < MinRequiredArgs) {
2091 // Not enough arguments.
2092 Candidate.Viable = false;
2093 return;
2094 }
2095
2096 // Determine the implicit conversion sequences for each of the
2097 // arguments.
Douglas Gregord2baafd2008-10-21 16:13:35 +00002098 Candidate.Conversions.resize(NumArgs);
2099 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2100 if (ArgIdx < NumArgsInProto) {
2101 // (C++ 13.3.2p3): for F to be a viable function, there shall
2102 // exist for each argument an implicit conversion sequence
2103 // (13.3.3.1) that converts that argument to the corresponding
2104 // parameter of F.
2105 QualType ParamType = Proto->getArgType(ArgIdx);
2106 Candidate.Conversions[ArgIdx]
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002107 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002108 SuppressUserConversions, ForceRValue);
Douglas Gregord2baafd2008-10-21 16:13:35 +00002109 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002110 == ImplicitConversionSequence::BadConversion) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00002111 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002112 break;
2113 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002114 } else {
2115 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2116 // argument for which there is no corresponding parameter is
2117 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2118 Candidate.Conversions[ArgIdx].ConversionKind
2119 = ImplicitConversionSequence::EllipsisConversion;
2120 }
2121 }
2122}
2123
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002124/// \brief Add all of the function declarations in the given function set to
2125/// the overload canddiate set.
2126void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2127 Expr **Args, unsigned NumArgs,
2128 OverloadCandidateSet& CandidateSet,
2129 bool SuppressUserConversions) {
2130 for (FunctionSet::const_iterator F = Functions.begin(),
2131 FEnd = Functions.end();
Douglas Gregor993a0602009-06-27 21:05:07 +00002132 F != FEnd; ++F) {
2133 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2134 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2135 SuppressUserConversions);
2136 else
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002137 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2138 /*FIXME: explicit args */false, 0, 0,
2139 Args, NumArgs, CandidateSet,
Douglas Gregor993a0602009-06-27 21:05:07 +00002140 SuppressUserConversions);
2141 }
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002142}
2143
Douglas Gregor5ed15042008-11-18 23:14:02 +00002144/// AddMethodCandidate - Adds the given C++ member function to the set
2145/// of candidate functions, using the given function call arguments
2146/// and the object argument (@c Object). For example, in a call
2147/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2148/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2149/// allow user-defined conversions via constructors or conversion
Sebastian Redla55834a2009-04-12 17:16:29 +00002150/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2151/// a slightly hacky way to implement the overloading rules for elidable copy
2152/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor5ed15042008-11-18 23:14:02 +00002153void
2154Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2155 Expr **Args, unsigned NumArgs,
2156 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002157 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor5ed15042008-11-18 23:14:02 +00002158{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002159 const FunctionProtoType* Proto
2160 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00002161 assert(Proto && "Methods without a prototype cannot be overloaded");
Sebastian Redlbd261962009-04-16 17:51:27 +00002162 assert(!isa<CXXConversionDecl>(Method) &&
Douglas Gregor5ed15042008-11-18 23:14:02 +00002163 "Use AddConversionCandidate for conversion functions");
Sebastian Redlbd261962009-04-16 17:51:27 +00002164 assert(!isa<CXXConstructorDecl>(Method) &&
2165 "Use AddOverloadCandidate for constructors");
Douglas Gregor5ed15042008-11-18 23:14:02 +00002166
2167 // Add this candidate
2168 CandidateSet.push_back(OverloadCandidate());
2169 OverloadCandidate& Candidate = CandidateSet.back();
2170 Candidate.Function = Method;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002171 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002172 Candidate.IgnoreObjectArgument = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002173
2174 unsigned NumArgsInProto = Proto->getNumArgs();
2175
2176 // (C++ 13.3.2p2): A candidate function having fewer than m
2177 // parameters is viable only if it has an ellipsis in its parameter
2178 // list (8.3.5).
2179 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2180 Candidate.Viable = false;
2181 return;
2182 }
2183
2184 // (C++ 13.3.2p2): A candidate function having more than m parameters
2185 // is viable only if the (m+1)st parameter has a default argument
2186 // (8.3.6). For the purposes of overload resolution, the
2187 // parameter list is truncated on the right, so that there are
2188 // exactly m parameters.
2189 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2190 if (NumArgs < MinRequiredArgs) {
2191 // Not enough arguments.
2192 Candidate.Viable = false;
2193 return;
2194 }
2195
2196 Candidate.Viable = true;
2197 Candidate.Conversions.resize(NumArgs + 1);
2198
Douglas Gregor3257fb52008-12-22 05:46:06 +00002199 if (Method->isStatic() || !Object)
2200 // The implicit object argument is ignored.
2201 Candidate.IgnoreObjectArgument = true;
2202 else {
2203 // Determine the implicit conversion sequence for the object
2204 // parameter.
2205 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2206 if (Candidate.Conversions[0].ConversionKind
2207 == ImplicitConversionSequence::BadConversion) {
2208 Candidate.Viable = false;
2209 return;
2210 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002211 }
2212
2213 // Determine the implicit conversion sequences for each of the
2214 // arguments.
2215 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2216 if (ArgIdx < NumArgsInProto) {
2217 // (C++ 13.3.2p3): for F to be a viable function, there shall
2218 // exist for each argument an implicit conversion sequence
2219 // (13.3.3.1) that converts that argument to the corresponding
2220 // parameter of F.
2221 QualType ParamType = Proto->getArgType(ArgIdx);
2222 Candidate.Conversions[ArgIdx + 1]
2223 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002224 SuppressUserConversions, ForceRValue);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002225 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2226 == ImplicitConversionSequence::BadConversion) {
2227 Candidate.Viable = false;
2228 break;
2229 }
2230 } else {
2231 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2232 // argument for which there is no corresponding parameter is
2233 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2234 Candidate.Conversions[ArgIdx + 1].ConversionKind
2235 = ImplicitConversionSequence::EllipsisConversion;
2236 }
2237 }
2238}
2239
Douglas Gregor4fdcdda2009-08-21 00:16:32 +00002240/// \brief Add a C++ member function template as a candidate to the candidate
2241/// set, using template argument deduction to produce an appropriate member
2242/// function template specialization.
2243void
2244Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2245 bool HasExplicitTemplateArgs,
2246 const TemplateArgument *ExplicitTemplateArgs,
2247 unsigned NumExplicitTemplateArgs,
2248 Expr *Object, Expr **Args, unsigned NumArgs,
2249 OverloadCandidateSet& CandidateSet,
2250 bool SuppressUserConversions,
2251 bool ForceRValue) {
2252 // C++ [over.match.funcs]p7:
2253 // In each case where a candidate is a function template, candidate
2254 // function template specializations are generated using template argument
2255 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2256 // candidate functions in the usual way.113) A given name can refer to one
2257 // or more function templates and also to a set of overloaded non-template
2258 // functions. In such a case, the candidate functions generated from each
2259 // function template are combined with the set of non-template candidate
2260 // functions.
2261 TemplateDeductionInfo Info(Context);
2262 FunctionDecl *Specialization = 0;
2263 if (TemplateDeductionResult Result
2264 = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2265 ExplicitTemplateArgs, NumExplicitTemplateArgs,
2266 Args, NumArgs, Specialization, Info)) {
2267 // FIXME: Record what happened with template argument deduction, so
2268 // that we can give the user a beautiful diagnostic.
2269 (void)Result;
2270 return;
2271 }
2272
2273 // Add the function template specialization produced by template argument
2274 // deduction as a candidate.
2275 assert(Specialization && "Missing member function template specialization?");
2276 assert(isa<CXXMethodDecl>(Specialization) &&
2277 "Specialization is not a member function?");
2278 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2279 CandidateSet, SuppressUserConversions, ForceRValue);
2280}
2281
Douglas Gregorb60eb752009-06-25 22:08:12 +00002282/// \brief Add a C++ function template as a candidate in the candidate set,
2283/// using template argument deduction to produce an appropriate function
2284/// template specialization.
2285void
2286Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002287 bool HasExplicitTemplateArgs,
2288 const TemplateArgument *ExplicitTemplateArgs,
2289 unsigned NumExplicitTemplateArgs,
Douglas Gregorb60eb752009-06-25 22:08:12 +00002290 Expr **Args, unsigned NumArgs,
2291 OverloadCandidateSet& CandidateSet,
2292 bool SuppressUserConversions,
2293 bool ForceRValue) {
2294 // C++ [over.match.funcs]p7:
2295 // In each case where a candidate is a function template, candidate
2296 // function template specializations are generated using template argument
2297 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2298 // candidate functions in the usual way.113) A given name can refer to one
2299 // or more function templates and also to a set of overloaded non-template
2300 // functions. In such a case, the candidate functions generated from each
2301 // function template are combined with the set of non-template candidate
2302 // functions.
2303 TemplateDeductionInfo Info(Context);
2304 FunctionDecl *Specialization = 0;
2305 if (TemplateDeductionResult Result
Douglas Gregorc9a03b72009-06-30 23:57:56 +00002306 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2307 ExplicitTemplateArgs, NumExplicitTemplateArgs,
2308 Args, NumArgs, Specialization, Info)) {
Douglas Gregorb60eb752009-06-25 22:08:12 +00002309 // FIXME: Record what happened with template argument deduction, so
2310 // that we can give the user a beautiful diagnostic.
2311 (void)Result;
2312 return;
2313 }
2314
2315 // Add the function template specialization produced by template argument
2316 // deduction as a candidate.
2317 assert(Specialization && "Missing function template specialization?");
2318 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2319 SuppressUserConversions, ForceRValue);
2320}
2321
Douglas Gregor60714f92008-11-07 22:36:19 +00002322/// AddConversionCandidate - Add a C++ conversion function as a
2323/// candidate in the candidate set (C++ [over.match.conv],
2324/// C++ [over.match.copy]). From is the expression we're converting from,
2325/// and ToType is the type that we're eventually trying to convert to
2326/// (which may or may not be the same type as the type that the
2327/// conversion function produces).
2328void
2329Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2330 Expr *From, QualType ToType,
2331 OverloadCandidateSet& CandidateSet) {
2332 // Add this candidate
2333 CandidateSet.push_back(OverloadCandidate());
2334 OverloadCandidate& Candidate = CandidateSet.back();
2335 Candidate.Function = Conversion;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002336 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002337 Candidate.IgnoreObjectArgument = false;
Douglas Gregor60714f92008-11-07 22:36:19 +00002338 Candidate.FinalConversion.setAsIdentityConversion();
2339 Candidate.FinalConversion.FromTypePtr
2340 = Conversion->getConversionType().getAsOpaquePtr();
2341 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2342
Douglas Gregor5ed15042008-11-18 23:14:02 +00002343 // Determine the implicit conversion sequence for the implicit
2344 // object parameter.
Douglas Gregor60714f92008-11-07 22:36:19 +00002345 Candidate.Viable = true;
2346 Candidate.Conversions.resize(1);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002347 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregor60714f92008-11-07 22:36:19 +00002348
Douglas Gregor60714f92008-11-07 22:36:19 +00002349 if (Candidate.Conversions[0].ConversionKind
2350 == ImplicitConversionSequence::BadConversion) {
2351 Candidate.Viable = false;
2352 return;
2353 }
2354
2355 // To determine what the conversion from the result of calling the
2356 // conversion function to the type we're eventually trying to
2357 // convert to (ToType), we need to synthesize a call to the
2358 // conversion function and attempt copy initialization from it. This
2359 // makes sure that we get the right semantics with respect to
2360 // lvalues/rvalues and the type. Fortunately, we can allocate this
2361 // call on the stack and we don't need its arguments to be
2362 // well-formed.
2363 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2364 SourceLocation());
2365 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Anders Carlsson7ef181c2009-07-31 00:48:10 +00002366 CastExpr::CK_Unknown,
Douglas Gregor70d26122008-11-12 17:17:38 +00002367 &ConversionRef, false);
Ted Kremenek362abcd2009-02-09 20:51:47 +00002368
2369 // Note that it is safe to allocate CallExpr on the stack here because
2370 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2371 // allocator).
2372 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregor60714f92008-11-07 22:36:19 +00002373 Conversion->getConversionType().getNonReferenceType(),
2374 SourceLocation());
2375 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2376 switch (ICS.ConversionKind) {
2377 case ImplicitConversionSequence::StandardConversion:
2378 Candidate.FinalConversion = ICS.Standard;
2379 break;
2380
2381 case ImplicitConversionSequence::BadConversion:
2382 Candidate.Viable = false;
2383 break;
2384
2385 default:
2386 assert(false &&
2387 "Can only end up with a standard conversion sequence or failure");
2388 }
2389}
2390
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002391/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2392/// converts the given @c Object to a function pointer via the
2393/// conversion function @c Conversion, and then attempts to call it
2394/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2395/// the type of function that we'll eventually be calling.
2396void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor4fa58902009-02-26 23:50:07 +00002397 const FunctionProtoType *Proto,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002398 Expr *Object, Expr **Args, unsigned NumArgs,
2399 OverloadCandidateSet& CandidateSet) {
2400 CandidateSet.push_back(OverloadCandidate());
2401 OverloadCandidate& Candidate = CandidateSet.back();
2402 Candidate.Function = 0;
2403 Candidate.Surrogate = Conversion;
2404 Candidate.Viable = true;
2405 Candidate.IsSurrogate = true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002406 Candidate.IgnoreObjectArgument = false;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002407 Candidate.Conversions.resize(NumArgs + 1);
2408
2409 // Determine the implicit conversion sequence for the implicit
2410 // object parameter.
2411 ImplicitConversionSequence ObjectInit
2412 = TryObjectArgumentInitialization(Object, Conversion);
2413 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2414 Candidate.Viable = false;
2415 return;
2416 }
2417
2418 // The first conversion is actually a user-defined conversion whose
2419 // first conversion is ObjectInit's standard conversion (which is
2420 // effectively a reference binding). Record it as such.
2421 Candidate.Conversions[0].ConversionKind
2422 = ImplicitConversionSequence::UserDefinedConversion;
2423 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2424 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2425 Candidate.Conversions[0].UserDefined.After
2426 = Candidate.Conversions[0].UserDefined.Before;
2427 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2428
2429 // Find the
2430 unsigned NumArgsInProto = Proto->getNumArgs();
2431
2432 // (C++ 13.3.2p2): A candidate function having fewer than m
2433 // parameters is viable only if it has an ellipsis in its parameter
2434 // list (8.3.5).
2435 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2436 Candidate.Viable = false;
2437 return;
2438 }
2439
2440 // Function types don't have any default arguments, so just check if
2441 // we have enough arguments.
2442 if (NumArgs < NumArgsInProto) {
2443 // Not enough arguments.
2444 Candidate.Viable = false;
2445 return;
2446 }
2447
2448 // Determine the implicit conversion sequences for each of the
2449 // arguments.
2450 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2451 if (ArgIdx < NumArgsInProto) {
2452 // (C++ 13.3.2p3): for F to be a viable function, there shall
2453 // exist for each argument an implicit conversion sequence
2454 // (13.3.3.1) that converts that argument to the corresponding
2455 // parameter of F.
2456 QualType ParamType = Proto->getArgType(ArgIdx);
2457 Candidate.Conversions[ArgIdx + 1]
2458 = TryCopyInitialization(Args[ArgIdx], ParamType,
2459 /*SuppressUserConversions=*/false);
2460 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2461 == ImplicitConversionSequence::BadConversion) {
2462 Candidate.Viable = false;
2463 break;
2464 }
2465 } else {
2466 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2467 // argument for which there is no corresponding parameter is
2468 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2469 Candidate.Conversions[ArgIdx + 1].ConversionKind
2470 = ImplicitConversionSequence::EllipsisConversion;
2471 }
2472 }
2473}
2474
Mike Stumpe127ae32009-05-16 07:39:55 +00002475// FIXME: This will eventually be removed, once we've migrated all of the
2476// operator overloading logic over to the scheme used by binary operators, which
2477// works for template instantiation.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002478void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregor48a87322009-02-04 16:44:47 +00002479 SourceLocation OpLoc,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002480 Expr **Args, unsigned NumArgs,
Douglas Gregor48a87322009-02-04 16:44:47 +00002481 OverloadCandidateSet& CandidateSet,
2482 SourceRange OpRange) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002483
2484 FunctionSet Functions;
2485
2486 QualType T1 = Args[0]->getType();
2487 QualType T2;
2488 if (NumArgs > 1)
2489 T2 = Args[1]->getType();
2490
2491 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
Douglas Gregorde72f3e2009-05-19 00:01:19 +00002492 if (S)
2493 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002494 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2495 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2496 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2497 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2498}
2499
2500/// \brief Add overload candidates for overloaded operators that are
2501/// member functions.
2502///
2503/// Add the overloaded operator candidates that are member functions
2504/// for the operator Op that was used in an operator expression such
2505/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2506/// CandidateSet will store the added overload candidates. (C++
2507/// [over.match.oper]).
2508void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2509 SourceLocation OpLoc,
2510 Expr **Args, unsigned NumArgs,
2511 OverloadCandidateSet& CandidateSet,
2512 SourceRange OpRange) {
Douglas Gregor5ed15042008-11-18 23:14:02 +00002513 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2514
2515 // C++ [over.match.oper]p3:
2516 // For a unary operator @ with an operand of a type whose
2517 // cv-unqualified version is T1, and for a binary operator @ with
2518 // a left operand of a type whose cv-unqualified version is T1 and
2519 // a right operand of a type whose cv-unqualified version is T2,
2520 // three sets of candidate functions, designated member
2521 // candidates, non-member candidates and built-in candidates, are
2522 // constructed as follows:
2523 QualType T1 = Args[0]->getType();
2524 QualType T2;
2525 if (NumArgs > 1)
2526 T2 = Args[1]->getType();
2527
2528 // -- If T1 is a class type, the set of member candidates is the
2529 // result of the qualified lookup of T1::operator@
2530 // (13.3.1.1.1); otherwise, the set of member candidates is
2531 // empty.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002532 // FIXME: Lookup in base classes, too!
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002533 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002534 DeclContext::lookup_const_iterator Oper, OperEnd;
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00002535 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002536 Oper != OperEnd; ++Oper)
2537 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2538 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002539 /*SuppressUserConversions=*/false);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002540 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002541}
2542
Douglas Gregor70d26122008-11-12 17:17:38 +00002543/// AddBuiltinCandidate - Add a candidate for a built-in
2544/// operator. ResultTy and ParamTys are the result and parameter types
2545/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregorab141112009-01-13 00:52:54 +00002546/// arguments being passed to the candidate. IsAssignmentOperator
2547/// should be true when this built-in candidate is an assignment
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002548/// operator. NumContextualBoolArguments is the number of arguments
2549/// (at the beginning of the argument list) that will be contextually
2550/// converted to bool.
Douglas Gregor70d26122008-11-12 17:17:38 +00002551void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2552 Expr **Args, unsigned NumArgs,
Douglas Gregorab141112009-01-13 00:52:54 +00002553 OverloadCandidateSet& CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002554 bool IsAssignmentOperator,
2555 unsigned NumContextualBoolArguments) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002556 // Add this candidate
2557 CandidateSet.push_back(OverloadCandidate());
2558 OverloadCandidate& Candidate = CandidateSet.back();
2559 Candidate.Function = 0;
Douglas Gregor6b5e34f2008-12-12 02:00:36 +00002560 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002561 Candidate.IgnoreObjectArgument = false;
Douglas Gregor70d26122008-11-12 17:17:38 +00002562 Candidate.BuiltinTypes.ResultTy = ResultTy;
2563 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2564 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2565
2566 // Determine the implicit conversion sequences for each of the
2567 // arguments.
2568 Candidate.Viable = true;
2569 Candidate.Conversions.resize(NumArgs);
2570 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregorab141112009-01-13 00:52:54 +00002571 // C++ [over.match.oper]p4:
2572 // For the built-in assignment operators, conversions of the
2573 // left operand are restricted as follows:
2574 // -- no temporaries are introduced to hold the left operand, and
2575 // -- no user-defined conversions are applied to the left
2576 // operand to achieve a type match with the left-most
2577 // parameter of a built-in candidate.
2578 //
2579 // We block these conversions by turning off user-defined
2580 // conversions, since that is the only way that initialization of
2581 // a reference to a non-class type can occur from something that
2582 // is not of the same type.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002583 if (ArgIdx < NumContextualBoolArguments) {
2584 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2585 "Contextual conversion to bool requires bool type");
2586 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2587 } else {
2588 Candidate.Conversions[ArgIdx]
2589 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2590 ArgIdx == 0 && IsAssignmentOperator);
2591 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002592 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002593 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002594 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002595 break;
2596 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002597 }
2598}
2599
2600/// BuiltinCandidateTypeSet - A set of types that will be used for the
2601/// candidate operator functions for built-in operators (C++
2602/// [over.built]). The types are separated into pointer types and
2603/// enumeration types.
2604class BuiltinCandidateTypeSet {
2605 /// TypeSet - A set of types.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002606 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregor70d26122008-11-12 17:17:38 +00002607
2608 /// PointerTypes - The set of pointer types that will be used in the
2609 /// built-in candidates.
2610 TypeSet PointerTypes;
2611
Sebastian Redl674d1b72009-04-19 21:53:20 +00002612 /// MemberPointerTypes - The set of member pointer types that will be
2613 /// used in the built-in candidates.
2614 TypeSet MemberPointerTypes;
2615
Douglas Gregor70d26122008-11-12 17:17:38 +00002616 /// EnumerationTypes - The set of enumeration types that will be
2617 /// used in the built-in candidates.
2618 TypeSet EnumerationTypes;
2619
2620 /// Context - The AST context in which we will build the type sets.
2621 ASTContext &Context;
2622
Sebastian Redl674d1b72009-04-19 21:53:20 +00002623 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2624 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002625
2626public:
2627 /// iterator - Iterates through the types that are part of the set.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002628 typedef TypeSet::iterator iterator;
Douglas Gregor70d26122008-11-12 17:17:38 +00002629
2630 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2631
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002632 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2633 bool AllowExplicitConversions);
Douglas Gregor70d26122008-11-12 17:17:38 +00002634
2635 /// pointer_begin - First pointer type found;
2636 iterator pointer_begin() { return PointerTypes.begin(); }
2637
Sebastian Redl674d1b72009-04-19 21:53:20 +00002638 /// pointer_end - Past the last pointer type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002639 iterator pointer_end() { return PointerTypes.end(); }
2640
Sebastian Redl674d1b72009-04-19 21:53:20 +00002641 /// member_pointer_begin - First member pointer type found;
2642 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2643
2644 /// member_pointer_end - Past the last member pointer type found;
2645 iterator member_pointer_end() { return MemberPointerTypes.end(); }
2646
Douglas Gregor70d26122008-11-12 17:17:38 +00002647 /// enumeration_begin - First enumeration type found;
2648 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2649
Sebastian Redl674d1b72009-04-19 21:53:20 +00002650 /// enumeration_end - Past the last enumeration type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002651 iterator enumeration_end() { return EnumerationTypes.end(); }
2652};
2653
Sebastian Redl674d1b72009-04-19 21:53:20 +00002654/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
Douglas Gregor70d26122008-11-12 17:17:38 +00002655/// the set of pointer types along with any more-qualified variants of
2656/// that type. For example, if @p Ty is "int const *", this routine
2657/// will add "int const *", "int const volatile *", "int const
2658/// restrict *", and "int const volatile restrict *" to the set of
2659/// pointer types. Returns true if the add of @p Ty itself succeeded,
2660/// false otherwise.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002661bool
2662BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002663 // Insert this type.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002664 if (!PointerTypes.insert(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002665 return false;
2666
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002667 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002668 QualType PointeeTy = PointerTy->getPointeeType();
2669 // FIXME: Optimize this so that we don't keep trying to add the same types.
2670
Mike Stumpe127ae32009-05-16 07:39:55 +00002671 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2672 // pointer conversions that don't cast away constness?
Douglas Gregor70d26122008-11-12 17:17:38 +00002673 if (!PointeeTy.isConstQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002674 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002675 (Context.getPointerType(PointeeTy.withConst()));
2676 if (!PointeeTy.isVolatileQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002677 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002678 (Context.getPointerType(PointeeTy.withVolatile()));
2679 if (!PointeeTy.isRestrictQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002680 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002681 (Context.getPointerType(PointeeTy.withRestrict()));
2682 }
2683
2684 return true;
2685}
2686
Sebastian Redl674d1b72009-04-19 21:53:20 +00002687/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2688/// to the set of pointer types along with any more-qualified variants of
2689/// that type. For example, if @p Ty is "int const *", this routine
2690/// will add "int const *", "int const volatile *", "int const
2691/// restrict *", and "int const volatile restrict *" to the set of
2692/// pointer types. Returns true if the add of @p Ty itself succeeded,
2693/// false otherwise.
2694bool
2695BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2696 QualType Ty) {
2697 // Insert this type.
2698 if (!MemberPointerTypes.insert(Ty))
2699 return false;
2700
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002701 if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
Sebastian Redl674d1b72009-04-19 21:53:20 +00002702 QualType PointeeTy = PointerTy->getPointeeType();
2703 const Type *ClassTy = PointerTy->getClass();
2704 // FIXME: Optimize this so that we don't keep trying to add the same types.
2705
2706 if (!PointeeTy.isConstQualified())
2707 AddMemberPointerWithMoreQualifiedTypeVariants
2708 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2709 if (!PointeeTy.isVolatileQualified())
2710 AddMemberPointerWithMoreQualifiedTypeVariants
2711 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2712 if (!PointeeTy.isRestrictQualified())
2713 AddMemberPointerWithMoreQualifiedTypeVariants
2714 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2715 }
2716
2717 return true;
2718}
2719
Douglas Gregor70d26122008-11-12 17:17:38 +00002720/// AddTypesConvertedFrom - Add each of the types to which the type @p
2721/// Ty can be implicit converted to the given set of @p Types. We're
Sebastian Redl674d1b72009-04-19 21:53:20 +00002722/// primarily interested in pointer types and enumeration types. We also
2723/// take member pointer types, for the conditional operator.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002724/// AllowUserConversions is true if we should look at the conversion
2725/// functions of a class type, and AllowExplicitConversions if we
2726/// should also include the explicit conversion functions of a class
2727/// type.
2728void
2729BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2730 bool AllowUserConversions,
2731 bool AllowExplicitConversions) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002732 // Only deal with canonical types.
2733 Ty = Context.getCanonicalType(Ty);
2734
2735 // Look through reference types; they aren't part of the type of an
2736 // expression for the purposes of conversions.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002737 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
Douglas Gregor70d26122008-11-12 17:17:38 +00002738 Ty = RefTy->getPointeeType();
2739
2740 // We don't care about qualifiers on the type.
2741 Ty = Ty.getUnqualifiedType();
2742
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002743 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002744 QualType PointeeTy = PointerTy->getPointeeType();
2745
2746 // Insert our type, and its more-qualified variants, into the set
2747 // of types.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002748 if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002749 return;
2750
2751 // Add 'cv void*' to our set of types.
2752 if (!Ty->isVoidType()) {
2753 QualType QualVoid
2754 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
Sebastian Redl674d1b72009-04-19 21:53:20 +00002755 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
Douglas Gregor70d26122008-11-12 17:17:38 +00002756 }
2757
2758 // If this is a pointer to a class type, add pointers to its bases
2759 // (with the same level of cv-qualification as the original
2760 // derived class, of course).
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002761 if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002762 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2763 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2764 Base != ClassDecl->bases_end(); ++Base) {
2765 QualType BaseTy = Context.getCanonicalType(Base->getType());
2766 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2767
2768 // Add the pointer type, recursively, so that we get all of
2769 // the indirect base classes, too.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002770 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002771 }
2772 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00002773 } else if (Ty->isMemberPointerType()) {
2774 // Member pointers are far easier, since the pointee can't be converted.
2775 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2776 return;
Douglas Gregor70d26122008-11-12 17:17:38 +00002777 } else if (Ty->isEnumeralType()) {
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002778 EnumerationTypes.insert(Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002779 } else if (AllowUserConversions) {
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002780 if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002781 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2782 // FIXME: Visit conversion functions in the base classes, too.
2783 OverloadedFunctionDecl *Conversions
2784 = ClassDecl->getConversionFunctions();
2785 for (OverloadedFunctionDecl::function_iterator Func
2786 = Conversions->function_begin();
2787 Func != Conversions->function_end(); ++Func) {
2788 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002789 if (AllowExplicitConversions || !Conv->isExplicit())
2790 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002791 }
2792 }
2793 }
2794}
2795
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002796/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2797/// operator overloads to the candidate set (C++ [over.built]), based
2798/// on the operator @p Op and the arguments given. For example, if the
2799/// operator is a binary '+', this routine might add "int
2800/// operator+(int, int)" to cover integer addition.
Douglas Gregor70d26122008-11-12 17:17:38 +00002801void
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002802Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2803 Expr **Args, unsigned NumArgs,
2804 OverloadCandidateSet& CandidateSet) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002805 // The set of "promoted arithmetic types", which are the arithmetic
2806 // types are that preserved by promotion (C++ [over.built]p2). Note
2807 // that the first few of these types are the promoted integral
2808 // types; these types need to be first.
2809 // FIXME: What about complex?
2810 const unsigned FirstIntegralType = 0;
2811 const unsigned LastIntegralType = 13;
2812 const unsigned FirstPromotedIntegralType = 7,
2813 LastPromotedIntegralType = 13;
2814 const unsigned FirstPromotedArithmeticType = 7,
2815 LastPromotedArithmeticType = 16;
2816 const unsigned NumArithmeticTypes = 16;
2817 QualType ArithmeticTypes[NumArithmeticTypes] = {
Alisdair Meredith2bcacb62009-07-14 06:30:34 +00002818 Context.BoolTy, Context.CharTy, Context.WCharTy,
2819// Context.Char16Ty, Context.Char32Ty,
Douglas Gregor70d26122008-11-12 17:17:38 +00002820 Context.SignedCharTy, Context.ShortTy,
2821 Context.UnsignedCharTy, Context.UnsignedShortTy,
2822 Context.IntTy, Context.LongTy, Context.LongLongTy,
2823 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2824 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2825 };
2826
2827 // Find all of the types that the arguments can convert to, but only
2828 // if the operator we're looking at has built-in operator candidates
2829 // that make use of these types.
2830 BuiltinCandidateTypeSet CandidateTypes(Context);
2831 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2832 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002833 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregor70d26122008-11-12 17:17:38 +00002834 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002835 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
Sebastian Redlbd261962009-04-16 17:51:27 +00002836 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002837 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002838 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2839 true,
2840 (Op == OO_Exclaim ||
2841 Op == OO_AmpAmp ||
2842 Op == OO_PipePipe));
Douglas Gregor70d26122008-11-12 17:17:38 +00002843 }
2844
2845 bool isComparison = false;
2846 switch (Op) {
2847 case OO_None:
2848 case NUM_OVERLOADED_OPERATORS:
2849 assert(false && "Expected an overloaded operator");
2850 break;
2851
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002852 case OO_Star: // '*' is either unary or binary
2853 if (NumArgs == 1)
2854 goto UnaryStar;
2855 else
2856 goto BinaryStar;
2857 break;
2858
2859 case OO_Plus: // '+' is either unary or binary
2860 if (NumArgs == 1)
2861 goto UnaryPlus;
2862 else
2863 goto BinaryPlus;
2864 break;
2865
2866 case OO_Minus: // '-' is either unary or binary
2867 if (NumArgs == 1)
2868 goto UnaryMinus;
2869 else
2870 goto BinaryMinus;
2871 break;
2872
2873 case OO_Amp: // '&' is either unary or binary
2874 if (NumArgs == 1)
2875 goto UnaryAmp;
2876 else
2877 goto BinaryAmp;
2878
2879 case OO_PlusPlus:
2880 case OO_MinusMinus:
2881 // C++ [over.built]p3:
2882 //
2883 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2884 // is either volatile or empty, there exist candidate operator
2885 // functions of the form
2886 //
2887 // VQ T& operator++(VQ T&);
2888 // T operator++(VQ T&, int);
2889 //
2890 // C++ [over.built]p4:
2891 //
2892 // For every pair (T, VQ), where T is an arithmetic type other
2893 // than bool, and VQ is either volatile or empty, there exist
2894 // candidate operator functions of the form
2895 //
2896 // VQ T& operator--(VQ T&);
2897 // T operator--(VQ T&, int);
2898 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2899 Arith < NumArithmeticTypes; ++Arith) {
2900 QualType ArithTy = ArithmeticTypes[Arith];
2901 QualType ParamTypes[2]
Sebastian Redlce6fff02009-03-16 23:22:08 +00002902 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002903
2904 // Non-volatile version.
2905 if (NumArgs == 1)
2906 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2907 else
2908 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2909
2910 // Volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00002911 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002912 if (NumArgs == 1)
2913 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2914 else
2915 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2916 }
2917
2918 // C++ [over.built]p5:
2919 //
2920 // For every pair (T, VQ), where T is a cv-qualified or
2921 // cv-unqualified object type, and VQ is either volatile or
2922 // empty, there exist candidate operator functions of the form
2923 //
2924 // T*VQ& operator++(T*VQ&);
2925 // T*VQ& operator--(T*VQ&);
2926 // T* operator++(T*VQ&, int);
2927 // T* operator--(T*VQ&, int);
2928 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2929 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2930 // Skip pointer types that aren't pointers to object types.
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002931 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002932 continue;
2933
2934 QualType ParamTypes[2] = {
Sebastian Redlce6fff02009-03-16 23:22:08 +00002935 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002936 };
2937
2938 // Without volatile
2939 if (NumArgs == 1)
2940 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2941 else
2942 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2943
2944 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2945 // With volatile
Sebastian Redlce6fff02009-03-16 23:22:08 +00002946 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002947 if (NumArgs == 1)
2948 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2949 else
2950 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2951 }
2952 }
2953 break;
2954
2955 UnaryStar:
2956 // C++ [over.built]p6:
2957 // For every cv-qualified or cv-unqualified object type T, there
2958 // exist candidate operator functions of the form
2959 //
2960 // T& operator*(T*);
2961 //
2962 // C++ [over.built]p7:
2963 // For every function type T, there exist candidate operator
2964 // functions of the form
2965 // T& operator*(T*);
2966 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2967 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2968 QualType ParamTy = *Ptr;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00002969 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00002970 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002971 &ParamTy, Args, 1, CandidateSet);
2972 }
2973 break;
2974
2975 UnaryPlus:
2976 // C++ [over.built]p8:
2977 // For every type T, there exist candidate operator functions of
2978 // the form
2979 //
2980 // T* operator+(T*);
2981 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2982 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2983 QualType ParamTy = *Ptr;
2984 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2985 }
2986
2987 // Fall through
2988
2989 UnaryMinus:
2990 // C++ [over.built]p9:
2991 // For every promoted arithmetic type T, there exist candidate
2992 // operator functions of the form
2993 //
2994 // T operator+(T);
2995 // T operator-(T);
2996 for (unsigned Arith = FirstPromotedArithmeticType;
2997 Arith < LastPromotedArithmeticType; ++Arith) {
2998 QualType ArithTy = ArithmeticTypes[Arith];
2999 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3000 }
3001 break;
3002
3003 case OO_Tilde:
3004 // C++ [over.built]p10:
3005 // For every promoted integral type T, there exist candidate
3006 // operator functions of the form
3007 //
3008 // T operator~(T);
3009 for (unsigned Int = FirstPromotedIntegralType;
3010 Int < LastPromotedIntegralType; ++Int) {
3011 QualType IntTy = ArithmeticTypes[Int];
3012 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3013 }
3014 break;
3015
Douglas Gregor70d26122008-11-12 17:17:38 +00003016 case OO_New:
3017 case OO_Delete:
3018 case OO_Array_New:
3019 case OO_Array_Delete:
Douglas Gregor70d26122008-11-12 17:17:38 +00003020 case OO_Call:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003021 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregor70d26122008-11-12 17:17:38 +00003022 break;
3023
3024 case OO_Comma:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003025 UnaryAmp:
3026 case OO_Arrow:
Douglas Gregor70d26122008-11-12 17:17:38 +00003027 // C++ [over.match.oper]p3:
3028 // -- For the operator ',', the unary operator '&', or the
3029 // operator '->', the built-in candidates set is empty.
Douglas Gregor70d26122008-11-12 17:17:38 +00003030 break;
3031
3032 case OO_Less:
3033 case OO_Greater:
3034 case OO_LessEqual:
3035 case OO_GreaterEqual:
3036 case OO_EqualEqual:
3037 case OO_ExclaimEqual:
3038 // C++ [over.built]p15:
3039 //
3040 // For every pointer or enumeration type T, there exist
3041 // candidate operator functions of the form
3042 //
3043 // bool operator<(T, T);
3044 // bool operator>(T, T);
3045 // bool operator<=(T, T);
3046 // bool operator>=(T, T);
3047 // bool operator==(T, T);
3048 // bool operator!=(T, T);
3049 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3050 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3051 QualType ParamTypes[2] = { *Ptr, *Ptr };
3052 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3053 }
3054 for (BuiltinCandidateTypeSet::iterator Enum
3055 = CandidateTypes.enumeration_begin();
3056 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3057 QualType ParamTypes[2] = { *Enum, *Enum };
3058 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3059 }
3060
3061 // Fall through.
3062 isComparison = true;
3063
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003064 BinaryPlus:
3065 BinaryMinus:
Douglas Gregor70d26122008-11-12 17:17:38 +00003066 if (!isComparison) {
3067 // We didn't fall through, so we must have OO_Plus or OO_Minus.
3068
3069 // C++ [over.built]p13:
3070 //
3071 // For every cv-qualified or cv-unqualified object type T
3072 // there exist candidate operator functions of the form
3073 //
3074 // T* operator+(T*, ptrdiff_t);
3075 // T& operator[](T*, ptrdiff_t); [BELOW]
3076 // T* operator-(T*, ptrdiff_t);
3077 // T* operator+(ptrdiff_t, T*);
3078 // T& operator[](ptrdiff_t, T*); [BELOW]
3079 //
3080 // C++ [over.built]p14:
3081 //
3082 // For every T, where T is a pointer to object type, there
3083 // exist candidate operator functions of the form
3084 //
3085 // ptrdiff_t operator-(T, T);
3086 for (BuiltinCandidateTypeSet::iterator Ptr
3087 = CandidateTypes.pointer_begin();
3088 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3089 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3090
3091 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3092 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3093
3094 if (Op == OO_Plus) {
3095 // T* operator+(ptrdiff_t, T*);
3096 ParamTypes[0] = ParamTypes[1];
3097 ParamTypes[1] = *Ptr;
3098 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3099 } else {
3100 // ptrdiff_t operator-(T, T);
3101 ParamTypes[1] = *Ptr;
3102 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3103 Args, 2, CandidateSet);
3104 }
3105 }
3106 }
3107 // Fall through
3108
Douglas Gregor70d26122008-11-12 17:17:38 +00003109 case OO_Slash:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003110 BinaryStar:
Sebastian Redlbd261962009-04-16 17:51:27 +00003111 Conditional:
Douglas Gregor70d26122008-11-12 17:17:38 +00003112 // C++ [over.built]p12:
3113 //
3114 // For every pair of promoted arithmetic types L and R, there
3115 // exist candidate operator functions of the form
3116 //
3117 // LR operator*(L, R);
3118 // LR operator/(L, R);
3119 // LR operator+(L, R);
3120 // LR operator-(L, R);
3121 // bool operator<(L, R);
3122 // bool operator>(L, R);
3123 // bool operator<=(L, R);
3124 // bool operator>=(L, R);
3125 // bool operator==(L, R);
3126 // bool operator!=(L, R);
3127 //
3128 // where LR is the result of the usual arithmetic conversions
3129 // between types L and R.
Sebastian Redlbd261962009-04-16 17:51:27 +00003130 //
3131 // C++ [over.built]p24:
3132 //
3133 // For every pair of promoted arithmetic types L and R, there exist
3134 // candidate operator functions of the form
3135 //
3136 // LR operator?(bool, L, R);
3137 //
3138 // where LR is the result of the usual arithmetic conversions
3139 // between types L and R.
3140 // Our candidates ignore the first parameter.
Douglas Gregor70d26122008-11-12 17:17:38 +00003141 for (unsigned Left = FirstPromotedArithmeticType;
3142 Left < LastPromotedArithmeticType; ++Left) {
3143 for (unsigned Right = FirstPromotedArithmeticType;
3144 Right < LastPromotedArithmeticType; ++Right) {
3145 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
Eli Friedman6ae7d112009-08-19 07:44:53 +00003146 QualType Result
3147 = isComparison
3148 ? Context.BoolTy
3149 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003150 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3151 }
3152 }
3153 break;
3154
3155 case OO_Percent:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003156 BinaryAmp:
Douglas Gregor70d26122008-11-12 17:17:38 +00003157 case OO_Caret:
3158 case OO_Pipe:
3159 case OO_LessLess:
3160 case OO_GreaterGreater:
3161 // C++ [over.built]p17:
3162 //
3163 // For every pair of promoted integral types L and R, there
3164 // exist candidate operator functions of the form
3165 //
3166 // LR operator%(L, R);
3167 // LR operator&(L, R);
3168 // LR operator^(L, R);
3169 // LR operator|(L, R);
3170 // L operator<<(L, R);
3171 // L operator>>(L, R);
3172 //
3173 // where LR is the result of the usual arithmetic conversions
3174 // between types L and R.
3175 for (unsigned Left = FirstPromotedIntegralType;
3176 Left < LastPromotedIntegralType; ++Left) {
3177 for (unsigned Right = FirstPromotedIntegralType;
3178 Right < LastPromotedIntegralType; ++Right) {
3179 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3180 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3181 ? LandR[0]
Eli Friedman6ae7d112009-08-19 07:44:53 +00003182 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003183 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3184 }
3185 }
3186 break;
3187
3188 case OO_Equal:
3189 // C++ [over.built]p20:
3190 //
3191 // For every pair (T, VQ), where T is an enumeration or
3192 // (FIXME:) pointer to member type and VQ is either volatile or
3193 // empty, there exist candidate operator functions of the form
3194 //
3195 // VQ T& operator=(VQ T&, T);
3196 for (BuiltinCandidateTypeSet::iterator Enum
3197 = CandidateTypes.enumeration_begin();
3198 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3199 QualType ParamTypes[2];
3200
3201 // T& operator=(T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003202 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregor70d26122008-11-12 17:17:38 +00003203 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003204 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003205 /*IsAssignmentOperator=*/false);
Douglas Gregor70d26122008-11-12 17:17:38 +00003206
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003207 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3208 // volatile T& operator=(volatile T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003209 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003210 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003211 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003212 /*IsAssignmentOperator=*/false);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003213 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003214 }
3215 // Fall through.
3216
3217 case OO_PlusEqual:
3218 case OO_MinusEqual:
3219 // C++ [over.built]p19:
3220 //
3221 // For every pair (T, VQ), where T is any type and VQ is either
3222 // volatile or empty, there exist candidate operator functions
3223 // of the form
3224 //
3225 // T*VQ& operator=(T*VQ&, T*);
3226 //
3227 // C++ [over.built]p21:
3228 //
3229 // For every pair (T, VQ), where T is a cv-qualified or
3230 // cv-unqualified object type and VQ is either volatile or
3231 // empty, there exist candidate operator functions of the form
3232 //
3233 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3234 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3235 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3236 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3237 QualType ParamTypes[2];
3238 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3239
3240 // non-volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003241 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregorab141112009-01-13 00:52:54 +00003242 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3243 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003244
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003245 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3246 // volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003247 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregorab141112009-01-13 00:52:54 +00003248 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3249 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003250 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003251 }
3252 // Fall through.
3253
3254 case OO_StarEqual:
3255 case OO_SlashEqual:
3256 // C++ [over.built]p18:
3257 //
3258 // For every triple (L, VQ, R), where L is an arithmetic type,
3259 // VQ is either volatile or empty, and R is a promoted
3260 // arithmetic type, there exist candidate operator functions of
3261 // the form
3262 //
3263 // VQ L& operator=(VQ L&, R);
3264 // VQ L& operator*=(VQ L&, R);
3265 // VQ L& operator/=(VQ L&, R);
3266 // VQ L& operator+=(VQ L&, R);
3267 // VQ L& operator-=(VQ L&, R);
3268 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3269 for (unsigned Right = FirstPromotedArithmeticType;
3270 Right < LastPromotedArithmeticType; ++Right) {
3271 QualType ParamTypes[2];
3272 ParamTypes[1] = ArithmeticTypes[Right];
3273
3274 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003275 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregorab141112009-01-13 00:52:54 +00003276 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3277 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003278
3279 // Add this built-in operator as a candidate (VQ is 'volatile').
3280 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003281 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregorab141112009-01-13 00:52:54 +00003282 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3283 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003284 }
3285 }
3286 break;
3287
3288 case OO_PercentEqual:
3289 case OO_LessLessEqual:
3290 case OO_GreaterGreaterEqual:
3291 case OO_AmpEqual:
3292 case OO_CaretEqual:
3293 case OO_PipeEqual:
3294 // C++ [over.built]p22:
3295 //
3296 // For every triple (L, VQ, R), where L is an integral type, VQ
3297 // is either volatile or empty, and R is a promoted integral
3298 // type, there exist candidate operator functions of the form
3299 //
3300 // VQ L& operator%=(VQ L&, R);
3301 // VQ L& operator<<=(VQ L&, R);
3302 // VQ L& operator>>=(VQ L&, R);
3303 // VQ L& operator&=(VQ L&, R);
3304 // VQ L& operator^=(VQ L&, R);
3305 // VQ L& operator|=(VQ L&, R);
3306 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3307 for (unsigned Right = FirstPromotedIntegralType;
3308 Right < LastPromotedIntegralType; ++Right) {
3309 QualType ParamTypes[2];
3310 ParamTypes[1] = ArithmeticTypes[Right];
3311
3312 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003313 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003314 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3315
3316 // Add this built-in operator as a candidate (VQ is 'volatile').
3317 ParamTypes[0] = ArithmeticTypes[Left];
3318 ParamTypes[0].addVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003319 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003320 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3321 }
3322 }
3323 break;
3324
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003325 case OO_Exclaim: {
3326 // C++ [over.operator]p23:
3327 //
3328 // There also exist candidate operator functions of the form
3329 //
3330 // bool operator!(bool);
3331 // bool operator&&(bool, bool); [BELOW]
3332 // bool operator||(bool, bool); [BELOW]
3333 QualType ParamTy = Context.BoolTy;
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003334 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3335 /*IsAssignmentOperator=*/false,
3336 /*NumContextualBoolArguments=*/1);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003337 break;
3338 }
3339
Douglas Gregor70d26122008-11-12 17:17:38 +00003340 case OO_AmpAmp:
3341 case OO_PipePipe: {
3342 // C++ [over.operator]p23:
3343 //
3344 // There also exist candidate operator functions of the form
3345 //
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003346 // bool operator!(bool); [ABOVE]
Douglas Gregor70d26122008-11-12 17:17:38 +00003347 // bool operator&&(bool, bool);
3348 // bool operator||(bool, bool);
3349 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003350 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3351 /*IsAssignmentOperator=*/false,
3352 /*NumContextualBoolArguments=*/2);
Douglas Gregor70d26122008-11-12 17:17:38 +00003353 break;
3354 }
3355
3356 case OO_Subscript:
3357 // C++ [over.built]p13:
3358 //
3359 // For every cv-qualified or cv-unqualified object type T there
3360 // exist candidate operator functions of the form
3361 //
3362 // T* operator+(T*, ptrdiff_t); [ABOVE]
3363 // T& operator[](T*, ptrdiff_t);
3364 // T* operator-(T*, ptrdiff_t); [ABOVE]
3365 // T* operator+(ptrdiff_t, T*); [ABOVE]
3366 // T& operator[](ptrdiff_t, T*);
3367 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3368 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3369 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003370 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003371 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregor70d26122008-11-12 17:17:38 +00003372
3373 // T& operator[](T*, ptrdiff_t)
3374 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3375
3376 // T& operator[](ptrdiff_t, T*);
3377 ParamTypes[0] = ParamTypes[1];
3378 ParamTypes[1] = *Ptr;
3379 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3380 }
3381 break;
3382
3383 case OO_ArrowStar:
3384 // FIXME: No support for pointer-to-members yet.
3385 break;
Sebastian Redlbd261962009-04-16 17:51:27 +00003386
3387 case OO_Conditional:
3388 // Note that we don't consider the first argument, since it has been
3389 // contextually converted to bool long ago. The candidates below are
3390 // therefore added as binary.
3391 //
3392 // C++ [over.built]p24:
3393 // For every type T, where T is a pointer or pointer-to-member type,
3394 // there exist candidate operator functions of the form
3395 //
3396 // T operator?(bool, T, T);
3397 //
Sebastian Redlbd261962009-04-16 17:51:27 +00003398 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3399 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3400 QualType ParamTypes[2] = { *Ptr, *Ptr };
3401 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3402 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00003403 for (BuiltinCandidateTypeSet::iterator Ptr =
3404 CandidateTypes.member_pointer_begin(),
3405 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3406 QualType ParamTypes[2] = { *Ptr, *Ptr };
3407 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3408 }
Sebastian Redlbd261962009-04-16 17:51:27 +00003409 goto Conditional;
Douglas Gregor70d26122008-11-12 17:17:38 +00003410 }
3411}
3412
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003413/// \brief Add function candidates found via argument-dependent lookup
3414/// to the set of overloading candidates.
3415///
3416/// This routine performs argument-dependent name lookup based on the
3417/// given function name (which may also be an operator name) and adds
3418/// all of the overload candidates found by ADL to the overload
3419/// candidate set (C++ [basic.lookup.argdep]).
3420void
3421Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3422 Expr **Args, unsigned NumArgs,
3423 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003424 FunctionSet Functions;
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003425
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003426 // Record all of the function candidates that we've already
3427 // added to the overload set, so that we don't add those same
3428 // candidates a second time.
3429 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3430 CandEnd = CandidateSet.end();
3431 Cand != CandEnd; ++Cand)
Douglas Gregor993a0602009-06-27 21:05:07 +00003432 if (Cand->Function) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003433 Functions.insert(Cand->Function);
Douglas Gregor993a0602009-06-27 21:05:07 +00003434 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3435 Functions.insert(FunTmpl);
3436 }
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003437
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003438 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003439
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003440 // Erase all of the candidates we already knew about.
3441 // FIXME: This is suboptimal. Is there a better way?
3442 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3443 CandEnd = CandidateSet.end();
3444 Cand != CandEnd; ++Cand)
Douglas Gregor993a0602009-06-27 21:05:07 +00003445 if (Cand->Function) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003446 Functions.erase(Cand->Function);
Douglas Gregor993a0602009-06-27 21:05:07 +00003447 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3448 Functions.erase(FunTmpl);
3449 }
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003450
3451 // For each of the ADL candidates we found, add it to the overload
3452 // set.
3453 for (FunctionSet::iterator Func = Functions.begin(),
3454 FuncEnd = Functions.end();
Douglas Gregor993a0602009-06-27 21:05:07 +00003455 Func != FuncEnd; ++Func) {
3456 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3457 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3458 else
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003459 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3460 /*FIXME: explicit args */false, 0, 0,
3461 Args, NumArgs, CandidateSet);
Douglas Gregor993a0602009-06-27 21:05:07 +00003462 }
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003463}
3464
Douglas Gregord2baafd2008-10-21 16:13:35 +00003465/// isBetterOverloadCandidate - Determines whether the first overload
3466/// candidate is a better candidate than the second (C++ 13.3.3p1).
3467bool
3468Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3469 const OverloadCandidate& Cand2)
3470{
3471 // Define viable functions to be better candidates than non-viable
3472 // functions.
3473 if (!Cand2.Viable)
3474 return Cand1.Viable;
3475 else if (!Cand1.Viable)
3476 return false;
3477
Douglas Gregor3257fb52008-12-22 05:46:06 +00003478 // C++ [over.match.best]p1:
3479 //
3480 // -- if F is a static member function, ICS1(F) is defined such
3481 // that ICS1(F) is neither better nor worse than ICS1(G) for
3482 // any function G, and, symmetrically, ICS1(G) is neither
3483 // better nor worse than ICS1(F).
3484 unsigned StartArg = 0;
3485 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3486 StartArg = 1;
Douglas Gregord2baafd2008-10-21 16:13:35 +00003487
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003488 // C++ [over.match.best]p1:
3489 // A viable function F1 is defined to be a better function than another
3490 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
3491 // conversion sequence than ICSi(F2), and then...
Douglas Gregord2baafd2008-10-21 16:13:35 +00003492 unsigned NumArgs = Cand1.Conversions.size();
3493 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3494 bool HasBetterConversion = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00003495 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00003496 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3497 Cand2.Conversions[ArgIdx])) {
3498 case ImplicitConversionSequence::Better:
3499 // Cand1 has a better conversion sequence.
3500 HasBetterConversion = true;
3501 break;
3502
3503 case ImplicitConversionSequence::Worse:
3504 // Cand1 can't be better than Cand2.
3505 return false;
3506
3507 case ImplicitConversionSequence::Indistinguishable:
3508 // Do nothing.
3509 break;
3510 }
3511 }
3512
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003513 // -- for some argument j, ICSj(F1) is a better conversion sequence than
3514 // ICSj(F2), or, if not that,
Douglas Gregord2baafd2008-10-21 16:13:35 +00003515 if (HasBetterConversion)
3516 return true;
3517
Douglas Gregor8aef85a2009-07-07 23:38:56 +00003518 // - F1 is a non-template function and F2 is a function template
3519 // specialization, or, if not that,
3520 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3521 Cand2.Function && Cand2.Function->getPrimaryTemplate())
3522 return true;
3523
3524 // -- F1 and F2 are function template specializations, and the function
3525 // template for F1 is more specialized than the template for F2
3526 // according to the partial ordering rules described in 14.5.5.2, or,
3527 // if not that,
Douglas Gregorf8e51672009-08-02 23:46:29 +00003528 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3529 Cand2.Function && Cand2.Function->getPrimaryTemplate())
3530 // FIXME: Implement partial ordering of function templates.
3531 Diag(SourceLocation(), diag::unsup_function_template_partial_ordering);
Douglas Gregord2baafd2008-10-21 16:13:35 +00003532
Douglas Gregor60714f92008-11-07 22:36:19 +00003533 // -- the context is an initialization by user-defined conversion
3534 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3535 // from the return type of F1 to the destination type (i.e.,
3536 // the type of the entity being initialized) is a better
3537 // conversion sequence than the standard conversion sequence
3538 // from the return type of F2 to the destination type.
Douglas Gregor849ea9c2008-11-19 03:25:36 +00003539 if (Cand1.Function && Cand2.Function &&
3540 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregor60714f92008-11-07 22:36:19 +00003541 isa<CXXConversionDecl>(Cand2.Function)) {
3542 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3543 Cand2.FinalConversion)) {
3544 case ImplicitConversionSequence::Better:
3545 // Cand1 has a better conversion sequence.
3546 return true;
3547
3548 case ImplicitConversionSequence::Worse:
3549 // Cand1 can't be better than Cand2.
3550 return false;
3551
3552 case ImplicitConversionSequence::Indistinguishable:
3553 // Do nothing
3554 break;
3555 }
3556 }
3557
Douglas Gregord2baafd2008-10-21 16:13:35 +00003558 return false;
3559}
3560
Douglas Gregor98189262009-06-19 23:52:42 +00003561/// \brief Computes the best viable function (C++ 13.3.3)
3562/// within an overload candidate set.
3563///
3564/// \param CandidateSet the set of candidate functions.
3565///
3566/// \param Loc the location of the function name (or operator symbol) for
3567/// which overload resolution occurs.
3568///
3569/// \param Best f overload resolution was successful or found a deleted
3570/// function, Best points to the candidate function found.
3571///
3572/// \returns The result of overload resolution.
Douglas Gregord2baafd2008-10-21 16:13:35 +00003573Sema::OverloadingResult
3574Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
Douglas Gregor98189262009-06-19 23:52:42 +00003575 SourceLocation Loc,
Douglas Gregord2baafd2008-10-21 16:13:35 +00003576 OverloadCandidateSet::iterator& Best)
3577{
3578 // Find the best viable function.
3579 Best = CandidateSet.end();
3580 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3581 Cand != CandidateSet.end(); ++Cand) {
3582 if (Cand->Viable) {
3583 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3584 Best = Cand;
3585 }
3586 }
3587
3588 // If we didn't find any viable functions, abort.
3589 if (Best == CandidateSet.end())
3590 return OR_No_Viable_Function;
3591
3592 // Make sure that this function is better than every other viable
3593 // function. If not, we have an ambiguity.
3594 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3595 Cand != CandidateSet.end(); ++Cand) {
3596 if (Cand->Viable &&
3597 Cand != Best &&
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003598 !isBetterOverloadCandidate(*Best, *Cand)) {
3599 Best = CandidateSet.end();
Douglas Gregord2baafd2008-10-21 16:13:35 +00003600 return OR_Ambiguous;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003601 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003602 }
3603
3604 // Best is the best viable function.
Douglas Gregoraa57e862009-02-18 21:56:37 +00003605 if (Best->Function &&
3606 (Best->Function->isDeleted() ||
Argiris Kirtzidisfe5f9732009-06-30 02:34:44 +00003607 Best->Function->getAttr<UnavailableAttr>()))
Douglas Gregoraa57e862009-02-18 21:56:37 +00003608 return OR_Deleted;
3609
Douglas Gregor98189262009-06-19 23:52:42 +00003610 // C++ [basic.def.odr]p2:
3611 // An overloaded function is used if it is selected by overload resolution
3612 // when referred to from a potentially-evaluated expression. [Note: this
3613 // covers calls to named functions (5.2.2), operator overloading
3614 // (clause 13), user-defined conversions (12.3.2), allocation function for
3615 // placement new (5.3.4), as well as non-default initialization (8.5).
3616 if (Best->Function)
3617 MarkDeclarationReferenced(Loc, Best->Function);
Douglas Gregord2baafd2008-10-21 16:13:35 +00003618 return OR_Success;
3619}
3620
3621/// PrintOverloadCandidates - When overload resolution fails, prints
3622/// diagnostic messages containing the candidates in the candidate
3623/// set. If OnlyViable is true, only viable candidates will be printed.
3624void
3625Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3626 bool OnlyViable)
3627{
3628 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3629 LastCand = CandidateSet.end();
3630 for (; Cand != LastCand; ++Cand) {
Douglas Gregor70d26122008-11-12 17:17:38 +00003631 if (Cand->Viable || !OnlyViable) {
3632 if (Cand->Function) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003633 if (Cand->Function->isDeleted() ||
Argiris Kirtzidisfe5f9732009-06-30 02:34:44 +00003634 Cand->Function->getAttr<UnavailableAttr>()) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003635 // Deleted or "unavailable" function.
3636 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3637 << Cand->Function->isDeleted();
3638 } else {
3639 // Normal function
3640 // FIXME: Give a better reason!
3641 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3642 }
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003643 } else if (Cand->IsSurrogate) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003644 // Desugar the type of the surrogate down to a function type,
3645 // retaining as many typedefs as possible while still showing
3646 // the function type (and, therefore, its parameter types).
3647 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003648 bool isLValueReference = false;
3649 bool isRValueReference = false;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003650 bool isPointer = false;
Sebastian Redlce6fff02009-03-16 23:22:08 +00003651 if (const LValueReferenceType *FnTypeRef =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003652 FnType->getAs<LValueReferenceType>()) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003653 FnType = FnTypeRef->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003654 isLValueReference = true;
3655 } else if (const RValueReferenceType *FnTypeRef =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003656 FnType->getAs<RValueReferenceType>()) {
Sebastian Redlce6fff02009-03-16 23:22:08 +00003657 FnType = FnTypeRef->getPointeeType();
3658 isRValueReference = true;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003659 }
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003660 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003661 FnType = FnTypePtr->getPointeeType();
3662 isPointer = true;
3663 }
3664 // Desugar down to a function type.
3665 FnType = QualType(FnType->getAsFunctionType(), 0);
3666 // Reconstruct the pointer/reference as appropriate.
3667 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redlce6fff02009-03-16 23:22:08 +00003668 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3669 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003670
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003671 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003672 << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003673 } else {
3674 // FIXME: We need to get the identifier in here
Mike Stumpe127ae32009-05-16 07:39:55 +00003675 // FIXME: Do we want the error message to point at the operator?
3676 // (built-ins won't have a location)
Douglas Gregor70d26122008-11-12 17:17:38 +00003677 QualType FnType
3678 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3679 Cand->BuiltinTypes.ParamTypes,
3680 Cand->Conversions.size(),
3681 false, 0);
3682
Chris Lattner4bfd2232008-11-24 06:25:27 +00003683 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003684 }
3685 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003686 }
3687}
3688
Douglas Gregor45014fd2008-11-10 20:40:00 +00003689/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3690/// an overloaded function (C++ [over.over]), where @p From is an
3691/// expression with overloaded function type and @p ToType is the type
3692/// we're trying to resolve to. For example:
3693///
3694/// @code
3695/// int f(double);
3696/// int f(int);
3697///
3698/// int (*pfd)(double) = f; // selects f(double)
3699/// @endcode
3700///
3701/// This routine returns the resulting FunctionDecl if it could be
3702/// resolved, and NULL otherwise. When @p Complain is true, this
3703/// routine will emit diagnostics if there is an error.
3704FunctionDecl *
Sebastian Redl7434fc32009-02-04 21:23:32 +00003705Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor45014fd2008-11-10 20:40:00 +00003706 bool Complain) {
3707 QualType FunctionType = ToType;
Sebastian Redl7434fc32009-02-04 21:23:32 +00003708 bool IsMember = false;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003709 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003710 FunctionType = ToTypePtr->getPointeeType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003711 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003712 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl7434fc32009-02-04 21:23:32 +00003713 else if (const MemberPointerType *MemTypePtr =
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00003714 ToType->getAs<MemberPointerType>()) {
Sebastian Redl7434fc32009-02-04 21:23:32 +00003715 FunctionType = MemTypePtr->getPointeeType();
3716 IsMember = true;
3717 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003718
3719 // We only look at pointers or references to functions.
Douglas Gregor72bb4992009-07-09 17:16:51 +00003720 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
Douglas Gregor62f78762009-07-08 20:55:45 +00003721 if (!FunctionType->isFunctionType())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003722 return 0;
3723
3724 // Find the actual overloaded function declaration.
3725 OverloadedFunctionDecl *Ovl = 0;
3726
3727 // C++ [over.over]p1:
3728 // [...] [Note: any redundant set of parentheses surrounding the
3729 // overloaded function name is ignored (5.1). ]
3730 Expr *OvlExpr = From->IgnoreParens();
3731
3732 // C++ [over.over]p1:
3733 // [...] The overloaded function name can be preceded by the &
3734 // operator.
3735 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3736 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3737 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3738 }
3739
3740 // Try to dig out the overloaded function.
Douglas Gregor62f78762009-07-08 20:55:45 +00003741 FunctionTemplateDecl *FunctionTemplate = 0;
3742 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
Douglas Gregor45014fd2008-11-10 20:40:00 +00003743 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
Douglas Gregor62f78762009-07-08 20:55:45 +00003744 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3745 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003746
Douglas Gregor62f78762009-07-08 20:55:45 +00003747 // If there's no overloaded function declaration or function template,
3748 // we're done.
3749 if (!Ovl && !FunctionTemplate)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003750 return 0;
3751
Douglas Gregor62f78762009-07-08 20:55:45 +00003752 OverloadIterator Fun;
3753 if (Ovl)
3754 Fun = Ovl;
3755 else
3756 Fun = FunctionTemplate;
3757
Douglas Gregor45014fd2008-11-10 20:40:00 +00003758 // Look through all of the overloaded functions, searching for one
3759 // whose type matches exactly.
Douglas Gregora142a052009-07-08 23:33:52 +00003760 llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3761
3762 bool FoundNonTemplateFunction = false;
Douglas Gregor62f78762009-07-08 20:55:45 +00003763 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
Douglas Gregor45014fd2008-11-10 20:40:00 +00003764 // C++ [over.over]p3:
3765 // Non-member functions and static member functions match
Sebastian Redl3a75abf2009-02-05 12:33:33 +00003766 // targets of type "pointer-to-function" or "reference-to-function."
3767 // Nonstatic member functions match targets of
Sebastian Redl7434fc32009-02-04 21:23:32 +00003768 // type "pointer-to-member-function."
3769 // Note that according to DR 247, the containing class does not matter.
Douglas Gregor62f78762009-07-08 20:55:45 +00003770
3771 if (FunctionTemplateDecl *FunctionTemplate
3772 = dyn_cast<FunctionTemplateDecl>(*Fun)) {
Douglas Gregora142a052009-07-08 23:33:52 +00003773 if (CXXMethodDecl *Method
3774 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3775 // Skip non-static function templates when converting to pointer, and
3776 // static when converting to member pointer.
3777 if (Method->isStatic() == IsMember)
3778 continue;
3779 } else if (IsMember)
3780 continue;
3781
3782 // C++ [over.over]p2:
3783 // If the name is a function template, template argument deduction is
3784 // done (14.8.2.2), and if the argument deduction succeeds, the
3785 // resulting template argument list is used to generate a single
3786 // function template specialization, which is added to the set of
3787 // overloaded functions considered.
Douglas Gregor62f78762009-07-08 20:55:45 +00003788 FunctionDecl *Specialization = 0;
3789 TemplateDeductionInfo Info(Context);
3790 if (TemplateDeductionResult Result
3791 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3792 /*FIXME:*/0, /*FIXME:*/0,
3793 FunctionType, Specialization, Info)) {
3794 // FIXME: make a note of the failed deduction for diagnostics.
3795 (void)Result;
3796 } else {
3797 assert(FunctionType
3798 == Context.getCanonicalType(Specialization->getType()));
Douglas Gregora142a052009-07-08 23:33:52 +00003799 Matches.insert(
Argiris Kirtzidis17c7cab2009-07-18 00:34:25 +00003800 cast<FunctionDecl>(Specialization->getCanonicalDecl()));
Douglas Gregor62f78762009-07-08 20:55:45 +00003801 }
3802 }
3803
Sebastian Redl7434fc32009-02-04 21:23:32 +00003804 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3805 // Skip non-static functions when converting to pointer, and static
3806 // when converting to member pointer.
3807 if (Method->isStatic() == IsMember)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003808 continue;
Douglas Gregora142a052009-07-08 23:33:52 +00003809 } else if (IsMember)
Sebastian Redl7434fc32009-02-04 21:23:32 +00003810 continue;
Douglas Gregor45014fd2008-11-10 20:40:00 +00003811
Douglas Gregorb60eb752009-06-25 22:08:12 +00003812 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
Douglas Gregora142a052009-07-08 23:33:52 +00003813 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
Argiris Kirtzidis17c7cab2009-07-18 00:34:25 +00003814 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
Douglas Gregora142a052009-07-08 23:33:52 +00003815 FoundNonTemplateFunction = true;
3816 }
Douglas Gregor62f78762009-07-08 20:55:45 +00003817 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003818 }
3819
Douglas Gregora142a052009-07-08 23:33:52 +00003820 // If there were 0 or 1 matches, we're done.
3821 if (Matches.empty())
3822 return 0;
3823 else if (Matches.size() == 1)
3824 return *Matches.begin();
3825
3826 // C++ [over.over]p4:
3827 // If more than one function is selected, [...]
3828 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3829 if (FoundNonTemplateFunction) {
3830 // [...] any function template specializations in the set are eliminated
3831 // if the set also contains a non-template function, [...]
3832 for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3833 MEnd = Matches.end();
3834 M != MEnd; ++M)
3835 if ((*M)->getPrimaryTemplate() == 0)
3836 RemainingMatches.push_back(*M);
3837 } else {
3838 // [...] and any given function template specialization F1 is eliminated
3839 // if the set contains a second function template specialization whose
3840 // function template is more specialized than the function template of F1
3841 // according to the partial ordering rules of 14.5.5.2.
3842 // FIXME: Implement this!
3843 RemainingMatches.append(Matches.begin(), Matches.end());
3844 }
3845
3846 // [...] After such eliminations, if any, there shall remain exactly one
3847 // selected function.
3848 if (RemainingMatches.size() == 1)
3849 return RemainingMatches.front();
3850
3851 // FIXME: We should probably return the same thing that BestViableFunction
3852 // returns (even if we issue the diagnostics here).
3853 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3854 << RemainingMatches[0]->getDeclName();
3855 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3856 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
Douglas Gregor45014fd2008-11-10 20:40:00 +00003857 return 0;
3858}
3859
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003860/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003861/// (which eventually refers to the declaration Func) and the call
3862/// arguments Args/NumArgs, attempt to resolve the function call down
3863/// to a specific function. If overload resolution succeeds, returns
3864/// the function declaration produced by overload
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003865/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003866/// arguments and Fn, and returns NULL.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003867FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003868 DeclarationName UnqualifiedName,
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003869 bool HasExplicitTemplateArgs,
3870 const TemplateArgument *ExplicitTemplateArgs,
3871 unsigned NumExplicitTemplateArgs,
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003872 SourceLocation LParenLoc,
3873 Expr **Args, unsigned NumArgs,
3874 SourceLocation *CommaLocs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003875 SourceLocation RParenLoc,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003876 bool &ArgumentDependentLookup) {
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003877 OverloadCandidateSet CandidateSet;
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003878
3879 // Add the functions denoted by Callee to the set of candidate
3880 // functions. While we're doing so, track whether argument-dependent
3881 // lookup still applies, per:
3882 //
3883 // C++0x [basic.lookup.argdep]p3:
3884 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3885 // and let Y be the lookup set produced by argument dependent
3886 // lookup (defined as follows). If X contains
3887 //
3888 // -- a declaration of a class member, or
3889 //
3890 // -- a block-scope function declaration that is not a
3891 // using-declaration, or
3892 //
3893 // -- a declaration that is neither a function or a function
3894 // template
3895 //
3896 // then Y is empty.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003897 if (OverloadedFunctionDecl *Ovl
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003898 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3899 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3900 FuncEnd = Ovl->function_end();
3901 Func != FuncEnd; ++Func) {
Douglas Gregorb60eb752009-06-25 22:08:12 +00003902 DeclContext *Ctx = 0;
3903 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003904 if (HasExplicitTemplateArgs)
3905 continue;
3906
Douglas Gregorb60eb752009-06-25 22:08:12 +00003907 AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3908 Ctx = FunDecl->getDeclContext();
3909 } else {
3910 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003911 AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3912 ExplicitTemplateArgs,
3913 NumExplicitTemplateArgs,
3914 Args, NumArgs, CandidateSet);
Douglas Gregorb60eb752009-06-25 22:08:12 +00003915 Ctx = FunTmpl->getDeclContext();
3916 }
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003917
Douglas Gregorb60eb752009-06-25 22:08:12 +00003918
3919 if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003920 ArgumentDependentLookup = false;
3921 }
3922 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003923 assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003924 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3925
3926 if (Func->getDeclContext()->isRecord() ||
3927 Func->getDeclContext()->isFunctionOrMethod())
3928 ArgumentDependentLookup = false;
Douglas Gregorb60eb752009-06-25 22:08:12 +00003929 } else if (FunctionTemplateDecl *FuncTemplate
3930 = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003931 AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3932 ExplicitTemplateArgs,
3933 NumExplicitTemplateArgs,
3934 Args, NumArgs, CandidateSet);
Douglas Gregorb60eb752009-06-25 22:08:12 +00003935
3936 if (FuncTemplate->getDeclContext()->isRecord())
3937 ArgumentDependentLookup = false;
3938 }
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003939
3940 if (Callee)
3941 UnqualifiedName = Callee->getDeclName();
3942
Douglas Gregorc9a03b72009-06-30 23:57:56 +00003943 // FIXME: Pass explicit template arguments through for ADL
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003944 if (ArgumentDependentLookup)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003945 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003946 CandidateSet);
3947
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003948 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00003949 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003950 case OR_Success:
3951 return Best->Function;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003952
3953 case OR_No_Viable_Function:
Chris Lattner4a526112009-02-17 07:29:20 +00003954 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003955 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00003956 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003957 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3958 break;
3959
3960 case OR_Ambiguous:
3961 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003962 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003963 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3964 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00003965
3966 case OR_Deleted:
3967 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3968 << Best->Function->isDeleted()
3969 << UnqualifiedName
3970 << Fn->getSourceRange();
3971 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3972 break;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003973 }
3974
3975 // Overload resolution failed. Destroy all of the subexpressions and
3976 // return NULL.
3977 Fn->Destroy(Context);
3978 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3979 Args[Arg]->Destroy(Context);
3980 return 0;
3981}
3982
Douglas Gregorc78182d2009-03-13 23:49:33 +00003983/// \brief Create a unary operation that may resolve to an overloaded
3984/// operator.
3985///
3986/// \param OpLoc The location of the operator itself (e.g., '*').
3987///
3988/// \param OpcIn The UnaryOperator::Opcode that describes this
3989/// operator.
3990///
3991/// \param Functions The set of non-member functions that will be
3992/// considered by overload resolution. The caller needs to build this
3993/// set based on the context using, e.g.,
3994/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3995/// set should not contain any member functions; those will be added
3996/// by CreateOverloadedUnaryOp().
3997///
3998/// \param input The input argument.
3999Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4000 unsigned OpcIn,
4001 FunctionSet &Functions,
4002 ExprArg input) {
4003 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4004 Expr *Input = (Expr *)input.get();
4005
4006 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4007 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4008 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4009
4010 Expr *Args[2] = { Input, 0 };
4011 unsigned NumArgs = 1;
4012
4013 // For post-increment and post-decrement, add the implicit '0' as
4014 // the second argument, so that we know this is a post-increment or
4015 // post-decrement.
4016 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4017 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4018 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4019 SourceLocation());
4020 NumArgs = 2;
4021 }
4022
4023 if (Input->isTypeDependent()) {
4024 OverloadedFunctionDecl *Overloads
4025 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4026 for (FunctionSet::iterator Func = Functions.begin(),
4027 FuncEnd = Functions.end();
4028 Func != FuncEnd; ++Func)
4029 Overloads->addOverload(*Func);
4030
4031 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4032 OpLoc, false, false);
4033
4034 input.release();
4035 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4036 &Args[0], NumArgs,
4037 Context.DependentTy,
4038 OpLoc));
4039 }
4040
4041 // Build an empty overload set.
4042 OverloadCandidateSet CandidateSet;
4043
4044 // Add the candidates from the given function set.
4045 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4046
4047 // Add operator candidates that are member functions.
4048 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4049
4050 // Add builtin operator candidates.
4051 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4052
4053 // Perform overload resolution.
4054 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004055 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregorc78182d2009-03-13 23:49:33 +00004056 case OR_Success: {
4057 // We found a built-in operator or an overloaded operator.
4058 FunctionDecl *FnDecl = Best->Function;
4059
4060 if (FnDecl) {
4061 // We matched an overloaded operator. Build a call to that
4062 // operator.
4063
4064 // Convert the arguments.
4065 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4066 if (PerformObjectArgumentInitialization(Input, Method))
4067 return ExprError();
4068 } else {
4069 // Convert the arguments.
4070 if (PerformCopyInitialization(Input,
4071 FnDecl->getParamDecl(0)->getType(),
4072 "passing"))
4073 return ExprError();
4074 }
4075
4076 // Determine the result type
4077 QualType ResultTy
4078 = FnDecl->getType()->getAsFunctionType()->getResultType();
4079 ResultTy = ResultTy.getNonReferenceType();
4080
4081 // Build the actual expression node.
4082 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4083 SourceLocation());
4084 UsualUnaryConversions(FnExpr);
4085
4086 input.release();
Anders Carlsson16497742009-08-16 04:11:06 +00004087
4088 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4089 &Input, 1, ResultTy, OpLoc);
4090 return MaybeBindToTemporary(CE);
Douglas Gregorc78182d2009-03-13 23:49:33 +00004091 } else {
4092 // We matched a built-in operator. Convert the arguments, then
4093 // break out so that we will build the appropriate built-in
4094 // operator node.
4095 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4096 Best->Conversions[0], "passing"))
4097 return ExprError();
4098
4099 break;
4100 }
4101 }
4102
4103 case OR_No_Viable_Function:
4104 // No viable function; fall through to handling this as a
4105 // built-in operator, which will produce an error message for us.
4106 break;
4107
4108 case OR_Ambiguous:
4109 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4110 << UnaryOperator::getOpcodeStr(Opc)
4111 << Input->getSourceRange();
4112 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4113 return ExprError();
4114
4115 case OR_Deleted:
4116 Diag(OpLoc, diag::err_ovl_deleted_oper)
4117 << Best->Function->isDeleted()
4118 << UnaryOperator::getOpcodeStr(Opc)
4119 << Input->getSourceRange();
4120 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4121 return ExprError();
4122 }
4123
4124 // Either we found no viable overloaded operator or we matched a
4125 // built-in operator. In either case, fall through to trying to
4126 // build a built-in operation.
4127 input.release();
4128 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4129}
4130
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004131/// \brief Create a binary operation that may resolve to an overloaded
4132/// operator.
4133///
4134/// \param OpLoc The location of the operator itself (e.g., '+').
4135///
4136/// \param OpcIn The BinaryOperator::Opcode that describes this
4137/// operator.
4138///
4139/// \param Functions The set of non-member functions that will be
4140/// considered by overload resolution. The caller needs to build this
4141/// set based on the context using, e.g.,
4142/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4143/// set should not contain any member functions; those will be added
4144/// by CreateOverloadedBinOp().
4145///
4146/// \param LHS Left-hand argument.
4147/// \param RHS Right-hand argument.
4148Sema::OwningExprResult
4149Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4150 unsigned OpcIn,
4151 FunctionSet &Functions,
4152 Expr *LHS, Expr *RHS) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004153 Expr *Args[2] = { LHS, RHS };
4154
4155 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4156 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4157 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4158
4159 // If either side is type-dependent, create an appropriate dependent
4160 // expression.
4161 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4162 // .* cannot be overloaded.
4163 if (Opc == BinaryOperator::PtrMemD)
4164 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4165 Context.DependentTy, OpLoc));
4166
4167 OverloadedFunctionDecl *Overloads
4168 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4169 for (FunctionSet::iterator Func = Functions.begin(),
4170 FuncEnd = Functions.end();
4171 Func != FuncEnd; ++Func)
4172 Overloads->addOverload(*Func);
4173
4174 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4175 OpLoc, false, false);
4176
4177 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4178 Args, 2,
4179 Context.DependentTy,
4180 OpLoc));
4181 }
4182
4183 // If this is the .* operator, which is not overloadable, just
4184 // create a built-in binary operator.
4185 if (Opc == BinaryOperator::PtrMemD)
4186 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4187
4188 // If this is one of the assignment operators, we only perform
4189 // overload resolution if the left-hand side is a class or
4190 // enumeration type (C++ [expr.ass]p3).
4191 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4192 !LHS->getType()->isOverloadableType())
4193 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4194
Douglas Gregorc78182d2009-03-13 23:49:33 +00004195 // Build an empty overload set.
4196 OverloadCandidateSet CandidateSet;
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004197
4198 // Add the candidates from the given function set.
4199 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4200
4201 // Add operator candidates that are member functions.
4202 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4203
4204 // Add builtin operator candidates.
4205 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4206
4207 // Perform overload resolution.
4208 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004209 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00004210 case OR_Success: {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004211 // We found a built-in operator or an overloaded operator.
4212 FunctionDecl *FnDecl = Best->Function;
4213
4214 if (FnDecl) {
4215 // We matched an overloaded operator. Build a call to that
4216 // operator.
4217
4218 // Convert the arguments.
4219 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4220 if (PerformObjectArgumentInitialization(LHS, Method) ||
4221 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4222 "passing"))
4223 return ExprError();
4224 } else {
4225 // Convert the arguments.
4226 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4227 "passing") ||
4228 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4229 "passing"))
4230 return ExprError();
4231 }
4232
4233 // Determine the result type
4234 QualType ResultTy
4235 = FnDecl->getType()->getAsFunctionType()->getResultType();
4236 ResultTy = ResultTy.getNonReferenceType();
4237
4238 // Build the actual expression node.
4239 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
Argiris Kirtzidiscca21b82009-07-14 03:19:38 +00004240 OpLoc);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004241 UsualUnaryConversions(FnExpr);
4242
Anders Carlsson16497742009-08-16 04:11:06 +00004243 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4244 Args, 2, ResultTy, OpLoc);
4245 return MaybeBindToTemporary(CE);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004246 } else {
4247 // We matched a built-in operator. Convert the arguments, then
4248 // break out so that we will build the appropriate built-in
4249 // operator node.
4250 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4251 Best->Conversions[0], "passing") ||
4252 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4253 Best->Conversions[1], "passing"))
4254 return ExprError();
4255
4256 break;
4257 }
4258 }
4259
4260 case OR_No_Viable_Function:
Sebastian Redl35196b42009-05-21 11:50:50 +00004261 // For class as left operand for assignment or compound assigment operator
4262 // do not fall through to handling in built-in, but report that no overloaded
4263 // assignment operator found
4264 if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4265 Diag(OpLoc, diag::err_ovl_no_viable_oper)
4266 << BinaryOperator::getOpcodeStr(Opc)
4267 << LHS->getSourceRange() << RHS->getSourceRange();
4268 return ExprError();
4269 }
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004270 // No viable function; fall through to handling this as a
4271 // built-in operator, which will produce an error message for us.
4272 break;
4273
4274 case OR_Ambiguous:
4275 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4276 << BinaryOperator::getOpcodeStr(Opc)
4277 << LHS->getSourceRange() << RHS->getSourceRange();
4278 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4279 return ExprError();
4280
4281 case OR_Deleted:
4282 Diag(OpLoc, diag::err_ovl_deleted_oper)
4283 << Best->Function->isDeleted()
4284 << BinaryOperator::getOpcodeStr(Opc)
4285 << LHS->getSourceRange() << RHS->getSourceRange();
4286 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4287 return ExprError();
4288 }
4289
4290 // Either we found no viable overloaded operator or we matched a
4291 // built-in operator. In either case, try to build a built-in
4292 // operation.
4293 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4294}
4295
Douglas Gregor3257fb52008-12-22 05:46:06 +00004296/// BuildCallToMemberFunction - Build a call to a member
4297/// function. MemExpr is the expression that refers to the member
4298/// function (and includes the object parameter), Args/NumArgs are the
4299/// arguments to the function call (not including the object
4300/// parameter). The caller needs to validate that the member
4301/// expression refers to a member function or an overloaded member
4302/// function.
4303Sema::ExprResult
4304Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4305 SourceLocation LParenLoc, Expr **Args,
4306 unsigned NumArgs, SourceLocation *CommaLocs,
4307 SourceLocation RParenLoc) {
4308 // Dig out the member expression. This holds both the object
4309 // argument and the member function we're referring to.
4310 MemberExpr *MemExpr = 0;
4311 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4312 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4313 else
4314 MemExpr = dyn_cast<MemberExpr>(MemExprE);
4315 assert(MemExpr && "Building member call without member expression");
4316
4317 // Extract the object argument.
4318 Expr *ObjectArg = MemExpr->getBase();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00004319
Douglas Gregor3257fb52008-12-22 05:46:06 +00004320 CXXMethodDecl *Method = 0;
Douglas Gregor4fdcdda2009-08-21 00:16:32 +00004321 if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4322 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
Douglas Gregor3257fb52008-12-22 05:46:06 +00004323 // Add overload candidates
4324 OverloadCandidateSet CandidateSet;
Douglas Gregor4fdcdda2009-08-21 00:16:32 +00004325 DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4326
4327 if (OverloadedFunctionDecl *Ovl
4328 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4329 for (OverloadedFunctionDecl::function_iterator
4330 Func = Ovl->function_begin(),
4331 FuncEnd = Ovl->function_end();
4332 Func != FuncEnd; ++Func) {
4333 if (Method = dyn_cast<CXXMethodDecl>(*Func))
4334 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4335 /*SuppressUserConversions=*/false);
4336 else
4337 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4338 /*FIXME:*/false, /*FIXME:*/0,
4339 /*FIXME:*/0, ObjectArg, Args, NumArgs,
4340 CandidateSet,
4341 /*SuppressUsedConversions=*/false);
4342 }
4343 } else
4344 AddMethodTemplateCandidate(
4345 cast<FunctionTemplateDecl>(MemExpr->getMemberDecl()),
4346 /*FIXME:*/false, /*FIXME:*/0,
4347 /*FIXME:*/0, ObjectArg, Args, NumArgs,
4348 CandidateSet,
4349 /*SuppressUsedConversions=*/false);
4350
Douglas Gregor3257fb52008-12-22 05:46:06 +00004351 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004352 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
Douglas Gregor3257fb52008-12-22 05:46:06 +00004353 case OR_Success:
4354 Method = cast<CXXMethodDecl>(Best->Function);
4355 break;
4356
4357 case OR_No_Viable_Function:
4358 Diag(MemExpr->getSourceRange().getBegin(),
4359 diag::err_ovl_no_viable_member_function_in_call)
Douglas Gregor4fdcdda2009-08-21 00:16:32 +00004360 << DeclName << MemExprE->getSourceRange();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004361 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4362 // FIXME: Leaking incoming expressions!
4363 return true;
4364
4365 case OR_Ambiguous:
4366 Diag(MemExpr->getSourceRange().getBegin(),
4367 diag::err_ovl_ambiguous_member_call)
Douglas Gregor4fdcdda2009-08-21 00:16:32 +00004368 << DeclName << MemExprE->getSourceRange();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004369 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4370 // FIXME: Leaking incoming expressions!
4371 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004372
4373 case OR_Deleted:
4374 Diag(MemExpr->getSourceRange().getBegin(),
4375 diag::err_ovl_deleted_member_call)
4376 << Best->Function->isDeleted()
Douglas Gregor4fdcdda2009-08-21 00:16:32 +00004377 << DeclName << MemExprE->getSourceRange();
Douglas Gregoraa57e862009-02-18 21:56:37 +00004378 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4379 // FIXME: Leaking incoming expressions!
4380 return true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00004381 }
4382
4383 FixOverloadedFunctionReference(MemExpr, Method);
4384 } else {
4385 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4386 }
4387
4388 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek0c97e042009-02-07 01:47:29 +00004389 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek362abcd2009-02-09 20:51:47 +00004390 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4391 NumArgs,
Douglas Gregor3257fb52008-12-22 05:46:06 +00004392 Method->getResultType().getNonReferenceType(),
4393 RParenLoc));
4394
4395 // Convert the object argument (for a non-static member function call).
4396 if (!Method->isStatic() &&
4397 PerformObjectArgumentInitialization(ObjectArg, Method))
4398 return true;
4399 MemExpr->setBase(ObjectArg);
4400
4401 // Convert the rest of the arguments
Douglas Gregor4fa58902009-02-26 23:50:07 +00004402 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004403 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4404 RParenLoc))
4405 return true;
4406
Anders Carlsson7fb13802009-08-16 01:56:34 +00004407 if (CheckFunctionCall(Method, TheCall.get()))
4408 return true;
Anders Carlssonb8ff3402009-08-16 03:42:12 +00004409
4410 return MaybeBindToTemporary(TheCall.release()).release();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004411}
4412
Douglas Gregor10f3c502008-11-19 21:05:33 +00004413/// BuildCallToObjectOfClassType - Build a call to an object of class
4414/// type (C++ [over.call.object]), which can end up invoking an
4415/// overloaded function call operator (@c operator()) or performing a
4416/// user-defined conversion on the object argument.
Douglas Gregor3257fb52008-12-22 05:46:06 +00004417Sema::ExprResult
Douglas Gregora133e262008-12-06 00:22:45 +00004418Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4419 SourceLocation LParenLoc,
Douglas Gregor10f3c502008-11-19 21:05:33 +00004420 Expr **Args, unsigned NumArgs,
4421 SourceLocation *CommaLocs,
4422 SourceLocation RParenLoc) {
4423 assert(Object->getType()->isRecordType() && "Requires object type argument");
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00004424 const RecordType *Record = Object->getType()->getAs<RecordType>();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004425
4426 // C++ [over.call.object]p1:
4427 // If the primary-expression E in the function call syntax
Eli Friedmand5a72f02009-08-05 19:21:58 +00004428 // evaluates to a class object of type "cv T", then the set of
Douglas Gregor10f3c502008-11-19 21:05:33 +00004429 // candidate functions includes at least the function call
4430 // operators of T. The function call operators of T are obtained by
4431 // ordinary lookup of the name operator() in the context of
4432 // (E).operator().
4433 OverloadCandidateSet CandidateSet;
Douglas Gregor8acb7272008-12-11 16:49:14 +00004434 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004435 DeclContext::lookup_const_iterator Oper, OperEnd;
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00004436 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004437 Oper != OperEnd; ++Oper)
4438 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4439 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004440
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004441 // C++ [over.call.object]p2:
4442 // In addition, for each conversion function declared in T of the
4443 // form
4444 //
4445 // operator conversion-type-id () cv-qualifier;
4446 //
4447 // where cv-qualifier is the same cv-qualification as, or a
4448 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregor261afa72008-11-20 13:33:37 +00004449 // denotes the type "pointer to function of (P1,...,Pn) returning
4450 // R", or the type "reference to pointer to function of
4451 // (P1,...,Pn) returning R", or the type "reference to function
4452 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004453 // is also considered as a candidate function. Similarly,
4454 // surrogate call functions are added to the set of candidate
4455 // functions for each conversion function declared in an
4456 // accessible base class provided the function is not hidden
4457 // within T by another intervening declaration.
4458 //
4459 // FIXME: Look in base classes for more conversion operators!
4460 OverloadedFunctionDecl *Conversions
4461 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00004462 for (OverloadedFunctionDecl::function_iterator
4463 Func = Conversions->function_begin(),
4464 FuncEnd = Conversions->function_end();
4465 Func != FuncEnd; ++Func) {
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004466 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4467
4468 // Strip the reference type (if any) and then the pointer type (if
4469 // any) to get down to what might be a function type.
4470 QualType ConvType = Conv->getConversionType().getNonReferenceType();
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00004471 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004472 ConvType = ConvPtrType->getPointeeType();
4473
Douglas Gregor4fa58902009-02-26 23:50:07 +00004474 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004475 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4476 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004477
4478 // Perform overload resolution.
4479 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004480 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004481 case OR_Success:
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004482 // Overload resolution succeeded; we'll build the appropriate call
4483 // below.
Douglas Gregor10f3c502008-11-19 21:05:33 +00004484 break;
4485
4486 case OR_No_Viable_Function:
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004487 Diag(Object->getSourceRange().getBegin(),
4488 diag::err_ovl_no_viable_object_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004489 << Object->getType() << Object->getSourceRange();
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004490 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004491 break;
4492
4493 case OR_Ambiguous:
4494 Diag(Object->getSourceRange().getBegin(),
4495 diag::err_ovl_ambiguous_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004496 << Object->getType() << Object->getSourceRange();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004497 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4498 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004499
4500 case OR_Deleted:
4501 Diag(Object->getSourceRange().getBegin(),
4502 diag::err_ovl_deleted_object_call)
4503 << Best->Function->isDeleted()
4504 << Object->getType() << Object->getSourceRange();
4505 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4506 break;
Douglas Gregor10f3c502008-11-19 21:05:33 +00004507 }
4508
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004509 if (Best == CandidateSet.end()) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004510 // We had an error; delete all of the subexpressions and return
4511 // the error.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004512 Object->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004513 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004514 Args[ArgIdx]->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004515 return true;
4516 }
4517
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004518 if (Best->Function == 0) {
4519 // Since there is no function declaration, this is one of the
4520 // surrogate candidates. Dig out the conversion function.
4521 CXXConversionDecl *Conv
4522 = cast<CXXConversionDecl>(
4523 Best->Conversions[0].UserDefined.ConversionFunction);
4524
4525 // We selected one of the surrogate functions that converts the
4526 // object parameter to a function pointer. Perform the conversion
4527 // on the object argument, then let ActOnCallExpr finish the job.
4528 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl8b769972009-01-19 00:08:26 +00004529 ImpCastExprToType(Object,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004530 Conv->getConversionType().getNonReferenceType(),
Anders Carlsson85186942009-07-31 01:23:52 +00004531 CastExpr::CK_Unknown,
Sebastian Redlce6fff02009-03-16 23:22:08 +00004532 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl8b769972009-01-19 00:08:26 +00004533 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4534 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4535 CommaLocs, RParenLoc).release();
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004536 }
4537
4538 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4539 // that calls this method, using Object for the implicit object
4540 // parameter and passing along the remaining arguments.
4541 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor4fa58902009-02-26 23:50:07 +00004542 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004543
4544 unsigned NumArgsInProto = Proto->getNumArgs();
4545 unsigned NumArgsToCheck = NumArgs;
4546
4547 // Build the full argument list for the method call (the
4548 // implicit object parameter is placed at the beginning of the
4549 // list).
4550 Expr **MethodArgs;
4551 if (NumArgs < NumArgsInProto) {
4552 NumArgsToCheck = NumArgsInProto;
4553 MethodArgs = new Expr*[NumArgsInProto + 1];
4554 } else {
4555 MethodArgs = new Expr*[NumArgs + 1];
4556 }
4557 MethodArgs[0] = Object;
4558 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4559 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4560
Ted Kremenek0c97e042009-02-07 01:47:29 +00004561 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4562 SourceLocation());
Douglas Gregor10f3c502008-11-19 21:05:33 +00004563 UsualUnaryConversions(NewFn);
4564
4565 // Once we've built TheCall, all of the expressions are properly
4566 // owned.
4567 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek0c97e042009-02-07 01:47:29 +00004568 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004569 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4570 MethodArgs, NumArgs + 1,
Ted Kremenek0c97e042009-02-07 01:47:29 +00004571 ResultTy, RParenLoc));
Douglas Gregor10f3c502008-11-19 21:05:33 +00004572 delete [] MethodArgs;
4573
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004574 // We may have default arguments. If so, we need to allocate more
4575 // slots in the call for them.
4576 if (NumArgs < NumArgsInProto)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004577 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004578 else if (NumArgs > NumArgsInProto)
4579 NumArgsToCheck = NumArgsInProto;
4580
Chris Lattner81f00ed2009-04-12 08:11:20 +00004581 bool IsError = false;
4582
Douglas Gregor10f3c502008-11-19 21:05:33 +00004583 // Initialize the implicit object parameter.
Chris Lattner81f00ed2009-04-12 08:11:20 +00004584 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004585 TheCall->setArg(0, Object);
4586
Chris Lattner81f00ed2009-04-12 08:11:20 +00004587
Douglas Gregor10f3c502008-11-19 21:05:33 +00004588 // Check the argument types.
4589 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004590 Expr *Arg;
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004591 if (i < NumArgs) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004592 Arg = Args[i];
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004593
4594 // Pass the argument.
4595 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner81f00ed2009-04-12 08:11:20 +00004596 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004597 } else {
Anders Carlsson3d752db2009-08-14 18:30:22 +00004598 Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004599 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004600
4601 TheCall->setArg(i + 1, Arg);
4602 }
4603
4604 // If this is a variadic call, handle args passed through "...".
4605 if (Proto->isVariadic()) {
4606 // Promote the arguments (C99 6.5.2.2p7).
4607 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4608 Expr *Arg = Args[i];
Chris Lattner81f00ed2009-04-12 08:11:20 +00004609 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004610 TheCall->setArg(i + 1, Arg);
4611 }
4612 }
4613
Chris Lattner81f00ed2009-04-12 08:11:20 +00004614 if (IsError) return true;
4615
Anders Carlsson7fb13802009-08-16 01:56:34 +00004616 if (CheckFunctionCall(Method, TheCall.get()))
4617 return true;
4618
Anders Carlsson422a5fe2009-08-16 03:53:54 +00004619 return MaybeBindToTemporary(TheCall.release()).release();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004620}
4621
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004622/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4623/// (if one exists), where @c Base is an expression of class type and
4624/// @c Member is the name of the member we're trying to find.
Douglas Gregorda61ad22009-08-06 03:17:00 +00004625Sema::OwningExprResult
4626Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4627 Expr *Base = static_cast<Expr *>(BaseIn.get());
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004628 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4629
4630 // C++ [over.ref]p1:
4631 //
4632 // [...] An expression x->m is interpreted as (x.operator->())->m
4633 // for a class object x of type T if T::operator->() exists and if
4634 // the operator is selected as the best match function by the
4635 // overload resolution mechanism (13.3).
4636 // FIXME: look in base classes.
4637 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4638 OverloadCandidateSet CandidateSet;
Ted Kremenekd00cd9e2009-07-29 21:53:49 +00004639 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
Douglas Gregorda61ad22009-08-06 03:17:00 +00004640
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004641 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00004642 for (llvm::tie(Oper, OperEnd)
Argiris Kirtzidisab6e38a2009-06-30 02:36:12 +00004643 = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004644 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004645 /*SuppressUserConversions=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004646
4647 // Perform overload resolution.
4648 OverloadCandidateSet::iterator Best;
Douglas Gregor98189262009-06-19 23:52:42 +00004649 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004650 case OR_Success:
4651 // Overload resolution succeeded; we'll build the call below.
4652 break;
4653
4654 case OR_No_Viable_Function:
4655 if (CandidateSet.empty())
4656 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Douglas Gregorda61ad22009-08-06 03:17:00 +00004657 << Base->getType() << Base->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004658 else
4659 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Douglas Gregorda61ad22009-08-06 03:17:00 +00004660 << "operator->" << Base->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004661 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004662 return ExprError();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004663
4664 case OR_Ambiguous:
4665 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Douglas Gregorda61ad22009-08-06 03:17:00 +00004666 << "operator->" << Base->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004667 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004668 return ExprError();
Douglas Gregoraa57e862009-02-18 21:56:37 +00004669
4670 case OR_Deleted:
4671 Diag(OpLoc, diag::err_ovl_deleted_oper)
4672 << Best->Function->isDeleted()
Douglas Gregorda61ad22009-08-06 03:17:00 +00004673 << "operator->" << Base->getSourceRange();
Douglas Gregoraa57e862009-02-18 21:56:37 +00004674 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004675 return ExprError();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004676 }
4677
4678 // Convert the object parameter.
4679 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004680 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregorda61ad22009-08-06 03:17:00 +00004681 return ExprError();
Douglas Gregor9c690e92008-11-21 03:04:22 +00004682
4683 // No concerns about early exits now.
Douglas Gregorda61ad22009-08-06 03:17:00 +00004684 BaseIn.release();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004685
4686 // Build the operator call.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004687 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4688 SourceLocation());
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004689 UsualUnaryConversions(FnExpr);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004690 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004691 Method->getResultType().getNonReferenceType(),
4692 OpLoc);
Douglas Gregorda61ad22009-08-06 03:17:00 +00004693 return Owned(Base);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004694}
4695
Douglas Gregor45014fd2008-11-10 20:40:00 +00004696/// FixOverloadedFunctionReference - E is an expression that refers to
4697/// a C++ overloaded function (possibly with some parentheses and
4698/// perhaps a '&' around it). We have resolved the overloaded function
4699/// to the function declaration Fn, so patch up the expression E to
4700/// refer (possibly indirectly) to Fn.
4701void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4702 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4703 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4704 E->setType(PE->getSubExpr()->getType());
4705 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4706 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4707 "Can only take the address of an overloaded function");
Douglas Gregor3f411962009-02-11 01:18:59 +00004708 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4709 if (Method->isStatic()) {
4710 // Do nothing: static member functions aren't any different
4711 // from non-member functions.
Mike Stump90fc78e2009-08-04 21:02:39 +00004712 } else if (QualifiedDeclRefExpr *DRE
Douglas Gregor3f411962009-02-11 01:18:59 +00004713 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4714 // We have taken the address of a pointer to member
4715 // function. Perform the computation here so that we get the
4716 // appropriate pointer to member type.
4717 DRE->setDecl(Fn);
4718 DRE->setType(Fn->getType());
4719 QualType ClassType
4720 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4721 E->setType(Context.getMemberPointerType(Fn->getType(),
4722 ClassType.getTypePtr()));
4723 return;
4724 }
4725 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00004726 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregor2eedd992009-02-11 00:19:33 +00004727 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor45014fd2008-11-10 20:40:00 +00004728 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
Douglas Gregor62f78762009-07-08 20:55:45 +00004729 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4730 isa<FunctionTemplateDecl>(DR->getDecl())) &&
4731 "Expected overloaded function or function template");
Douglas Gregor45014fd2008-11-10 20:40:00 +00004732 DR->setDecl(Fn);
4733 E->setType(Fn->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004734 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4735 MemExpr->setMemberDecl(Fn);
4736 E->setType(Fn->getType());
Douglas Gregor45014fd2008-11-10 20:40:00 +00004737 } else {
4738 assert(false && "Invalid reference to overloaded function");
4739 }
4740}
4741
Douglas Gregord2baafd2008-10-21 16:13:35 +00004742} // end namespace clang