blob: 415ee9fcaa9cb776dbfc117c44e7164843358b74 [file] [log] [blame]
Chris Lattner02446fc2010-01-04 07:37:31 +00001//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
Eli Friedman74703252011-07-20 21:57:23 +000015#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000016#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000018#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/IntrinsicInst.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000020#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000023#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000024using namespace llvm;
25using namespace PatternMatch;
26
Chris Lattnerb20c0b52011-02-10 05:23:05 +000027static ConstantInt *getOne(Constant *C) {
28 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29}
30
Chris Lattner02446fc2010-01-04 07:37:31 +000031/// AddOne - Add one to a ConstantInt
32static Constant *AddOne(Constant *C) {
33 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
34}
35/// SubOne - Subtract one from a ConstantInt
Chris Lattnerb20c0b52011-02-10 05:23:05 +000036static Constant *SubOne(Constant *C) {
37 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
Chris Lattner02446fc2010-01-04 07:37:31 +000038}
39
40static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
41 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42}
43
44static bool HasAddOverflow(ConstantInt *Result,
45 ConstantInt *In1, ConstantInt *In2,
46 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000047 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000048 return Result->getValue().ult(In1->getValue());
Chris Lattnerc73b24d2011-07-15 06:08:15 +000049
50 if (In2->isNegative())
51 return Result->getValue().sgt(In1->getValue());
52 return Result->getValue().slt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000053}
54
55/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
56/// overflowed for this type.
57static bool AddWithOverflow(Constant *&Result, Constant *In1,
58 Constant *In2, bool IsSigned = false) {
59 Result = ConstantExpr::getAdd(In1, In2);
60
Chris Lattnerdb125cf2011-07-18 04:54:35 +000061 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000062 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
63 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
64 if (HasAddOverflow(ExtractElement(Result, Idx),
65 ExtractElement(In1, Idx),
66 ExtractElement(In2, Idx),
67 IsSigned))
68 return true;
69 }
70 return false;
71 }
72
73 return HasAddOverflow(cast<ConstantInt>(Result),
74 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75 IsSigned);
76}
77
78static bool HasSubOverflow(ConstantInt *Result,
79 ConstantInt *In1, ConstantInt *In2,
80 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000081 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000082 return Result->getValue().ugt(In1->getValue());
Jim Grosbach0cc4a952011-09-30 18:09:53 +000083
Chris Lattnerc73b24d2011-07-15 06:08:15 +000084 if (In2->isNegative())
85 return Result->getValue().slt(In1->getValue());
86
87 return Result->getValue().sgt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000088}
89
90/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
91/// overflowed for this type.
92static bool SubWithOverflow(Constant *&Result, Constant *In1,
93 Constant *In2, bool IsSigned = false) {
94 Result = ConstantExpr::getSub(In1, In2);
95
Chris Lattnerdb125cf2011-07-18 04:54:35 +000096 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000097 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
98 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
99 if (HasSubOverflow(ExtractElement(Result, Idx),
100 ExtractElement(In1, Idx),
101 ExtractElement(In2, Idx),
102 IsSigned))
103 return true;
104 }
105 return false;
106 }
107
108 return HasSubOverflow(cast<ConstantInt>(Result),
109 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110 IsSigned);
111}
112
113/// isSignBitCheck - Given an exploded icmp instruction, return true if the
114/// comparison only checks the sign bit. If it only checks the sign bit, set
115/// TrueIfSigned if the result of the comparison is true when the input value is
116/// signed.
117static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
118 bool &TrueIfSigned) {
119 switch (pred) {
120 case ICmpInst::ICMP_SLT: // True if LHS s< 0
121 TrueIfSigned = true;
122 return RHS->isZero();
123 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
124 TrueIfSigned = true;
125 return RHS->isAllOnesValue();
126 case ICmpInst::ICMP_SGT: // True if LHS s> -1
127 TrueIfSigned = false;
128 return RHS->isAllOnesValue();
129 case ICmpInst::ICMP_UGT:
130 // True if LHS u> RHS and RHS == high-bit-mask - 1
131 TrueIfSigned = true;
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000132 return RHS->isMaxValue(true);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000133 case ICmpInst::ICMP_UGE:
Chris Lattner02446fc2010-01-04 07:37:31 +0000134 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135 TrueIfSigned = true;
136 return RHS->getValue().isSignBit();
137 default:
138 return false;
139 }
140}
141
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000142/// Returns true if the exploded icmp can be expressed as a signed comparison
143/// to zero and updates the predicate accordingly.
144/// The signedness of the comparison is preserved.
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000145static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
146 if (!ICmpInst::isSigned(pred))
147 return false;
148
149 if (RHS->isZero())
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000150 return ICmpInst::isRelational(pred);
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000151
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000152 if (RHS->isOne()) {
153 if (pred == ICmpInst::ICMP_SLT) {
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000154 pred = ICmpInst::ICMP_SLE;
155 return true;
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000156 }
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000157 } else if (RHS->isAllOnesValue()) {
158 if (pred == ICmpInst::ICMP_SGT) {
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000159 pred = ICmpInst::ICMP_SGE;
160 return true;
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000161 }
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000162 }
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000163
164 return false;
165}
166
Chris Lattner02446fc2010-01-04 07:37:31 +0000167// isHighOnes - Return true if the constant is of the form 1+0+.
168// This is the same as lowones(~X).
169static bool isHighOnes(const ConstantInt *CI) {
170 return (~CI->getValue() + 1).isPowerOf2();
171}
172
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000173/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
Chris Lattner02446fc2010-01-04 07:37:31 +0000174/// set of known zero and one bits, compute the maximum and minimum values that
175/// could have the specified known zero and known one bits, returning them in
176/// min/max.
177static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
178 const APInt& KnownOne,
179 APInt& Min, APInt& Max) {
180 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
181 KnownZero.getBitWidth() == Min.getBitWidth() &&
182 KnownZero.getBitWidth() == Max.getBitWidth() &&
183 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
184 APInt UnknownBits = ~(KnownZero|KnownOne);
185
186 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
187 // bit if it is unknown.
188 Min = KnownOne;
189 Max = KnownOne|UnknownBits;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000190
Chris Lattner02446fc2010-01-04 07:37:31 +0000191 if (UnknownBits.isNegative()) { // Sign bit is unknown
Jay Foad7a874dd2010-12-01 08:53:58 +0000192 Min.setBit(Min.getBitWidth()-1);
193 Max.clearBit(Max.getBitWidth()-1);
Chris Lattner02446fc2010-01-04 07:37:31 +0000194 }
195}
196
197// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
198// a set of known zero and one bits, compute the maximum and minimum values that
199// could have the specified known zero and known one bits, returning them in
200// min/max.
201static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202 const APInt &KnownOne,
203 APInt &Min, APInt &Max) {
204 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205 KnownZero.getBitWidth() == Min.getBitWidth() &&
206 KnownZero.getBitWidth() == Max.getBitWidth() &&
207 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208 APInt UnknownBits = ~(KnownZero|KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000209
Chris Lattner02446fc2010-01-04 07:37:31 +0000210 // The minimum value is when the unknown bits are all zeros.
211 Min = KnownOne;
212 // The maximum value is when the unknown bits are all ones.
213 Max = KnownOne|UnknownBits;
214}
215
216
217
218/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
219/// cmp pred (load (gep GV, ...)), cmpcst
220/// where GV is a global variable with a constant initializer. Try to simplify
221/// this into some simple computation that does not need the load. For example
222/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
223///
224/// If AndCst is non-null, then the loaded value is masked with that constant
225/// before doing the comparison. This handles cases like "A[i]&4 == 0".
226Instruction *InstCombiner::
227FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
228 CmpInst &ICI, ConstantInt *AndCst) {
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000229 // We need TD information to know the pointer size unless this is inbounds.
230 if (!GEP->isInBounds() && TD == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000231
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000232 Constant *Init = GV->getInitializer();
233 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
234 return 0;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000235
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000236 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
237 if (ArrayElementCount > 1024) return 0; // Don't blow up on huge arrays.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000238
Chris Lattner02446fc2010-01-04 07:37:31 +0000239 // There are many forms of this optimization we can handle, for now, just do
240 // the simple index into a single-dimensional array.
241 //
242 // Require: GEP GV, 0, i {{, constant indices}}
243 if (GEP->getNumOperands() < 3 ||
244 !isa<ConstantInt>(GEP->getOperand(1)) ||
245 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
246 isa<Constant>(GEP->getOperand(2)))
247 return 0;
248
249 // Check that indices after the variable are constants and in-range for the
250 // type they index. Collect the indices. This is typically for arrays of
251 // structs.
252 SmallVector<unsigned, 4> LaterIndices;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000253
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000254 Type *EltTy = Init->getType()->getArrayElementType();
Chris Lattner02446fc2010-01-04 07:37:31 +0000255 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
256 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
257 if (Idx == 0) return 0; // Variable index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000258
Chris Lattner02446fc2010-01-04 07:37:31 +0000259 uint64_t IdxVal = Idx->getZExtValue();
260 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000261
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000262 if (StructType *STy = dyn_cast<StructType>(EltTy))
Chris Lattner02446fc2010-01-04 07:37:31 +0000263 EltTy = STy->getElementType(IdxVal);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000264 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000265 if (IdxVal >= ATy->getNumElements()) return 0;
266 EltTy = ATy->getElementType();
267 } else {
268 return 0; // Unknown type.
269 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000270
Chris Lattner02446fc2010-01-04 07:37:31 +0000271 LaterIndices.push_back(IdxVal);
272 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000273
Chris Lattner02446fc2010-01-04 07:37:31 +0000274 enum { Overdefined = -3, Undefined = -2 };
275
276 // Variables for our state machines.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000277
Chris Lattner02446fc2010-01-04 07:37:31 +0000278 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
279 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
280 // and 87 is the second (and last) index. FirstTrueElement is -2 when
281 // undefined, otherwise set to the first true element. SecondTrueElement is
282 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
283 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
284
285 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
286 // form "i != 47 & i != 87". Same state transitions as for true elements.
287 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000288
Chris Lattner02446fc2010-01-04 07:37:31 +0000289 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
290 /// define a state machine that triggers for ranges of values that the index
291 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
292 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
293 /// index in the range (inclusive). We use -2 for undefined here because we
294 /// use relative comparisons and don't want 0-1 to match -1.
295 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000296
Chris Lattner02446fc2010-01-04 07:37:31 +0000297 // MagicBitvector - This is a magic bitvector where we set a bit if the
298 // comparison is true for element 'i'. If there are 64 elements or less in
299 // the array, this will fully represent all the comparison results.
300 uint64_t MagicBitvector = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000301
302
Chris Lattner02446fc2010-01-04 07:37:31 +0000303 // Scan the array and see if one of our patterns matches.
304 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000305 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
306 Constant *Elt = Init->getAggregateElement(i);
307 if (Elt == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000308
Chris Lattner02446fc2010-01-04 07:37:31 +0000309 // If this is indexing an array of structures, get the structure element.
310 if (!LaterIndices.empty())
Jay Foadfc6d3a42011-07-13 10:26:04 +0000311 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000312
Chris Lattner02446fc2010-01-04 07:37:31 +0000313 // If the element is masked, handle it.
314 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000315
Chris Lattner02446fc2010-01-04 07:37:31 +0000316 // Find out if the comparison would be true or false for the i'th element.
317 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
Chad Rosieraab8e282011-12-02 01:26:24 +0000318 CompareRHS, TD, TLI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000319 // If the result is undef for this element, ignore it.
320 if (isa<UndefValue>(C)) {
321 // Extend range state machines to cover this element in case there is an
322 // undef in the middle of the range.
323 if (TrueRangeEnd == (int)i-1)
324 TrueRangeEnd = i;
325 if (FalseRangeEnd == (int)i-1)
326 FalseRangeEnd = i;
327 continue;
328 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000329
Chris Lattner02446fc2010-01-04 07:37:31 +0000330 // If we can't compute the result for any of the elements, we have to give
331 // up evaluating the entire conditional.
332 if (!isa<ConstantInt>(C)) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000333
Chris Lattner02446fc2010-01-04 07:37:31 +0000334 // Otherwise, we know if the comparison is true or false for this element,
335 // update our state machines.
336 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000337
Chris Lattner02446fc2010-01-04 07:37:31 +0000338 // State machine for single/double/range index comparison.
339 if (IsTrueForElt) {
340 // Update the TrueElement state machine.
341 if (FirstTrueElement == Undefined)
342 FirstTrueElement = TrueRangeEnd = i; // First true element.
343 else {
344 // Update double-compare state machine.
345 if (SecondTrueElement == Undefined)
346 SecondTrueElement = i;
347 else
348 SecondTrueElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000349
Chris Lattner02446fc2010-01-04 07:37:31 +0000350 // Update range state machine.
351 if (TrueRangeEnd == (int)i-1)
352 TrueRangeEnd = i;
353 else
354 TrueRangeEnd = Overdefined;
355 }
356 } else {
357 // Update the FalseElement state machine.
358 if (FirstFalseElement == Undefined)
359 FirstFalseElement = FalseRangeEnd = i; // First false element.
360 else {
361 // Update double-compare state machine.
362 if (SecondFalseElement == Undefined)
363 SecondFalseElement = i;
364 else
365 SecondFalseElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000366
Chris Lattner02446fc2010-01-04 07:37:31 +0000367 // Update range state machine.
368 if (FalseRangeEnd == (int)i-1)
369 FalseRangeEnd = i;
370 else
371 FalseRangeEnd = Overdefined;
372 }
373 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000374
375
Chris Lattner02446fc2010-01-04 07:37:31 +0000376 // If this element is in range, update our magic bitvector.
377 if (i < 64 && IsTrueForElt)
378 MagicBitvector |= 1ULL << i;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000379
Chris Lattner02446fc2010-01-04 07:37:31 +0000380 // If all of our states become overdefined, bail out early. Since the
381 // predicate is expensive, only check it every 8 elements. This is only
382 // really useful for really huge arrays.
383 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
384 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
385 FalseRangeEnd == Overdefined)
386 return 0;
387 }
388
389 // Now that we've scanned the entire array, emit our new comparison(s). We
390 // order the state machines in complexity of the generated code.
391 Value *Idx = GEP->getOperand(2);
392
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000393 // If the index is larger than the pointer size of the target, truncate the
394 // index down like the GEP would do implicitly. We don't have to do this for
395 // an inbounds GEP because the index can't be out of range.
396 if (!GEP->isInBounds() &&
Chandler Carruth426c2bf2012-11-01 09:14:31 +0000397 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000398 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000399
Chris Lattner02446fc2010-01-04 07:37:31 +0000400 // If the comparison is only true for one or two elements, emit direct
401 // comparisons.
402 if (SecondTrueElement != Overdefined) {
403 // None true -> false.
404 if (FirstTrueElement == Undefined)
405 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000406
Chris Lattner02446fc2010-01-04 07:37:31 +0000407 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000408
Chris Lattner02446fc2010-01-04 07:37:31 +0000409 // True for one element -> 'i == 47'.
410 if (SecondTrueElement == Undefined)
411 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000412
Chris Lattner02446fc2010-01-04 07:37:31 +0000413 // True for two elements -> 'i == 47 | i == 72'.
414 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
415 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
416 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
417 return BinaryOperator::CreateOr(C1, C2);
418 }
419
420 // If the comparison is only false for one or two elements, emit direct
421 // comparisons.
422 if (SecondFalseElement != Overdefined) {
423 // None false -> true.
424 if (FirstFalseElement == Undefined)
425 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000426
Chris Lattner02446fc2010-01-04 07:37:31 +0000427 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
428
429 // False for one element -> 'i != 47'.
430 if (SecondFalseElement == Undefined)
431 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000432
Chris Lattner02446fc2010-01-04 07:37:31 +0000433 // False for two elements -> 'i != 47 & i != 72'.
434 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
435 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
436 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
437 return BinaryOperator::CreateAnd(C1, C2);
438 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000439
Chris Lattner02446fc2010-01-04 07:37:31 +0000440 // If the comparison can be replaced with a range comparison for the elements
441 // where it is true, emit the range check.
442 if (TrueRangeEnd != Overdefined) {
443 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000444
Chris Lattner02446fc2010-01-04 07:37:31 +0000445 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
446 if (FirstTrueElement) {
447 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
448 Idx = Builder->CreateAdd(Idx, Offs);
449 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000450
Chris Lattner02446fc2010-01-04 07:37:31 +0000451 Value *End = ConstantInt::get(Idx->getType(),
452 TrueRangeEnd-FirstTrueElement+1);
453 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
454 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000455
Chris Lattner02446fc2010-01-04 07:37:31 +0000456 // False range check.
457 if (FalseRangeEnd != Overdefined) {
458 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
459 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
460 if (FirstFalseElement) {
461 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
462 Idx = Builder->CreateAdd(Idx, Offs);
463 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000464
Chris Lattner02446fc2010-01-04 07:37:31 +0000465 Value *End = ConstantInt::get(Idx->getType(),
466 FalseRangeEnd-FirstFalseElement);
467 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
468 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000469
470
Arnaud A. de Grandmaison2be921a2013-03-22 08:25:01 +0000471 // If a magic bitvector captures the entire comparison state
Chris Lattner02446fc2010-01-04 07:37:31 +0000472 // of this load, replace it with computation that does:
473 // ((magic_cst >> i) & 1) != 0
Arnaud A. de Grandmaison2be921a2013-03-22 08:25:01 +0000474 {
475 Type *Ty = 0;
476
477 // Look for an appropriate type:
478 // - The type of Idx if the magic fits
479 // - The smallest fitting legal type if we have a DataLayout
480 // - Default to i32
481 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
482 Ty = Idx->getType();
483 else if (TD)
484 Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
485 else if (ArrayElementCount <= 32)
Chris Lattner02446fc2010-01-04 07:37:31 +0000486 Ty = Type::getInt32Ty(Init->getContext());
Arnaud A. de Grandmaison2be921a2013-03-22 08:25:01 +0000487
488 if (Ty != 0) {
489 Value *V = Builder->CreateIntCast(Idx, Ty, false);
490 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
491 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
492 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
493 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000494 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000495
Chris Lattner02446fc2010-01-04 07:37:31 +0000496 return 0;
497}
498
499
500/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
501/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
502/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
503/// be complex, and scales are involved. The above expression would also be
504/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
505/// This later form is less amenable to optimization though, and we are allowed
506/// to generate the first by knowing that pointer arithmetic doesn't overflow.
507///
508/// If we can't emit an optimized form for this expression, this returns null.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000509///
Eli Friedman107ffd52011-05-18 23:11:30 +0000510static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
Micah Villmow3574eca2012-10-08 16:38:25 +0000511 DataLayout &TD = *IC.getDataLayout();
Chris Lattner02446fc2010-01-04 07:37:31 +0000512 gep_type_iterator GTI = gep_type_begin(GEP);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000513
Chris Lattner02446fc2010-01-04 07:37:31 +0000514 // Check to see if this gep only has a single variable index. If so, and if
515 // any constant indices are a multiple of its scale, then we can compute this
516 // in terms of the scale of the variable index. For example, if the GEP
517 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
518 // because the expression will cross zero at the same point.
519 unsigned i, e = GEP->getNumOperands();
520 int64_t Offset = 0;
521 for (i = 1; i != e; ++i, ++GTI) {
522 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
523 // Compute the aggregate offset of constant indices.
524 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000525
Chris Lattner02446fc2010-01-04 07:37:31 +0000526 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000527 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000528 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
529 } else {
530 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
531 Offset += Size*CI->getSExtValue();
532 }
533 } else {
534 // Found our variable index.
535 break;
536 }
537 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000538
Chris Lattner02446fc2010-01-04 07:37:31 +0000539 // If there are no variable indices, we must have a constant offset, just
540 // evaluate it the general way.
541 if (i == e) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000542
Chris Lattner02446fc2010-01-04 07:37:31 +0000543 Value *VariableIdx = GEP->getOperand(i);
544 // Determine the scale factor of the variable element. For example, this is
545 // 4 if the variable index is into an array of i32.
546 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000547
Chris Lattner02446fc2010-01-04 07:37:31 +0000548 // Verify that there are no other variable indices. If so, emit the hard way.
549 for (++i, ++GTI; i != e; ++i, ++GTI) {
550 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
551 if (!CI) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000552
Chris Lattner02446fc2010-01-04 07:37:31 +0000553 // Compute the aggregate offset of constant indices.
554 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000555
Chris Lattner02446fc2010-01-04 07:37:31 +0000556 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000557 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000558 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
559 } else {
560 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
561 Offset += Size*CI->getSExtValue();
562 }
563 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000564
Chris Lattner02446fc2010-01-04 07:37:31 +0000565 // Okay, we know we have a single variable index, which must be a
566 // pointer/array/vector index. If there is no offset, life is simple, return
567 // the index.
Chandler Carruth426c2bf2012-11-01 09:14:31 +0000568 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chris Lattner02446fc2010-01-04 07:37:31 +0000569 if (Offset == 0) {
570 // Cast to intptrty in case a truncation occurs. If an extension is needed,
571 // we don't need to bother extending: the extension won't affect where the
572 // computation crosses zero.
Eli Friedman107ffd52011-05-18 23:11:30 +0000573 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000574 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Eli Friedman107ffd52011-05-18 23:11:30 +0000575 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
576 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000577 return VariableIdx;
578 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000579
Chris Lattner02446fc2010-01-04 07:37:31 +0000580 // Otherwise, there is an index. The computation we will do will be modulo
581 // the pointer size, so get it.
582 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000583
Chris Lattner02446fc2010-01-04 07:37:31 +0000584 Offset &= PtrSizeMask;
585 VariableScale &= PtrSizeMask;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000586
Chris Lattner02446fc2010-01-04 07:37:31 +0000587 // To do this transformation, any constant index must be a multiple of the
588 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
589 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
590 // multiple of the variable scale.
591 int64_t NewOffs = Offset / (int64_t)VariableScale;
592 if (Offset != NewOffs*(int64_t)VariableScale)
593 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000594
Chris Lattner02446fc2010-01-04 07:37:31 +0000595 // Okay, we can do this evaluation. Start by converting the index to intptr.
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000596 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Chris Lattner02446fc2010-01-04 07:37:31 +0000597 if (VariableIdx->getType() != IntPtrTy)
Eli Friedman107ffd52011-05-18 23:11:30 +0000598 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
599 true /*Signed*/);
Chris Lattner02446fc2010-01-04 07:37:31 +0000600 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Eli Friedman107ffd52011-05-18 23:11:30 +0000601 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
Chris Lattner02446fc2010-01-04 07:37:31 +0000602}
603
604/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
605/// else. At this point we know that the GEP is on the LHS of the comparison.
606Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
607 ICmpInst::Predicate Cond,
608 Instruction &I) {
Benjamin Kramer8294eb52012-02-21 13:31:09 +0000609 // Don't transform signed compares of GEPs into index compares. Even if the
610 // GEP is inbounds, the final add of the base pointer can have signed overflow
611 // and would change the result of the icmp.
612 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
Benjamin Kramera42d5c42012-02-21 13:40:06 +0000613 // the maximum signed value for the pointer type.
Benjamin Kramer8294eb52012-02-21 13:31:09 +0000614 if (ICmpInst::isSigned(Cond))
615 return 0;
616
Chris Lattner02446fc2010-01-04 07:37:31 +0000617 // Look through bitcasts.
618 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
619 RHS = BCI->getOperand(0);
620
621 Value *PtrBase = GEPLHS->getOperand(0);
622 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
623 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
624 // This transformation (ignoring the base and scales) is valid because we
625 // know pointers can't overflow since the gep is inbounds. See if we can
626 // output an optimized form.
Eli Friedman107ffd52011-05-18 23:11:30 +0000627 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000628
Chris Lattner02446fc2010-01-04 07:37:31 +0000629 // If not, synthesize the offset the hard way.
630 if (Offset == 0)
631 Offset = EmitGEPOffset(GEPLHS);
632 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
633 Constant::getNullValue(Offset->getType()));
634 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
635 // If the base pointers are different, but the indices are the same, just
636 // compare the base pointer.
637 if (PtrBase != GEPRHS->getOperand(0)) {
638 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
639 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
640 GEPRHS->getOperand(0)->getType();
641 if (IndicesTheSame)
642 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
643 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
644 IndicesTheSame = false;
645 break;
646 }
647
648 // If all indices are the same, just compare the base pointers.
649 if (IndicesTheSame)
650 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
651 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
652
Benjamin Kramer9bb40852012-02-20 15:07:47 +0000653 // If we're comparing GEPs with two base pointers that only differ in type
654 // and both GEPs have only constant indices or just one use, then fold
655 // the compare with the adjusted indices.
Benjamin Kramer6ad48f42012-02-20 18:45:10 +0000656 if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
Benjamin Kramer9bb40852012-02-20 15:07:47 +0000657 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
658 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
659 PtrBase->stripPointerCasts() ==
660 GEPRHS->getOperand(0)->stripPointerCasts()) {
661 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
662 EmitGEPOffset(GEPLHS),
663 EmitGEPOffset(GEPRHS));
664 return ReplaceInstUsesWith(I, Cmp);
665 }
666
Chris Lattner02446fc2010-01-04 07:37:31 +0000667 // Otherwise, the base pointers are different and the indices are
668 // different, bail out.
669 return 0;
670 }
671
672 // If one of the GEPs has all zero indices, recurse.
673 bool AllZeros = true;
674 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
675 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
676 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
677 AllZeros = false;
678 break;
679 }
680 if (AllZeros)
681 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
682 ICmpInst::getSwappedPredicate(Cond), I);
683
684 // If the other GEP has all zero indices, recurse.
685 AllZeros = true;
686 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
687 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
688 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
689 AllZeros = false;
690 break;
691 }
692 if (AllZeros)
693 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
694
Stuart Hastings67f071e2011-05-14 05:55:10 +0000695 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
Chris Lattner02446fc2010-01-04 07:37:31 +0000696 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
697 // If the GEPs only differ by one index, compare it.
698 unsigned NumDifferences = 0; // Keep track of # differences.
699 unsigned DiffOperand = 0; // The operand that differs.
700 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
701 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
702 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
703 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
704 // Irreconcilable differences.
705 NumDifferences = 2;
706 break;
707 } else {
708 if (NumDifferences++) break;
709 DiffOperand = i;
710 }
711 }
712
713 if (NumDifferences == 0) // SAME GEP?
714 return ReplaceInstUsesWith(I, // No comparison is needed here.
715 ConstantInt::get(Type::getInt1Ty(I.getContext()),
716 ICmpInst::isTrueWhenEqual(Cond)));
717
Stuart Hastings67f071e2011-05-14 05:55:10 +0000718 else if (NumDifferences == 1 && GEPsInBounds) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000719 Value *LHSV = GEPLHS->getOperand(DiffOperand);
720 Value *RHSV = GEPRHS->getOperand(DiffOperand);
721 // Make sure we do a signed comparison here.
722 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
723 }
724 }
725
726 // Only lower this if the icmp is the only user of the GEP or if we expect
727 // the result to fold to a constant!
728 if (TD &&
Stuart Hastings67f071e2011-05-14 05:55:10 +0000729 GEPsInBounds &&
Chris Lattner02446fc2010-01-04 07:37:31 +0000730 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
731 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
732 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
733 Value *L = EmitGEPOffset(GEPLHS);
734 Value *R = EmitGEPOffset(GEPRHS);
735 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
736 }
737 }
738 return 0;
739}
740
741/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
742Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
743 Value *X, ConstantInt *CI,
744 ICmpInst::Predicate Pred,
745 Value *TheAdd) {
746 // If we have X+0, exit early (simplifying logic below) and let it get folded
747 // elsewhere. icmp X+0, X -> icmp X, X
748 if (CI->isZero()) {
749 bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
750 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
751 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000752
Chris Lattner02446fc2010-01-04 07:37:31 +0000753 // (X+4) == X -> false.
754 if (Pred == ICmpInst::ICMP_EQ)
755 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
756
757 // (X+4) != X -> true.
758 if (Pred == ICmpInst::ICMP_NE)
759 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
760
Chris Lattner02446fc2010-01-04 07:37:31 +0000761 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000762 // so the values can never be equal. Similarly for all other "or equals"
Chris Lattner02446fc2010-01-04 07:37:31 +0000763 // operators.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000764
Chris Lattner9aa1e242010-01-08 17:48:19 +0000765 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
Chris Lattner02446fc2010-01-04 07:37:31 +0000766 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
767 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
768 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000769 Value *R =
Chris Lattner9aa1e242010-01-08 17:48:19 +0000770 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000771 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
772 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000773
Chris Lattner02446fc2010-01-04 07:37:31 +0000774 // (X+1) >u X --> X <u (0-1) --> X != 255
775 // (X+2) >u X --> X <u (0-2) --> X <u 254
776 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
Duncan Sandsa7724332011-02-17 07:46:37 +0000777 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000778 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000779
Chris Lattner02446fc2010-01-04 07:37:31 +0000780 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
781 ConstantInt *SMax = ConstantInt::get(X->getContext(),
782 APInt::getSignedMaxValue(BitWidth));
783
784 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
785 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
786 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
787 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
788 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
789 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
Duncan Sandsa7724332011-02-17 07:46:37 +0000790 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000791 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000792
Chris Lattner02446fc2010-01-04 07:37:31 +0000793 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
794 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
795 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
796 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
797 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
798 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000799
Chris Lattner02446fc2010-01-04 07:37:31 +0000800 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
801 Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
802 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
803}
804
805/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
806/// and CmpRHS are both known to be integer constants.
807Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
808 ConstantInt *DivRHS) {
809 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
810 const APInt &CmpRHSV = CmpRHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000811
812 // FIXME: If the operand types don't match the type of the divide
Chris Lattner02446fc2010-01-04 07:37:31 +0000813 // then don't attempt this transform. The code below doesn't have the
814 // logic to deal with a signed divide and an unsigned compare (and
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000815 // vice versa). This is because (x /s C1) <s C2 produces different
Chris Lattner02446fc2010-01-04 07:37:31 +0000816 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000817 // (x /u C1) <u C2. Simply casting the operands and result won't
818 // work. :( The if statement below tests that condition and bails
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000819 // if it finds it.
Chris Lattner02446fc2010-01-04 07:37:31 +0000820 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
821 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
822 return 0;
823 if (DivRHS->isZero())
824 return 0; // The ProdOV computation fails on divide by zero.
825 if (DivIsSigned && DivRHS->isAllOnesValue())
826 return 0; // The overflow computation also screws up here
Chris Lattnerbb75d332011-02-13 08:07:21 +0000827 if (DivRHS->isOne()) {
828 // This eliminates some funny cases with INT_MIN.
829 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
830 return &ICI;
831 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000832
833 // Compute Prod = CI * DivRHS. We are essentially solving an equation
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000834 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
835 // C2 (CI). By solving for X we can turn this into a range check
836 // instead of computing a divide.
Chris Lattner02446fc2010-01-04 07:37:31 +0000837 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
838
839 // Determine if the product overflows by seeing if the product is
840 // not equal to the divide. Make sure we do the same kind of divide
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000841 // as in the LHS instruction that we're folding.
Chris Lattner02446fc2010-01-04 07:37:31 +0000842 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
843 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
844
845 // Get the ICmp opcode
846 ICmpInst::Predicate Pred = ICI.getPredicate();
847
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000848 /// If the division is known to be exact, then there is no remainder from the
849 /// divide, so the covered range size is unit, otherwise it is the divisor.
850 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000851
Chris Lattner02446fc2010-01-04 07:37:31 +0000852 // Figure out the interval that is being checked. For example, a comparison
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000853 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
Chris Lattner02446fc2010-01-04 07:37:31 +0000854 // Compute this interval based on the constants involved and the signedness of
855 // the compare/divide. This computes a half-open interval, keeping track of
856 // whether either value in the interval overflows. After analysis each
857 // overflow variable is set to 0 if it's corresponding bound variable is valid
858 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
859 int LoOverflow = 0, HiOverflow = 0;
860 Constant *LoBound = 0, *HiBound = 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000861
Chris Lattner02446fc2010-01-04 07:37:31 +0000862 if (!DivIsSigned) { // udiv
863 // e.g. X/5 op 3 --> [15, 20)
864 LoBound = Prod;
865 HiOverflow = LoOverflow = ProdOV;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000866 if (!HiOverflow) {
867 // If this is not an exact divide, then many values in the range collapse
868 // to the same result value.
869 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
870 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000871
Chris Lattner02446fc2010-01-04 07:37:31 +0000872 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
873 if (CmpRHSV == 0) { // (X / pos) op 0
874 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000875 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
876 HiBound = RangeSize;
Chris Lattner02446fc2010-01-04 07:37:31 +0000877 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
878 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
879 HiOverflow = LoOverflow = ProdOV;
880 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000881 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000882 } else { // (X / pos) op neg
883 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
884 HiBound = AddOne(Prod);
885 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
886 if (!LoOverflow) {
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000887 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000888 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000889 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000890 }
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000891 } else if (DivRHS->isNegative()) { // Divisor is < 0.
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000892 if (DivI->isExact())
893 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000894 if (CmpRHSV == 0) { // (X / neg) op 0
895 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000896 LoBound = AddOne(RangeSize);
897 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000898 if (HiBound == DivRHS) { // -INTMIN = INTMIN
899 HiOverflow = 1; // [INTMIN+1, overflow)
900 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
901 }
902 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
903 // e.g. X/-5 op 3 --> [-19, -14)
904 HiBound = AddOne(Prod);
905 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
906 if (!LoOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000907 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
Chris Lattner02446fc2010-01-04 07:37:31 +0000908 } else { // (X / neg) op neg
909 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
910 LoOverflow = HiOverflow = ProdOV;
911 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000912 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000913 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000914
Chris Lattner02446fc2010-01-04 07:37:31 +0000915 // Dividing by a negative swaps the condition. LT <-> GT
916 Pred = ICmpInst::getSwappedPredicate(Pred);
917 }
918
919 Value *X = DivI->getOperand(0);
920 switch (Pred) {
921 default: llvm_unreachable("Unhandled icmp opcode!");
922 case ICmpInst::ICMP_EQ:
923 if (LoOverflow && HiOverflow)
924 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000925 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000926 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
927 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000928 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000929 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
930 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000931 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
932 DivIsSigned, true));
Chris Lattner02446fc2010-01-04 07:37:31 +0000933 case ICmpInst::ICMP_NE:
934 if (LoOverflow && HiOverflow)
935 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000936 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000937 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
938 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000939 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000940 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
941 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000942 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
943 DivIsSigned, false));
Chris Lattner02446fc2010-01-04 07:37:31 +0000944 case ICmpInst::ICMP_ULT:
945 case ICmpInst::ICMP_SLT:
946 if (LoOverflow == +1) // Low bound is greater than input range.
947 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
948 if (LoOverflow == -1) // Low bound is less than input range.
949 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
950 return new ICmpInst(Pred, X, LoBound);
951 case ICmpInst::ICMP_UGT:
952 case ICmpInst::ICMP_SGT:
953 if (HiOverflow == +1) // High bound greater than input range.
954 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000955 if (HiOverflow == -1) // High bound less than input range.
Chris Lattner02446fc2010-01-04 07:37:31 +0000956 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
957 if (Pred == ICmpInst::ICMP_UGT)
958 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000959 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner02446fc2010-01-04 07:37:31 +0000960 }
961}
962
Chris Lattner74542aa2011-02-13 07:43:07 +0000963/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
964Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
965 ConstantInt *ShAmt) {
Chris Lattner74542aa2011-02-13 07:43:07 +0000966 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000967
Chris Lattner74542aa2011-02-13 07:43:07 +0000968 // Check that the shift amount is in range. If not, don't perform
969 // undefined shifts. When the shift is visited it will be
970 // simplified.
971 uint32_t TypeBits = CmpRHSV.getBitWidth();
972 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnerbb75d332011-02-13 08:07:21 +0000973 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
Chris Lattner74542aa2011-02-13 07:43:07 +0000974 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000975
Chris Lattnerbb75d332011-02-13 08:07:21 +0000976 if (!ICI.isEquality()) {
977 // If we have an unsigned comparison and an ashr, we can't simplify this.
978 // Similarly for signed comparisons with lshr.
979 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
980 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000981
Eli Friedmana831a9b2011-05-25 23:26:20 +0000982 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
983 // by a power of 2. Since we already have logic to simplify these,
984 // transform to div and then simplify the resultant comparison.
Chris Lattnerbb75d332011-02-13 08:07:21 +0000985 if (Shr->getOpcode() == Instruction::AShr &&
Eli Friedmana831a9b2011-05-25 23:26:20 +0000986 (!Shr->isExact() || ShAmtVal == TypeBits - 1))
Chris Lattnerbb75d332011-02-13 08:07:21 +0000987 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000988
Chris Lattnerbb75d332011-02-13 08:07:21 +0000989 // Revisit the shift (to delete it).
990 Worklist.Add(Shr);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000991
Chris Lattnerbb75d332011-02-13 08:07:21 +0000992 Constant *DivCst =
993 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000994
Chris Lattnerbb75d332011-02-13 08:07:21 +0000995 Value *Tmp =
996 Shr->getOpcode() == Instruction::AShr ?
997 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
998 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000999
Chris Lattnerbb75d332011-02-13 08:07:21 +00001000 ICI.setOperand(0, Tmp);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001001
Chris Lattnerbb75d332011-02-13 08:07:21 +00001002 // If the builder folded the binop, just return it.
1003 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1004 if (TheDiv == 0)
1005 return &ICI;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001006
Chris Lattnerbb75d332011-02-13 08:07:21 +00001007 // Otherwise, fold this div/compare.
1008 assert(TheDiv->getOpcode() == Instruction::SDiv ||
1009 TheDiv->getOpcode() == Instruction::UDiv);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001010
Chris Lattnerbb75d332011-02-13 08:07:21 +00001011 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1012 assert(Res && "This div/cst should have folded!");
1013 return Res;
1014 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001015
1016
Chris Lattner74542aa2011-02-13 07:43:07 +00001017 // If we are comparing against bits always shifted out, the
1018 // comparison cannot succeed.
1019 APInt Comp = CmpRHSV << ShAmtVal;
1020 ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
1021 if (Shr->getOpcode() == Instruction::LShr)
1022 Comp = Comp.lshr(ShAmtVal);
1023 else
1024 Comp = Comp.ashr(ShAmtVal);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001025
Chris Lattner74542aa2011-02-13 07:43:07 +00001026 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1027 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1028 Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1029 IsICMP_NE);
1030 return ReplaceInstUsesWith(ICI, Cst);
1031 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001032
Chris Lattner74542aa2011-02-13 07:43:07 +00001033 // Otherwise, check to see if the bits shifted out are known to be zero.
1034 // If so, we can compare against the unshifted value:
1035 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Chris Lattnere5116f82011-02-13 18:30:09 +00001036 if (Shr->hasOneUse() && Shr->isExact())
Chris Lattner74542aa2011-02-13 07:43:07 +00001037 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001038
Chris Lattner74542aa2011-02-13 07:43:07 +00001039 if (Shr->hasOneUse()) {
1040 // Otherwise strength reduce the shift into an and.
1041 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1042 Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001043
Chris Lattner74542aa2011-02-13 07:43:07 +00001044 Value *And = Builder->CreateAnd(Shr->getOperand(0),
1045 Mask, Shr->getName()+".mask");
1046 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1047 }
1048 return 0;
1049}
1050
Chris Lattner02446fc2010-01-04 07:37:31 +00001051
1052/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1053///
1054Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1055 Instruction *LHSI,
1056 ConstantInt *RHS) {
1057 const APInt &RHSV = RHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001058
Chris Lattner02446fc2010-01-04 07:37:31 +00001059 switch (LHSI->getOpcode()) {
1060 case Instruction::Trunc:
1061 if (ICI.isEquality() && LHSI->hasOneUse()) {
1062 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1063 // of the high bits truncated out of x are known.
1064 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1065 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
Chris Lattner02446fc2010-01-04 07:37:31 +00001066 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001067 ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001068
Chris Lattner02446fc2010-01-04 07:37:31 +00001069 // If all the high bits are known, we can do this xform.
1070 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1071 // Pull in the high bits from known-ones set.
Jay Foad40f8f622010-12-07 08:25:19 +00001072 APInt NewRHS = RHS->getValue().zext(SrcBits);
Eli Friedman5b6dfee2012-05-11 01:32:59 +00001073 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
Chris Lattner02446fc2010-01-04 07:37:31 +00001074 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1075 ConstantInt::get(ICI.getContext(), NewRHS));
1076 }
1077 }
1078 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001079
Chris Lattner02446fc2010-01-04 07:37:31 +00001080 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
1081 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1082 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1083 // fold the xor.
1084 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1085 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1086 Value *CompareVal = LHSI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001087
Chris Lattner02446fc2010-01-04 07:37:31 +00001088 // If the sign bit of the XorCST is not set, there is no change to
1089 // the operation, just stop using the Xor.
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001090 if (!XorCST->isNegative()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001091 ICI.setOperand(0, CompareVal);
1092 Worklist.Add(LHSI);
1093 return &ICI;
1094 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001095
Chris Lattner02446fc2010-01-04 07:37:31 +00001096 // Was the old condition true if the operand is positive?
1097 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001098
Chris Lattner02446fc2010-01-04 07:37:31 +00001099 // If so, the new one isn't.
1100 isTrueIfPositive ^= true;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001101
Chris Lattner02446fc2010-01-04 07:37:31 +00001102 if (isTrueIfPositive)
1103 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1104 SubOne(RHS));
1105 else
1106 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1107 AddOne(RHS));
1108 }
1109
1110 if (LHSI->hasOneUse()) {
1111 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1112 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1113 const APInt &SignBit = XorCST->getValue();
1114 ICmpInst::Predicate Pred = ICI.isSigned()
1115 ? ICI.getUnsignedPredicate()
1116 : ICI.getSignedPredicate();
1117 return new ICmpInst(Pred, LHSI->getOperand(0),
1118 ConstantInt::get(ICI.getContext(),
1119 RHSV ^ SignBit));
1120 }
1121
1122 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001123 if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001124 const APInt &NotSignBit = XorCST->getValue();
1125 ICmpInst::Predicate Pred = ICI.isSigned()
1126 ? ICI.getUnsignedPredicate()
1127 : ICI.getSignedPredicate();
1128 Pred = ICI.getSwappedPredicate(Pred);
1129 return new ICmpInst(Pred, LHSI->getOperand(0),
1130 ConstantInt::get(ICI.getContext(),
1131 RHSV ^ NotSignBit));
1132 }
1133 }
1134 }
1135 break;
1136 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1137 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1138 LHSI->getOperand(0)->hasOneUse()) {
1139 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001140
Chris Lattner02446fc2010-01-04 07:37:31 +00001141 // If the LHS is an AND of a truncating cast, we can widen the
1142 // and/compare to be the input width without changing the value
1143 // produced, eliminating a cast.
1144 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1145 // We can do this transformation if either the AND constant does not
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001146 // have its sign bit set or if it is an equality comparison.
Chris Lattner02446fc2010-01-04 07:37:31 +00001147 // Extending a relational comparison when we're checking the sign
1148 // bit would not work.
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001149 if (ICI.isEquality() ||
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001150 (!AndCST->isNegative() && RHSV.isNonNegative())) {
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001151 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001152 Builder->CreateAnd(Cast->getOperand(0),
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001153 ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1154 NewAnd->takeName(LHSI);
Chris Lattner02446fc2010-01-04 07:37:31 +00001155 return new ICmpInst(ICI.getPredicate(), NewAnd,
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001156 ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001157 }
1158 }
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001159
1160 // If the LHS is an AND of a zext, and we have an equality compare, we can
1161 // shrink the and/compare to the smaller type, eliminating the cast.
1162 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001163 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001164 // Make sure we don't compare the upper bits, SimplifyDemandedBits
1165 // should fold the icmp to true/false in that case.
1166 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1167 Value *NewAnd =
1168 Builder->CreateAnd(Cast->getOperand(0),
1169 ConstantExpr::getTrunc(AndCST, Ty));
1170 NewAnd->takeName(LHSI);
1171 return new ICmpInst(ICI.getPredicate(), NewAnd,
1172 ConstantExpr::getTrunc(RHS, Ty));
1173 }
1174 }
1175
Chris Lattner02446fc2010-01-04 07:37:31 +00001176 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1177 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1178 // happens a LOT in code produced by the C front-end, for bitfield
1179 // access.
1180 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1181 if (Shift && !Shift->isShift())
1182 Shift = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001183
Chris Lattner02446fc2010-01-04 07:37:31 +00001184 ConstantInt *ShAmt;
1185 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001186 Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1187 Type *AndTy = AndCST->getType(); // Type of the and.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001188
Chris Lattner02446fc2010-01-04 07:37:31 +00001189 // We can fold this as long as we can't shift unknown bits
1190 // into the mask. This can only happen with signed shift
1191 // rights, as they sign-extend.
1192 if (ShAmt) {
1193 bool CanFold = Shift->isLogicalShift();
1194 if (!CanFold) {
1195 // To test for the bad case of the signed shr, see if any
1196 // of the bits shifted in could be tested after the mask.
1197 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1198 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001199
Chris Lattner02446fc2010-01-04 07:37:31 +00001200 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001201 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
Chris Lattner02446fc2010-01-04 07:37:31 +00001202 AndCST->getValue()) == 0)
1203 CanFold = true;
1204 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001205
Chris Lattner02446fc2010-01-04 07:37:31 +00001206 if (CanFold) {
1207 Constant *NewCst;
1208 if (Shift->getOpcode() == Instruction::Shl)
1209 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1210 else
1211 NewCst = ConstantExpr::getShl(RHS, ShAmt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001212
Chris Lattner02446fc2010-01-04 07:37:31 +00001213 // Check to see if we are shifting out any of the bits being
1214 // compared.
1215 if (ConstantExpr::get(Shift->getOpcode(),
1216 NewCst, ShAmt) != RHS) {
1217 // If we shifted bits out, the fold is not going to work out.
1218 // As a special case, check to see if this means that the
1219 // result is always true or false now.
1220 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1221 return ReplaceInstUsesWith(ICI,
1222 ConstantInt::getFalse(ICI.getContext()));
1223 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1224 return ReplaceInstUsesWith(ICI,
1225 ConstantInt::getTrue(ICI.getContext()));
1226 } else {
1227 ICI.setOperand(1, NewCst);
1228 Constant *NewAndCST;
1229 if (Shift->getOpcode() == Instruction::Shl)
1230 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1231 else
1232 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1233 LHSI->setOperand(1, NewAndCST);
1234 LHSI->setOperand(0, Shift->getOperand(0));
1235 Worklist.Add(Shift); // Shift is dead.
1236 return &ICI;
1237 }
1238 }
1239 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001240
Chris Lattner02446fc2010-01-04 07:37:31 +00001241 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1242 // preferable because it allows the C<<Y expression to be hoisted out
1243 // of a loop if Y is invariant and X is not.
1244 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1245 ICI.isEquality() && !Shift->isArithmeticShift() &&
1246 !isa<Constant>(Shift->getOperand(0))) {
1247 // Compute C << Y.
1248 Value *NS;
1249 if (Shift->getOpcode() == Instruction::LShr) {
Benjamin Kramera9390a42011-09-27 20:39:19 +00001250 NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001251 } else {
1252 // Insert a logical shift.
Benjamin Kramera9390a42011-09-27 20:39:19 +00001253 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001254 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001255
Chris Lattner02446fc2010-01-04 07:37:31 +00001256 // Compute X & (C << Y).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001257 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001258 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001259
Chris Lattner02446fc2010-01-04 07:37:31 +00001260 ICI.setOperand(0, NewAnd);
1261 return &ICI;
1262 }
Paul Redmond6da2e222012-12-19 19:47:13 +00001263
1264 // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
1265 // bit set in (X & AndCST) will produce a result greater than RHSV.
1266 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1267 unsigned NTZ = AndCST->getValue().countTrailingZeros();
1268 if ((NTZ < AndCST->getBitWidth()) &&
1269 APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
1270 return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1271 Constant::getNullValue(RHS->getType()));
1272 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001273 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001274
Chris Lattner02446fc2010-01-04 07:37:31 +00001275 // Try to optimize things like "A[i]&42 == 0" to index computations.
1276 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1277 if (GetElementPtrInst *GEP =
1278 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1279 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1280 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1281 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1282 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1283 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1284 return Res;
1285 }
1286 }
1287 break;
1288
1289 case Instruction::Or: {
1290 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1291 break;
1292 Value *P, *Q;
1293 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1294 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1295 // -> and (icmp eq P, null), (icmp eq Q, null).
Chris Lattner02446fc2010-01-04 07:37:31 +00001296 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1297 Constant::getNullValue(P->getType()));
1298 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1299 Constant::getNullValue(Q->getType()));
1300 Instruction *Op;
1301 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1302 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1303 else
1304 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1305 return Op;
1306 }
1307 break;
1308 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001309
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001310 case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
1311 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1312 if (!Val) break;
1313
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +00001314 // If this is a signed comparison to 0 and the mul is sign preserving,
1315 // use the mul LHS operand instead.
1316 ICmpInst::Predicate pred = ICI.getPredicate();
1317 if (isSignTest(pred, RHS) && !Val->isZero() &&
1318 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1319 return new ICmpInst(Val->isNegative() ?
1320 ICmpInst::getSwappedPredicate(pred) : pred,
1321 LHSI->getOperand(0),
1322 Constant::getNullValue(RHS->getType()));
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001323
1324 break;
1325 }
1326
Chris Lattner02446fc2010-01-04 07:37:31 +00001327 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1328 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1329 if (!ShAmt) break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001330
Chris Lattner02446fc2010-01-04 07:37:31 +00001331 uint32_t TypeBits = RHSV.getBitWidth();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001332
Chris Lattner02446fc2010-01-04 07:37:31 +00001333 // Check that the shift amount is in range. If not, don't perform
1334 // undefined shifts. When the shift is visited it will be
1335 // simplified.
1336 if (ShAmt->uge(TypeBits))
1337 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001338
Chris Lattner02446fc2010-01-04 07:37:31 +00001339 if (ICI.isEquality()) {
1340 // If we are comparing against bits always shifted out, the
1341 // comparison cannot succeed.
1342 Constant *Comp =
1343 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1344 ShAmt);
1345 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1346 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1347 Constant *Cst =
1348 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1349 return ReplaceInstUsesWith(ICI, Cst);
1350 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001351
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001352 // If the shift is NUW, then it is just shifting out zeros, no need for an
1353 // AND.
1354 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1355 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1356 ConstantExpr::getLShr(RHS, ShAmt));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001357
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001358 // If the shift is NSW and we compare to 0, then it is just shifting out
1359 // sign bits, no need for an AND either.
1360 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1361 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1362 ConstantExpr::getLShr(RHS, ShAmt));
1363
Chris Lattner02446fc2010-01-04 07:37:31 +00001364 if (LHSI->hasOneUse()) {
1365 // Otherwise strength reduce the shift into an and.
1366 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1367 Constant *Mask =
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001368 ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
Chris Lattner02446fc2010-01-04 07:37:31 +00001369 TypeBits-ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001370
Chris Lattner02446fc2010-01-04 07:37:31 +00001371 Value *And =
1372 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1373 return new ICmpInst(ICI.getPredicate(), And,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001374 ConstantExpr::getLShr(RHS, ShAmt));
Chris Lattner02446fc2010-01-04 07:37:31 +00001375 }
1376 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001377
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001378 // If this is a signed comparison to 0 and the shift is sign preserving,
1379 // use the shift LHS operand instead.
1380 ICmpInst::Predicate pred = ICI.getPredicate();
1381 if (isSignTest(pred, RHS) &&
1382 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1383 return new ICmpInst(pred,
1384 LHSI->getOperand(0),
1385 Constant::getNullValue(RHS->getType()));
1386
Chris Lattner02446fc2010-01-04 07:37:31 +00001387 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1388 bool TrueIfSigned = false;
1389 if (LHSI->hasOneUse() &&
1390 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1391 // (X << 31) <s 0 --> (X&1) != 0
Chris Lattnerbb75d332011-02-13 08:07:21 +00001392 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001393 APInt::getOneBitSet(TypeBits,
Chris Lattnerbb75d332011-02-13 08:07:21 +00001394 TypeBits-ShAmt->getZExtValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001395 Value *And =
1396 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1397 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1398 And, Constant::getNullValue(And->getType()));
1399 }
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001400
1401 // Transform (icmp pred iM (shl iM %v, N), CI)
Arnaud A. de Grandmaisonbdd2d982013-03-13 14:40:37 +00001402 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1403 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001404 // This enables to get rid of the shift in favor of a trunc which can be
1405 // free on the target. It has the additional benefit of comparing to a
1406 // smaller constant, which will be target friendly.
1407 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
Arnaud A. de Grandmaisonbdd2d982013-03-13 14:40:37 +00001408 if (LHSI->hasOneUse() &&
1409 Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001410 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1411 Constant *NCI = ConstantExpr::getTrunc(
1412 ConstantExpr::getAShr(RHS,
1413 ConstantInt::get(RHS->getType(), Amt)),
1414 NTy);
1415 return new ICmpInst(ICI.getPredicate(),
1416 Builder->CreateTrunc(LHSI->getOperand(0), NTy),
Arnaud A. de Grandmaisonad079b22013-02-15 15:18:17 +00001417 NCI);
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001418 }
1419
Chris Lattner02446fc2010-01-04 07:37:31 +00001420 break;
1421 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001422
Chris Lattner02446fc2010-01-04 07:37:31 +00001423 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001424 case Instruction::AShr: {
1425 // Handle equality comparisons of shift-by-constant.
1426 BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1427 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1428 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
Chris Lattner74542aa2011-02-13 07:43:07 +00001429 return Res;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001430 }
1431
1432 // Handle exact shr's.
1433 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1434 if (RHSV.isMinValue())
1435 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1436 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001437 break;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001438 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001439
Chris Lattner02446fc2010-01-04 07:37:31 +00001440 case Instruction::SDiv:
1441 case Instruction::UDiv:
1442 // Fold: icmp pred ([us]div X, C1), C2 -> range test
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001443 // Fold this div into the comparison, producing a range check.
1444 // Determine, based on the divide type, what the range is being
1445 // checked. If there is an overflow on the low or high side, remember
Chris Lattner02446fc2010-01-04 07:37:31 +00001446 // it, otherwise compute the range [low, hi) bounding the new value.
1447 // See: InsertRangeTest above for the kinds of replacements possible.
1448 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1449 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1450 DivRHS))
1451 return R;
1452 break;
1453
1454 case Instruction::Add:
1455 // Fold: icmp pred (add X, C1), C2
1456 if (!ICI.isEquality()) {
1457 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1458 if (!LHSC) break;
1459 const APInt &LHSV = LHSC->getValue();
1460
1461 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1462 .subtract(LHSV);
1463
1464 if (ICI.isSigned()) {
1465 if (CR.getLower().isSignBit()) {
1466 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1467 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1468 } else if (CR.getUpper().isSignBit()) {
1469 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1470 ConstantInt::get(ICI.getContext(),CR.getLower()));
1471 }
1472 } else {
1473 if (CR.getLower().isMinValue()) {
1474 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1475 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1476 } else if (CR.getUpper().isMinValue()) {
1477 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1478 ConstantInt::get(ICI.getContext(),CR.getLower()));
1479 }
1480 }
1481 }
1482 break;
1483 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001484
Chris Lattner02446fc2010-01-04 07:37:31 +00001485 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1486 if (ICI.isEquality()) {
1487 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001488
1489 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
Chris Lattner02446fc2010-01-04 07:37:31 +00001490 // the second operand is a constant, simplify a bit.
1491 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1492 switch (BO->getOpcode()) {
1493 case Instruction::SRem:
1494 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1495 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1496 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
Dan Gohmane0567812010-04-08 23:03:40 +00001497 if (V.sgt(1) && V.isPowerOf2()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001498 Value *NewRem =
1499 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1500 BO->getName());
1501 return new ICmpInst(ICI.getPredicate(), NewRem,
1502 Constant::getNullValue(BO->getType()));
1503 }
1504 }
1505 break;
1506 case Instruction::Add:
1507 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1508 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1509 if (BO->hasOneUse())
1510 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1511 ConstantExpr::getSub(RHS, BOp1C));
1512 } else if (RHSV == 0) {
1513 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1514 // efficiently invertible, or if the add has just this one use.
1515 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001516
Chris Lattner02446fc2010-01-04 07:37:31 +00001517 if (Value *NegVal = dyn_castNegVal(BOp1))
1518 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
Chris Lattner5036ce42011-04-26 20:02:45 +00001519 if (Value *NegVal = dyn_castNegVal(BOp0))
Chris Lattner02446fc2010-01-04 07:37:31 +00001520 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
Chris Lattner5036ce42011-04-26 20:02:45 +00001521 if (BO->hasOneUse()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001522 Value *Neg = Builder->CreateNeg(BOp1);
1523 Neg->takeName(BO);
1524 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1525 }
1526 }
1527 break;
1528 case Instruction::Xor:
1529 // For the xor case, we can xor two constants together, eliminating
1530 // the explicit xor.
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001531 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1532 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Chris Lattner02446fc2010-01-04 07:37:31 +00001533 ConstantExpr::getXor(RHS, BOC));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001534 } else if (RHSV == 0) {
1535 // Replace ((xor A, B) != 0) with (A != B)
Chris Lattner02446fc2010-01-04 07:37:31 +00001536 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1537 BO->getOperand(1));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001538 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001539 break;
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001540 case Instruction::Sub:
1541 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1542 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1543 if (BO->hasOneUse())
1544 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1545 ConstantExpr::getSub(BOp0C, RHS));
1546 } else if (RHSV == 0) {
1547 // Replace ((sub A, B) != 0) with (A != B)
1548 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1549 BO->getOperand(1));
1550 }
1551 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001552 case Instruction::Or:
1553 // If bits are being or'd in that are not present in the constant we
1554 // are comparing against, then the comparison could never succeed!
Eli Friedman618898e2010-07-29 18:03:33 +00001555 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001556 Constant *NotCI = ConstantExpr::getNot(RHS);
1557 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1558 return ReplaceInstUsesWith(ICI,
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001559 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
Chris Lattner02446fc2010-01-04 07:37:31 +00001560 isICMP_NE));
1561 }
1562 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001563
Chris Lattner02446fc2010-01-04 07:37:31 +00001564 case Instruction::And:
1565 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1566 // If bits are being compared against that are and'd out, then the
1567 // comparison can never succeed!
1568 if ((RHSV & ~BOC->getValue()) != 0)
1569 return ReplaceInstUsesWith(ICI,
1570 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1571 isICMP_NE));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001572
Chris Lattner02446fc2010-01-04 07:37:31 +00001573 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1574 if (RHS == BOC && RHSV.isPowerOf2())
1575 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1576 ICmpInst::ICMP_NE, LHSI,
1577 Constant::getNullValue(RHS->getType()));
Benjamin Kramerfc87cdc2011-07-04 20:16:36 +00001578
1579 // Don't perform the following transforms if the AND has multiple uses
1580 if (!BO->hasOneUse())
1581 break;
1582
Chris Lattner02446fc2010-01-04 07:37:31 +00001583 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1584 if (BOC->getValue().isSignBit()) {
1585 Value *X = BO->getOperand(0);
1586 Constant *Zero = Constant::getNullValue(X->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001587 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001588 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1589 return new ICmpInst(pred, X, Zero);
1590 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001591
Chris Lattner02446fc2010-01-04 07:37:31 +00001592 // ((X & ~7) == 0) --> X < 8
1593 if (RHSV == 0 && isHighOnes(BOC)) {
1594 Value *X = BO->getOperand(0);
1595 Constant *NegX = ConstantExpr::getNeg(BOC);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001596 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001597 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1598 return new ICmpInst(pred, X, NegX);
1599 }
1600 }
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001601 break;
1602 case Instruction::Mul:
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +00001603 if (RHSV == 0 && BO->hasNoSignedWrap()) {
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001604 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1605 // The trivial case (mul X, 0) is handled by InstSimplify
1606 // General case : (mul X, C) != 0 iff X != 0
1607 // (mul X, C) == 0 iff X == 0
1608 if (!BOC->isZero())
1609 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1610 Constant::getNullValue(RHS->getType()));
1611 }
1612 }
1613 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001614 default: break;
1615 }
1616 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1617 // Handle icmp {eq|ne} <intrinsic>, intcst.
Chris Lattner03357402010-01-05 18:09:56 +00001618 switch (II->getIntrinsicID()) {
1619 case Intrinsic::bswap:
Chris Lattner02446fc2010-01-04 07:37:31 +00001620 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001621 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00001622 ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1623 return &ICI;
Chris Lattner03357402010-01-05 18:09:56 +00001624 case Intrinsic::ctlz:
1625 case Intrinsic::cttz:
1626 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1627 if (RHSV == RHS->getType()->getBitWidth()) {
1628 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001629 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001630 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1631 return &ICI;
1632 }
1633 break;
1634 case Intrinsic::ctpop:
1635 // popcount(A) == 0 -> A == 0 and likewise for !=
1636 if (RHS->isZero()) {
1637 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001638 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001639 ICI.setOperand(1, RHS);
1640 return &ICI;
1641 }
1642 break;
1643 default:
Duncan Sands34727662010-07-12 08:16:59 +00001644 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001645 }
1646 }
1647 }
1648 return 0;
1649}
1650
1651/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1652/// We only handle extending casts so far.
1653///
1654Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1655 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1656 Value *LHSCIOp = LHSCI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001657 Type *SrcTy = LHSCIOp->getType();
1658 Type *DestTy = LHSCI->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00001659 Value *RHSCIOp;
1660
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001661 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
Chris Lattner02446fc2010-01-04 07:37:31 +00001662 // integer type is the same size as the pointer type.
1663 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
Chandler Carruth426c2bf2012-11-01 09:14:31 +00001664 TD->getPointerSizeInBits() ==
Chris Lattner02446fc2010-01-04 07:37:31 +00001665 cast<IntegerType>(DestTy)->getBitWidth()) {
1666 Value *RHSOp = 0;
1667 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1668 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1669 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1670 RHSOp = RHSC->getOperand(0);
1671 // If the pointer types don't match, insert a bitcast.
1672 if (LHSCIOp->getType() != RHSOp->getType())
1673 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1674 }
1675
1676 if (RHSOp)
1677 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1678 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001679
Chris Lattner02446fc2010-01-04 07:37:31 +00001680 // The code below only handles extension cast instructions, so far.
1681 // Enforce this.
1682 if (LHSCI->getOpcode() != Instruction::ZExt &&
1683 LHSCI->getOpcode() != Instruction::SExt)
1684 return 0;
1685
1686 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1687 bool isSignedCmp = ICI.isSigned();
1688
1689 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1690 // Not an extension from the same type?
1691 RHSCIOp = CI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001692 if (RHSCIOp->getType() != LHSCIOp->getType())
Chris Lattner02446fc2010-01-04 07:37:31 +00001693 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001694
Chris Lattner02446fc2010-01-04 07:37:31 +00001695 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1696 // and the other is a zext), then we can't handle this.
1697 if (CI->getOpcode() != LHSCI->getOpcode())
1698 return 0;
1699
1700 // Deal with equality cases early.
1701 if (ICI.isEquality())
1702 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1703
1704 // A signed comparison of sign extended values simplifies into a
1705 // signed comparison.
1706 if (isSignedCmp && isSignedExt)
1707 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1708
1709 // The other three cases all fold into an unsigned comparison.
1710 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1711 }
1712
1713 // If we aren't dealing with a constant on the RHS, exit early
1714 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1715 if (!CI)
1716 return 0;
1717
1718 // Compute the constant that would happen if we truncated to SrcTy then
1719 // reextended to DestTy.
1720 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1721 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1722 Res1, DestTy);
1723
1724 // If the re-extended constant didn't change...
1725 if (Res2 == CI) {
1726 // Deal with equality cases early.
1727 if (ICI.isEquality())
1728 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1729
1730 // A signed comparison of sign extended values simplifies into a
1731 // signed comparison.
1732 if (isSignedExt && isSignedCmp)
1733 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1734
1735 // The other three cases all fold into an unsigned comparison.
1736 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1737 }
1738
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001739 // The re-extended constant changed so the constant cannot be represented
Chris Lattner02446fc2010-01-04 07:37:31 +00001740 // in the shorter type. Consequently, we cannot emit a simple comparison.
Duncan Sands9d32f602011-01-20 13:21:55 +00001741 // All the cases that fold to true or false will have already been handled
1742 // by SimplifyICmpInst, so only deal with the tricky case.
Chris Lattner02446fc2010-01-04 07:37:31 +00001743
Duncan Sands9d32f602011-01-20 13:21:55 +00001744 if (isSignedCmp || !isSignedExt)
1745 return 0;
Chris Lattner02446fc2010-01-04 07:37:31 +00001746
1747 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1748 // should have been folded away previously and not enter in here.
Duncan Sands9d32f602011-01-20 13:21:55 +00001749
1750 // We're performing an unsigned comp with a sign extended value.
1751 // This is true if the input is >= 0. [aka >s -1]
1752 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1753 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
Chris Lattner02446fc2010-01-04 07:37:31 +00001754
1755 // Finally, return the value computed.
Duncan Sands9d32f602011-01-20 13:21:55 +00001756 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
Chris Lattner02446fc2010-01-04 07:37:31 +00001757 return ReplaceInstUsesWith(ICI, Result);
1758
Duncan Sands9d32f602011-01-20 13:21:55 +00001759 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
Chris Lattner02446fc2010-01-04 07:37:31 +00001760 return BinaryOperator::CreateNot(Result);
1761}
1762
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001763/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1764/// I = icmp ugt (add (add A, B), CI2), CI1
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001765/// If this is of the form:
1766/// sum = a + b
1767/// if (sum+128 >u 255)
1768/// Then replace it with llvm.sadd.with.overflow.i8.
1769///
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001770static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1771 ConstantInt *CI2, ConstantInt *CI1,
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001772 InstCombiner &IC) {
Chris Lattner368397b2010-12-19 17:59:02 +00001773 // The transformation we're trying to do here is to transform this into an
1774 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1775 // with a narrower add, and discard the add-with-constant that is part of the
1776 // range check (if we can't eliminate it, this isn't profitable).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001777
Chris Lattner368397b2010-12-19 17:59:02 +00001778 // In order to eliminate the add-with-constant, the compare can be its only
1779 // use.
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001780 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
Chris Lattner368397b2010-12-19 17:59:02 +00001781 if (!AddWithCst->hasOneUse()) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001782
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001783 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1784 if (!CI2->getValue().isPowerOf2()) return 0;
1785 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1786 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001787
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001788 // The width of the new add formed is 1 more than the bias.
1789 ++NewWidth;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001790
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001791 // Check to see that CI1 is an all-ones value with NewWidth bits.
1792 if (CI1->getBitWidth() == NewWidth ||
1793 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1794 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001795
Eli Friedman54b92112011-11-28 23:32:19 +00001796 // This is only really a signed overflow check if the inputs have been
1797 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1798 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1799 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1800 if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1801 IC.ComputeNumSignBits(B) < NeededSignBits)
1802 return 0;
1803
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001804 // In order to replace the original add with a narrower
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001805 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1806 // and truncates that discard the high bits of the add. Verify that this is
1807 // the case.
1808 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1809 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1810 UI != E; ++UI) {
1811 if (*UI == AddWithCst) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001812
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001813 // Only accept truncates for now. We would really like a nice recursive
1814 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1815 // chain to see which bits of a value are actually demanded. If the
1816 // original add had another add which was then immediately truncated, we
1817 // could still do the transformation.
1818 TruncInst *TI = dyn_cast<TruncInst>(*UI);
1819 if (TI == 0 ||
1820 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1821 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001822
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001823 // If the pattern matches, truncate the inputs to the narrower type and
1824 // use the sadd_with_overflow intrinsic to efficiently compute both the
1825 // result and the overflow bit.
Chris Lattner0a624742010-12-19 18:35:09 +00001826 Module *M = I.getParent()->getParent()->getParent();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001827
Jay Foad5fdd6c82011-07-12 14:06:48 +00001828 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
Chris Lattner0a624742010-12-19 18:35:09 +00001829 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001830 NewType);
Chris Lattner0a624742010-12-19 18:35:09 +00001831
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001832 InstCombiner::BuilderTy *Builder = IC.Builder;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001833
Chris Lattner0a624742010-12-19 18:35:09 +00001834 // Put the new code above the original add, in case there are any uses of the
1835 // add between the add and the compare.
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001836 Builder->SetInsertPoint(OrigAdd);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001837
Chris Lattner0a624742010-12-19 18:35:09 +00001838 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1839 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1840 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1841 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1842 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001843
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001844 // The inner add was the result of the narrow add, zero extended to the
1845 // wider type. Replace it with the result computed by the intrinsic.
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001846 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001847
Chris Lattner0a624742010-12-19 18:35:09 +00001848 // The original icmp gets replaced with the overflow value.
1849 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001850}
Chris Lattner02446fc2010-01-04 07:37:31 +00001851
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001852static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1853 InstCombiner &IC) {
1854 // Don't bother doing this transformation for pointers, don't do it for
1855 // vectors.
1856 if (!isa<IntegerType>(OrigAddV->getType())) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001857
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001858 // If the add is a constant expr, then we don't bother transforming it.
1859 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1860 if (OrigAdd == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001861
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001862 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001863
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001864 // Put the new code above the original add, in case there are any uses of the
1865 // add between the add and the compare.
1866 InstCombiner::BuilderTy *Builder = IC.Builder;
1867 Builder->SetInsertPoint(OrigAdd);
1868
1869 Module *M = I.getParent()->getParent()->getParent();
Jay Foad5fdd6c82011-07-12 14:06:48 +00001870 Type *Ty = LHS->getType();
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001871 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001872 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1873 Value *Add = Builder->CreateExtractValue(Call, 0);
1874
1875 IC.ReplaceInstUsesWith(*OrigAdd, Add);
1876
1877 // The original icmp gets replaced with the overflow value.
1878 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1879}
1880
Owen Andersonda1c1222011-01-11 00:36:45 +00001881// DemandedBitsLHSMask - When performing a comparison against a constant,
1882// it is possible that not all the bits in the LHS are demanded. This helper
1883// method computes the mask that IS demanded.
1884static APInt DemandedBitsLHSMask(ICmpInst &I,
1885 unsigned BitWidth, bool isSignCheck) {
1886 if (isSignCheck)
1887 return APInt::getSignBit(BitWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001888
Owen Andersonda1c1222011-01-11 00:36:45 +00001889 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1890 if (!CI) return APInt::getAllOnesValue(BitWidth);
Owen Andersona33b6252011-01-11 18:26:37 +00001891 const APInt &RHS = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001892
Owen Andersonda1c1222011-01-11 00:36:45 +00001893 switch (I.getPredicate()) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001894 // For a UGT comparison, we don't care about any bits that
Owen Andersonda1c1222011-01-11 00:36:45 +00001895 // correspond to the trailing ones of the comparand. The value of these
1896 // bits doesn't impact the outcome of the comparison, because any value
1897 // greater than the RHS must differ in a bit higher than these due to carry.
1898 case ICmpInst::ICMP_UGT: {
1899 unsigned trailingOnes = RHS.countTrailingOnes();
1900 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1901 return ~lowBitsSet;
1902 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001903
Owen Andersonda1c1222011-01-11 00:36:45 +00001904 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1905 // Any value less than the RHS must differ in a higher bit because of carries.
1906 case ICmpInst::ICMP_ULT: {
1907 unsigned trailingZeros = RHS.countTrailingZeros();
1908 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1909 return ~lowBitsSet;
1910 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001911
Owen Andersonda1c1222011-01-11 00:36:45 +00001912 default:
1913 return APInt::getAllOnesValue(BitWidth);
1914 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001915
Owen Andersonda1c1222011-01-11 00:36:45 +00001916}
Chris Lattner02446fc2010-01-04 07:37:31 +00001917
1918Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1919 bool Changed = false;
Chris Lattner5f670d42010-02-01 19:54:45 +00001920 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001921
Chris Lattner02446fc2010-01-04 07:37:31 +00001922 /// Orders the operands of the compare so that they are listed from most
1923 /// complex to least complex. This puts constants before unary operators,
1924 /// before binary operators.
Chris Lattner5f670d42010-02-01 19:54:45 +00001925 if (getComplexity(Op0) < getComplexity(Op1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001926 I.swapOperands();
Chris Lattner5f670d42010-02-01 19:54:45 +00001927 std::swap(Op0, Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001928 Changed = true;
1929 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001930
Chris Lattner02446fc2010-01-04 07:37:31 +00001931 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1932 return ReplaceInstUsesWith(I, V);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001933
Pete Cooper65a6b572011-12-01 03:58:40 +00001934 // comparing -val or val with non-zero is the same as just comparing val
Pete Cooper165695d2011-12-01 19:13:26 +00001935 // ie, abs(val) != 0 -> val != 0
Pete Cooper65a6b572011-12-01 03:58:40 +00001936 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
1937 {
Pete Cooper165695d2011-12-01 19:13:26 +00001938 Value *Cond, *SelectTrue, *SelectFalse;
1939 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
Pete Cooper65a6b572011-12-01 03:58:40 +00001940 m_Value(SelectFalse)))) {
Pete Cooper165695d2011-12-01 19:13:26 +00001941 if (Value *V = dyn_castNegVal(SelectTrue)) {
1942 if (V == SelectFalse)
1943 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
1944 }
1945 else if (Value *V = dyn_castNegVal(SelectFalse)) {
1946 if (V == SelectTrue)
1947 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
Pete Cooper65a6b572011-12-01 03:58:40 +00001948 }
1949 }
1950 }
1951
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001952 Type *Ty = Op0->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00001953
1954 // icmp's with boolean values can always be turned into bitwise operations
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001955 if (Ty->isIntegerTy(1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001956 switch (I.getPredicate()) {
1957 default: llvm_unreachable("Invalid icmp instruction!");
1958 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
1959 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1960 return BinaryOperator::CreateNot(Xor);
1961 }
1962 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
1963 return BinaryOperator::CreateXor(Op0, Op1);
1964
1965 case ICmpInst::ICMP_UGT:
1966 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
1967 // FALL THROUGH
1968 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
1969 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1970 return BinaryOperator::CreateAnd(Not, Op1);
1971 }
1972 case ICmpInst::ICMP_SGT:
1973 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
1974 // FALL THROUGH
1975 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
1976 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1977 return BinaryOperator::CreateAnd(Not, Op0);
1978 }
1979 case ICmpInst::ICMP_UGE:
1980 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
1981 // FALL THROUGH
1982 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
1983 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1984 return BinaryOperator::CreateOr(Not, Op1);
1985 }
1986 case ICmpInst::ICMP_SGE:
1987 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
1988 // FALL THROUGH
1989 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
1990 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1991 return BinaryOperator::CreateOr(Not, Op0);
1992 }
1993 }
1994 }
1995
1996 unsigned BitWidth = 0;
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001997 if (Ty->isIntOrIntVectorTy())
Chris Lattner02446fc2010-01-04 07:37:31 +00001998 BitWidth = Ty->getScalarSizeInBits();
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001999 else if (TD) // Pointers require TD info to get their size.
2000 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002001
Chris Lattner02446fc2010-01-04 07:37:31 +00002002 bool isSignBit = false;
2003
2004 // See if we are doing a comparison with a constant.
2005 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2006 Value *A = 0, *B = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002007
Owen Andersone63dda52010-12-17 18:08:00 +00002008 // Match the following pattern, which is a common idiom when writing
2009 // overflow-safe integer arithmetic function. The source performs an
2010 // addition in wider type, and explicitly checks for overflow using
2011 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
2012 // sadd_with_overflow intrinsic.
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002013 //
2014 // TODO: This could probably be generalized to handle other overflow-safe
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002015 // operations if we worked out the formulas to compute the appropriate
Owen Andersone63dda52010-12-17 18:08:00 +00002016 // magic constants.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002017 //
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002018 // sum = a + b
2019 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
Owen Andersone63dda52010-12-17 18:08:00 +00002020 {
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002021 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
Owen Andersone63dda52010-12-17 18:08:00 +00002022 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002023 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
Chris Lattner0fe80bb2010-12-19 18:38:44 +00002024 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002025 return Res;
Owen Andersone63dda52010-12-17 18:08:00 +00002026 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002027
Chris Lattner02446fc2010-01-04 07:37:31 +00002028 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2029 if (I.isEquality() && CI->isZero() &&
2030 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2031 // (icmp cond A B) if cond is equality
2032 return new ICmpInst(I.getPredicate(), A, B);
2033 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002034
Chris Lattner02446fc2010-01-04 07:37:31 +00002035 // If we have an icmp le or icmp ge instruction, turn it into the
2036 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
2037 // them being folded in the code below. The SimplifyICmpInst code has
2038 // already handled the edge cases for us, so we just assert on them.
2039 switch (I.getPredicate()) {
2040 default: break;
2041 case ICmpInst::ICMP_ULE:
2042 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
2043 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2044 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2045 case ICmpInst::ICMP_SLE:
2046 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
2047 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2048 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2049 case ICmpInst::ICMP_UGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00002050 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00002051 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2052 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2053 case ICmpInst::ICMP_SGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00002054 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00002055 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2056 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2057 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002058
Chris Lattner02446fc2010-01-04 07:37:31 +00002059 // If this comparison is a normal comparison, it demands all
2060 // bits, if it is a sign bit comparison, it only demands the sign bit.
2061 bool UnusedBit;
2062 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2063 }
2064
2065 // See if we can fold the comparison based on range information we can get
2066 // by checking whether bits are known to be zero or one in the input.
2067 if (BitWidth != 0) {
2068 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2069 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2070
2071 if (SimplifyDemandedBits(I.getOperandUse(0),
Owen Andersonda1c1222011-01-11 00:36:45 +00002072 DemandedBitsLHSMask(I, BitWidth, isSignBit),
Chris Lattner02446fc2010-01-04 07:37:31 +00002073 Op0KnownZero, Op0KnownOne, 0))
2074 return &I;
2075 if (SimplifyDemandedBits(I.getOperandUse(1),
2076 APInt::getAllOnesValue(BitWidth),
2077 Op1KnownZero, Op1KnownOne, 0))
2078 return &I;
2079
2080 // Given the known and unknown bits, compute a range that the LHS could be
2081 // in. Compute the Min, Max and RHS values based on the known bits. For the
2082 // EQ and NE we use unsigned values.
2083 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2084 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2085 if (I.isSigned()) {
2086 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2087 Op0Min, Op0Max);
2088 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2089 Op1Min, Op1Max);
2090 } else {
2091 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2092 Op0Min, Op0Max);
2093 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2094 Op1Min, Op1Max);
2095 }
2096
2097 // If Min and Max are known to be the same, then SimplifyDemandedBits
2098 // figured out that the LHS is a constant. Just constant fold this now so
2099 // that code below can assume that Min != Max.
2100 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2101 return new ICmpInst(I.getPredicate(),
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002102 ConstantInt::get(Op0->getType(), Op0Min), Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00002103 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2104 return new ICmpInst(I.getPredicate(), Op0,
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002105 ConstantInt::get(Op1->getType(), Op1Min));
Chris Lattner02446fc2010-01-04 07:37:31 +00002106
2107 // Based on the range information we know about the LHS, see if we can
Nick Lewyckyd8d15842011-02-28 06:20:05 +00002108 // simplify this comparison. For example, (x&4) < 8 is always true.
Chris Lattner02446fc2010-01-04 07:37:31 +00002109 switch (I.getPredicate()) {
2110 default: llvm_unreachable("Unknown icmp opcode!");
Chris Lattner75d8f592010-11-21 06:44:42 +00002111 case ICmpInst::ICMP_EQ: {
Chris Lattner02446fc2010-01-04 07:37:31 +00002112 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002113 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002114
Chris Lattner75d8f592010-11-21 06:44:42 +00002115 // If all bits are known zero except for one, then we know at most one
2116 // bit is set. If the comparison is against zero, then this is a check
2117 // to see if *that* bit is set.
2118 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2119 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2120 // If the LHS is an AND with the same constant, look through it.
2121 Value *LHS = 0;
2122 ConstantInt *LHSC = 0;
2123 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2124 LHSC->getValue() != Op0KnownZeroInverted)
2125 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002126
Chris Lattner75d8f592010-11-21 06:44:42 +00002127 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002128 // then turn "((1 << x)&8) == 0" into "x != 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002129 Value *X = 0;
2130 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2131 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002132 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002133 ConstantInt::get(X->getType(), CmpVal));
2134 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002135
Chris Lattner75d8f592010-11-21 06:44:42 +00002136 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002137 // then turn "((8 >>u x)&1) == 0" into "x != 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002138 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002139 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002140 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002141 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002142 ConstantInt::get(X->getType(),
2143 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002144 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002145
Chris Lattner02446fc2010-01-04 07:37:31 +00002146 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002147 }
2148 case ICmpInst::ICMP_NE: {
Chris Lattner02446fc2010-01-04 07:37:31 +00002149 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002150 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002151
Chris Lattner75d8f592010-11-21 06:44:42 +00002152 // If all bits are known zero except for one, then we know at most one
2153 // bit is set. If the comparison is against zero, then this is a check
2154 // to see if *that* bit is set.
2155 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2156 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2157 // If the LHS is an AND with the same constant, look through it.
2158 Value *LHS = 0;
2159 ConstantInt *LHSC = 0;
2160 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2161 LHSC->getValue() != Op0KnownZeroInverted)
2162 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002163
Chris Lattner75d8f592010-11-21 06:44:42 +00002164 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002165 // then turn "((1 << x)&8) != 0" into "x == 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002166 Value *X = 0;
2167 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2168 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002169 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002170 ConstantInt::get(X->getType(), CmpVal));
2171 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002172
Chris Lattner75d8f592010-11-21 06:44:42 +00002173 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002174 // then turn "((8 >>u x)&1) != 0" into "x == 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002175 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002176 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002177 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002178 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002179 ConstantInt::get(X->getType(),
2180 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002181 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002182
Chris Lattner02446fc2010-01-04 07:37:31 +00002183 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002184 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002185 case ICmpInst::ICMP_ULT:
2186 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002187 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002188 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002189 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002190 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2191 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2192 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2193 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2194 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2195 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2196
2197 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2198 if (CI->isMinValue(true))
2199 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2200 Constant::getAllOnesValue(Op0->getType()));
2201 }
2202 break;
2203 case ICmpInst::ICMP_UGT:
2204 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002205 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002206 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002207 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002208
2209 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2210 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2211 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2212 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2213 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2214 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2215
2216 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2217 if (CI->isMaxValue(true))
2218 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2219 Constant::getNullValue(Op0->getType()));
2220 }
2221 break;
2222 case ICmpInst::ICMP_SLT:
2223 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002224 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002225 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002226 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002227 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2228 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2229 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2230 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2231 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2232 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2233 }
2234 break;
2235 case ICmpInst::ICMP_SGT:
2236 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002237 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002238 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002239 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002240
2241 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2242 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2243 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2244 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2245 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2246 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2247 }
2248 break;
2249 case ICmpInst::ICMP_SGE:
2250 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2251 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002252 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002253 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002254 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002255 break;
2256 case ICmpInst::ICMP_SLE:
2257 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2258 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002259 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002260 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002261 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002262 break;
2263 case ICmpInst::ICMP_UGE:
2264 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2265 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002266 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002267 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002268 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002269 break;
2270 case ICmpInst::ICMP_ULE:
2271 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2272 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002273 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002274 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002275 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002276 break;
2277 }
2278
2279 // Turn a signed comparison into an unsigned one if both operands
2280 // are known to have the same sign.
2281 if (I.isSigned() &&
2282 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2283 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2284 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2285 }
2286
2287 // Test if the ICmpInst instruction is used exclusively by a select as
2288 // part of a minimum or maximum operation. If so, refrain from doing
2289 // any other folding. This helps out other analyses which understand
2290 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2291 // and CodeGen. And in this case, at least one of the comparison
2292 // operands has at least one user besides the compare (the select),
2293 // which would often largely negate the benefit of folding anyway.
2294 if (I.hasOneUse())
2295 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2296 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2297 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2298 return 0;
2299
2300 // See if we are doing a comparison between a constant and an instruction that
2301 // can be folded into the comparison.
2302 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002303 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2304 // instruction, see if that instruction also has constants so that the
2305 // instruction can be folded into the icmp
Chris Lattner02446fc2010-01-04 07:37:31 +00002306 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2307 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2308 return Res;
2309 }
2310
2311 // Handle icmp with constant (but not simple integer constant) RHS
2312 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2313 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2314 switch (LHSI->getOpcode()) {
2315 case Instruction::GetElementPtr:
2316 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2317 if (RHSC->isNullValue() &&
2318 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2319 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2320 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2321 break;
2322 case Instruction::PHI:
2323 // Only fold icmp into the PHI if the phi and icmp are in the same
2324 // block. If in the same block, we're encouraging jump threading. If
2325 // not, we are just pessimizing the code by making an i1 phi.
2326 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002327 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002328 return NV;
2329 break;
2330 case Instruction::Select: {
2331 // If either operand of the select is a constant, we can fold the
2332 // comparison into the select arms, which will cause one to be
2333 // constant folded and the select turned into a bitwise or.
2334 Value *Op1 = 0, *Op2 = 0;
2335 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2336 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2337 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2338 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2339
2340 // We only want to perform this transformation if it will not lead to
2341 // additional code. This is true if either both sides of the select
2342 // fold to a constant (in which case the icmp is replaced with a select
2343 // which will usually simplify) or this is the only user of the
2344 // select (in which case we are trading a select+icmp for a simpler
2345 // select+icmp).
2346 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2347 if (!Op1)
2348 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2349 RHSC, I.getName());
2350 if (!Op2)
2351 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2352 RHSC, I.getName());
2353 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2354 }
2355 break;
2356 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002357 case Instruction::IntToPtr:
2358 // icmp pred inttoptr(X), null -> icmp pred X, 0
2359 if (RHSC->isNullValue() && TD &&
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002360 TD->getIntPtrType(RHSC->getContext()) ==
Chris Lattner02446fc2010-01-04 07:37:31 +00002361 LHSI->getOperand(0)->getType())
2362 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2363 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2364 break;
2365
2366 case Instruction::Load:
2367 // Try to optimize things like "A[i] > 4" to index computations.
2368 if (GetElementPtrInst *GEP =
2369 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2370 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2371 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2372 !cast<LoadInst>(LHSI)->isVolatile())
2373 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2374 return Res;
2375 }
2376 break;
2377 }
2378 }
2379
2380 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2381 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2382 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2383 return NI;
2384 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2385 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2386 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2387 return NI;
2388
2389 // Test to see if the operands of the icmp are casted versions of other
2390 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2391 // now.
2392 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002393 if (Op0->getType()->isPointerTy() &&
2394 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002395 // We keep moving the cast from the left operand over to the right
2396 // operand, where it can often be eliminated completely.
2397 Op0 = CI->getOperand(0);
2398
2399 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2400 // so eliminate it as well.
2401 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2402 Op1 = CI2->getOperand(0);
2403
2404 // If Op1 is a constant, we can fold the cast into the constant.
2405 if (Op0->getType() != Op1->getType()) {
2406 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2407 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2408 } else {
2409 // Otherwise, cast the RHS right before the icmp
2410 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2411 }
2412 }
2413 return new ICmpInst(I.getPredicate(), Op0, Op1);
2414 }
2415 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002416
Chris Lattner02446fc2010-01-04 07:37:31 +00002417 if (isa<CastInst>(Op0)) {
2418 // Handle the special case of: icmp (cast bool to X), <cst>
2419 // This comes up when you have code like
2420 // int X = A < B;
2421 // if (X) ...
2422 // For generality, we handle any zero-extension of any operand comparison
2423 // with a constant or another cast from the same type.
2424 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2425 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2426 return R;
2427 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002428
Duncan Sandsa7724332011-02-17 07:46:37 +00002429 // Special logic for binary operators.
2430 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2431 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2432 if (BO0 || BO1) {
2433 CmpInst::Predicate Pred = I.getPredicate();
2434 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2435 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2436 NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2437 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2438 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2439 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2440 NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2441 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2442 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2443
2444 // Analyze the case when either Op0 or Op1 is an add instruction.
2445 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2446 Value *A = 0, *B = 0, *C = 0, *D = 0;
2447 if (BO0 && BO0->getOpcode() == Instruction::Add)
2448 A = BO0->getOperand(0), B = BO0->getOperand(1);
2449 if (BO1 && BO1->getOpcode() == Instruction::Add)
2450 C = BO1->getOperand(0), D = BO1->getOperand(1);
2451
2452 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2453 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2454 return new ICmpInst(Pred, A == Op1 ? B : A,
2455 Constant::getNullValue(Op1->getType()));
2456
2457 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2458 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2459 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2460 C == Op0 ? D : C);
2461
Duncan Sands39a7de72011-02-18 16:25:37 +00002462 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002463 if (A && C && (A == C || A == D || B == C || B == D) &&
2464 NoOp0WrapProblem && NoOp1WrapProblem &&
2465 // Try not to increase register pressure.
2466 BO0->hasOneUse() && BO1->hasOneUse()) {
2467 // Determine Y and Z in the form icmp (X+Y), (X+Z).
Duncan Sandsafe45392012-11-16 18:55:49 +00002468 Value *Y, *Z;
2469 if (A == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002470 // C + B == C + D -> B == D
Duncan Sandsafe45392012-11-16 18:55:49 +00002471 Y = B;
2472 Z = D;
2473 } else if (A == D) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002474 // D + B == C + D -> B == C
Duncan Sandsafe45392012-11-16 18:55:49 +00002475 Y = B;
2476 Z = C;
2477 } else if (B == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002478 // A + C == C + D -> A == D
Duncan Sandsafe45392012-11-16 18:55:49 +00002479 Y = A;
2480 Z = D;
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002481 } else {
2482 assert(B == D);
2483 // A + D == C + D -> A == C
Duncan Sandsafe45392012-11-16 18:55:49 +00002484 Y = A;
2485 Z = C;
2486 }
Duncan Sandsa7724332011-02-17 07:46:37 +00002487 return new ICmpInst(Pred, Y, Z);
2488 }
2489
2490 // Analyze the case when either Op0 or Op1 is a sub instruction.
2491 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2492 A = 0; B = 0; C = 0; D = 0;
2493 if (BO0 && BO0->getOpcode() == Instruction::Sub)
2494 A = BO0->getOperand(0), B = BO0->getOperand(1);
2495 if (BO1 && BO1->getOpcode() == Instruction::Sub)
2496 C = BO1->getOperand(0), D = BO1->getOperand(1);
2497
Duncan Sands39a7de72011-02-18 16:25:37 +00002498 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2499 if (A == Op1 && NoOp0WrapProblem)
2500 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2501
2502 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2503 if (C == Op0 && NoOp1WrapProblem)
2504 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2505
2506 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002507 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2508 // Try not to increase register pressure.
2509 BO0->hasOneUse() && BO1->hasOneUse())
2510 return new ICmpInst(Pred, A, C);
2511
Duncan Sands39a7de72011-02-18 16:25:37 +00002512 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2513 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2514 // Try not to increase register pressure.
2515 BO0->hasOneUse() && BO1->hasOneUse())
2516 return new ICmpInst(Pred, D, B);
2517
Nick Lewycky9feda172011-03-05 04:28:48 +00002518 BinaryOperator *SRem = NULL;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002519 // icmp (srem X, Y), Y
Nick Lewycky9feda172011-03-05 04:28:48 +00002520 if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2521 Op1 == BO0->getOperand(1))
2522 SRem = BO0;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002523 // icmp Y, (srem X, Y)
Nick Lewycky9feda172011-03-05 04:28:48 +00002524 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2525 Op0 == BO1->getOperand(1))
2526 SRem = BO1;
2527 if (SRem) {
2528 // We don't check hasOneUse to avoid increasing register pressure because
2529 // the value we use is the same value this instruction was already using.
2530 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2531 default: break;
2532 case ICmpInst::ICMP_EQ:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002533 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002534 case ICmpInst::ICMP_NE:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002535 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002536 case ICmpInst::ICMP_SGT:
2537 case ICmpInst::ICMP_SGE:
2538 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2539 Constant::getAllOnesValue(SRem->getType()));
2540 case ICmpInst::ICMP_SLT:
2541 case ICmpInst::ICMP_SLE:
2542 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2543 Constant::getNullValue(SRem->getType()));
2544 }
2545 }
2546
Duncan Sandsa7724332011-02-17 07:46:37 +00002547 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2548 BO0->hasOneUse() && BO1->hasOneUse() &&
2549 BO0->getOperand(1) == BO1->getOperand(1)) {
2550 switch (BO0->getOpcode()) {
2551 default: break;
2552 case Instruction::Add:
2553 case Instruction::Sub:
2554 case Instruction::Xor:
2555 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2556 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2557 BO1->getOperand(0));
2558 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2559 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2560 if (CI->getValue().isSignBit()) {
2561 ICmpInst::Predicate Pred = I.isSigned()
2562 ? I.getUnsignedPredicate()
2563 : I.getSignedPredicate();
2564 return new ICmpInst(Pred, BO0->getOperand(0),
2565 BO1->getOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00002566 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002567
Chris Lattnerc73b24d2011-07-15 06:08:15 +00002568 if (CI->isMaxValue(true)) {
Duncan Sandsa7724332011-02-17 07:46:37 +00002569 ICmpInst::Predicate Pred = I.isSigned()
2570 ? I.getUnsignedPredicate()
2571 : I.getSignedPredicate();
2572 Pred = I.getSwappedPredicate(Pred);
2573 return new ICmpInst(Pred, BO0->getOperand(0),
2574 BO1->getOperand(0));
2575 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002576 }
Duncan Sandsa7724332011-02-17 07:46:37 +00002577 break;
2578 case Instruction::Mul:
2579 if (!I.isEquality())
2580 break;
2581
2582 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2583 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2584 // Mask = -1 >> count-trailing-zeros(Cst).
2585 if (!CI->isZero() && !CI->isOne()) {
2586 const APInt &AP = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002587 ConstantInt *Mask = ConstantInt::get(I.getContext(),
Duncan Sandsa7724332011-02-17 07:46:37 +00002588 APInt::getLowBitsSet(AP.getBitWidth(),
2589 AP.getBitWidth() -
2590 AP.countTrailingZeros()));
2591 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2592 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2593 return new ICmpInst(I.getPredicate(), And1, And2);
2594 }
2595 }
2596 break;
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002597 case Instruction::UDiv:
2598 case Instruction::LShr:
2599 if (I.isSigned())
2600 break;
2601 // fall-through
2602 case Instruction::SDiv:
2603 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002604 if (!BO0->isExact() || !BO1->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002605 break;
2606 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2607 BO1->getOperand(0));
2608 case Instruction::Shl: {
2609 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2610 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2611 if (!NUW && !NSW)
2612 break;
2613 if (!NSW && I.isSigned())
2614 break;
2615 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2616 BO1->getOperand(0));
2617 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002618 }
2619 }
2620 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002621
Chris Lattner02446fc2010-01-04 07:37:31 +00002622 { Value *A, *B;
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002623 // ~x < ~y --> y < x
2624 // ~x < cst --> ~cst < x
2625 if (match(Op0, m_Not(m_Value(A)))) {
2626 if (match(Op1, m_Not(m_Value(B))))
2627 return new ICmpInst(I.getPredicate(), B, A);
Chris Lattner27a98482011-01-15 05:42:47 +00002628 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002629 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2630 }
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002631
2632 // (a+b) <u a --> llvm.uadd.with.overflow.
2633 // (a+b) <u b --> llvm.uadd.with.overflow.
2634 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002635 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002636 (Op1 == A || Op1 == B))
2637 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2638 return R;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002639
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002640 // a >u (a+b) --> llvm.uadd.with.overflow.
2641 // b >u (a+b) --> llvm.uadd.with.overflow.
2642 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2643 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2644 (Op0 == A || Op0 == B))
2645 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2646 return R;
Chris Lattner02446fc2010-01-04 07:37:31 +00002647 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002648
Chris Lattner02446fc2010-01-04 07:37:31 +00002649 if (I.isEquality()) {
2650 Value *A, *B, *C, *D;
Duncan Sands39a7de72011-02-18 16:25:37 +00002651
Chris Lattner02446fc2010-01-04 07:37:31 +00002652 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2653 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2654 Value *OtherVal = A == Op1 ? B : A;
2655 return new ICmpInst(I.getPredicate(), OtherVal,
2656 Constant::getNullValue(A->getType()));
2657 }
2658
2659 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2660 // A^c1 == C^c2 --> A == C^(c1^c2)
2661 ConstantInt *C1, *C2;
2662 if (match(B, m_ConstantInt(C1)) &&
2663 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2664 Constant *NC = ConstantInt::get(I.getContext(),
2665 C1->getValue() ^ C2->getValue());
Benjamin Kramera9390a42011-09-27 20:39:19 +00002666 Value *Xor = Builder->CreateXor(C, NC);
Chris Lattner02446fc2010-01-04 07:37:31 +00002667 return new ICmpInst(I.getPredicate(), A, Xor);
2668 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002669
Chris Lattner02446fc2010-01-04 07:37:31 +00002670 // A^B == A^D -> B == D
2671 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2672 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2673 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2674 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2675 }
2676 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002677
Chris Lattner02446fc2010-01-04 07:37:31 +00002678 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2679 (A == Op0 || B == Op0)) {
2680 // A == (A^B) -> B == 0
2681 Value *OtherVal = A == Op0 ? B : A;
2682 return new ICmpInst(I.getPredicate(), OtherVal,
2683 Constant::getNullValue(A->getType()));
2684 }
2685
Chris Lattner02446fc2010-01-04 07:37:31 +00002686 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002687 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
Chris Lattner5036ce42011-04-26 20:02:45 +00002688 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002689 Value *X = 0, *Y = 0, *Z = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002690
Chris Lattner02446fc2010-01-04 07:37:31 +00002691 if (A == C) {
2692 X = B; Y = D; Z = A;
2693 } else if (A == D) {
2694 X = B; Y = C; Z = A;
2695 } else if (B == C) {
2696 X = A; Y = D; Z = B;
2697 } else if (B == D) {
2698 X = A; Y = C; Z = B;
2699 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002700
Chris Lattner02446fc2010-01-04 07:37:31 +00002701 if (X) { // Build (X^Y) & Z
Benjamin Kramera9390a42011-09-27 20:39:19 +00002702 Op1 = Builder->CreateXor(X, Y);
2703 Op1 = Builder->CreateAnd(Op1, Z);
Chris Lattner02446fc2010-01-04 07:37:31 +00002704 I.setOperand(0, Op1);
2705 I.setOperand(1, Constant::getNullValue(Op1->getType()));
2706 return &I;
2707 }
2708 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002709
Benjamin Kramer66821d92012-06-10 20:35:00 +00002710 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
Benjamin Kramer7a99b462012-06-11 08:01:25 +00002711 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
Benjamin Kramer66821d92012-06-10 20:35:00 +00002712 ConstantInt *Cst1;
Benjamin Kramer7a99b462012-06-11 08:01:25 +00002713 if ((Op0->hasOneUse() &&
2714 match(Op0, m_ZExt(m_Value(A))) &&
2715 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
2716 (Op1->hasOneUse() &&
2717 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
2718 match(Op1, m_ZExt(m_Value(A))))) {
Benjamin Kramer66821d92012-06-10 20:35:00 +00002719 APInt Pow2 = Cst1->getValue() + 1;
2720 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
2721 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
2722 return new ICmpInst(I.getPredicate(), A,
2723 Builder->CreateTrunc(B, A->getType()));
2724 }
2725
Chris Lattner325eeb12011-04-26 20:18:20 +00002726 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2727 // "icmp (and X, mask), cst"
2728 uint64_t ShAmt = 0;
Chris Lattner325eeb12011-04-26 20:18:20 +00002729 if (Op0->hasOneUse() &&
2730 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2731 m_ConstantInt(ShAmt))))) &&
2732 match(Op1, m_ConstantInt(Cst1)) &&
2733 // Only do this when A has multiple uses. This is most important to do
2734 // when it exposes other optimizations.
2735 !A->hasOneUse()) {
2736 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002737
Chris Lattner325eeb12011-04-26 20:18:20 +00002738 if (ShAmt < ASize) {
2739 APInt MaskV =
2740 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2741 MaskV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002742
Chris Lattner325eeb12011-04-26 20:18:20 +00002743 APInt CmpV = Cst1->getValue().zext(ASize);
2744 CmpV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002745
Chris Lattner325eeb12011-04-26 20:18:20 +00002746 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2747 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2748 }
2749 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002750 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002751
Chris Lattner02446fc2010-01-04 07:37:31 +00002752 {
2753 Value *X; ConstantInt *Cst;
2754 // icmp X+Cst, X
2755 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2756 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2757
2758 // icmp X, X+Cst
2759 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2760 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2761 }
2762 return Changed ? &I : 0;
2763}
2764
2765
2766
2767
2768
2769
2770/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2771///
2772Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2773 Instruction *LHSI,
2774 Constant *RHSC) {
2775 if (!isa<ConstantFP>(RHSC)) return 0;
2776 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002777
Chris Lattner02446fc2010-01-04 07:37:31 +00002778 // Get the width of the mantissa. We don't want to hack on conversions that
2779 // might lose information from the integer, e.g. "i64 -> float"
2780 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2781 if (MantissaWidth == -1) return 0; // Unknown.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002782
Chris Lattner02446fc2010-01-04 07:37:31 +00002783 // Check to see that the input is converted from an integer type that is small
2784 // enough that preserves all bits. TODO: check here for "known" sign bits.
2785 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2786 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002787
Chris Lattner02446fc2010-01-04 07:37:31 +00002788 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2789 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2790 if (LHSUnsigned)
2791 ++InputSize;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002792
Chris Lattner02446fc2010-01-04 07:37:31 +00002793 // If the conversion would lose info, don't hack on this.
2794 if ((int)InputSize > MantissaWidth)
2795 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002796
Chris Lattner02446fc2010-01-04 07:37:31 +00002797 // Otherwise, we can potentially simplify the comparison. We know that it
2798 // will always come through as an integer value and we know the constant is
2799 // not a NAN (it would have been previously simplified).
2800 assert(!RHS.isNaN() && "NaN comparison not already folded!");
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002801
Chris Lattner02446fc2010-01-04 07:37:31 +00002802 ICmpInst::Predicate Pred;
2803 switch (I.getPredicate()) {
2804 default: llvm_unreachable("Unexpected predicate!");
2805 case FCmpInst::FCMP_UEQ:
2806 case FCmpInst::FCMP_OEQ:
2807 Pred = ICmpInst::ICMP_EQ;
2808 break;
2809 case FCmpInst::FCMP_UGT:
2810 case FCmpInst::FCMP_OGT:
2811 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2812 break;
2813 case FCmpInst::FCMP_UGE:
2814 case FCmpInst::FCMP_OGE:
2815 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2816 break;
2817 case FCmpInst::FCMP_ULT:
2818 case FCmpInst::FCMP_OLT:
2819 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2820 break;
2821 case FCmpInst::FCMP_ULE:
2822 case FCmpInst::FCMP_OLE:
2823 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2824 break;
2825 case FCmpInst::FCMP_UNE:
2826 case FCmpInst::FCMP_ONE:
2827 Pred = ICmpInst::ICMP_NE;
2828 break;
2829 case FCmpInst::FCMP_ORD:
2830 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2831 case FCmpInst::FCMP_UNO:
2832 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2833 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002834
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002835 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002836
Chris Lattner02446fc2010-01-04 07:37:31 +00002837 // Now we know that the APFloat is a normal number, zero or inf.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002838
Chris Lattner02446fc2010-01-04 07:37:31 +00002839 // See if the FP constant is too large for the integer. For example,
2840 // comparing an i8 to 300.0.
2841 unsigned IntWidth = IntTy->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002842
Chris Lattner02446fc2010-01-04 07:37:31 +00002843 if (!LHSUnsigned) {
2844 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2845 // and large values.
2846 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2847 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2848 APFloat::rmNearestTiesToEven);
2849 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
2850 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
2851 Pred == ICmpInst::ICMP_SLE)
2852 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2853 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2854 }
2855 } else {
2856 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2857 // +INF and large values.
2858 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2859 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2860 APFloat::rmNearestTiesToEven);
2861 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
2862 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
2863 Pred == ICmpInst::ICMP_ULE)
2864 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2865 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2866 }
2867 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002868
Chris Lattner02446fc2010-01-04 07:37:31 +00002869 if (!LHSUnsigned) {
2870 // See if the RHS value is < SignedMin.
2871 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2872 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2873 APFloat::rmNearestTiesToEven);
2874 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2875 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2876 Pred == ICmpInst::ICMP_SGE)
2877 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2878 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2879 }
Devang Patela2e0f6b2012-02-13 23:05:18 +00002880 } else {
2881 // See if the RHS value is < UnsignedMin.
2882 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2883 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
2884 APFloat::rmNearestTiesToEven);
2885 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
2886 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
2887 Pred == ICmpInst::ICMP_UGE)
2888 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2889 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2890 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002891 }
2892
2893 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2894 // [0, UMAX], but it may still be fractional. See if it is fractional by
2895 // casting the FP value to the integer value and back, checking for equality.
2896 // Don't do this for zero, because -0.0 is not fractional.
2897 Constant *RHSInt = LHSUnsigned
2898 ? ConstantExpr::getFPToUI(RHSC, IntTy)
2899 : ConstantExpr::getFPToSI(RHSC, IntTy);
2900 if (!RHS.isZero()) {
2901 bool Equal = LHSUnsigned
2902 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2903 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2904 if (!Equal) {
2905 // If we had a comparison against a fractional value, we have to adjust
2906 // the compare predicate and sometimes the value. RHSC is rounded towards
2907 // zero at this point.
2908 switch (Pred) {
2909 default: llvm_unreachable("Unexpected integer comparison!");
2910 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
2911 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2912 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
2913 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2914 case ICmpInst::ICMP_ULE:
2915 // (float)int <= 4.4 --> int <= 4
2916 // (float)int <= -4.4 --> false
2917 if (RHS.isNegative())
2918 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2919 break;
2920 case ICmpInst::ICMP_SLE:
2921 // (float)int <= 4.4 --> int <= 4
2922 // (float)int <= -4.4 --> int < -4
2923 if (RHS.isNegative())
2924 Pred = ICmpInst::ICMP_SLT;
2925 break;
2926 case ICmpInst::ICMP_ULT:
2927 // (float)int < -4.4 --> false
2928 // (float)int < 4.4 --> int <= 4
2929 if (RHS.isNegative())
2930 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2931 Pred = ICmpInst::ICMP_ULE;
2932 break;
2933 case ICmpInst::ICMP_SLT:
2934 // (float)int < -4.4 --> int < -4
2935 // (float)int < 4.4 --> int <= 4
2936 if (!RHS.isNegative())
2937 Pred = ICmpInst::ICMP_SLE;
2938 break;
2939 case ICmpInst::ICMP_UGT:
2940 // (float)int > 4.4 --> int > 4
2941 // (float)int > -4.4 --> true
2942 if (RHS.isNegative())
2943 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2944 break;
2945 case ICmpInst::ICMP_SGT:
2946 // (float)int > 4.4 --> int > 4
2947 // (float)int > -4.4 --> int >= -4
2948 if (RHS.isNegative())
2949 Pred = ICmpInst::ICMP_SGE;
2950 break;
2951 case ICmpInst::ICMP_UGE:
2952 // (float)int >= -4.4 --> true
2953 // (float)int >= 4.4 --> int > 4
Bob Wilsonf12c95a2012-08-07 22:35:16 +00002954 if (RHS.isNegative())
Chris Lattner02446fc2010-01-04 07:37:31 +00002955 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2956 Pred = ICmpInst::ICMP_UGT;
2957 break;
2958 case ICmpInst::ICMP_SGE:
2959 // (float)int >= -4.4 --> int >= -4
2960 // (float)int >= 4.4 --> int > 4
2961 if (!RHS.isNegative())
2962 Pred = ICmpInst::ICMP_SGT;
2963 break;
2964 }
2965 }
2966 }
2967
2968 // Lower this FP comparison into an appropriate integer version of the
2969 // comparison.
2970 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2971}
2972
2973Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2974 bool Changed = false;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002975
Chris Lattner02446fc2010-01-04 07:37:31 +00002976 /// Orders the operands of the compare so that they are listed from most
2977 /// complex to least complex. This puts constants before unary operators,
2978 /// before binary operators.
2979 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2980 I.swapOperands();
2981 Changed = true;
2982 }
2983
2984 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002985
Chris Lattner02446fc2010-01-04 07:37:31 +00002986 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2987 return ReplaceInstUsesWith(I, V);
2988
2989 // Simplify 'fcmp pred X, X'
2990 if (Op0 == Op1) {
2991 switch (I.getPredicate()) {
2992 default: llvm_unreachable("Unknown predicate!");
2993 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
2994 case FCmpInst::FCMP_ULT: // True if unordered or less than
2995 case FCmpInst::FCMP_UGT: // True if unordered or greater than
2996 case FCmpInst::FCMP_UNE: // True if unordered or not equal
2997 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2998 I.setPredicate(FCmpInst::FCMP_UNO);
2999 I.setOperand(1, Constant::getNullValue(Op0->getType()));
3000 return &I;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003001
Chris Lattner02446fc2010-01-04 07:37:31 +00003002 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
3003 case FCmpInst::FCMP_OEQ: // True if ordered and equal
3004 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
3005 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
3006 // Canonicalize these to be 'fcmp ord %X, 0.0'.
3007 I.setPredicate(FCmpInst::FCMP_ORD);
3008 I.setOperand(1, Constant::getNullValue(Op0->getType()));
3009 return &I;
3010 }
3011 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003012
Chris Lattner02446fc2010-01-04 07:37:31 +00003013 // Handle fcmp with constant RHS
3014 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3015 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3016 switch (LHSI->getOpcode()) {
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003017 case Instruction::FPExt: {
3018 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3019 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3020 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3021 if (!RHSF)
3022 break;
3023
3024 const fltSemantics *Sem;
3025 // FIXME: This shouldn't be here.
Dan Gohmance163392011-12-17 00:04:22 +00003026 if (LHSExt->getSrcTy()->isHalfTy())
3027 Sem = &APFloat::IEEEhalf;
3028 else if (LHSExt->getSrcTy()->isFloatTy())
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003029 Sem = &APFloat::IEEEsingle;
3030 else if (LHSExt->getSrcTy()->isDoubleTy())
3031 Sem = &APFloat::IEEEdouble;
3032 else if (LHSExt->getSrcTy()->isFP128Ty())
3033 Sem = &APFloat::IEEEquad;
3034 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3035 Sem = &APFloat::x87DoubleExtended;
Ulrich Weigand3467b9f2012-10-30 12:33:18 +00003036 else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3037 Sem = &APFloat::PPCDoubleDouble;
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003038 else
3039 break;
3040
3041 bool Lossy;
3042 APFloat F = RHSF->getValueAPF();
3043 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3044
Jim Grosbachcbf676b2011-09-30 18:45:50 +00003045 // Avoid lossy conversions and denormals. Zero is a special case
3046 // that's OK to convert.
Jim Grosbach68e05fb2011-09-30 19:58:46 +00003047 APFloat Fabs = F;
3048 Fabs.clearSign();
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003049 if (!Lossy &&
Jim Grosbach68e05fb2011-09-30 19:58:46 +00003050 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3051 APFloat::cmpLessThan) || Fabs.isZero()))
Jim Grosbachcbf676b2011-09-30 18:45:50 +00003052
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003053 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3054 ConstantFP::get(RHSC->getContext(), F));
3055 break;
3056 }
Chris Lattner02446fc2010-01-04 07:37:31 +00003057 case Instruction::PHI:
3058 // Only fold fcmp into the PHI if the phi and fcmp are in the same
3059 // block. If in the same block, we're encouraging jump threading. If
3060 // not, we are just pessimizing the code by making an i1 phi.
3061 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00003062 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00003063 return NV;
3064 break;
3065 case Instruction::SIToFP:
3066 case Instruction::UIToFP:
3067 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3068 return NV;
3069 break;
3070 case Instruction::Select: {
3071 // If either operand of the select is a constant, we can fold the
3072 // comparison into the select arms, which will cause one to be
3073 // constant folded and the select turned into a bitwise or.
3074 Value *Op1 = 0, *Op2 = 0;
3075 if (LHSI->hasOneUse()) {
3076 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3077 // Fold the known value into the constant operand.
3078 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3079 // Insert a new FCmp of the other select operand.
3080 Op2 = Builder->CreateFCmp(I.getPredicate(),
3081 LHSI->getOperand(2), RHSC, I.getName());
3082 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3083 // Fold the known value into the constant operand.
3084 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3085 // Insert a new FCmp of the other select operand.
3086 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
3087 RHSC, I.getName());
3088 }
3089 }
3090
3091 if (Op1)
3092 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3093 break;
3094 }
Benjamin Kramer0db50182011-03-31 10:12:15 +00003095 case Instruction::FSub: {
3096 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3097 Value *Op;
3098 if (match(LHSI, m_FNeg(m_Value(Op))))
3099 return new FCmpInst(I.getSwappedPredicate(), Op,
3100 ConstantExpr::getFNeg(RHSC));
3101 break;
3102 }
Dan Gohman39516a62010-02-24 06:46:09 +00003103 case Instruction::Load:
3104 if (GetElementPtrInst *GEP =
3105 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3106 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3107 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3108 !cast<LoadInst>(LHSI)->isVolatile())
3109 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3110 return Res;
3111 }
3112 break;
Benjamin Kramer00abcd32012-08-18 20:06:47 +00003113 case Instruction::Call: {
3114 CallInst *CI = cast<CallInst>(LHSI);
3115 LibFunc::Func Func;
3116 // Various optimization for fabs compared with zero.
Benjamin Kramera4b57172012-08-18 22:04:34 +00003117 if (RHSC->isNullValue() && CI->getCalledFunction() &&
Benjamin Kramer00abcd32012-08-18 20:06:47 +00003118 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3119 TLI->has(Func)) {
3120 if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3121 Func == LibFunc::fabsl) {
3122 switch (I.getPredicate()) {
3123 default: break;
3124 // fabs(x) < 0 --> false
3125 case FCmpInst::FCMP_OLT:
3126 return ReplaceInstUsesWith(I, Builder->getFalse());
3127 // fabs(x) > 0 --> x != 0
3128 case FCmpInst::FCMP_OGT:
3129 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3130 RHSC);
3131 // fabs(x) <= 0 --> x == 0
3132 case FCmpInst::FCMP_OLE:
3133 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3134 RHSC);
3135 // fabs(x) >= 0 --> !isnan(x)
3136 case FCmpInst::FCMP_OGE:
3137 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3138 RHSC);
3139 // fabs(x) == 0 --> x == 0
3140 // fabs(x) != 0 --> x != 0
3141 case FCmpInst::FCMP_OEQ:
3142 case FCmpInst::FCMP_UEQ:
3143 case FCmpInst::FCMP_ONE:
3144 case FCmpInst::FCMP_UNE:
3145 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3146 RHSC);
3147 }
3148 }
3149 }
3150 }
Chris Lattner02446fc2010-01-04 07:37:31 +00003151 }
Chris Lattner02446fc2010-01-04 07:37:31 +00003152 }
3153
Benjamin Kramer00e00d62011-03-31 10:46:03 +00003154 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00003155 Value *X, *Y;
3156 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
Benjamin Kramer00e00d62011-03-31 10:46:03 +00003157 return new FCmpInst(I.getSwappedPredicate(), X, Y);
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00003158
Benjamin Kramercd0274c2011-03-31 10:11:58 +00003159 // fcmp (fpext x), (fpext y) -> fcmp x, y
3160 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3161 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3162 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3163 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3164 RHSExt->getOperand(0));
3165
Chris Lattner02446fc2010-01-04 07:37:31 +00003166 return Changed ? &I : 0;
3167}