blob: e7d596773f74066352b1a124ebf0c48ebdd0cb4e [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner0c678e52008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186 Instruction *visitOr (BinaryOperator &I);
187 Instruction *visitXor(BinaryOperator &I);
188 Instruction *visitShl(BinaryOperator &I);
189 Instruction *visitAShr(BinaryOperator &I);
190 Instruction *visitLShr(BinaryOperator &I);
191 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000192 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
193 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000194 Instruction *visitFCmpInst(FCmpInst &I);
195 Instruction *visitICmpInst(ICmpInst &I);
196 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
197 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
198 Instruction *LHS,
199 ConstantInt *RHS);
200 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
201 ConstantInt *DivRHS);
202
203 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
204 ICmpInst::Predicate Cond, Instruction &I);
205 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
206 BinaryOperator &I);
207 Instruction *commonCastTransforms(CastInst &CI);
208 Instruction *commonIntCastTransforms(CastInst &CI);
209 Instruction *commonPointerCastTransforms(CastInst &CI);
210 Instruction *visitTrunc(TruncInst &CI);
211 Instruction *visitZExt(ZExtInst &CI);
212 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000213 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000215 Instruction *visitFPToUI(FPToUIInst &FI);
216 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 Instruction *visitUIToFP(CastInst &CI);
218 Instruction *visitSIToFP(CastInst &CI);
219 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000220 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 Instruction *visitBitCast(BitCastInst &CI);
222 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
223 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000224 Instruction *visitSelectInst(SelectInst &SI);
225 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226 Instruction *visitCallInst(CallInst &CI);
227 Instruction *visitInvokeInst(InvokeInst &II);
228 Instruction *visitPHINode(PHINode &PN);
229 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
230 Instruction *visitAllocationInst(AllocationInst &AI);
231 Instruction *visitFreeInst(FreeInst &FI);
232 Instruction *visitLoadInst(LoadInst &LI);
233 Instruction *visitStoreInst(StoreInst &SI);
234 Instruction *visitBranchInst(BranchInst &BI);
235 Instruction *visitSwitchInst(SwitchInst &SI);
236 Instruction *visitInsertElementInst(InsertElementInst &IE);
237 Instruction *visitExtractElementInst(ExtractElementInst &EI);
238 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000239 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240
241 // visitInstruction - Specify what to return for unhandled instructions...
242 Instruction *visitInstruction(Instruction &I) { return 0; }
243
244 private:
245 Instruction *visitCallSite(CallSite CS);
246 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000247 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000248 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
249 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000250 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251
252 public:
253 // InsertNewInstBefore - insert an instruction New before instruction Old
254 // in the program. Add the new instruction to the worklist.
255 //
256 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
257 assert(New && New->getParent() == 0 &&
258 "New instruction already inserted into a basic block!");
259 BasicBlock *BB = Old.getParent();
260 BB->getInstList().insert(&Old, New); // Insert inst
261 AddToWorkList(New);
262 return New;
263 }
264
265 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
266 /// This also adds the cast to the worklist. Finally, this returns the
267 /// cast.
268 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
269 Instruction &Pos) {
270 if (V->getType() == Ty) return V;
271
272 if (Constant *CV = dyn_cast<Constant>(V))
273 return ConstantExpr::getCast(opc, CV, Ty);
274
Gabor Greifa645dd32008-05-16 19:29:10 +0000275 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276 AddToWorkList(C);
277 return C;
278 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000279
280 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
281 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
282 }
283
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000284
285 // ReplaceInstUsesWith - This method is to be used when an instruction is
286 // found to be dead, replacable with another preexisting expression. Here
287 // we add all uses of I to the worklist, replace all uses of I with the new
288 // value, then return I, so that the inst combiner will know that I was
289 // modified.
290 //
291 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
292 AddUsersToWorkList(I); // Add all modified instrs to worklist
293 if (&I != V) {
294 I.replaceAllUsesWith(V);
295 return &I;
296 } else {
297 // If we are replacing the instruction with itself, this must be in a
298 // segment of unreachable code, so just clobber the instruction.
299 I.replaceAllUsesWith(UndefValue::get(I.getType()));
300 return &I;
301 }
302 }
303
304 // UpdateValueUsesWith - This method is to be used when an value is
305 // found to be replacable with another preexisting expression or was
306 // updated. Here we add all uses of I to the worklist, replace all uses of
307 // I with the new value (unless the instruction was just updated), then
308 // return true, so that the inst combiner will know that I was modified.
309 //
310 bool UpdateValueUsesWith(Value *Old, Value *New) {
311 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
312 if (Old != New)
313 Old->replaceAllUsesWith(New);
314 if (Instruction *I = dyn_cast<Instruction>(Old))
315 AddToWorkList(I);
316 if (Instruction *I = dyn_cast<Instruction>(New))
317 AddToWorkList(I);
318 return true;
319 }
320
321 // EraseInstFromFunction - When dealing with an instruction that has side
322 // effects or produces a void value, we can't rely on DCE to delete the
323 // instruction. Instead, visit methods should return the value returned by
324 // this function.
325 Instruction *EraseInstFromFunction(Instruction &I) {
326 assert(I.use_empty() && "Cannot erase instruction that is used!");
327 AddUsesToWorkList(I);
328 RemoveFromWorkList(&I);
329 I.eraseFromParent();
330 return 0; // Don't do anything with FI
331 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000332
333 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
334 APInt &KnownOne, unsigned Depth = 0) const {
335 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
336 }
337
338 bool MaskedValueIsZero(Value *V, const APInt &Mask,
339 unsigned Depth = 0) const {
340 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
341 }
342 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
343 return llvm::ComputeNumSignBits(Op, TD, Depth);
344 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000345
346 private:
347 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
348 /// InsertBefore instruction. This is specialized a bit to avoid inserting
349 /// casts that are known to not do anything...
350 ///
351 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
352 Value *V, const Type *DestTy,
353 Instruction *InsertBefore);
354
355 /// SimplifyCommutative - This performs a few simplifications for
356 /// commutative operators.
357 bool SimplifyCommutative(BinaryOperator &I);
358
359 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
360 /// most-complex to least-complex order.
361 bool SimplifyCompare(CmpInst &I);
362
363 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
364 /// on the demanded bits.
365 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
366 APInt& KnownZero, APInt& KnownOne,
367 unsigned Depth = 0);
368
369 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
370 uint64_t &UndefElts, unsigned Depth = 0);
371
372 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
373 // PHI node as operand #0, see if we can fold the instruction into the PHI
374 // (which is only possible if all operands to the PHI are constants).
375 Instruction *FoldOpIntoPhi(Instruction &I);
376
377 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
378 // operator and they all are only used by the PHI, PHI together their
379 // inputs, and do the operation once, to the result of the PHI.
380 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
381 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
382
383
384 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
385 ConstantInt *AndRHS, BinaryOperator &TheAnd);
386
387 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
388 bool isSub, Instruction &I);
389 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
390 bool isSigned, bool Inside, Instruction &IB);
391 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
392 Instruction *MatchBSwap(BinaryOperator &I);
393 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000394 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000395 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000396
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397
398 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000399
Dan Gohman2d648bb2008-04-10 18:43:06 +0000400 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
401 unsigned CastOpc,
402 int &NumCastsRemoved);
403 unsigned GetOrEnforceKnownAlignment(Value *V,
404 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000405
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407}
408
Dan Gohman089efff2008-05-13 00:00:25 +0000409char InstCombiner::ID = 0;
410static RegisterPass<InstCombiner>
411X("instcombine", "Combine redundant instructions");
412
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413// getComplexity: Assign a complexity or rank value to LLVM Values...
414// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
415static unsigned getComplexity(Value *V) {
416 if (isa<Instruction>(V)) {
417 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
418 return 3;
419 return 4;
420 }
421 if (isa<Argument>(V)) return 3;
422 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
423}
424
425// isOnlyUse - Return true if this instruction will be deleted if we stop using
426// it.
427static bool isOnlyUse(Value *V) {
428 return V->hasOneUse() || isa<Constant>(V);
429}
430
431// getPromotedType - Return the specified type promoted as it would be to pass
432// though a va_arg area...
433static const Type *getPromotedType(const Type *Ty) {
434 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
435 if (ITy->getBitWidth() < 32)
436 return Type::Int32Ty;
437 }
438 return Ty;
439}
440
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000441/// getBitCastOperand - If the specified operand is a CastInst, a constant
442/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
443/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000444static Value *getBitCastOperand(Value *V) {
445 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000446 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000448 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
449 // GetElementPtrInst?
450 if (GEP->hasAllZeroIndices())
451 return GEP->getOperand(0);
452 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000454 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000456 else if (CE->getOpcode() == Instruction::GetElementPtr) {
457 // GetElementPtr ConstantExp?
458 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
459 I != E; ++I) {
460 ConstantInt *CI = dyn_cast<ConstantInt>(I);
461 if (!CI || !CI->isZero())
462 // Any non-zero indices? Not cast-like.
463 return 0;
464 }
465 // All-zero indices? This is just like casting.
466 return CE->getOperand(0);
467 }
468 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469 return 0;
470}
471
472/// This function is a wrapper around CastInst::isEliminableCastPair. It
473/// simply extracts arguments and returns what that function returns.
474static Instruction::CastOps
475isEliminableCastPair(
476 const CastInst *CI, ///< The first cast instruction
477 unsigned opcode, ///< The opcode of the second cast instruction
478 const Type *DstTy, ///< The target type for the second cast instruction
479 TargetData *TD ///< The target data for pointer size
480) {
481
482 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
483 const Type *MidTy = CI->getType(); // B from above
484
485 // Get the opcodes of the two Cast instructions
486 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
487 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
488
489 return Instruction::CastOps(
490 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
491 DstTy, TD->getIntPtrType()));
492}
493
494/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
495/// in any code being generated. It does not require codegen if V is simple
496/// enough or if the cast can be folded into other casts.
497static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
498 const Type *Ty, TargetData *TD) {
499 if (V->getType() == Ty || isa<Constant>(V)) return false;
500
501 // If this is another cast that can be eliminated, it isn't codegen either.
502 if (const CastInst *CI = dyn_cast<CastInst>(V))
503 if (isEliminableCastPair(CI, opcode, Ty, TD))
504 return false;
505 return true;
506}
507
508/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
509/// InsertBefore instruction. This is specialized a bit to avoid inserting
510/// casts that are known to not do anything...
511///
512Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
513 Value *V, const Type *DestTy,
514 Instruction *InsertBefore) {
515 if (V->getType() == DestTy) return V;
516 if (Constant *C = dyn_cast<Constant>(V))
517 return ConstantExpr::getCast(opcode, C, DestTy);
518
519 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
520}
521
522// SimplifyCommutative - This performs a few simplifications for commutative
523// operators:
524//
525// 1. Order operands such that they are listed from right (least complex) to
526// left (most complex). This puts constants before unary operators before
527// binary operators.
528//
529// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
530// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
531//
532bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
533 bool Changed = false;
534 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
535 Changed = !I.swapOperands();
536
537 if (!I.isAssociative()) return Changed;
538 Instruction::BinaryOps Opcode = I.getOpcode();
539 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
540 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
541 if (isa<Constant>(I.getOperand(1))) {
542 Constant *Folded = ConstantExpr::get(I.getOpcode(),
543 cast<Constant>(I.getOperand(1)),
544 cast<Constant>(Op->getOperand(1)));
545 I.setOperand(0, Op->getOperand(0));
546 I.setOperand(1, Folded);
547 return true;
548 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
549 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
550 isOnlyUse(Op) && isOnlyUse(Op1)) {
551 Constant *C1 = cast<Constant>(Op->getOperand(1));
552 Constant *C2 = cast<Constant>(Op1->getOperand(1));
553
554 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
555 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000556 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000557 Op1->getOperand(0),
558 Op1->getName(), &I);
559 AddToWorkList(New);
560 I.setOperand(0, New);
561 I.setOperand(1, Folded);
562 return true;
563 }
564 }
565 return Changed;
566}
567
568/// SimplifyCompare - For a CmpInst this function just orders the operands
569/// so that theyare listed from right (least complex) to left (most complex).
570/// This puts constants before unary operators before binary operators.
571bool InstCombiner::SimplifyCompare(CmpInst &I) {
572 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
573 return false;
574 I.swapOperands();
575 // Compare instructions are not associative so there's nothing else we can do.
576 return true;
577}
578
579// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
580// if the LHS is a constant zero (which is the 'negate' form).
581//
582static inline Value *dyn_castNegVal(Value *V) {
583 if (BinaryOperator::isNeg(V))
584 return BinaryOperator::getNegArgument(V);
585
586 // Constants can be considered to be negated values if they can be folded.
587 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
588 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000589
590 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
591 if (C->getType()->getElementType()->isInteger())
592 return ConstantExpr::getNeg(C);
593
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594 return 0;
595}
596
597static inline Value *dyn_castNotVal(Value *V) {
598 if (BinaryOperator::isNot(V))
599 return BinaryOperator::getNotArgument(V);
600
601 // Constants can be considered to be not'ed values...
602 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
603 return ConstantInt::get(~C->getValue());
604 return 0;
605}
606
607// dyn_castFoldableMul - If this value is a multiply that can be folded into
608// other computations (because it has a constant operand), return the
609// non-constant operand of the multiply, and set CST to point to the multiplier.
610// Otherwise, return null.
611//
612static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
613 if (V->hasOneUse() && V->getType()->isInteger())
614 if (Instruction *I = dyn_cast<Instruction>(V)) {
615 if (I->getOpcode() == Instruction::Mul)
616 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
617 return I->getOperand(0);
618 if (I->getOpcode() == Instruction::Shl)
619 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
620 // The multiplier is really 1 << CST.
621 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
622 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
623 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
624 return I->getOperand(0);
625 }
626 }
627 return 0;
628}
629
630/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
631/// expression, return it.
632static User *dyn_castGetElementPtr(Value *V) {
633 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
634 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
635 if (CE->getOpcode() == Instruction::GetElementPtr)
636 return cast<User>(V);
637 return false;
638}
639
Dan Gohman2d648bb2008-04-10 18:43:06 +0000640/// getOpcode - If this is an Instruction or a ConstantExpr, return the
641/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000642static unsigned getOpcode(const Value *V) {
643 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000644 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000645 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000646 return CE->getOpcode();
647 // Use UserOp1 to mean there's no opcode.
648 return Instruction::UserOp1;
649}
650
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000651/// AddOne - Add one to a ConstantInt
652static ConstantInt *AddOne(ConstantInt *C) {
653 APInt Val(C->getValue());
654 return ConstantInt::get(++Val);
655}
656/// SubOne - Subtract one from a ConstantInt
657static ConstantInt *SubOne(ConstantInt *C) {
658 APInt Val(C->getValue());
659 return ConstantInt::get(--Val);
660}
661/// Add - Add two ConstantInts together
662static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
663 return ConstantInt::get(C1->getValue() + C2->getValue());
664}
665/// And - Bitwise AND two ConstantInts together
666static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
667 return ConstantInt::get(C1->getValue() & C2->getValue());
668}
669/// Subtract - Subtract one ConstantInt from another
670static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
671 return ConstantInt::get(C1->getValue() - C2->getValue());
672}
673/// Multiply - Multiply two ConstantInts together
674static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
675 return ConstantInt::get(C1->getValue() * C2->getValue());
676}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000677/// MultiplyOverflows - True if the multiply can not be expressed in an int
678/// this size.
679static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
680 uint32_t W = C1->getBitWidth();
681 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
682 if (sign) {
683 LHSExt.sext(W * 2);
684 RHSExt.sext(W * 2);
685 } else {
686 LHSExt.zext(W * 2);
687 RHSExt.zext(W * 2);
688 }
689
690 APInt MulExt = LHSExt * RHSExt;
691
692 if (sign) {
693 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
694 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
695 return MulExt.slt(Min) || MulExt.sgt(Max);
696 } else
697 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
698}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000699
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700
701/// ShrinkDemandedConstant - Check to see if the specified operand of the
702/// specified instruction is a constant integer. If so, check to see if there
703/// are any bits set in the constant that are not demanded. If so, shrink the
704/// constant and return true.
705static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
706 APInt Demanded) {
707 assert(I && "No instruction?");
708 assert(OpNo < I->getNumOperands() && "Operand index too large");
709
710 // If the operand is not a constant integer, nothing to do.
711 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
712 if (!OpC) return false;
713
714 // If there are no bits set that aren't demanded, nothing to do.
715 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
716 if ((~Demanded & OpC->getValue()) == 0)
717 return false;
718
719 // This instruction is producing bits that are not demanded. Shrink the RHS.
720 Demanded &= OpC->getValue();
721 I->setOperand(OpNo, ConstantInt::get(Demanded));
722 return true;
723}
724
725// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
726// set of known zero and one bits, compute the maximum and minimum values that
727// could have the specified known zero and known one bits, returning them in
728// min/max.
729static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
730 const APInt& KnownZero,
731 const APInt& KnownOne,
732 APInt& Min, APInt& Max) {
733 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
734 assert(KnownZero.getBitWidth() == BitWidth &&
735 KnownOne.getBitWidth() == BitWidth &&
736 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
737 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
738 APInt UnknownBits = ~(KnownZero|KnownOne);
739
740 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
741 // bit if it is unknown.
742 Min = KnownOne;
743 Max = KnownOne|UnknownBits;
744
745 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
746 Min.set(BitWidth-1);
747 Max.clear(BitWidth-1);
748 }
749}
750
751// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
752// a set of known zero and one bits, compute the maximum and minimum values that
753// could have the specified known zero and known one bits, returning them in
754// min/max.
755static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000756 const APInt &KnownZero,
757 const APInt &KnownOne,
758 APInt &Min, APInt &Max) {
759 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 assert(KnownZero.getBitWidth() == BitWidth &&
761 KnownOne.getBitWidth() == BitWidth &&
762 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
763 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
764 APInt UnknownBits = ~(KnownZero|KnownOne);
765
766 // The minimum value is when the unknown bits are all zeros.
767 Min = KnownOne;
768 // The maximum value is when the unknown bits are all ones.
769 Max = KnownOne|UnknownBits;
770}
771
772/// SimplifyDemandedBits - This function attempts to replace V with a simpler
773/// value based on the demanded bits. When this function is called, it is known
774/// that only the bits set in DemandedMask of the result of V are ever used
775/// downstream. Consequently, depending on the mask and V, it may be possible
776/// to replace V with a constant or one of its operands. In such cases, this
777/// function does the replacement and returns true. In all other cases, it
778/// returns false after analyzing the expression and setting KnownOne and known
779/// to be one in the expression. KnownZero contains all the bits that are known
780/// to be zero in the expression. These are provided to potentially allow the
781/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
782/// the expression. KnownOne and KnownZero always follow the invariant that
783/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
784/// the bits in KnownOne and KnownZero may only be accurate for those bits set
785/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
786/// and KnownOne must all be the same.
787bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
788 APInt& KnownZero, APInt& KnownOne,
789 unsigned Depth) {
790 assert(V != 0 && "Null pointer of Value???");
791 assert(Depth <= 6 && "Limit Search Depth");
792 uint32_t BitWidth = DemandedMask.getBitWidth();
793 const IntegerType *VTy = cast<IntegerType>(V->getType());
794 assert(VTy->getBitWidth() == BitWidth &&
795 KnownZero.getBitWidth() == BitWidth &&
796 KnownOne.getBitWidth() == BitWidth &&
797 "Value *V, DemandedMask, KnownZero and KnownOne \
798 must have same BitWidth");
799 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
800 // We know all of the bits for a constant!
801 KnownOne = CI->getValue() & DemandedMask;
802 KnownZero = ~KnownOne & DemandedMask;
803 return false;
804 }
805
806 KnownZero.clear();
807 KnownOne.clear();
808 if (!V->hasOneUse()) { // Other users may use these bits.
809 if (Depth != 0) { // Not at the root.
810 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
811 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
812 return false;
813 }
814 // If this is the root being simplified, allow it to have multiple uses,
815 // just set the DemandedMask to all bits.
816 DemandedMask = APInt::getAllOnesValue(BitWidth);
817 } else if (DemandedMask == 0) { // Not demanding any bits from V.
818 if (V != UndefValue::get(VTy))
819 return UpdateValueUsesWith(V, UndefValue::get(VTy));
820 return false;
821 } else if (Depth == 6) { // Limit search depth.
822 return false;
823 }
824
825 Instruction *I = dyn_cast<Instruction>(V);
826 if (!I) return false; // Only analyze instructions.
827
828 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
829 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
830 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000831 default:
832 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
833 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000834 case Instruction::And:
835 // If either the LHS or the RHS are Zero, the result is zero.
836 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
837 RHSKnownZero, RHSKnownOne, Depth+1))
838 return true;
839 assert((RHSKnownZero & RHSKnownOne) == 0 &&
840 "Bits known to be one AND zero?");
841
842 // If something is known zero on the RHS, the bits aren't demanded on the
843 // LHS.
844 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
845 LHSKnownZero, LHSKnownOne, Depth+1))
846 return true;
847 assert((LHSKnownZero & LHSKnownOne) == 0 &&
848 "Bits known to be one AND zero?");
849
850 // If all of the demanded bits are known 1 on one side, return the other.
851 // These bits cannot contribute to the result of the 'and'.
852 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
853 (DemandedMask & ~LHSKnownZero))
854 return UpdateValueUsesWith(I, I->getOperand(0));
855 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
856 (DemandedMask & ~RHSKnownZero))
857 return UpdateValueUsesWith(I, I->getOperand(1));
858
859 // If all of the demanded bits in the inputs are known zeros, return zero.
860 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
861 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
862
863 // If the RHS is a constant, see if we can simplify it.
864 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
865 return UpdateValueUsesWith(I, I);
866
867 // Output known-1 bits are only known if set in both the LHS & RHS.
868 RHSKnownOne &= LHSKnownOne;
869 // Output known-0 are known to be clear if zero in either the LHS | RHS.
870 RHSKnownZero |= LHSKnownZero;
871 break;
872 case Instruction::Or:
873 // If either the LHS or the RHS are One, the result is One.
874 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
875 RHSKnownZero, RHSKnownOne, Depth+1))
876 return true;
877 assert((RHSKnownZero & RHSKnownOne) == 0 &&
878 "Bits known to be one AND zero?");
879 // If something is known one on the RHS, the bits aren't demanded on the
880 // LHS.
881 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
882 LHSKnownZero, LHSKnownOne, Depth+1))
883 return true;
884 assert((LHSKnownZero & LHSKnownOne) == 0 &&
885 "Bits known to be one AND zero?");
886
887 // If all of the demanded bits are known zero on one side, return the other.
888 // These bits cannot contribute to the result of the 'or'.
889 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
890 (DemandedMask & ~LHSKnownOne))
891 return UpdateValueUsesWith(I, I->getOperand(0));
892 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
893 (DemandedMask & ~RHSKnownOne))
894 return UpdateValueUsesWith(I, I->getOperand(1));
895
896 // If all of the potentially set bits on one side are known to be set on
897 // the other side, just use the 'other' side.
898 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
899 (DemandedMask & (~RHSKnownZero)))
900 return UpdateValueUsesWith(I, I->getOperand(0));
901 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
902 (DemandedMask & (~LHSKnownZero)))
903 return UpdateValueUsesWith(I, I->getOperand(1));
904
905 // If the RHS is a constant, see if we can simplify it.
906 if (ShrinkDemandedConstant(I, 1, DemandedMask))
907 return UpdateValueUsesWith(I, I);
908
909 // Output known-0 bits are only known if clear in both the LHS & RHS.
910 RHSKnownZero &= LHSKnownZero;
911 // Output known-1 are known to be set if set in either the LHS | RHS.
912 RHSKnownOne |= LHSKnownOne;
913 break;
914 case Instruction::Xor: {
915 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
916 RHSKnownZero, RHSKnownOne, Depth+1))
917 return true;
918 assert((RHSKnownZero & RHSKnownOne) == 0 &&
919 "Bits known to be one AND zero?");
920 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
921 LHSKnownZero, LHSKnownOne, Depth+1))
922 return true;
923 assert((LHSKnownZero & LHSKnownOne) == 0 &&
924 "Bits known to be one AND zero?");
925
926 // If all of the demanded bits are known zero on one side, return the other.
927 // These bits cannot contribute to the result of the 'xor'.
928 if ((DemandedMask & RHSKnownZero) == DemandedMask)
929 return UpdateValueUsesWith(I, I->getOperand(0));
930 if ((DemandedMask & LHSKnownZero) == DemandedMask)
931 return UpdateValueUsesWith(I, I->getOperand(1));
932
933 // Output known-0 bits are known if clear or set in both the LHS & RHS.
934 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
935 (RHSKnownOne & LHSKnownOne);
936 // Output known-1 are known to be set if set in only one of the LHS, RHS.
937 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
938 (RHSKnownOne & LHSKnownZero);
939
940 // If all of the demanded bits are known to be zero on one side or the
941 // other, turn this into an *inclusive* or.
942 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
943 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
944 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000945 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946 I->getName());
947 InsertNewInstBefore(Or, *I);
948 return UpdateValueUsesWith(I, Or);
949 }
950
951 // If all of the demanded bits on one side are known, and all of the set
952 // bits on that side are also known to be set on the other side, turn this
953 // into an AND, as we know the bits will be cleared.
954 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
955 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
956 // all known
957 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
958 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
959 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000960 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 InsertNewInstBefore(And, *I);
962 return UpdateValueUsesWith(I, And);
963 }
964 }
965
966 // If the RHS is a constant, see if we can simplify it.
967 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
968 if (ShrinkDemandedConstant(I, 1, DemandedMask))
969 return UpdateValueUsesWith(I, I);
970
971 RHSKnownZero = KnownZeroOut;
972 RHSKnownOne = KnownOneOut;
973 break;
974 }
975 case Instruction::Select:
976 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
977 RHSKnownZero, RHSKnownOne, Depth+1))
978 return true;
979 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
980 LHSKnownZero, LHSKnownOne, Depth+1))
981 return true;
982 assert((RHSKnownZero & RHSKnownOne) == 0 &&
983 "Bits known to be one AND zero?");
984 assert((LHSKnownZero & LHSKnownOne) == 0 &&
985 "Bits known to be one AND zero?");
986
987 // If the operands are constants, see if we can simplify them.
988 if (ShrinkDemandedConstant(I, 1, DemandedMask))
989 return UpdateValueUsesWith(I, I);
990 if (ShrinkDemandedConstant(I, 2, DemandedMask))
991 return UpdateValueUsesWith(I, I);
992
993 // Only known if known in both the LHS and RHS.
994 RHSKnownOne &= LHSKnownOne;
995 RHSKnownZero &= LHSKnownZero;
996 break;
997 case Instruction::Trunc: {
998 uint32_t truncBf =
999 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1000 DemandedMask.zext(truncBf);
1001 RHSKnownZero.zext(truncBf);
1002 RHSKnownOne.zext(truncBf);
1003 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1004 RHSKnownZero, RHSKnownOne, Depth+1))
1005 return true;
1006 DemandedMask.trunc(BitWidth);
1007 RHSKnownZero.trunc(BitWidth);
1008 RHSKnownOne.trunc(BitWidth);
1009 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1010 "Bits known to be one AND zero?");
1011 break;
1012 }
1013 case Instruction::BitCast:
1014 if (!I->getOperand(0)->getType()->isInteger())
1015 return false;
1016
1017 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1018 RHSKnownZero, RHSKnownOne, Depth+1))
1019 return true;
1020 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1021 "Bits known to be one AND zero?");
1022 break;
1023 case Instruction::ZExt: {
1024 // Compute the bits in the result that are not present in the input.
1025 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1026 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1027
1028 DemandedMask.trunc(SrcBitWidth);
1029 RHSKnownZero.trunc(SrcBitWidth);
1030 RHSKnownOne.trunc(SrcBitWidth);
1031 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1032 RHSKnownZero, RHSKnownOne, Depth+1))
1033 return true;
1034 DemandedMask.zext(BitWidth);
1035 RHSKnownZero.zext(BitWidth);
1036 RHSKnownOne.zext(BitWidth);
1037 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1038 "Bits known to be one AND zero?");
1039 // The top bits are known to be zero.
1040 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1041 break;
1042 }
1043 case Instruction::SExt: {
1044 // Compute the bits in the result that are not present in the input.
1045 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1046 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1047
1048 APInt InputDemandedBits = DemandedMask &
1049 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1050
1051 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1052 // If any of the sign extended bits are demanded, we know that the sign
1053 // bit is demanded.
1054 if ((NewBits & DemandedMask) != 0)
1055 InputDemandedBits.set(SrcBitWidth-1);
1056
1057 InputDemandedBits.trunc(SrcBitWidth);
1058 RHSKnownZero.trunc(SrcBitWidth);
1059 RHSKnownOne.trunc(SrcBitWidth);
1060 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1061 RHSKnownZero, RHSKnownOne, Depth+1))
1062 return true;
1063 InputDemandedBits.zext(BitWidth);
1064 RHSKnownZero.zext(BitWidth);
1065 RHSKnownOne.zext(BitWidth);
1066 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1067 "Bits known to be one AND zero?");
1068
1069 // If the sign bit of the input is known set or clear, then we know the
1070 // top bits of the result.
1071
1072 // If the input sign bit is known zero, or if the NewBits are not demanded
1073 // convert this into a zero extension.
1074 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1075 {
1076 // Convert to ZExt cast
1077 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1078 return UpdateValueUsesWith(I, NewCast);
1079 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1080 RHSKnownOne |= NewBits;
1081 }
1082 break;
1083 }
1084 case Instruction::Add: {
1085 // Figure out what the input bits are. If the top bits of the and result
1086 // are not demanded, then the add doesn't demand them from its input
1087 // either.
1088 uint32_t NLZ = DemandedMask.countLeadingZeros();
1089
1090 // If there is a constant on the RHS, there are a variety of xformations
1091 // we can do.
1092 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1093 // If null, this should be simplified elsewhere. Some of the xforms here
1094 // won't work if the RHS is zero.
1095 if (RHS->isZero())
1096 break;
1097
1098 // If the top bit of the output is demanded, demand everything from the
1099 // input. Otherwise, we demand all the input bits except NLZ top bits.
1100 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1101
1102 // Find information about known zero/one bits in the input.
1103 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1104 LHSKnownZero, LHSKnownOne, Depth+1))
1105 return true;
1106
1107 // If the RHS of the add has bits set that can't affect the input, reduce
1108 // the constant.
1109 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1110 return UpdateValueUsesWith(I, I);
1111
1112 // Avoid excess work.
1113 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1114 break;
1115
1116 // Turn it into OR if input bits are zero.
1117 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1118 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001119 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001120 I->getName());
1121 InsertNewInstBefore(Or, *I);
1122 return UpdateValueUsesWith(I, Or);
1123 }
1124
1125 // We can say something about the output known-zero and known-one bits,
1126 // depending on potential carries from the input constant and the
1127 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1128 // bits set and the RHS constant is 0x01001, then we know we have a known
1129 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1130
1131 // To compute this, we first compute the potential carry bits. These are
1132 // the bits which may be modified. I'm not aware of a better way to do
1133 // this scan.
1134 const APInt& RHSVal = RHS->getValue();
1135 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1136
1137 // Now that we know which bits have carries, compute the known-1/0 sets.
1138
1139 // Bits are known one if they are known zero in one operand and one in the
1140 // other, and there is no input carry.
1141 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1142 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1143
1144 // Bits are known zero if they are known zero in both operands and there
1145 // is no input carry.
1146 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1147 } else {
1148 // If the high-bits of this ADD are not demanded, then it does not demand
1149 // the high bits of its LHS or RHS.
1150 if (DemandedMask[BitWidth-1] == 0) {
1151 // Right fill the mask of bits for this ADD to demand the most
1152 // significant bit and all those below it.
1153 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1154 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1155 LHSKnownZero, LHSKnownOne, Depth+1))
1156 return true;
1157 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1158 LHSKnownZero, LHSKnownOne, Depth+1))
1159 return true;
1160 }
1161 }
1162 break;
1163 }
1164 case Instruction::Sub:
1165 // If the high-bits of this SUB are not demanded, then it does not demand
1166 // the high bits of its LHS or RHS.
1167 if (DemandedMask[BitWidth-1] == 0) {
1168 // Right fill the mask of bits for this SUB to demand the most
1169 // significant bit and all those below it.
1170 uint32_t NLZ = DemandedMask.countLeadingZeros();
1171 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1172 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1173 LHSKnownZero, LHSKnownOne, Depth+1))
1174 return true;
1175 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1176 LHSKnownZero, LHSKnownOne, Depth+1))
1177 return true;
1178 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001179 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1180 // the known zeros and ones.
1181 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001182 break;
1183 case Instruction::Shl:
1184 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1185 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1186 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1187 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1188 RHSKnownZero, RHSKnownOne, Depth+1))
1189 return true;
1190 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1191 "Bits known to be one AND zero?");
1192 RHSKnownZero <<= ShiftAmt;
1193 RHSKnownOne <<= ShiftAmt;
1194 // low bits known zero.
1195 if (ShiftAmt)
1196 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1197 }
1198 break;
1199 case Instruction::LShr:
1200 // For a logical shift right
1201 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1202 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1203
1204 // Unsigned shift right.
1205 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1206 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1207 RHSKnownZero, RHSKnownOne, Depth+1))
1208 return true;
1209 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1210 "Bits known to be one AND zero?");
1211 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1212 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1213 if (ShiftAmt) {
1214 // Compute the new bits that are at the top now.
1215 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1216 RHSKnownZero |= HighBits; // high bits known zero.
1217 }
1218 }
1219 break;
1220 case Instruction::AShr:
1221 // If this is an arithmetic shift right and only the low-bit is set, we can
1222 // always convert this into a logical shr, even if the shift amount is
1223 // variable. The low bit of the shift cannot be an input sign bit unless
1224 // the shift amount is >= the size of the datatype, which is undefined.
1225 if (DemandedMask == 1) {
1226 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001227 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001228 I->getOperand(0), I->getOperand(1), I->getName());
1229 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1230 return UpdateValueUsesWith(I, NewVal);
1231 }
1232
1233 // If the sign bit is the only bit demanded by this ashr, then there is no
1234 // need to do it, the shift doesn't change the high bit.
1235 if (DemandedMask.isSignBit())
1236 return UpdateValueUsesWith(I, I->getOperand(0));
1237
1238 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1239 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1240
1241 // Signed shift right.
1242 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1243 // If any of the "high bits" are demanded, we should set the sign bit as
1244 // demanded.
1245 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1246 DemandedMaskIn.set(BitWidth-1);
1247 if (SimplifyDemandedBits(I->getOperand(0),
1248 DemandedMaskIn,
1249 RHSKnownZero, RHSKnownOne, Depth+1))
1250 return true;
1251 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1252 "Bits known to be one AND zero?");
1253 // Compute the new bits that are at the top now.
1254 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1255 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1256 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1257
1258 // Handle the sign bits.
1259 APInt SignBit(APInt::getSignBit(BitWidth));
1260 // Adjust to where it is now in the mask.
1261 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1262
1263 // If the input sign bit is known to be zero, or if none of the top bits
1264 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001265 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001266 (HighBits & ~DemandedMask) == HighBits) {
1267 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001268 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 I->getOperand(0), SA, I->getName());
1270 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1271 return UpdateValueUsesWith(I, NewVal);
1272 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1273 RHSKnownOne |= HighBits;
1274 }
1275 }
1276 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001277 case Instruction::SRem:
1278 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001279 APInt RA = Rem->getValue().abs();
1280 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001281 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1282 return UpdateValueUsesWith(I, I->getOperand(0));
1283
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001284 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001285 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1286 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1287 LHSKnownZero, LHSKnownOne, Depth+1))
1288 return true;
1289
1290 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1291 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001292
1293 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001294
1295 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1296 }
1297 }
1298 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001299 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001300 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1301 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001302 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1303 KnownZero2, KnownOne2, Depth+1))
1304 return true;
1305
Dan Gohmanbec16052008-04-28 17:02:21 +00001306 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001307 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001308 KnownZero2, KnownOne2, Depth+1))
1309 return true;
1310
1311 Leaders = std::max(Leaders,
1312 KnownZero2.countLeadingOnes());
1313 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001314 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001315 }
Chris Lattner989ba312008-06-18 04:33:20 +00001316 case Instruction::Call:
1317 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1318 switch (II->getIntrinsicID()) {
1319 default: break;
1320 case Intrinsic::bswap: {
1321 // If the only bits demanded come from one byte of the bswap result,
1322 // just shift the input byte into position to eliminate the bswap.
1323 unsigned NLZ = DemandedMask.countLeadingZeros();
1324 unsigned NTZ = DemandedMask.countTrailingZeros();
1325
1326 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1327 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1328 // have 14 leading zeros, round to 8.
1329 NLZ &= ~7;
1330 NTZ &= ~7;
1331 // If we need exactly one byte, we can do this transformation.
1332 if (BitWidth-NLZ-NTZ == 8) {
1333 unsigned ResultBit = NTZ;
1334 unsigned InputBit = BitWidth-NTZ-8;
1335
1336 // Replace this with either a left or right shift to get the byte into
1337 // the right place.
1338 Instruction *NewVal;
1339 if (InputBit > ResultBit)
1340 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1341 ConstantInt::get(I->getType(), InputBit-ResultBit));
1342 else
1343 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1344 ConstantInt::get(I->getType(), ResultBit-InputBit));
1345 NewVal->takeName(I);
1346 InsertNewInstBefore(NewVal, *I);
1347 return UpdateValueUsesWith(I, NewVal);
1348 }
1349
1350 // TODO: Could compute known zero/one bits based on the input.
1351 break;
1352 }
1353 }
1354 }
Chris Lattner4946e222008-06-18 18:11:55 +00001355 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001356 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001357 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358
1359 // If the client is only demanding bits that we know, return the known
1360 // constant.
1361 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1362 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1363 return false;
1364}
1365
1366
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001367/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368/// 64 or fewer elements. DemandedElts contains the set of elements that are
1369/// actually used by the caller. This method analyzes which elements of the
1370/// operand are undef and returns that information in UndefElts.
1371///
1372/// If the information about demanded elements can be used to simplify the
1373/// operation, the operation is simplified, then the resultant value is
1374/// returned. This returns null if no change was made.
1375Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1376 uint64_t &UndefElts,
1377 unsigned Depth) {
1378 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1379 assert(VWidth <= 64 && "Vector too wide to analyze!");
1380 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001381 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001382
1383 if (isa<UndefValue>(V)) {
1384 // If the entire vector is undefined, just return this info.
1385 UndefElts = EltMask;
1386 return 0;
1387 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1388 UndefElts = EltMask;
1389 return UndefValue::get(V->getType());
1390 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001391
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001392 UndefElts = 0;
1393 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1394 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1395 Constant *Undef = UndefValue::get(EltTy);
1396
1397 std::vector<Constant*> Elts;
1398 for (unsigned i = 0; i != VWidth; ++i)
1399 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1400 Elts.push_back(Undef);
1401 UndefElts |= (1ULL << i);
1402 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1403 Elts.push_back(Undef);
1404 UndefElts |= (1ULL << i);
1405 } else { // Otherwise, defined.
1406 Elts.push_back(CP->getOperand(i));
1407 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001408
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001409 // If we changed the constant, return it.
1410 Constant *NewCP = ConstantVector::get(Elts);
1411 return NewCP != CP ? NewCP : 0;
1412 } else if (isa<ConstantAggregateZero>(V)) {
1413 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1414 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001415
1416 // Check if this is identity. If so, return 0 since we are not simplifying
1417 // anything.
1418 if (DemandedElts == ((1ULL << VWidth) -1))
1419 return 0;
1420
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001421 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1422 Constant *Zero = Constant::getNullValue(EltTy);
1423 Constant *Undef = UndefValue::get(EltTy);
1424 std::vector<Constant*> Elts;
1425 for (unsigned i = 0; i != VWidth; ++i)
1426 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1427 UndefElts = DemandedElts ^ EltMask;
1428 return ConstantVector::get(Elts);
1429 }
1430
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001431 // Limit search depth.
1432 if (Depth == 10)
1433 return false;
1434
1435 // If multiple users are using the root value, procede with
1436 // simplification conservatively assuming that all elements
1437 // are needed.
1438 if (!V->hasOneUse()) {
1439 // Quit if we find multiple users of a non-root value though.
1440 // They'll be handled when it's their turn to be visited by
1441 // the main instcombine process.
1442 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001443 // TODO: Just compute the UndefElts information recursively.
1444 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001445
1446 // Conservatively assume that all elements are needed.
1447 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001448 }
1449
1450 Instruction *I = dyn_cast<Instruction>(V);
1451 if (!I) return false; // Only analyze instructions.
1452
1453 bool MadeChange = false;
1454 uint64_t UndefElts2;
1455 Value *TmpV;
1456 switch (I->getOpcode()) {
1457 default: break;
1458
1459 case Instruction::InsertElement: {
1460 // If this is a variable index, we don't know which element it overwrites.
1461 // demand exactly the same input as we produce.
1462 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1463 if (Idx == 0) {
1464 // Note that we can't propagate undef elt info, because we don't know
1465 // which elt is getting updated.
1466 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1467 UndefElts2, Depth+1);
1468 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1469 break;
1470 }
1471
1472 // If this is inserting an element that isn't demanded, remove this
1473 // insertelement.
1474 unsigned IdxNo = Idx->getZExtValue();
1475 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1476 return AddSoonDeadInstToWorklist(*I, 0);
1477
1478 // Otherwise, the element inserted overwrites whatever was there, so the
1479 // input demanded set is simpler than the output set.
1480 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1481 DemandedElts & ~(1ULL << IdxNo),
1482 UndefElts, Depth+1);
1483 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1484
1485 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001486 UndefElts &= ~(1ULL << IdxNo);
1487 break;
1488 }
1489 case Instruction::ShuffleVector: {
1490 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001491 uint64_t LHSVWidth =
1492 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001493 uint64_t LeftDemanded = 0, RightDemanded = 0;
1494 for (unsigned i = 0; i < VWidth; i++) {
1495 if (DemandedElts & (1ULL << i)) {
1496 unsigned MaskVal = Shuffle->getMaskValue(i);
1497 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001498 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001499 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001500 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001501 LeftDemanded |= 1ULL << MaskVal;
1502 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001503 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001504 }
1505 }
1506 }
1507
1508 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1509 UndefElts2, Depth+1);
1510 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1511
1512 uint64_t UndefElts3;
1513 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1514 UndefElts3, Depth+1);
1515 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1516
1517 bool NewUndefElts = false;
1518 for (unsigned i = 0; i < VWidth; i++) {
1519 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001520 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001521 uint64_t NewBit = 1ULL << i;
1522 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001523 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001524 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1525 NewUndefElts |= NewBit;
1526 UndefElts |= NewBit;
1527 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001528 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001529 NewUndefElts |= NewBit;
1530 UndefElts |= NewBit;
1531 }
1532 }
1533
1534 if (NewUndefElts) {
1535 // Add additional discovered undefs.
1536 std::vector<Constant*> Elts;
1537 for (unsigned i = 0; i < VWidth; ++i) {
1538 if (UndefElts & (1ULL << i))
1539 Elts.push_back(UndefValue::get(Type::Int32Ty));
1540 else
1541 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1542 Shuffle->getMaskValue(i)));
1543 }
1544 I->setOperand(2, ConstantVector::get(Elts));
1545 MadeChange = true;
1546 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547 break;
1548 }
1549 case Instruction::BitCast: {
1550 // Vector->vector casts only.
1551 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1552 if (!VTy) break;
1553 unsigned InVWidth = VTy->getNumElements();
1554 uint64_t InputDemandedElts = 0;
1555 unsigned Ratio;
1556
1557 if (VWidth == InVWidth) {
1558 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1559 // elements as are demanded of us.
1560 Ratio = 1;
1561 InputDemandedElts = DemandedElts;
1562 } else if (VWidth > InVWidth) {
1563 // Untested so far.
1564 break;
1565
1566 // If there are more elements in the result than there are in the source,
1567 // then an input element is live if any of the corresponding output
1568 // elements are live.
1569 Ratio = VWidth/InVWidth;
1570 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1571 if (DemandedElts & (1ULL << OutIdx))
1572 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1573 }
1574 } else {
1575 // Untested so far.
1576 break;
1577
1578 // If there are more elements in the source than there are in the result,
1579 // then an input element is live if the corresponding output element is
1580 // live.
1581 Ratio = InVWidth/VWidth;
1582 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1583 if (DemandedElts & (1ULL << InIdx/Ratio))
1584 InputDemandedElts |= 1ULL << InIdx;
1585 }
1586
1587 // div/rem demand all inputs, because they don't want divide by zero.
1588 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1589 UndefElts2, Depth+1);
1590 if (TmpV) {
1591 I->setOperand(0, TmpV);
1592 MadeChange = true;
1593 }
1594
1595 UndefElts = UndefElts2;
1596 if (VWidth > InVWidth) {
1597 assert(0 && "Unimp");
1598 // If there are more elements in the result than there are in the source,
1599 // then an output element is undef if the corresponding input element is
1600 // undef.
1601 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1602 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1603 UndefElts |= 1ULL << OutIdx;
1604 } else if (VWidth < InVWidth) {
1605 assert(0 && "Unimp");
1606 // If there are more elements in the source than there are in the result,
1607 // then a result element is undef if all of the corresponding input
1608 // elements are undef.
1609 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1610 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1611 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1612 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1613 }
1614 break;
1615 }
1616 case Instruction::And:
1617 case Instruction::Or:
1618 case Instruction::Xor:
1619 case Instruction::Add:
1620 case Instruction::Sub:
1621 case Instruction::Mul:
1622 // div/rem demand all inputs, because they don't want divide by zero.
1623 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1624 UndefElts, Depth+1);
1625 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1626 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1627 UndefElts2, Depth+1);
1628 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1629
1630 // Output elements are undefined if both are undefined. Consider things
1631 // like undef&0. The result is known zero, not undef.
1632 UndefElts &= UndefElts2;
1633 break;
1634
1635 case Instruction::Call: {
1636 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1637 if (!II) break;
1638 switch (II->getIntrinsicID()) {
1639 default: break;
1640
1641 // Binary vector operations that work column-wise. A dest element is a
1642 // function of the corresponding input elements from the two inputs.
1643 case Intrinsic::x86_sse_sub_ss:
1644 case Intrinsic::x86_sse_mul_ss:
1645 case Intrinsic::x86_sse_min_ss:
1646 case Intrinsic::x86_sse_max_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
1648 case Intrinsic::x86_sse2_mul_sd:
1649 case Intrinsic::x86_sse2_min_sd:
1650 case Intrinsic::x86_sse2_max_sd:
1651 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1652 UndefElts, Depth+1);
1653 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1654 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1655 UndefElts2, Depth+1);
1656 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1657
1658 // If only the low elt is demanded and this is a scalarizable intrinsic,
1659 // scalarize it now.
1660 if (DemandedElts == 1) {
1661 switch (II->getIntrinsicID()) {
1662 default: break;
1663 case Intrinsic::x86_sse_sub_ss:
1664 case Intrinsic::x86_sse_mul_ss:
1665 case Intrinsic::x86_sse2_sub_sd:
1666 case Intrinsic::x86_sse2_mul_sd:
1667 // TODO: Lower MIN/MAX/ABS/etc
1668 Value *LHS = II->getOperand(1);
1669 Value *RHS = II->getOperand(2);
1670 // Extract the element as scalars.
1671 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1672 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1673
1674 switch (II->getIntrinsicID()) {
1675 default: assert(0 && "Case stmts out of sync!");
1676 case Intrinsic::x86_sse_sub_ss:
1677 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001678 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001679 II->getName()), *II);
1680 break;
1681 case Intrinsic::x86_sse_mul_ss:
1682 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001683 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684 II->getName()), *II);
1685 break;
1686 }
1687
1688 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001689 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1690 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001691 InsertNewInstBefore(New, *II);
1692 AddSoonDeadInstToWorklist(*II, 0);
1693 return New;
1694 }
1695 }
1696
1697 // Output elements are undefined if both are undefined. Consider things
1698 // like undef&0. The result is known zero, not undef.
1699 UndefElts &= UndefElts2;
1700 break;
1701 }
1702 break;
1703 }
1704 }
1705 return MadeChange ? I : 0;
1706}
1707
Dan Gohman5d56fd42008-05-19 22:14:15 +00001708
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709/// AssociativeOpt - Perform an optimization on an associative operator. This
1710/// function is designed to check a chain of associative operators for a
1711/// potential to apply a certain optimization. Since the optimization may be
1712/// applicable if the expression was reassociated, this checks the chain, then
1713/// reassociates the expression as necessary to expose the optimization
1714/// opportunity. This makes use of a special Functor, which must define
1715/// 'shouldApply' and 'apply' methods.
1716///
1717template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001718static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001719 unsigned Opcode = Root.getOpcode();
1720 Value *LHS = Root.getOperand(0);
1721
1722 // Quick check, see if the immediate LHS matches...
1723 if (F.shouldApply(LHS))
1724 return F.apply(Root);
1725
1726 // Otherwise, if the LHS is not of the same opcode as the root, return.
1727 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1728 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1729 // Should we apply this transform to the RHS?
1730 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1731
1732 // If not to the RHS, check to see if we should apply to the LHS...
1733 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1734 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1735 ShouldApply = true;
1736 }
1737
1738 // If the functor wants to apply the optimization to the RHS of LHSI,
1739 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1740 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001741 // Now all of the instructions are in the current basic block, go ahead
1742 // and perform the reassociation.
1743 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1744
1745 // First move the selected RHS to the LHS of the root...
1746 Root.setOperand(0, LHSI->getOperand(1));
1747
1748 // Make what used to be the LHS of the root be the user of the root...
1749 Value *ExtraOperand = TmpLHSI->getOperand(1);
1750 if (&Root == TmpLHSI) {
1751 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1752 return 0;
1753 }
1754 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1755 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001757 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758 ARI = Root;
1759
1760 // Now propagate the ExtraOperand down the chain of instructions until we
1761 // get to LHSI.
1762 while (TmpLHSI != LHSI) {
1763 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1764 // Move the instruction to immediately before the chain we are
1765 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001766 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001767 ARI = NextLHSI;
1768
1769 Value *NextOp = NextLHSI->getOperand(1);
1770 NextLHSI->setOperand(1, ExtraOperand);
1771 TmpLHSI = NextLHSI;
1772 ExtraOperand = NextOp;
1773 }
1774
1775 // Now that the instructions are reassociated, have the functor perform
1776 // the transformation...
1777 return F.apply(Root);
1778 }
1779
1780 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1781 }
1782 return 0;
1783}
1784
Dan Gohman089efff2008-05-13 00:00:25 +00001785namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001786
Nick Lewycky27f6c132008-05-23 04:34:58 +00001787// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001788struct AddRHS {
1789 Value *RHS;
1790 AddRHS(Value *rhs) : RHS(rhs) {}
1791 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1792 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001793 return BinaryOperator::CreateShl(Add.getOperand(0),
1794 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795 }
1796};
1797
1798// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1799// iff C1&C2 == 0
1800struct AddMaskingAnd {
1801 Constant *C2;
1802 AddMaskingAnd(Constant *c) : C2(c) {}
1803 bool shouldApply(Value *LHS) const {
1804 ConstantInt *C1;
1805 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1806 ConstantExpr::getAnd(C1, C2)->isNullValue();
1807 }
1808 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001809 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 }
1811};
1812
Dan Gohman089efff2008-05-13 00:00:25 +00001813}
1814
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001815static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1816 InstCombiner *IC) {
1817 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1818 if (Constant *SOC = dyn_cast<Constant>(SO))
1819 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1820
Gabor Greifa645dd32008-05-16 19:29:10 +00001821 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001822 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1823 }
1824
1825 // Figure out if the constant is the left or the right argument.
1826 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1827 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1828
1829 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1830 if (ConstIsRHS)
1831 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1832 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1833 }
1834
1835 Value *Op0 = SO, *Op1 = ConstOperand;
1836 if (!ConstIsRHS)
1837 std::swap(Op0, Op1);
1838 Instruction *New;
1839 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001840 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001842 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001843 SO->getName()+".cmp");
1844 else {
1845 assert(0 && "Unknown binary instruction type!");
1846 abort();
1847 }
1848 return IC->InsertNewInstBefore(New, I);
1849}
1850
1851// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1852// constant as the other operand, try to fold the binary operator into the
1853// select arguments. This also works for Cast instructions, which obviously do
1854// not have a second operand.
1855static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1856 InstCombiner *IC) {
1857 // Don't modify shared select instructions
1858 if (!SI->hasOneUse()) return 0;
1859 Value *TV = SI->getOperand(1);
1860 Value *FV = SI->getOperand(2);
1861
1862 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1863 // Bool selects with constant operands can be folded to logical ops.
1864 if (SI->getType() == Type::Int1Ty) return 0;
1865
1866 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1867 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1868
Gabor Greifd6da1d02008-04-06 20:25:17 +00001869 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1870 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001871 }
1872 return 0;
1873}
1874
1875
1876/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1877/// node as operand #0, see if we can fold the instruction into the PHI (which
1878/// is only possible if all operands to the PHI are constants).
1879Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1880 PHINode *PN = cast<PHINode>(I.getOperand(0));
1881 unsigned NumPHIValues = PN->getNumIncomingValues();
1882 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1883
1884 // Check to see if all of the operands of the PHI are constants. If there is
1885 // one non-constant value, remember the BB it is. If there is more than one
1886 // or if *it* is a PHI, bail out.
1887 BasicBlock *NonConstBB = 0;
1888 for (unsigned i = 0; i != NumPHIValues; ++i)
1889 if (!isa<Constant>(PN->getIncomingValue(i))) {
1890 if (NonConstBB) return 0; // More than one non-const value.
1891 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1892 NonConstBB = PN->getIncomingBlock(i);
1893
1894 // If the incoming non-constant value is in I's block, we have an infinite
1895 // loop.
1896 if (NonConstBB == I.getParent())
1897 return 0;
1898 }
1899
1900 // If there is exactly one non-constant value, we can insert a copy of the
1901 // operation in that block. However, if this is a critical edge, we would be
1902 // inserting the computation one some other paths (e.g. inside a loop). Only
1903 // do this if the pred block is unconditionally branching into the phi block.
1904 if (NonConstBB) {
1905 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1906 if (!BI || !BI->isUnconditional()) return 0;
1907 }
1908
1909 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001910 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1912 InsertNewInstBefore(NewPN, *PN);
1913 NewPN->takeName(PN);
1914
1915 // Next, add all of the operands to the PHI.
1916 if (I.getNumOperands() == 2) {
1917 Constant *C = cast<Constant>(I.getOperand(1));
1918 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001919 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1921 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1922 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1923 else
1924 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1925 } else {
1926 assert(PN->getIncomingBlock(i) == NonConstBB);
1927 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001928 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929 PN->getIncomingValue(i), C, "phitmp",
1930 NonConstBB->getTerminator());
1931 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001932 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001933 CI->getPredicate(),
1934 PN->getIncomingValue(i), C, "phitmp",
1935 NonConstBB->getTerminator());
1936 else
1937 assert(0 && "Unknown binop!");
1938
1939 AddToWorkList(cast<Instruction>(InV));
1940 }
1941 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1942 }
1943 } else {
1944 CastInst *CI = cast<CastInst>(&I);
1945 const Type *RetTy = CI->getType();
1946 for (unsigned i = 0; i != NumPHIValues; ++i) {
1947 Value *InV;
1948 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1949 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1950 } else {
1951 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001952 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001953 I.getType(), "phitmp",
1954 NonConstBB->getTerminator());
1955 AddToWorkList(cast<Instruction>(InV));
1956 }
1957 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1958 }
1959 }
1960 return ReplaceInstUsesWith(I, NewPN);
1961}
1962
Chris Lattner55476162008-01-29 06:52:45 +00001963
Chris Lattner3554f972008-05-20 05:46:13 +00001964/// WillNotOverflowSignedAdd - Return true if we can prove that:
1965/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1966/// This basically requires proving that the add in the original type would not
1967/// overflow to change the sign bit or have a carry out.
1968bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1969 // There are different heuristics we can use for this. Here are some simple
1970 // ones.
1971
1972 // Add has the property that adding any two 2's complement numbers can only
1973 // have one carry bit which can change a sign. As such, if LHS and RHS each
1974 // have at least two sign bits, we know that the addition of the two values will
1975 // sign extend fine.
1976 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1977 return true;
1978
1979
1980 // If one of the operands only has one non-zero bit, and if the other operand
1981 // has a known-zero bit in a more significant place than it (not including the
1982 // sign bit) the ripple may go up to and fill the zero, but won't change the
1983 // sign. For example, (X & ~4) + 1.
1984
1985 // TODO: Implement.
1986
1987 return false;
1988}
1989
Chris Lattner55476162008-01-29 06:52:45 +00001990
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001991Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1992 bool Changed = SimplifyCommutative(I);
1993 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1994
1995 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1996 // X + undef -> undef
1997 if (isa<UndefValue>(RHS))
1998 return ReplaceInstUsesWith(I, RHS);
1999
2000 // X + 0 --> X
2001 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2002 if (RHSC->isNullValue())
2003 return ReplaceInstUsesWith(I, LHS);
2004 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00002005 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2006 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002007 return ReplaceInstUsesWith(I, LHS);
2008 }
2009
2010 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2011 // X + (signbit) --> X ^ signbit
2012 const APInt& Val = CI->getValue();
2013 uint32_t BitWidth = Val.getBitWidth();
2014 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00002015 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002016
2017 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2018 // (X & 254)+1 -> (X&254)|1
2019 if (!isa<VectorType>(I.getType())) {
2020 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2021 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2022 KnownZero, KnownOne))
2023 return &I;
2024 }
Dan Gohman35b76162008-10-30 20:40:10 +00002025
2026 // zext(i1) - 1 -> select i1, 0, -1
2027 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2028 if (CI->isAllOnesValue() &&
2029 ZI->getOperand(0)->getType() == Type::Int1Ty)
2030 return SelectInst::Create(ZI->getOperand(0),
2031 Constant::getNullValue(I.getType()),
2032 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002033 }
2034
2035 if (isa<PHINode>(LHS))
2036 if (Instruction *NV = FoldOpIntoPhi(I))
2037 return NV;
2038
2039 ConstantInt *XorRHS = 0;
2040 Value *XorLHS = 0;
2041 if (isa<ConstantInt>(RHSC) &&
2042 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2043 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2044 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2045
2046 uint32_t Size = TySizeBits / 2;
2047 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2048 APInt CFF80Val(-C0080Val);
2049 do {
2050 if (TySizeBits > Size) {
2051 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2052 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2053 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2054 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2055 // This is a sign extend if the top bits are known zero.
2056 if (!MaskedValueIsZero(XorLHS,
2057 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2058 Size = 0; // Not a sign ext, but can't be any others either.
2059 break;
2060 }
2061 }
2062 Size >>= 1;
2063 C0080Val = APIntOps::lshr(C0080Val, Size);
2064 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2065 } while (Size >= 1);
2066
2067 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002068 // with funny bit widths then this switch statement should be removed. It
2069 // is just here to get the size of the "middle" type back up to something
2070 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002071 const Type *MiddleType = 0;
2072 switch (Size) {
2073 default: break;
2074 case 32: MiddleType = Type::Int32Ty; break;
2075 case 16: MiddleType = Type::Int16Ty; break;
2076 case 8: MiddleType = Type::Int8Ty; break;
2077 }
2078 if (MiddleType) {
2079 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2080 InsertNewInstBefore(NewTrunc, I);
2081 return new SExtInst(NewTrunc, I.getType(), I.getName());
2082 }
2083 }
2084 }
2085
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002086 if (I.getType() == Type::Int1Ty)
2087 return BinaryOperator::CreateXor(LHS, RHS);
2088
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002089 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002090 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002091 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2092
2093 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2094 if (RHSI->getOpcode() == Instruction::Sub)
2095 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2096 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2097 }
2098 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2099 if (LHSI->getOpcode() == Instruction::Sub)
2100 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2101 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2102 }
2103 }
2104
2105 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002106 // -A + -B --> -(A + B)
2107 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002108 if (LHS->getType()->isIntOrIntVector()) {
2109 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002110 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002111 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002112 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002113 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002114 }
2115
Gabor Greifa645dd32008-05-16 19:29:10 +00002116 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002117 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002118
2119 // A + -B --> A - B
2120 if (!isa<Constant>(RHS))
2121 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002122 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123
2124
2125 ConstantInt *C2;
2126 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2127 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002128 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002129
2130 // X*C1 + X*C2 --> X * (C1+C2)
2131 ConstantInt *C1;
2132 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002133 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002134 }
2135
2136 // X + X*C --> X * (C+1)
2137 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002138 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002139
2140 // X + ~X --> -1 since ~X = -X-1
2141 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2142 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2143
2144
2145 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2146 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2147 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2148 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002149
2150 // A+B --> A|B iff A and B have no bits set in common.
2151 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2152 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2153 APInt LHSKnownOne(IT->getBitWidth(), 0);
2154 APInt LHSKnownZero(IT->getBitWidth(), 0);
2155 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2156 if (LHSKnownZero != 0) {
2157 APInt RHSKnownOne(IT->getBitWidth(), 0);
2158 APInt RHSKnownZero(IT->getBitWidth(), 0);
2159 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2160
2161 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002162 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002163 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002164 }
2165 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002166
Nick Lewycky83598a72008-02-03 07:42:09 +00002167 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002168 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002169 Value *W, *X, *Y, *Z;
2170 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2171 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2172 if (W != Y) {
2173 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002174 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002175 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002176 std::swap(W, X);
2177 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002178 std::swap(Y, Z);
2179 std::swap(W, X);
2180 }
2181 }
2182
2183 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002184 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002185 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002186 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002187 }
2188 }
2189 }
2190
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2192 Value *X = 0;
2193 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002194 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195
2196 // (X & FF00) + xx00 -> (X+xx00) & FF00
2197 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2198 Constant *Anded = And(CRHS, C2);
2199 if (Anded == CRHS) {
2200 // See if all bits from the first bit set in the Add RHS up are included
2201 // in the mask. First, get the rightmost bit.
2202 const APInt& AddRHSV = CRHS->getValue();
2203
2204 // Form a mask of all bits from the lowest bit added through the top.
2205 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2206
2207 // See if the and mask includes all of these bits.
2208 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2209
2210 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2211 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002212 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002214 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002215 }
2216 }
2217 }
2218
2219 // Try to fold constant add into select arguments.
2220 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2221 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2222 return R;
2223 }
2224
2225 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002226 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002227 {
2228 CastInst *CI = dyn_cast<CastInst>(LHS);
2229 Value *Other = RHS;
2230 if (!CI) {
2231 CI = dyn_cast<CastInst>(RHS);
2232 Other = LHS;
2233 }
2234 if (CI && CI->getType()->isSized() &&
2235 (CI->getType()->getPrimitiveSizeInBits() ==
2236 TD->getIntPtrType()->getPrimitiveSizeInBits())
2237 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002238 unsigned AS =
2239 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002240 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2241 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002242 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002243 return new PtrToIntInst(I2, CI->getType());
2244 }
2245 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002246
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002247 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002248 {
2249 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002250 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002251 if (!SI) {
2252 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002253 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002254 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002255 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002256 Value *TV = SI->getTrueValue();
2257 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002258 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002259
2260 // Can we fold the add into the argument of the select?
2261 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002262 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2263 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002264 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002265 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2266 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002267 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002268 }
2269 }
Chris Lattner55476162008-01-29 06:52:45 +00002270
2271 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2272 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2273 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2274 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002275
Chris Lattner3554f972008-05-20 05:46:13 +00002276 // Check for (add (sext x), y), see if we can merge this into an
2277 // integer add followed by a sext.
2278 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2279 // (add (sext x), cst) --> (sext (add x, cst'))
2280 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2281 Constant *CI =
2282 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2283 if (LHSConv->hasOneUse() &&
2284 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2285 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2286 // Insert the new, smaller add.
2287 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2288 CI, "addconv");
2289 InsertNewInstBefore(NewAdd, I);
2290 return new SExtInst(NewAdd, I.getType());
2291 }
2292 }
2293
2294 // (add (sext x), (sext y)) --> (sext (add int x, y))
2295 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2296 // Only do this if x/y have the same type, if at last one of them has a
2297 // single use (so we don't increase the number of sexts), and if the
2298 // integer add will not overflow.
2299 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2300 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2301 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2302 RHSConv->getOperand(0))) {
2303 // Insert the new integer add.
2304 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2305 RHSConv->getOperand(0),
2306 "addconv");
2307 InsertNewInstBefore(NewAdd, I);
2308 return new SExtInst(NewAdd, I.getType());
2309 }
2310 }
2311 }
2312
2313 // Check for (add double (sitofp x), y), see if we can merge this into an
2314 // integer add followed by a promotion.
2315 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2316 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2317 // ... if the constant fits in the integer value. This is useful for things
2318 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2319 // requires a constant pool load, and generally allows the add to be better
2320 // instcombined.
2321 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2322 Constant *CI =
2323 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2324 if (LHSConv->hasOneUse() &&
2325 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2326 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2327 // Insert the new integer add.
2328 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2329 CI, "addconv");
2330 InsertNewInstBefore(NewAdd, I);
2331 return new SIToFPInst(NewAdd, I.getType());
2332 }
2333 }
2334
2335 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2336 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2337 // Only do this if x/y have the same type, if at last one of them has a
2338 // single use (so we don't increase the number of int->fp conversions),
2339 // and if the integer add will not overflow.
2340 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2341 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2342 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2343 RHSConv->getOperand(0))) {
2344 // Insert the new integer add.
2345 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2346 RHSConv->getOperand(0),
2347 "addconv");
2348 InsertNewInstBefore(NewAdd, I);
2349 return new SIToFPInst(NewAdd, I.getType());
2350 }
2351 }
2352 }
2353
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002354 return Changed ? &I : 0;
2355}
2356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002357Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2358 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2359
Chris Lattner27fbef42008-07-17 06:07:20 +00002360 if (Op0 == Op1 && // sub X, X -> 0
2361 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002362 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2363
2364 // If this is a 'B = x-(-A)', change to B = x+A...
2365 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002366 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002367
2368 if (isa<UndefValue>(Op0))
2369 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2370 if (isa<UndefValue>(Op1))
2371 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2372
2373 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2374 // Replace (-1 - A) with (~A)...
2375 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002376 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002377
2378 // C - ~X == X + (1+C)
2379 Value *X = 0;
2380 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002381 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002382
2383 // -(X >>u 31) -> (X >>s 31)
2384 // -(X >>s 31) -> (X >>u 31)
2385 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002386 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002387 if (SI->getOpcode() == Instruction::LShr) {
2388 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2389 // Check to see if we are shifting out everything but the sign bit.
2390 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2391 SI->getType()->getPrimitiveSizeInBits()-1) {
2392 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002393 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 SI->getOperand(0), CU, SI->getName());
2395 }
2396 }
2397 }
2398 else if (SI->getOpcode() == Instruction::AShr) {
2399 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2400 // Check to see if we are shifting out everything but the sign bit.
2401 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2402 SI->getType()->getPrimitiveSizeInBits()-1) {
2403 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002404 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405 SI->getOperand(0), CU, SI->getName());
2406 }
2407 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002408 }
2409 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 }
2411
2412 // Try to fold constant sub into select arguments.
2413 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2414 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2415 return R;
2416
2417 if (isa<PHINode>(Op0))
2418 if (Instruction *NV = FoldOpIntoPhi(I))
2419 return NV;
2420 }
2421
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002422 if (I.getType() == Type::Int1Ty)
2423 return BinaryOperator::CreateXor(Op0, Op1);
2424
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002425 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2426 if (Op1I->getOpcode() == Instruction::Add &&
2427 !Op0->getType()->isFPOrFPVector()) {
2428 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002429 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002431 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002432 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2433 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2434 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002435 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002436 Op1I->getOperand(0));
2437 }
2438 }
2439
2440 if (Op1I->hasOneUse()) {
2441 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2442 // is not used by anyone else...
2443 //
2444 if (Op1I->getOpcode() == Instruction::Sub &&
2445 !Op1I->getType()->isFPOrFPVector()) {
2446 // Swap the two operands of the subexpr...
2447 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2448 Op1I->setOperand(0, IIOp1);
2449 Op1I->setOperand(1, IIOp0);
2450
2451 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002452 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453 }
2454
2455 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2456 //
2457 if (Op1I->getOpcode() == Instruction::And &&
2458 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2459 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2460
2461 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002462 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2463 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002464 }
2465
2466 // 0 - (X sdiv C) -> (X sdiv -C)
2467 if (Op1I->getOpcode() == Instruction::SDiv)
2468 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2469 if (CSI->isZero())
2470 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002471 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472 ConstantExpr::getNeg(DivRHS));
2473
2474 // X - X*C --> X * (1-C)
2475 ConstantInt *C2 = 0;
2476 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2477 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002478 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002479 }
Dan Gohmanda338742007-09-17 17:31:57 +00002480
2481 // X - ((X / Y) * Y) --> X % Y
2482 if (Op1I->getOpcode() == Instruction::Mul)
2483 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2484 if (Op0 == I->getOperand(0) &&
2485 Op1I->getOperand(1) == I->getOperand(1)) {
2486 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002487 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002488 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002489 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002490 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002491 }
2492 }
2493
2494 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002495 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496 if (Op0I->getOpcode() == Instruction::Add) {
2497 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2498 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2499 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2500 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2501 } else if (Op0I->getOpcode() == Instruction::Sub) {
2502 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002503 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002505 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002506
2507 ConstantInt *C1;
2508 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2509 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002510 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002511
2512 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2513 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002514 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002515 }
2516 return 0;
2517}
2518
2519/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2520/// comparison only checks the sign bit. If it only checks the sign bit, set
2521/// TrueIfSigned if the result of the comparison is true when the input value is
2522/// signed.
2523static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2524 bool &TrueIfSigned) {
2525 switch (pred) {
2526 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2527 TrueIfSigned = true;
2528 return RHS->isZero();
2529 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2530 TrueIfSigned = true;
2531 return RHS->isAllOnesValue();
2532 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2533 TrueIfSigned = false;
2534 return RHS->isAllOnesValue();
2535 case ICmpInst::ICMP_UGT:
2536 // True if LHS u> RHS and RHS == high-bit-mask - 1
2537 TrueIfSigned = true;
2538 return RHS->getValue() ==
2539 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2540 case ICmpInst::ICMP_UGE:
2541 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2542 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002543 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002544 default:
2545 return false;
2546 }
2547}
2548
2549Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2550 bool Changed = SimplifyCommutative(I);
2551 Value *Op0 = I.getOperand(0);
2552
2553 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2554 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2555
2556 // Simplify mul instructions with a constant RHS...
2557 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2558 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2559
2560 // ((X << C1)*C2) == (X * (C2 << C1))
2561 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2562 if (SI->getOpcode() == Instruction::Shl)
2563 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002564 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002565 ConstantExpr::getShl(CI, ShOp));
2566
2567 if (CI->isZero())
2568 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2569 if (CI->equalsInt(1)) // X * 1 == X
2570 return ReplaceInstUsesWith(I, Op0);
2571 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002572 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573
2574 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2575 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002576 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002577 ConstantInt::get(Op0->getType(), Val.logBase2()));
2578 }
2579 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2580 if (Op1F->isNullValue())
2581 return ReplaceInstUsesWith(I, Op1);
2582
2583 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2584 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002585 if (Op1F->isExactlyValue(1.0))
2586 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2587 } else if (isa<VectorType>(Op1->getType())) {
2588 if (isa<ConstantAggregateZero>(Op1))
2589 return ReplaceInstUsesWith(I, Op1);
2590
2591 // As above, vector X*splat(1.0) -> X in all defined cases.
2592 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1))
2593 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
2594 if (F->isExactlyValue(1.0))
2595 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596 }
2597
2598 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2599 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002600 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002602 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603 Op1, "tmp");
2604 InsertNewInstBefore(Add, I);
2605 Value *C1C2 = ConstantExpr::getMul(Op1,
2606 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002607 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002608
2609 }
2610
2611 // Try to fold constant mul into select arguments.
2612 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2613 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2614 return R;
2615
2616 if (isa<PHINode>(Op0))
2617 if (Instruction *NV = FoldOpIntoPhi(I))
2618 return NV;
2619 }
2620
2621 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2622 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002623 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002624
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002625 if (I.getType() == Type::Int1Ty)
2626 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2627
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002628 // If one of the operands of the multiply is a cast from a boolean value, then
2629 // we know the bool is either zero or one, so this is a 'masking' multiply.
2630 // See if we can simplify things based on how the boolean was originally
2631 // formed.
2632 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002633 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002634 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2635 BoolCast = CI;
2636 if (!BoolCast)
2637 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2638 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2639 BoolCast = CI;
2640 if (BoolCast) {
2641 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2642 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2643 const Type *SCOpTy = SCIOp0->getType();
2644 bool TIS = false;
2645
2646 // If the icmp is true iff the sign bit of X is set, then convert this
2647 // multiply into a shift/and combination.
2648 if (isa<ConstantInt>(SCIOp1) &&
2649 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2650 TIS) {
2651 // Shift the X value right to turn it into "all signbits".
2652 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2653 SCOpTy->getPrimitiveSizeInBits()-1);
2654 Value *V =
2655 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002656 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002657 BoolCast->getOperand(0)->getName()+
2658 ".mask"), I);
2659
2660 // If the multiply type is not the same as the source type, sign extend
2661 // or truncate to the multiply type.
2662 if (I.getType() != V->getType()) {
2663 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2664 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2665 Instruction::CastOps opcode =
2666 (SrcBits == DstBits ? Instruction::BitCast :
2667 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2668 V = InsertCastBefore(opcode, V, I.getType(), I);
2669 }
2670
2671 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002672 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673 }
2674 }
2675 }
2676
2677 return Changed ? &I : 0;
2678}
2679
Chris Lattner76972db2008-07-14 00:15:52 +00002680/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2681/// instruction.
2682bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2683 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2684
2685 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2686 int NonNullOperand = -1;
2687 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2688 if (ST->isNullValue())
2689 NonNullOperand = 2;
2690 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2691 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2692 if (ST->isNullValue())
2693 NonNullOperand = 1;
2694
2695 if (NonNullOperand == -1)
2696 return false;
2697
2698 Value *SelectCond = SI->getOperand(0);
2699
2700 // Change the div/rem to use 'Y' instead of the select.
2701 I.setOperand(1, SI->getOperand(NonNullOperand));
2702
2703 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2704 // problem. However, the select, or the condition of the select may have
2705 // multiple uses. Based on our knowledge that the operand must be non-zero,
2706 // propagate the known value for the select into other uses of it, and
2707 // propagate a known value of the condition into its other users.
2708
2709 // If the select and condition only have a single use, don't bother with this,
2710 // early exit.
2711 if (SI->use_empty() && SelectCond->hasOneUse())
2712 return true;
2713
2714 // Scan the current block backward, looking for other uses of SI.
2715 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2716
2717 while (BBI != BBFront) {
2718 --BBI;
2719 // If we found a call to a function, we can't assume it will return, so
2720 // information from below it cannot be propagated above it.
2721 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2722 break;
2723
2724 // Replace uses of the select or its condition with the known values.
2725 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2726 I != E; ++I) {
2727 if (*I == SI) {
2728 *I = SI->getOperand(NonNullOperand);
2729 AddToWorkList(BBI);
2730 } else if (*I == SelectCond) {
2731 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2732 ConstantInt::getFalse();
2733 AddToWorkList(BBI);
2734 }
2735 }
2736
2737 // If we past the instruction, quit looking for it.
2738 if (&*BBI == SI)
2739 SI = 0;
2740 if (&*BBI == SelectCond)
2741 SelectCond = 0;
2742
2743 // If we ran out of things to eliminate, break out of the loop.
2744 if (SelectCond == 0 && SI == 0)
2745 break;
2746
2747 }
2748 return true;
2749}
2750
2751
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002752/// This function implements the transforms on div instructions that work
2753/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2754/// used by the visitors to those instructions.
2755/// @brief Transforms common to all three div instructions
2756Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2757 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2758
Chris Lattner653ef3c2008-02-19 06:12:18 +00002759 // undef / X -> 0 for integer.
2760 // undef / X -> undef for FP (the undef could be a snan).
2761 if (isa<UndefValue>(Op0)) {
2762 if (Op0->getType()->isFPOrFPVector())
2763 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002764 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002765 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002766
2767 // X / undef -> undef
2768 if (isa<UndefValue>(Op1))
2769 return ReplaceInstUsesWith(I, Op1);
2770
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002771 return 0;
2772}
2773
2774/// This function implements the transforms common to both integer division
2775/// instructions (udiv and sdiv). It is called by the visitors to those integer
2776/// division instructions.
2777/// @brief Common integer divide transforms
2778Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2779 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2780
Chris Lattnercefb36c2008-05-16 02:59:42 +00002781 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002782 if (Op0 == Op1) {
2783 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2784 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2785 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2786 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2787 }
2788
2789 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2790 return ReplaceInstUsesWith(I, CI);
2791 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002792
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002793 if (Instruction *Common = commonDivTransforms(I))
2794 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002795
2796 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2797 // This does not apply for fdiv.
2798 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2799 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002800
2801 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2802 // div X, 1 == X
2803 if (RHS->equalsInt(1))
2804 return ReplaceInstUsesWith(I, Op0);
2805
2806 // (X / C1) / C2 -> X / (C1*C2)
2807 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2808 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2809 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002810 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2811 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2812 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002813 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002814 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002815 }
2816
2817 if (!RHS->isZero()) { // avoid X udiv 0
2818 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2819 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2820 return R;
2821 if (isa<PHINode>(Op0))
2822 if (Instruction *NV = FoldOpIntoPhi(I))
2823 return NV;
2824 }
2825 }
2826
2827 // 0 / X == 0, we don't need to preserve faults!
2828 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2829 if (LHS->equalsInt(0))
2830 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2831
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002832 // It can't be division by zero, hence it must be division by one.
2833 if (I.getType() == Type::Int1Ty)
2834 return ReplaceInstUsesWith(I, Op0);
2835
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002836 return 0;
2837}
2838
2839Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2840 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2841
2842 // Handle the integer div common cases
2843 if (Instruction *Common = commonIDivTransforms(I))
2844 return Common;
2845
2846 // X udiv C^2 -> X >> C
2847 // Check to see if this is an unsigned division with an exact power of 2,
2848 // if so, convert to a right shift.
2849 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2850 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002851 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002852 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2853 }
2854
2855 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2856 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2857 if (RHSI->getOpcode() == Instruction::Shl &&
2858 isa<ConstantInt>(RHSI->getOperand(0))) {
2859 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2860 if (C1.isPowerOf2()) {
2861 Value *N = RHSI->getOperand(1);
2862 const Type *NTy = N->getType();
2863 if (uint32_t C2 = C1.logBase2()) {
2864 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002865 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002867 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002868 }
2869 }
2870 }
2871
2872 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2873 // where C1&C2 are powers of two.
2874 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2875 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2876 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2877 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2878 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2879 // Compute the shift amounts
2880 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2881 // Construct the "on true" case of the select
2882 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002883 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002884 Op0, TC, SI->getName()+".t");
2885 TSI = InsertNewInstBefore(TSI, I);
2886
2887 // Construct the "on false" case of the select
2888 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002889 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002890 Op0, FC, SI->getName()+".f");
2891 FSI = InsertNewInstBefore(FSI, I);
2892
2893 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002894 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002895 }
2896 }
2897 return 0;
2898}
2899
2900Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2901 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2902
2903 // Handle the integer div common cases
2904 if (Instruction *Common = commonIDivTransforms(I))
2905 return Common;
2906
2907 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2908 // sdiv X, -1 == -X
2909 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002910 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911
2912 // -X/C -> X/-C
2913 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002914 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002915 }
2916
2917 // If the sign bits of both operands are zero (i.e. we can prove they are
2918 // unsigned inputs), turn this into a udiv.
2919 if (I.getType()->isInteger()) {
2920 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2921 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002922 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002923 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002924 }
2925 }
2926
2927 return 0;
2928}
2929
2930Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2931 return commonDivTransforms(I);
2932}
2933
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934/// This function implements the transforms on rem instructions that work
2935/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2936/// is used by the visitors to those instructions.
2937/// @brief Transforms common to all three rem instructions
2938Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2939 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2940
Chris Lattner653ef3c2008-02-19 06:12:18 +00002941 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002942 if (Constant *LHS = dyn_cast<Constant>(Op0))
2943 if (LHS->isNullValue())
2944 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2945
Chris Lattner653ef3c2008-02-19 06:12:18 +00002946 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2947 if (I.getType()->isFPOrFPVector())
2948 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002949 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002950 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002951 if (isa<UndefValue>(Op1))
2952 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2953
2954 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002955 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2956 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957
2958 return 0;
2959}
2960
2961/// This function implements the transforms common to both integer remainder
2962/// instructions (urem and srem). It is called by the visitors to those integer
2963/// remainder instructions.
2964/// @brief Common integer remainder transforms
2965Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2966 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2967
2968 if (Instruction *common = commonRemTransforms(I))
2969 return common;
2970
2971 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2972 // X % 0 == undef, we don't need to preserve faults!
2973 if (RHS->equalsInt(0))
2974 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2975
2976 if (RHS->equalsInt(1)) // X % 1 == 0
2977 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2978
2979 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2980 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2981 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2982 return R;
2983 } else if (isa<PHINode>(Op0I)) {
2984 if (Instruction *NV = FoldOpIntoPhi(I))
2985 return NV;
2986 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002987
2988 // See if we can fold away this rem instruction.
2989 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2990 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2991 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2992 KnownZero, KnownOne))
2993 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002994 }
2995 }
2996
2997 return 0;
2998}
2999
3000Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3001 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3002
3003 if (Instruction *common = commonIRemTransforms(I))
3004 return common;
3005
3006 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3007 // X urem C^2 -> X and C
3008 // Check to see if this is an unsigned remainder with an exact power of 2,
3009 // if so, convert to a bitwise and.
3010 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3011 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003012 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003013 }
3014
3015 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3016 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3017 if (RHSI->getOpcode() == Instruction::Shl &&
3018 isa<ConstantInt>(RHSI->getOperand(0))) {
3019 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3020 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003021 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003022 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003023 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003024 }
3025 }
3026 }
3027
3028 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3029 // where C1&C2 are powers of two.
3030 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3031 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3032 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3033 // STO == 0 and SFO == 0 handled above.
3034 if ((STO->getValue().isPowerOf2()) &&
3035 (SFO->getValue().isPowerOf2())) {
3036 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003037 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003038 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003039 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003040 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003041 }
3042 }
3043 }
3044
3045 return 0;
3046}
3047
3048Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3049 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3050
Dan Gohmandb3dd962007-11-05 23:16:33 +00003051 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003052 if (Instruction *common = commonIRemTransforms(I))
3053 return common;
3054
3055 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003056 if (!isa<Constant>(RHSNeg) ||
3057 (isa<ConstantInt>(RHSNeg) &&
3058 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003059 // X % -Y -> X % Y
3060 AddUsesToWorkList(I);
3061 I.setOperand(1, RHSNeg);
3062 return &I;
3063 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003064
Dan Gohmandb3dd962007-11-05 23:16:33 +00003065 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003066 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003067 if (I.getType()->isInteger()) {
3068 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3069 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3070 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003071 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003072 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003073 }
3074
3075 return 0;
3076}
3077
3078Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3079 return commonRemTransforms(I);
3080}
3081
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003082// isOneBitSet - Return true if there is exactly one bit set in the specified
3083// constant.
3084static bool isOneBitSet(const ConstantInt *CI) {
3085 return CI->getValue().isPowerOf2();
3086}
3087
3088// isHighOnes - Return true if the constant is of the form 1+0+.
3089// This is the same as lowones(~X).
3090static bool isHighOnes(const ConstantInt *CI) {
3091 return (~CI->getValue() + 1).isPowerOf2();
3092}
3093
3094/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3095/// are carefully arranged to allow folding of expressions such as:
3096///
3097/// (A < B) | (A > B) --> (A != B)
3098///
3099/// Note that this is only valid if the first and second predicates have the
3100/// same sign. Is illegal to do: (A u< B) | (A s> B)
3101///
3102/// Three bits are used to represent the condition, as follows:
3103/// 0 A > B
3104/// 1 A == B
3105/// 2 A < B
3106///
3107/// <=> Value Definition
3108/// 000 0 Always false
3109/// 001 1 A > B
3110/// 010 2 A == B
3111/// 011 3 A >= B
3112/// 100 4 A < B
3113/// 101 5 A != B
3114/// 110 6 A <= B
3115/// 111 7 Always true
3116///
3117static unsigned getICmpCode(const ICmpInst *ICI) {
3118 switch (ICI->getPredicate()) {
3119 // False -> 0
3120 case ICmpInst::ICMP_UGT: return 1; // 001
3121 case ICmpInst::ICMP_SGT: return 1; // 001
3122 case ICmpInst::ICMP_EQ: return 2; // 010
3123 case ICmpInst::ICMP_UGE: return 3; // 011
3124 case ICmpInst::ICMP_SGE: return 3; // 011
3125 case ICmpInst::ICMP_ULT: return 4; // 100
3126 case ICmpInst::ICMP_SLT: return 4; // 100
3127 case ICmpInst::ICMP_NE: return 5; // 101
3128 case ICmpInst::ICMP_ULE: return 6; // 110
3129 case ICmpInst::ICMP_SLE: return 6; // 110
3130 // True -> 7
3131 default:
3132 assert(0 && "Invalid ICmp predicate!");
3133 return 0;
3134 }
3135}
3136
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003137/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3138/// predicate into a three bit mask. It also returns whether it is an ordered
3139/// predicate by reference.
3140static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3141 isOrdered = false;
3142 switch (CC) {
3143 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3144 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003145 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3146 case FCmpInst::FCMP_UGT: return 1; // 001
3147 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3148 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003149 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3150 case FCmpInst::FCMP_UGE: return 3; // 011
3151 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3152 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003153 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3154 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003155 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3156 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003157 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003158 default:
3159 // Not expecting FCMP_FALSE and FCMP_TRUE;
3160 assert(0 && "Unexpected FCmp predicate!");
3161 return 0;
3162 }
3163}
3164
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003165/// getICmpValue - This is the complement of getICmpCode, which turns an
3166/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003167/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003168/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003169static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3170 switch (code) {
3171 default: assert(0 && "Illegal ICmp code!");
3172 case 0: return ConstantInt::getFalse();
3173 case 1:
3174 if (sign)
3175 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3176 else
3177 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3178 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3179 case 3:
3180 if (sign)
3181 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3182 else
3183 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3184 case 4:
3185 if (sign)
3186 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3187 else
3188 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3189 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3190 case 6:
3191 if (sign)
3192 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3193 else
3194 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3195 case 7: return ConstantInt::getTrue();
3196 }
3197}
3198
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003199/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3200/// opcode and two operands into either a FCmp instruction. isordered is passed
3201/// in to determine which kind of predicate to use in the new fcmp instruction.
3202static Value *getFCmpValue(bool isordered, unsigned code,
3203 Value *LHS, Value *RHS) {
3204 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003205 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003206 case 0:
3207 if (isordered)
3208 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3209 else
3210 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3211 case 1:
3212 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003213 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3214 else
3215 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003216 case 2:
3217 if (isordered)
3218 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3219 else
3220 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003221 case 3:
3222 if (isordered)
3223 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3224 else
3225 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3226 case 4:
3227 if (isordered)
3228 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3229 else
3230 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3231 case 5:
3232 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003233 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3234 else
3235 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3236 case 6:
3237 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003238 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3239 else
3240 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003241 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003242 }
3243}
3244
Chris Lattner2972b822008-11-16 04:55:20 +00003245/// PredicatesFoldable - Return true if both predicates match sign or if at
3246/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003247static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3248 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003249 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3250 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003251}
3252
3253namespace {
3254// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3255struct FoldICmpLogical {
3256 InstCombiner &IC;
3257 Value *LHS, *RHS;
3258 ICmpInst::Predicate pred;
3259 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3260 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3261 pred(ICI->getPredicate()) {}
3262 bool shouldApply(Value *V) const {
3263 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3264 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003265 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3266 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003267 return false;
3268 }
3269 Instruction *apply(Instruction &Log) const {
3270 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3271 if (ICI->getOperand(0) != LHS) {
3272 assert(ICI->getOperand(1) == LHS);
3273 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3274 }
3275
3276 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3277 unsigned LHSCode = getICmpCode(ICI);
3278 unsigned RHSCode = getICmpCode(RHSICI);
3279 unsigned Code;
3280 switch (Log.getOpcode()) {
3281 case Instruction::And: Code = LHSCode & RHSCode; break;
3282 case Instruction::Or: Code = LHSCode | RHSCode; break;
3283 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3284 default: assert(0 && "Illegal logical opcode!"); return 0;
3285 }
3286
3287 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3288 ICmpInst::isSignedPredicate(ICI->getPredicate());
3289
3290 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3291 if (Instruction *I = dyn_cast<Instruction>(RV))
3292 return I;
3293 // Otherwise, it's a constant boolean value...
3294 return IC.ReplaceInstUsesWith(Log, RV);
3295 }
3296};
3297} // end anonymous namespace
3298
3299// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3300// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3301// guaranteed to be a binary operator.
3302Instruction *InstCombiner::OptAndOp(Instruction *Op,
3303 ConstantInt *OpRHS,
3304 ConstantInt *AndRHS,
3305 BinaryOperator &TheAnd) {
3306 Value *X = Op->getOperand(0);
3307 Constant *Together = 0;
3308 if (!Op->isShift())
3309 Together = And(AndRHS, OpRHS);
3310
3311 switch (Op->getOpcode()) {
3312 case Instruction::Xor:
3313 if (Op->hasOneUse()) {
3314 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003315 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003316 InsertNewInstBefore(And, TheAnd);
3317 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003318 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003319 }
3320 break;
3321 case Instruction::Or:
3322 if (Together == AndRHS) // (X | C) & C --> C
3323 return ReplaceInstUsesWith(TheAnd, AndRHS);
3324
3325 if (Op->hasOneUse() && Together != OpRHS) {
3326 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003327 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003328 InsertNewInstBefore(Or, TheAnd);
3329 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003330 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003331 }
3332 break;
3333 case Instruction::Add:
3334 if (Op->hasOneUse()) {
3335 // Adding a one to a single bit bit-field should be turned into an XOR
3336 // of the bit. First thing to check is to see if this AND is with a
3337 // single bit constant.
3338 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3339
3340 // If there is only one bit set...
3341 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3342 // Ok, at this point, we know that we are masking the result of the
3343 // ADD down to exactly one bit. If the constant we are adding has
3344 // no bits set below this bit, then we can eliminate the ADD.
3345 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3346
3347 // Check to see if any bits below the one bit set in AndRHSV are set.
3348 if ((AddRHS & (AndRHSV-1)) == 0) {
3349 // If not, the only thing that can effect the output of the AND is
3350 // the bit specified by AndRHSV. If that bit is set, the effect of
3351 // the XOR is to toggle the bit. If it is clear, then the ADD has
3352 // no effect.
3353 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3354 TheAnd.setOperand(0, X);
3355 return &TheAnd;
3356 } else {
3357 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003358 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359 InsertNewInstBefore(NewAnd, TheAnd);
3360 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003361 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003362 }
3363 }
3364 }
3365 }
3366 break;
3367
3368 case Instruction::Shl: {
3369 // We know that the AND will not produce any of the bits shifted in, so if
3370 // the anded constant includes them, clear them now!
3371 //
3372 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3373 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3374 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3375 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3376
3377 if (CI->getValue() == ShlMask) {
3378 // Masking out bits that the shift already masks
3379 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3380 } else if (CI != AndRHS) { // Reducing bits set in and.
3381 TheAnd.setOperand(1, CI);
3382 return &TheAnd;
3383 }
3384 break;
3385 }
3386 case Instruction::LShr:
3387 {
3388 // We know that the AND will not produce any of the bits shifted in, so if
3389 // the anded constant includes them, clear them now! This only applies to
3390 // unsigned shifts, because a signed shr may bring in set bits!
3391 //
3392 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3393 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3394 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3395 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3396
3397 if (CI->getValue() == ShrMask) {
3398 // Masking out bits that the shift already masks.
3399 return ReplaceInstUsesWith(TheAnd, Op);
3400 } else if (CI != AndRHS) {
3401 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3402 return &TheAnd;
3403 }
3404 break;
3405 }
3406 case Instruction::AShr:
3407 // Signed shr.
3408 // See if this is shifting in some sign extension, then masking it out
3409 // with an and.
3410 if (Op->hasOneUse()) {
3411 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3412 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3413 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3414 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3415 if (C == AndRHS) { // Masking out bits shifted in.
3416 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3417 // Make the argument unsigned.
3418 Value *ShVal = Op->getOperand(0);
3419 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003420 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003421 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003422 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003423 }
3424 }
3425 break;
3426 }
3427 return 0;
3428}
3429
3430
3431/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3432/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3433/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3434/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3435/// insert new instructions.
3436Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3437 bool isSigned, bool Inside,
3438 Instruction &IB) {
3439 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3440 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3441 "Lo is not <= Hi in range emission code!");
3442
3443 if (Inside) {
3444 if (Lo == Hi) // Trivially false.
3445 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3446
3447 // V >= Min && V < Hi --> V < Hi
3448 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3449 ICmpInst::Predicate pred = (isSigned ?
3450 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3451 return new ICmpInst(pred, V, Hi);
3452 }
3453
3454 // Emit V-Lo <u Hi-Lo
3455 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003456 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003457 InsertNewInstBefore(Add, IB);
3458 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3459 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3460 }
3461
3462 if (Lo == Hi) // Trivially true.
3463 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3464
3465 // V < Min || V >= Hi -> V > Hi-1
3466 Hi = SubOne(cast<ConstantInt>(Hi));
3467 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3468 ICmpInst::Predicate pred = (isSigned ?
3469 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3470 return new ICmpInst(pred, V, Hi);
3471 }
3472
3473 // Emit V-Lo >u Hi-1-Lo
3474 // Note that Hi has already had one subtracted from it, above.
3475 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003476 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003477 InsertNewInstBefore(Add, IB);
3478 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3479 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3480}
3481
3482// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3483// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3484// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3485// not, since all 1s are not contiguous.
3486static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3487 const APInt& V = Val->getValue();
3488 uint32_t BitWidth = Val->getType()->getBitWidth();
3489 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3490
3491 // look for the first zero bit after the run of ones
3492 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3493 // look for the first non-zero bit
3494 ME = V.getActiveBits();
3495 return true;
3496}
3497
3498/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3499/// where isSub determines whether the operator is a sub. If we can fold one of
3500/// the following xforms:
3501///
3502/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3503/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3504/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3505///
3506/// return (A +/- B).
3507///
3508Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3509 ConstantInt *Mask, bool isSub,
3510 Instruction &I) {
3511 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3512 if (!LHSI || LHSI->getNumOperands() != 2 ||
3513 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3514
3515 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3516
3517 switch (LHSI->getOpcode()) {
3518 default: return 0;
3519 case Instruction::And:
3520 if (And(N, Mask) == Mask) {
3521 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3522 if ((Mask->getValue().countLeadingZeros() +
3523 Mask->getValue().countPopulation()) ==
3524 Mask->getValue().getBitWidth())
3525 break;
3526
3527 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3528 // part, we don't need any explicit masks to take them out of A. If that
3529 // is all N is, ignore it.
3530 uint32_t MB = 0, ME = 0;
3531 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3532 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3533 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3534 if (MaskedValueIsZero(RHS, Mask))
3535 break;
3536 }
3537 }
3538 return 0;
3539 case Instruction::Or:
3540 case Instruction::Xor:
3541 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3542 if ((Mask->getValue().countLeadingZeros() +
3543 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3544 && And(N, Mask)->isZero())
3545 break;
3546 return 0;
3547 }
3548
3549 Instruction *New;
3550 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003551 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003552 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003553 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003554 return InsertNewInstBefore(New, I);
3555}
3556
Chris Lattner0631ea72008-11-16 05:06:21 +00003557/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3558Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3559 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003560 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003561 ConstantInt *LHSCst, *RHSCst;
3562 ICmpInst::Predicate LHSCC, RHSCC;
3563
Chris Lattnerf3803482008-11-16 05:10:52 +00003564 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003565 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003566 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003567 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003568
3569 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3570 // where C is a power of 2
3571 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3572 LHSCst->getValue().isPowerOf2()) {
3573 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3574 InsertNewInstBefore(NewOr, I);
3575 return new ICmpInst(LHSCC, NewOr, LHSCst);
3576 }
3577
3578 // From here on, we only handle:
3579 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3580 if (Val != Val2) return 0;
3581
Chris Lattner0631ea72008-11-16 05:06:21 +00003582 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3583 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3584 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3585 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3586 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3587 return 0;
3588
3589 // We can't fold (ugt x, C) & (sgt x, C2).
3590 if (!PredicatesFoldable(LHSCC, RHSCC))
3591 return 0;
3592
3593 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003594 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003595 if (ICmpInst::isSignedPredicate(LHSCC) ||
3596 (ICmpInst::isEquality(LHSCC) &&
3597 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003598 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003599 else
Chris Lattner665298f2008-11-16 05:14:43 +00003600 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3601
3602 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003603 std::swap(LHS, RHS);
3604 std::swap(LHSCst, RHSCst);
3605 std::swap(LHSCC, RHSCC);
3606 }
3607
3608 // At this point, we know we have have two icmp instructions
3609 // comparing a value against two constants and and'ing the result
3610 // together. Because of the above check, we know that we only have
3611 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3612 // (from the FoldICmpLogical check above), that the two constants
3613 // are not equal and that the larger constant is on the RHS
3614 assert(LHSCst != RHSCst && "Compares not folded above?");
3615
3616 switch (LHSCC) {
3617 default: assert(0 && "Unknown integer condition code!");
3618 case ICmpInst::ICMP_EQ:
3619 switch (RHSCC) {
3620 default: assert(0 && "Unknown integer condition code!");
3621 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3622 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3623 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3624 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3625 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3626 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3627 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3628 return ReplaceInstUsesWith(I, LHS);
3629 }
3630 case ICmpInst::ICMP_NE:
3631 switch (RHSCC) {
3632 default: assert(0 && "Unknown integer condition code!");
3633 case ICmpInst::ICMP_ULT:
3634 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3635 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3636 break; // (X != 13 & X u< 15) -> no change
3637 case ICmpInst::ICMP_SLT:
3638 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3639 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3640 break; // (X != 13 & X s< 15) -> no change
3641 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3642 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3643 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3644 return ReplaceInstUsesWith(I, RHS);
3645 case ICmpInst::ICMP_NE:
3646 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3647 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3648 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3649 Val->getName()+".off");
3650 InsertNewInstBefore(Add, I);
3651 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3652 ConstantInt::get(Add->getType(), 1));
3653 }
3654 break; // (X != 13 & X != 15) -> no change
3655 }
3656 break;
3657 case ICmpInst::ICMP_ULT:
3658 switch (RHSCC) {
3659 default: assert(0 && "Unknown integer condition code!");
3660 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3661 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3662 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3663 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3664 break;
3665 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3666 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3667 return ReplaceInstUsesWith(I, LHS);
3668 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3669 break;
3670 }
3671 break;
3672 case ICmpInst::ICMP_SLT:
3673 switch (RHSCC) {
3674 default: assert(0 && "Unknown integer condition code!");
3675 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3676 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3677 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3678 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3679 break;
3680 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3681 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3682 return ReplaceInstUsesWith(I, LHS);
3683 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3684 break;
3685 }
3686 break;
3687 case ICmpInst::ICMP_UGT:
3688 switch (RHSCC) {
3689 default: assert(0 && "Unknown integer condition code!");
3690 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3691 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3692 return ReplaceInstUsesWith(I, RHS);
3693 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3694 break;
3695 case ICmpInst::ICMP_NE:
3696 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3697 return new ICmpInst(LHSCC, Val, RHSCst);
3698 break; // (X u> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003699 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003700 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3701 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3702 break;
3703 }
3704 break;
3705 case ICmpInst::ICMP_SGT:
3706 switch (RHSCC) {
3707 default: assert(0 && "Unknown integer condition code!");
3708 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3709 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3710 return ReplaceInstUsesWith(I, RHS);
3711 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3712 break;
3713 case ICmpInst::ICMP_NE:
3714 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3715 return new ICmpInst(LHSCC, Val, RHSCst);
3716 break; // (X s> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003717 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003718 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3719 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3720 break;
3721 }
3722 break;
3723 }
Chris Lattner0631ea72008-11-16 05:06:21 +00003724
3725 return 0;
3726}
3727
3728
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003729Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3730 bool Changed = SimplifyCommutative(I);
3731 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3732
3733 if (isa<UndefValue>(Op1)) // X & undef -> 0
3734 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3735
3736 // and X, X = X
3737 if (Op0 == Op1)
3738 return ReplaceInstUsesWith(I, Op1);
3739
3740 // See if we can simplify any instructions used by the instruction whose sole
3741 // purpose is to compute bits we don't care about.
3742 if (!isa<VectorType>(I.getType())) {
3743 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3744 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3745 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3746 KnownZero, KnownOne))
3747 return &I;
3748 } else {
3749 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3750 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3751 return ReplaceInstUsesWith(I, I.getOperand(0));
3752 } else if (isa<ConstantAggregateZero>(Op1)) {
3753 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3754 }
3755 }
3756
3757 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3758 const APInt& AndRHSMask = AndRHS->getValue();
3759 APInt NotAndRHS(~AndRHSMask);
3760
3761 // Optimize a variety of ((val OP C1) & C2) combinations...
3762 if (isa<BinaryOperator>(Op0)) {
3763 Instruction *Op0I = cast<Instruction>(Op0);
3764 Value *Op0LHS = Op0I->getOperand(0);
3765 Value *Op0RHS = Op0I->getOperand(1);
3766 switch (Op0I->getOpcode()) {
3767 case Instruction::Xor:
3768 case Instruction::Or:
3769 // If the mask is only needed on one incoming arm, push it up.
3770 if (Op0I->hasOneUse()) {
3771 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3772 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003773 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774 Op0RHS->getName()+".masked");
3775 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003776 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003777 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3778 }
3779 if (!isa<Constant>(Op0RHS) &&
3780 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3781 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003782 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003783 Op0LHS->getName()+".masked");
3784 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003785 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003786 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3787 }
3788 }
3789
3790 break;
3791 case Instruction::Add:
3792 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3793 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3794 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3795 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003796 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003797 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003798 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003799 break;
3800
3801 case Instruction::Sub:
3802 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3803 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3804 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3805 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003806 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003807
Nick Lewyckya349ba42008-07-10 05:51:40 +00003808 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3809 // has 1's for all bits that the subtraction with A might affect.
3810 if (Op0I->hasOneUse()) {
3811 uint32_t BitWidth = AndRHSMask.getBitWidth();
3812 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3813 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3814
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003815 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003816 if (!(A && A->isZero()) && // avoid infinite recursion.
3817 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003818 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3819 InsertNewInstBefore(NewNeg, I);
3820 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3821 }
3822 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003823 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003824
3825 case Instruction::Shl:
3826 case Instruction::LShr:
3827 // (1 << x) & 1 --> zext(x == 0)
3828 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003829 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003830 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3831 Constant::getNullValue(I.getType()));
3832 InsertNewInstBefore(NewICmp, I);
3833 return new ZExtInst(NewICmp, I.getType());
3834 }
3835 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003836 }
3837
3838 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3839 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3840 return Res;
3841 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3842 // If this is an integer truncation or change from signed-to-unsigned, and
3843 // if the source is an and/or with immediate, transform it. This
3844 // frequently occurs for bitfield accesses.
3845 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3846 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3847 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003848 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003849 if (CastOp->getOpcode() == Instruction::And) {
3850 // Change: and (cast (and X, C1) to T), C2
3851 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3852 // This will fold the two constants together, which may allow
3853 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003854 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003855 CastOp->getOperand(0), I.getType(),
3856 CastOp->getName()+".shrunk");
3857 NewCast = InsertNewInstBefore(NewCast, I);
3858 // trunc_or_bitcast(C1)&C2
3859 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3860 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003861 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003862 } else if (CastOp->getOpcode() == Instruction::Or) {
3863 // Change: and (cast (or X, C1) to T), C2
3864 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3865 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3866 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3867 return ReplaceInstUsesWith(I, AndRHS);
3868 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003869 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003870 }
3871 }
3872
3873 // Try to fold constant and into select arguments.
3874 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3875 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3876 return R;
3877 if (isa<PHINode>(Op0))
3878 if (Instruction *NV = FoldOpIntoPhi(I))
3879 return NV;
3880 }
3881
3882 Value *Op0NotVal = dyn_castNotVal(Op0);
3883 Value *Op1NotVal = dyn_castNotVal(Op1);
3884
3885 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3886 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3887
3888 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3889 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003890 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 I.getName()+".demorgan");
3892 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003893 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003894 }
3895
3896 {
3897 Value *A = 0, *B = 0, *C = 0, *D = 0;
3898 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3899 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3900 return ReplaceInstUsesWith(I, Op1);
3901
3902 // (A|B) & ~(A&B) -> A^B
3903 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3904 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003905 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003906 }
3907 }
3908
3909 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3910 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3911 return ReplaceInstUsesWith(I, Op0);
3912
3913 // ~(A&B) & (A|B) -> A^B
3914 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3915 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003916 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003917 }
3918 }
3919
3920 if (Op0->hasOneUse() &&
3921 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3922 if (A == Op1) { // (A^B)&A -> A&(A^B)
3923 I.swapOperands(); // Simplify below
3924 std::swap(Op0, Op1);
3925 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3926 cast<BinaryOperator>(Op0)->swapOperands();
3927 I.swapOperands(); // Simplify below
3928 std::swap(Op0, Op1);
3929 }
3930 }
3931 if (Op1->hasOneUse() &&
3932 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3933 if (B == Op0) { // B&(A^B) -> B&(B^A)
3934 cast<BinaryOperator>(Op1)->swapOperands();
3935 std::swap(A, B);
3936 }
3937 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003938 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003939 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003940 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003941 }
3942 }
3943 }
3944
3945 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3946 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3947 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3948 return R;
3949
Chris Lattner0631ea72008-11-16 05:06:21 +00003950 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
3951 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
3952 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003953 }
3954
3955 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3956 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3957 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3958 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3959 const Type *SrcTy = Op0C->getOperand(0)->getType();
3960 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3961 // Only do this if the casts both really cause code to be generated.
3962 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3963 I.getType(), TD) &&
3964 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3965 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003966 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967 Op1C->getOperand(0),
3968 I.getName());
3969 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003970 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 }
3972 }
3973
3974 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3975 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3976 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3977 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3978 SI0->getOperand(1) == SI1->getOperand(1) &&
3979 (SI0->hasOneUse() || SI1->hasOneUse())) {
3980 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003981 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003982 SI1->getOperand(0),
3983 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003984 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003985 SI1->getOperand(1));
3986 }
3987 }
3988
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003989 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00003990 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3991 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3992 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003993 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
3994 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00003995 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3996 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3997 // If either of the constants are nans, then the whole thing returns
3998 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003999 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004000 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4001 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4002 RHS->getOperand(0));
4003 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004004 } else {
4005 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4006 FCmpInst::Predicate Op0CC, Op1CC;
4007 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4008 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004009 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4010 // Swap RHS operands to match LHS.
4011 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4012 std::swap(Op1LHS, Op1RHS);
4013 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004014 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4015 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4016 if (Op0CC == Op1CC)
4017 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4018 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4019 Op1CC == FCmpInst::FCMP_FALSE)
4020 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4021 else if (Op0CC == FCmpInst::FCMP_TRUE)
4022 return ReplaceInstUsesWith(I, Op1);
4023 else if (Op1CC == FCmpInst::FCMP_TRUE)
4024 return ReplaceInstUsesWith(I, Op0);
4025 bool Op0Ordered;
4026 bool Op1Ordered;
4027 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4028 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4029 if (Op1Pred == 0) {
4030 std::swap(Op0, Op1);
4031 std::swap(Op0Pred, Op1Pred);
4032 std::swap(Op0Ordered, Op1Ordered);
4033 }
4034 if (Op0Pred == 0) {
4035 // uno && ueq -> uno && (uno || eq) -> ueq
4036 // ord && olt -> ord && (ord && lt) -> olt
4037 if (Op0Ordered == Op1Ordered)
4038 return ReplaceInstUsesWith(I, Op1);
4039 // uno && oeq -> uno && (ord && eq) -> false
4040 // uno && ord -> false
4041 if (!Op0Ordered)
4042 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4043 // ord && ueq -> ord && (uno || eq) -> oeq
4044 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4045 Op0LHS, Op0RHS));
4046 }
4047 }
4048 }
4049 }
Chris Lattner91882432007-10-24 05:38:08 +00004050 }
4051 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004052
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004053 return Changed ? &I : 0;
4054}
4055
Chris Lattner567f5112008-10-05 02:13:19 +00004056/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4057/// capable of providing pieces of a bswap. The subexpression provides pieces
4058/// of a bswap if it is proven that each of the non-zero bytes in the output of
4059/// the expression came from the corresponding "byte swapped" byte in some other
4060/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4061/// we know that the expression deposits the low byte of %X into the high byte
4062/// of the bswap result and that all other bytes are zero. This expression is
4063/// accepted, the high byte of ByteValues is set to X to indicate a correct
4064/// match.
4065///
4066/// This function returns true if the match was unsuccessful and false if so.
4067/// On entry to the function the "OverallLeftShift" is a signed integer value
4068/// indicating the number of bytes that the subexpression is later shifted. For
4069/// example, if the expression is later right shifted by 16 bits, the
4070/// OverallLeftShift value would be -2 on entry. This is used to specify which
4071/// byte of ByteValues is actually being set.
4072///
4073/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4074/// byte is masked to zero by a user. For example, in (X & 255), X will be
4075/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4076/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4077/// always in the local (OverallLeftShift) coordinate space.
4078///
4079static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4080 SmallVector<Value*, 8> &ByteValues) {
4081 if (Instruction *I = dyn_cast<Instruction>(V)) {
4082 // If this is an or instruction, it may be an inner node of the bswap.
4083 if (I->getOpcode() == Instruction::Or) {
4084 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4085 ByteValues) ||
4086 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4087 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004088 }
Chris Lattner567f5112008-10-05 02:13:19 +00004089
4090 // If this is a logical shift by a constant multiple of 8, recurse with
4091 // OverallLeftShift and ByteMask adjusted.
4092 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4093 unsigned ShAmt =
4094 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4095 // Ensure the shift amount is defined and of a byte value.
4096 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4097 return true;
4098
4099 unsigned ByteShift = ShAmt >> 3;
4100 if (I->getOpcode() == Instruction::Shl) {
4101 // X << 2 -> collect(X, +2)
4102 OverallLeftShift += ByteShift;
4103 ByteMask >>= ByteShift;
4104 } else {
4105 // X >>u 2 -> collect(X, -2)
4106 OverallLeftShift -= ByteShift;
4107 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004108 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004109 }
4110
4111 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4112 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4113
4114 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4115 ByteValues);
4116 }
4117
4118 // If this is a logical 'and' with a mask that clears bytes, clear the
4119 // corresponding bytes in ByteMask.
4120 if (I->getOpcode() == Instruction::And &&
4121 isa<ConstantInt>(I->getOperand(1))) {
4122 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4123 unsigned NumBytes = ByteValues.size();
4124 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4125 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4126
4127 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4128 // If this byte is masked out by a later operation, we don't care what
4129 // the and mask is.
4130 if ((ByteMask & (1 << i)) == 0)
4131 continue;
4132
4133 // If the AndMask is all zeros for this byte, clear the bit.
4134 APInt MaskB = AndMask & Byte;
4135 if (MaskB == 0) {
4136 ByteMask &= ~(1U << i);
4137 continue;
4138 }
4139
4140 // If the AndMask is not all ones for this byte, it's not a bytezap.
4141 if (MaskB != Byte)
4142 return true;
4143
4144 // Otherwise, this byte is kept.
4145 }
4146
4147 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4148 ByteValues);
4149 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004150 }
4151
Chris Lattner567f5112008-10-05 02:13:19 +00004152 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4153 // the input value to the bswap. Some observations: 1) if more than one byte
4154 // is demanded from this input, then it could not be successfully assembled
4155 // into a byteswap. At least one of the two bytes would not be aligned with
4156 // their ultimate destination.
4157 if (!isPowerOf2_32(ByteMask)) return true;
4158 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004159
Chris Lattner567f5112008-10-05 02:13:19 +00004160 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4161 // is demanded, it needs to go into byte 0 of the result. This means that the
4162 // byte needs to be shifted until it lands in the right byte bucket. The
4163 // shift amount depends on the position: if the byte is coming from the high
4164 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4165 // low part, it must be shifted left.
4166 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4167 if (InputByteNo < ByteValues.size()/2) {
4168 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4169 return true;
4170 } else {
4171 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4172 return true;
4173 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004174
4175 // If the destination byte value is already defined, the values are or'd
4176 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004177 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004178 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004179 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004180 return false;
4181}
4182
4183/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4184/// If so, insert the new bswap intrinsic and return it.
4185Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4186 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004187 if (!ITy || ITy->getBitWidth() % 16 ||
4188 // ByteMask only allows up to 32-byte values.
4189 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004190 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4191
4192 /// ByteValues - For each byte of the result, we keep track of which value
4193 /// defines each byte.
4194 SmallVector<Value*, 8> ByteValues;
4195 ByteValues.resize(ITy->getBitWidth()/8);
4196
4197 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004198 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4199 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004200 return 0;
4201
4202 // Check to see if all of the bytes come from the same value.
4203 Value *V = ByteValues[0];
4204 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4205
4206 // Check to make sure that all of the bytes come from the same value.
4207 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4208 if (ByteValues[i] != V)
4209 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004210 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004211 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004212 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004213 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004214}
4215
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004216/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4217/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4218/// we can simplify this expression to "cond ? C : D or B".
4219static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4220 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004221 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004222 Value *Cond = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004223 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004224 return 0;
4225
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004226 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner641ea462008-11-16 04:46:19 +00004227 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004228 return SelectInst::Create(Cond, C, B);
Chris Lattner641ea462008-11-16 04:46:19 +00004229 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004230 return SelectInst::Create(Cond, C, B);
4231 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner641ea462008-11-16 04:46:19 +00004232 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004233 return SelectInst::Create(Cond, C, D);
Chris Lattner641ea462008-11-16 04:46:19 +00004234 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004235 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004236 return 0;
4237}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004238
Chris Lattner0c678e52008-11-16 05:20:07 +00004239/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4240Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4241 ICmpInst *LHS, ICmpInst *RHS) {
4242 Value *Val, *Val2;
4243 ConstantInt *LHSCst, *RHSCst;
4244 ICmpInst::Predicate LHSCC, RHSCC;
4245
4246 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4247 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4248 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4249 return 0;
4250
4251 // From here on, we only handle:
4252 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4253 if (Val != Val2) return 0;
4254
4255 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4256 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4257 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4258 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4259 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4260 return 0;
4261
4262 // We can't fold (ugt x, C) | (sgt x, C2).
4263 if (!PredicatesFoldable(LHSCC, RHSCC))
4264 return 0;
4265
4266 // Ensure that the larger constant is on the RHS.
4267 bool ShouldSwap;
4268 if (ICmpInst::isSignedPredicate(LHSCC) ||
4269 (ICmpInst::isEquality(LHSCC) &&
4270 ICmpInst::isSignedPredicate(RHSCC)))
4271 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4272 else
4273 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4274
4275 if (ShouldSwap) {
4276 std::swap(LHS, RHS);
4277 std::swap(LHSCst, RHSCst);
4278 std::swap(LHSCC, RHSCC);
4279 }
4280
4281 // At this point, we know we have have two icmp instructions
4282 // comparing a value against two constants and or'ing the result
4283 // together. Because of the above check, we know that we only have
4284 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4285 // FoldICmpLogical check above), that the two constants are not
4286 // equal.
4287 assert(LHSCst != RHSCst && "Compares not folded above?");
4288
4289 switch (LHSCC) {
4290 default: assert(0 && "Unknown integer condition code!");
4291 case ICmpInst::ICMP_EQ:
4292 switch (RHSCC) {
4293 default: assert(0 && "Unknown integer condition code!");
4294 case ICmpInst::ICMP_EQ:
4295 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4296 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4297 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4298 Val->getName()+".off");
4299 InsertNewInstBefore(Add, I);
4300 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4301 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4302 }
4303 break; // (X == 13 | X == 15) -> no change
4304 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4305 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4306 break;
4307 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4308 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4309 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4310 return ReplaceInstUsesWith(I, RHS);
4311 }
4312 break;
4313 case ICmpInst::ICMP_NE:
4314 switch (RHSCC) {
4315 default: assert(0 && "Unknown integer condition code!");
4316 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4317 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4318 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4319 return ReplaceInstUsesWith(I, LHS);
4320 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4321 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4322 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4323 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4324 }
4325 break;
4326 case ICmpInst::ICMP_ULT:
4327 switch (RHSCC) {
4328 default: assert(0 && "Unknown integer condition code!");
4329 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4330 break;
4331 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4332 // If RHSCst is [us]MAXINT, it is always false. Not handling
4333 // this can cause overflow.
4334 if (RHSCst->isMaxValue(false))
4335 return ReplaceInstUsesWith(I, LHS);
4336 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4337 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4338 break;
4339 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4340 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4341 return ReplaceInstUsesWith(I, RHS);
4342 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4343 break;
4344 }
4345 break;
4346 case ICmpInst::ICMP_SLT:
4347 switch (RHSCC) {
4348 default: assert(0 && "Unknown integer condition code!");
4349 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4350 break;
4351 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4352 // If RHSCst is [us]MAXINT, it is always false. Not handling
4353 // this can cause overflow.
4354 if (RHSCst->isMaxValue(true))
4355 return ReplaceInstUsesWith(I, LHS);
4356 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4357 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4358 break;
4359 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4360 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4361 return ReplaceInstUsesWith(I, RHS);
4362 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4363 break;
4364 }
4365 break;
4366 case ICmpInst::ICMP_UGT:
4367 switch (RHSCC) {
4368 default: assert(0 && "Unknown integer condition code!");
4369 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4370 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4371 return ReplaceInstUsesWith(I, LHS);
4372 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4373 break;
4374 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4375 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4376 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4377 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4378 break;
4379 }
4380 break;
4381 case ICmpInst::ICMP_SGT:
4382 switch (RHSCC) {
4383 default: assert(0 && "Unknown integer condition code!");
4384 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4385 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4386 return ReplaceInstUsesWith(I, LHS);
4387 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4388 break;
4389 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4390 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4391 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4392 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4393 break;
4394 }
4395 break;
4396 }
4397 return 0;
4398}
4399
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004400Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4401 bool Changed = SimplifyCommutative(I);
4402 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4403
4404 if (isa<UndefValue>(Op1)) // X | undef -> -1
4405 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4406
4407 // or X, X = X
4408 if (Op0 == Op1)
4409 return ReplaceInstUsesWith(I, Op0);
4410
4411 // See if we can simplify any instructions used by the instruction whose sole
4412 // purpose is to compute bits we don't care about.
4413 if (!isa<VectorType>(I.getType())) {
4414 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4415 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4416 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4417 KnownZero, KnownOne))
4418 return &I;
4419 } else if (isa<ConstantAggregateZero>(Op1)) {
4420 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4421 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4422 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4423 return ReplaceInstUsesWith(I, I.getOperand(1));
4424 }
4425
4426
4427
4428 // or X, -1 == -1
4429 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4430 ConstantInt *C1 = 0; Value *X = 0;
4431 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4432 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004433 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004434 InsertNewInstBefore(Or, I);
4435 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004436 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004437 ConstantInt::get(RHS->getValue() | C1->getValue()));
4438 }
4439
4440 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4441 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004442 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004443 InsertNewInstBefore(Or, I);
4444 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004445 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004446 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4447 }
4448
4449 // Try to fold constant and into select arguments.
4450 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4451 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4452 return R;
4453 if (isa<PHINode>(Op0))
4454 if (Instruction *NV = FoldOpIntoPhi(I))
4455 return NV;
4456 }
4457
4458 Value *A = 0, *B = 0;
4459 ConstantInt *C1 = 0, *C2 = 0;
4460
4461 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4462 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4463 return ReplaceInstUsesWith(I, Op1);
4464 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4465 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4466 return ReplaceInstUsesWith(I, Op0);
4467
4468 // (A | B) | C and A | (B | C) -> bswap if possible.
4469 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4470 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4471 match(Op1, m_Or(m_Value(), m_Value())) ||
4472 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4473 match(Op1, m_Shift(m_Value(), m_Value())))) {
4474 if (Instruction *BSwap = MatchBSwap(I))
4475 return BSwap;
4476 }
4477
4478 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4479 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4480 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004481 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004482 InsertNewInstBefore(NOr, I);
4483 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004484 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004485 }
4486
4487 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4488 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4489 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004490 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004491 InsertNewInstBefore(NOr, I);
4492 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004493 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004494 }
4495
4496 // (A & C)|(B & D)
4497 Value *C = 0, *D = 0;
4498 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4499 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4500 Value *V1 = 0, *V2 = 0, *V3 = 0;
4501 C1 = dyn_cast<ConstantInt>(C);
4502 C2 = dyn_cast<ConstantInt>(D);
4503 if (C1 && C2) { // (A & C1)|(B & C2)
4504 // If we have: ((V + N) & C1) | (V & C2)
4505 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4506 // replace with V+N.
4507 if (C1->getValue() == ~C2->getValue()) {
4508 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4509 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4510 // Add commutes, try both ways.
4511 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4512 return ReplaceInstUsesWith(I, A);
4513 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4514 return ReplaceInstUsesWith(I, A);
4515 }
4516 // Or commutes, try both ways.
4517 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4518 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4519 // Add commutes, try both ways.
4520 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4521 return ReplaceInstUsesWith(I, B);
4522 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4523 return ReplaceInstUsesWith(I, B);
4524 }
4525 }
4526 V1 = 0; V2 = 0; V3 = 0;
4527 }
4528
4529 // Check to see if we have any common things being and'ed. If so, find the
4530 // terms for V1 & (V2|V3).
4531 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4532 if (A == B) // (A & C)|(A & D) == A & (C|D)
4533 V1 = A, V2 = C, V3 = D;
4534 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4535 V1 = A, V2 = B, V3 = C;
4536 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4537 V1 = C, V2 = A, V3 = D;
4538 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4539 V1 = C, V2 = A, V3 = B;
4540
4541 if (V1) {
4542 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004543 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4544 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004545 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004546 }
Dan Gohman279952c2008-10-28 22:38:57 +00004547
Dan Gohman35b76162008-10-30 20:40:10 +00004548 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004549 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4550 return Match;
4551 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4552 return Match;
4553 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4554 return Match;
4555 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4556 return Match;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004557 }
4558
4559 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4560 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4561 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4562 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4563 SI0->getOperand(1) == SI1->getOperand(1) &&
4564 (SI0->hasOneUse() || SI1->hasOneUse())) {
4565 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004566 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004567 SI1->getOperand(0),
4568 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004569 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004570 SI1->getOperand(1));
4571 }
4572 }
4573
4574 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4575 if (A == Op1) // ~A | A == -1
4576 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4577 } else {
4578 A = 0;
4579 }
4580 // Note, A is still live here!
4581 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4582 if (Op0 == B)
4583 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4584
4585 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4586 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004587 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004588 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004589 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004590 }
4591 }
4592
4593 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4594 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4595 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4596 return R;
4597
Chris Lattner0c678e52008-11-16 05:20:07 +00004598 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4599 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4600 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004601 }
4602
4603 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004604 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004605 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4606 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004607 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4608 !isa<ICmpInst>(Op1C->getOperand(0))) {
4609 const Type *SrcTy = Op0C->getOperand(0)->getType();
4610 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4611 // Only do this if the casts both really cause code to be
4612 // generated.
4613 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4614 I.getType(), TD) &&
4615 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4616 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004617 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004618 Op1C->getOperand(0),
4619 I.getName());
4620 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004621 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004622 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004623 }
4624 }
Chris Lattner91882432007-10-24 05:38:08 +00004625 }
4626
4627
4628 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4629 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4630 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4631 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004632 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004633 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004634 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4635 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4636 // If either of the constants are nans, then the whole thing returns
4637 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004638 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004639 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4640
4641 // Otherwise, no need to compare the two constants, compare the
4642 // rest.
4643 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4644 RHS->getOperand(0));
4645 }
Evan Cheng72988052008-10-14 18:44:08 +00004646 } else {
4647 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4648 FCmpInst::Predicate Op0CC, Op1CC;
4649 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4650 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4651 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4652 // Swap RHS operands to match LHS.
4653 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4654 std::swap(Op1LHS, Op1RHS);
4655 }
4656 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4657 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4658 if (Op0CC == Op1CC)
4659 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4660 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4661 Op1CC == FCmpInst::FCMP_TRUE)
4662 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4663 else if (Op0CC == FCmpInst::FCMP_FALSE)
4664 return ReplaceInstUsesWith(I, Op1);
4665 else if (Op1CC == FCmpInst::FCMP_FALSE)
4666 return ReplaceInstUsesWith(I, Op0);
4667 bool Op0Ordered;
4668 bool Op1Ordered;
4669 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4670 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4671 if (Op0Ordered == Op1Ordered) {
4672 // If both are ordered or unordered, return a new fcmp with
4673 // or'ed predicates.
4674 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4675 Op0LHS, Op0RHS);
4676 if (Instruction *I = dyn_cast<Instruction>(RV))
4677 return I;
4678 // Otherwise, it's a constant boolean value...
4679 return ReplaceInstUsesWith(I, RV);
4680 }
4681 }
4682 }
4683 }
Chris Lattner91882432007-10-24 05:38:08 +00004684 }
4685 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004686
4687 return Changed ? &I : 0;
4688}
4689
Dan Gohman089efff2008-05-13 00:00:25 +00004690namespace {
4691
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004692// XorSelf - Implements: X ^ X --> 0
4693struct XorSelf {
4694 Value *RHS;
4695 XorSelf(Value *rhs) : RHS(rhs) {}
4696 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4697 Instruction *apply(BinaryOperator &Xor) const {
4698 return &Xor;
4699 }
4700};
4701
Dan Gohman089efff2008-05-13 00:00:25 +00004702}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004703
4704Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4705 bool Changed = SimplifyCommutative(I);
4706 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4707
Evan Chenge5cd8032008-03-25 20:07:13 +00004708 if (isa<UndefValue>(Op1)) {
4709 if (isa<UndefValue>(Op0))
4710 // Handle undef ^ undef -> 0 special case. This is a common
4711 // idiom (misuse).
4712 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004713 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004714 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004715
4716 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4717 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004718 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004719 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4720 }
4721
4722 // See if we can simplify any instructions used by the instruction whose sole
4723 // purpose is to compute bits we don't care about.
4724 if (!isa<VectorType>(I.getType())) {
4725 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4726 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4727 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4728 KnownZero, KnownOne))
4729 return &I;
4730 } else if (isa<ConstantAggregateZero>(Op1)) {
4731 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4732 }
4733
4734 // Is this a ~ operation?
4735 if (Value *NotOp = dyn_castNotVal(&I)) {
4736 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4737 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4738 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4739 if (Op0I->getOpcode() == Instruction::And ||
4740 Op0I->getOpcode() == Instruction::Or) {
4741 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4742 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4743 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004744 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004745 Op0I->getOperand(1)->getName()+".not");
4746 InsertNewInstBefore(NotY, I);
4747 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004748 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004749 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004750 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004751 }
4752 }
4753 }
4754 }
4755
4756
4757 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004758 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4759 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4760 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004761 return new ICmpInst(ICI->getInversePredicate(),
4762 ICI->getOperand(0), ICI->getOperand(1));
4763
Nick Lewycky1405e922007-08-06 20:04:16 +00004764 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4765 return new FCmpInst(FCI->getInversePredicate(),
4766 FCI->getOperand(0), FCI->getOperand(1));
4767 }
4768
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004769 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4770 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4771 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4772 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4773 Instruction::CastOps Opcode = Op0C->getOpcode();
4774 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4775 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4776 Op0C->getDestTy())) {
4777 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4778 CI->getOpcode(), CI->getInversePredicate(),
4779 CI->getOperand(0), CI->getOperand(1)), I);
4780 NewCI->takeName(CI);
4781 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4782 }
4783 }
4784 }
4785 }
4786 }
4787
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004788 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4789 // ~(c-X) == X-c-1 == X+(-c-1)
4790 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4791 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4792 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4793 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4794 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004795 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004796 }
4797
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004798 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004799 if (Op0I->getOpcode() == Instruction::Add) {
4800 // ~(X-c) --> (-c-1)-X
4801 if (RHS->isAllOnesValue()) {
4802 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004803 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004804 ConstantExpr::getSub(NegOp0CI,
4805 ConstantInt::get(I.getType(), 1)),
4806 Op0I->getOperand(0));
4807 } else if (RHS->getValue().isSignBit()) {
4808 // (X + C) ^ signbit -> (X + C + signbit)
4809 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004810 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004811
4812 }
4813 } else if (Op0I->getOpcode() == Instruction::Or) {
4814 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4815 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4816 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4817 // Anything in both C1 and C2 is known to be zero, remove it from
4818 // NewRHS.
4819 Constant *CommonBits = And(Op0CI, RHS);
4820 NewRHS = ConstantExpr::getAnd(NewRHS,
4821 ConstantExpr::getNot(CommonBits));
4822 AddToWorkList(Op0I);
4823 I.setOperand(0, Op0I->getOperand(0));
4824 I.setOperand(1, NewRHS);
4825 return &I;
4826 }
4827 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004828 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004829 }
4830
4831 // Try to fold constant and into select arguments.
4832 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4833 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4834 return R;
4835 if (isa<PHINode>(Op0))
4836 if (Instruction *NV = FoldOpIntoPhi(I))
4837 return NV;
4838 }
4839
4840 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4841 if (X == Op1)
4842 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4843
4844 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4845 if (X == Op0)
4846 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4847
4848
4849 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4850 if (Op1I) {
4851 Value *A, *B;
4852 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4853 if (A == Op0) { // B^(B|A) == (A|B)^B
4854 Op1I->swapOperands();
4855 I.swapOperands();
4856 std::swap(Op0, Op1);
4857 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4858 I.swapOperands(); // Simplified below.
4859 std::swap(Op0, Op1);
4860 }
Chris Lattner3b874082008-11-16 05:38:51 +00004861 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4862 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4863 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4864 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004865 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4866 if (A == Op0) { // A^(A&B) -> A^(B&A)
4867 Op1I->swapOperands();
4868 std::swap(A, B);
4869 }
4870 if (B == Op0) { // A^(B&A) -> (B&A)^A
4871 I.swapOperands(); // Simplified below.
4872 std::swap(Op0, Op1);
4873 }
4874 }
4875 }
4876
4877 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4878 if (Op0I) {
4879 Value *A, *B;
4880 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4881 if (A == Op1) // (B|A)^B == (A|B)^B
4882 std::swap(A, B);
4883 if (B == Op1) { // (A|B)^B == A & ~B
4884 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004885 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4886 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004887 }
Chris Lattner3b874082008-11-16 05:38:51 +00004888 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
4889 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
4890 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
4891 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004892 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4893 if (A == Op1) // (A&B)^A -> (B&A)^A
4894 std::swap(A, B);
4895 if (B == Op1 && // (B&A)^A == ~B & A
4896 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4897 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004898 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4899 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004900 }
4901 }
4902 }
4903
4904 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4905 if (Op0I && Op1I && Op0I->isShift() &&
4906 Op0I->getOpcode() == Op1I->getOpcode() &&
4907 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4908 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4909 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004910 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004911 Op1I->getOperand(0),
4912 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004913 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004914 Op1I->getOperand(1));
4915 }
4916
4917 if (Op0I && Op1I) {
4918 Value *A, *B, *C, *D;
4919 // (A & B)^(A | B) -> A ^ B
4920 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4921 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4922 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004923 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004924 }
4925 // (A | B)^(A & B) -> A ^ B
4926 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4927 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4928 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004929 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004930 }
4931
4932 // (A & B)^(C & D)
4933 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4934 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4935 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4936 // (X & Y)^(X & Y) -> (Y^Z) & X
4937 Value *X = 0, *Y = 0, *Z = 0;
4938 if (A == C)
4939 X = A, Y = B, Z = D;
4940 else if (A == D)
4941 X = A, Y = B, Z = C;
4942 else if (B == C)
4943 X = B, Y = A, Z = D;
4944 else if (B == D)
4945 X = B, Y = A, Z = C;
4946
4947 if (X) {
4948 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004949 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4950 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004951 }
4952 }
4953 }
4954
4955 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4956 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4957 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4958 return R;
4959
4960 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004961 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004962 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4963 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4964 const Type *SrcTy = Op0C->getOperand(0)->getType();
4965 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4966 // Only do this if the casts both really cause code to be generated.
4967 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4968 I.getType(), TD) &&
4969 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4970 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004971 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004972 Op1C->getOperand(0),
4973 I.getName());
4974 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004975 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004976 }
4977 }
Chris Lattner91882432007-10-24 05:38:08 +00004978 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004979
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004980 return Changed ? &I : 0;
4981}
4982
4983/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4984/// overflowed for this type.
4985static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4986 ConstantInt *In2, bool IsSigned = false) {
4987 Result = cast<ConstantInt>(Add(In1, In2));
4988
4989 if (IsSigned)
4990 if (In2->getValue().isNegative())
4991 return Result->getValue().sgt(In1->getValue());
4992 else
4993 return Result->getValue().slt(In1->getValue());
4994 else
4995 return Result->getValue().ult(In1->getValue());
4996}
4997
Dan Gohmanb80d5612008-09-10 23:30:57 +00004998/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
4999/// overflowed for this type.
5000static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5001 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005002 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005003
5004 if (IsSigned)
5005 if (In2->getValue().isNegative())
5006 return Result->getValue().slt(In1->getValue());
5007 else
5008 return Result->getValue().sgt(In1->getValue());
5009 else
5010 return Result->getValue().ugt(In1->getValue());
5011}
5012
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005013/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5014/// code necessary to compute the offset from the base pointer (without adding
5015/// in the base pointer). Return the result as a signed integer of intptr size.
5016static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5017 TargetData &TD = IC.getTargetData();
5018 gep_type_iterator GTI = gep_type_begin(GEP);
5019 const Type *IntPtrTy = TD.getIntPtrType();
5020 Value *Result = Constant::getNullValue(IntPtrTy);
5021
5022 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005023 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005024 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5025
Gabor Greif17396002008-06-12 21:37:33 +00005026 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5027 ++i, ++GTI) {
5028 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005029 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005030 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5031 if (OpC->isZero()) continue;
5032
5033 // Handle a struct index, which adds its field offset to the pointer.
5034 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5035 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5036
5037 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5038 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5039 else
5040 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005041 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005042 ConstantInt::get(IntPtrTy, Size),
5043 GEP->getName()+".offs"), I);
5044 continue;
5045 }
5046
5047 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5048 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5049 Scale = ConstantExpr::getMul(OC, Scale);
5050 if (Constant *RC = dyn_cast<Constant>(Result))
5051 Result = ConstantExpr::getAdd(RC, Scale);
5052 else {
5053 // Emit an add instruction.
5054 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005055 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005056 GEP->getName()+".offs"), I);
5057 }
5058 continue;
5059 }
5060 // Convert to correct type.
5061 if (Op->getType() != IntPtrTy) {
5062 if (Constant *OpC = dyn_cast<Constant>(Op))
5063 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5064 else
5065 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5066 Op->getName()+".c"), I);
5067 }
5068 if (Size != 1) {
5069 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5070 if (Constant *OpC = dyn_cast<Constant>(Op))
5071 Op = ConstantExpr::getMul(OpC, Scale);
5072 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005073 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005074 GEP->getName()+".idx"), I);
5075 }
5076
5077 // Emit an add instruction.
5078 if (isa<Constant>(Op) && isa<Constant>(Result))
5079 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5080 cast<Constant>(Result));
5081 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005082 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005083 GEP->getName()+".offs"), I);
5084 }
5085 return Result;
5086}
5087
Chris Lattnereba75862008-04-22 02:53:33 +00005088
5089/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5090/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5091/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5092/// complex, and scales are involved. The above expression would also be legal
5093/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5094/// later form is less amenable to optimization though, and we are allowed to
5095/// generate the first by knowing that pointer arithmetic doesn't overflow.
5096///
5097/// If we can't emit an optimized form for this expression, this returns null.
5098///
5099static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5100 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005101 TargetData &TD = IC.getTargetData();
5102 gep_type_iterator GTI = gep_type_begin(GEP);
5103
5104 // Check to see if this gep only has a single variable index. If so, and if
5105 // any constant indices are a multiple of its scale, then we can compute this
5106 // in terms of the scale of the variable index. For example, if the GEP
5107 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5108 // because the expression will cross zero at the same point.
5109 unsigned i, e = GEP->getNumOperands();
5110 int64_t Offset = 0;
5111 for (i = 1; i != e; ++i, ++GTI) {
5112 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5113 // Compute the aggregate offset of constant indices.
5114 if (CI->isZero()) continue;
5115
5116 // Handle a struct index, which adds its field offset to the pointer.
5117 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5118 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5119 } else {
5120 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5121 Offset += Size*CI->getSExtValue();
5122 }
5123 } else {
5124 // Found our variable index.
5125 break;
5126 }
5127 }
5128
5129 // If there are no variable indices, we must have a constant offset, just
5130 // evaluate it the general way.
5131 if (i == e) return 0;
5132
5133 Value *VariableIdx = GEP->getOperand(i);
5134 // Determine the scale factor of the variable element. For example, this is
5135 // 4 if the variable index is into an array of i32.
5136 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5137
5138 // Verify that there are no other variable indices. If so, emit the hard way.
5139 for (++i, ++GTI; i != e; ++i, ++GTI) {
5140 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5141 if (!CI) return 0;
5142
5143 // Compute the aggregate offset of constant indices.
5144 if (CI->isZero()) continue;
5145
5146 // Handle a struct index, which adds its field offset to the pointer.
5147 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5148 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5149 } else {
5150 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5151 Offset += Size*CI->getSExtValue();
5152 }
5153 }
5154
5155 // Okay, we know we have a single variable index, which must be a
5156 // pointer/array/vector index. If there is no offset, life is simple, return
5157 // the index.
5158 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5159 if (Offset == 0) {
5160 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5161 // we don't need to bother extending: the extension won't affect where the
5162 // computation crosses zero.
5163 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5164 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5165 VariableIdx->getNameStart(), &I);
5166 return VariableIdx;
5167 }
5168
5169 // Otherwise, there is an index. The computation we will do will be modulo
5170 // the pointer size, so get it.
5171 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5172
5173 Offset &= PtrSizeMask;
5174 VariableScale &= PtrSizeMask;
5175
5176 // To do this transformation, any constant index must be a multiple of the
5177 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5178 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5179 // multiple of the variable scale.
5180 int64_t NewOffs = Offset / (int64_t)VariableScale;
5181 if (Offset != NewOffs*(int64_t)VariableScale)
5182 return 0;
5183
5184 // Okay, we can do this evaluation. Start by converting the index to intptr.
5185 const Type *IntPtrTy = TD.getIntPtrType();
5186 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005187 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005188 true /*SExt*/,
5189 VariableIdx->getNameStart(), &I);
5190 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005191 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005192}
5193
5194
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005195/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5196/// else. At this point we know that the GEP is on the LHS of the comparison.
5197Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5198 ICmpInst::Predicate Cond,
5199 Instruction &I) {
5200 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5201
Chris Lattnereba75862008-04-22 02:53:33 +00005202 // Look through bitcasts.
5203 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5204 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005205
5206 Value *PtrBase = GEPLHS->getOperand(0);
5207 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005208 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005209 // This transformation (ignoring the base and scales) is valid because we
5210 // know pointers can't overflow. See if we can output an optimized form.
5211 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5212
5213 // If not, synthesize the offset the hard way.
5214 if (Offset == 0)
5215 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005216 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5217 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005218 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5219 // If the base pointers are different, but the indices are the same, just
5220 // compare the base pointer.
5221 if (PtrBase != GEPRHS->getOperand(0)) {
5222 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5223 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5224 GEPRHS->getOperand(0)->getType();
5225 if (IndicesTheSame)
5226 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5227 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5228 IndicesTheSame = false;
5229 break;
5230 }
5231
5232 // If all indices are the same, just compare the base pointers.
5233 if (IndicesTheSame)
5234 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5235 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5236
5237 // Otherwise, the base pointers are different and the indices are
5238 // different, bail out.
5239 return 0;
5240 }
5241
5242 // If one of the GEPs has all zero indices, recurse.
5243 bool AllZeros = true;
5244 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5245 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5246 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5247 AllZeros = false;
5248 break;
5249 }
5250 if (AllZeros)
5251 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5252 ICmpInst::getSwappedPredicate(Cond), I);
5253
5254 // If the other GEP has all zero indices, recurse.
5255 AllZeros = true;
5256 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5257 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5258 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5259 AllZeros = false;
5260 break;
5261 }
5262 if (AllZeros)
5263 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5264
5265 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5266 // If the GEPs only differ by one index, compare it.
5267 unsigned NumDifferences = 0; // Keep track of # differences.
5268 unsigned DiffOperand = 0; // The operand that differs.
5269 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5270 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5271 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5272 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5273 // Irreconcilable differences.
5274 NumDifferences = 2;
5275 break;
5276 } else {
5277 if (NumDifferences++) break;
5278 DiffOperand = i;
5279 }
5280 }
5281
5282 if (NumDifferences == 0) // SAME GEP?
5283 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005284 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005285 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005286
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005287 else if (NumDifferences == 1) {
5288 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5289 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5290 // Make sure we do a signed comparison here.
5291 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5292 }
5293 }
5294
5295 // Only lower this if the icmp is the only user of the GEP or if we expect
5296 // the result to fold to a constant!
5297 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5298 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5299 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5300 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5301 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5302 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5303 }
5304 }
5305 return 0;
5306}
5307
Chris Lattnere6b62d92008-05-19 20:18:56 +00005308/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5309///
5310Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5311 Instruction *LHSI,
5312 Constant *RHSC) {
5313 if (!isa<ConstantFP>(RHSC)) return 0;
5314 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5315
5316 // Get the width of the mantissa. We don't want to hack on conversions that
5317 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005318 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005319 if (MantissaWidth == -1) return 0; // Unknown.
5320
5321 // Check to see that the input is converted from an integer type that is small
5322 // enough that preserves all bits. TODO: check here for "known" sign bits.
5323 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5324 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5325
5326 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005327 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5328 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005329 ++InputSize;
5330
5331 // If the conversion would lose info, don't hack on this.
5332 if ((int)InputSize > MantissaWidth)
5333 return 0;
5334
5335 // Otherwise, we can potentially simplify the comparison. We know that it
5336 // will always come through as an integer value and we know the constant is
5337 // not a NAN (it would have been previously simplified).
5338 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5339
5340 ICmpInst::Predicate Pred;
5341 switch (I.getPredicate()) {
5342 default: assert(0 && "Unexpected predicate!");
5343 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005344 case FCmpInst::FCMP_OEQ:
5345 Pred = ICmpInst::ICMP_EQ;
5346 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005347 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005348 case FCmpInst::FCMP_OGT:
5349 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5350 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005351 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005352 case FCmpInst::FCMP_OGE:
5353 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5354 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005355 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005356 case FCmpInst::FCMP_OLT:
5357 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5358 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005359 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005360 case FCmpInst::FCMP_OLE:
5361 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5362 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005363 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005364 case FCmpInst::FCMP_ONE:
5365 Pred = ICmpInst::ICMP_NE;
5366 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005367 case FCmpInst::FCMP_ORD:
5368 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5369 case FCmpInst::FCMP_UNO:
5370 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5371 }
5372
5373 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5374
5375 // Now we know that the APFloat is a normal number, zero or inf.
5376
Chris Lattnerf13ff492008-05-20 03:50:52 +00005377 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005378 // comparing an i8 to 300.0.
5379 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5380
Bill Wendling20636df2008-11-09 04:26:50 +00005381 if (!LHSUnsigned) {
5382 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5383 // and large values.
5384 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5385 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5386 APFloat::rmNearestTiesToEven);
5387 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5388 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5389 Pred == ICmpInst::ICMP_SLE)
5390 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5391 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5392 }
5393 } else {
5394 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5395 // +INF and large values.
5396 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5397 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5398 APFloat::rmNearestTiesToEven);
5399 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5400 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5401 Pred == ICmpInst::ICMP_ULE)
5402 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5403 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5404 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005405 }
5406
Bill Wendling20636df2008-11-09 04:26:50 +00005407 if (!LHSUnsigned) {
5408 // See if the RHS value is < SignedMin.
5409 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5410 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5411 APFloat::rmNearestTiesToEven);
5412 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5413 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5414 Pred == ICmpInst::ICMP_SGE)
5415 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5416 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5417 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005418 }
5419
Bill Wendling20636df2008-11-09 04:26:50 +00005420 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5421 // [0, UMAX], but it may still be fractional. See if it is fractional by
5422 // casting the FP value to the integer value and back, checking for equality.
5423 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005424 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5425 if (!RHS.isZero() &&
5426 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005427 // If we had a comparison against a fractional value, we have to adjust the
5428 // compare predicate and sometimes the value. RHSC is rounded towards zero
5429 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005430 switch (Pred) {
5431 default: assert(0 && "Unexpected integer comparison!");
5432 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5433 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5434 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5435 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Bill Wendling20636df2008-11-09 04:26:50 +00005436 case ICmpInst::ICMP_ULE:
5437 // (float)int <= 4.4 --> int <= 4
5438 // (float)int <= -4.4 --> false
5439 if (RHS.isNegative())
5440 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5441 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005442 case ICmpInst::ICMP_SLE:
5443 // (float)int <= 4.4 --> int <= 4
5444 // (float)int <= -4.4 --> int < -4
5445 if (RHS.isNegative())
5446 Pred = ICmpInst::ICMP_SLT;
5447 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005448 case ICmpInst::ICMP_ULT:
5449 // (float)int < -4.4 --> false
5450 // (float)int < 4.4 --> int <= 4
5451 if (RHS.isNegative())
5452 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5453 Pred = ICmpInst::ICMP_ULE;
5454 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005455 case ICmpInst::ICMP_SLT:
5456 // (float)int < -4.4 --> int < -4
5457 // (float)int < 4.4 --> int <= 4
5458 if (!RHS.isNegative())
5459 Pred = ICmpInst::ICMP_SLE;
5460 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005461 case ICmpInst::ICMP_UGT:
5462 // (float)int > 4.4 --> int > 4
5463 // (float)int > -4.4 --> true
5464 if (RHS.isNegative())
5465 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5466 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005467 case ICmpInst::ICMP_SGT:
5468 // (float)int > 4.4 --> int > 4
5469 // (float)int > -4.4 --> int >= -4
5470 if (RHS.isNegative())
5471 Pred = ICmpInst::ICMP_SGE;
5472 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005473 case ICmpInst::ICMP_UGE:
5474 // (float)int >= -4.4 --> true
5475 // (float)int >= 4.4 --> int > 4
5476 if (!RHS.isNegative())
5477 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5478 Pred = ICmpInst::ICMP_UGT;
5479 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005480 case ICmpInst::ICMP_SGE:
5481 // (float)int >= -4.4 --> int >= -4
5482 // (float)int >= 4.4 --> int > 4
5483 if (!RHS.isNegative())
5484 Pred = ICmpInst::ICMP_SGT;
5485 break;
5486 }
5487 }
5488
5489 // Lower this FP comparison into an appropriate integer version of the
5490 // comparison.
5491 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5492}
5493
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005494Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5495 bool Changed = SimplifyCompare(I);
5496 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5497
5498 // Fold trivial predicates.
5499 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5500 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5501 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5502 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5503
5504 // Simplify 'fcmp pred X, X'
5505 if (Op0 == Op1) {
5506 switch (I.getPredicate()) {
5507 default: assert(0 && "Unknown predicate!");
5508 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5509 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5510 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5511 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5512 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5513 case FCmpInst::FCMP_OLT: // True if ordered and less than
5514 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5515 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5516
5517 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5518 case FCmpInst::FCMP_ULT: // True if unordered or less than
5519 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5520 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5521 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5522 I.setPredicate(FCmpInst::FCMP_UNO);
5523 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5524 return &I;
5525
5526 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5527 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5528 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5529 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5530 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5531 I.setPredicate(FCmpInst::FCMP_ORD);
5532 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5533 return &I;
5534 }
5535 }
5536
5537 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5538 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5539
5540 // Handle fcmp with constant RHS
5541 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005542 // If the constant is a nan, see if we can fold the comparison based on it.
5543 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5544 if (CFP->getValueAPF().isNaN()) {
5545 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5546 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005547 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5548 "Comparison must be either ordered or unordered!");
5549 // True if unordered.
5550 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005551 }
5552 }
5553
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005554 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5555 switch (LHSI->getOpcode()) {
5556 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005557 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5558 // block. If in the same block, we're encouraging jump threading. If
5559 // not, we are just pessimizing the code by making an i1 phi.
5560 if (LHSI->getParent() == I.getParent())
5561 if (Instruction *NV = FoldOpIntoPhi(I))
5562 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005563 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005564 case Instruction::SIToFP:
5565 case Instruction::UIToFP:
5566 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5567 return NV;
5568 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005569 case Instruction::Select:
5570 // If either operand of the select is a constant, we can fold the
5571 // comparison into the select arms, which will cause one to be
5572 // constant folded and the select turned into a bitwise or.
5573 Value *Op1 = 0, *Op2 = 0;
5574 if (LHSI->hasOneUse()) {
5575 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5576 // Fold the known value into the constant operand.
5577 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5578 // Insert a new FCmp of the other select operand.
5579 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5580 LHSI->getOperand(2), RHSC,
5581 I.getName()), I);
5582 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5583 // Fold the known value into the constant operand.
5584 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5585 // Insert a new FCmp of the other select operand.
5586 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5587 LHSI->getOperand(1), RHSC,
5588 I.getName()), I);
5589 }
5590 }
5591
5592 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005593 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005594 break;
5595 }
5596 }
5597
5598 return Changed ? &I : 0;
5599}
5600
5601Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5602 bool Changed = SimplifyCompare(I);
5603 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5604 const Type *Ty = Op0->getType();
5605
5606 // icmp X, X
5607 if (Op0 == Op1)
5608 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005609 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005610
5611 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5612 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005613
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005614 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5615 // addresses never equal each other! We already know that Op0 != Op1.
5616 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5617 isa<ConstantPointerNull>(Op0)) &&
5618 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5619 isa<ConstantPointerNull>(Op1)))
5620 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005621 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005622
5623 // icmp's with boolean values can always be turned into bitwise operations
5624 if (Ty == Type::Int1Ty) {
5625 switch (I.getPredicate()) {
5626 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005627 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005628 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005629 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005630 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005631 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005632 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005633 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005634
5635 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005636 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005637 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005638 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005639 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005640 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005641 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005642 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005643 case ICmpInst::ICMP_SGT:
5644 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005645 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005646 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5647 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5648 InsertNewInstBefore(Not, I);
5649 return BinaryOperator::CreateAnd(Not, Op0);
5650 }
5651 case ICmpInst::ICMP_UGE:
5652 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5653 // FALL THROUGH
5654 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005655 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005656 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005657 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005658 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005659 case ICmpInst::ICMP_SGE:
5660 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5661 // FALL THROUGH
5662 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5663 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5664 InsertNewInstBefore(Not, I);
5665 return BinaryOperator::CreateOr(Not, Op0);
5666 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005667 }
5668 }
5669
Dan Gohman58c09632008-09-16 18:46:06 +00005670 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005671 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005672 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005673
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005674 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5675 if (I.isEquality() && CI->isNullValue() &&
5676 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5677 // (icmp cond A B) if cond is equality
5678 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005679 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005680
Dan Gohman58c09632008-09-16 18:46:06 +00005681 // If we have an icmp le or icmp ge instruction, turn it into the
5682 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5683 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005684 switch (I.getPredicate()) {
5685 default: break;
5686 case ICmpInst::ICMP_ULE:
5687 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5688 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5689 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5690 case ICmpInst::ICMP_SLE:
5691 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5692 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5693 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5694 case ICmpInst::ICMP_UGE:
5695 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5696 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5697 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5698 case ICmpInst::ICMP_SGE:
5699 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5700 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5701 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5702 }
5703
Chris Lattnera1308652008-07-11 05:40:05 +00005704 // See if we can fold the comparison based on range information we can get
5705 // by checking whether bits are known to be zero or one in the input.
5706 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5707 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5708
5709 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005710 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005711 bool UnusedBit;
5712 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5713
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005714 if (SimplifyDemandedBits(Op0,
5715 isSignBit ? APInt::getSignBit(BitWidth)
5716 : APInt::getAllOnesValue(BitWidth),
5717 KnownZero, KnownOne, 0))
5718 return &I;
5719
5720 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005721 // in. Compute the Min, Max and RHS values based on the known bits. For the
5722 // EQ and NE we use unsigned values.
5723 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005724 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5725 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5726 else
5727 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5728
Chris Lattnera1308652008-07-11 05:40:05 +00005729 // If Min and Max are known to be the same, then SimplifyDemandedBits
5730 // figured out that the LHS is a constant. Just constant fold this now so
5731 // that code below can assume that Min != Max.
5732 if (Min == Max)
5733 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5734 ConstantInt::get(Min),
5735 CI));
5736
5737 // Based on the range information we know about the LHS, see if we can
5738 // simplify this comparison. For example, (x&4) < 8 is always true.
5739 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005740 switch (I.getPredicate()) { // LE/GE have been folded already.
5741 default: assert(0 && "Unknown icmp opcode!");
5742 case ICmpInst::ICMP_EQ:
5743 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5744 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5745 break;
5746 case ICmpInst::ICMP_NE:
5747 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5748 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5749 break;
5750 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005751 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005752 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005753 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005754 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005755 if (RHSVal == Max) // A <u MAX -> A != MAX
5756 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5757 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5758 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5759
5760 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5761 if (CI->isMinValue(true))
5762 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5763 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005764 break;
5765 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005766 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005767 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005768 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005769 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005770
5771 if (RHSVal == Min) // A >u MIN -> A != MIN
5772 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5773 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5774 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5775
5776 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5777 if (CI->isMaxValue(true))
5778 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5779 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005780 break;
5781 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005782 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005783 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005784 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005785 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005786 if (RHSVal == Max) // A <s MAX -> A != MAX
5787 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005788 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005789 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005790 break;
5791 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005792 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005793 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005794 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005795 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005796
5797 if (RHSVal == Min) // A >s MIN -> A != MIN
5798 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5799 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5800 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005801 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005802 }
Dan Gohman58c09632008-09-16 18:46:06 +00005803 }
5804
5805 // Test if the ICmpInst instruction is used exclusively by a select as
5806 // part of a minimum or maximum operation. If so, refrain from doing
5807 // any other folding. This helps out other analyses which understand
5808 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5809 // and CodeGen. And in this case, at least one of the comparison
5810 // operands has at least one user besides the compare (the select),
5811 // which would often largely negate the benefit of folding anyway.
5812 if (I.hasOneUse())
5813 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5814 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5815 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5816 return 0;
5817
5818 // See if we are doing a comparison between a constant and an instruction that
5819 // can be folded into the comparison.
5820 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005821 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5822 // instruction, see if that instruction also has constants so that the
5823 // instruction can be folded into the icmp
5824 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5825 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5826 return Res;
5827 }
5828
5829 // Handle icmp with constant (but not simple integer constant) RHS
5830 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5831 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5832 switch (LHSI->getOpcode()) {
5833 case Instruction::GetElementPtr:
5834 if (RHSC->isNullValue()) {
5835 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5836 bool isAllZeros = true;
5837 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5838 if (!isa<Constant>(LHSI->getOperand(i)) ||
5839 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5840 isAllZeros = false;
5841 break;
5842 }
5843 if (isAllZeros)
5844 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5845 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5846 }
5847 break;
5848
5849 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005850 // Only fold icmp into the PHI if the phi and fcmp are in the same
5851 // block. If in the same block, we're encouraging jump threading. If
5852 // not, we are just pessimizing the code by making an i1 phi.
5853 if (LHSI->getParent() == I.getParent())
5854 if (Instruction *NV = FoldOpIntoPhi(I))
5855 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005856 break;
5857 case Instruction::Select: {
5858 // If either operand of the select is a constant, we can fold the
5859 // comparison into the select arms, which will cause one to be
5860 // constant folded and the select turned into a bitwise or.
5861 Value *Op1 = 0, *Op2 = 0;
5862 if (LHSI->hasOneUse()) {
5863 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5864 // Fold the known value into the constant operand.
5865 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5866 // Insert a new ICmp of the other select operand.
5867 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5868 LHSI->getOperand(2), RHSC,
5869 I.getName()), I);
5870 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5871 // Fold the known value into the constant operand.
5872 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5873 // Insert a new ICmp of the other select operand.
5874 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5875 LHSI->getOperand(1), RHSC,
5876 I.getName()), I);
5877 }
5878 }
5879
5880 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005881 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005882 break;
5883 }
5884 case Instruction::Malloc:
5885 // If we have (malloc != null), and if the malloc has a single use, we
5886 // can assume it is successful and remove the malloc.
5887 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5888 AddToWorkList(LHSI);
5889 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005890 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005891 }
5892 break;
5893 }
5894 }
5895
5896 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5897 if (User *GEP = dyn_castGetElementPtr(Op0))
5898 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5899 return NI;
5900 if (User *GEP = dyn_castGetElementPtr(Op1))
5901 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5902 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5903 return NI;
5904
5905 // Test to see if the operands of the icmp are casted versions of other
5906 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5907 // now.
5908 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5909 if (isa<PointerType>(Op0->getType()) &&
5910 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5911 // We keep moving the cast from the left operand over to the right
5912 // operand, where it can often be eliminated completely.
5913 Op0 = CI->getOperand(0);
5914
5915 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5916 // so eliminate it as well.
5917 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5918 Op1 = CI2->getOperand(0);
5919
5920 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005921 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005922 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5923 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5924 } else {
5925 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005926 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005927 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005928 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005929 return new ICmpInst(I.getPredicate(), Op0, Op1);
5930 }
5931 }
5932
5933 if (isa<CastInst>(Op0)) {
5934 // Handle the special case of: icmp (cast bool to X), <cst>
5935 // This comes up when you have code like
5936 // int X = A < B;
5937 // if (X) ...
5938 // For generality, we handle any zero-extension of any operand comparison
5939 // with a constant or another cast from the same type.
5940 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5941 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5942 return R;
5943 }
5944
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005945 // See if it's the same type of instruction on the left and right.
5946 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5947 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005948 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
5949 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
5950 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00005951 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005952 default: break;
5953 case Instruction::Add:
5954 case Instruction::Sub:
5955 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005956 // a+x icmp eq/ne b+x --> a icmp b
5957 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
5958 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005959 break;
5960 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005961 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5962 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
5963 // Mask = -1 >> count-trailing-zeros(Cst).
5964 if (!CI->isZero() && !CI->isOne()) {
5965 const APInt &AP = CI->getValue();
5966 ConstantInt *Mask = ConstantInt::get(
5967 APInt::getLowBitsSet(AP.getBitWidth(),
5968 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005969 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005970 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
5971 Mask);
5972 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
5973 Mask);
5974 InsertNewInstBefore(And1, I);
5975 InsertNewInstBefore(And2, I);
5976 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005977 }
5978 }
5979 break;
5980 }
5981 }
5982 }
5983 }
5984
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005985 // ~x < ~y --> y < x
5986 { Value *A, *B;
5987 if (match(Op0, m_Not(m_Value(A))) &&
5988 match(Op1, m_Not(m_Value(B))))
5989 return new ICmpInst(I.getPredicate(), B, A);
5990 }
5991
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005992 if (I.isEquality()) {
5993 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005994
5995 // -x == -y --> x == y
5996 if (match(Op0, m_Neg(m_Value(A))) &&
5997 match(Op1, m_Neg(m_Value(B))))
5998 return new ICmpInst(I.getPredicate(), A, B);
5999
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006000 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6001 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6002 Value *OtherVal = A == Op1 ? B : A;
6003 return new ICmpInst(I.getPredicate(), OtherVal,
6004 Constant::getNullValue(A->getType()));
6005 }
6006
6007 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6008 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattner3b874082008-11-16 05:38:51 +00006009 ConstantInt *C1, *C2;
6010 if (match(B, m_ConstantInt(C1)) &&
6011 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6012 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6013 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6014 return new ICmpInst(I.getPredicate(), A,
6015 InsertNewInstBefore(Xor, I));
6016 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006017
6018 // A^B == A^D -> B == D
6019 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6020 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6021 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6022 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6023 }
6024 }
6025
6026 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6027 (A == Op0 || B == Op0)) {
6028 // A == (A^B) -> B == 0
6029 Value *OtherVal = A == Op0 ? B : A;
6030 return new ICmpInst(I.getPredicate(), OtherVal,
6031 Constant::getNullValue(A->getType()));
6032 }
Chris Lattner3b874082008-11-16 05:38:51 +00006033
6034 // (A-B) == A -> B == 0
6035 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6036 return new ICmpInst(I.getPredicate(), B,
6037 Constant::getNullValue(B->getType()));
6038
6039 // A == (A-B) -> B == 0
6040 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006041 return new ICmpInst(I.getPredicate(), B,
6042 Constant::getNullValue(B->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006043
6044 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6045 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6046 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6047 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6048 Value *X = 0, *Y = 0, *Z = 0;
6049
6050 if (A == C) {
6051 X = B; Y = D; Z = A;
6052 } else if (A == D) {
6053 X = B; Y = C; Z = A;
6054 } else if (B == C) {
6055 X = A; Y = D; Z = B;
6056 } else if (B == D) {
6057 X = A; Y = C; Z = B;
6058 }
6059
6060 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006061 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6062 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006063 I.setOperand(0, Op1);
6064 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6065 return &I;
6066 }
6067 }
6068 }
6069 return Changed ? &I : 0;
6070}
6071
6072
6073/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6074/// and CmpRHS are both known to be integer constants.
6075Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6076 ConstantInt *DivRHS) {
6077 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6078 const APInt &CmpRHSV = CmpRHS->getValue();
6079
6080 // FIXME: If the operand types don't match the type of the divide
6081 // then don't attempt this transform. The code below doesn't have the
6082 // logic to deal with a signed divide and an unsigned compare (and
6083 // vice versa). This is because (x /s C1) <s C2 produces different
6084 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6085 // (x /u C1) <u C2. Simply casting the operands and result won't
6086 // work. :( The if statement below tests that condition and bails
6087 // if it finds it.
6088 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6089 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6090 return 0;
6091 if (DivRHS->isZero())
6092 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006093 if (DivIsSigned && DivRHS->isAllOnesValue())
6094 return 0; // The overflow computation also screws up here
6095 if (DivRHS->isOne())
6096 return 0; // Not worth bothering, and eliminates some funny cases
6097 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006098
6099 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6100 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6101 // C2 (CI). By solving for X we can turn this into a range check
6102 // instead of computing a divide.
6103 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6104
6105 // Determine if the product overflows by seeing if the product is
6106 // not equal to the divide. Make sure we do the same kind of divide
6107 // as in the LHS instruction that we're folding.
6108 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6109 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6110
6111 // Get the ICmp opcode
6112 ICmpInst::Predicate Pred = ICI.getPredicate();
6113
6114 // Figure out the interval that is being checked. For example, a comparison
6115 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6116 // Compute this interval based on the constants involved and the signedness of
6117 // the compare/divide. This computes a half-open interval, keeping track of
6118 // whether either value in the interval overflows. After analysis each
6119 // overflow variable is set to 0 if it's corresponding bound variable is valid
6120 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6121 int LoOverflow = 0, HiOverflow = 0;
6122 ConstantInt *LoBound = 0, *HiBound = 0;
6123
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006124 if (!DivIsSigned) { // udiv
6125 // e.g. X/5 op 3 --> [15, 20)
6126 LoBound = Prod;
6127 HiOverflow = LoOverflow = ProdOV;
6128 if (!HiOverflow)
6129 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006130 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006131 if (CmpRHSV == 0) { // (X / pos) op 0
6132 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6133 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6134 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006135 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006136 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6137 HiOverflow = LoOverflow = ProdOV;
6138 if (!HiOverflow)
6139 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6140 } else { // (X / pos) op neg
6141 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006142 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006143 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6144 if (!LoOverflow) {
6145 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6146 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6147 true) ? -1 : 0;
6148 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006149 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006150 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006151 if (CmpRHSV == 0) { // (X / neg) op 0
6152 // e.g. X/-5 op 0 --> [-4, 5)
6153 LoBound = AddOne(DivRHS);
6154 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6155 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6156 HiOverflow = 1; // [INTMIN+1, overflow)
6157 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6158 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006159 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006160 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006161 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006162 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6163 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006164 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006165 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006166 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6167 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006168 if (!HiOverflow)
6169 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006170 }
6171
6172 // Dividing by a negative swaps the condition. LT <-> GT
6173 Pred = ICmpInst::getSwappedPredicate(Pred);
6174 }
6175
6176 Value *X = DivI->getOperand(0);
6177 switch (Pred) {
6178 default: assert(0 && "Unhandled icmp opcode!");
6179 case ICmpInst::ICMP_EQ:
6180 if (LoOverflow && HiOverflow)
6181 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6182 else if (HiOverflow)
6183 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6184 ICmpInst::ICMP_UGE, X, LoBound);
6185 else if (LoOverflow)
6186 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6187 ICmpInst::ICMP_ULT, X, HiBound);
6188 else
6189 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6190 case ICmpInst::ICMP_NE:
6191 if (LoOverflow && HiOverflow)
6192 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6193 else if (HiOverflow)
6194 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6195 ICmpInst::ICMP_ULT, X, LoBound);
6196 else if (LoOverflow)
6197 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6198 ICmpInst::ICMP_UGE, X, HiBound);
6199 else
6200 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6201 case ICmpInst::ICMP_ULT:
6202 case ICmpInst::ICMP_SLT:
6203 if (LoOverflow == +1) // Low bound is greater than input range.
6204 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6205 if (LoOverflow == -1) // Low bound is less than input range.
6206 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6207 return new ICmpInst(Pred, X, LoBound);
6208 case ICmpInst::ICMP_UGT:
6209 case ICmpInst::ICMP_SGT:
6210 if (HiOverflow == +1) // High bound greater than input range.
6211 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6212 else if (HiOverflow == -1) // High bound less than input range.
6213 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6214 if (Pred == ICmpInst::ICMP_UGT)
6215 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6216 else
6217 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6218 }
6219}
6220
6221
6222/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6223///
6224Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6225 Instruction *LHSI,
6226 ConstantInt *RHS) {
6227 const APInt &RHSV = RHS->getValue();
6228
6229 switch (LHSI->getOpcode()) {
6230 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6231 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6232 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6233 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006234 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6235 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006236 Value *CompareVal = LHSI->getOperand(0);
6237
6238 // If the sign bit of the XorCST is not set, there is no change to
6239 // the operation, just stop using the Xor.
6240 if (!XorCST->getValue().isNegative()) {
6241 ICI.setOperand(0, CompareVal);
6242 AddToWorkList(LHSI);
6243 return &ICI;
6244 }
6245
6246 // Was the old condition true if the operand is positive?
6247 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6248
6249 // If so, the new one isn't.
6250 isTrueIfPositive ^= true;
6251
6252 if (isTrueIfPositive)
6253 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6254 else
6255 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6256 }
6257 }
6258 break;
6259 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6260 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6261 LHSI->getOperand(0)->hasOneUse()) {
6262 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6263
6264 // If the LHS is an AND of a truncating cast, we can widen the
6265 // and/compare to be the input width without changing the value
6266 // produced, eliminating a cast.
6267 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6268 // We can do this transformation if either the AND constant does not
6269 // have its sign bit set or if it is an equality comparison.
6270 // Extending a relational comparison when we're checking the sign
6271 // bit would not work.
6272 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006273 (ICI.isEquality() ||
6274 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006275 uint32_t BitWidth =
6276 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6277 APInt NewCST = AndCST->getValue();
6278 NewCST.zext(BitWidth);
6279 APInt NewCI = RHSV;
6280 NewCI.zext(BitWidth);
6281 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006282 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006283 ConstantInt::get(NewCST),LHSI->getName());
6284 InsertNewInstBefore(NewAnd, ICI);
6285 return new ICmpInst(ICI.getPredicate(), NewAnd,
6286 ConstantInt::get(NewCI));
6287 }
6288 }
6289
6290 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6291 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6292 // happens a LOT in code produced by the C front-end, for bitfield
6293 // access.
6294 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6295 if (Shift && !Shift->isShift())
6296 Shift = 0;
6297
6298 ConstantInt *ShAmt;
6299 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6300 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6301 const Type *AndTy = AndCST->getType(); // Type of the and.
6302
6303 // We can fold this as long as we can't shift unknown bits
6304 // into the mask. This can only happen with signed shift
6305 // rights, as they sign-extend.
6306 if (ShAmt) {
6307 bool CanFold = Shift->isLogicalShift();
6308 if (!CanFold) {
6309 // To test for the bad case of the signed shr, see if any
6310 // of the bits shifted in could be tested after the mask.
6311 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6312 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6313
6314 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6315 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6316 AndCST->getValue()) == 0)
6317 CanFold = true;
6318 }
6319
6320 if (CanFold) {
6321 Constant *NewCst;
6322 if (Shift->getOpcode() == Instruction::Shl)
6323 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6324 else
6325 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6326
6327 // Check to see if we are shifting out any of the bits being
6328 // compared.
6329 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6330 // If we shifted bits out, the fold is not going to work out.
6331 // As a special case, check to see if this means that the
6332 // result is always true or false now.
6333 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6334 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6335 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6336 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6337 } else {
6338 ICI.setOperand(1, NewCst);
6339 Constant *NewAndCST;
6340 if (Shift->getOpcode() == Instruction::Shl)
6341 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6342 else
6343 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6344 LHSI->setOperand(1, NewAndCST);
6345 LHSI->setOperand(0, Shift->getOperand(0));
6346 AddToWorkList(Shift); // Shift is dead.
6347 AddUsesToWorkList(ICI);
6348 return &ICI;
6349 }
6350 }
6351 }
6352
6353 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6354 // preferable because it allows the C<<Y expression to be hoisted out
6355 // of a loop if Y is invariant and X is not.
6356 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6357 ICI.isEquality() && !Shift->isArithmeticShift() &&
6358 isa<Instruction>(Shift->getOperand(0))) {
6359 // Compute C << Y.
6360 Value *NS;
6361 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006362 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006363 Shift->getOperand(1), "tmp");
6364 } else {
6365 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006366 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006367 Shift->getOperand(1), "tmp");
6368 }
6369 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6370
6371 // Compute X & (C << Y).
6372 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006373 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006374 InsertNewInstBefore(NewAnd, ICI);
6375
6376 ICI.setOperand(0, NewAnd);
6377 return &ICI;
6378 }
6379 }
6380 break;
6381
6382 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6383 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6384 if (!ShAmt) break;
6385
6386 uint32_t TypeBits = RHSV.getBitWidth();
6387
6388 // Check that the shift amount is in range. If not, don't perform
6389 // undefined shifts. When the shift is visited it will be
6390 // simplified.
6391 if (ShAmt->uge(TypeBits))
6392 break;
6393
6394 if (ICI.isEquality()) {
6395 // If we are comparing against bits always shifted out, the
6396 // comparison cannot succeed.
6397 Constant *Comp =
6398 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6399 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6400 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6401 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6402 return ReplaceInstUsesWith(ICI, Cst);
6403 }
6404
6405 if (LHSI->hasOneUse()) {
6406 // Otherwise strength reduce the shift into an and.
6407 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6408 Constant *Mask =
6409 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6410
6411 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006412 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006413 Mask, LHSI->getName()+".mask");
6414 Value *And = InsertNewInstBefore(AndI, ICI);
6415 return new ICmpInst(ICI.getPredicate(), And,
6416 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6417 }
6418 }
6419
6420 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6421 bool TrueIfSigned = false;
6422 if (LHSI->hasOneUse() &&
6423 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6424 // (X << 31) <s 0 --> (X&1) != 0
6425 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6426 (TypeBits-ShAmt->getZExtValue()-1));
6427 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006428 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006429 Mask, LHSI->getName()+".mask");
6430 Value *And = InsertNewInstBefore(AndI, ICI);
6431
6432 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6433 And, Constant::getNullValue(And->getType()));
6434 }
6435 break;
6436 }
6437
6438 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6439 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006440 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006441 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006442 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006443
Chris Lattner5ee84f82008-03-21 05:19:58 +00006444 // Check that the shift amount is in range. If not, don't perform
6445 // undefined shifts. When the shift is visited it will be
6446 // simplified.
6447 uint32_t TypeBits = RHSV.getBitWidth();
6448 if (ShAmt->uge(TypeBits))
6449 break;
6450
6451 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006452
Chris Lattner5ee84f82008-03-21 05:19:58 +00006453 // If we are comparing against bits always shifted out, the
6454 // comparison cannot succeed.
6455 APInt Comp = RHSV << ShAmtVal;
6456 if (LHSI->getOpcode() == Instruction::LShr)
6457 Comp = Comp.lshr(ShAmtVal);
6458 else
6459 Comp = Comp.ashr(ShAmtVal);
6460
6461 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6462 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6463 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6464 return ReplaceInstUsesWith(ICI, Cst);
6465 }
6466
6467 // Otherwise, check to see if the bits shifted out are known to be zero.
6468 // If so, we can compare against the unshifted value:
6469 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006470 if (LHSI->hasOneUse() &&
6471 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006472 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6473 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6474 ConstantExpr::getShl(RHS, ShAmt));
6475 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006476
Evan Chengfb9292a2008-04-23 00:38:06 +00006477 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006478 // Otherwise strength reduce the shift into an and.
6479 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6480 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006481
Chris Lattner5ee84f82008-03-21 05:19:58 +00006482 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006483 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006484 Mask, LHSI->getName()+".mask");
6485 Value *And = InsertNewInstBefore(AndI, ICI);
6486 return new ICmpInst(ICI.getPredicate(), And,
6487 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006488 }
6489 break;
6490 }
6491
6492 case Instruction::SDiv:
6493 case Instruction::UDiv:
6494 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6495 // Fold this div into the comparison, producing a range check.
6496 // Determine, based on the divide type, what the range is being
6497 // checked. If there is an overflow on the low or high side, remember
6498 // it, otherwise compute the range [low, hi) bounding the new value.
6499 // See: InsertRangeTest above for the kinds of replacements possible.
6500 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6501 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6502 DivRHS))
6503 return R;
6504 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006505
6506 case Instruction::Add:
6507 // Fold: icmp pred (add, X, C1), C2
6508
6509 if (!ICI.isEquality()) {
6510 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6511 if (!LHSC) break;
6512 const APInt &LHSV = LHSC->getValue();
6513
6514 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6515 .subtract(LHSV);
6516
6517 if (ICI.isSignedPredicate()) {
6518 if (CR.getLower().isSignBit()) {
6519 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6520 ConstantInt::get(CR.getUpper()));
6521 } else if (CR.getUpper().isSignBit()) {
6522 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6523 ConstantInt::get(CR.getLower()));
6524 }
6525 } else {
6526 if (CR.getLower().isMinValue()) {
6527 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6528 ConstantInt::get(CR.getUpper()));
6529 } else if (CR.getUpper().isMinValue()) {
6530 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6531 ConstantInt::get(CR.getLower()));
6532 }
6533 }
6534 }
6535 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006536 }
6537
6538 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6539 if (ICI.isEquality()) {
6540 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6541
6542 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6543 // the second operand is a constant, simplify a bit.
6544 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6545 switch (BO->getOpcode()) {
6546 case Instruction::SRem:
6547 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6548 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6549 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6550 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6551 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006552 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006553 BO->getName());
6554 InsertNewInstBefore(NewRem, ICI);
6555 return new ICmpInst(ICI.getPredicate(), NewRem,
6556 Constant::getNullValue(BO->getType()));
6557 }
6558 }
6559 break;
6560 case Instruction::Add:
6561 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6562 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6563 if (BO->hasOneUse())
6564 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6565 Subtract(RHS, BOp1C));
6566 } else if (RHSV == 0) {
6567 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6568 // efficiently invertible, or if the add has just this one use.
6569 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6570
6571 if (Value *NegVal = dyn_castNegVal(BOp1))
6572 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6573 else if (Value *NegVal = dyn_castNegVal(BOp0))
6574 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6575 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006576 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006577 InsertNewInstBefore(Neg, ICI);
6578 Neg->takeName(BO);
6579 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6580 }
6581 }
6582 break;
6583 case Instruction::Xor:
6584 // For the xor case, we can xor two constants together, eliminating
6585 // the explicit xor.
6586 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6587 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6588 ConstantExpr::getXor(RHS, BOC));
6589
6590 // FALLTHROUGH
6591 case Instruction::Sub:
6592 // Replace (([sub|xor] A, B) != 0) with (A != B)
6593 if (RHSV == 0)
6594 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6595 BO->getOperand(1));
6596 break;
6597
6598 case Instruction::Or:
6599 // If bits are being or'd in that are not present in the constant we
6600 // are comparing against, then the comparison could never succeed!
6601 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6602 Constant *NotCI = ConstantExpr::getNot(RHS);
6603 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6604 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6605 isICMP_NE));
6606 }
6607 break;
6608
6609 case Instruction::And:
6610 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6611 // If bits are being compared against that are and'd out, then the
6612 // comparison can never succeed!
6613 if ((RHSV & ~BOC->getValue()) != 0)
6614 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6615 isICMP_NE));
6616
6617 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6618 if (RHS == BOC && RHSV.isPowerOf2())
6619 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6620 ICmpInst::ICMP_NE, LHSI,
6621 Constant::getNullValue(RHS->getType()));
6622
6623 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006624 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006625 Value *X = BO->getOperand(0);
6626 Constant *Zero = Constant::getNullValue(X->getType());
6627 ICmpInst::Predicate pred = isICMP_NE ?
6628 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6629 return new ICmpInst(pred, X, Zero);
6630 }
6631
6632 // ((X & ~7) == 0) --> X < 8
6633 if (RHSV == 0 && isHighOnes(BOC)) {
6634 Value *X = BO->getOperand(0);
6635 Constant *NegX = ConstantExpr::getNeg(BOC);
6636 ICmpInst::Predicate pred = isICMP_NE ?
6637 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6638 return new ICmpInst(pred, X, NegX);
6639 }
6640 }
6641 default: break;
6642 }
6643 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6644 // Handle icmp {eq|ne} <intrinsic>, intcst.
6645 if (II->getIntrinsicID() == Intrinsic::bswap) {
6646 AddToWorkList(II);
6647 ICI.setOperand(0, II->getOperand(1));
6648 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6649 return &ICI;
6650 }
6651 }
6652 } else { // Not a ICMP_EQ/ICMP_NE
6653 // If the LHS is a cast from an integral value of the same size,
6654 // then since we know the RHS is a constant, try to simlify.
6655 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6656 Value *CastOp = Cast->getOperand(0);
6657 const Type *SrcTy = CastOp->getType();
6658 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6659 if (SrcTy->isInteger() &&
6660 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6661 // If this is an unsigned comparison, try to make the comparison use
6662 // smaller constant values.
6663 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6664 // X u< 128 => X s> -1
6665 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6666 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6667 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6668 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6669 // X u> 127 => X s< 0
6670 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6671 Constant::getNullValue(SrcTy));
6672 }
6673 }
6674 }
6675 }
6676 return 0;
6677}
6678
6679/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6680/// We only handle extending casts so far.
6681///
6682Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6683 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6684 Value *LHSCIOp = LHSCI->getOperand(0);
6685 const Type *SrcTy = LHSCIOp->getType();
6686 const Type *DestTy = LHSCI->getType();
6687 Value *RHSCIOp;
6688
6689 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6690 // integer type is the same size as the pointer type.
6691 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6692 getTargetData().getPointerSizeInBits() ==
6693 cast<IntegerType>(DestTy)->getBitWidth()) {
6694 Value *RHSOp = 0;
6695 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6696 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6697 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6698 RHSOp = RHSC->getOperand(0);
6699 // If the pointer types don't match, insert a bitcast.
6700 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006701 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006702 }
6703
6704 if (RHSOp)
6705 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6706 }
6707
6708 // The code below only handles extension cast instructions, so far.
6709 // Enforce this.
6710 if (LHSCI->getOpcode() != Instruction::ZExt &&
6711 LHSCI->getOpcode() != Instruction::SExt)
6712 return 0;
6713
6714 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6715 bool isSignedCmp = ICI.isSignedPredicate();
6716
6717 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6718 // Not an extension from the same type?
6719 RHSCIOp = CI->getOperand(0);
6720 if (RHSCIOp->getType() != LHSCIOp->getType())
6721 return 0;
6722
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006723 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006724 // and the other is a zext), then we can't handle this.
6725 if (CI->getOpcode() != LHSCI->getOpcode())
6726 return 0;
6727
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006728 // Deal with equality cases early.
6729 if (ICI.isEquality())
6730 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6731
6732 // A signed comparison of sign extended values simplifies into a
6733 // signed comparison.
6734 if (isSignedCmp && isSignedExt)
6735 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6736
6737 // The other three cases all fold into an unsigned comparison.
6738 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006739 }
6740
6741 // If we aren't dealing with a constant on the RHS, exit early
6742 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6743 if (!CI)
6744 return 0;
6745
6746 // Compute the constant that would happen if we truncated to SrcTy then
6747 // reextended to DestTy.
6748 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6749 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6750
6751 // If the re-extended constant didn't change...
6752 if (Res2 == CI) {
6753 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6754 // For example, we might have:
6755 // %A = sext short %X to uint
6756 // %B = icmp ugt uint %A, 1330
6757 // It is incorrect to transform this into
6758 // %B = icmp ugt short %X, 1330
6759 // because %A may have negative value.
6760 //
Chris Lattner3d816532008-07-11 04:09:09 +00006761 // However, we allow this when the compare is EQ/NE, because they are
6762 // signless.
6763 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006764 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006765 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006766 }
6767
6768 // The re-extended constant changed so the constant cannot be represented
6769 // in the shorter type. Consequently, we cannot emit a simple comparison.
6770
6771 // First, handle some easy cases. We know the result cannot be equal at this
6772 // point so handle the ICI.isEquality() cases
6773 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6774 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6775 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6776 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6777
6778 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6779 // should have been folded away previously and not enter in here.
6780 Value *Result;
6781 if (isSignedCmp) {
6782 // We're performing a signed comparison.
6783 if (cast<ConstantInt>(CI)->getValue().isNegative())
6784 Result = ConstantInt::getFalse(); // X < (small) --> false
6785 else
6786 Result = ConstantInt::getTrue(); // X < (large) --> true
6787 } else {
6788 // We're performing an unsigned comparison.
6789 if (isSignedExt) {
6790 // We're performing an unsigned comp with a sign extended value.
6791 // This is true if the input is >= 0. [aka >s -1]
6792 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6793 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6794 NegOne, ICI.getName()), ICI);
6795 } else {
6796 // Unsigned extend & unsigned compare -> always true.
6797 Result = ConstantInt::getTrue();
6798 }
6799 }
6800
6801 // Finally, return the value computed.
6802 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006803 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006804 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006805
6806 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6807 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6808 "ICmp should be folded!");
6809 if (Constant *CI = dyn_cast<Constant>(Result))
6810 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6811 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006812}
6813
6814Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6815 return commonShiftTransforms(I);
6816}
6817
6818Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6819 return commonShiftTransforms(I);
6820}
6821
6822Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006823 if (Instruction *R = commonShiftTransforms(I))
6824 return R;
6825
6826 Value *Op0 = I.getOperand(0);
6827
6828 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6829 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6830 if (CSI->isAllOnesValue())
6831 return ReplaceInstUsesWith(I, CSI);
6832
6833 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006834 if (!isa<VectorType>(I.getType()) &&
6835 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006836 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006837 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006838
6839 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006840}
6841
6842Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6843 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6844 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6845
6846 // shl X, 0 == X and shr X, 0 == X
6847 // shl 0, X == 0 and shr 0, X == 0
6848 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6849 Op0 == Constant::getNullValue(Op0->getType()))
6850 return ReplaceInstUsesWith(I, Op0);
6851
6852 if (isa<UndefValue>(Op0)) {
6853 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6854 return ReplaceInstUsesWith(I, Op0);
6855 else // undef << X -> 0, undef >>u X -> 0
6856 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6857 }
6858 if (isa<UndefValue>(Op1)) {
6859 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6860 return ReplaceInstUsesWith(I, Op0);
6861 else // X << undef, X >>u undef -> 0
6862 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6863 }
6864
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006865 // Try to fold constant and into select arguments.
6866 if (isa<Constant>(Op0))
6867 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6868 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6869 return R;
6870
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006871 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6872 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6873 return Res;
6874 return 0;
6875}
6876
6877Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6878 BinaryOperator &I) {
6879 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6880
6881 // See if we can simplify any instructions used by the instruction whose sole
6882 // purpose is to compute bits we don't care about.
6883 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6884 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6885 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6886 KnownZero, KnownOne))
6887 return &I;
6888
6889 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6890 // of a signed value.
6891 //
6892 if (Op1->uge(TypeBits)) {
6893 if (I.getOpcode() != Instruction::AShr)
6894 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6895 else {
6896 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6897 return &I;
6898 }
6899 }
6900
6901 // ((X*C1) << C2) == (X * (C1 << C2))
6902 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6903 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6904 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006905 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006906 ConstantExpr::getShl(BOOp, Op1));
6907
6908 // Try to fold constant and into select arguments.
6909 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6910 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6911 return R;
6912 if (isa<PHINode>(Op0))
6913 if (Instruction *NV = FoldOpIntoPhi(I))
6914 return NV;
6915
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006916 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6917 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6918 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6919 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6920 // place. Don't try to do this transformation in this case. Also, we
6921 // require that the input operand is a shift-by-constant so that we have
6922 // confidence that the shifts will get folded together. We could do this
6923 // xform in more cases, but it is unlikely to be profitable.
6924 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6925 isa<ConstantInt>(TrOp->getOperand(1))) {
6926 // Okay, we'll do this xform. Make the shift of shift.
6927 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006928 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006929 I.getName());
6930 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6931
6932 // For logical shifts, the truncation has the effect of making the high
6933 // part of the register be zeros. Emulate this by inserting an AND to
6934 // clear the top bits as needed. This 'and' will usually be zapped by
6935 // other xforms later if dead.
6936 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6937 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6938 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6939
6940 // The mask we constructed says what the trunc would do if occurring
6941 // between the shifts. We want to know the effect *after* the second
6942 // shift. We know that it is a logical shift by a constant, so adjust the
6943 // mask as appropriate.
6944 if (I.getOpcode() == Instruction::Shl)
6945 MaskV <<= Op1->getZExtValue();
6946 else {
6947 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6948 MaskV = MaskV.lshr(Op1->getZExtValue());
6949 }
6950
Gabor Greifa645dd32008-05-16 19:29:10 +00006951 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006952 TI->getName());
6953 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6954
6955 // Return the value truncated to the interesting size.
6956 return new TruncInst(And, I.getType());
6957 }
6958 }
6959
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006960 if (Op0->hasOneUse()) {
6961 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6962 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6963 Value *V1, *V2;
6964 ConstantInt *CC;
6965 switch (Op0BO->getOpcode()) {
6966 default: break;
6967 case Instruction::Add:
6968 case Instruction::And:
6969 case Instruction::Or:
6970 case Instruction::Xor: {
6971 // These operators commute.
6972 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6973 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00006974 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00006975 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006976 Op0BO->getOperand(0), Op1,
6977 Op0BO->getName());
6978 InsertNewInstBefore(YS, I); // (Y << C)
6979 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006980 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006981 Op0BO->getOperand(1)->getName());
6982 InsertNewInstBefore(X, I); // (X + (Y << C))
6983 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006984 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006985 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6986 }
6987
6988 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6989 Value *Op0BOOp1 = Op0BO->getOperand(1);
6990 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6991 match(Op0BOOp1,
Chris Lattner3b874082008-11-16 05:38:51 +00006992 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
6993 m_ConstantInt(CC))) &&
6994 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006995 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006996 Op0BO->getOperand(0), Op1,
6997 Op0BO->getName());
6998 InsertNewInstBefore(YS, I); // (Y << C)
6999 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007000 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007001 V1->getName()+".mask");
7002 InsertNewInstBefore(XM, I); // X & (CC << C)
7003
Gabor Greifa645dd32008-05-16 19:29:10 +00007004 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007005 }
7006 }
7007
7008 // FALL THROUGH.
7009 case Instruction::Sub: {
7010 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7011 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007012 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007013 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007014 Op0BO->getOperand(1), Op1,
7015 Op0BO->getName());
7016 InsertNewInstBefore(YS, I); // (Y << C)
7017 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007018 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007019 Op0BO->getOperand(0)->getName());
7020 InsertNewInstBefore(X, I); // (X + (Y << C))
7021 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007022 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007023 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7024 }
7025
7026 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7027 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7028 match(Op0BO->getOperand(0),
7029 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7030 m_ConstantInt(CC))) && V2 == Op1 &&
7031 cast<BinaryOperator>(Op0BO->getOperand(0))
7032 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007033 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007034 Op0BO->getOperand(1), Op1,
7035 Op0BO->getName());
7036 InsertNewInstBefore(YS, I); // (Y << C)
7037 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007038 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007039 V1->getName()+".mask");
7040 InsertNewInstBefore(XM, I); // X & (CC << C)
7041
Gabor Greifa645dd32008-05-16 19:29:10 +00007042 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007043 }
7044
7045 break;
7046 }
7047 }
7048
7049
7050 // If the operand is an bitwise operator with a constant RHS, and the
7051 // shift is the only use, we can pull it out of the shift.
7052 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7053 bool isValid = true; // Valid only for And, Or, Xor
7054 bool highBitSet = false; // Transform if high bit of constant set?
7055
7056 switch (Op0BO->getOpcode()) {
7057 default: isValid = false; break; // Do not perform transform!
7058 case Instruction::Add:
7059 isValid = isLeftShift;
7060 break;
7061 case Instruction::Or:
7062 case Instruction::Xor:
7063 highBitSet = false;
7064 break;
7065 case Instruction::And:
7066 highBitSet = true;
7067 break;
7068 }
7069
7070 // If this is a signed shift right, and the high bit is modified
7071 // by the logical operation, do not perform the transformation.
7072 // The highBitSet boolean indicates the value of the high bit of
7073 // the constant which would cause it to be modified for this
7074 // operation.
7075 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007076 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007077 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007078
7079 if (isValid) {
7080 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7081
7082 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007083 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007084 InsertNewInstBefore(NewShift, I);
7085 NewShift->takeName(Op0BO);
7086
Gabor Greifa645dd32008-05-16 19:29:10 +00007087 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007088 NewRHS);
7089 }
7090 }
7091 }
7092 }
7093
7094 // Find out if this is a shift of a shift by a constant.
7095 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7096 if (ShiftOp && !ShiftOp->isShift())
7097 ShiftOp = 0;
7098
7099 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7100 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7101 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7102 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7103 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7104 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7105 Value *X = ShiftOp->getOperand(0);
7106
7107 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7108 if (AmtSum > TypeBits)
7109 AmtSum = TypeBits;
7110
7111 const IntegerType *Ty = cast<IntegerType>(I.getType());
7112
7113 // Check for (X << c1) << c2 and (X >> c1) >> c2
7114 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007115 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007116 ConstantInt::get(Ty, AmtSum));
7117 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7118 I.getOpcode() == Instruction::AShr) {
7119 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007120 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007121 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7122 I.getOpcode() == Instruction::LShr) {
7123 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7124 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007125 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007126 InsertNewInstBefore(Shift, I);
7127
7128 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007129 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007130 }
7131
7132 // Okay, if we get here, one shift must be left, and the other shift must be
7133 // right. See if the amounts are equal.
7134 if (ShiftAmt1 == ShiftAmt2) {
7135 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7136 if (I.getOpcode() == Instruction::Shl) {
7137 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007138 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007139 }
7140 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7141 if (I.getOpcode() == Instruction::LShr) {
7142 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007143 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007144 }
7145 // We can simplify ((X << C) >>s C) into a trunc + sext.
7146 // NOTE: we could do this for any C, but that would make 'unusual' integer
7147 // types. For now, just stick to ones well-supported by the code
7148 // generators.
7149 const Type *SExtType = 0;
7150 switch (Ty->getBitWidth() - ShiftAmt1) {
7151 case 1 :
7152 case 8 :
7153 case 16 :
7154 case 32 :
7155 case 64 :
7156 case 128:
7157 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7158 break;
7159 default: break;
7160 }
7161 if (SExtType) {
7162 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7163 InsertNewInstBefore(NewTrunc, I);
7164 return new SExtInst(NewTrunc, Ty);
7165 }
7166 // Otherwise, we can't handle it yet.
7167 } else if (ShiftAmt1 < ShiftAmt2) {
7168 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7169
7170 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7171 if (I.getOpcode() == Instruction::Shl) {
7172 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7173 ShiftOp->getOpcode() == Instruction::AShr);
7174 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007175 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007176 InsertNewInstBefore(Shift, I);
7177
7178 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007179 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007180 }
7181
7182 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7183 if (I.getOpcode() == Instruction::LShr) {
7184 assert(ShiftOp->getOpcode() == Instruction::Shl);
7185 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007186 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007187 InsertNewInstBefore(Shift, I);
7188
7189 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007190 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007191 }
7192
7193 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7194 } else {
7195 assert(ShiftAmt2 < ShiftAmt1);
7196 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7197
7198 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7199 if (I.getOpcode() == Instruction::Shl) {
7200 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7201 ShiftOp->getOpcode() == Instruction::AShr);
7202 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007203 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007204 ConstantInt::get(Ty, ShiftDiff));
7205 InsertNewInstBefore(Shift, I);
7206
7207 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007208 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007209 }
7210
7211 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7212 if (I.getOpcode() == Instruction::LShr) {
7213 assert(ShiftOp->getOpcode() == Instruction::Shl);
7214 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007215 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007216 InsertNewInstBefore(Shift, I);
7217
7218 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007219 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007220 }
7221
7222 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7223 }
7224 }
7225 return 0;
7226}
7227
7228
7229/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7230/// expression. If so, decompose it, returning some value X, such that Val is
7231/// X*Scale+Offset.
7232///
7233static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7234 int &Offset) {
7235 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7236 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7237 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007238 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007239 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007240 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7241 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7242 if (I->getOpcode() == Instruction::Shl) {
7243 // This is a value scaled by '1 << the shift amt'.
7244 Scale = 1U << RHS->getZExtValue();
7245 Offset = 0;
7246 return I->getOperand(0);
7247 } else if (I->getOpcode() == Instruction::Mul) {
7248 // This value is scaled by 'RHS'.
7249 Scale = RHS->getZExtValue();
7250 Offset = 0;
7251 return I->getOperand(0);
7252 } else if (I->getOpcode() == Instruction::Add) {
7253 // We have X+C. Check to see if we really have (X*C2)+C1,
7254 // where C1 is divisible by C2.
7255 unsigned SubScale;
7256 Value *SubVal =
7257 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7258 Offset += RHS->getZExtValue();
7259 Scale = SubScale;
7260 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007261 }
7262 }
7263 }
7264
7265 // Otherwise, we can't look past this.
7266 Scale = 1;
7267 Offset = 0;
7268 return Val;
7269}
7270
7271
7272/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7273/// try to eliminate the cast by moving the type information into the alloc.
7274Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7275 AllocationInst &AI) {
7276 const PointerType *PTy = cast<PointerType>(CI.getType());
7277
7278 // Remove any uses of AI that are dead.
7279 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7280
7281 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7282 Instruction *User = cast<Instruction>(*UI++);
7283 if (isInstructionTriviallyDead(User)) {
7284 while (UI != E && *UI == User)
7285 ++UI; // If this instruction uses AI more than once, don't break UI.
7286
7287 ++NumDeadInst;
7288 DOUT << "IC: DCE: " << *User;
7289 EraseInstFromFunction(*User);
7290 }
7291 }
7292
7293 // Get the type really allocated and the type casted to.
7294 const Type *AllocElTy = AI.getAllocatedType();
7295 const Type *CastElTy = PTy->getElementType();
7296 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7297
7298 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7299 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7300 if (CastElTyAlign < AllocElTyAlign) return 0;
7301
7302 // If the allocation has multiple uses, only promote it if we are strictly
7303 // increasing the alignment of the resultant allocation. If we keep it the
7304 // same, we open the door to infinite loops of various kinds.
7305 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7306
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007307 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7308 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007309 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7310
7311 // See if we can satisfy the modulus by pulling a scale out of the array
7312 // size argument.
7313 unsigned ArraySizeScale;
7314 int ArrayOffset;
7315 Value *NumElements = // See if the array size is a decomposable linear expr.
7316 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7317
7318 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7319 // do the xform.
7320 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7321 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7322
7323 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7324 Value *Amt = 0;
7325 if (Scale == 1) {
7326 Amt = NumElements;
7327 } else {
7328 // If the allocation size is constant, form a constant mul expression
7329 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7330 if (isa<ConstantInt>(NumElements))
7331 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7332 // otherwise multiply the amount and the number of elements
7333 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007334 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007335 Amt = InsertNewInstBefore(Tmp, AI);
7336 }
7337 }
7338
7339 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7340 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007341 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007342 Amt = InsertNewInstBefore(Tmp, AI);
7343 }
7344
7345 AllocationInst *New;
7346 if (isa<MallocInst>(AI))
7347 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7348 else
7349 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7350 InsertNewInstBefore(New, AI);
7351 New->takeName(&AI);
7352
7353 // If the allocation has multiple uses, insert a cast and change all things
7354 // that used it to use the new cast. This will also hack on CI, but it will
7355 // die soon.
7356 if (!AI.hasOneUse()) {
7357 AddUsesToWorkList(AI);
7358 // New is the allocation instruction, pointer typed. AI is the original
7359 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7360 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7361 InsertNewInstBefore(NewCast, AI);
7362 AI.replaceAllUsesWith(NewCast);
7363 }
7364 return ReplaceInstUsesWith(CI, New);
7365}
7366
7367/// CanEvaluateInDifferentType - Return true if we can take the specified value
7368/// and return it as type Ty without inserting any new casts and without
7369/// changing the computed value. This is used by code that tries to decide
7370/// whether promoting or shrinking integer operations to wider or smaller types
7371/// will allow us to eliminate a truncate or extend.
7372///
7373/// This is a truncation operation if Ty is smaller than V->getType(), or an
7374/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007375///
7376/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7377/// should return true if trunc(V) can be computed by computing V in the smaller
7378/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7379/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7380/// efficiently truncated.
7381///
7382/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7383/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7384/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007385bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7386 unsigned CastOpc,
7387 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007388 // We can always evaluate constants in another type.
7389 if (isa<ConstantInt>(V))
7390 return true;
7391
7392 Instruction *I = dyn_cast<Instruction>(V);
7393 if (!I) return false;
7394
7395 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7396
Chris Lattneref70bb82007-08-02 06:11:14 +00007397 // If this is an extension or truncate, we can often eliminate it.
7398 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7399 // If this is a cast from the destination type, we can trivially eliminate
7400 // it, and this will remove a cast overall.
7401 if (I->getOperand(0)->getType() == Ty) {
7402 // If the first operand is itself a cast, and is eliminable, do not count
7403 // this as an eliminable cast. We would prefer to eliminate those two
7404 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007405 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007406 ++NumCastsRemoved;
7407 return true;
7408 }
7409 }
7410
7411 // We can't extend or shrink something that has multiple uses: doing so would
7412 // require duplicating the instruction in general, which isn't profitable.
7413 if (!I->hasOneUse()) return false;
7414
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007415 switch (I->getOpcode()) {
7416 case Instruction::Add:
7417 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007418 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007419 case Instruction::And:
7420 case Instruction::Or:
7421 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007422 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007423 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7424 NumCastsRemoved) &&
7425 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7426 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007427
7428 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007429 // If we are truncating the result of this SHL, and if it's a shift of a
7430 // constant amount, we can always perform a SHL in a smaller type.
7431 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7432 uint32_t BitWidth = Ty->getBitWidth();
7433 if (BitWidth < OrigTy->getBitWidth() &&
7434 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007435 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7436 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007437 }
7438 break;
7439 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007440 // If this is a truncate of a logical shr, we can truncate it to a smaller
7441 // lshr iff we know that the bits we would otherwise be shifting in are
7442 // already zeros.
7443 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7444 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7445 uint32_t BitWidth = Ty->getBitWidth();
7446 if (BitWidth < OrigBitWidth &&
7447 MaskedValueIsZero(I->getOperand(0),
7448 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7449 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007450 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7451 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007452 }
7453 }
7454 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007455 case Instruction::ZExt:
7456 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007457 case Instruction::Trunc:
7458 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007459 // can safely replace it. Note that replacing it does not reduce the number
7460 // of casts in the input.
7461 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007462 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007463 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007464 case Instruction::Select: {
7465 SelectInst *SI = cast<SelectInst>(I);
7466 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7467 NumCastsRemoved) &&
7468 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7469 NumCastsRemoved);
7470 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007471 case Instruction::PHI: {
7472 // We can change a phi if we can change all operands.
7473 PHINode *PN = cast<PHINode>(I);
7474 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7475 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7476 NumCastsRemoved))
7477 return false;
7478 return true;
7479 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007480 default:
7481 // TODO: Can handle more cases here.
7482 break;
7483 }
7484
7485 return false;
7486}
7487
7488/// EvaluateInDifferentType - Given an expression that
7489/// CanEvaluateInDifferentType returns true for, actually insert the code to
7490/// evaluate the expression.
7491Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7492 bool isSigned) {
7493 if (Constant *C = dyn_cast<Constant>(V))
7494 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7495
7496 // Otherwise, it must be an instruction.
7497 Instruction *I = cast<Instruction>(V);
7498 Instruction *Res = 0;
7499 switch (I->getOpcode()) {
7500 case Instruction::Add:
7501 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007502 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007503 case Instruction::And:
7504 case Instruction::Or:
7505 case Instruction::Xor:
7506 case Instruction::AShr:
7507 case Instruction::LShr:
7508 case Instruction::Shl: {
7509 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7510 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007511 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007512 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007513 break;
7514 }
7515 case Instruction::Trunc:
7516 case Instruction::ZExt:
7517 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007518 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007519 // just return the source. There's no need to insert it because it is not
7520 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007521 if (I->getOperand(0)->getType() == Ty)
7522 return I->getOperand(0);
7523
Chris Lattner4200c2062008-06-18 04:00:49 +00007524 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007525 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007526 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007527 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007528 case Instruction::Select: {
7529 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7530 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7531 Res = SelectInst::Create(I->getOperand(0), True, False);
7532 break;
7533 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007534 case Instruction::PHI: {
7535 PHINode *OPN = cast<PHINode>(I);
7536 PHINode *NPN = PHINode::Create(Ty);
7537 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7538 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7539 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7540 }
7541 Res = NPN;
7542 break;
7543 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007544 default:
7545 // TODO: Can handle more cases here.
7546 assert(0 && "Unreachable!");
7547 break;
7548 }
7549
Chris Lattner4200c2062008-06-18 04:00:49 +00007550 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007551 return InsertNewInstBefore(Res, *I);
7552}
7553
7554/// @brief Implement the transforms common to all CastInst visitors.
7555Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7556 Value *Src = CI.getOperand(0);
7557
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007558 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7559 // eliminate it now.
7560 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7561 if (Instruction::CastOps opc =
7562 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7563 // The first cast (CSrc) is eliminable so we need to fix up or replace
7564 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007565 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007566 }
7567 }
7568
7569 // If we are casting a select then fold the cast into the select
7570 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7571 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7572 return NV;
7573
7574 // If we are casting a PHI then fold the cast into the PHI
7575 if (isa<PHINode>(Src))
7576 if (Instruction *NV = FoldOpIntoPhi(CI))
7577 return NV;
7578
7579 return 0;
7580}
7581
7582/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7583Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7584 Value *Src = CI.getOperand(0);
7585
7586 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7587 // If casting the result of a getelementptr instruction with no offset, turn
7588 // this into a cast of the original pointer!
7589 if (GEP->hasAllZeroIndices()) {
7590 // Changing the cast operand is usually not a good idea but it is safe
7591 // here because the pointer operand is being replaced with another
7592 // pointer operand so the opcode doesn't need to change.
7593 AddToWorkList(GEP);
7594 CI.setOperand(0, GEP->getOperand(0));
7595 return &CI;
7596 }
7597
7598 // If the GEP has a single use, and the base pointer is a bitcast, and the
7599 // GEP computes a constant offset, see if we can convert these three
7600 // instructions into fewer. This typically happens with unions and other
7601 // non-type-safe code.
7602 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7603 if (GEP->hasAllConstantIndices()) {
7604 // We are guaranteed to get a constant from EmitGEPOffset.
7605 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7606 int64_t Offset = OffsetV->getSExtValue();
7607
7608 // Get the base pointer input of the bitcast, and the type it points to.
7609 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7610 const Type *GEPIdxTy =
7611 cast<PointerType>(OrigBase->getType())->getElementType();
7612 if (GEPIdxTy->isSized()) {
7613 SmallVector<Value*, 8> NewIndices;
7614
7615 // Start with the index over the outer type. Note that the type size
7616 // might be zero (even if the offset isn't zero) if the indexed type
7617 // is something like [0 x {int, int}]
7618 const Type *IntPtrTy = TD->getIntPtrType();
7619 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007620 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007621 FirstIdx = Offset/TySize;
7622 Offset %= TySize;
7623
7624 // Handle silly modulus not returning values values [0..TySize).
7625 if (Offset < 0) {
7626 --FirstIdx;
7627 Offset += TySize;
7628 assert(Offset >= 0);
7629 }
7630 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7631 }
7632
7633 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7634
7635 // Index into the types. If we fail, set OrigBase to null.
7636 while (Offset) {
7637 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7638 const StructLayout *SL = TD->getStructLayout(STy);
7639 if (Offset < (int64_t)SL->getSizeInBytes()) {
7640 unsigned Elt = SL->getElementContainingOffset(Offset);
7641 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7642
7643 Offset -= SL->getElementOffset(Elt);
7644 GEPIdxTy = STy->getElementType(Elt);
7645 } else {
7646 // Otherwise, we can't index into this, bail out.
7647 Offset = 0;
7648 OrigBase = 0;
7649 }
7650 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7651 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007652 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007653 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7654 Offset %= EltSize;
7655 } else {
7656 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7657 }
7658 GEPIdxTy = STy->getElementType();
7659 } else {
7660 // Otherwise, we can't index into this, bail out.
7661 Offset = 0;
7662 OrigBase = 0;
7663 }
7664 }
7665 if (OrigBase) {
7666 // If we were able to index down into an element, create the GEP
7667 // and bitcast the result. This eliminates one bitcast, potentially
7668 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007669 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7670 NewIndices.begin(),
7671 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007672 InsertNewInstBefore(NGEP, CI);
7673 NGEP->takeName(GEP);
7674
7675 if (isa<BitCastInst>(CI))
7676 return new BitCastInst(NGEP, CI.getType());
7677 assert(isa<PtrToIntInst>(CI));
7678 return new PtrToIntInst(NGEP, CI.getType());
7679 }
7680 }
7681 }
7682 }
7683 }
7684
7685 return commonCastTransforms(CI);
7686}
7687
7688
7689
7690/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7691/// integer types. This function implements the common transforms for all those
7692/// cases.
7693/// @brief Implement the transforms common to CastInst with integer operands
7694Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7695 if (Instruction *Result = commonCastTransforms(CI))
7696 return Result;
7697
7698 Value *Src = CI.getOperand(0);
7699 const Type *SrcTy = Src->getType();
7700 const Type *DestTy = CI.getType();
7701 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7702 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7703
7704 // See if we can simplify any instructions used by the LHS whose sole
7705 // purpose is to compute bits we don't care about.
7706 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7707 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7708 KnownZero, KnownOne))
7709 return &CI;
7710
7711 // If the source isn't an instruction or has more than one use then we
7712 // can't do anything more.
7713 Instruction *SrcI = dyn_cast<Instruction>(Src);
7714 if (!SrcI || !Src->hasOneUse())
7715 return 0;
7716
7717 // Attempt to propagate the cast into the instruction for int->int casts.
7718 int NumCastsRemoved = 0;
7719 if (!isa<BitCastInst>(CI) &&
7720 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007721 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007722 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007723 // eliminates the cast, so it is always a win. If this is a zero-extension,
7724 // we need to do an AND to maintain the clear top-part of the computation,
7725 // so we require that the input have eliminated at least one cast. If this
7726 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007727 // require that two casts have been eliminated.
7728 bool DoXForm;
7729 switch (CI.getOpcode()) {
7730 default:
7731 // All the others use floating point so we shouldn't actually
7732 // get here because of the check above.
7733 assert(0 && "Unknown cast type");
7734 case Instruction::Trunc:
7735 DoXForm = true;
7736 break;
7737 case Instruction::ZExt:
7738 DoXForm = NumCastsRemoved >= 1;
7739 break;
7740 case Instruction::SExt:
7741 DoXForm = NumCastsRemoved >= 2;
7742 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007743 }
7744
7745 if (DoXForm) {
7746 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7747 CI.getOpcode() == Instruction::SExt);
7748 assert(Res->getType() == DestTy);
7749 switch (CI.getOpcode()) {
7750 default: assert(0 && "Unknown cast type!");
7751 case Instruction::Trunc:
7752 case Instruction::BitCast:
7753 // Just replace this cast with the result.
7754 return ReplaceInstUsesWith(CI, Res);
7755 case Instruction::ZExt: {
7756 // We need to emit an AND to clear the high bits.
7757 assert(SrcBitSize < DestBitSize && "Not a zext?");
7758 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7759 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007760 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007761 }
7762 case Instruction::SExt:
7763 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007764 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007765 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7766 CI), DestTy);
7767 }
7768 }
7769 }
7770
7771 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7772 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7773
7774 switch (SrcI->getOpcode()) {
7775 case Instruction::Add:
7776 case Instruction::Mul:
7777 case Instruction::And:
7778 case Instruction::Or:
7779 case Instruction::Xor:
7780 // If we are discarding information, rewrite.
7781 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7782 // Don't insert two casts if they cannot be eliminated. We allow
7783 // two casts to be inserted if the sizes are the same. This could
7784 // only be converting signedness, which is a noop.
7785 if (DestBitSize == SrcBitSize ||
7786 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7787 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7788 Instruction::CastOps opcode = CI.getOpcode();
7789 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7790 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007791 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007792 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7793 }
7794 }
7795
7796 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7797 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7798 SrcI->getOpcode() == Instruction::Xor &&
7799 Op1 == ConstantInt::getTrue() &&
7800 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7801 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007802 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007803 }
7804 break;
7805 case Instruction::SDiv:
7806 case Instruction::UDiv:
7807 case Instruction::SRem:
7808 case Instruction::URem:
7809 // If we are just changing the sign, rewrite.
7810 if (DestBitSize == SrcBitSize) {
7811 // Don't insert two casts if they cannot be eliminated. We allow
7812 // two casts to be inserted if the sizes are the same. This could
7813 // only be converting signedness, which is a noop.
7814 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7815 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7816 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7817 Op0, DestTy, SrcI);
7818 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7819 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007820 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007821 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7822 }
7823 }
7824 break;
7825
7826 case Instruction::Shl:
7827 // Allow changing the sign of the source operand. Do not allow
7828 // changing the size of the shift, UNLESS the shift amount is a
7829 // constant. We must not change variable sized shifts to a smaller
7830 // size, because it is undefined to shift more bits out than exist
7831 // in the value.
7832 if (DestBitSize == SrcBitSize ||
7833 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7834 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7835 Instruction::BitCast : Instruction::Trunc);
7836 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7837 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007838 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007839 }
7840 break;
7841 case Instruction::AShr:
7842 // If this is a signed shr, and if all bits shifted in are about to be
7843 // truncated off, turn it into an unsigned shr to allow greater
7844 // simplifications.
7845 if (DestBitSize < SrcBitSize &&
7846 isa<ConstantInt>(Op1)) {
7847 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7848 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7849 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007850 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007851 }
7852 }
7853 break;
7854 }
7855 return 0;
7856}
7857
7858Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7859 if (Instruction *Result = commonIntCastTransforms(CI))
7860 return Result;
7861
7862 Value *Src = CI.getOperand(0);
7863 const Type *Ty = CI.getType();
7864 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7865 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7866
7867 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7868 switch (SrcI->getOpcode()) {
7869 default: break;
7870 case Instruction::LShr:
7871 // We can shrink lshr to something smaller if we know the bits shifted in
7872 // are already zeros.
7873 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7874 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7875
7876 // Get a mask for the bits shifting in.
7877 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7878 Value* SrcIOp0 = SrcI->getOperand(0);
7879 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7880 if (ShAmt >= DestBitWidth) // All zeros.
7881 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7882
7883 // Okay, we can shrink this. Truncate the input, then return a new
7884 // shift.
7885 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7886 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7887 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007888 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007889 }
7890 } else { // This is a variable shr.
7891
7892 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7893 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7894 // loop-invariant and CSE'd.
7895 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7896 Value *One = ConstantInt::get(SrcI->getType(), 1);
7897
7898 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007899 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007900 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007901 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007902 SrcI->getOperand(0),
7903 "tmp"), CI);
7904 Value *Zero = Constant::getNullValue(V->getType());
7905 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7906 }
7907 }
7908 break;
7909 }
7910 }
7911
7912 return 0;
7913}
7914
Evan Chenge3779cf2008-03-24 00:21:34 +00007915/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7916/// in order to eliminate the icmp.
7917Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7918 bool DoXform) {
7919 // If we are just checking for a icmp eq of a single bit and zext'ing it
7920 // to an integer, then shift the bit to the appropriate place and then
7921 // cast to integer to avoid the comparison.
7922 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7923 const APInt &Op1CV = Op1C->getValue();
7924
7925 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7926 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7927 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7928 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7929 if (!DoXform) return ICI;
7930
7931 Value *In = ICI->getOperand(0);
7932 Value *Sh = ConstantInt::get(In->getType(),
7933 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007934 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007935 In->getName()+".lobit"),
7936 CI);
7937 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007938 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007939 false/*ZExt*/, "tmp", &CI);
7940
7941 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7942 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007943 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007944 In->getName()+".not"),
7945 CI);
7946 }
7947
7948 return ReplaceInstUsesWith(CI, In);
7949 }
7950
7951
7952
7953 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7954 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7955 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7956 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7957 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7958 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7959 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7960 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7961 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7962 // This only works for EQ and NE
7963 ICI->isEquality()) {
7964 // If Op1C some other power of two, convert:
7965 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7966 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7967 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7968 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7969
7970 APInt KnownZeroMask(~KnownZero);
7971 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7972 if (!DoXform) return ICI;
7973
7974 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7975 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7976 // (X&4) == 2 --> false
7977 // (X&4) != 2 --> true
7978 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7979 Res = ConstantExpr::getZExt(Res, CI.getType());
7980 return ReplaceInstUsesWith(CI, Res);
7981 }
7982
7983 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7984 Value *In = ICI->getOperand(0);
7985 if (ShiftAmt) {
7986 // Perform a logical shr by shiftamt.
7987 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007988 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007989 ConstantInt::get(In->getType(), ShiftAmt),
7990 In->getName()+".lobit"), CI);
7991 }
7992
7993 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7994 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007995 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007996 InsertNewInstBefore(cast<Instruction>(In), CI);
7997 }
7998
7999 if (CI.getType() == In->getType())
8000 return ReplaceInstUsesWith(CI, In);
8001 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008002 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008003 }
8004 }
8005 }
8006
8007 return 0;
8008}
8009
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008010Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8011 // If one of the common conversion will work ..
8012 if (Instruction *Result = commonIntCastTransforms(CI))
8013 return Result;
8014
8015 Value *Src = CI.getOperand(0);
8016
8017 // If this is a cast of a cast
8018 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8019 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8020 // types and if the sizes are just right we can convert this into a logical
8021 // 'and' which will be much cheaper than the pair of casts.
8022 if (isa<TruncInst>(CSrc)) {
8023 // Get the sizes of the types involved
8024 Value *A = CSrc->getOperand(0);
8025 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8026 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8027 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8028 // If we're actually extending zero bits and the trunc is a no-op
8029 if (MidSize < DstSize && SrcSize == DstSize) {
8030 // Replace both of the casts with an And of the type mask.
8031 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8032 Constant *AndConst = ConstantInt::get(AndValue);
8033 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008034 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008035 // Unfortunately, if the type changed, we need to cast it back.
8036 if (And->getType() != CI.getType()) {
8037 And->setName(CSrc->getName()+".mask");
8038 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008039 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008040 }
8041 return And;
8042 }
8043 }
8044 }
8045
Evan Chenge3779cf2008-03-24 00:21:34 +00008046 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8047 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008048
Evan Chenge3779cf2008-03-24 00:21:34 +00008049 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8050 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8051 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8052 // of the (zext icmp) will be transformed.
8053 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8054 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8055 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8056 (transformZExtICmp(LHS, CI, false) ||
8057 transformZExtICmp(RHS, CI, false))) {
8058 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8059 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008060 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008061 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008062 }
8063
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008064 return 0;
8065}
8066
8067Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8068 if (Instruction *I = commonIntCastTransforms(CI))
8069 return I;
8070
8071 Value *Src = CI.getOperand(0);
8072
Dan Gohman35b76162008-10-30 20:40:10 +00008073 // Canonicalize sign-extend from i1 to a select.
8074 if (Src->getType() == Type::Int1Ty)
8075 return SelectInst::Create(Src,
8076 ConstantInt::getAllOnesValue(CI.getType()),
8077 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008078
8079 // See if the value being truncated is already sign extended. If so, just
8080 // eliminate the trunc/sext pair.
8081 if (getOpcode(Src) == Instruction::Trunc) {
8082 Value *Op = cast<User>(Src)->getOperand(0);
8083 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8084 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8085 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8086 unsigned NumSignBits = ComputeNumSignBits(Op);
8087
8088 if (OpBits == DestBits) {
8089 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8090 // bits, it is already ready.
8091 if (NumSignBits > DestBits-MidBits)
8092 return ReplaceInstUsesWith(CI, Op);
8093 } else if (OpBits < DestBits) {
8094 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8095 // bits, just sext from i32.
8096 if (NumSignBits > OpBits-MidBits)
8097 return new SExtInst(Op, CI.getType(), "tmp");
8098 } else {
8099 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8100 // bits, just truncate to i32.
8101 if (NumSignBits > OpBits-MidBits)
8102 return new TruncInst(Op, CI.getType(), "tmp");
8103 }
8104 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008105
8106 // If the input is a shl/ashr pair of a same constant, then this is a sign
8107 // extension from a smaller value. If we could trust arbitrary bitwidth
8108 // integers, we could turn this into a truncate to the smaller bit and then
8109 // use a sext for the whole extension. Since we don't, look deeper and check
8110 // for a truncate. If the source and dest are the same type, eliminate the
8111 // trunc and extend and just do shifts. For example, turn:
8112 // %a = trunc i32 %i to i8
8113 // %b = shl i8 %a, 6
8114 // %c = ashr i8 %b, 6
8115 // %d = sext i8 %c to i32
8116 // into:
8117 // %a = shl i32 %i, 30
8118 // %d = ashr i32 %a, 30
8119 Value *A = 0;
8120 ConstantInt *BA = 0, *CA = 0;
8121 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8122 m_ConstantInt(CA))) &&
8123 BA == CA && isa<TruncInst>(A)) {
8124 Value *I = cast<TruncInst>(A)->getOperand(0);
8125 if (I->getType() == CI.getType()) {
8126 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8127 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8128 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8129 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8130 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8131 CI.getName()), CI);
8132 return BinaryOperator::CreateAShr(I, ShAmtV);
8133 }
8134 }
8135
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008136 return 0;
8137}
8138
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008139/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8140/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008141static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008142 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008143 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008144 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8145 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008146 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008147 return 0;
8148}
8149
8150/// LookThroughFPExtensions - If this is an fp extension instruction, look
8151/// through it until we get the source value.
8152static Value *LookThroughFPExtensions(Value *V) {
8153 if (Instruction *I = dyn_cast<Instruction>(V))
8154 if (I->getOpcode() == Instruction::FPExt)
8155 return LookThroughFPExtensions(I->getOperand(0));
8156
8157 // If this value is a constant, return the constant in the smallest FP type
8158 // that can accurately represent it. This allows us to turn
8159 // (float)((double)X+2.0) into x+2.0f.
8160 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8161 if (CFP->getType() == Type::PPC_FP128Ty)
8162 return V; // No constant folding of this.
8163 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008164 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008165 return V;
8166 if (CFP->getType() == Type::DoubleTy)
8167 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008168 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008169 return V;
8170 // Don't try to shrink to various long double types.
8171 }
8172
8173 return V;
8174}
8175
8176Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8177 if (Instruction *I = commonCastTransforms(CI))
8178 return I;
8179
8180 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8181 // smaller than the destination type, we can eliminate the truncate by doing
8182 // the add as the smaller type. This applies to add/sub/mul/div as well as
8183 // many builtins (sqrt, etc).
8184 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8185 if (OpI && OpI->hasOneUse()) {
8186 switch (OpI->getOpcode()) {
8187 default: break;
8188 case Instruction::Add:
8189 case Instruction::Sub:
8190 case Instruction::Mul:
8191 case Instruction::FDiv:
8192 case Instruction::FRem:
8193 const Type *SrcTy = OpI->getType();
8194 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8195 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8196 if (LHSTrunc->getType() != SrcTy &&
8197 RHSTrunc->getType() != SrcTy) {
8198 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8199 // If the source types were both smaller than the destination type of
8200 // the cast, do this xform.
8201 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8202 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8203 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8204 CI.getType(), CI);
8205 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8206 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008207 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008208 }
8209 }
8210 break;
8211 }
8212 }
8213 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008214}
8215
8216Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8217 return commonCastTransforms(CI);
8218}
8219
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008220Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008221 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8222 if (OpI == 0)
8223 return commonCastTransforms(FI);
8224
8225 // fptoui(uitofp(X)) --> X
8226 // fptoui(sitofp(X)) --> X
8227 // This is safe if the intermediate type has enough bits in its mantissa to
8228 // accurately represent all values of X. For example, do not do this with
8229 // i64->float->i64. This is also safe for sitofp case, because any negative
8230 // 'X' value would cause an undefined result for the fptoui.
8231 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8232 OpI->getOperand(0)->getType() == FI.getType() &&
8233 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8234 OpI->getType()->getFPMantissaWidth())
8235 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008236
8237 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008238}
8239
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008240Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008241 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8242 if (OpI == 0)
8243 return commonCastTransforms(FI);
8244
8245 // fptosi(sitofp(X)) --> X
8246 // fptosi(uitofp(X)) --> X
8247 // This is safe if the intermediate type has enough bits in its mantissa to
8248 // accurately represent all values of X. For example, do not do this with
8249 // i64->float->i64. This is also safe for sitofp case, because any negative
8250 // 'X' value would cause an undefined result for the fptoui.
8251 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8252 OpI->getOperand(0)->getType() == FI.getType() &&
8253 (int)FI.getType()->getPrimitiveSizeInBits() <=
8254 OpI->getType()->getFPMantissaWidth())
8255 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008256
8257 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008258}
8259
8260Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8261 return commonCastTransforms(CI);
8262}
8263
8264Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8265 return commonCastTransforms(CI);
8266}
8267
8268Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8269 return commonPointerCastTransforms(CI);
8270}
8271
Chris Lattner7c1626482008-01-08 07:23:51 +00008272Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8273 if (Instruction *I = commonCastTransforms(CI))
8274 return I;
8275
8276 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8277 if (!DestPointee->isSized()) return 0;
8278
8279 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8280 ConstantInt *Cst;
8281 Value *X;
8282 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8283 m_ConstantInt(Cst)))) {
8284 // If the source and destination operands have the same type, see if this
8285 // is a single-index GEP.
8286 if (X->getType() == CI.getType()) {
8287 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008288 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008289
8290 // Convert the constant to intptr type.
8291 APInt Offset = Cst->getValue();
8292 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8293
8294 // If Offset is evenly divisible by Size, we can do this xform.
8295 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8296 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008297 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008298 }
8299 }
8300 // TODO: Could handle other cases, e.g. where add is indexing into field of
8301 // struct etc.
8302 } else if (CI.getOperand(0)->hasOneUse() &&
8303 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8304 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8305 // "inttoptr+GEP" instead of "add+intptr".
8306
8307 // Get the size of the pointee type.
8308 uint64_t Size = TD->getABITypeSize(DestPointee);
8309
8310 // Convert the constant to intptr type.
8311 APInt Offset = Cst->getValue();
8312 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8313
8314 // If Offset is evenly divisible by Size, we can do this xform.
8315 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8316 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8317
8318 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8319 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008320 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008321 }
8322 }
8323 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008324}
8325
8326Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8327 // If the operands are integer typed then apply the integer transforms,
8328 // otherwise just apply the common ones.
8329 Value *Src = CI.getOperand(0);
8330 const Type *SrcTy = Src->getType();
8331 const Type *DestTy = CI.getType();
8332
8333 if (SrcTy->isInteger() && DestTy->isInteger()) {
8334 if (Instruction *Result = commonIntCastTransforms(CI))
8335 return Result;
8336 } else if (isa<PointerType>(SrcTy)) {
8337 if (Instruction *I = commonPointerCastTransforms(CI))
8338 return I;
8339 } else {
8340 if (Instruction *Result = commonCastTransforms(CI))
8341 return Result;
8342 }
8343
8344
8345 // Get rid of casts from one type to the same type. These are useless and can
8346 // be replaced by the operand.
8347 if (DestTy == Src->getType())
8348 return ReplaceInstUsesWith(CI, Src);
8349
8350 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8351 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8352 const Type *DstElTy = DstPTy->getElementType();
8353 const Type *SrcElTy = SrcPTy->getElementType();
8354
Nate Begemandf5b3612008-03-31 00:22:16 +00008355 // If the address spaces don't match, don't eliminate the bitcast, which is
8356 // required for changing types.
8357 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8358 return 0;
8359
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008360 // If we are casting a malloc or alloca to a pointer to a type of the same
8361 // size, rewrite the allocation instruction to allocate the "right" type.
8362 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8363 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8364 return V;
8365
8366 // If the source and destination are pointers, and this cast is equivalent
8367 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8368 // This can enhance SROA and other transforms that want type-safe pointers.
8369 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8370 unsigned NumZeros = 0;
8371 while (SrcElTy != DstElTy &&
8372 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8373 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8374 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8375 ++NumZeros;
8376 }
8377
8378 // If we found a path from the src to dest, create the getelementptr now.
8379 if (SrcElTy == DstElTy) {
8380 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008381 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8382 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008383 }
8384 }
8385
8386 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8387 if (SVI->hasOneUse()) {
8388 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8389 // a bitconvert to a vector with the same # elts.
8390 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008391 cast<VectorType>(DestTy)->getNumElements() ==
8392 SVI->getType()->getNumElements() &&
8393 SVI->getType()->getNumElements() ==
8394 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008395 CastInst *Tmp;
8396 // If either of the operands is a cast from CI.getType(), then
8397 // evaluating the shuffle in the casted destination's type will allow
8398 // us to eliminate at least one cast.
8399 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8400 Tmp->getOperand(0)->getType() == DestTy) ||
8401 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8402 Tmp->getOperand(0)->getType() == DestTy)) {
8403 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8404 SVI->getOperand(0), DestTy, &CI);
8405 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8406 SVI->getOperand(1), DestTy, &CI);
8407 // Return a new shuffle vector. Use the same element ID's, as we
8408 // know the vector types match #elts.
8409 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8410 }
8411 }
8412 }
8413 }
8414 return 0;
8415}
8416
8417/// GetSelectFoldableOperands - We want to turn code that looks like this:
8418/// %C = or %A, %B
8419/// %D = select %cond, %C, %A
8420/// into:
8421/// %C = select %cond, %B, 0
8422/// %D = or %A, %C
8423///
8424/// Assuming that the specified instruction is an operand to the select, return
8425/// a bitmask indicating which operands of this instruction are foldable if they
8426/// equal the other incoming value of the select.
8427///
8428static unsigned GetSelectFoldableOperands(Instruction *I) {
8429 switch (I->getOpcode()) {
8430 case Instruction::Add:
8431 case Instruction::Mul:
8432 case Instruction::And:
8433 case Instruction::Or:
8434 case Instruction::Xor:
8435 return 3; // Can fold through either operand.
8436 case Instruction::Sub: // Can only fold on the amount subtracted.
8437 case Instruction::Shl: // Can only fold on the shift amount.
8438 case Instruction::LShr:
8439 case Instruction::AShr:
8440 return 1;
8441 default:
8442 return 0; // Cannot fold
8443 }
8444}
8445
8446/// GetSelectFoldableConstant - For the same transformation as the previous
8447/// function, return the identity constant that goes into the select.
8448static Constant *GetSelectFoldableConstant(Instruction *I) {
8449 switch (I->getOpcode()) {
8450 default: assert(0 && "This cannot happen!"); abort();
8451 case Instruction::Add:
8452 case Instruction::Sub:
8453 case Instruction::Or:
8454 case Instruction::Xor:
8455 case Instruction::Shl:
8456 case Instruction::LShr:
8457 case Instruction::AShr:
8458 return Constant::getNullValue(I->getType());
8459 case Instruction::And:
8460 return Constant::getAllOnesValue(I->getType());
8461 case Instruction::Mul:
8462 return ConstantInt::get(I->getType(), 1);
8463 }
8464}
8465
8466/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8467/// have the same opcode and only one use each. Try to simplify this.
8468Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8469 Instruction *FI) {
8470 if (TI->getNumOperands() == 1) {
8471 // If this is a non-volatile load or a cast from the same type,
8472 // merge.
8473 if (TI->isCast()) {
8474 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8475 return 0;
8476 } else {
8477 return 0; // unknown unary op.
8478 }
8479
8480 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008481 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8482 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008483 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008484 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008485 TI->getType());
8486 }
8487
8488 // Only handle binary operators here.
8489 if (!isa<BinaryOperator>(TI))
8490 return 0;
8491
8492 // Figure out if the operations have any operands in common.
8493 Value *MatchOp, *OtherOpT, *OtherOpF;
8494 bool MatchIsOpZero;
8495 if (TI->getOperand(0) == FI->getOperand(0)) {
8496 MatchOp = TI->getOperand(0);
8497 OtherOpT = TI->getOperand(1);
8498 OtherOpF = FI->getOperand(1);
8499 MatchIsOpZero = true;
8500 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8501 MatchOp = TI->getOperand(1);
8502 OtherOpT = TI->getOperand(0);
8503 OtherOpF = FI->getOperand(0);
8504 MatchIsOpZero = false;
8505 } else if (!TI->isCommutative()) {
8506 return 0;
8507 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8508 MatchOp = TI->getOperand(0);
8509 OtherOpT = TI->getOperand(1);
8510 OtherOpF = FI->getOperand(0);
8511 MatchIsOpZero = true;
8512 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8513 MatchOp = TI->getOperand(1);
8514 OtherOpT = TI->getOperand(0);
8515 OtherOpF = FI->getOperand(1);
8516 MatchIsOpZero = true;
8517 } else {
8518 return 0;
8519 }
8520
8521 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008522 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8523 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008524 InsertNewInstBefore(NewSI, SI);
8525
8526 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8527 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008528 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008529 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008530 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008531 }
8532 assert(0 && "Shouldn't get here");
8533 return 0;
8534}
8535
Dan Gohman58c09632008-09-16 18:46:06 +00008536/// visitSelectInstWithICmp - Visit a SelectInst that has an
8537/// ICmpInst as its first operand.
8538///
8539Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8540 ICmpInst *ICI) {
8541 bool Changed = false;
8542 ICmpInst::Predicate Pred = ICI->getPredicate();
8543 Value *CmpLHS = ICI->getOperand(0);
8544 Value *CmpRHS = ICI->getOperand(1);
8545 Value *TrueVal = SI.getTrueValue();
8546 Value *FalseVal = SI.getFalseValue();
8547
8548 // Check cases where the comparison is with a constant that
8549 // can be adjusted to fit the min/max idiom. We may edit ICI in
8550 // place here, so make sure the select is the only user.
8551 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008552 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008553 switch (Pred) {
8554 default: break;
8555 case ICmpInst::ICMP_ULT:
8556 case ICmpInst::ICMP_SLT: {
8557 // X < MIN ? T : F --> F
8558 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8559 return ReplaceInstUsesWith(SI, FalseVal);
8560 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8561 Constant *AdjustedRHS = SubOne(CI);
8562 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8563 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8564 Pred = ICmpInst::getSwappedPredicate(Pred);
8565 CmpRHS = AdjustedRHS;
8566 std::swap(FalseVal, TrueVal);
8567 ICI->setPredicate(Pred);
8568 ICI->setOperand(1, CmpRHS);
8569 SI.setOperand(1, TrueVal);
8570 SI.setOperand(2, FalseVal);
8571 Changed = true;
8572 }
8573 break;
8574 }
8575 case ICmpInst::ICMP_UGT:
8576 case ICmpInst::ICMP_SGT: {
8577 // X > MAX ? T : F --> F
8578 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8579 return ReplaceInstUsesWith(SI, FalseVal);
8580 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8581 Constant *AdjustedRHS = AddOne(CI);
8582 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8583 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8584 Pred = ICmpInst::getSwappedPredicate(Pred);
8585 CmpRHS = AdjustedRHS;
8586 std::swap(FalseVal, TrueVal);
8587 ICI->setPredicate(Pred);
8588 ICI->setOperand(1, CmpRHS);
8589 SI.setOperand(1, TrueVal);
8590 SI.setOperand(2, FalseVal);
8591 Changed = true;
8592 }
8593 break;
8594 }
8595 }
8596
Dan Gohman35b76162008-10-30 20:40:10 +00008597 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8598 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattner3b874082008-11-16 05:38:51 +00008599 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8600 if (match(TrueVal, m_ConstantInt(-1)) &&
8601 match(FalseVal, m_ConstantInt(0)))
8602 Pred = ICI->getPredicate();
8603 else if (match(TrueVal, m_ConstantInt(0)) &&
8604 match(FalseVal, m_ConstantInt(-1)))
8605 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8606
Dan Gohman35b76162008-10-30 20:40:10 +00008607 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8608 // If we are just checking for a icmp eq of a single bit and zext'ing it
8609 // to an integer, then shift the bit to the appropriate place and then
8610 // cast to integer to avoid the comparison.
8611 const APInt &Op1CV = CI->getValue();
8612
8613 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8614 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8615 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattner3b874082008-11-16 05:38:51 +00008616 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman35b76162008-10-30 20:40:10 +00008617 Value *In = ICI->getOperand(0);
8618 Value *Sh = ConstantInt::get(In->getType(),
8619 In->getType()->getPrimitiveSizeInBits()-1);
8620 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8621 In->getName()+".lobit"),
8622 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008623 if (In->getType() != SI.getType())
8624 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008625 true/*SExt*/, "tmp", ICI);
8626
8627 if (Pred == ICmpInst::ICMP_SGT)
8628 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8629 In->getName()+".not"), *ICI);
8630
8631 return ReplaceInstUsesWith(SI, In);
8632 }
8633 }
8634 }
8635
Dan Gohman58c09632008-09-16 18:46:06 +00008636 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8637 // Transform (X == Y) ? X : Y -> Y
8638 if (Pred == ICmpInst::ICMP_EQ)
8639 return ReplaceInstUsesWith(SI, FalseVal);
8640 // Transform (X != Y) ? X : Y -> X
8641 if (Pred == ICmpInst::ICMP_NE)
8642 return ReplaceInstUsesWith(SI, TrueVal);
8643 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8644
8645 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8646 // Transform (X == Y) ? Y : X -> X
8647 if (Pred == ICmpInst::ICMP_EQ)
8648 return ReplaceInstUsesWith(SI, FalseVal);
8649 // Transform (X != Y) ? Y : X -> Y
8650 if (Pred == ICmpInst::ICMP_NE)
8651 return ReplaceInstUsesWith(SI, TrueVal);
8652 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8653 }
8654
8655 /// NOTE: if we wanted to, this is where to detect integer ABS
8656
8657 return Changed ? &SI : 0;
8658}
8659
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008660Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8661 Value *CondVal = SI.getCondition();
8662 Value *TrueVal = SI.getTrueValue();
8663 Value *FalseVal = SI.getFalseValue();
8664
8665 // select true, X, Y -> X
8666 // select false, X, Y -> Y
8667 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8668 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8669
8670 // select C, X, X -> X
8671 if (TrueVal == FalseVal)
8672 return ReplaceInstUsesWith(SI, TrueVal);
8673
8674 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8675 return ReplaceInstUsesWith(SI, FalseVal);
8676 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8677 return ReplaceInstUsesWith(SI, TrueVal);
8678 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8679 if (isa<Constant>(TrueVal))
8680 return ReplaceInstUsesWith(SI, TrueVal);
8681 else
8682 return ReplaceInstUsesWith(SI, FalseVal);
8683 }
8684
8685 if (SI.getType() == Type::Int1Ty) {
8686 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8687 if (C->getZExtValue()) {
8688 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008689 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008690 } else {
8691 // Change: A = select B, false, C --> A = and !B, C
8692 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008693 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008694 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008695 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008696 }
8697 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8698 if (C->getZExtValue() == false) {
8699 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008700 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008701 } else {
8702 // Change: A = select B, C, true --> A = or !B, C
8703 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008704 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008705 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008706 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008707 }
8708 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008709
8710 // select a, b, a -> a&b
8711 // select a, a, b -> a|b
8712 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008713 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008714 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008715 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008716 }
8717
8718 // Selecting between two integer constants?
8719 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8720 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8721 // select C, 1, 0 -> zext C to int
8722 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008723 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008724 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8725 // select C, 0, 1 -> zext !C to int
8726 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008727 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008728 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008729 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008730 }
8731
8732 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8733
8734 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8735
8736 // (x <s 0) ? -1 : 0 -> ashr x, 31
8737 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8738 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8739 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8740 // The comparison constant and the result are not neccessarily the
8741 // same width. Make an all-ones value by inserting a AShr.
8742 Value *X = IC->getOperand(0);
8743 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8744 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008745 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008746 ShAmt, "ones");
8747 InsertNewInstBefore(SRA, SI);
8748
8749 // Finally, convert to the type of the select RHS. We figure out
8750 // if this requires a SExt, Trunc or BitCast based on the sizes.
8751 Instruction::CastOps opc = Instruction::BitCast;
8752 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8753 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8754 if (SRASize < SISize)
8755 opc = Instruction::SExt;
8756 else if (SRASize > SISize)
8757 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008758 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008759 }
8760 }
8761
8762
8763 // If one of the constants is zero (we know they can't both be) and we
8764 // have an icmp instruction with zero, and we have an 'and' with the
8765 // non-constant value, eliminate this whole mess. This corresponds to
8766 // cases like this: ((X & 27) ? 27 : 0)
8767 if (TrueValC->isZero() || FalseValC->isZero())
8768 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8769 cast<Constant>(IC->getOperand(1))->isNullValue())
8770 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8771 if (ICA->getOpcode() == Instruction::And &&
8772 isa<ConstantInt>(ICA->getOperand(1)) &&
8773 (ICA->getOperand(1) == TrueValC ||
8774 ICA->getOperand(1) == FalseValC) &&
8775 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8776 // Okay, now we know that everything is set up, we just don't
8777 // know whether we have a icmp_ne or icmp_eq and whether the
8778 // true or false val is the zero.
8779 bool ShouldNotVal = !TrueValC->isZero();
8780 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8781 Value *V = ICA;
8782 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008783 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008784 Instruction::Xor, V, ICA->getOperand(1)), SI);
8785 return ReplaceInstUsesWith(SI, V);
8786 }
8787 }
8788 }
8789
8790 // See if we are selecting two values based on a comparison of the two values.
8791 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8792 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8793 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008794 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8795 // This is not safe in general for floating point:
8796 // consider X== -0, Y== +0.
8797 // It becomes safe if either operand is a nonzero constant.
8798 ConstantFP *CFPt, *CFPf;
8799 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8800 !CFPt->getValueAPF().isZero()) ||
8801 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8802 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008803 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008804 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008805 // Transform (X != Y) ? X : Y -> X
8806 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8807 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008808 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008809
8810 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8811 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008812 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8813 // This is not safe in general for floating point:
8814 // consider X== -0, Y== +0.
8815 // It becomes safe if either operand is a nonzero constant.
8816 ConstantFP *CFPt, *CFPf;
8817 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8818 !CFPt->getValueAPF().isZero()) ||
8819 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8820 !CFPf->getValueAPF().isZero()))
8821 return ReplaceInstUsesWith(SI, FalseVal);
8822 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008823 // Transform (X != Y) ? Y : X -> Y
8824 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8825 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008826 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008827 }
Dan Gohman58c09632008-09-16 18:46:06 +00008828 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008829 }
8830
8831 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008832 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8833 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8834 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008835
8836 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8837 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8838 if (TI->hasOneUse() && FI->hasOneUse()) {
8839 Instruction *AddOp = 0, *SubOp = 0;
8840
8841 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8842 if (TI->getOpcode() == FI->getOpcode())
8843 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8844 return IV;
8845
8846 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8847 // even legal for FP.
8848 if (TI->getOpcode() == Instruction::Sub &&
8849 FI->getOpcode() == Instruction::Add) {
8850 AddOp = FI; SubOp = TI;
8851 } else if (FI->getOpcode() == Instruction::Sub &&
8852 TI->getOpcode() == Instruction::Add) {
8853 AddOp = TI; SubOp = FI;
8854 }
8855
8856 if (AddOp) {
8857 Value *OtherAddOp = 0;
8858 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8859 OtherAddOp = AddOp->getOperand(1);
8860 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8861 OtherAddOp = AddOp->getOperand(0);
8862 }
8863
8864 if (OtherAddOp) {
8865 // So at this point we know we have (Y -> OtherAddOp):
8866 // select C, (add X, Y), (sub X, Z)
8867 Value *NegVal; // Compute -Z
8868 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8869 NegVal = ConstantExpr::getNeg(C);
8870 } else {
8871 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008872 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008873 }
8874
8875 Value *NewTrueOp = OtherAddOp;
8876 Value *NewFalseOp = NegVal;
8877 if (AddOp != TI)
8878 std::swap(NewTrueOp, NewFalseOp);
8879 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008880 SelectInst::Create(CondVal, NewTrueOp,
8881 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008882
8883 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008884 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008885 }
8886 }
8887 }
8888
8889 // See if we can fold the select into one of our operands.
8890 if (SI.getType()->isInteger()) {
8891 // See the comment above GetSelectFoldableOperands for a description of the
8892 // transformation we are doing here.
8893 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8894 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8895 !isa<Constant>(FalseVal))
8896 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8897 unsigned OpToFold = 0;
8898 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8899 OpToFold = 1;
8900 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8901 OpToFold = 2;
8902 }
8903
8904 if (OpToFold) {
8905 Constant *C = GetSelectFoldableConstant(TVI);
8906 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008907 SelectInst::Create(SI.getCondition(),
8908 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008909 InsertNewInstBefore(NewSel, SI);
8910 NewSel->takeName(TVI);
8911 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008912 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008913 else {
8914 assert(0 && "Unknown instruction!!");
8915 }
8916 }
8917 }
8918
8919 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8920 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8921 !isa<Constant>(TrueVal))
8922 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8923 unsigned OpToFold = 0;
8924 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8925 OpToFold = 1;
8926 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8927 OpToFold = 2;
8928 }
8929
8930 if (OpToFold) {
8931 Constant *C = GetSelectFoldableConstant(FVI);
8932 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008933 SelectInst::Create(SI.getCondition(), C,
8934 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008935 InsertNewInstBefore(NewSel, SI);
8936 NewSel->takeName(FVI);
8937 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008938 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008939 else
8940 assert(0 && "Unknown instruction!!");
8941 }
8942 }
8943 }
8944
8945 if (BinaryOperator::isNot(CondVal)) {
8946 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8947 SI.setOperand(1, FalseVal);
8948 SI.setOperand(2, TrueVal);
8949 return &SI;
8950 }
8951
8952 return 0;
8953}
8954
Dan Gohman2d648bb2008-04-10 18:43:06 +00008955/// EnforceKnownAlignment - If the specified pointer points to an object that
8956/// we control, modify the object's alignment to PrefAlign. This isn't
8957/// often possible though. If alignment is important, a more reliable approach
8958/// is to simply align all global variables and allocation instructions to
8959/// their preferred alignment from the beginning.
8960///
8961static unsigned EnforceKnownAlignment(Value *V,
8962 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008963
Dan Gohman2d648bb2008-04-10 18:43:06 +00008964 User *U = dyn_cast<User>(V);
8965 if (!U) return Align;
8966
8967 switch (getOpcode(U)) {
8968 default: break;
8969 case Instruction::BitCast:
8970 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8971 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008972 // If all indexes are zero, it is just the alignment of the base pointer.
8973 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008974 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008975 if (!isa<Constant>(*i) ||
8976 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008977 AllZeroOperands = false;
8978 break;
8979 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008980
8981 if (AllZeroOperands) {
8982 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008983 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008984 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008985 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008986 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008987 }
8988
8989 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8990 // If there is a large requested alignment and we can, bump up the alignment
8991 // of the global.
8992 if (!GV->isDeclaration()) {
8993 GV->setAlignment(PrefAlign);
8994 Align = PrefAlign;
8995 }
8996 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8997 // If there is a requested alignment and if this is an alloca, round up. We
8998 // don't do this for malloc, because some systems can't respect the request.
8999 if (isa<AllocaInst>(AI)) {
9000 AI->setAlignment(PrefAlign);
9001 Align = PrefAlign;
9002 }
9003 }
9004
9005 return Align;
9006}
9007
9008/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9009/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9010/// and it is more than the alignment of the ultimate object, see if we can
9011/// increase the alignment of the ultimate object, making this check succeed.
9012unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9013 unsigned PrefAlign) {
9014 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9015 sizeof(PrefAlign) * CHAR_BIT;
9016 APInt Mask = APInt::getAllOnesValue(BitWidth);
9017 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9018 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9019 unsigned TrailZ = KnownZero.countTrailingOnes();
9020 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9021
9022 if (PrefAlign > Align)
9023 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9024
9025 // We don't need to make any adjustment.
9026 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009027}
9028
Chris Lattner00ae5132008-01-13 23:50:23 +00009029Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009030 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9031 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009032 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9033 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9034
9035 if (CopyAlign < MinAlign) {
9036 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9037 return MI;
9038 }
9039
9040 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9041 // load/store.
9042 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9043 if (MemOpLength == 0) return 0;
9044
Chris Lattnerc669fb62008-01-14 00:28:35 +00009045 // Source and destination pointer types are always "i8*" for intrinsic. See
9046 // if the size is something we can handle with a single primitive load/store.
9047 // A single load+store correctly handles overlapping memory in the memmove
9048 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009049 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009050 if (Size == 0) return MI; // Delete this mem transfer.
9051
9052 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009053 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009054
Chris Lattnerc669fb62008-01-14 00:28:35 +00009055 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009056 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009057
9058 // Memcpy forces the use of i8* for the source and destination. That means
9059 // that if you're using memcpy to move one double around, you'll get a cast
9060 // from double* to i8*. We'd much rather use a double load+store rather than
9061 // an i64 load+store, here because this improves the odds that the source or
9062 // dest address will be promotable. See if we can find a better type than the
9063 // integer datatype.
9064 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9065 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9066 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9067 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9068 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009069 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009070 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9071 if (STy->getNumElements() == 1)
9072 SrcETy = STy->getElementType(0);
9073 else
9074 break;
9075 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9076 if (ATy->getNumElements() == 1)
9077 SrcETy = ATy->getElementType();
9078 else
9079 break;
9080 } else
9081 break;
9082 }
9083
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009084 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009085 NewPtrTy = PointerType::getUnqual(SrcETy);
9086 }
9087 }
9088
9089
Chris Lattner00ae5132008-01-13 23:50:23 +00009090 // If the memcpy/memmove provides better alignment info than we can
9091 // infer, use it.
9092 SrcAlign = std::max(SrcAlign, CopyAlign);
9093 DstAlign = std::max(DstAlign, CopyAlign);
9094
9095 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9096 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009097 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9098 InsertNewInstBefore(L, *MI);
9099 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9100
9101 // Set the size of the copy to 0, it will be deleted on the next iteration.
9102 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9103 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009104}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009105
Chris Lattner5af8a912008-04-30 06:39:11 +00009106Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9107 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9108 if (MI->getAlignment()->getZExtValue() < Alignment) {
9109 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9110 return MI;
9111 }
9112
9113 // Extract the length and alignment and fill if they are constant.
9114 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9115 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9116 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9117 return 0;
9118 uint64_t Len = LenC->getZExtValue();
9119 Alignment = MI->getAlignment()->getZExtValue();
9120
9121 // If the length is zero, this is a no-op
9122 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9123
9124 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9125 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9126 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9127
9128 Value *Dest = MI->getDest();
9129 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9130
9131 // Alignment 0 is identity for alignment 1 for memset, but not store.
9132 if (Alignment == 0) Alignment = 1;
9133
9134 // Extract the fill value and store.
9135 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9136 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9137 Alignment), *MI);
9138
9139 // Set the size of the copy to 0, it will be deleted on the next iteration.
9140 MI->setLength(Constant::getNullValue(LenC->getType()));
9141 return MI;
9142 }
9143
9144 return 0;
9145}
9146
9147
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009148/// visitCallInst - CallInst simplification. This mostly only handles folding
9149/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9150/// the heavy lifting.
9151///
9152Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9153 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9154 if (!II) return visitCallSite(&CI);
9155
9156 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9157 // visitCallSite.
9158 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9159 bool Changed = false;
9160
9161 // memmove/cpy/set of zero bytes is a noop.
9162 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9163 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9164
9165 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9166 if (CI->getZExtValue() == 1) {
9167 // Replace the instruction with just byte operations. We would
9168 // transform other cases to loads/stores, but we don't know if
9169 // alignment is sufficient.
9170 }
9171 }
9172
9173 // If we have a memmove and the source operation is a constant global,
9174 // then the source and dest pointers can't alias, so we can change this
9175 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009176 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009177 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9178 if (GVSrc->isConstant()) {
9179 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009180 Intrinsic::ID MemCpyID;
9181 if (CI.getOperand(3)->getType() == Type::Int32Ty)
9182 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009183 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009184 MemCpyID = Intrinsic::memcpy_i64;
9185 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009186 Changed = true;
9187 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009188
9189 // memmove(x,x,size) -> noop.
9190 if (MMI->getSource() == MMI->getDest())
9191 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009192 }
9193
9194 // If we can determine a pointer alignment that is bigger than currently
9195 // set, update the alignment.
9196 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009197 if (Instruction *I = SimplifyMemTransfer(MI))
9198 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009199 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9200 if (Instruction *I = SimplifyMemSet(MSI))
9201 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009202 }
9203
9204 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009205 }
9206
9207 switch (II->getIntrinsicID()) {
9208 default: break;
9209 case Intrinsic::bswap:
9210 // bswap(bswap(x)) -> x
9211 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9212 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9213 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9214 break;
9215 case Intrinsic::ppc_altivec_lvx:
9216 case Intrinsic::ppc_altivec_lvxl:
9217 case Intrinsic::x86_sse_loadu_ps:
9218 case Intrinsic::x86_sse2_loadu_pd:
9219 case Intrinsic::x86_sse2_loadu_dq:
9220 // Turn PPC lvx -> load if the pointer is known aligned.
9221 // Turn X86 loadups -> load if the pointer is known aligned.
9222 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9223 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9224 PointerType::getUnqual(II->getType()),
9225 CI);
9226 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009227 }
Chris Lattner989ba312008-06-18 04:33:20 +00009228 break;
9229 case Intrinsic::ppc_altivec_stvx:
9230 case Intrinsic::ppc_altivec_stvxl:
9231 // Turn stvx -> store if the pointer is known aligned.
9232 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9233 const Type *OpPtrTy =
9234 PointerType::getUnqual(II->getOperand(1)->getType());
9235 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9236 return new StoreInst(II->getOperand(1), Ptr);
9237 }
9238 break;
9239 case Intrinsic::x86_sse_storeu_ps:
9240 case Intrinsic::x86_sse2_storeu_pd:
9241 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009242 // Turn X86 storeu -> store if the pointer is known aligned.
9243 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9244 const Type *OpPtrTy =
9245 PointerType::getUnqual(II->getOperand(2)->getType());
9246 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9247 return new StoreInst(II->getOperand(2), Ptr);
9248 }
9249 break;
9250
9251 case Intrinsic::x86_sse_cvttss2si: {
9252 // These intrinsics only demands the 0th element of its input vector. If
9253 // we can simplify the input based on that, do so now.
9254 uint64_t UndefElts;
9255 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9256 UndefElts)) {
9257 II->setOperand(1, V);
9258 return II;
9259 }
9260 break;
9261 }
9262
9263 case Intrinsic::ppc_altivec_vperm:
9264 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9265 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9266 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009267
Chris Lattner989ba312008-06-18 04:33:20 +00009268 // Check that all of the elements are integer constants or undefs.
9269 bool AllEltsOk = true;
9270 for (unsigned i = 0; i != 16; ++i) {
9271 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9272 !isa<UndefValue>(Mask->getOperand(i))) {
9273 AllEltsOk = false;
9274 break;
9275 }
9276 }
9277
9278 if (AllEltsOk) {
9279 // Cast the input vectors to byte vectors.
9280 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9281 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9282 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009283
Chris Lattner989ba312008-06-18 04:33:20 +00009284 // Only extract each element once.
9285 Value *ExtractedElts[32];
9286 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9287
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009288 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009289 if (isa<UndefValue>(Mask->getOperand(i)))
9290 continue;
9291 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9292 Idx &= 31; // Match the hardware behavior.
9293
9294 if (ExtractedElts[Idx] == 0) {
9295 Instruction *Elt =
9296 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9297 InsertNewInstBefore(Elt, CI);
9298 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009299 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009300
Chris Lattner989ba312008-06-18 04:33:20 +00009301 // Insert this value into the result vector.
9302 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9303 i, "tmp");
9304 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009305 }
Chris Lattner989ba312008-06-18 04:33:20 +00009306 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009307 }
Chris Lattner989ba312008-06-18 04:33:20 +00009308 }
9309 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009310
Chris Lattner989ba312008-06-18 04:33:20 +00009311 case Intrinsic::stackrestore: {
9312 // If the save is right next to the restore, remove the restore. This can
9313 // happen when variable allocas are DCE'd.
9314 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9315 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9316 BasicBlock::iterator BI = SS;
9317 if (&*++BI == II)
9318 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009319 }
Chris Lattner989ba312008-06-18 04:33:20 +00009320 }
9321
9322 // Scan down this block to see if there is another stack restore in the
9323 // same block without an intervening call/alloca.
9324 BasicBlock::iterator BI = II;
9325 TerminatorInst *TI = II->getParent()->getTerminator();
9326 bool CannotRemove = false;
9327 for (++BI; &*BI != TI; ++BI) {
9328 if (isa<AllocaInst>(BI)) {
9329 CannotRemove = true;
9330 break;
9331 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009332 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9333 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9334 // If there is a stackrestore below this one, remove this one.
9335 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9336 return EraseInstFromFunction(CI);
9337 // Otherwise, ignore the intrinsic.
9338 } else {
9339 // If we found a non-intrinsic call, we can't remove the stack
9340 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009341 CannotRemove = true;
9342 break;
9343 }
Chris Lattner989ba312008-06-18 04:33:20 +00009344 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009345 }
Chris Lattner989ba312008-06-18 04:33:20 +00009346
9347 // If the stack restore is in a return/unwind block and if there are no
9348 // allocas or calls between the restore and the return, nuke the restore.
9349 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9350 return EraseInstFromFunction(CI);
9351 break;
9352 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009353 }
9354
9355 return visitCallSite(II);
9356}
9357
9358// InvokeInst simplification
9359//
9360Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9361 return visitCallSite(&II);
9362}
9363
Dale Johannesen96021832008-04-25 21:16:07 +00009364/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9365/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009366static bool isSafeToEliminateVarargsCast(const CallSite CS,
9367 const CastInst * const CI,
9368 const TargetData * const TD,
9369 const int ix) {
9370 if (!CI->isLosslessCast())
9371 return false;
9372
9373 // The size of ByVal arguments is derived from the type, so we
9374 // can't change to a type with a different size. If the size were
9375 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009376 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009377 return true;
9378
9379 const Type* SrcTy =
9380 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9381 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9382 if (!SrcTy->isSized() || !DstTy->isSized())
9383 return false;
9384 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9385 return false;
9386 return true;
9387}
9388
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009389// visitCallSite - Improvements for call and invoke instructions.
9390//
9391Instruction *InstCombiner::visitCallSite(CallSite CS) {
9392 bool Changed = false;
9393
9394 // If the callee is a constexpr cast of a function, attempt to move the cast
9395 // to the arguments of the call/invoke.
9396 if (transformConstExprCastCall(CS)) return 0;
9397
9398 Value *Callee = CS.getCalledValue();
9399
9400 if (Function *CalleeF = dyn_cast<Function>(Callee))
9401 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9402 Instruction *OldCall = CS.getInstruction();
9403 // If the call and callee calling conventions don't match, this call must
9404 // be unreachable, as the call is undefined.
9405 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009406 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9407 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009408 if (!OldCall->use_empty())
9409 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9410 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9411 return EraseInstFromFunction(*OldCall);
9412 return 0;
9413 }
9414
9415 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9416 // This instruction is not reachable, just remove it. We insert a store to
9417 // undef so that we know that this code is not reachable, despite the fact
9418 // that we can't modify the CFG here.
9419 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009420 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009421 CS.getInstruction());
9422
9423 if (!CS.getInstruction()->use_empty())
9424 CS.getInstruction()->
9425 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9426
9427 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9428 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009429 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9430 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009431 }
9432 return EraseInstFromFunction(*CS.getInstruction());
9433 }
9434
Duncan Sands74833f22007-09-17 10:26:40 +00009435 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9436 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9437 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9438 return transformCallThroughTrampoline(CS);
9439
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009440 const PointerType *PTy = cast<PointerType>(Callee->getType());
9441 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9442 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009443 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009444 // See if we can optimize any arguments passed through the varargs area of
9445 // the call.
9446 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009447 E = CS.arg_end(); I != E; ++I, ++ix) {
9448 CastInst *CI = dyn_cast<CastInst>(*I);
9449 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9450 *I = CI->getOperand(0);
9451 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009452 }
Dale Johannesen35615462008-04-23 18:34:37 +00009453 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009454 }
9455
Duncan Sands2937e352007-12-19 21:13:37 +00009456 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009457 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009458 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009459 Changed = true;
9460 }
9461
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009462 return Changed ? CS.getInstruction() : 0;
9463}
9464
9465// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9466// attempt to move the cast to the arguments of the call/invoke.
9467//
9468bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9469 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9470 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9471 if (CE->getOpcode() != Instruction::BitCast ||
9472 !isa<Function>(CE->getOperand(0)))
9473 return false;
9474 Function *Callee = cast<Function>(CE->getOperand(0));
9475 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009476 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009477
9478 // Okay, this is a cast from a function to a different type. Unless doing so
9479 // would cause a type conversion of one of our arguments, change this call to
9480 // be a direct call with arguments casted to the appropriate types.
9481 //
9482 const FunctionType *FT = Callee->getFunctionType();
9483 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009484 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009485
Duncan Sands7901ce12008-06-01 07:38:42 +00009486 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009487 return false; // TODO: Handle multiple return values.
9488
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009489 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009490 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009491 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009492 // Conversion is ok if changing from one pointer type to another or from
9493 // a pointer to an integer of the same size.
9494 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009495 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009496 return false; // Cannot transform this return value.
9497
Duncan Sands5c489582008-01-06 10:12:28 +00009498 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009499 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009500 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009501 return false; // Cannot transform this return value.
9502
Chris Lattner1c8733e2008-03-12 17:45:29 +00009503 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009504 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009505 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009506 return false; // Attribute not compatible with transformed value.
9507 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009508
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009509 // If the callsite is an invoke instruction, and the return value is used by
9510 // a PHI node in a successor, we cannot change the return type of the call
9511 // because there is no place to put the cast instruction (without breaking
9512 // the critical edge). Bail out in this case.
9513 if (!Caller->use_empty())
9514 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9515 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9516 UI != E; ++UI)
9517 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9518 if (PN->getParent() == II->getNormalDest() ||
9519 PN->getParent() == II->getUnwindDest())
9520 return false;
9521 }
9522
9523 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9524 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9525
9526 CallSite::arg_iterator AI = CS.arg_begin();
9527 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9528 const Type *ParamTy = FT->getParamType(i);
9529 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009530
9531 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009532 return false; // Cannot transform this parameter value.
9533
Devang Patelf2a4a922008-09-26 22:53:05 +00009534 if (CallerPAL.getParamAttributes(i + 1)
9535 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009536 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009537
Duncan Sands7901ce12008-06-01 07:38:42 +00009538 // Converting from one pointer type to another or between a pointer and an
9539 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009540 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009541 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9542 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009543 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009544 }
9545
9546 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9547 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009548 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009549
Chris Lattner1c8733e2008-03-12 17:45:29 +00009550 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9551 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009552 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009553 // won't be dropping them. Check that these extra arguments have attributes
9554 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009555 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9556 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009557 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009558 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009559 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009560 return false;
9561 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009562
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009563 // Okay, we decided that this is a safe thing to do: go ahead and start
9564 // inserting cast instructions as necessary...
9565 std::vector<Value*> Args;
9566 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009567 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009568 attrVec.reserve(NumCommonArgs);
9569
9570 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009571 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009572
9573 // If the return value is not being used, the type may not be compatible
9574 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009575 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009576
9577 // Add the new return attributes.
9578 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009579 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009580
9581 AI = CS.arg_begin();
9582 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9583 const Type *ParamTy = FT->getParamType(i);
9584 if ((*AI)->getType() == ParamTy) {
9585 Args.push_back(*AI);
9586 } else {
9587 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9588 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009589 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009590 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9591 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009592
9593 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009594 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009595 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009596 }
9597
9598 // If the function takes more arguments than the call was taking, add them
9599 // now...
9600 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9601 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9602
9603 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009604 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009605 if (!FT->isVarArg()) {
9606 cerr << "WARNING: While resolving call to function '"
9607 << Callee->getName() << "' arguments were dropped!\n";
9608 } else {
9609 // Add all of the arguments in their promoted form to the arg list...
9610 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9611 const Type *PTy = getPromotedType((*AI)->getType());
9612 if (PTy != (*AI)->getType()) {
9613 // Must promote to pass through va_arg area!
9614 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9615 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009616 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009617 InsertNewInstBefore(Cast, *Caller);
9618 Args.push_back(Cast);
9619 } else {
9620 Args.push_back(*AI);
9621 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009622
Duncan Sands4ced1f82008-01-13 08:02:44 +00009623 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009624 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009625 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009626 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009627 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009628 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009629
Devang Patelf2a4a922008-09-26 22:53:05 +00009630 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9631 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9632
Duncan Sands7901ce12008-06-01 07:38:42 +00009633 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009634 Caller->setName(""); // Void type should not have a name.
9635
Devang Pateld222f862008-09-25 21:00:45 +00009636 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009637
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009638 Instruction *NC;
9639 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009640 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009641 Args.begin(), Args.end(),
9642 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009643 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009644 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009645 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009646 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9647 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009648 CallInst *CI = cast<CallInst>(Caller);
9649 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009650 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009651 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009652 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009653 }
9654
9655 // Insert a cast of the return type as necessary.
9656 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009657 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009658 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009659 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009660 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009661 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009662
9663 // If this is an invoke instruction, we should insert it after the first
9664 // non-phi, instruction in the normal successor block.
9665 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009666 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009667 InsertNewInstBefore(NC, *I);
9668 } else {
9669 // Otherwise, it's a call, just insert cast right after the call instr
9670 InsertNewInstBefore(NC, *Caller);
9671 }
9672 AddUsersToWorkList(*Caller);
9673 } else {
9674 NV = UndefValue::get(Caller->getType());
9675 }
9676 }
9677
9678 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9679 Caller->replaceAllUsesWith(NV);
9680 Caller->eraseFromParent();
9681 RemoveFromWorkList(Caller);
9682 return true;
9683}
9684
Duncan Sands74833f22007-09-17 10:26:40 +00009685// transformCallThroughTrampoline - Turn a call to a function created by the
9686// init_trampoline intrinsic into a direct call to the underlying function.
9687//
9688Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9689 Value *Callee = CS.getCalledValue();
9690 const PointerType *PTy = cast<PointerType>(Callee->getType());
9691 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009692 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009693
9694 // If the call already has the 'nest' attribute somewhere then give up -
9695 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009696 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009697 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009698
9699 IntrinsicInst *Tramp =
9700 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9701
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009702 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009703 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9704 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9705
Devang Pateld222f862008-09-25 21:00:45 +00009706 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009707 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009708 unsigned NestIdx = 1;
9709 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009710 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009711
9712 // Look for a parameter marked with the 'nest' attribute.
9713 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9714 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009715 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009716 // Record the parameter type and any other attributes.
9717 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009718 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009719 break;
9720 }
9721
9722 if (NestTy) {
9723 Instruction *Caller = CS.getInstruction();
9724 std::vector<Value*> NewArgs;
9725 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9726
Devang Pateld222f862008-09-25 21:00:45 +00009727 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009728 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009729
Duncan Sands74833f22007-09-17 10:26:40 +00009730 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009731 // mean appending it. Likewise for attributes.
9732
Devang Patelf2a4a922008-09-26 22:53:05 +00009733 // Add any result attributes.
9734 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009735 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009736
Duncan Sands74833f22007-09-17 10:26:40 +00009737 {
9738 unsigned Idx = 1;
9739 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9740 do {
9741 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009742 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009743 Value *NestVal = Tramp->getOperand(3);
9744 if (NestVal->getType() != NestTy)
9745 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9746 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009747 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009748 }
9749
9750 if (I == E)
9751 break;
9752
Duncan Sands48b81112008-01-14 19:52:09 +00009753 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009754 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009755 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009756 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009757 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009758
9759 ++Idx, ++I;
9760 } while (1);
9761 }
9762
Devang Patelf2a4a922008-09-26 22:53:05 +00009763 // Add any function attributes.
9764 if (Attributes Attr = Attrs.getFnAttributes())
9765 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9766
Duncan Sands74833f22007-09-17 10:26:40 +00009767 // The trampoline may have been bitcast to a bogus type (FTy).
9768 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009769 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009770
Duncan Sands74833f22007-09-17 10:26:40 +00009771 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009772 NewTypes.reserve(FTy->getNumParams()+1);
9773
Duncan Sands74833f22007-09-17 10:26:40 +00009774 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009775 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009776 {
9777 unsigned Idx = 1;
9778 FunctionType::param_iterator I = FTy->param_begin(),
9779 E = FTy->param_end();
9780
9781 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009782 if (Idx == NestIdx)
9783 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009784 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009785
9786 if (I == E)
9787 break;
9788
Duncan Sands48b81112008-01-14 19:52:09 +00009789 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009790 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009791
9792 ++Idx, ++I;
9793 } while (1);
9794 }
9795
9796 // Replace the trampoline call with a direct call. Let the generic
9797 // code sort out any function type mismatches.
9798 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009799 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009800 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9801 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009802 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009803
9804 Instruction *NewCaller;
9805 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009806 NewCaller = InvokeInst::Create(NewCallee,
9807 II->getNormalDest(), II->getUnwindDest(),
9808 NewArgs.begin(), NewArgs.end(),
9809 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009810 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009811 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009812 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009813 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9814 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009815 if (cast<CallInst>(Caller)->isTailCall())
9816 cast<CallInst>(NewCaller)->setTailCall();
9817 cast<CallInst>(NewCaller)->
9818 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009819 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009820 }
9821 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9822 Caller->replaceAllUsesWith(NewCaller);
9823 Caller->eraseFromParent();
9824 RemoveFromWorkList(Caller);
9825 return 0;
9826 }
9827 }
9828
9829 // Replace the trampoline call with a direct call. Since there is no 'nest'
9830 // parameter, there is no need to adjust the argument list. Let the generic
9831 // code sort out any function type mismatches.
9832 Constant *NewCallee =
9833 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9834 CS.setCalledFunction(NewCallee);
9835 return CS.getInstruction();
9836}
9837
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009838/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9839/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9840/// and a single binop.
9841Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9842 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9843 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9844 isa<CmpInst>(FirstInst));
9845 unsigned Opc = FirstInst->getOpcode();
9846 Value *LHSVal = FirstInst->getOperand(0);
9847 Value *RHSVal = FirstInst->getOperand(1);
9848
9849 const Type *LHSType = LHSVal->getType();
9850 const Type *RHSType = RHSVal->getType();
9851
9852 // Scan to see if all operands are the same opcode, all have one use, and all
9853 // kill their operands (i.e. the operands have one use).
9854 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9855 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9856 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9857 // Verify type of the LHS matches so we don't fold cmp's of different
9858 // types or GEP's with different index types.
9859 I->getOperand(0)->getType() != LHSType ||
9860 I->getOperand(1)->getType() != RHSType)
9861 return 0;
9862
9863 // If they are CmpInst instructions, check their predicates
9864 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9865 if (cast<CmpInst>(I)->getPredicate() !=
9866 cast<CmpInst>(FirstInst)->getPredicate())
9867 return 0;
9868
9869 // Keep track of which operand needs a phi node.
9870 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9871 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9872 }
9873
9874 // Otherwise, this is safe to transform, determine if it is profitable.
9875
9876 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9877 // Indexes are often folded into load/store instructions, so we don't want to
9878 // hide them behind a phi.
9879 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9880 return 0;
9881
9882 Value *InLHS = FirstInst->getOperand(0);
9883 Value *InRHS = FirstInst->getOperand(1);
9884 PHINode *NewLHS = 0, *NewRHS = 0;
9885 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009886 NewLHS = PHINode::Create(LHSType,
9887 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009888 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9889 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9890 InsertNewInstBefore(NewLHS, PN);
9891 LHSVal = NewLHS;
9892 }
9893
9894 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009895 NewRHS = PHINode::Create(RHSType,
9896 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009897 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9898 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9899 InsertNewInstBefore(NewRHS, PN);
9900 RHSVal = NewRHS;
9901 }
9902
9903 // Add all operands to the new PHIs.
9904 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9905 if (NewLHS) {
9906 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9907 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9908 }
9909 if (NewRHS) {
9910 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9911 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9912 }
9913 }
9914
9915 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009916 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009917 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009918 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009919 RHSVal);
9920 else {
9921 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009922 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009923 }
9924}
9925
9926/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9927/// of the block that defines it. This means that it must be obvious the value
9928/// of the load is not changed from the point of the load to the end of the
9929/// block it is in.
9930///
9931/// Finally, it is safe, but not profitable, to sink a load targetting a
9932/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9933/// to a register.
9934static bool isSafeToSinkLoad(LoadInst *L) {
9935 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9936
9937 for (++BBI; BBI != E; ++BBI)
9938 if (BBI->mayWriteToMemory())
9939 return false;
9940
9941 // Check for non-address taken alloca. If not address-taken already, it isn't
9942 // profitable to do this xform.
9943 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9944 bool isAddressTaken = false;
9945 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9946 UI != E; ++UI) {
9947 if (isa<LoadInst>(UI)) continue;
9948 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9949 // If storing TO the alloca, then the address isn't taken.
9950 if (SI->getOperand(1) == AI) continue;
9951 }
9952 isAddressTaken = true;
9953 break;
9954 }
9955
9956 if (!isAddressTaken)
9957 return false;
9958 }
9959
9960 return true;
9961}
9962
9963
9964// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9965// operator and they all are only used by the PHI, PHI together their
9966// inputs, and do the operation once, to the result of the PHI.
9967Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9968 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9969
9970 // Scan the instruction, looking for input operations that can be folded away.
9971 // If all input operands to the phi are the same instruction (e.g. a cast from
9972 // the same type or "+42") we can pull the operation through the PHI, reducing
9973 // code size and simplifying code.
9974 Constant *ConstantOp = 0;
9975 const Type *CastSrcTy = 0;
9976 bool isVolatile = false;
9977 if (isa<CastInst>(FirstInst)) {
9978 CastSrcTy = FirstInst->getOperand(0)->getType();
9979 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9980 // Can fold binop, compare or shift here if the RHS is a constant,
9981 // otherwise call FoldPHIArgBinOpIntoPHI.
9982 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9983 if (ConstantOp == 0)
9984 return FoldPHIArgBinOpIntoPHI(PN);
9985 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9986 isVolatile = LI->isVolatile();
9987 // We can't sink the load if the loaded value could be modified between the
9988 // load and the PHI.
9989 if (LI->getParent() != PN.getIncomingBlock(0) ||
9990 !isSafeToSinkLoad(LI))
9991 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009992
9993 // If the PHI is of volatile loads and the load block has multiple
9994 // successors, sinking it would remove a load of the volatile value from
9995 // the path through the other successor.
9996 if (isVolatile &&
9997 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9998 return 0;
9999
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010000 } else if (isa<GetElementPtrInst>(FirstInst)) {
10001 if (FirstInst->getNumOperands() == 2)
10002 return FoldPHIArgBinOpIntoPHI(PN);
10003 // Can't handle general GEPs yet.
10004 return 0;
10005 } else {
10006 return 0; // Cannot fold this operation.
10007 }
10008
10009 // Check to see if all arguments are the same operation.
10010 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10011 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10012 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10013 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10014 return 0;
10015 if (CastSrcTy) {
10016 if (I->getOperand(0)->getType() != CastSrcTy)
10017 return 0; // Cast operation must match.
10018 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10019 // We can't sink the load if the loaded value could be modified between
10020 // the load and the PHI.
10021 if (LI->isVolatile() != isVolatile ||
10022 LI->getParent() != PN.getIncomingBlock(i) ||
10023 !isSafeToSinkLoad(LI))
10024 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010025
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010026 // If the PHI is of volatile loads and the load block has multiple
10027 // successors, sinking it would remove a load of the volatile value from
10028 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010029 if (isVolatile &&
10030 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10031 return 0;
10032
10033
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010034 } else if (I->getOperand(1) != ConstantOp) {
10035 return 0;
10036 }
10037 }
10038
10039 // Okay, they are all the same operation. Create a new PHI node of the
10040 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010041 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10042 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010043 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10044
10045 Value *InVal = FirstInst->getOperand(0);
10046 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10047
10048 // Add all operands to the new PHI.
10049 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10050 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10051 if (NewInVal != InVal)
10052 InVal = 0;
10053 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10054 }
10055
10056 Value *PhiVal;
10057 if (InVal) {
10058 // The new PHI unions all of the same values together. This is really
10059 // common, so we handle it intelligently here for compile-time speed.
10060 PhiVal = InVal;
10061 delete NewPN;
10062 } else {
10063 InsertNewInstBefore(NewPN, PN);
10064 PhiVal = NewPN;
10065 }
10066
10067 // Insert and return the new operation.
10068 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010069 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010070 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010071 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010072 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010073 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010074 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010075 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10076
10077 // If this was a volatile load that we are merging, make sure to loop through
10078 // and mark all the input loads as non-volatile. If we don't do this, we will
10079 // insert a new volatile load and the old ones will not be deletable.
10080 if (isVolatile)
10081 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10082 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10083
10084 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010085}
10086
10087/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10088/// that is dead.
10089static bool DeadPHICycle(PHINode *PN,
10090 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10091 if (PN->use_empty()) return true;
10092 if (!PN->hasOneUse()) return false;
10093
10094 // Remember this node, and if we find the cycle, return.
10095 if (!PotentiallyDeadPHIs.insert(PN))
10096 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010097
10098 // Don't scan crazily complex things.
10099 if (PotentiallyDeadPHIs.size() == 16)
10100 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010101
10102 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10103 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10104
10105 return false;
10106}
10107
Chris Lattner27b695d2007-11-06 21:52:06 +000010108/// PHIsEqualValue - Return true if this phi node is always equal to
10109/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10110/// z = some value; x = phi (y, z); y = phi (x, z)
10111static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10112 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10113 // See if we already saw this PHI node.
10114 if (!ValueEqualPHIs.insert(PN))
10115 return true;
10116
10117 // Don't scan crazily complex things.
10118 if (ValueEqualPHIs.size() == 16)
10119 return false;
10120
10121 // Scan the operands to see if they are either phi nodes or are equal to
10122 // the value.
10123 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10124 Value *Op = PN->getIncomingValue(i);
10125 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10126 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10127 return false;
10128 } else if (Op != NonPhiInVal)
10129 return false;
10130 }
10131
10132 return true;
10133}
10134
10135
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010136// PHINode simplification
10137//
10138Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10139 // If LCSSA is around, don't mess with Phi nodes
10140 if (MustPreserveLCSSA) return 0;
10141
10142 if (Value *V = PN.hasConstantValue())
10143 return ReplaceInstUsesWith(PN, V);
10144
10145 // If all PHI operands are the same operation, pull them through the PHI,
10146 // reducing code size.
10147 if (isa<Instruction>(PN.getIncomingValue(0)) &&
10148 PN.getIncomingValue(0)->hasOneUse())
10149 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10150 return Result;
10151
10152 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10153 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10154 // PHI)... break the cycle.
10155 if (PN.hasOneUse()) {
10156 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10157 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10158 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10159 PotentiallyDeadPHIs.insert(&PN);
10160 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10161 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10162 }
10163
10164 // If this phi has a single use, and if that use just computes a value for
10165 // the next iteration of a loop, delete the phi. This occurs with unused
10166 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10167 // common case here is good because the only other things that catch this
10168 // are induction variable analysis (sometimes) and ADCE, which is only run
10169 // late.
10170 if (PHIUser->hasOneUse() &&
10171 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10172 PHIUser->use_back() == &PN) {
10173 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10174 }
10175 }
10176
Chris Lattner27b695d2007-11-06 21:52:06 +000010177 // We sometimes end up with phi cycles that non-obviously end up being the
10178 // same value, for example:
10179 // z = some value; x = phi (y, z); y = phi (x, z)
10180 // where the phi nodes don't necessarily need to be in the same block. Do a
10181 // quick check to see if the PHI node only contains a single non-phi value, if
10182 // so, scan to see if the phi cycle is actually equal to that value.
10183 {
10184 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10185 // Scan for the first non-phi operand.
10186 while (InValNo != NumOperandVals &&
10187 isa<PHINode>(PN.getIncomingValue(InValNo)))
10188 ++InValNo;
10189
10190 if (InValNo != NumOperandVals) {
10191 Value *NonPhiInVal = PN.getOperand(InValNo);
10192
10193 // Scan the rest of the operands to see if there are any conflicts, if so
10194 // there is no need to recursively scan other phis.
10195 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10196 Value *OpVal = PN.getIncomingValue(InValNo);
10197 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10198 break;
10199 }
10200
10201 // If we scanned over all operands, then we have one unique value plus
10202 // phi values. Scan PHI nodes to see if they all merge in each other or
10203 // the value.
10204 if (InValNo == NumOperandVals) {
10205 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10206 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10207 return ReplaceInstUsesWith(PN, NonPhiInVal);
10208 }
10209 }
10210 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010211 return 0;
10212}
10213
10214static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10215 Instruction *InsertPoint,
10216 InstCombiner *IC) {
10217 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10218 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10219 // We must cast correctly to the pointer type. Ensure that we
10220 // sign extend the integer value if it is smaller as this is
10221 // used for address computation.
10222 Instruction::CastOps opcode =
10223 (VTySize < PtrSize ? Instruction::SExt :
10224 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10225 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10226}
10227
10228
10229Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10230 Value *PtrOp = GEP.getOperand(0);
10231 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10232 // If so, eliminate the noop.
10233 if (GEP.getNumOperands() == 1)
10234 return ReplaceInstUsesWith(GEP, PtrOp);
10235
10236 if (isa<UndefValue>(GEP.getOperand(0)))
10237 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10238
10239 bool HasZeroPointerIndex = false;
10240 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10241 HasZeroPointerIndex = C->isNullValue();
10242
10243 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10244 return ReplaceInstUsesWith(GEP, PtrOp);
10245
10246 // Eliminate unneeded casts for indices.
10247 bool MadeChange = false;
10248
10249 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010250 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10251 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010252 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010253 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010254 if (CI->getOpcode() == Instruction::ZExt ||
10255 CI->getOpcode() == Instruction::SExt) {
10256 const Type *SrcTy = CI->getOperand(0)->getType();
10257 // We can eliminate a cast from i32 to i64 iff the target
10258 // is a 32-bit pointer target.
10259 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10260 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010261 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010262 }
10263 }
10264 }
10265 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010266 // to what we need. If narrower, sign-extend it to what we need.
10267 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010268 // insert it. This explicit cast can make subsequent optimizations more
10269 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010270 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010271 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010272 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010273 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010274 MadeChange = true;
10275 } else {
10276 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10277 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010278 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010279 MadeChange = true;
10280 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010281 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10282 if (Constant *C = dyn_cast<Constant>(Op)) {
10283 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10284 MadeChange = true;
10285 } else {
10286 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10287 GEP);
10288 *i = Op;
10289 MadeChange = true;
10290 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010291 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010292 }
10293 }
10294 if (MadeChange) return &GEP;
10295
10296 // If this GEP instruction doesn't move the pointer, and if the input operand
10297 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10298 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010299 if (GEP.hasAllZeroIndices()) {
10300 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10301 // If the bitcast is of an allocation, and the allocation will be
10302 // converted to match the type of the cast, don't touch this.
10303 if (isa<AllocationInst>(BCI->getOperand(0))) {
10304 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010305 if (Instruction *I = visitBitCast(*BCI)) {
10306 if (I != BCI) {
10307 I->takeName(BCI);
10308 BCI->getParent()->getInstList().insert(BCI, I);
10309 ReplaceInstUsesWith(*BCI, I);
10310 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010311 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010312 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010313 }
10314 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10315 }
10316 }
10317
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010318 // Combine Indices - If the source pointer to this getelementptr instruction
10319 // is a getelementptr instruction, combine the indices of the two
10320 // getelementptr instructions into a single instruction.
10321 //
10322 SmallVector<Value*, 8> SrcGEPOperands;
10323 if (User *Src = dyn_castGetElementPtr(PtrOp))
10324 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10325
10326 if (!SrcGEPOperands.empty()) {
10327 // Note that if our source is a gep chain itself that we wait for that
10328 // chain to be resolved before we perform this transformation. This
10329 // avoids us creating a TON of code in some cases.
10330 //
10331 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10332 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10333 return 0; // Wait until our source is folded to completion.
10334
10335 SmallVector<Value*, 8> Indices;
10336
10337 // Find out whether the last index in the source GEP is a sequential idx.
10338 bool EndsWithSequential = false;
10339 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10340 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10341 EndsWithSequential = !isa<StructType>(*I);
10342
10343 // Can we combine the two pointer arithmetics offsets?
10344 if (EndsWithSequential) {
10345 // Replace: gep (gep %P, long B), long A, ...
10346 // With: T = long A+B; gep %P, T, ...
10347 //
10348 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10349 if (SO1 == Constant::getNullValue(SO1->getType())) {
10350 Sum = GO1;
10351 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10352 Sum = SO1;
10353 } else {
10354 // If they aren't the same type, convert both to an integer of the
10355 // target's pointer size.
10356 if (SO1->getType() != GO1->getType()) {
10357 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10358 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10359 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10360 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10361 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010362 unsigned PS = TD->getPointerSizeInBits();
10363 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010364 // Convert GO1 to SO1's type.
10365 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10366
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010367 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010368 // Convert SO1 to GO1's type.
10369 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10370 } else {
10371 const Type *PT = TD->getIntPtrType();
10372 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10373 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10374 }
10375 }
10376 }
10377 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10378 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10379 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010380 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010381 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10382 }
10383 }
10384
10385 // Recycle the GEP we already have if possible.
10386 if (SrcGEPOperands.size() == 2) {
10387 GEP.setOperand(0, SrcGEPOperands[0]);
10388 GEP.setOperand(1, Sum);
10389 return &GEP;
10390 } else {
10391 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10392 SrcGEPOperands.end()-1);
10393 Indices.push_back(Sum);
10394 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10395 }
10396 } else if (isa<Constant>(*GEP.idx_begin()) &&
10397 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10398 SrcGEPOperands.size() != 1) {
10399 // Otherwise we can do the fold if the first index of the GEP is a zero
10400 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10401 SrcGEPOperands.end());
10402 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10403 }
10404
10405 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010406 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10407 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010408
10409 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10410 // GEP of global variable. If all of the indices for this GEP are
10411 // constants, we can promote this to a constexpr instead of an instruction.
10412
10413 // Scan for nonconstants...
10414 SmallVector<Constant*, 8> Indices;
10415 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10416 for (; I != E && isa<Constant>(*I); ++I)
10417 Indices.push_back(cast<Constant>(*I));
10418
10419 if (I == E) { // If they are all constants...
10420 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10421 &Indices[0],Indices.size());
10422
10423 // Replace all uses of the GEP with the new constexpr...
10424 return ReplaceInstUsesWith(GEP, CE);
10425 }
10426 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10427 if (!isa<PointerType>(X->getType())) {
10428 // Not interesting. Source pointer must be a cast from pointer.
10429 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010430 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10431 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010432 //
10433 // This occurs when the program declares an array extern like "int X[];"
10434 //
10435 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10436 const PointerType *XTy = cast<PointerType>(X->getType());
10437 if (const ArrayType *XATy =
10438 dyn_cast<ArrayType>(XTy->getElementType()))
10439 if (const ArrayType *CATy =
10440 dyn_cast<ArrayType>(CPTy->getElementType()))
10441 if (CATy->getElementType() == XATy->getElementType()) {
10442 // At this point, we know that the cast source type is a pointer
10443 // to an array of the same type as the destination pointer
10444 // array. Because the array type is never stepped over (there
10445 // is a leading zero) we can fold the cast into this GEP.
10446 GEP.setOperand(0, X);
10447 return &GEP;
10448 }
10449 } else if (GEP.getNumOperands() == 2) {
10450 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010451 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10452 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010453 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10454 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10455 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010456 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10457 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010458 Value *Idx[2];
10459 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10460 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010461 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010462 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010463 // V and GEP are both pointer types --> BitCast
10464 return new BitCastInst(V, GEP.getType());
10465 }
10466
10467 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010468 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010469 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010470 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010471
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010472 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010473 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010474 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010475
10476 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10477 // allow either a mul, shift, or constant here.
10478 Value *NewIdx = 0;
10479 ConstantInt *Scale = 0;
10480 if (ArrayEltSize == 1) {
10481 NewIdx = GEP.getOperand(1);
10482 Scale = ConstantInt::get(NewIdx->getType(), 1);
10483 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10484 NewIdx = ConstantInt::get(CI->getType(), 1);
10485 Scale = CI;
10486 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10487 if (Inst->getOpcode() == Instruction::Shl &&
10488 isa<ConstantInt>(Inst->getOperand(1))) {
10489 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10490 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10491 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10492 NewIdx = Inst->getOperand(0);
10493 } else if (Inst->getOpcode() == Instruction::Mul &&
10494 isa<ConstantInt>(Inst->getOperand(1))) {
10495 Scale = cast<ConstantInt>(Inst->getOperand(1));
10496 NewIdx = Inst->getOperand(0);
10497 }
10498 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010499
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010500 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010501 // out, perform the transformation. Note, we don't know whether Scale is
10502 // signed or not. We'll use unsigned version of division/modulo
10503 // operation after making sure Scale doesn't have the sign bit set.
10504 if (Scale && Scale->getSExtValue() >= 0LL &&
10505 Scale->getZExtValue() % ArrayEltSize == 0) {
10506 Scale = ConstantInt::get(Scale->getType(),
10507 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010508 if (Scale->getZExtValue() != 1) {
10509 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010510 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010511 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010512 NewIdx = InsertNewInstBefore(Sc, GEP);
10513 }
10514
10515 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010516 Value *Idx[2];
10517 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10518 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010519 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010520 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010521 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10522 // The NewGEP must be pointer typed, so must the old one -> BitCast
10523 return new BitCastInst(NewGEP, GEP.getType());
10524 }
10525 }
10526 }
10527 }
10528
10529 return 0;
10530}
10531
10532Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10533 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010534 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010535 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10536 const Type *NewTy =
10537 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10538 AllocationInst *New = 0;
10539
10540 // Create and insert the replacement instruction...
10541 if (isa<MallocInst>(AI))
10542 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10543 else {
10544 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10545 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10546 }
10547
10548 InsertNewInstBefore(New, AI);
10549
10550 // Scan to the end of the allocation instructions, to skip over a block of
10551 // allocas if possible...
10552 //
10553 BasicBlock::iterator It = New;
10554 while (isa<AllocationInst>(*It)) ++It;
10555
10556 // Now that I is pointing to the first non-allocation-inst in the block,
10557 // insert our getelementptr instruction...
10558 //
10559 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010560 Value *Idx[2];
10561 Idx[0] = NullIdx;
10562 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010563 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10564 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010565
10566 // Now make everything use the getelementptr instead of the original
10567 // allocation.
10568 return ReplaceInstUsesWith(AI, V);
10569 } else if (isa<UndefValue>(AI.getArraySize())) {
10570 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10571 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010572 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010573
10574 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10575 // Note that we only do this for alloca's, because malloc should allocate and
10576 // return a unique pointer, even for a zero byte allocation.
10577 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010578 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010579 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10580
10581 return 0;
10582}
10583
10584Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10585 Value *Op = FI.getOperand(0);
10586
10587 // free undef -> unreachable.
10588 if (isa<UndefValue>(Op)) {
10589 // Insert a new store to null because we cannot modify the CFG here.
10590 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010591 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010592 return EraseInstFromFunction(FI);
10593 }
10594
10595 // If we have 'free null' delete the instruction. This can happen in stl code
10596 // when lots of inlining happens.
10597 if (isa<ConstantPointerNull>(Op))
10598 return EraseInstFromFunction(FI);
10599
10600 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10601 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10602 FI.setOperand(0, CI->getOperand(0));
10603 return &FI;
10604 }
10605
10606 // Change free (gep X, 0,0,0,0) into free(X)
10607 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10608 if (GEPI->hasAllZeroIndices()) {
10609 AddToWorkList(GEPI);
10610 FI.setOperand(0, GEPI->getOperand(0));
10611 return &FI;
10612 }
10613 }
10614
10615 // Change free(malloc) into nothing, if the malloc has a single use.
10616 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10617 if (MI->hasOneUse()) {
10618 EraseInstFromFunction(FI);
10619 return EraseInstFromFunction(*MI);
10620 }
10621
10622 return 0;
10623}
10624
10625
10626/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010627static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010628 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010629 User *CI = cast<User>(LI.getOperand(0));
10630 Value *CastOp = CI->getOperand(0);
10631
Devang Patela0f8ea82007-10-18 19:52:32 +000010632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10633 // Instead of loading constant c string, use corresponding integer value
10634 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010635 std::string Str;
10636 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010637 unsigned len = Str.length();
10638 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10639 unsigned numBits = Ty->getPrimitiveSizeInBits();
10640 // Replace LI with immediate integer store.
10641 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010642 APInt StrVal(numBits, 0);
10643 APInt SingleChar(numBits, 0);
10644 if (TD->isLittleEndian()) {
10645 for (signed i = len-1; i >= 0; i--) {
10646 SingleChar = (uint64_t) Str[i];
10647 StrVal = (StrVal << 8) | SingleChar;
10648 }
10649 } else {
10650 for (unsigned i = 0; i < len; i++) {
10651 SingleChar = (uint64_t) Str[i];
10652 StrVal = (StrVal << 8) | SingleChar;
10653 }
10654 // Append NULL at the end.
10655 SingleChar = 0;
10656 StrVal = (StrVal << 8) | SingleChar;
10657 }
10658 Value *NL = ConstantInt::get(StrVal);
10659 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010660 }
10661 }
10662 }
10663
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010664 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10665 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10666 const Type *SrcPTy = SrcTy->getElementType();
10667
10668 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10669 isa<VectorType>(DestPTy)) {
10670 // If the source is an array, the code below will not succeed. Check to
10671 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10672 // constants.
10673 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10674 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10675 if (ASrcTy->getNumElements() != 0) {
10676 Value *Idxs[2];
10677 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10678 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10679 SrcTy = cast<PointerType>(CastOp->getType());
10680 SrcPTy = SrcTy->getElementType();
10681 }
10682
10683 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10684 isa<VectorType>(SrcPTy)) &&
10685 // Do not allow turning this into a load of an integer, which is then
10686 // casted to a pointer, this pessimizes pointer analysis a lot.
10687 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10688 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10689 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10690
10691 // Okay, we are casting from one integer or pointer type to another of
10692 // the same size. Instead of casting the pointer before the load, cast
10693 // the result of the loaded value.
10694 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10695 CI->getName(),
10696 LI.isVolatile()),LI);
10697 // Now cast the result of the load.
10698 return new BitCastInst(NewLoad, LI.getType());
10699 }
10700 }
10701 }
10702 return 0;
10703}
10704
10705/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10706/// from this value cannot trap. If it is not obviously safe to load from the
10707/// specified pointer, we do a quick local scan of the basic block containing
10708/// ScanFrom, to determine if the address is already accessed.
10709static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010710 // If it is an alloca it is always safe to load from.
10711 if (isa<AllocaInst>(V)) return true;
10712
Duncan Sandse40a94a2007-09-19 10:25:38 +000010713 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010714 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010715 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010716 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010717
10718 // Otherwise, be a little bit agressive by scanning the local block where we
10719 // want to check to see if the pointer is already being loaded or stored
10720 // from/to. If so, the previous load or store would have already trapped,
10721 // so there is no harm doing an extra load (also, CSE will later eliminate
10722 // the load entirely).
10723 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10724
10725 while (BBI != E) {
10726 --BBI;
10727
Chris Lattner476983a2008-06-20 05:12:56 +000010728 // If we see a free or a call (which might do a free) the pointer could be
10729 // marked invalid.
10730 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10731 return false;
10732
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010733 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10734 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010735 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010736 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010737 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010738
10739 }
10740 return false;
10741}
10742
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010743/// equivalentAddressValues - Test if A and B will obviously have the same
10744/// value. This includes recognizing that %t0 and %t1 will have the same
10745/// value in code like this:
10746/// %t0 = getelementptr @a, 0, 3
10747/// store i32 0, i32* %t0
10748/// %t1 = getelementptr @a, 0, 3
10749/// %t2 = load i32* %t1
10750///
10751static bool equivalentAddressValues(Value *A, Value *B) {
10752 // Test if the values are trivially equivalent.
10753 if (A == B) return true;
10754
10755 // Test if the values come form identical arithmetic instructions.
10756 if (isa<BinaryOperator>(A) ||
10757 isa<CastInst>(A) ||
10758 isa<PHINode>(A) ||
10759 isa<GetElementPtrInst>(A))
10760 if (Instruction *BI = dyn_cast<Instruction>(B))
10761 if (cast<Instruction>(A)->isIdenticalTo(BI))
10762 return true;
10763
10764 // Otherwise they may not be equivalent.
10765 return false;
10766}
10767
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010768Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10769 Value *Op = LI.getOperand(0);
10770
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010771 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010772 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10773 if (KnownAlign >
10774 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10775 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010776 LI.setAlignment(KnownAlign);
10777
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010778 // load (cast X) --> cast (load X) iff safe
10779 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010780 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010781 return Res;
10782
10783 // None of the following transforms are legal for volatile loads.
10784 if (LI.isVolatile()) return 0;
10785
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010786 // Do really simple store-to-load forwarding and load CSE, to catch cases
10787 // where there are several consequtive memory accesses to the same location,
10788 // separated by a few arithmetic operations.
10789 BasicBlock::iterator BBI = &LI;
10790 for (unsigned ScanInsts = 6; BBI != LI.getParent()->begin() && ScanInsts;
10791 --ScanInsts) {
10792 --BBI;
10793
10794 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
10795 if (equivalentAddressValues(SI->getOperand(1), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010796 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010797 } else if (LoadInst *LIB = dyn_cast<LoadInst>(BBI)) {
10798 if (equivalentAddressValues(LIB->getOperand(0), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010799 return ReplaceInstUsesWith(LI, LIB);
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010800 }
10801
10802 // Don't skip over things that can modify memory.
10803 if (BBI->mayWriteToMemory())
10804 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010805 }
10806
Christopher Lamb2c175392007-12-29 07:56:53 +000010807 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10808 const Value *GEPI0 = GEPI->getOperand(0);
10809 // TODO: Consider a target hook for valid address spaces for this xform.
10810 if (isa<ConstantPointerNull>(GEPI0) &&
10811 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010812 // Insert a new store to null instruction before the load to indicate
10813 // that this code is not reachable. We do this instead of inserting
10814 // an unreachable instruction directly because we cannot modify the
10815 // CFG.
10816 new StoreInst(UndefValue::get(LI.getType()),
10817 Constant::getNullValue(Op->getType()), &LI);
10818 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10819 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010820 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010821
10822 if (Constant *C = dyn_cast<Constant>(Op)) {
10823 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010824 // TODO: Consider a target hook for valid address spaces for this xform.
10825 if (isa<UndefValue>(C) || (C->isNullValue() &&
10826 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010827 // Insert a new store to null instruction before the load to indicate that
10828 // this code is not reachable. We do this instead of inserting an
10829 // unreachable instruction directly because we cannot modify the CFG.
10830 new StoreInst(UndefValue::get(LI.getType()),
10831 Constant::getNullValue(Op->getType()), &LI);
10832 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10833 }
10834
10835 // Instcombine load (constant global) into the value loaded.
10836 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10837 if (GV->isConstant() && !GV->isDeclaration())
10838 return ReplaceInstUsesWith(LI, GV->getInitializer());
10839
10840 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010841 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010842 if (CE->getOpcode() == Instruction::GetElementPtr) {
10843 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10844 if (GV->isConstant() && !GV->isDeclaration())
10845 if (Constant *V =
10846 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10847 return ReplaceInstUsesWith(LI, V);
10848 if (CE->getOperand(0)->isNullValue()) {
10849 // Insert a new store to null instruction before the load to indicate
10850 // that this code is not reachable. We do this instead of inserting
10851 // an unreachable instruction directly because we cannot modify the
10852 // CFG.
10853 new StoreInst(UndefValue::get(LI.getType()),
10854 Constant::getNullValue(Op->getType()), &LI);
10855 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10856 }
10857
10858 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010859 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010860 return Res;
10861 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010862 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010863 }
Chris Lattner0270a112007-08-11 18:48:48 +000010864
10865 // If this load comes from anywhere in a constant global, and if the global
10866 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010867 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010868 if (GV->isConstant() && GV->hasInitializer()) {
10869 if (GV->getInitializer()->isNullValue())
10870 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10871 else if (isa<UndefValue>(GV->getInitializer()))
10872 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10873 }
10874 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010875
10876 if (Op->hasOneUse()) {
10877 // Change select and PHI nodes to select values instead of addresses: this
10878 // helps alias analysis out a lot, allows many others simplifications, and
10879 // exposes redundancy in the code.
10880 //
10881 // Note that we cannot do the transformation unless we know that the
10882 // introduced loads cannot trap! Something like this is valid as long as
10883 // the condition is always false: load (select bool %C, int* null, int* %G),
10884 // but it would not be valid if we transformed it to load from null
10885 // unconditionally.
10886 //
10887 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10888 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10889 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10890 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10891 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10892 SI->getOperand(1)->getName()+".val"), LI);
10893 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10894 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010895 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010896 }
10897
10898 // load (select (cond, null, P)) -> load P
10899 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10900 if (C->isNullValue()) {
10901 LI.setOperand(0, SI->getOperand(2));
10902 return &LI;
10903 }
10904
10905 // load (select (cond, P, null)) -> load P
10906 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10907 if (C->isNullValue()) {
10908 LI.setOperand(0, SI->getOperand(1));
10909 return &LI;
10910 }
10911 }
10912 }
10913 return 0;
10914}
10915
10916/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10917/// when possible.
10918static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10919 User *CI = cast<User>(SI.getOperand(1));
10920 Value *CastOp = CI->getOperand(0);
10921
10922 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10923 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10924 const Type *SrcPTy = SrcTy->getElementType();
10925
10926 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10927 // If the source is an array, the code below will not succeed. Check to
10928 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10929 // constants.
10930 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10931 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10932 if (ASrcTy->getNumElements() != 0) {
10933 Value* Idxs[2];
10934 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10935 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10936 SrcTy = cast<PointerType>(CastOp->getType());
10937 SrcPTy = SrcTy->getElementType();
10938 }
10939
10940 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10941 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10942 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10943
10944 // Okay, we are casting from one integer or pointer type to another of
10945 // the same size. Instead of casting the pointer before
10946 // the store, cast the value to be stored.
10947 Value *NewCast;
10948 Value *SIOp0 = SI.getOperand(0);
10949 Instruction::CastOps opcode = Instruction::BitCast;
10950 const Type* CastSrcTy = SIOp0->getType();
10951 const Type* CastDstTy = SrcPTy;
10952 if (isa<PointerType>(CastDstTy)) {
10953 if (CastSrcTy->isInteger())
10954 opcode = Instruction::IntToPtr;
10955 } else if (isa<IntegerType>(CastDstTy)) {
10956 if (isa<PointerType>(SIOp0->getType()))
10957 opcode = Instruction::PtrToInt;
10958 }
10959 if (Constant *C = dyn_cast<Constant>(SIOp0))
10960 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10961 else
10962 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010963 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010964 SI);
10965 return new StoreInst(NewCast, CastOp);
10966 }
10967 }
10968 }
10969 return 0;
10970}
10971
10972Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10973 Value *Val = SI.getOperand(0);
10974 Value *Ptr = SI.getOperand(1);
10975
10976 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10977 EraseInstFromFunction(SI);
10978 ++NumCombined;
10979 return 0;
10980 }
10981
10982 // If the RHS is an alloca with a single use, zapify the store, making the
10983 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010984 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010985 if (isa<AllocaInst>(Ptr)) {
10986 EraseInstFromFunction(SI);
10987 ++NumCombined;
10988 return 0;
10989 }
10990
10991 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10992 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10993 GEP->getOperand(0)->hasOneUse()) {
10994 EraseInstFromFunction(SI);
10995 ++NumCombined;
10996 return 0;
10997 }
10998 }
10999
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011000 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011001 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11002 if (KnownAlign >
11003 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11004 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011005 SI.setAlignment(KnownAlign);
11006
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011007 // Do really simple DSE, to catch cases where there are several consequtive
11008 // stores to the same location, separated by a few arithmetic operations. This
11009 // situation often occurs with bitfield accesses.
11010 BasicBlock::iterator BBI = &SI;
11011 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11012 --ScanInsts) {
11013 --BBI;
11014
11015 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11016 // Prev store isn't volatile, and stores to the same location?
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011017 if (!PrevSI->isVolatile() && equivalentAddressValues(PrevSI->getOperand(1),
11018 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011019 ++NumDeadStore;
11020 ++BBI;
11021 EraseInstFromFunction(*PrevSI);
11022 continue;
11023 }
11024 break;
11025 }
11026
11027 // If this is a load, we have to stop. However, if the loaded value is from
11028 // the pointer we're loading and is producing the pointer we're storing,
11029 // then *this* store is dead (X = load P; store X -> P).
11030 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011031 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11032 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011033 EraseInstFromFunction(SI);
11034 ++NumCombined;
11035 return 0;
11036 }
11037 // Otherwise, this is a load from some other location. Stores before it
11038 // may not be dead.
11039 break;
11040 }
11041
11042 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011043 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011044 break;
11045 }
11046
11047
11048 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11049
11050 // store X, null -> turns into 'unreachable' in SimplifyCFG
11051 if (isa<ConstantPointerNull>(Ptr)) {
11052 if (!isa<UndefValue>(Val)) {
11053 SI.setOperand(0, UndefValue::get(Val->getType()));
11054 if (Instruction *U = dyn_cast<Instruction>(Val))
11055 AddToWorkList(U); // Dropped a use.
11056 ++NumCombined;
11057 }
11058 return 0; // Do not modify these!
11059 }
11060
11061 // store undef, Ptr -> noop
11062 if (isa<UndefValue>(Val)) {
11063 EraseInstFromFunction(SI);
11064 ++NumCombined;
11065 return 0;
11066 }
11067
11068 // If the pointer destination is a cast, see if we can fold the cast into the
11069 // source instead.
11070 if (isa<CastInst>(Ptr))
11071 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11072 return Res;
11073 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11074 if (CE->isCast())
11075 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11076 return Res;
11077
11078
11079 // If this store is the last instruction in the basic block, and if the block
11080 // ends with an unconditional branch, try to move it to the successor block.
11081 BBI = &SI; ++BBI;
11082 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11083 if (BI->isUnconditional())
11084 if (SimplifyStoreAtEndOfBlock(SI))
11085 return 0; // xform done!
11086
11087 return 0;
11088}
11089
11090/// SimplifyStoreAtEndOfBlock - Turn things like:
11091/// if () { *P = v1; } else { *P = v2 }
11092/// into a phi node with a store in the successor.
11093///
11094/// Simplify things like:
11095/// *P = v1; if () { *P = v2; }
11096/// into a phi node with a store in the successor.
11097///
11098bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11099 BasicBlock *StoreBB = SI.getParent();
11100
11101 // Check to see if the successor block has exactly two incoming edges. If
11102 // so, see if the other predecessor contains a store to the same location.
11103 // if so, insert a PHI node (if needed) and move the stores down.
11104 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11105
11106 // Determine whether Dest has exactly two predecessors and, if so, compute
11107 // the other predecessor.
11108 pred_iterator PI = pred_begin(DestBB);
11109 BasicBlock *OtherBB = 0;
11110 if (*PI != StoreBB)
11111 OtherBB = *PI;
11112 ++PI;
11113 if (PI == pred_end(DestBB))
11114 return false;
11115
11116 if (*PI != StoreBB) {
11117 if (OtherBB)
11118 return false;
11119 OtherBB = *PI;
11120 }
11121 if (++PI != pred_end(DestBB))
11122 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011123
11124 // Bail out if all the relevant blocks aren't distinct (this can happen,
11125 // for example, if SI is in an infinite loop)
11126 if (StoreBB == DestBB || OtherBB == DestBB)
11127 return false;
11128
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011129 // Verify that the other block ends in a branch and is not otherwise empty.
11130 BasicBlock::iterator BBI = OtherBB->getTerminator();
11131 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11132 if (!OtherBr || BBI == OtherBB->begin())
11133 return false;
11134
11135 // If the other block ends in an unconditional branch, check for the 'if then
11136 // else' case. there is an instruction before the branch.
11137 StoreInst *OtherStore = 0;
11138 if (OtherBr->isUnconditional()) {
11139 // If this isn't a store, or isn't a store to the same location, bail out.
11140 --BBI;
11141 OtherStore = dyn_cast<StoreInst>(BBI);
11142 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11143 return false;
11144 } else {
11145 // Otherwise, the other block ended with a conditional branch. If one of the
11146 // destinations is StoreBB, then we have the if/then case.
11147 if (OtherBr->getSuccessor(0) != StoreBB &&
11148 OtherBr->getSuccessor(1) != StoreBB)
11149 return false;
11150
11151 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11152 // if/then triangle. See if there is a store to the same ptr as SI that
11153 // lives in OtherBB.
11154 for (;; --BBI) {
11155 // Check to see if we find the matching store.
11156 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11157 if (OtherStore->getOperand(1) != SI.getOperand(1))
11158 return false;
11159 break;
11160 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011161 // If we find something that may be using or overwriting the stored
11162 // value, or if we run out of instructions, we can't do the xform.
11163 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011164 BBI == OtherBB->begin())
11165 return false;
11166 }
11167
11168 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011169 // make sure nothing reads or overwrites the stored value in
11170 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011171 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11172 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011173 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011174 return false;
11175 }
11176 }
11177
11178 // Insert a PHI node now if we need it.
11179 Value *MergedVal = OtherStore->getOperand(0);
11180 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011181 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011182 PN->reserveOperandSpace(2);
11183 PN->addIncoming(SI.getOperand(0), SI.getParent());
11184 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11185 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11186 }
11187
11188 // Advance to a place where it is safe to insert the new store and
11189 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011190 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011191 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11192 OtherStore->isVolatile()), *BBI);
11193
11194 // Nuke the old stores.
11195 EraseInstFromFunction(SI);
11196 EraseInstFromFunction(*OtherStore);
11197 ++NumCombined;
11198 return true;
11199}
11200
11201
11202Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11203 // Change br (not X), label True, label False to: br X, label False, True
11204 Value *X = 0;
11205 BasicBlock *TrueDest;
11206 BasicBlock *FalseDest;
11207 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11208 !isa<Constant>(X)) {
11209 // Swap Destinations and condition...
11210 BI.setCondition(X);
11211 BI.setSuccessor(0, FalseDest);
11212 BI.setSuccessor(1, TrueDest);
11213 return &BI;
11214 }
11215
11216 // Cannonicalize fcmp_one -> fcmp_oeq
11217 FCmpInst::Predicate FPred; Value *Y;
11218 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11219 TrueDest, FalseDest)))
11220 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11221 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11222 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11223 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11224 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11225 NewSCC->takeName(I);
11226 // Swap Destinations and condition...
11227 BI.setCondition(NewSCC);
11228 BI.setSuccessor(0, FalseDest);
11229 BI.setSuccessor(1, TrueDest);
11230 RemoveFromWorkList(I);
11231 I->eraseFromParent();
11232 AddToWorkList(NewSCC);
11233 return &BI;
11234 }
11235
11236 // Cannonicalize icmp_ne -> icmp_eq
11237 ICmpInst::Predicate IPred;
11238 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11239 TrueDest, FalseDest)))
11240 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11241 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11242 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11243 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11244 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11245 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11246 NewSCC->takeName(I);
11247 // Swap Destinations and condition...
11248 BI.setCondition(NewSCC);
11249 BI.setSuccessor(0, FalseDest);
11250 BI.setSuccessor(1, TrueDest);
11251 RemoveFromWorkList(I);
11252 I->eraseFromParent();;
11253 AddToWorkList(NewSCC);
11254 return &BI;
11255 }
11256
11257 return 0;
11258}
11259
11260Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11261 Value *Cond = SI.getCondition();
11262 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11263 if (I->getOpcode() == Instruction::Add)
11264 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11265 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11266 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11267 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11268 AddRHS));
11269 SI.setOperand(0, I->getOperand(0));
11270 AddToWorkList(I);
11271 return &SI;
11272 }
11273 }
11274 return 0;
11275}
11276
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011277Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011278 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011279
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011280 if (!EV.hasIndices())
11281 return ReplaceInstUsesWith(EV, Agg);
11282
11283 if (Constant *C = dyn_cast<Constant>(Agg)) {
11284 if (isa<UndefValue>(C))
11285 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11286
11287 if (isa<ConstantAggregateZero>(C))
11288 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11289
11290 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11291 // Extract the element indexed by the first index out of the constant
11292 Value *V = C->getOperand(*EV.idx_begin());
11293 if (EV.getNumIndices() > 1)
11294 // Extract the remaining indices out of the constant indexed by the
11295 // first index
11296 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11297 else
11298 return ReplaceInstUsesWith(EV, V);
11299 }
11300 return 0; // Can't handle other constants
11301 }
11302 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11303 // We're extracting from an insertvalue instruction, compare the indices
11304 const unsigned *exti, *exte, *insi, *inse;
11305 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11306 exte = EV.idx_end(), inse = IV->idx_end();
11307 exti != exte && insi != inse;
11308 ++exti, ++insi) {
11309 if (*insi != *exti)
11310 // The insert and extract both reference distinctly different elements.
11311 // This means the extract is not influenced by the insert, and we can
11312 // replace the aggregate operand of the extract with the aggregate
11313 // operand of the insert. i.e., replace
11314 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11315 // %E = extractvalue { i32, { i32 } } %I, 0
11316 // with
11317 // %E = extractvalue { i32, { i32 } } %A, 0
11318 return ExtractValueInst::Create(IV->getAggregateOperand(),
11319 EV.idx_begin(), EV.idx_end());
11320 }
11321 if (exti == exte && insi == inse)
11322 // Both iterators are at the end: Index lists are identical. Replace
11323 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11324 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11325 // with "i32 42"
11326 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11327 if (exti == exte) {
11328 // The extract list is a prefix of the insert list. i.e. replace
11329 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11330 // %E = extractvalue { i32, { i32 } } %I, 1
11331 // with
11332 // %X = extractvalue { i32, { i32 } } %A, 1
11333 // %E = insertvalue { i32 } %X, i32 42, 0
11334 // by switching the order of the insert and extract (though the
11335 // insertvalue should be left in, since it may have other uses).
11336 Value *NewEV = InsertNewInstBefore(
11337 ExtractValueInst::Create(IV->getAggregateOperand(),
11338 EV.idx_begin(), EV.idx_end()),
11339 EV);
11340 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11341 insi, inse);
11342 }
11343 if (insi == inse)
11344 // The insert list is a prefix of the extract list
11345 // We can simply remove the common indices from the extract and make it
11346 // operate on the inserted value instead of the insertvalue result.
11347 // i.e., replace
11348 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11349 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11350 // with
11351 // %E extractvalue { i32 } { i32 42 }, 0
11352 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11353 exti, exte);
11354 }
11355 // Can't simplify extracts from other values. Note that nested extracts are
11356 // already simplified implicitely by the above (extract ( extract (insert) )
11357 // will be translated into extract ( insert ( extract ) ) first and then just
11358 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011359 return 0;
11360}
11361
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011362/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11363/// is to leave as a vector operation.
11364static bool CheapToScalarize(Value *V, bool isConstant) {
11365 if (isa<ConstantAggregateZero>(V))
11366 return true;
11367 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11368 if (isConstant) return true;
11369 // If all elts are the same, we can extract.
11370 Constant *Op0 = C->getOperand(0);
11371 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11372 if (C->getOperand(i) != Op0)
11373 return false;
11374 return true;
11375 }
11376 Instruction *I = dyn_cast<Instruction>(V);
11377 if (!I) return false;
11378
11379 // Insert element gets simplified to the inserted element or is deleted if
11380 // this is constant idx extract element and its a constant idx insertelt.
11381 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11382 isa<ConstantInt>(I->getOperand(2)))
11383 return true;
11384 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11385 return true;
11386 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11387 if (BO->hasOneUse() &&
11388 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11389 CheapToScalarize(BO->getOperand(1), isConstant)))
11390 return true;
11391 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11392 if (CI->hasOneUse() &&
11393 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11394 CheapToScalarize(CI->getOperand(1), isConstant)))
11395 return true;
11396
11397 return false;
11398}
11399
11400/// Read and decode a shufflevector mask.
11401///
11402/// It turns undef elements into values that are larger than the number of
11403/// elements in the input.
11404static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11405 unsigned NElts = SVI->getType()->getNumElements();
11406 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11407 return std::vector<unsigned>(NElts, 0);
11408 if (isa<UndefValue>(SVI->getOperand(2)))
11409 return std::vector<unsigned>(NElts, 2*NElts);
11410
11411 std::vector<unsigned> Result;
11412 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011413 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11414 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011415 Result.push_back(NElts*2); // undef -> 8
11416 else
Gabor Greif17396002008-06-12 21:37:33 +000011417 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011418 return Result;
11419}
11420
11421/// FindScalarElement - Given a vector and an element number, see if the scalar
11422/// value is already around as a register, for example if it were inserted then
11423/// extracted from the vector.
11424static Value *FindScalarElement(Value *V, unsigned EltNo) {
11425 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11426 const VectorType *PTy = cast<VectorType>(V->getType());
11427 unsigned Width = PTy->getNumElements();
11428 if (EltNo >= Width) // Out of range access.
11429 return UndefValue::get(PTy->getElementType());
11430
11431 if (isa<UndefValue>(V))
11432 return UndefValue::get(PTy->getElementType());
11433 else if (isa<ConstantAggregateZero>(V))
11434 return Constant::getNullValue(PTy->getElementType());
11435 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11436 return CP->getOperand(EltNo);
11437 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11438 // If this is an insert to a variable element, we don't know what it is.
11439 if (!isa<ConstantInt>(III->getOperand(2)))
11440 return 0;
11441 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11442
11443 // If this is an insert to the element we are looking for, return the
11444 // inserted value.
11445 if (EltNo == IIElt)
11446 return III->getOperand(1);
11447
11448 // Otherwise, the insertelement doesn't modify the value, recurse on its
11449 // vector input.
11450 return FindScalarElement(III->getOperand(0), EltNo);
11451 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011452 unsigned LHSWidth =
11453 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011454 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011455 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011456 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011457 else if (InEl < LHSWidth*2)
11458 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011459 else
11460 return UndefValue::get(PTy->getElementType());
11461 }
11462
11463 // Otherwise, we don't know.
11464 return 0;
11465}
11466
11467Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011468 // If vector val is undef, replace extract with scalar undef.
11469 if (isa<UndefValue>(EI.getOperand(0)))
11470 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11471
11472 // If vector val is constant 0, replace extract with scalar 0.
11473 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11474 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11475
11476 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011477 // If vector val is constant with all elements the same, replace EI with
11478 // that element. When the elements are not identical, we cannot replace yet
11479 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011480 Constant *op0 = C->getOperand(0);
11481 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11482 if (C->getOperand(i) != op0) {
11483 op0 = 0;
11484 break;
11485 }
11486 if (op0)
11487 return ReplaceInstUsesWith(EI, op0);
11488 }
11489
11490 // If extracting a specified index from the vector, see if we can recursively
11491 // find a previously computed scalar that was inserted into the vector.
11492 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11493 unsigned IndexVal = IdxC->getZExtValue();
11494 unsigned VectorWidth =
11495 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11496
11497 // If this is extracting an invalid index, turn this into undef, to avoid
11498 // crashing the code below.
11499 if (IndexVal >= VectorWidth)
11500 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11501
11502 // This instruction only demands the single element from the input vector.
11503 // If the input vector has a single use, simplify it based on this use
11504 // property.
11505 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11506 uint64_t UndefElts;
11507 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11508 1 << IndexVal,
11509 UndefElts)) {
11510 EI.setOperand(0, V);
11511 return &EI;
11512 }
11513 }
11514
11515 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11516 return ReplaceInstUsesWith(EI, Elt);
11517
11518 // If the this extractelement is directly using a bitcast from a vector of
11519 // the same number of elements, see if we can find the source element from
11520 // it. In this case, we will end up needing to bitcast the scalars.
11521 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11522 if (const VectorType *VT =
11523 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11524 if (VT->getNumElements() == VectorWidth)
11525 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11526 return new BitCastInst(Elt, EI.getType());
11527 }
11528 }
11529
11530 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11531 if (I->hasOneUse()) {
11532 // Push extractelement into predecessor operation if legal and
11533 // profitable to do so
11534 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11535 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11536 if (CheapToScalarize(BO, isConstantElt)) {
11537 ExtractElementInst *newEI0 =
11538 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11539 EI.getName()+".lhs");
11540 ExtractElementInst *newEI1 =
11541 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11542 EI.getName()+".rhs");
11543 InsertNewInstBefore(newEI0, EI);
11544 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011545 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011546 }
11547 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011548 unsigned AS =
11549 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011550 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11551 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011552 GetElementPtrInst *GEP =
11553 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011554 InsertNewInstBefore(GEP, EI);
11555 return new LoadInst(GEP);
11556 }
11557 }
11558 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11559 // Extracting the inserted element?
11560 if (IE->getOperand(2) == EI.getOperand(1))
11561 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11562 // If the inserted and extracted elements are constants, they must not
11563 // be the same value, extract from the pre-inserted value instead.
11564 if (isa<Constant>(IE->getOperand(2)) &&
11565 isa<Constant>(EI.getOperand(1))) {
11566 AddUsesToWorkList(EI);
11567 EI.setOperand(0, IE->getOperand(0));
11568 return &EI;
11569 }
11570 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11571 // If this is extracting an element from a shufflevector, figure out where
11572 // it came from and extract from the appropriate input element instead.
11573 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11574 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11575 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011576 unsigned LHSWidth =
11577 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11578
11579 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011580 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011581 else if (SrcIdx < LHSWidth*2) {
11582 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011583 Src = SVI->getOperand(1);
11584 } else {
11585 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11586 }
11587 return new ExtractElementInst(Src, SrcIdx);
11588 }
11589 }
11590 }
11591 return 0;
11592}
11593
11594/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11595/// elements from either LHS or RHS, return the shuffle mask and true.
11596/// Otherwise, return false.
11597static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11598 std::vector<Constant*> &Mask) {
11599 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11600 "Invalid CollectSingleShuffleElements");
11601 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11602
11603 if (isa<UndefValue>(V)) {
11604 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11605 return true;
11606 } else if (V == LHS) {
11607 for (unsigned i = 0; i != NumElts; ++i)
11608 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11609 return true;
11610 } else if (V == RHS) {
11611 for (unsigned i = 0; i != NumElts; ++i)
11612 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11613 return true;
11614 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11615 // If this is an insert of an extract from some other vector, include it.
11616 Value *VecOp = IEI->getOperand(0);
11617 Value *ScalarOp = IEI->getOperand(1);
11618 Value *IdxOp = IEI->getOperand(2);
11619
11620 if (!isa<ConstantInt>(IdxOp))
11621 return false;
11622 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11623
11624 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11625 // Okay, we can handle this if the vector we are insertinting into is
11626 // transitively ok.
11627 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11628 // If so, update the mask to reflect the inserted undef.
11629 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11630 return true;
11631 }
11632 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11633 if (isa<ConstantInt>(EI->getOperand(1)) &&
11634 EI->getOperand(0)->getType() == V->getType()) {
11635 unsigned ExtractedIdx =
11636 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11637
11638 // This must be extracting from either LHS or RHS.
11639 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11640 // Okay, we can handle this if the vector we are insertinting into is
11641 // transitively ok.
11642 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11643 // If so, update the mask to reflect the inserted value.
11644 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011645 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011646 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11647 } else {
11648 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011649 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011650 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11651
11652 }
11653 return true;
11654 }
11655 }
11656 }
11657 }
11658 }
11659 // TODO: Handle shufflevector here!
11660
11661 return false;
11662}
11663
11664/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11665/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11666/// that computes V and the LHS value of the shuffle.
11667static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11668 Value *&RHS) {
11669 assert(isa<VectorType>(V->getType()) &&
11670 (RHS == 0 || V->getType() == RHS->getType()) &&
11671 "Invalid shuffle!");
11672 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11673
11674 if (isa<UndefValue>(V)) {
11675 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11676 return V;
11677 } else if (isa<ConstantAggregateZero>(V)) {
11678 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11679 return V;
11680 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11681 // If this is an insert of an extract from some other vector, include it.
11682 Value *VecOp = IEI->getOperand(0);
11683 Value *ScalarOp = IEI->getOperand(1);
11684 Value *IdxOp = IEI->getOperand(2);
11685
11686 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11687 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11688 EI->getOperand(0)->getType() == V->getType()) {
11689 unsigned ExtractedIdx =
11690 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11691 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11692
11693 // Either the extracted from or inserted into vector must be RHSVec,
11694 // otherwise we'd end up with a shuffle of three inputs.
11695 if (EI->getOperand(0) == RHS || RHS == 0) {
11696 RHS = EI->getOperand(0);
11697 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011698 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011699 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11700 return V;
11701 }
11702
11703 if (VecOp == RHS) {
11704 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11705 // Everything but the extracted element is replaced with the RHS.
11706 for (unsigned i = 0; i != NumElts; ++i) {
11707 if (i != InsertedIdx)
11708 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11709 }
11710 return V;
11711 }
11712
11713 // If this insertelement is a chain that comes from exactly these two
11714 // vectors, return the vector and the effective shuffle.
11715 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11716 return EI->getOperand(0);
11717
11718 }
11719 }
11720 }
11721 // TODO: Handle shufflevector here!
11722
11723 // Otherwise, can't do anything fancy. Return an identity vector.
11724 for (unsigned i = 0; i != NumElts; ++i)
11725 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11726 return V;
11727}
11728
11729Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11730 Value *VecOp = IE.getOperand(0);
11731 Value *ScalarOp = IE.getOperand(1);
11732 Value *IdxOp = IE.getOperand(2);
11733
11734 // Inserting an undef or into an undefined place, remove this.
11735 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11736 ReplaceInstUsesWith(IE, VecOp);
11737
11738 // If the inserted element was extracted from some other vector, and if the
11739 // indexes are constant, try to turn this into a shufflevector operation.
11740 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11741 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11742 EI->getOperand(0)->getType() == IE.getType()) {
11743 unsigned NumVectorElts = IE.getType()->getNumElements();
11744 unsigned ExtractedIdx =
11745 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11746 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11747
11748 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11749 return ReplaceInstUsesWith(IE, VecOp);
11750
11751 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11752 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11753
11754 // If we are extracting a value from a vector, then inserting it right
11755 // back into the same place, just use the input vector.
11756 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11757 return ReplaceInstUsesWith(IE, VecOp);
11758
11759 // We could theoretically do this for ANY input. However, doing so could
11760 // turn chains of insertelement instructions into a chain of shufflevector
11761 // instructions, and right now we do not merge shufflevectors. As such,
11762 // only do this in a situation where it is clear that there is benefit.
11763 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11764 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11765 // the values of VecOp, except then one read from EIOp0.
11766 // Build a new shuffle mask.
11767 std::vector<Constant*> Mask;
11768 if (isa<UndefValue>(VecOp))
11769 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11770 else {
11771 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11772 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11773 NumVectorElts));
11774 }
11775 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11776 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11777 ConstantVector::get(Mask));
11778 }
11779
11780 // If this insertelement isn't used by some other insertelement, turn it
11781 // (and any insertelements it points to), into one big shuffle.
11782 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11783 std::vector<Constant*> Mask;
11784 Value *RHS = 0;
11785 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11786 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11787 // We now have a shuffle of LHS, RHS, Mask.
11788 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11789 }
11790 }
11791 }
11792
11793 return 0;
11794}
11795
11796
11797Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11798 Value *LHS = SVI.getOperand(0);
11799 Value *RHS = SVI.getOperand(1);
11800 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11801
11802 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011803
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011804 // Undefined shuffle mask -> undefined value.
11805 if (isa<UndefValue>(SVI.getOperand(2)))
11806 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011807
11808 uint64_t UndefElts;
11809 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011810
11811 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11812 return 0;
11813
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011814 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11815 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011816 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11817 LHS = SVI.getOperand(0);
11818 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011819 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011820 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011821
11822 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11823 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11824 if (LHS == RHS || isa<UndefValue>(LHS)) {
11825 if (isa<UndefValue>(LHS) && LHS == RHS) {
11826 // shuffle(undef,undef,mask) -> undef.
11827 return ReplaceInstUsesWith(SVI, LHS);
11828 }
11829
11830 // Remap any references to RHS to use LHS.
11831 std::vector<Constant*> Elts;
11832 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11833 if (Mask[i] >= 2*e)
11834 Elts.push_back(UndefValue::get(Type::Int32Ty));
11835 else {
11836 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011837 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011838 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011839 Elts.push_back(UndefValue::get(Type::Int32Ty));
11840 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011841 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011842 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11843 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011844 }
11845 }
11846 SVI.setOperand(0, SVI.getOperand(1));
11847 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11848 SVI.setOperand(2, ConstantVector::get(Elts));
11849 LHS = SVI.getOperand(0);
11850 RHS = SVI.getOperand(1);
11851 MadeChange = true;
11852 }
11853
11854 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11855 bool isLHSID = true, isRHSID = true;
11856
11857 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11858 if (Mask[i] >= e*2) continue; // Ignore undef values.
11859 // Is this an identity shuffle of the LHS value?
11860 isLHSID &= (Mask[i] == i);
11861
11862 // Is this an identity shuffle of the RHS value?
11863 isRHSID &= (Mask[i]-e == i);
11864 }
11865
11866 // Eliminate identity shuffles.
11867 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11868 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11869
11870 // If the LHS is a shufflevector itself, see if we can combine it with this
11871 // one without producing an unusual shuffle. Here we are really conservative:
11872 // we are absolutely afraid of producing a shuffle mask not in the input
11873 // program, because the code gen may not be smart enough to turn a merged
11874 // shuffle into two specific shuffles: it may produce worse code. As such,
11875 // we only merge two shuffles if the result is one of the two input shuffle
11876 // masks. In this case, merging the shuffles just removes one instruction,
11877 // which we know is safe. This is good for things like turning:
11878 // (splat(splat)) -> splat.
11879 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11880 if (isa<UndefValue>(RHS)) {
11881 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11882
11883 std::vector<unsigned> NewMask;
11884 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11885 if (Mask[i] >= 2*e)
11886 NewMask.push_back(2*e);
11887 else
11888 NewMask.push_back(LHSMask[Mask[i]]);
11889
11890 // If the result mask is equal to the src shuffle or this shuffle mask, do
11891 // the replacement.
11892 if (NewMask == LHSMask || NewMask == Mask) {
11893 std::vector<Constant*> Elts;
11894 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11895 if (NewMask[i] >= e*2) {
11896 Elts.push_back(UndefValue::get(Type::Int32Ty));
11897 } else {
11898 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11899 }
11900 }
11901 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11902 LHSSVI->getOperand(1),
11903 ConstantVector::get(Elts));
11904 }
11905 }
11906 }
11907
11908 return MadeChange ? &SVI : 0;
11909}
11910
11911
11912
11913
11914/// TryToSinkInstruction - Try to move the specified instruction from its
11915/// current block into the beginning of DestBlock, which can only happen if it's
11916/// safe to move the instruction past all of the instructions between it and the
11917/// end of its block.
11918static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11919 assert(I->hasOneUse() && "Invariants didn't hold!");
11920
11921 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011922 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11923 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011924
11925 // Do not sink alloca instructions out of the entry block.
11926 if (isa<AllocaInst>(I) && I->getParent() ==
11927 &DestBlock->getParent()->getEntryBlock())
11928 return false;
11929
11930 // We can only sink load instructions if there is nothing between the load and
11931 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011932 if (I->mayReadFromMemory()) {
11933 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011934 Scan != E; ++Scan)
11935 if (Scan->mayWriteToMemory())
11936 return false;
11937 }
11938
Dan Gohman514277c2008-05-23 21:05:58 +000011939 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011940
11941 I->moveBefore(InsertPos);
11942 ++NumSunkInst;
11943 return true;
11944}
11945
11946
11947/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11948/// all reachable code to the worklist.
11949///
11950/// This has a couple of tricks to make the code faster and more powerful. In
11951/// particular, we constant fold and DCE instructions as we go, to avoid adding
11952/// them to the worklist (this significantly speeds up instcombine on code where
11953/// many instructions are dead or constant). Additionally, if we find a branch
11954/// whose condition is a known constant, we only visit the reachable successors.
11955///
11956static void AddReachableCodeToWorklist(BasicBlock *BB,
11957 SmallPtrSet<BasicBlock*, 64> &Visited,
11958 InstCombiner &IC,
11959 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000011960 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011961 Worklist.push_back(BB);
11962
11963 while (!Worklist.empty()) {
11964 BB = Worklist.back();
11965 Worklist.pop_back();
11966
11967 // We have now visited this block! If we've already been here, ignore it.
11968 if (!Visited.insert(BB)) continue;
Devang Patel794140c2008-11-19 18:56:50 +000011969
11970 DbgInfoIntrinsic *DBI_Prev = NULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011971 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11972 Instruction *Inst = BBI++;
11973
11974 // DCE instruction if trivially dead.
11975 if (isInstructionTriviallyDead(Inst)) {
11976 ++NumDeadInst;
11977 DOUT << "IC: DCE: " << *Inst;
11978 Inst->eraseFromParent();
11979 continue;
11980 }
11981
11982 // ConstantProp instruction if trivially constant.
11983 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11984 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11985 Inst->replaceAllUsesWith(C);
11986 ++NumConstProp;
11987 Inst->eraseFromParent();
11988 continue;
11989 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011990
Devang Patel794140c2008-11-19 18:56:50 +000011991 // If there are two consecutive llvm.dbg.stoppoint calls then
11992 // it is likely that the optimizer deleted code in between these
11993 // two intrinsics.
11994 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
11995 if (DBI_Next) {
11996 if (DBI_Prev
11997 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
11998 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
11999 IC.RemoveFromWorkList(DBI_Prev);
12000 DBI_Prev->eraseFromParent();
12001 }
12002 DBI_Prev = DBI_Next;
12003 }
12004
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012005 IC.AddToWorkList(Inst);
12006 }
12007
12008 // Recursively visit successors. If this is a branch or switch on a
12009 // constant, only visit the reachable successor.
12010 TerminatorInst *TI = BB->getTerminator();
12011 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12012 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12013 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012014 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012015 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012016 continue;
12017 }
12018 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12019 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12020 // See if this is an explicit destination.
12021 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12022 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012023 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012024 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012025 continue;
12026 }
12027
12028 // Otherwise it is the default destination.
12029 Worklist.push_back(SI->getSuccessor(0));
12030 continue;
12031 }
12032 }
12033
12034 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12035 Worklist.push_back(TI->getSuccessor(i));
12036 }
12037}
12038
12039bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12040 bool Changed = false;
12041 TD = &getAnalysis<TargetData>();
12042
12043 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12044 << F.getNameStr() << "\n");
12045
12046 {
12047 // Do a depth-first traversal of the function, populate the worklist with
12048 // the reachable instructions. Ignore blocks that are not reachable. Keep
12049 // track of which blocks we visit.
12050 SmallPtrSet<BasicBlock*, 64> Visited;
12051 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12052
12053 // Do a quick scan over the function. If we find any blocks that are
12054 // unreachable, remove any instructions inside of them. This prevents
12055 // the instcombine code from having to deal with some bad special cases.
12056 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12057 if (!Visited.count(BB)) {
12058 Instruction *Term = BB->getTerminator();
12059 while (Term != BB->begin()) { // Remove instrs bottom-up
12060 BasicBlock::iterator I = Term; --I;
12061
12062 DOUT << "IC: DCE: " << *I;
12063 ++NumDeadInst;
12064
12065 if (!I->use_empty())
12066 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12067 I->eraseFromParent();
12068 }
12069 }
12070 }
12071
12072 while (!Worklist.empty()) {
12073 Instruction *I = RemoveOneFromWorkList();
12074 if (I == 0) continue; // skip null values.
12075
12076 // Check to see if we can DCE the instruction.
12077 if (isInstructionTriviallyDead(I)) {
12078 // Add operands to the worklist.
12079 if (I->getNumOperands() < 4)
12080 AddUsesToWorkList(*I);
12081 ++NumDeadInst;
12082
12083 DOUT << "IC: DCE: " << *I;
12084
12085 I->eraseFromParent();
12086 RemoveFromWorkList(I);
12087 continue;
12088 }
12089
12090 // Instruction isn't dead, see if we can constant propagate it.
12091 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12092 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12093
12094 // Add operands to the worklist.
12095 AddUsesToWorkList(*I);
12096 ReplaceInstUsesWith(*I, C);
12097
12098 ++NumConstProp;
12099 I->eraseFromParent();
12100 RemoveFromWorkList(I);
12101 continue;
12102 }
12103
Nick Lewyckyadb67922008-05-25 20:56:15 +000012104 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12105 // See if we can constant fold its operands.
12106 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12107 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12108 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12109 i->set(NewC);
12110 }
12111 }
12112 }
12113
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012114 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012115 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012116 BasicBlock *BB = I->getParent();
12117 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12118 if (UserParent != BB) {
12119 bool UserIsSuccessor = false;
12120 // See if the user is one of our successors.
12121 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12122 if (*SI == UserParent) {
12123 UserIsSuccessor = true;
12124 break;
12125 }
12126
12127 // If the user is one of our immediate successors, and if that successor
12128 // only has us as a predecessors (we'd have to split the critical edge
12129 // otherwise), we can keep going.
12130 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12131 next(pred_begin(UserParent)) == pred_end(UserParent))
12132 // Okay, the CFG is simple enough, try to sink this instruction.
12133 Changed |= TryToSinkInstruction(I, UserParent);
12134 }
12135 }
12136
12137 // Now that we have an instruction, try combining it to simplify it...
12138#ifndef NDEBUG
12139 std::string OrigI;
12140#endif
12141 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12142 if (Instruction *Result = visit(*I)) {
12143 ++NumCombined;
12144 // Should we replace the old instruction with a new one?
12145 if (Result != I) {
12146 DOUT << "IC: Old = " << *I
12147 << " New = " << *Result;
12148
12149 // Everything uses the new instruction now.
12150 I->replaceAllUsesWith(Result);
12151
12152 // Push the new instruction and any users onto the worklist.
12153 AddToWorkList(Result);
12154 AddUsersToWorkList(*Result);
12155
12156 // Move the name to the new instruction first.
12157 Result->takeName(I);
12158
12159 // Insert the new instruction into the basic block...
12160 BasicBlock *InstParent = I->getParent();
12161 BasicBlock::iterator InsertPos = I;
12162
12163 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12164 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12165 ++InsertPos;
12166
12167 InstParent->getInstList().insert(InsertPos, Result);
12168
12169 // Make sure that we reprocess all operands now that we reduced their
12170 // use counts.
12171 AddUsesToWorkList(*I);
12172
12173 // Instructions can end up on the worklist more than once. Make sure
12174 // we do not process an instruction that has been deleted.
12175 RemoveFromWorkList(I);
12176
12177 // Erase the old instruction.
12178 InstParent->getInstList().erase(I);
12179 } else {
12180#ifndef NDEBUG
12181 DOUT << "IC: Mod = " << OrigI
12182 << " New = " << *I;
12183#endif
12184
12185 // If the instruction was modified, it's possible that it is now dead.
12186 // if so, remove it.
12187 if (isInstructionTriviallyDead(I)) {
12188 // Make sure we process all operands now that we are reducing their
12189 // use counts.
12190 AddUsesToWorkList(*I);
12191
12192 // Instructions may end up in the worklist more than once. Erase all
12193 // occurrences of this instruction.
12194 RemoveFromWorkList(I);
12195 I->eraseFromParent();
12196 } else {
12197 AddToWorkList(I);
12198 AddUsersToWorkList(*I);
12199 }
12200 }
12201 Changed = true;
12202 }
12203 }
12204
12205 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012206
12207 // Do an explicit clear, this shrinks the map if needed.
12208 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012209 return Changed;
12210}
12211
12212
12213bool InstCombiner::runOnFunction(Function &F) {
12214 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12215
12216 bool EverMadeChange = false;
12217
12218 // Iterate while there is work to do.
12219 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012220 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012221 EverMadeChange = true;
12222 return EverMadeChange;
12223}
12224
12225FunctionPass *llvm::createInstructionCombiningPass() {
12226 return new InstCombiner();
12227}
12228
Chris Lattner6297fc72008-08-11 22:06:05 +000012229