blob: acea4bd49a5a0ba1ee7577feb3a6cd7f13cf236c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
185 Instruction *visitOr (BinaryOperator &I);
186 Instruction *visitXor(BinaryOperator &I);
187 Instruction *visitShl(BinaryOperator &I);
188 Instruction *visitAShr(BinaryOperator &I);
189 Instruction *visitLShr(BinaryOperator &I);
190 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000191 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
192 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 Instruction *visitFCmpInst(FCmpInst &I);
194 Instruction *visitICmpInst(ICmpInst &I);
195 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
196 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
197 Instruction *LHS,
198 ConstantInt *RHS);
199 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
200 ConstantInt *DivRHS);
201
202 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
203 ICmpInst::Predicate Cond, Instruction &I);
204 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
205 BinaryOperator &I);
206 Instruction *commonCastTransforms(CastInst &CI);
207 Instruction *commonIntCastTransforms(CastInst &CI);
208 Instruction *commonPointerCastTransforms(CastInst &CI);
209 Instruction *visitTrunc(TruncInst &CI);
210 Instruction *visitZExt(ZExtInst &CI);
211 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000212 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000214 Instruction *visitFPToUI(FPToUIInst &FI);
215 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 Instruction *visitUIToFP(CastInst &CI);
217 Instruction *visitSIToFP(CastInst &CI);
218 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000219 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000220 Instruction *visitBitCast(BitCastInst &CI);
221 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
222 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000223 Instruction *visitSelectInst(SelectInst &SI);
224 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225 Instruction *visitCallInst(CallInst &CI);
226 Instruction *visitInvokeInst(InvokeInst &II);
227 Instruction *visitPHINode(PHINode &PN);
228 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
229 Instruction *visitAllocationInst(AllocationInst &AI);
230 Instruction *visitFreeInst(FreeInst &FI);
231 Instruction *visitLoadInst(LoadInst &LI);
232 Instruction *visitStoreInst(StoreInst &SI);
233 Instruction *visitBranchInst(BranchInst &BI);
234 Instruction *visitSwitchInst(SwitchInst &SI);
235 Instruction *visitInsertElementInst(InsertElementInst &IE);
236 Instruction *visitExtractElementInst(ExtractElementInst &EI);
237 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000238 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239
240 // visitInstruction - Specify what to return for unhandled instructions...
241 Instruction *visitInstruction(Instruction &I) { return 0; }
242
243 private:
244 Instruction *visitCallSite(CallSite CS);
245 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000246 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000247 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
248 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000249 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000250
251 public:
252 // InsertNewInstBefore - insert an instruction New before instruction Old
253 // in the program. Add the new instruction to the worklist.
254 //
255 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
256 assert(New && New->getParent() == 0 &&
257 "New instruction already inserted into a basic block!");
258 BasicBlock *BB = Old.getParent();
259 BB->getInstList().insert(&Old, New); // Insert inst
260 AddToWorkList(New);
261 return New;
262 }
263
264 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
265 /// This also adds the cast to the worklist. Finally, this returns the
266 /// cast.
267 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
268 Instruction &Pos) {
269 if (V->getType() == Ty) return V;
270
271 if (Constant *CV = dyn_cast<Constant>(V))
272 return ConstantExpr::getCast(opc, CV, Ty);
273
Gabor Greifa645dd32008-05-16 19:29:10 +0000274 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275 AddToWorkList(C);
276 return C;
277 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000278
279 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
280 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
281 }
282
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283
284 // ReplaceInstUsesWith - This method is to be used when an instruction is
285 // found to be dead, replacable with another preexisting expression. Here
286 // we add all uses of I to the worklist, replace all uses of I with the new
287 // value, then return I, so that the inst combiner will know that I was
288 // modified.
289 //
290 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
291 AddUsersToWorkList(I); // Add all modified instrs to worklist
292 if (&I != V) {
293 I.replaceAllUsesWith(V);
294 return &I;
295 } else {
296 // If we are replacing the instruction with itself, this must be in a
297 // segment of unreachable code, so just clobber the instruction.
298 I.replaceAllUsesWith(UndefValue::get(I.getType()));
299 return &I;
300 }
301 }
302
303 // UpdateValueUsesWith - This method is to be used when an value is
304 // found to be replacable with another preexisting expression or was
305 // updated. Here we add all uses of I to the worklist, replace all uses of
306 // I with the new value (unless the instruction was just updated), then
307 // return true, so that the inst combiner will know that I was modified.
308 //
309 bool UpdateValueUsesWith(Value *Old, Value *New) {
310 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
311 if (Old != New)
312 Old->replaceAllUsesWith(New);
313 if (Instruction *I = dyn_cast<Instruction>(Old))
314 AddToWorkList(I);
315 if (Instruction *I = dyn_cast<Instruction>(New))
316 AddToWorkList(I);
317 return true;
318 }
319
320 // EraseInstFromFunction - When dealing with an instruction that has side
321 // effects or produces a void value, we can't rely on DCE to delete the
322 // instruction. Instead, visit methods should return the value returned by
323 // this function.
324 Instruction *EraseInstFromFunction(Instruction &I) {
325 assert(I.use_empty() && "Cannot erase instruction that is used!");
326 AddUsesToWorkList(I);
327 RemoveFromWorkList(&I);
328 I.eraseFromParent();
329 return 0; // Don't do anything with FI
330 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000331
332 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
333 APInt &KnownOne, unsigned Depth = 0) const {
334 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
335 }
336
337 bool MaskedValueIsZero(Value *V, const APInt &Mask,
338 unsigned Depth = 0) const {
339 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
340 }
341 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
342 return llvm::ComputeNumSignBits(Op, TD, Depth);
343 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344
345 private:
346 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
347 /// InsertBefore instruction. This is specialized a bit to avoid inserting
348 /// casts that are known to not do anything...
349 ///
350 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
351 Value *V, const Type *DestTy,
352 Instruction *InsertBefore);
353
354 /// SimplifyCommutative - This performs a few simplifications for
355 /// commutative operators.
356 bool SimplifyCommutative(BinaryOperator &I);
357
358 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
359 /// most-complex to least-complex order.
360 bool SimplifyCompare(CmpInst &I);
361
362 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
363 /// on the demanded bits.
364 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
365 APInt& KnownZero, APInt& KnownOne,
366 unsigned Depth = 0);
367
368 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
369 uint64_t &UndefElts, unsigned Depth = 0);
370
371 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
372 // PHI node as operand #0, see if we can fold the instruction into the PHI
373 // (which is only possible if all operands to the PHI are constants).
374 Instruction *FoldOpIntoPhi(Instruction &I);
375
376 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
377 // operator and they all are only used by the PHI, PHI together their
378 // inputs, and do the operation once, to the result of the PHI.
379 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
380 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
381
382
383 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
384 ConstantInt *AndRHS, BinaryOperator &TheAnd);
385
386 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
387 bool isSub, Instruction &I);
388 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
389 bool isSigned, bool Inside, Instruction &IB);
390 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
391 Instruction *MatchBSwap(BinaryOperator &I);
392 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000393 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000394 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000395
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000396
397 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000398
Dan Gohman2d648bb2008-04-10 18:43:06 +0000399 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
400 unsigned CastOpc,
401 int &NumCastsRemoved);
402 unsigned GetOrEnforceKnownAlignment(Value *V,
403 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000404
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406}
407
Dan Gohman089efff2008-05-13 00:00:25 +0000408char InstCombiner::ID = 0;
409static RegisterPass<InstCombiner>
410X("instcombine", "Combine redundant instructions");
411
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412// getComplexity: Assign a complexity or rank value to LLVM Values...
413// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
414static unsigned getComplexity(Value *V) {
415 if (isa<Instruction>(V)) {
416 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
417 return 3;
418 return 4;
419 }
420 if (isa<Argument>(V)) return 3;
421 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
422}
423
424// isOnlyUse - Return true if this instruction will be deleted if we stop using
425// it.
426static bool isOnlyUse(Value *V) {
427 return V->hasOneUse() || isa<Constant>(V);
428}
429
430// getPromotedType - Return the specified type promoted as it would be to pass
431// though a va_arg area...
432static const Type *getPromotedType(const Type *Ty) {
433 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
434 if (ITy->getBitWidth() < 32)
435 return Type::Int32Ty;
436 }
437 return Ty;
438}
439
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000440/// getBitCastOperand - If the specified operand is a CastInst, a constant
441/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
442/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443static Value *getBitCastOperand(Value *V) {
444 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000445 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000446 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000447 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
448 // GetElementPtrInst?
449 if (GEP->hasAllZeroIndices())
450 return GEP->getOperand(0);
451 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000452 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000453 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000455 else if (CE->getOpcode() == Instruction::GetElementPtr) {
456 // GetElementPtr ConstantExp?
457 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
458 I != E; ++I) {
459 ConstantInt *CI = dyn_cast<ConstantInt>(I);
460 if (!CI || !CI->isZero())
461 // Any non-zero indices? Not cast-like.
462 return 0;
463 }
464 // All-zero indices? This is just like casting.
465 return CE->getOperand(0);
466 }
467 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468 return 0;
469}
470
471/// This function is a wrapper around CastInst::isEliminableCastPair. It
472/// simply extracts arguments and returns what that function returns.
473static Instruction::CastOps
474isEliminableCastPair(
475 const CastInst *CI, ///< The first cast instruction
476 unsigned opcode, ///< The opcode of the second cast instruction
477 const Type *DstTy, ///< The target type for the second cast instruction
478 TargetData *TD ///< The target data for pointer size
479) {
480
481 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
482 const Type *MidTy = CI->getType(); // B from above
483
484 // Get the opcodes of the two Cast instructions
485 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
486 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
487
488 return Instruction::CastOps(
489 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
490 DstTy, TD->getIntPtrType()));
491}
492
493/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
494/// in any code being generated. It does not require codegen if V is simple
495/// enough or if the cast can be folded into other casts.
496static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
497 const Type *Ty, TargetData *TD) {
498 if (V->getType() == Ty || isa<Constant>(V)) return false;
499
500 // If this is another cast that can be eliminated, it isn't codegen either.
501 if (const CastInst *CI = dyn_cast<CastInst>(V))
502 if (isEliminableCastPair(CI, opcode, Ty, TD))
503 return false;
504 return true;
505}
506
507/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
508/// InsertBefore instruction. This is specialized a bit to avoid inserting
509/// casts that are known to not do anything...
510///
511Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
512 Value *V, const Type *DestTy,
513 Instruction *InsertBefore) {
514 if (V->getType() == DestTy) return V;
515 if (Constant *C = dyn_cast<Constant>(V))
516 return ConstantExpr::getCast(opcode, C, DestTy);
517
518 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
519}
520
521// SimplifyCommutative - This performs a few simplifications for commutative
522// operators:
523//
524// 1. Order operands such that they are listed from right (least complex) to
525// left (most complex). This puts constants before unary operators before
526// binary operators.
527//
528// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
529// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
530//
531bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
532 bool Changed = false;
533 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
534 Changed = !I.swapOperands();
535
536 if (!I.isAssociative()) return Changed;
537 Instruction::BinaryOps Opcode = I.getOpcode();
538 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
539 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
540 if (isa<Constant>(I.getOperand(1))) {
541 Constant *Folded = ConstantExpr::get(I.getOpcode(),
542 cast<Constant>(I.getOperand(1)),
543 cast<Constant>(Op->getOperand(1)));
544 I.setOperand(0, Op->getOperand(0));
545 I.setOperand(1, Folded);
546 return true;
547 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
548 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
549 isOnlyUse(Op) && isOnlyUse(Op1)) {
550 Constant *C1 = cast<Constant>(Op->getOperand(1));
551 Constant *C2 = cast<Constant>(Op1->getOperand(1));
552
553 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
554 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000555 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000556 Op1->getOperand(0),
557 Op1->getName(), &I);
558 AddToWorkList(New);
559 I.setOperand(0, New);
560 I.setOperand(1, Folded);
561 return true;
562 }
563 }
564 return Changed;
565}
566
567/// SimplifyCompare - For a CmpInst this function just orders the operands
568/// so that theyare listed from right (least complex) to left (most complex).
569/// This puts constants before unary operators before binary operators.
570bool InstCombiner::SimplifyCompare(CmpInst &I) {
571 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
572 return false;
573 I.swapOperands();
574 // Compare instructions are not associative so there's nothing else we can do.
575 return true;
576}
577
578// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
579// if the LHS is a constant zero (which is the 'negate' form).
580//
581static inline Value *dyn_castNegVal(Value *V) {
582 if (BinaryOperator::isNeg(V))
583 return BinaryOperator::getNegArgument(V);
584
585 // Constants can be considered to be negated values if they can be folded.
586 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
587 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000588
589 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
590 if (C->getType()->getElementType()->isInteger())
591 return ConstantExpr::getNeg(C);
592
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000593 return 0;
594}
595
596static inline Value *dyn_castNotVal(Value *V) {
597 if (BinaryOperator::isNot(V))
598 return BinaryOperator::getNotArgument(V);
599
600 // Constants can be considered to be not'ed values...
601 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
602 return ConstantInt::get(~C->getValue());
603 return 0;
604}
605
606// dyn_castFoldableMul - If this value is a multiply that can be folded into
607// other computations (because it has a constant operand), return the
608// non-constant operand of the multiply, and set CST to point to the multiplier.
609// Otherwise, return null.
610//
611static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
612 if (V->hasOneUse() && V->getType()->isInteger())
613 if (Instruction *I = dyn_cast<Instruction>(V)) {
614 if (I->getOpcode() == Instruction::Mul)
615 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
616 return I->getOperand(0);
617 if (I->getOpcode() == Instruction::Shl)
618 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
619 // The multiplier is really 1 << CST.
620 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
621 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
622 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
623 return I->getOperand(0);
624 }
625 }
626 return 0;
627}
628
629/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
630/// expression, return it.
631static User *dyn_castGetElementPtr(Value *V) {
632 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
633 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
634 if (CE->getOpcode() == Instruction::GetElementPtr)
635 return cast<User>(V);
636 return false;
637}
638
Dan Gohman2d648bb2008-04-10 18:43:06 +0000639/// getOpcode - If this is an Instruction or a ConstantExpr, return the
640/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000641static unsigned getOpcode(const Value *V) {
642 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000643 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000644 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000645 return CE->getOpcode();
646 // Use UserOp1 to mean there's no opcode.
647 return Instruction::UserOp1;
648}
649
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650/// AddOne - Add one to a ConstantInt
651static ConstantInt *AddOne(ConstantInt *C) {
652 APInt Val(C->getValue());
653 return ConstantInt::get(++Val);
654}
655/// SubOne - Subtract one from a ConstantInt
656static ConstantInt *SubOne(ConstantInt *C) {
657 APInt Val(C->getValue());
658 return ConstantInt::get(--Val);
659}
660/// Add - Add two ConstantInts together
661static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
662 return ConstantInt::get(C1->getValue() + C2->getValue());
663}
664/// And - Bitwise AND two ConstantInts together
665static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
666 return ConstantInt::get(C1->getValue() & C2->getValue());
667}
668/// Subtract - Subtract one ConstantInt from another
669static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
670 return ConstantInt::get(C1->getValue() - C2->getValue());
671}
672/// Multiply - Multiply two ConstantInts together
673static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
674 return ConstantInt::get(C1->getValue() * C2->getValue());
675}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000676/// MultiplyOverflows - True if the multiply can not be expressed in an int
677/// this size.
678static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
679 uint32_t W = C1->getBitWidth();
680 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
681 if (sign) {
682 LHSExt.sext(W * 2);
683 RHSExt.sext(W * 2);
684 } else {
685 LHSExt.zext(W * 2);
686 RHSExt.zext(W * 2);
687 }
688
689 APInt MulExt = LHSExt * RHSExt;
690
691 if (sign) {
692 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
693 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
694 return MulExt.slt(Min) || MulExt.sgt(Max);
695 } else
696 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
697}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000699
700/// ShrinkDemandedConstant - Check to see if the specified operand of the
701/// specified instruction is a constant integer. If so, check to see if there
702/// are any bits set in the constant that are not demanded. If so, shrink the
703/// constant and return true.
704static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
705 APInt Demanded) {
706 assert(I && "No instruction?");
707 assert(OpNo < I->getNumOperands() && "Operand index too large");
708
709 // If the operand is not a constant integer, nothing to do.
710 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
711 if (!OpC) return false;
712
713 // If there are no bits set that aren't demanded, nothing to do.
714 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
715 if ((~Demanded & OpC->getValue()) == 0)
716 return false;
717
718 // This instruction is producing bits that are not demanded. Shrink the RHS.
719 Demanded &= OpC->getValue();
720 I->setOperand(OpNo, ConstantInt::get(Demanded));
721 return true;
722}
723
724// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
725// set of known zero and one bits, compute the maximum and minimum values that
726// could have the specified known zero and known one bits, returning them in
727// min/max.
728static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
729 const APInt& KnownZero,
730 const APInt& KnownOne,
731 APInt& Min, APInt& Max) {
732 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
733 assert(KnownZero.getBitWidth() == BitWidth &&
734 KnownOne.getBitWidth() == BitWidth &&
735 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
736 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
737 APInt UnknownBits = ~(KnownZero|KnownOne);
738
739 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
740 // bit if it is unknown.
741 Min = KnownOne;
742 Max = KnownOne|UnknownBits;
743
744 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
745 Min.set(BitWidth-1);
746 Max.clear(BitWidth-1);
747 }
748}
749
750// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
751// a set of known zero and one bits, compute the maximum and minimum values that
752// could have the specified known zero and known one bits, returning them in
753// min/max.
754static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000755 const APInt &KnownZero,
756 const APInt &KnownOne,
757 APInt &Min, APInt &Max) {
758 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 assert(KnownZero.getBitWidth() == BitWidth &&
760 KnownOne.getBitWidth() == BitWidth &&
761 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
762 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
763 APInt UnknownBits = ~(KnownZero|KnownOne);
764
765 // The minimum value is when the unknown bits are all zeros.
766 Min = KnownOne;
767 // The maximum value is when the unknown bits are all ones.
768 Max = KnownOne|UnknownBits;
769}
770
771/// SimplifyDemandedBits - This function attempts to replace V with a simpler
772/// value based on the demanded bits. When this function is called, it is known
773/// that only the bits set in DemandedMask of the result of V are ever used
774/// downstream. Consequently, depending on the mask and V, it may be possible
775/// to replace V with a constant or one of its operands. In such cases, this
776/// function does the replacement and returns true. In all other cases, it
777/// returns false after analyzing the expression and setting KnownOne and known
778/// to be one in the expression. KnownZero contains all the bits that are known
779/// to be zero in the expression. These are provided to potentially allow the
780/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
781/// the expression. KnownOne and KnownZero always follow the invariant that
782/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
783/// the bits in KnownOne and KnownZero may only be accurate for those bits set
784/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
785/// and KnownOne must all be the same.
786bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
787 APInt& KnownZero, APInt& KnownOne,
788 unsigned Depth) {
789 assert(V != 0 && "Null pointer of Value???");
790 assert(Depth <= 6 && "Limit Search Depth");
791 uint32_t BitWidth = DemandedMask.getBitWidth();
792 const IntegerType *VTy = cast<IntegerType>(V->getType());
793 assert(VTy->getBitWidth() == BitWidth &&
794 KnownZero.getBitWidth() == BitWidth &&
795 KnownOne.getBitWidth() == BitWidth &&
796 "Value *V, DemandedMask, KnownZero and KnownOne \
797 must have same BitWidth");
798 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
799 // We know all of the bits for a constant!
800 KnownOne = CI->getValue() & DemandedMask;
801 KnownZero = ~KnownOne & DemandedMask;
802 return false;
803 }
804
805 KnownZero.clear();
806 KnownOne.clear();
807 if (!V->hasOneUse()) { // Other users may use these bits.
808 if (Depth != 0) { // Not at the root.
809 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
810 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
811 return false;
812 }
813 // If this is the root being simplified, allow it to have multiple uses,
814 // just set the DemandedMask to all bits.
815 DemandedMask = APInt::getAllOnesValue(BitWidth);
816 } else if (DemandedMask == 0) { // Not demanding any bits from V.
817 if (V != UndefValue::get(VTy))
818 return UpdateValueUsesWith(V, UndefValue::get(VTy));
819 return false;
820 } else if (Depth == 6) { // Limit search depth.
821 return false;
822 }
823
824 Instruction *I = dyn_cast<Instruction>(V);
825 if (!I) return false; // Only analyze instructions.
826
827 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
828 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
829 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000830 default:
831 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
832 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833 case Instruction::And:
834 // If either the LHS or the RHS are Zero, the result is zero.
835 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
836 RHSKnownZero, RHSKnownOne, Depth+1))
837 return true;
838 assert((RHSKnownZero & RHSKnownOne) == 0 &&
839 "Bits known to be one AND zero?");
840
841 // If something is known zero on the RHS, the bits aren't demanded on the
842 // LHS.
843 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
844 LHSKnownZero, LHSKnownOne, Depth+1))
845 return true;
846 assert((LHSKnownZero & LHSKnownOne) == 0 &&
847 "Bits known to be one AND zero?");
848
849 // If all of the demanded bits are known 1 on one side, return the other.
850 // These bits cannot contribute to the result of the 'and'.
851 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
852 (DemandedMask & ~LHSKnownZero))
853 return UpdateValueUsesWith(I, I->getOperand(0));
854 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
855 (DemandedMask & ~RHSKnownZero))
856 return UpdateValueUsesWith(I, I->getOperand(1));
857
858 // If all of the demanded bits in the inputs are known zeros, return zero.
859 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
860 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
861
862 // If the RHS is a constant, see if we can simplify it.
863 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
864 return UpdateValueUsesWith(I, I);
865
866 // Output known-1 bits are only known if set in both the LHS & RHS.
867 RHSKnownOne &= LHSKnownOne;
868 // Output known-0 are known to be clear if zero in either the LHS | RHS.
869 RHSKnownZero |= LHSKnownZero;
870 break;
871 case Instruction::Or:
872 // If either the LHS or the RHS are One, the result is One.
873 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
874 RHSKnownZero, RHSKnownOne, Depth+1))
875 return true;
876 assert((RHSKnownZero & RHSKnownOne) == 0 &&
877 "Bits known to be one AND zero?");
878 // If something is known one on the RHS, the bits aren't demanded on the
879 // LHS.
880 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
881 LHSKnownZero, LHSKnownOne, Depth+1))
882 return true;
883 assert((LHSKnownZero & LHSKnownOne) == 0 &&
884 "Bits known to be one AND zero?");
885
886 // If all of the demanded bits are known zero on one side, return the other.
887 // These bits cannot contribute to the result of the 'or'.
888 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
889 (DemandedMask & ~LHSKnownOne))
890 return UpdateValueUsesWith(I, I->getOperand(0));
891 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
892 (DemandedMask & ~RHSKnownOne))
893 return UpdateValueUsesWith(I, I->getOperand(1));
894
895 // If all of the potentially set bits on one side are known to be set on
896 // the other side, just use the 'other' side.
897 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
898 (DemandedMask & (~RHSKnownZero)))
899 return UpdateValueUsesWith(I, I->getOperand(0));
900 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
901 (DemandedMask & (~LHSKnownZero)))
902 return UpdateValueUsesWith(I, I->getOperand(1));
903
904 // If the RHS is a constant, see if we can simplify it.
905 if (ShrinkDemandedConstant(I, 1, DemandedMask))
906 return UpdateValueUsesWith(I, I);
907
908 // Output known-0 bits are only known if clear in both the LHS & RHS.
909 RHSKnownZero &= LHSKnownZero;
910 // Output known-1 are known to be set if set in either the LHS | RHS.
911 RHSKnownOne |= LHSKnownOne;
912 break;
913 case Instruction::Xor: {
914 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
915 RHSKnownZero, RHSKnownOne, Depth+1))
916 return true;
917 assert((RHSKnownZero & RHSKnownOne) == 0 &&
918 "Bits known to be one AND zero?");
919 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
920 LHSKnownZero, LHSKnownOne, Depth+1))
921 return true;
922 assert((LHSKnownZero & LHSKnownOne) == 0 &&
923 "Bits known to be one AND zero?");
924
925 // If all of the demanded bits are known zero on one side, return the other.
926 // These bits cannot contribute to the result of the 'xor'.
927 if ((DemandedMask & RHSKnownZero) == DemandedMask)
928 return UpdateValueUsesWith(I, I->getOperand(0));
929 if ((DemandedMask & LHSKnownZero) == DemandedMask)
930 return UpdateValueUsesWith(I, I->getOperand(1));
931
932 // Output known-0 bits are known if clear or set in both the LHS & RHS.
933 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
934 (RHSKnownOne & LHSKnownOne);
935 // Output known-1 are known to be set if set in only one of the LHS, RHS.
936 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
937 (RHSKnownOne & LHSKnownZero);
938
939 // If all of the demanded bits are known to be zero on one side or the
940 // other, turn this into an *inclusive* or.
941 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
942 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
943 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000944 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000945 I->getName());
946 InsertNewInstBefore(Or, *I);
947 return UpdateValueUsesWith(I, Or);
948 }
949
950 // If all of the demanded bits on one side are known, and all of the set
951 // bits on that side are also known to be set on the other side, turn this
952 // into an AND, as we know the bits will be cleared.
953 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
954 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
955 // all known
956 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
957 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
958 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000959 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000960 InsertNewInstBefore(And, *I);
961 return UpdateValueUsesWith(I, And);
962 }
963 }
964
965 // If the RHS is a constant, see if we can simplify it.
966 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
967 if (ShrinkDemandedConstant(I, 1, DemandedMask))
968 return UpdateValueUsesWith(I, I);
969
970 RHSKnownZero = KnownZeroOut;
971 RHSKnownOne = KnownOneOut;
972 break;
973 }
974 case Instruction::Select:
975 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
976 RHSKnownZero, RHSKnownOne, Depth+1))
977 return true;
978 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
979 LHSKnownZero, LHSKnownOne, Depth+1))
980 return true;
981 assert((RHSKnownZero & RHSKnownOne) == 0 &&
982 "Bits known to be one AND zero?");
983 assert((LHSKnownZero & LHSKnownOne) == 0 &&
984 "Bits known to be one AND zero?");
985
986 // If the operands are constants, see if we can simplify them.
987 if (ShrinkDemandedConstant(I, 1, DemandedMask))
988 return UpdateValueUsesWith(I, I);
989 if (ShrinkDemandedConstant(I, 2, DemandedMask))
990 return UpdateValueUsesWith(I, I);
991
992 // Only known if known in both the LHS and RHS.
993 RHSKnownOne &= LHSKnownOne;
994 RHSKnownZero &= LHSKnownZero;
995 break;
996 case Instruction::Trunc: {
997 uint32_t truncBf =
998 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
999 DemandedMask.zext(truncBf);
1000 RHSKnownZero.zext(truncBf);
1001 RHSKnownOne.zext(truncBf);
1002 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1003 RHSKnownZero, RHSKnownOne, Depth+1))
1004 return true;
1005 DemandedMask.trunc(BitWidth);
1006 RHSKnownZero.trunc(BitWidth);
1007 RHSKnownOne.trunc(BitWidth);
1008 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1009 "Bits known to be one AND zero?");
1010 break;
1011 }
1012 case Instruction::BitCast:
1013 if (!I->getOperand(0)->getType()->isInteger())
1014 return false;
1015
1016 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1017 RHSKnownZero, RHSKnownOne, Depth+1))
1018 return true;
1019 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1020 "Bits known to be one AND zero?");
1021 break;
1022 case Instruction::ZExt: {
1023 // Compute the bits in the result that are not present in the input.
1024 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1025 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1026
1027 DemandedMask.trunc(SrcBitWidth);
1028 RHSKnownZero.trunc(SrcBitWidth);
1029 RHSKnownOne.trunc(SrcBitWidth);
1030 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1031 RHSKnownZero, RHSKnownOne, Depth+1))
1032 return true;
1033 DemandedMask.zext(BitWidth);
1034 RHSKnownZero.zext(BitWidth);
1035 RHSKnownOne.zext(BitWidth);
1036 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1037 "Bits known to be one AND zero?");
1038 // The top bits are known to be zero.
1039 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1040 break;
1041 }
1042 case Instruction::SExt: {
1043 // Compute the bits in the result that are not present in the input.
1044 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1045 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1046
1047 APInt InputDemandedBits = DemandedMask &
1048 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1049
1050 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1051 // If any of the sign extended bits are demanded, we know that the sign
1052 // bit is demanded.
1053 if ((NewBits & DemandedMask) != 0)
1054 InputDemandedBits.set(SrcBitWidth-1);
1055
1056 InputDemandedBits.trunc(SrcBitWidth);
1057 RHSKnownZero.trunc(SrcBitWidth);
1058 RHSKnownOne.trunc(SrcBitWidth);
1059 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1060 RHSKnownZero, RHSKnownOne, Depth+1))
1061 return true;
1062 InputDemandedBits.zext(BitWidth);
1063 RHSKnownZero.zext(BitWidth);
1064 RHSKnownOne.zext(BitWidth);
1065 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1066 "Bits known to be one AND zero?");
1067
1068 // If the sign bit of the input is known set or clear, then we know the
1069 // top bits of the result.
1070
1071 // If the input sign bit is known zero, or if the NewBits are not demanded
1072 // convert this into a zero extension.
1073 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1074 {
1075 // Convert to ZExt cast
1076 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1077 return UpdateValueUsesWith(I, NewCast);
1078 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1079 RHSKnownOne |= NewBits;
1080 }
1081 break;
1082 }
1083 case Instruction::Add: {
1084 // Figure out what the input bits are. If the top bits of the and result
1085 // are not demanded, then the add doesn't demand them from its input
1086 // either.
1087 uint32_t NLZ = DemandedMask.countLeadingZeros();
1088
1089 // If there is a constant on the RHS, there are a variety of xformations
1090 // we can do.
1091 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1092 // If null, this should be simplified elsewhere. Some of the xforms here
1093 // won't work if the RHS is zero.
1094 if (RHS->isZero())
1095 break;
1096
1097 // If the top bit of the output is demanded, demand everything from the
1098 // input. Otherwise, we demand all the input bits except NLZ top bits.
1099 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1100
1101 // Find information about known zero/one bits in the input.
1102 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1103 LHSKnownZero, LHSKnownOne, Depth+1))
1104 return true;
1105
1106 // If the RHS of the add has bits set that can't affect the input, reduce
1107 // the constant.
1108 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1109 return UpdateValueUsesWith(I, I);
1110
1111 // Avoid excess work.
1112 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1113 break;
1114
1115 // Turn it into OR if input bits are zero.
1116 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1117 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001118 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 I->getName());
1120 InsertNewInstBefore(Or, *I);
1121 return UpdateValueUsesWith(I, Or);
1122 }
1123
1124 // We can say something about the output known-zero and known-one bits,
1125 // depending on potential carries from the input constant and the
1126 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1127 // bits set and the RHS constant is 0x01001, then we know we have a known
1128 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1129
1130 // To compute this, we first compute the potential carry bits. These are
1131 // the bits which may be modified. I'm not aware of a better way to do
1132 // this scan.
1133 const APInt& RHSVal = RHS->getValue();
1134 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1135
1136 // Now that we know which bits have carries, compute the known-1/0 sets.
1137
1138 // Bits are known one if they are known zero in one operand and one in the
1139 // other, and there is no input carry.
1140 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1141 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1142
1143 // Bits are known zero if they are known zero in both operands and there
1144 // is no input carry.
1145 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1146 } else {
1147 // If the high-bits of this ADD are not demanded, then it does not demand
1148 // the high bits of its LHS or RHS.
1149 if (DemandedMask[BitWidth-1] == 0) {
1150 // Right fill the mask of bits for this ADD to demand the most
1151 // significant bit and all those below it.
1152 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1153 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1154 LHSKnownZero, LHSKnownOne, Depth+1))
1155 return true;
1156 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1157 LHSKnownZero, LHSKnownOne, Depth+1))
1158 return true;
1159 }
1160 }
1161 break;
1162 }
1163 case Instruction::Sub:
1164 // If the high-bits of this SUB are not demanded, then it does not demand
1165 // the high bits of its LHS or RHS.
1166 if (DemandedMask[BitWidth-1] == 0) {
1167 // Right fill the mask of bits for this SUB to demand the most
1168 // significant bit and all those below it.
1169 uint32_t NLZ = DemandedMask.countLeadingZeros();
1170 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1171 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1172 LHSKnownZero, LHSKnownOne, Depth+1))
1173 return true;
1174 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1175 LHSKnownZero, LHSKnownOne, Depth+1))
1176 return true;
1177 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001178 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1179 // the known zeros and ones.
1180 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001181 break;
1182 case Instruction::Shl:
1183 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1184 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1185 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1186 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1187 RHSKnownZero, RHSKnownOne, Depth+1))
1188 return true;
1189 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1190 "Bits known to be one AND zero?");
1191 RHSKnownZero <<= ShiftAmt;
1192 RHSKnownOne <<= ShiftAmt;
1193 // low bits known zero.
1194 if (ShiftAmt)
1195 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1196 }
1197 break;
1198 case Instruction::LShr:
1199 // For a logical shift right
1200 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1201 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1202
1203 // Unsigned shift right.
1204 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1205 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1206 RHSKnownZero, RHSKnownOne, Depth+1))
1207 return true;
1208 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1209 "Bits known to be one AND zero?");
1210 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1211 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1212 if (ShiftAmt) {
1213 // Compute the new bits that are at the top now.
1214 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1215 RHSKnownZero |= HighBits; // high bits known zero.
1216 }
1217 }
1218 break;
1219 case Instruction::AShr:
1220 // If this is an arithmetic shift right and only the low-bit is set, we can
1221 // always convert this into a logical shr, even if the shift amount is
1222 // variable. The low bit of the shift cannot be an input sign bit unless
1223 // the shift amount is >= the size of the datatype, which is undefined.
1224 if (DemandedMask == 1) {
1225 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001226 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 I->getOperand(0), I->getOperand(1), I->getName());
1228 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1229 return UpdateValueUsesWith(I, NewVal);
1230 }
1231
1232 // If the sign bit is the only bit demanded by this ashr, then there is no
1233 // need to do it, the shift doesn't change the high bit.
1234 if (DemandedMask.isSignBit())
1235 return UpdateValueUsesWith(I, I->getOperand(0));
1236
1237 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1238 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1239
1240 // Signed shift right.
1241 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1242 // If any of the "high bits" are demanded, we should set the sign bit as
1243 // demanded.
1244 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1245 DemandedMaskIn.set(BitWidth-1);
1246 if (SimplifyDemandedBits(I->getOperand(0),
1247 DemandedMaskIn,
1248 RHSKnownZero, RHSKnownOne, Depth+1))
1249 return true;
1250 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1251 "Bits known to be one AND zero?");
1252 // Compute the new bits that are at the top now.
1253 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1254 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1255 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1256
1257 // Handle the sign bits.
1258 APInt SignBit(APInt::getSignBit(BitWidth));
1259 // Adjust to where it is now in the mask.
1260 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1261
1262 // If the input sign bit is known to be zero, or if none of the top bits
1263 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001264 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 (HighBits & ~DemandedMask) == HighBits) {
1266 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001267 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268 I->getOperand(0), SA, I->getName());
1269 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1270 return UpdateValueUsesWith(I, NewVal);
1271 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1272 RHSKnownOne |= HighBits;
1273 }
1274 }
1275 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001276 case Instruction::SRem:
1277 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001278 APInt RA = Rem->getValue().abs();
1279 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001280 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1281 return UpdateValueUsesWith(I, I->getOperand(0));
1282
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001283 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001284 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1285 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1286 LHSKnownZero, LHSKnownOne, Depth+1))
1287 return true;
1288
1289 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1290 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001291
1292 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001293
1294 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1295 }
1296 }
1297 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001298 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001299 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1300 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001301 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1302 KnownZero2, KnownOne2, Depth+1))
1303 return true;
1304
Dan Gohmanbec16052008-04-28 17:02:21 +00001305 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001306 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001307 KnownZero2, KnownOne2, Depth+1))
1308 return true;
1309
1310 Leaders = std::max(Leaders,
1311 KnownZero2.countLeadingOnes());
1312 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001313 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001314 }
Chris Lattner989ba312008-06-18 04:33:20 +00001315 case Instruction::Call:
1316 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1317 switch (II->getIntrinsicID()) {
1318 default: break;
1319 case Intrinsic::bswap: {
1320 // If the only bits demanded come from one byte of the bswap result,
1321 // just shift the input byte into position to eliminate the bswap.
1322 unsigned NLZ = DemandedMask.countLeadingZeros();
1323 unsigned NTZ = DemandedMask.countTrailingZeros();
1324
1325 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1326 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1327 // have 14 leading zeros, round to 8.
1328 NLZ &= ~7;
1329 NTZ &= ~7;
1330 // If we need exactly one byte, we can do this transformation.
1331 if (BitWidth-NLZ-NTZ == 8) {
1332 unsigned ResultBit = NTZ;
1333 unsigned InputBit = BitWidth-NTZ-8;
1334
1335 // Replace this with either a left or right shift to get the byte into
1336 // the right place.
1337 Instruction *NewVal;
1338 if (InputBit > ResultBit)
1339 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1340 ConstantInt::get(I->getType(), InputBit-ResultBit));
1341 else
1342 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1343 ConstantInt::get(I->getType(), ResultBit-InputBit));
1344 NewVal->takeName(I);
1345 InsertNewInstBefore(NewVal, *I);
1346 return UpdateValueUsesWith(I, NewVal);
1347 }
1348
1349 // TODO: Could compute known zero/one bits based on the input.
1350 break;
1351 }
1352 }
1353 }
Chris Lattner4946e222008-06-18 18:11:55 +00001354 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001355 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001356 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001357
1358 // If the client is only demanding bits that we know, return the known
1359 // constant.
1360 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1361 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1362 return false;
1363}
1364
1365
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001366/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001367/// 64 or fewer elements. DemandedElts contains the set of elements that are
1368/// actually used by the caller. This method analyzes which elements of the
1369/// operand are undef and returns that information in UndefElts.
1370///
1371/// If the information about demanded elements can be used to simplify the
1372/// operation, the operation is simplified, then the resultant value is
1373/// returned. This returns null if no change was made.
1374Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1375 uint64_t &UndefElts,
1376 unsigned Depth) {
1377 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1378 assert(VWidth <= 64 && "Vector too wide to analyze!");
1379 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001380 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001381
1382 if (isa<UndefValue>(V)) {
1383 // If the entire vector is undefined, just return this info.
1384 UndefElts = EltMask;
1385 return 0;
1386 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1387 UndefElts = EltMask;
1388 return UndefValue::get(V->getType());
1389 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 UndefElts = 0;
1392 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1393 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1394 Constant *Undef = UndefValue::get(EltTy);
1395
1396 std::vector<Constant*> Elts;
1397 for (unsigned i = 0; i != VWidth; ++i)
1398 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1399 Elts.push_back(Undef);
1400 UndefElts |= (1ULL << i);
1401 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1402 Elts.push_back(Undef);
1403 UndefElts |= (1ULL << i);
1404 } else { // Otherwise, defined.
1405 Elts.push_back(CP->getOperand(i));
1406 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001407
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001408 // If we changed the constant, return it.
1409 Constant *NewCP = ConstantVector::get(Elts);
1410 return NewCP != CP ? NewCP : 0;
1411 } else if (isa<ConstantAggregateZero>(V)) {
1412 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1413 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001414
1415 // Check if this is identity. If so, return 0 since we are not simplifying
1416 // anything.
1417 if (DemandedElts == ((1ULL << VWidth) -1))
1418 return 0;
1419
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001420 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1421 Constant *Zero = Constant::getNullValue(EltTy);
1422 Constant *Undef = UndefValue::get(EltTy);
1423 std::vector<Constant*> Elts;
1424 for (unsigned i = 0; i != VWidth; ++i)
1425 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1426 UndefElts = DemandedElts ^ EltMask;
1427 return ConstantVector::get(Elts);
1428 }
1429
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001430 // Limit search depth.
1431 if (Depth == 10)
1432 return false;
1433
1434 // If multiple users are using the root value, procede with
1435 // simplification conservatively assuming that all elements
1436 // are needed.
1437 if (!V->hasOneUse()) {
1438 // Quit if we find multiple users of a non-root value though.
1439 // They'll be handled when it's their turn to be visited by
1440 // the main instcombine process.
1441 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001442 // TODO: Just compute the UndefElts information recursively.
1443 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001444
1445 // Conservatively assume that all elements are needed.
1446 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001447 }
1448
1449 Instruction *I = dyn_cast<Instruction>(V);
1450 if (!I) return false; // Only analyze instructions.
1451
1452 bool MadeChange = false;
1453 uint64_t UndefElts2;
1454 Value *TmpV;
1455 switch (I->getOpcode()) {
1456 default: break;
1457
1458 case Instruction::InsertElement: {
1459 // If this is a variable index, we don't know which element it overwrites.
1460 // demand exactly the same input as we produce.
1461 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1462 if (Idx == 0) {
1463 // Note that we can't propagate undef elt info, because we don't know
1464 // which elt is getting updated.
1465 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1466 UndefElts2, Depth+1);
1467 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1468 break;
1469 }
1470
1471 // If this is inserting an element that isn't demanded, remove this
1472 // insertelement.
1473 unsigned IdxNo = Idx->getZExtValue();
1474 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1475 return AddSoonDeadInstToWorklist(*I, 0);
1476
1477 // Otherwise, the element inserted overwrites whatever was there, so the
1478 // input demanded set is simpler than the output set.
1479 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1480 DemandedElts & ~(1ULL << IdxNo),
1481 UndefElts, Depth+1);
1482 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1483
1484 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001485 UndefElts &= ~(1ULL << IdxNo);
1486 break;
1487 }
1488 case Instruction::ShuffleVector: {
1489 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001490 uint64_t LHSVWidth =
1491 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001492 uint64_t LeftDemanded = 0, RightDemanded = 0;
1493 for (unsigned i = 0; i < VWidth; i++) {
1494 if (DemandedElts & (1ULL << i)) {
1495 unsigned MaskVal = Shuffle->getMaskValue(i);
1496 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001497 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001498 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001499 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001500 LeftDemanded |= 1ULL << MaskVal;
1501 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001502 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001503 }
1504 }
1505 }
1506
1507 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1508 UndefElts2, Depth+1);
1509 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1510
1511 uint64_t UndefElts3;
1512 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1513 UndefElts3, Depth+1);
1514 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1515
1516 bool NewUndefElts = false;
1517 for (unsigned i = 0; i < VWidth; i++) {
1518 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001519 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001520 uint64_t NewBit = 1ULL << i;
1521 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001522 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001523 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1524 NewUndefElts |= NewBit;
1525 UndefElts |= NewBit;
1526 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001527 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001528 NewUndefElts |= NewBit;
1529 UndefElts |= NewBit;
1530 }
1531 }
1532
1533 if (NewUndefElts) {
1534 // Add additional discovered undefs.
1535 std::vector<Constant*> Elts;
1536 for (unsigned i = 0; i < VWidth; ++i) {
1537 if (UndefElts & (1ULL << i))
1538 Elts.push_back(UndefValue::get(Type::Int32Ty));
1539 else
1540 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1541 Shuffle->getMaskValue(i)));
1542 }
1543 I->setOperand(2, ConstantVector::get(Elts));
1544 MadeChange = true;
1545 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001546 break;
1547 }
1548 case Instruction::BitCast: {
1549 // Vector->vector casts only.
1550 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1551 if (!VTy) break;
1552 unsigned InVWidth = VTy->getNumElements();
1553 uint64_t InputDemandedElts = 0;
1554 unsigned Ratio;
1555
1556 if (VWidth == InVWidth) {
1557 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1558 // elements as are demanded of us.
1559 Ratio = 1;
1560 InputDemandedElts = DemandedElts;
1561 } else if (VWidth > InVWidth) {
1562 // Untested so far.
1563 break;
1564
1565 // If there are more elements in the result than there are in the source,
1566 // then an input element is live if any of the corresponding output
1567 // elements are live.
1568 Ratio = VWidth/InVWidth;
1569 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1570 if (DemandedElts & (1ULL << OutIdx))
1571 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1572 }
1573 } else {
1574 // Untested so far.
1575 break;
1576
1577 // If there are more elements in the source than there are in the result,
1578 // then an input element is live if the corresponding output element is
1579 // live.
1580 Ratio = InVWidth/VWidth;
1581 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1582 if (DemandedElts & (1ULL << InIdx/Ratio))
1583 InputDemandedElts |= 1ULL << InIdx;
1584 }
1585
1586 // div/rem demand all inputs, because they don't want divide by zero.
1587 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1588 UndefElts2, Depth+1);
1589 if (TmpV) {
1590 I->setOperand(0, TmpV);
1591 MadeChange = true;
1592 }
1593
1594 UndefElts = UndefElts2;
1595 if (VWidth > InVWidth) {
1596 assert(0 && "Unimp");
1597 // If there are more elements in the result than there are in the source,
1598 // then an output element is undef if the corresponding input element is
1599 // undef.
1600 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1601 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1602 UndefElts |= 1ULL << OutIdx;
1603 } else if (VWidth < InVWidth) {
1604 assert(0 && "Unimp");
1605 // If there are more elements in the source than there are in the result,
1606 // then a result element is undef if all of the corresponding input
1607 // elements are undef.
1608 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1609 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1610 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1611 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1612 }
1613 break;
1614 }
1615 case Instruction::And:
1616 case Instruction::Or:
1617 case Instruction::Xor:
1618 case Instruction::Add:
1619 case Instruction::Sub:
1620 case Instruction::Mul:
1621 // div/rem demand all inputs, because they don't want divide by zero.
1622 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1623 UndefElts, Depth+1);
1624 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1625 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1626 UndefElts2, Depth+1);
1627 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1628
1629 // Output elements are undefined if both are undefined. Consider things
1630 // like undef&0. The result is known zero, not undef.
1631 UndefElts &= UndefElts2;
1632 break;
1633
1634 case Instruction::Call: {
1635 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1636 if (!II) break;
1637 switch (II->getIntrinsicID()) {
1638 default: break;
1639
1640 // Binary vector operations that work column-wise. A dest element is a
1641 // function of the corresponding input elements from the two inputs.
1642 case Intrinsic::x86_sse_sub_ss:
1643 case Intrinsic::x86_sse_mul_ss:
1644 case Intrinsic::x86_sse_min_ss:
1645 case Intrinsic::x86_sse_max_ss:
1646 case Intrinsic::x86_sse2_sub_sd:
1647 case Intrinsic::x86_sse2_mul_sd:
1648 case Intrinsic::x86_sse2_min_sd:
1649 case Intrinsic::x86_sse2_max_sd:
1650 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1651 UndefElts, Depth+1);
1652 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1653 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1654 UndefElts2, Depth+1);
1655 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1656
1657 // If only the low elt is demanded and this is a scalarizable intrinsic,
1658 // scalarize it now.
1659 if (DemandedElts == 1) {
1660 switch (II->getIntrinsicID()) {
1661 default: break;
1662 case Intrinsic::x86_sse_sub_ss:
1663 case Intrinsic::x86_sse_mul_ss:
1664 case Intrinsic::x86_sse2_sub_sd:
1665 case Intrinsic::x86_sse2_mul_sd:
1666 // TODO: Lower MIN/MAX/ABS/etc
1667 Value *LHS = II->getOperand(1);
1668 Value *RHS = II->getOperand(2);
1669 // Extract the element as scalars.
1670 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1671 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1672
1673 switch (II->getIntrinsicID()) {
1674 default: assert(0 && "Case stmts out of sync!");
1675 case Intrinsic::x86_sse_sub_ss:
1676 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001677 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001678 II->getName()), *II);
1679 break;
1680 case Intrinsic::x86_sse_mul_ss:
1681 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001682 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001683 II->getName()), *II);
1684 break;
1685 }
1686
1687 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001688 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1689 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001690 InsertNewInstBefore(New, *II);
1691 AddSoonDeadInstToWorklist(*II, 0);
1692 return New;
1693 }
1694 }
1695
1696 // Output elements are undefined if both are undefined. Consider things
1697 // like undef&0. The result is known zero, not undef.
1698 UndefElts &= UndefElts2;
1699 break;
1700 }
1701 break;
1702 }
1703 }
1704 return MadeChange ? I : 0;
1705}
1706
Dan Gohman5d56fd42008-05-19 22:14:15 +00001707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001708/// AssociativeOpt - Perform an optimization on an associative operator. This
1709/// function is designed to check a chain of associative operators for a
1710/// potential to apply a certain optimization. Since the optimization may be
1711/// applicable if the expression was reassociated, this checks the chain, then
1712/// reassociates the expression as necessary to expose the optimization
1713/// opportunity. This makes use of a special Functor, which must define
1714/// 'shouldApply' and 'apply' methods.
1715///
1716template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001717static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001718 unsigned Opcode = Root.getOpcode();
1719 Value *LHS = Root.getOperand(0);
1720
1721 // Quick check, see if the immediate LHS matches...
1722 if (F.shouldApply(LHS))
1723 return F.apply(Root);
1724
1725 // Otherwise, if the LHS is not of the same opcode as the root, return.
1726 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1727 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1728 // Should we apply this transform to the RHS?
1729 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1730
1731 // If not to the RHS, check to see if we should apply to the LHS...
1732 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1733 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1734 ShouldApply = true;
1735 }
1736
1737 // If the functor wants to apply the optimization to the RHS of LHSI,
1738 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1739 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 // Now all of the instructions are in the current basic block, go ahead
1741 // and perform the reassociation.
1742 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1743
1744 // First move the selected RHS to the LHS of the root...
1745 Root.setOperand(0, LHSI->getOperand(1));
1746
1747 // Make what used to be the LHS of the root be the user of the root...
1748 Value *ExtraOperand = TmpLHSI->getOperand(1);
1749 if (&Root == TmpLHSI) {
1750 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1751 return 0;
1752 }
1753 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1754 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001755 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001756 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001757 ARI = Root;
1758
1759 // Now propagate the ExtraOperand down the chain of instructions until we
1760 // get to LHSI.
1761 while (TmpLHSI != LHSI) {
1762 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1763 // Move the instruction to immediately before the chain we are
1764 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001765 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766 ARI = NextLHSI;
1767
1768 Value *NextOp = NextLHSI->getOperand(1);
1769 NextLHSI->setOperand(1, ExtraOperand);
1770 TmpLHSI = NextLHSI;
1771 ExtraOperand = NextOp;
1772 }
1773
1774 // Now that the instructions are reassociated, have the functor perform
1775 // the transformation...
1776 return F.apply(Root);
1777 }
1778
1779 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1780 }
1781 return 0;
1782}
1783
Dan Gohman089efff2008-05-13 00:00:25 +00001784namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785
Nick Lewycky27f6c132008-05-23 04:34:58 +00001786// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001787struct AddRHS {
1788 Value *RHS;
1789 AddRHS(Value *rhs) : RHS(rhs) {}
1790 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1791 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001792 return BinaryOperator::CreateShl(Add.getOperand(0),
1793 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 }
1795};
1796
1797// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1798// iff C1&C2 == 0
1799struct AddMaskingAnd {
1800 Constant *C2;
1801 AddMaskingAnd(Constant *c) : C2(c) {}
1802 bool shouldApply(Value *LHS) const {
1803 ConstantInt *C1;
1804 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1805 ConstantExpr::getAnd(C1, C2)->isNullValue();
1806 }
1807 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001808 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001809 }
1810};
1811
Dan Gohman089efff2008-05-13 00:00:25 +00001812}
1813
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001814static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1815 InstCombiner *IC) {
1816 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1817 if (Constant *SOC = dyn_cast<Constant>(SO))
1818 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1819
Gabor Greifa645dd32008-05-16 19:29:10 +00001820 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001821 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1822 }
1823
1824 // Figure out if the constant is the left or the right argument.
1825 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1826 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1827
1828 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1829 if (ConstIsRHS)
1830 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1831 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1832 }
1833
1834 Value *Op0 = SO, *Op1 = ConstOperand;
1835 if (!ConstIsRHS)
1836 std::swap(Op0, Op1);
1837 Instruction *New;
1838 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001839 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001840 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001841 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001842 SO->getName()+".cmp");
1843 else {
1844 assert(0 && "Unknown binary instruction type!");
1845 abort();
1846 }
1847 return IC->InsertNewInstBefore(New, I);
1848}
1849
1850// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1851// constant as the other operand, try to fold the binary operator into the
1852// select arguments. This also works for Cast instructions, which obviously do
1853// not have a second operand.
1854static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1855 InstCombiner *IC) {
1856 // Don't modify shared select instructions
1857 if (!SI->hasOneUse()) return 0;
1858 Value *TV = SI->getOperand(1);
1859 Value *FV = SI->getOperand(2);
1860
1861 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1862 // Bool selects with constant operands can be folded to logical ops.
1863 if (SI->getType() == Type::Int1Ty) return 0;
1864
1865 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1866 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1867
Gabor Greifd6da1d02008-04-06 20:25:17 +00001868 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1869 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001870 }
1871 return 0;
1872}
1873
1874
1875/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1876/// node as operand #0, see if we can fold the instruction into the PHI (which
1877/// is only possible if all operands to the PHI are constants).
1878Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1879 PHINode *PN = cast<PHINode>(I.getOperand(0));
1880 unsigned NumPHIValues = PN->getNumIncomingValues();
1881 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1882
1883 // Check to see if all of the operands of the PHI are constants. If there is
1884 // one non-constant value, remember the BB it is. If there is more than one
1885 // or if *it* is a PHI, bail out.
1886 BasicBlock *NonConstBB = 0;
1887 for (unsigned i = 0; i != NumPHIValues; ++i)
1888 if (!isa<Constant>(PN->getIncomingValue(i))) {
1889 if (NonConstBB) return 0; // More than one non-const value.
1890 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1891 NonConstBB = PN->getIncomingBlock(i);
1892
1893 // If the incoming non-constant value is in I's block, we have an infinite
1894 // loop.
1895 if (NonConstBB == I.getParent())
1896 return 0;
1897 }
1898
1899 // If there is exactly one non-constant value, we can insert a copy of the
1900 // operation in that block. However, if this is a critical edge, we would be
1901 // inserting the computation one some other paths (e.g. inside a loop). Only
1902 // do this if the pred block is unconditionally branching into the phi block.
1903 if (NonConstBB) {
1904 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1905 if (!BI || !BI->isUnconditional()) return 0;
1906 }
1907
1908 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001909 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001910 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1911 InsertNewInstBefore(NewPN, *PN);
1912 NewPN->takeName(PN);
1913
1914 // Next, add all of the operands to the PHI.
1915 if (I.getNumOperands() == 2) {
1916 Constant *C = cast<Constant>(I.getOperand(1));
1917 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001918 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001919 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1920 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1921 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1922 else
1923 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1924 } else {
1925 assert(PN->getIncomingBlock(i) == NonConstBB);
1926 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001927 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001928 PN->getIncomingValue(i), C, "phitmp",
1929 NonConstBB->getTerminator());
1930 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001931 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001932 CI->getPredicate(),
1933 PN->getIncomingValue(i), C, "phitmp",
1934 NonConstBB->getTerminator());
1935 else
1936 assert(0 && "Unknown binop!");
1937
1938 AddToWorkList(cast<Instruction>(InV));
1939 }
1940 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1941 }
1942 } else {
1943 CastInst *CI = cast<CastInst>(&I);
1944 const Type *RetTy = CI->getType();
1945 for (unsigned i = 0; i != NumPHIValues; ++i) {
1946 Value *InV;
1947 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1948 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1949 } else {
1950 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001951 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001952 I.getType(), "phitmp",
1953 NonConstBB->getTerminator());
1954 AddToWorkList(cast<Instruction>(InV));
1955 }
1956 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1957 }
1958 }
1959 return ReplaceInstUsesWith(I, NewPN);
1960}
1961
Chris Lattner55476162008-01-29 06:52:45 +00001962
Chris Lattner3554f972008-05-20 05:46:13 +00001963/// WillNotOverflowSignedAdd - Return true if we can prove that:
1964/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1965/// This basically requires proving that the add in the original type would not
1966/// overflow to change the sign bit or have a carry out.
1967bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1968 // There are different heuristics we can use for this. Here are some simple
1969 // ones.
1970
1971 // Add has the property that adding any two 2's complement numbers can only
1972 // have one carry bit which can change a sign. As such, if LHS and RHS each
1973 // have at least two sign bits, we know that the addition of the two values will
1974 // sign extend fine.
1975 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1976 return true;
1977
1978
1979 // If one of the operands only has one non-zero bit, and if the other operand
1980 // has a known-zero bit in a more significant place than it (not including the
1981 // sign bit) the ripple may go up to and fill the zero, but won't change the
1982 // sign. For example, (X & ~4) + 1.
1983
1984 // TODO: Implement.
1985
1986 return false;
1987}
1988
Chris Lattner55476162008-01-29 06:52:45 +00001989
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001990Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1991 bool Changed = SimplifyCommutative(I);
1992 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1993
1994 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1995 // X + undef -> undef
1996 if (isa<UndefValue>(RHS))
1997 return ReplaceInstUsesWith(I, RHS);
1998
1999 // X + 0 --> X
2000 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2001 if (RHSC->isNullValue())
2002 return ReplaceInstUsesWith(I, LHS);
2003 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00002004 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2005 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002006 return ReplaceInstUsesWith(I, LHS);
2007 }
2008
2009 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2010 // X + (signbit) --> X ^ signbit
2011 const APInt& Val = CI->getValue();
2012 uint32_t BitWidth = Val.getBitWidth();
2013 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00002014 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002015
2016 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2017 // (X & 254)+1 -> (X&254)|1
2018 if (!isa<VectorType>(I.getType())) {
2019 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2020 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2021 KnownZero, KnownOne))
2022 return &I;
2023 }
Dan Gohman35b76162008-10-30 20:40:10 +00002024
2025 // zext(i1) - 1 -> select i1, 0, -1
2026 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2027 if (CI->isAllOnesValue() &&
2028 ZI->getOperand(0)->getType() == Type::Int1Ty)
2029 return SelectInst::Create(ZI->getOperand(0),
2030 Constant::getNullValue(I.getType()),
2031 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 }
2033
2034 if (isa<PHINode>(LHS))
2035 if (Instruction *NV = FoldOpIntoPhi(I))
2036 return NV;
2037
2038 ConstantInt *XorRHS = 0;
2039 Value *XorLHS = 0;
2040 if (isa<ConstantInt>(RHSC) &&
2041 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2042 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2043 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2044
2045 uint32_t Size = TySizeBits / 2;
2046 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2047 APInt CFF80Val(-C0080Val);
2048 do {
2049 if (TySizeBits > Size) {
2050 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2051 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2052 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2053 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2054 // This is a sign extend if the top bits are known zero.
2055 if (!MaskedValueIsZero(XorLHS,
2056 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2057 Size = 0; // Not a sign ext, but can't be any others either.
2058 break;
2059 }
2060 }
2061 Size >>= 1;
2062 C0080Val = APIntOps::lshr(C0080Val, Size);
2063 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2064 } while (Size >= 1);
2065
2066 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002067 // with funny bit widths then this switch statement should be removed. It
2068 // is just here to get the size of the "middle" type back up to something
2069 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002070 const Type *MiddleType = 0;
2071 switch (Size) {
2072 default: break;
2073 case 32: MiddleType = Type::Int32Ty; break;
2074 case 16: MiddleType = Type::Int16Ty; break;
2075 case 8: MiddleType = Type::Int8Ty; break;
2076 }
2077 if (MiddleType) {
2078 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2079 InsertNewInstBefore(NewTrunc, I);
2080 return new SExtInst(NewTrunc, I.getType(), I.getName());
2081 }
2082 }
2083 }
2084
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002085 if (I.getType() == Type::Int1Ty)
2086 return BinaryOperator::CreateXor(LHS, RHS);
2087
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002088 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002089 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002090 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2091
2092 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2093 if (RHSI->getOpcode() == Instruction::Sub)
2094 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2095 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2096 }
2097 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2098 if (LHSI->getOpcode() == Instruction::Sub)
2099 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2100 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2101 }
2102 }
2103
2104 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002105 // -A + -B --> -(A + B)
2106 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002107 if (LHS->getType()->isIntOrIntVector()) {
2108 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002109 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002110 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002111 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002112 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002113 }
2114
Gabor Greifa645dd32008-05-16 19:29:10 +00002115 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002116 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117
2118 // A + -B --> A - B
2119 if (!isa<Constant>(RHS))
2120 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002121 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002122
2123
2124 ConstantInt *C2;
2125 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2126 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002127 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002128
2129 // X*C1 + X*C2 --> X * (C1+C2)
2130 ConstantInt *C1;
2131 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002132 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002133 }
2134
2135 // X + X*C --> X * (C+1)
2136 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002137 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002138
2139 // X + ~X --> -1 since ~X = -X-1
2140 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2141 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2142
2143
2144 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2145 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2146 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2147 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002148
2149 // A+B --> A|B iff A and B have no bits set in common.
2150 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2151 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2152 APInt LHSKnownOne(IT->getBitWidth(), 0);
2153 APInt LHSKnownZero(IT->getBitWidth(), 0);
2154 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2155 if (LHSKnownZero != 0) {
2156 APInt RHSKnownOne(IT->getBitWidth(), 0);
2157 APInt RHSKnownZero(IT->getBitWidth(), 0);
2158 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2159
2160 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002161 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002162 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002163 }
2164 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002165
Nick Lewycky83598a72008-02-03 07:42:09 +00002166 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002167 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002168 Value *W, *X, *Y, *Z;
2169 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2170 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2171 if (W != Y) {
2172 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002173 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002174 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002175 std::swap(W, X);
2176 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002177 std::swap(Y, Z);
2178 std::swap(W, X);
2179 }
2180 }
2181
2182 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002183 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002184 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002185 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002186 }
2187 }
2188 }
2189
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002190 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2191 Value *X = 0;
2192 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002193 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002194
2195 // (X & FF00) + xx00 -> (X+xx00) & FF00
2196 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2197 Constant *Anded = And(CRHS, C2);
2198 if (Anded == CRHS) {
2199 // See if all bits from the first bit set in the Add RHS up are included
2200 // in the mask. First, get the rightmost bit.
2201 const APInt& AddRHSV = CRHS->getValue();
2202
2203 // Form a mask of all bits from the lowest bit added through the top.
2204 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2205
2206 // See if the and mask includes all of these bits.
2207 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2208
2209 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2210 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002211 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002212 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002213 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002214 }
2215 }
2216 }
2217
2218 // Try to fold constant add into select arguments.
2219 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2220 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2221 return R;
2222 }
2223
2224 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002225 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002226 {
2227 CastInst *CI = dyn_cast<CastInst>(LHS);
2228 Value *Other = RHS;
2229 if (!CI) {
2230 CI = dyn_cast<CastInst>(RHS);
2231 Other = LHS;
2232 }
2233 if (CI && CI->getType()->isSized() &&
2234 (CI->getType()->getPrimitiveSizeInBits() ==
2235 TD->getIntPtrType()->getPrimitiveSizeInBits())
2236 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002237 unsigned AS =
2238 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002239 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2240 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002241 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002242 return new PtrToIntInst(I2, CI->getType());
2243 }
2244 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002245
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002246 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002247 {
2248 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002249 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002250 if (!SI) {
2251 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002252 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002253 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002254 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002255 Value *TV = SI->getTrueValue();
2256 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002257 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002258
2259 // Can we fold the add into the argument of the select?
2260 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002261 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2262 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002263 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002264 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2265 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002266 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002267 }
2268 }
Chris Lattner55476162008-01-29 06:52:45 +00002269
2270 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2271 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2272 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2273 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002274
Chris Lattner3554f972008-05-20 05:46:13 +00002275 // Check for (add (sext x), y), see if we can merge this into an
2276 // integer add followed by a sext.
2277 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2278 // (add (sext x), cst) --> (sext (add x, cst'))
2279 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2280 Constant *CI =
2281 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2282 if (LHSConv->hasOneUse() &&
2283 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2284 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2285 // Insert the new, smaller add.
2286 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2287 CI, "addconv");
2288 InsertNewInstBefore(NewAdd, I);
2289 return new SExtInst(NewAdd, I.getType());
2290 }
2291 }
2292
2293 // (add (sext x), (sext y)) --> (sext (add int x, y))
2294 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2295 // Only do this if x/y have the same type, if at last one of them has a
2296 // single use (so we don't increase the number of sexts), and if the
2297 // integer add will not overflow.
2298 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2299 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2300 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2301 RHSConv->getOperand(0))) {
2302 // Insert the new integer add.
2303 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2304 RHSConv->getOperand(0),
2305 "addconv");
2306 InsertNewInstBefore(NewAdd, I);
2307 return new SExtInst(NewAdd, I.getType());
2308 }
2309 }
2310 }
2311
2312 // Check for (add double (sitofp x), y), see if we can merge this into an
2313 // integer add followed by a promotion.
2314 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2315 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2316 // ... if the constant fits in the integer value. This is useful for things
2317 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2318 // requires a constant pool load, and generally allows the add to be better
2319 // instcombined.
2320 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2321 Constant *CI =
2322 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2323 if (LHSConv->hasOneUse() &&
2324 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2325 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2326 // Insert the new integer add.
2327 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2328 CI, "addconv");
2329 InsertNewInstBefore(NewAdd, I);
2330 return new SIToFPInst(NewAdd, I.getType());
2331 }
2332 }
2333
2334 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2335 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2336 // Only do this if x/y have the same type, if at last one of them has a
2337 // single use (so we don't increase the number of int->fp conversions),
2338 // and if the integer add will not overflow.
2339 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2340 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2341 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2342 RHSConv->getOperand(0))) {
2343 // Insert the new integer add.
2344 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2345 RHSConv->getOperand(0),
2346 "addconv");
2347 InsertNewInstBefore(NewAdd, I);
2348 return new SIToFPInst(NewAdd, I.getType());
2349 }
2350 }
2351 }
2352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353 return Changed ? &I : 0;
2354}
2355
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2357 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2358
Chris Lattner27fbef42008-07-17 06:07:20 +00002359 if (Op0 == Op1 && // sub X, X -> 0
2360 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2362
2363 // If this is a 'B = x-(-A)', change to B = x+A...
2364 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002365 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002366
2367 if (isa<UndefValue>(Op0))
2368 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2369 if (isa<UndefValue>(Op1))
2370 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2371
2372 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2373 // Replace (-1 - A) with (~A)...
2374 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002375 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376
2377 // C - ~X == X + (1+C)
2378 Value *X = 0;
2379 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002380 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002381
2382 // -(X >>u 31) -> (X >>s 31)
2383 // -(X >>s 31) -> (X >>u 31)
2384 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002385 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386 if (SI->getOpcode() == Instruction::LShr) {
2387 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2388 // Check to see if we are shifting out everything but the sign bit.
2389 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2390 SI->getType()->getPrimitiveSizeInBits()-1) {
2391 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002392 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002393 SI->getOperand(0), CU, SI->getName());
2394 }
2395 }
2396 }
2397 else if (SI->getOpcode() == Instruction::AShr) {
2398 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2399 // Check to see if we are shifting out everything but the sign bit.
2400 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2401 SI->getType()->getPrimitiveSizeInBits()-1) {
2402 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 SI->getOperand(0), CU, SI->getName());
2405 }
2406 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002407 }
2408 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002409 }
2410
2411 // Try to fold constant sub into select arguments.
2412 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2413 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2414 return R;
2415
2416 if (isa<PHINode>(Op0))
2417 if (Instruction *NV = FoldOpIntoPhi(I))
2418 return NV;
2419 }
2420
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002421 if (I.getType() == Type::Int1Ty)
2422 return BinaryOperator::CreateXor(Op0, Op1);
2423
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2425 if (Op1I->getOpcode() == Instruction::Add &&
2426 !Op0->getType()->isFPOrFPVector()) {
2427 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002428 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002429 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002430 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002431 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2432 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2433 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002434 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002435 Op1I->getOperand(0));
2436 }
2437 }
2438
2439 if (Op1I->hasOneUse()) {
2440 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2441 // is not used by anyone else...
2442 //
2443 if (Op1I->getOpcode() == Instruction::Sub &&
2444 !Op1I->getType()->isFPOrFPVector()) {
2445 // Swap the two operands of the subexpr...
2446 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2447 Op1I->setOperand(0, IIOp1);
2448 Op1I->setOperand(1, IIOp0);
2449
2450 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002451 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002452 }
2453
2454 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2455 //
2456 if (Op1I->getOpcode() == Instruction::And &&
2457 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2458 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2459
2460 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002461 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2462 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463 }
2464
2465 // 0 - (X sdiv C) -> (X sdiv -C)
2466 if (Op1I->getOpcode() == Instruction::SDiv)
2467 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2468 if (CSI->isZero())
2469 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002470 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002471 ConstantExpr::getNeg(DivRHS));
2472
2473 // X - X*C --> X * (1-C)
2474 ConstantInt *C2 = 0;
2475 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2476 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002477 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 }
Dan Gohmanda338742007-09-17 17:31:57 +00002479
2480 // X - ((X / Y) * Y) --> X % Y
2481 if (Op1I->getOpcode() == Instruction::Mul)
2482 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2483 if (Op0 == I->getOperand(0) &&
2484 Op1I->getOperand(1) == I->getOperand(1)) {
2485 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002486 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002487 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002488 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002489 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002490 }
2491 }
2492
2493 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002494 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002495 if (Op0I->getOpcode() == Instruction::Add) {
2496 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2497 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2498 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2499 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2500 } else if (Op0I->getOpcode() == Instruction::Sub) {
2501 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002502 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002503 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002504 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505
2506 ConstantInt *C1;
2507 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2508 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002509 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002510
2511 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2512 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002513 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002514 }
2515 return 0;
2516}
2517
2518/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2519/// comparison only checks the sign bit. If it only checks the sign bit, set
2520/// TrueIfSigned if the result of the comparison is true when the input value is
2521/// signed.
2522static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2523 bool &TrueIfSigned) {
2524 switch (pred) {
2525 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2526 TrueIfSigned = true;
2527 return RHS->isZero();
2528 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2529 TrueIfSigned = true;
2530 return RHS->isAllOnesValue();
2531 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2532 TrueIfSigned = false;
2533 return RHS->isAllOnesValue();
2534 case ICmpInst::ICMP_UGT:
2535 // True if LHS u> RHS and RHS == high-bit-mask - 1
2536 TrueIfSigned = true;
2537 return RHS->getValue() ==
2538 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2539 case ICmpInst::ICMP_UGE:
2540 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2541 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002542 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002543 default:
2544 return false;
2545 }
2546}
2547
2548Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2549 bool Changed = SimplifyCommutative(I);
2550 Value *Op0 = I.getOperand(0);
2551
2552 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2553 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2554
2555 // Simplify mul instructions with a constant RHS...
2556 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2557 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2558
2559 // ((X << C1)*C2) == (X * (C2 << C1))
2560 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2561 if (SI->getOpcode() == Instruction::Shl)
2562 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002563 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002564 ConstantExpr::getShl(CI, ShOp));
2565
2566 if (CI->isZero())
2567 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2568 if (CI->equalsInt(1)) // X * 1 == X
2569 return ReplaceInstUsesWith(I, Op0);
2570 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002571 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002572
2573 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2574 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002575 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002576 ConstantInt::get(Op0->getType(), Val.logBase2()));
2577 }
2578 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2579 if (Op1F->isNullValue())
2580 return ReplaceInstUsesWith(I, Op1);
2581
2582 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2583 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002584 if (Op1F->isExactlyValue(1.0))
2585 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2586 } else if (isa<VectorType>(Op1->getType())) {
2587 if (isa<ConstantAggregateZero>(Op1))
2588 return ReplaceInstUsesWith(I, Op1);
2589
2590 // As above, vector X*splat(1.0) -> X in all defined cases.
2591 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1))
2592 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
2593 if (F->isExactlyValue(1.0))
2594 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002595 }
2596
2597 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2598 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002599 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002600 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002601 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002602 Op1, "tmp");
2603 InsertNewInstBefore(Add, I);
2604 Value *C1C2 = ConstantExpr::getMul(Op1,
2605 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002606 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002607
2608 }
2609
2610 // Try to fold constant mul into select arguments.
2611 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2612 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2613 return R;
2614
2615 if (isa<PHINode>(Op0))
2616 if (Instruction *NV = FoldOpIntoPhi(I))
2617 return NV;
2618 }
2619
2620 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2621 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002622 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002623
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002624 if (I.getType() == Type::Int1Ty)
2625 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2626
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002627 // If one of the operands of the multiply is a cast from a boolean value, then
2628 // we know the bool is either zero or one, so this is a 'masking' multiply.
2629 // See if we can simplify things based on how the boolean was originally
2630 // formed.
2631 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002632 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002633 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2634 BoolCast = CI;
2635 if (!BoolCast)
2636 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2637 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2638 BoolCast = CI;
2639 if (BoolCast) {
2640 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2641 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2642 const Type *SCOpTy = SCIOp0->getType();
2643 bool TIS = false;
2644
2645 // If the icmp is true iff the sign bit of X is set, then convert this
2646 // multiply into a shift/and combination.
2647 if (isa<ConstantInt>(SCIOp1) &&
2648 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2649 TIS) {
2650 // Shift the X value right to turn it into "all signbits".
2651 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2652 SCOpTy->getPrimitiveSizeInBits()-1);
2653 Value *V =
2654 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002655 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002656 BoolCast->getOperand(0)->getName()+
2657 ".mask"), I);
2658
2659 // If the multiply type is not the same as the source type, sign extend
2660 // or truncate to the multiply type.
2661 if (I.getType() != V->getType()) {
2662 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2663 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2664 Instruction::CastOps opcode =
2665 (SrcBits == DstBits ? Instruction::BitCast :
2666 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2667 V = InsertCastBefore(opcode, V, I.getType(), I);
2668 }
2669
2670 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002671 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002672 }
2673 }
2674 }
2675
2676 return Changed ? &I : 0;
2677}
2678
Chris Lattner76972db2008-07-14 00:15:52 +00002679/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2680/// instruction.
2681bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2682 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2683
2684 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2685 int NonNullOperand = -1;
2686 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2687 if (ST->isNullValue())
2688 NonNullOperand = 2;
2689 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2690 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2691 if (ST->isNullValue())
2692 NonNullOperand = 1;
2693
2694 if (NonNullOperand == -1)
2695 return false;
2696
2697 Value *SelectCond = SI->getOperand(0);
2698
2699 // Change the div/rem to use 'Y' instead of the select.
2700 I.setOperand(1, SI->getOperand(NonNullOperand));
2701
2702 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2703 // problem. However, the select, or the condition of the select may have
2704 // multiple uses. Based on our knowledge that the operand must be non-zero,
2705 // propagate the known value for the select into other uses of it, and
2706 // propagate a known value of the condition into its other users.
2707
2708 // If the select and condition only have a single use, don't bother with this,
2709 // early exit.
2710 if (SI->use_empty() && SelectCond->hasOneUse())
2711 return true;
2712
2713 // Scan the current block backward, looking for other uses of SI.
2714 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2715
2716 while (BBI != BBFront) {
2717 --BBI;
2718 // If we found a call to a function, we can't assume it will return, so
2719 // information from below it cannot be propagated above it.
2720 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2721 break;
2722
2723 // Replace uses of the select or its condition with the known values.
2724 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2725 I != E; ++I) {
2726 if (*I == SI) {
2727 *I = SI->getOperand(NonNullOperand);
2728 AddToWorkList(BBI);
2729 } else if (*I == SelectCond) {
2730 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2731 ConstantInt::getFalse();
2732 AddToWorkList(BBI);
2733 }
2734 }
2735
2736 // If we past the instruction, quit looking for it.
2737 if (&*BBI == SI)
2738 SI = 0;
2739 if (&*BBI == SelectCond)
2740 SelectCond = 0;
2741
2742 // If we ran out of things to eliminate, break out of the loop.
2743 if (SelectCond == 0 && SI == 0)
2744 break;
2745
2746 }
2747 return true;
2748}
2749
2750
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002751/// This function implements the transforms on div instructions that work
2752/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2753/// used by the visitors to those instructions.
2754/// @brief Transforms common to all three div instructions
2755Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2756 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2757
Chris Lattner653ef3c2008-02-19 06:12:18 +00002758 // undef / X -> 0 for integer.
2759 // undef / X -> undef for FP (the undef could be a snan).
2760 if (isa<UndefValue>(Op0)) {
2761 if (Op0->getType()->isFPOrFPVector())
2762 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002763 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002764 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002765
2766 // X / undef -> undef
2767 if (isa<UndefValue>(Op1))
2768 return ReplaceInstUsesWith(I, Op1);
2769
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770 return 0;
2771}
2772
2773/// This function implements the transforms common to both integer division
2774/// instructions (udiv and sdiv). It is called by the visitors to those integer
2775/// division instructions.
2776/// @brief Common integer divide transforms
2777Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2778 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2779
Chris Lattnercefb36c2008-05-16 02:59:42 +00002780 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002781 if (Op0 == Op1) {
2782 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2783 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2784 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2785 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2786 }
2787
2788 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2789 return ReplaceInstUsesWith(I, CI);
2790 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002791
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002792 if (Instruction *Common = commonDivTransforms(I))
2793 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002794
2795 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2796 // This does not apply for fdiv.
2797 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2798 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799
2800 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2801 // div X, 1 == X
2802 if (RHS->equalsInt(1))
2803 return ReplaceInstUsesWith(I, Op0);
2804
2805 // (X / C1) / C2 -> X / (C1*C2)
2806 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2807 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2808 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002809 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2810 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2811 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002812 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002813 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002814 }
2815
2816 if (!RHS->isZero()) { // avoid X udiv 0
2817 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2818 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2819 return R;
2820 if (isa<PHINode>(Op0))
2821 if (Instruction *NV = FoldOpIntoPhi(I))
2822 return NV;
2823 }
2824 }
2825
2826 // 0 / X == 0, we don't need to preserve faults!
2827 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2828 if (LHS->equalsInt(0))
2829 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2830
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002831 // It can't be division by zero, hence it must be division by one.
2832 if (I.getType() == Type::Int1Ty)
2833 return ReplaceInstUsesWith(I, Op0);
2834
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002835 return 0;
2836}
2837
2838Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2839 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2840
2841 // Handle the integer div common cases
2842 if (Instruction *Common = commonIDivTransforms(I))
2843 return Common;
2844
2845 // X udiv C^2 -> X >> C
2846 // Check to see if this is an unsigned division with an exact power of 2,
2847 // if so, convert to a right shift.
2848 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2849 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002850 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002851 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2852 }
2853
2854 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2855 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2856 if (RHSI->getOpcode() == Instruction::Shl &&
2857 isa<ConstantInt>(RHSI->getOperand(0))) {
2858 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2859 if (C1.isPowerOf2()) {
2860 Value *N = RHSI->getOperand(1);
2861 const Type *NTy = N->getType();
2862 if (uint32_t C2 = C1.logBase2()) {
2863 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002864 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002865 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002866 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002867 }
2868 }
2869 }
2870
2871 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2872 // where C1&C2 are powers of two.
2873 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2874 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2875 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2876 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2877 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2878 // Compute the shift amounts
2879 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2880 // Construct the "on true" case of the select
2881 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002882 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002883 Op0, TC, SI->getName()+".t");
2884 TSI = InsertNewInstBefore(TSI, I);
2885
2886 // Construct the "on false" case of the select
2887 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002888 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889 Op0, FC, SI->getName()+".f");
2890 FSI = InsertNewInstBefore(FSI, I);
2891
2892 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002893 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002894 }
2895 }
2896 return 0;
2897}
2898
2899Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2900 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2901
2902 // Handle the integer div common cases
2903 if (Instruction *Common = commonIDivTransforms(I))
2904 return Common;
2905
2906 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2907 // sdiv X, -1 == -X
2908 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002909 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002910
2911 // -X/C -> X/-C
2912 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002913 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002914 }
2915
2916 // If the sign bits of both operands are zero (i.e. we can prove they are
2917 // unsigned inputs), turn this into a udiv.
2918 if (I.getType()->isInteger()) {
2919 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2920 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002921 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002922 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002923 }
2924 }
2925
2926 return 0;
2927}
2928
2929Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2930 return commonDivTransforms(I);
2931}
2932
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002933/// This function implements the transforms on rem instructions that work
2934/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2935/// is used by the visitors to those instructions.
2936/// @brief Transforms common to all three rem instructions
2937Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2938 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2939
Chris Lattner653ef3c2008-02-19 06:12:18 +00002940 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002941 if (Constant *LHS = dyn_cast<Constant>(Op0))
2942 if (LHS->isNullValue())
2943 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2944
Chris Lattner653ef3c2008-02-19 06:12:18 +00002945 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2946 if (I.getType()->isFPOrFPVector())
2947 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002948 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002949 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002950 if (isa<UndefValue>(Op1))
2951 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2952
2953 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002954 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2955 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002956
2957 return 0;
2958}
2959
2960/// This function implements the transforms common to both integer remainder
2961/// instructions (urem and srem). It is called by the visitors to those integer
2962/// remainder instructions.
2963/// @brief Common integer remainder transforms
2964Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2965 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2966
2967 if (Instruction *common = commonRemTransforms(I))
2968 return common;
2969
2970 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2971 // X % 0 == undef, we don't need to preserve faults!
2972 if (RHS->equalsInt(0))
2973 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2974
2975 if (RHS->equalsInt(1)) // X % 1 == 0
2976 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2977
2978 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2979 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2980 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2981 return R;
2982 } else if (isa<PHINode>(Op0I)) {
2983 if (Instruction *NV = FoldOpIntoPhi(I))
2984 return NV;
2985 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002986
2987 // See if we can fold away this rem instruction.
2988 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2989 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2990 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2991 KnownZero, KnownOne))
2992 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002993 }
2994 }
2995
2996 return 0;
2997}
2998
2999Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3000 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3001
3002 if (Instruction *common = commonIRemTransforms(I))
3003 return common;
3004
3005 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3006 // X urem C^2 -> X and C
3007 // Check to see if this is an unsigned remainder with an exact power of 2,
3008 // if so, convert to a bitwise and.
3009 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3010 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003011 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003012 }
3013
3014 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3015 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3016 if (RHSI->getOpcode() == Instruction::Shl &&
3017 isa<ConstantInt>(RHSI->getOperand(0))) {
3018 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3019 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003020 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003021 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003022 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003023 }
3024 }
3025 }
3026
3027 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3028 // where C1&C2 are powers of two.
3029 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3030 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3031 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3032 // STO == 0 and SFO == 0 handled above.
3033 if ((STO->getValue().isPowerOf2()) &&
3034 (SFO->getValue().isPowerOf2())) {
3035 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003036 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003037 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003038 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003039 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040 }
3041 }
3042 }
3043
3044 return 0;
3045}
3046
3047Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3048 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3049
Dan Gohmandb3dd962007-11-05 23:16:33 +00003050 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003051 if (Instruction *common = commonIRemTransforms(I))
3052 return common;
3053
3054 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003055 if (!isa<Constant>(RHSNeg) ||
3056 (isa<ConstantInt>(RHSNeg) &&
3057 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003058 // X % -Y -> X % Y
3059 AddUsesToWorkList(I);
3060 I.setOperand(1, RHSNeg);
3061 return &I;
3062 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003063
Dan Gohmandb3dd962007-11-05 23:16:33 +00003064 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003065 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003066 if (I.getType()->isInteger()) {
3067 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3068 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3069 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003070 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003071 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003072 }
3073
3074 return 0;
3075}
3076
3077Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3078 return commonRemTransforms(I);
3079}
3080
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003081// isOneBitSet - Return true if there is exactly one bit set in the specified
3082// constant.
3083static bool isOneBitSet(const ConstantInt *CI) {
3084 return CI->getValue().isPowerOf2();
3085}
3086
3087// isHighOnes - Return true if the constant is of the form 1+0+.
3088// This is the same as lowones(~X).
3089static bool isHighOnes(const ConstantInt *CI) {
3090 return (~CI->getValue() + 1).isPowerOf2();
3091}
3092
3093/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3094/// are carefully arranged to allow folding of expressions such as:
3095///
3096/// (A < B) | (A > B) --> (A != B)
3097///
3098/// Note that this is only valid if the first and second predicates have the
3099/// same sign. Is illegal to do: (A u< B) | (A s> B)
3100///
3101/// Three bits are used to represent the condition, as follows:
3102/// 0 A > B
3103/// 1 A == B
3104/// 2 A < B
3105///
3106/// <=> Value Definition
3107/// 000 0 Always false
3108/// 001 1 A > B
3109/// 010 2 A == B
3110/// 011 3 A >= B
3111/// 100 4 A < B
3112/// 101 5 A != B
3113/// 110 6 A <= B
3114/// 111 7 Always true
3115///
3116static unsigned getICmpCode(const ICmpInst *ICI) {
3117 switch (ICI->getPredicate()) {
3118 // False -> 0
3119 case ICmpInst::ICMP_UGT: return 1; // 001
3120 case ICmpInst::ICMP_SGT: return 1; // 001
3121 case ICmpInst::ICMP_EQ: return 2; // 010
3122 case ICmpInst::ICMP_UGE: return 3; // 011
3123 case ICmpInst::ICMP_SGE: return 3; // 011
3124 case ICmpInst::ICMP_ULT: return 4; // 100
3125 case ICmpInst::ICMP_SLT: return 4; // 100
3126 case ICmpInst::ICMP_NE: return 5; // 101
3127 case ICmpInst::ICMP_ULE: return 6; // 110
3128 case ICmpInst::ICMP_SLE: return 6; // 110
3129 // True -> 7
3130 default:
3131 assert(0 && "Invalid ICmp predicate!");
3132 return 0;
3133 }
3134}
3135
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003136/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3137/// predicate into a three bit mask. It also returns whether it is an ordered
3138/// predicate by reference.
3139static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3140 isOrdered = false;
3141 switch (CC) {
3142 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3143 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003144 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3145 case FCmpInst::FCMP_UGT: return 1; // 001
3146 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3147 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003148 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3149 case FCmpInst::FCMP_UGE: return 3; // 011
3150 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3151 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003152 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3153 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003154 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3155 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003156 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003157 default:
3158 // Not expecting FCMP_FALSE and FCMP_TRUE;
3159 assert(0 && "Unexpected FCmp predicate!");
3160 return 0;
3161 }
3162}
3163
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003164/// getICmpValue - This is the complement of getICmpCode, which turns an
3165/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003166/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003167/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003168static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3169 switch (code) {
3170 default: assert(0 && "Illegal ICmp code!");
3171 case 0: return ConstantInt::getFalse();
3172 case 1:
3173 if (sign)
3174 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3175 else
3176 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3177 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3178 case 3:
3179 if (sign)
3180 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3181 else
3182 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3183 case 4:
3184 if (sign)
3185 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3186 else
3187 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3188 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3189 case 6:
3190 if (sign)
3191 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3192 else
3193 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3194 case 7: return ConstantInt::getTrue();
3195 }
3196}
3197
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003198/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3199/// opcode and two operands into either a FCmp instruction. isordered is passed
3200/// in to determine which kind of predicate to use in the new fcmp instruction.
3201static Value *getFCmpValue(bool isordered, unsigned code,
3202 Value *LHS, Value *RHS) {
3203 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003204 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003205 case 0:
3206 if (isordered)
3207 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3208 else
3209 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3210 case 1:
3211 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003212 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3213 else
3214 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003215 case 2:
3216 if (isordered)
3217 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3218 else
3219 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003220 case 3:
3221 if (isordered)
3222 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3223 else
3224 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3225 case 4:
3226 if (isordered)
3227 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3228 else
3229 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3230 case 5:
3231 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003232 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3233 else
3234 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3235 case 6:
3236 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003237 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3238 else
3239 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003240 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003241 }
3242}
3243
Chris Lattner2972b822008-11-16 04:55:20 +00003244/// PredicatesFoldable - Return true if both predicates match sign or if at
3245/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003246static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3247 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003248 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3249 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003250}
3251
3252namespace {
3253// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3254struct FoldICmpLogical {
3255 InstCombiner &IC;
3256 Value *LHS, *RHS;
3257 ICmpInst::Predicate pred;
3258 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3259 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3260 pred(ICI->getPredicate()) {}
3261 bool shouldApply(Value *V) const {
3262 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3263 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003264 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3265 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003266 return false;
3267 }
3268 Instruction *apply(Instruction &Log) const {
3269 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3270 if (ICI->getOperand(0) != LHS) {
3271 assert(ICI->getOperand(1) == LHS);
3272 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3273 }
3274
3275 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3276 unsigned LHSCode = getICmpCode(ICI);
3277 unsigned RHSCode = getICmpCode(RHSICI);
3278 unsigned Code;
3279 switch (Log.getOpcode()) {
3280 case Instruction::And: Code = LHSCode & RHSCode; break;
3281 case Instruction::Or: Code = LHSCode | RHSCode; break;
3282 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3283 default: assert(0 && "Illegal logical opcode!"); return 0;
3284 }
3285
3286 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3287 ICmpInst::isSignedPredicate(ICI->getPredicate());
3288
3289 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3290 if (Instruction *I = dyn_cast<Instruction>(RV))
3291 return I;
3292 // Otherwise, it's a constant boolean value...
3293 return IC.ReplaceInstUsesWith(Log, RV);
3294 }
3295};
3296} // end anonymous namespace
3297
3298// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3299// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3300// guaranteed to be a binary operator.
3301Instruction *InstCombiner::OptAndOp(Instruction *Op,
3302 ConstantInt *OpRHS,
3303 ConstantInt *AndRHS,
3304 BinaryOperator &TheAnd) {
3305 Value *X = Op->getOperand(0);
3306 Constant *Together = 0;
3307 if (!Op->isShift())
3308 Together = And(AndRHS, OpRHS);
3309
3310 switch (Op->getOpcode()) {
3311 case Instruction::Xor:
3312 if (Op->hasOneUse()) {
3313 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003314 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003315 InsertNewInstBefore(And, TheAnd);
3316 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003317 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318 }
3319 break;
3320 case Instruction::Or:
3321 if (Together == AndRHS) // (X | C) & C --> C
3322 return ReplaceInstUsesWith(TheAnd, AndRHS);
3323
3324 if (Op->hasOneUse() && Together != OpRHS) {
3325 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003326 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003327 InsertNewInstBefore(Or, TheAnd);
3328 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003329 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003330 }
3331 break;
3332 case Instruction::Add:
3333 if (Op->hasOneUse()) {
3334 // Adding a one to a single bit bit-field should be turned into an XOR
3335 // of the bit. First thing to check is to see if this AND is with a
3336 // single bit constant.
3337 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3338
3339 // If there is only one bit set...
3340 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3341 // Ok, at this point, we know that we are masking the result of the
3342 // ADD down to exactly one bit. If the constant we are adding has
3343 // no bits set below this bit, then we can eliminate the ADD.
3344 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3345
3346 // Check to see if any bits below the one bit set in AndRHSV are set.
3347 if ((AddRHS & (AndRHSV-1)) == 0) {
3348 // If not, the only thing that can effect the output of the AND is
3349 // the bit specified by AndRHSV. If that bit is set, the effect of
3350 // the XOR is to toggle the bit. If it is clear, then the ADD has
3351 // no effect.
3352 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3353 TheAnd.setOperand(0, X);
3354 return &TheAnd;
3355 } else {
3356 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003357 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 InsertNewInstBefore(NewAnd, TheAnd);
3359 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003360 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003361 }
3362 }
3363 }
3364 }
3365 break;
3366
3367 case Instruction::Shl: {
3368 // We know that the AND will not produce any of the bits shifted in, so if
3369 // the anded constant includes them, clear them now!
3370 //
3371 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3372 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3373 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3374 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3375
3376 if (CI->getValue() == ShlMask) {
3377 // Masking out bits that the shift already masks
3378 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3379 } else if (CI != AndRHS) { // Reducing bits set in and.
3380 TheAnd.setOperand(1, CI);
3381 return &TheAnd;
3382 }
3383 break;
3384 }
3385 case Instruction::LShr:
3386 {
3387 // We know that the AND will not produce any of the bits shifted in, so if
3388 // the anded constant includes them, clear them now! This only applies to
3389 // unsigned shifts, because a signed shr may bring in set bits!
3390 //
3391 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3392 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3393 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3394 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3395
3396 if (CI->getValue() == ShrMask) {
3397 // Masking out bits that the shift already masks.
3398 return ReplaceInstUsesWith(TheAnd, Op);
3399 } else if (CI != AndRHS) {
3400 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3401 return &TheAnd;
3402 }
3403 break;
3404 }
3405 case Instruction::AShr:
3406 // Signed shr.
3407 // See if this is shifting in some sign extension, then masking it out
3408 // with an and.
3409 if (Op->hasOneUse()) {
3410 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3411 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3412 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3413 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3414 if (C == AndRHS) { // Masking out bits shifted in.
3415 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3416 // Make the argument unsigned.
3417 Value *ShVal = Op->getOperand(0);
3418 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003419 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003420 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003421 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003422 }
3423 }
3424 break;
3425 }
3426 return 0;
3427}
3428
3429
3430/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3431/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3432/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3433/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3434/// insert new instructions.
3435Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3436 bool isSigned, bool Inside,
3437 Instruction &IB) {
3438 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3439 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3440 "Lo is not <= Hi in range emission code!");
3441
3442 if (Inside) {
3443 if (Lo == Hi) // Trivially false.
3444 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3445
3446 // V >= Min && V < Hi --> V < Hi
3447 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3448 ICmpInst::Predicate pred = (isSigned ?
3449 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3450 return new ICmpInst(pred, V, Hi);
3451 }
3452
3453 // Emit V-Lo <u Hi-Lo
3454 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003455 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456 InsertNewInstBefore(Add, IB);
3457 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3458 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3459 }
3460
3461 if (Lo == Hi) // Trivially true.
3462 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3463
3464 // V < Min || V >= Hi -> V > Hi-1
3465 Hi = SubOne(cast<ConstantInt>(Hi));
3466 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3467 ICmpInst::Predicate pred = (isSigned ?
3468 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3469 return new ICmpInst(pred, V, Hi);
3470 }
3471
3472 // Emit V-Lo >u Hi-1-Lo
3473 // Note that Hi has already had one subtracted from it, above.
3474 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003475 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003476 InsertNewInstBefore(Add, IB);
3477 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3478 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3479}
3480
3481// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3482// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3483// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3484// not, since all 1s are not contiguous.
3485static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3486 const APInt& V = Val->getValue();
3487 uint32_t BitWidth = Val->getType()->getBitWidth();
3488 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3489
3490 // look for the first zero bit after the run of ones
3491 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3492 // look for the first non-zero bit
3493 ME = V.getActiveBits();
3494 return true;
3495}
3496
3497/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3498/// where isSub determines whether the operator is a sub. If we can fold one of
3499/// the following xforms:
3500///
3501/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3502/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3503/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3504///
3505/// return (A +/- B).
3506///
3507Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3508 ConstantInt *Mask, bool isSub,
3509 Instruction &I) {
3510 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3511 if (!LHSI || LHSI->getNumOperands() != 2 ||
3512 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3513
3514 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3515
3516 switch (LHSI->getOpcode()) {
3517 default: return 0;
3518 case Instruction::And:
3519 if (And(N, Mask) == Mask) {
3520 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3521 if ((Mask->getValue().countLeadingZeros() +
3522 Mask->getValue().countPopulation()) ==
3523 Mask->getValue().getBitWidth())
3524 break;
3525
3526 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3527 // part, we don't need any explicit masks to take them out of A. If that
3528 // is all N is, ignore it.
3529 uint32_t MB = 0, ME = 0;
3530 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3531 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3532 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3533 if (MaskedValueIsZero(RHS, Mask))
3534 break;
3535 }
3536 }
3537 return 0;
3538 case Instruction::Or:
3539 case Instruction::Xor:
3540 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3541 if ((Mask->getValue().countLeadingZeros() +
3542 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3543 && And(N, Mask)->isZero())
3544 break;
3545 return 0;
3546 }
3547
3548 Instruction *New;
3549 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003550 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003552 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003553 return InsertNewInstBefore(New, I);
3554}
3555
Chris Lattner0631ea72008-11-16 05:06:21 +00003556/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3557Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3558 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003559 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003560 ConstantInt *LHSCst, *RHSCst;
3561 ICmpInst::Predicate LHSCC, RHSCC;
3562
Chris Lattnerf3803482008-11-16 05:10:52 +00003563 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003564 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003565 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003566 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003567
3568 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3569 // where C is a power of 2
3570 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3571 LHSCst->getValue().isPowerOf2()) {
3572 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3573 InsertNewInstBefore(NewOr, I);
3574 return new ICmpInst(LHSCC, NewOr, LHSCst);
3575 }
3576
3577 // From here on, we only handle:
3578 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3579 if (Val != Val2) return 0;
3580
Chris Lattner0631ea72008-11-16 05:06:21 +00003581 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3582 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3583 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3584 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3585 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3586 return 0;
3587
3588 // We can't fold (ugt x, C) & (sgt x, C2).
3589 if (!PredicatesFoldable(LHSCC, RHSCC))
3590 return 0;
3591
3592 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003593 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003594 if (ICmpInst::isSignedPredicate(LHSCC) ||
3595 (ICmpInst::isEquality(LHSCC) &&
3596 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003597 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003598 else
Chris Lattner665298f2008-11-16 05:14:43 +00003599 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3600
3601 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003602 std::swap(LHS, RHS);
3603 std::swap(LHSCst, RHSCst);
3604 std::swap(LHSCC, RHSCC);
3605 }
3606
3607 // At this point, we know we have have two icmp instructions
3608 // comparing a value against two constants and and'ing the result
3609 // together. Because of the above check, we know that we only have
3610 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3611 // (from the FoldICmpLogical check above), that the two constants
3612 // are not equal and that the larger constant is on the RHS
3613 assert(LHSCst != RHSCst && "Compares not folded above?");
3614
3615 switch (LHSCC) {
3616 default: assert(0 && "Unknown integer condition code!");
3617 case ICmpInst::ICMP_EQ:
3618 switch (RHSCC) {
3619 default: assert(0 && "Unknown integer condition code!");
3620 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3621 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3622 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3623 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3624 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3625 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3626 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3627 return ReplaceInstUsesWith(I, LHS);
3628 }
3629 case ICmpInst::ICMP_NE:
3630 switch (RHSCC) {
3631 default: assert(0 && "Unknown integer condition code!");
3632 case ICmpInst::ICMP_ULT:
3633 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3634 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3635 break; // (X != 13 & X u< 15) -> no change
3636 case ICmpInst::ICMP_SLT:
3637 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3638 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3639 break; // (X != 13 & X s< 15) -> no change
3640 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3641 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3642 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3643 return ReplaceInstUsesWith(I, RHS);
3644 case ICmpInst::ICMP_NE:
3645 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3646 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3647 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3648 Val->getName()+".off");
3649 InsertNewInstBefore(Add, I);
3650 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3651 ConstantInt::get(Add->getType(), 1));
3652 }
3653 break; // (X != 13 & X != 15) -> no change
3654 }
3655 break;
3656 case ICmpInst::ICMP_ULT:
3657 switch (RHSCC) {
3658 default: assert(0 && "Unknown integer condition code!");
3659 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3660 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3661 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3662 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3663 break;
3664 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3665 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3666 return ReplaceInstUsesWith(I, LHS);
3667 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3668 break;
3669 }
3670 break;
3671 case ICmpInst::ICMP_SLT:
3672 switch (RHSCC) {
3673 default: assert(0 && "Unknown integer condition code!");
3674 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3675 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3676 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3677 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3678 break;
3679 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3680 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3681 return ReplaceInstUsesWith(I, LHS);
3682 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3683 break;
3684 }
3685 break;
3686 case ICmpInst::ICMP_UGT:
3687 switch (RHSCC) {
3688 default: assert(0 && "Unknown integer condition code!");
3689 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3690 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3691 return ReplaceInstUsesWith(I, RHS);
3692 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3693 break;
3694 case ICmpInst::ICMP_NE:
3695 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3696 return new ICmpInst(LHSCC, Val, RHSCst);
3697 break; // (X u> 13 & X != 15) -> no change
3698 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3699 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3700 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3701 break;
3702 }
3703 break;
3704 case ICmpInst::ICMP_SGT:
3705 switch (RHSCC) {
3706 default: assert(0 && "Unknown integer condition code!");
3707 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3708 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3709 return ReplaceInstUsesWith(I, RHS);
3710 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3711 break;
3712 case ICmpInst::ICMP_NE:
3713 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3714 return new ICmpInst(LHSCC, Val, RHSCst);
3715 break; // (X s> 13 & X != 15) -> no change
3716 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3717 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3718 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3719 break;
3720 }
3721 break;
3722 }
3723
3724
3725
3726 return 0;
3727}
3728
3729
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003730Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3731 bool Changed = SimplifyCommutative(I);
3732 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3733
3734 if (isa<UndefValue>(Op1)) // X & undef -> 0
3735 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3736
3737 // and X, X = X
3738 if (Op0 == Op1)
3739 return ReplaceInstUsesWith(I, Op1);
3740
3741 // See if we can simplify any instructions used by the instruction whose sole
3742 // purpose is to compute bits we don't care about.
3743 if (!isa<VectorType>(I.getType())) {
3744 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3745 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3746 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3747 KnownZero, KnownOne))
3748 return &I;
3749 } else {
3750 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3751 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3752 return ReplaceInstUsesWith(I, I.getOperand(0));
3753 } else if (isa<ConstantAggregateZero>(Op1)) {
3754 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3755 }
3756 }
3757
3758 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3759 const APInt& AndRHSMask = AndRHS->getValue();
3760 APInt NotAndRHS(~AndRHSMask);
3761
3762 // Optimize a variety of ((val OP C1) & C2) combinations...
3763 if (isa<BinaryOperator>(Op0)) {
3764 Instruction *Op0I = cast<Instruction>(Op0);
3765 Value *Op0LHS = Op0I->getOperand(0);
3766 Value *Op0RHS = Op0I->getOperand(1);
3767 switch (Op0I->getOpcode()) {
3768 case Instruction::Xor:
3769 case Instruction::Or:
3770 // If the mask is only needed on one incoming arm, push it up.
3771 if (Op0I->hasOneUse()) {
3772 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3773 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003774 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003775 Op0RHS->getName()+".masked");
3776 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003777 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3779 }
3780 if (!isa<Constant>(Op0RHS) &&
3781 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3782 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003783 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003784 Op0LHS->getName()+".masked");
3785 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003786 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003787 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3788 }
3789 }
3790
3791 break;
3792 case Instruction::Add:
3793 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3794 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3795 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3796 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003797 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003799 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003800 break;
3801
3802 case Instruction::Sub:
3803 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3804 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3805 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3806 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003807 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003808
Nick Lewyckya349ba42008-07-10 05:51:40 +00003809 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3810 // has 1's for all bits that the subtraction with A might affect.
3811 if (Op0I->hasOneUse()) {
3812 uint32_t BitWidth = AndRHSMask.getBitWidth();
3813 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3814 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3815
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003816 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003817 if (!(A && A->isZero()) && // avoid infinite recursion.
3818 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003819 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3820 InsertNewInstBefore(NewNeg, I);
3821 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3822 }
3823 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003824 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003825
3826 case Instruction::Shl:
3827 case Instruction::LShr:
3828 // (1 << x) & 1 --> zext(x == 0)
3829 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003830 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003831 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3832 Constant::getNullValue(I.getType()));
3833 InsertNewInstBefore(NewICmp, I);
3834 return new ZExtInst(NewICmp, I.getType());
3835 }
3836 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003837 }
3838
3839 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3840 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3841 return Res;
3842 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3843 // If this is an integer truncation or change from signed-to-unsigned, and
3844 // if the source is an and/or with immediate, transform it. This
3845 // frequently occurs for bitfield accesses.
3846 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3847 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3848 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003849 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003850 if (CastOp->getOpcode() == Instruction::And) {
3851 // Change: and (cast (and X, C1) to T), C2
3852 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3853 // This will fold the two constants together, which may allow
3854 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003855 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003856 CastOp->getOperand(0), I.getType(),
3857 CastOp->getName()+".shrunk");
3858 NewCast = InsertNewInstBefore(NewCast, I);
3859 // trunc_or_bitcast(C1)&C2
3860 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3861 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003862 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003863 } else if (CastOp->getOpcode() == Instruction::Or) {
3864 // Change: and (cast (or X, C1) to T), C2
3865 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3866 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3867 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3868 return ReplaceInstUsesWith(I, AndRHS);
3869 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003870 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003871 }
3872 }
3873
3874 // Try to fold constant and into select arguments.
3875 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3876 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3877 return R;
3878 if (isa<PHINode>(Op0))
3879 if (Instruction *NV = FoldOpIntoPhi(I))
3880 return NV;
3881 }
3882
3883 Value *Op0NotVal = dyn_castNotVal(Op0);
3884 Value *Op1NotVal = dyn_castNotVal(Op1);
3885
3886 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3887 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3888
3889 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3890 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003891 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003892 I.getName()+".demorgan");
3893 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003894 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 }
3896
3897 {
3898 Value *A = 0, *B = 0, *C = 0, *D = 0;
3899 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3900 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3901 return ReplaceInstUsesWith(I, Op1);
3902
3903 // (A|B) & ~(A&B) -> A^B
3904 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3905 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003906 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003907 }
3908 }
3909
3910 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3911 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3912 return ReplaceInstUsesWith(I, Op0);
3913
3914 // ~(A&B) & (A|B) -> A^B
3915 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3916 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003917 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003918 }
3919 }
3920
3921 if (Op0->hasOneUse() &&
3922 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3923 if (A == Op1) { // (A^B)&A -> A&(A^B)
3924 I.swapOperands(); // Simplify below
3925 std::swap(Op0, Op1);
3926 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3927 cast<BinaryOperator>(Op0)->swapOperands();
3928 I.swapOperands(); // Simplify below
3929 std::swap(Op0, Op1);
3930 }
3931 }
3932 if (Op1->hasOneUse() &&
3933 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3934 if (B == Op0) { // B&(A^B) -> B&(B^A)
3935 cast<BinaryOperator>(Op1)->swapOperands();
3936 std::swap(A, B);
3937 }
3938 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003939 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003940 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003941 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003942 }
3943 }
3944 }
3945
3946 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3947 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3948 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3949 return R;
3950
Chris Lattner0631ea72008-11-16 05:06:21 +00003951 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
3952 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
3953 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003954 }
3955
3956 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3957 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3958 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3959 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3960 const Type *SrcTy = Op0C->getOperand(0)->getType();
3961 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3962 // Only do this if the casts both really cause code to be generated.
3963 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3964 I.getType(), TD) &&
3965 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3966 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003967 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003968 Op1C->getOperand(0),
3969 I.getName());
3970 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003971 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003972 }
3973 }
3974
3975 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3976 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3977 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3978 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3979 SI0->getOperand(1) == SI1->getOperand(1) &&
3980 (SI0->hasOneUse() || SI1->hasOneUse())) {
3981 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003982 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003983 SI1->getOperand(0),
3984 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003985 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003986 SI1->getOperand(1));
3987 }
3988 }
3989
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003990 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00003991 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3992 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3993 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003994 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
3995 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00003996 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3997 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3998 // If either of the constants are nans, then the whole thing returns
3999 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004000 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004001 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4002 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4003 RHS->getOperand(0));
4004 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004005 } else {
4006 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4007 FCmpInst::Predicate Op0CC, Op1CC;
4008 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4009 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004010 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4011 // Swap RHS operands to match LHS.
4012 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4013 std::swap(Op1LHS, Op1RHS);
4014 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004015 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4016 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4017 if (Op0CC == Op1CC)
4018 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4019 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4020 Op1CC == FCmpInst::FCMP_FALSE)
4021 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4022 else if (Op0CC == FCmpInst::FCMP_TRUE)
4023 return ReplaceInstUsesWith(I, Op1);
4024 else if (Op1CC == FCmpInst::FCMP_TRUE)
4025 return ReplaceInstUsesWith(I, Op0);
4026 bool Op0Ordered;
4027 bool Op1Ordered;
4028 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4029 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4030 if (Op1Pred == 0) {
4031 std::swap(Op0, Op1);
4032 std::swap(Op0Pred, Op1Pred);
4033 std::swap(Op0Ordered, Op1Ordered);
4034 }
4035 if (Op0Pred == 0) {
4036 // uno && ueq -> uno && (uno || eq) -> ueq
4037 // ord && olt -> ord && (ord && lt) -> olt
4038 if (Op0Ordered == Op1Ordered)
4039 return ReplaceInstUsesWith(I, Op1);
4040 // uno && oeq -> uno && (ord && eq) -> false
4041 // uno && ord -> false
4042 if (!Op0Ordered)
4043 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4044 // ord && ueq -> ord && (uno || eq) -> oeq
4045 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4046 Op0LHS, Op0RHS));
4047 }
4048 }
4049 }
4050 }
Chris Lattner91882432007-10-24 05:38:08 +00004051 }
4052 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004053
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004054 return Changed ? &I : 0;
4055}
4056
Chris Lattner567f5112008-10-05 02:13:19 +00004057/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4058/// capable of providing pieces of a bswap. The subexpression provides pieces
4059/// of a bswap if it is proven that each of the non-zero bytes in the output of
4060/// the expression came from the corresponding "byte swapped" byte in some other
4061/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4062/// we know that the expression deposits the low byte of %X into the high byte
4063/// of the bswap result and that all other bytes are zero. This expression is
4064/// accepted, the high byte of ByteValues is set to X to indicate a correct
4065/// match.
4066///
4067/// This function returns true if the match was unsuccessful and false if so.
4068/// On entry to the function the "OverallLeftShift" is a signed integer value
4069/// indicating the number of bytes that the subexpression is later shifted. For
4070/// example, if the expression is later right shifted by 16 bits, the
4071/// OverallLeftShift value would be -2 on entry. This is used to specify which
4072/// byte of ByteValues is actually being set.
4073///
4074/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4075/// byte is masked to zero by a user. For example, in (X & 255), X will be
4076/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4077/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4078/// always in the local (OverallLeftShift) coordinate space.
4079///
4080static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4081 SmallVector<Value*, 8> &ByteValues) {
4082 if (Instruction *I = dyn_cast<Instruction>(V)) {
4083 // If this is an or instruction, it may be an inner node of the bswap.
4084 if (I->getOpcode() == Instruction::Or) {
4085 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4086 ByteValues) ||
4087 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4088 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004089 }
Chris Lattner567f5112008-10-05 02:13:19 +00004090
4091 // If this is a logical shift by a constant multiple of 8, recurse with
4092 // OverallLeftShift and ByteMask adjusted.
4093 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4094 unsigned ShAmt =
4095 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4096 // Ensure the shift amount is defined and of a byte value.
4097 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4098 return true;
4099
4100 unsigned ByteShift = ShAmt >> 3;
4101 if (I->getOpcode() == Instruction::Shl) {
4102 // X << 2 -> collect(X, +2)
4103 OverallLeftShift += ByteShift;
4104 ByteMask >>= ByteShift;
4105 } else {
4106 // X >>u 2 -> collect(X, -2)
4107 OverallLeftShift -= ByteShift;
4108 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004109 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004110 }
4111
4112 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4113 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4114
4115 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4116 ByteValues);
4117 }
4118
4119 // If this is a logical 'and' with a mask that clears bytes, clear the
4120 // corresponding bytes in ByteMask.
4121 if (I->getOpcode() == Instruction::And &&
4122 isa<ConstantInt>(I->getOperand(1))) {
4123 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4124 unsigned NumBytes = ByteValues.size();
4125 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4126 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4127
4128 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4129 // If this byte is masked out by a later operation, we don't care what
4130 // the and mask is.
4131 if ((ByteMask & (1 << i)) == 0)
4132 continue;
4133
4134 // If the AndMask is all zeros for this byte, clear the bit.
4135 APInt MaskB = AndMask & Byte;
4136 if (MaskB == 0) {
4137 ByteMask &= ~(1U << i);
4138 continue;
4139 }
4140
4141 // If the AndMask is not all ones for this byte, it's not a bytezap.
4142 if (MaskB != Byte)
4143 return true;
4144
4145 // Otherwise, this byte is kept.
4146 }
4147
4148 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4149 ByteValues);
4150 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004151 }
4152
Chris Lattner567f5112008-10-05 02:13:19 +00004153 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4154 // the input value to the bswap. Some observations: 1) if more than one byte
4155 // is demanded from this input, then it could not be successfully assembled
4156 // into a byteswap. At least one of the two bytes would not be aligned with
4157 // their ultimate destination.
4158 if (!isPowerOf2_32(ByteMask)) return true;
4159 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004160
Chris Lattner567f5112008-10-05 02:13:19 +00004161 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4162 // is demanded, it needs to go into byte 0 of the result. This means that the
4163 // byte needs to be shifted until it lands in the right byte bucket. The
4164 // shift amount depends on the position: if the byte is coming from the high
4165 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4166 // low part, it must be shifted left.
4167 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4168 if (InputByteNo < ByteValues.size()/2) {
4169 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4170 return true;
4171 } else {
4172 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4173 return true;
4174 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004175
4176 // If the destination byte value is already defined, the values are or'd
4177 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004178 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004179 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004180 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004181 return false;
4182}
4183
4184/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4185/// If so, insert the new bswap intrinsic and return it.
4186Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4187 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004188 if (!ITy || ITy->getBitWidth() % 16 ||
4189 // ByteMask only allows up to 32-byte values.
4190 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004191 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4192
4193 /// ByteValues - For each byte of the result, we keep track of which value
4194 /// defines each byte.
4195 SmallVector<Value*, 8> ByteValues;
4196 ByteValues.resize(ITy->getBitWidth()/8);
4197
4198 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004199 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4200 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004201 return 0;
4202
4203 // Check to see if all of the bytes come from the same value.
4204 Value *V = ByteValues[0];
4205 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4206
4207 // Check to make sure that all of the bytes come from the same value.
4208 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4209 if (ByteValues[i] != V)
4210 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004211 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004212 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004213 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004214 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004215}
4216
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004217/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4218/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4219/// we can simplify this expression to "cond ? C : D or B".
4220static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4221 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004222 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004223 Value *Cond = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004224 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004225 return 0;
4226
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004227 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner641ea462008-11-16 04:46:19 +00004228 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004229 return SelectInst::Create(Cond, C, B);
Chris Lattner641ea462008-11-16 04:46:19 +00004230 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004231 return SelectInst::Create(Cond, C, B);
4232 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner641ea462008-11-16 04:46:19 +00004233 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004234 return SelectInst::Create(Cond, C, D);
Chris Lattner641ea462008-11-16 04:46:19 +00004235 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004236 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004237 return 0;
4238}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004239
4240Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4241 bool Changed = SimplifyCommutative(I);
4242 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4243
4244 if (isa<UndefValue>(Op1)) // X | undef -> -1
4245 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4246
4247 // or X, X = X
4248 if (Op0 == Op1)
4249 return ReplaceInstUsesWith(I, Op0);
4250
4251 // See if we can simplify any instructions used by the instruction whose sole
4252 // purpose is to compute bits we don't care about.
4253 if (!isa<VectorType>(I.getType())) {
4254 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4255 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4256 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4257 KnownZero, KnownOne))
4258 return &I;
4259 } else if (isa<ConstantAggregateZero>(Op1)) {
4260 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4261 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4262 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4263 return ReplaceInstUsesWith(I, I.getOperand(1));
4264 }
4265
4266
4267
4268 // or X, -1 == -1
4269 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4270 ConstantInt *C1 = 0; Value *X = 0;
4271 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4272 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004273 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004274 InsertNewInstBefore(Or, I);
4275 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004276 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004277 ConstantInt::get(RHS->getValue() | C1->getValue()));
4278 }
4279
4280 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4281 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004282 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004283 InsertNewInstBefore(Or, I);
4284 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004285 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004286 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4287 }
4288
4289 // Try to fold constant and into select arguments.
4290 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4291 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4292 return R;
4293 if (isa<PHINode>(Op0))
4294 if (Instruction *NV = FoldOpIntoPhi(I))
4295 return NV;
4296 }
4297
4298 Value *A = 0, *B = 0;
4299 ConstantInt *C1 = 0, *C2 = 0;
4300
4301 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4302 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4303 return ReplaceInstUsesWith(I, Op1);
4304 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4305 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4306 return ReplaceInstUsesWith(I, Op0);
4307
4308 // (A | B) | C and A | (B | C) -> bswap if possible.
4309 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4310 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4311 match(Op1, m_Or(m_Value(), m_Value())) ||
4312 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4313 match(Op1, m_Shift(m_Value(), m_Value())))) {
4314 if (Instruction *BSwap = MatchBSwap(I))
4315 return BSwap;
4316 }
4317
4318 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4319 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4320 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004321 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004322 InsertNewInstBefore(NOr, I);
4323 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004324 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004325 }
4326
4327 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4328 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4329 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004330 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004331 InsertNewInstBefore(NOr, I);
4332 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004333 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004334 }
4335
4336 // (A & C)|(B & D)
4337 Value *C = 0, *D = 0;
4338 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4339 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4340 Value *V1 = 0, *V2 = 0, *V3 = 0;
4341 C1 = dyn_cast<ConstantInt>(C);
4342 C2 = dyn_cast<ConstantInt>(D);
4343 if (C1 && C2) { // (A & C1)|(B & C2)
4344 // If we have: ((V + N) & C1) | (V & C2)
4345 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4346 // replace with V+N.
4347 if (C1->getValue() == ~C2->getValue()) {
4348 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4349 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4350 // Add commutes, try both ways.
4351 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4352 return ReplaceInstUsesWith(I, A);
4353 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4354 return ReplaceInstUsesWith(I, A);
4355 }
4356 // Or commutes, try both ways.
4357 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4358 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4359 // Add commutes, try both ways.
4360 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4361 return ReplaceInstUsesWith(I, B);
4362 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4363 return ReplaceInstUsesWith(I, B);
4364 }
4365 }
4366 V1 = 0; V2 = 0; V3 = 0;
4367 }
4368
4369 // Check to see if we have any common things being and'ed. If so, find the
4370 // terms for V1 & (V2|V3).
4371 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4372 if (A == B) // (A & C)|(A & D) == A & (C|D)
4373 V1 = A, V2 = C, V3 = D;
4374 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4375 V1 = A, V2 = B, V3 = C;
4376 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4377 V1 = C, V2 = A, V3 = D;
4378 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4379 V1 = C, V2 = A, V3 = B;
4380
4381 if (V1) {
4382 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004383 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4384 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004385 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004386 }
Dan Gohman279952c2008-10-28 22:38:57 +00004387
Dan Gohman35b76162008-10-30 20:40:10 +00004388 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004389 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4390 return Match;
4391 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4392 return Match;
4393 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4394 return Match;
4395 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4396 return Match;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004397 }
4398
4399 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4400 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4401 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4402 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4403 SI0->getOperand(1) == SI1->getOperand(1) &&
4404 (SI0->hasOneUse() || SI1->hasOneUse())) {
4405 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004406 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004407 SI1->getOperand(0),
4408 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004409 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004410 SI1->getOperand(1));
4411 }
4412 }
4413
4414 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4415 if (A == Op1) // ~A | A == -1
4416 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4417 } else {
4418 A = 0;
4419 }
4420 // Note, A is still live here!
4421 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4422 if (Op0 == B)
4423 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4424
4425 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4426 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004427 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004428 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004429 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004430 }
4431 }
4432
4433 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4434 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4435 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4436 return R;
4437
Chris Lattner641ea462008-11-16 04:46:19 +00004438 Value *Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004439 ConstantInt *LHSCst, *RHSCst;
4440 ICmpInst::Predicate LHSCC, RHSCC;
Chris Lattner2972b822008-11-16 04:55:20 +00004441 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4442 if (match(Op0, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) &&
4443 match(RHS, m_ICmp(RHSCC, m_Specific(Val), m_ConstantInt(RHSCst))) &&
4444
4445 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4446 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4447 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4448 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4449 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4450
4451 // We can't fold (ugt x, C) | (sgt x, C2).
4452 PredicatesFoldable(LHSCC, RHSCC)) {
4453 // Ensure that the larger constant is on the RHS.
4454 ICmpInst *LHS = cast<ICmpInst>(Op0);
4455 bool NeedsSwap;
4456 if (ICmpInst::isEquality(LHSCC) ? ICmpInst::isSignedPredicate(RHSCC)
4457 : ICmpInst::isSignedPredicate(LHSCC))
4458 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4459 else
4460 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4461
4462 if (NeedsSwap) {
4463 std::swap(LHS, RHS);
4464 std::swap(LHSCst, RHSCst);
4465 std::swap(LHSCC, RHSCC);
4466 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004467
Chris Lattner2972b822008-11-16 04:55:20 +00004468 // At this point, we know we have have two icmp instructions
4469 // comparing a value against two constants and or'ing the result
4470 // together. Because of the above check, we know that we only have
4471 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4472 // FoldICmpLogical check above), that the two constants are not
4473 // equal.
4474 assert(LHSCst != RHSCst && "Compares not folded above?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004475
Chris Lattner2972b822008-11-16 04:55:20 +00004476 switch (LHSCC) {
4477 default: assert(0 && "Unknown integer condition code!");
4478 case ICmpInst::ICMP_EQ:
4479 switch (RHSCC) {
4480 default: assert(0 && "Unknown integer condition code!");
4481 case ICmpInst::ICMP_EQ:
4482 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4483 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4484 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4485 Val->getName()+".off");
4486 InsertNewInstBefore(Add, I);
4487 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4488 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004489 }
Chris Lattner2972b822008-11-16 04:55:20 +00004490 break; // (X == 13 | X == 15) -> no change
4491 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4492 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4493 break;
4494 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4495 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4496 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4497 return ReplaceInstUsesWith(I, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004498 }
Chris Lattner2972b822008-11-16 04:55:20 +00004499 break;
4500 case ICmpInst::ICMP_NE:
4501 switch (RHSCC) {
4502 default: assert(0 && "Unknown integer condition code!");
4503 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4504 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4505 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4506 return ReplaceInstUsesWith(I, LHS);
4507 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4508 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4509 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4510 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4511 }
4512 break;
4513 case ICmpInst::ICMP_ULT:
4514 switch (RHSCC) {
4515 default: assert(0 && "Unknown integer condition code!");
4516 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4517 break;
4518 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4519 // If RHSCst is [us]MAXINT, it is always false. Not handling
4520 // this can cause overflow.
4521 if (RHSCst->isMaxValue(false))
4522 return ReplaceInstUsesWith(I, LHS);
4523 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4524 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4525 break;
4526 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4527 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4528 return ReplaceInstUsesWith(I, RHS);
4529 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4530 break;
4531 }
4532 break;
4533 case ICmpInst::ICMP_SLT:
4534 switch (RHSCC) {
4535 default: assert(0 && "Unknown integer condition code!");
4536 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4537 break;
4538 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4539 // If RHSCst is [us]MAXINT, it is always false. Not handling
4540 // this can cause overflow.
4541 if (RHSCst->isMaxValue(true))
4542 return ReplaceInstUsesWith(I, LHS);
4543 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4544 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4545 break;
4546 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4547 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4548 return ReplaceInstUsesWith(I, RHS);
4549 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4550 break;
4551 }
4552 break;
4553 case ICmpInst::ICMP_UGT:
4554 switch (RHSCC) {
4555 default: assert(0 && "Unknown integer condition code!");
4556 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4557 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4558 return ReplaceInstUsesWith(I, LHS);
4559 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4560 break;
4561 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4562 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4563 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4564 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4565 break;
4566 }
4567 break;
4568 case ICmpInst::ICMP_SGT:
4569 switch (RHSCC) {
4570 default: assert(0 && "Unknown integer condition code!");
4571 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4572 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4573 return ReplaceInstUsesWith(I, LHS);
4574 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4575 break;
4576 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4577 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4578 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4579 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4580 break;
4581 }
4582 break;
4583 }
4584 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004585 }
4586
4587 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004588 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004589 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4590 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004591 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4592 !isa<ICmpInst>(Op1C->getOperand(0))) {
4593 const Type *SrcTy = Op0C->getOperand(0)->getType();
4594 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4595 // Only do this if the casts both really cause code to be
4596 // generated.
4597 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4598 I.getType(), TD) &&
4599 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4600 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004601 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004602 Op1C->getOperand(0),
4603 I.getName());
4604 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004605 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004606 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004607 }
4608 }
Chris Lattner91882432007-10-24 05:38:08 +00004609 }
4610
4611
4612 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4613 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4614 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4615 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004616 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004617 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004618 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4619 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4620 // If either of the constants are nans, then the whole thing returns
4621 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004622 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004623 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4624
4625 // Otherwise, no need to compare the two constants, compare the
4626 // rest.
4627 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4628 RHS->getOperand(0));
4629 }
Evan Cheng72988052008-10-14 18:44:08 +00004630 } else {
4631 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4632 FCmpInst::Predicate Op0CC, Op1CC;
4633 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4634 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4635 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4636 // Swap RHS operands to match LHS.
4637 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4638 std::swap(Op1LHS, Op1RHS);
4639 }
4640 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4641 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4642 if (Op0CC == Op1CC)
4643 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4644 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4645 Op1CC == FCmpInst::FCMP_TRUE)
4646 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4647 else if (Op0CC == FCmpInst::FCMP_FALSE)
4648 return ReplaceInstUsesWith(I, Op1);
4649 else if (Op1CC == FCmpInst::FCMP_FALSE)
4650 return ReplaceInstUsesWith(I, Op0);
4651 bool Op0Ordered;
4652 bool Op1Ordered;
4653 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4654 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4655 if (Op0Ordered == Op1Ordered) {
4656 // If both are ordered or unordered, return a new fcmp with
4657 // or'ed predicates.
4658 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4659 Op0LHS, Op0RHS);
4660 if (Instruction *I = dyn_cast<Instruction>(RV))
4661 return I;
4662 // Otherwise, it's a constant boolean value...
4663 return ReplaceInstUsesWith(I, RV);
4664 }
4665 }
4666 }
4667 }
Chris Lattner91882432007-10-24 05:38:08 +00004668 }
4669 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004670
4671 return Changed ? &I : 0;
4672}
4673
Dan Gohman089efff2008-05-13 00:00:25 +00004674namespace {
4675
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004676// XorSelf - Implements: X ^ X --> 0
4677struct XorSelf {
4678 Value *RHS;
4679 XorSelf(Value *rhs) : RHS(rhs) {}
4680 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4681 Instruction *apply(BinaryOperator &Xor) const {
4682 return &Xor;
4683 }
4684};
4685
Dan Gohman089efff2008-05-13 00:00:25 +00004686}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004687
4688Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4689 bool Changed = SimplifyCommutative(I);
4690 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4691
Evan Chenge5cd8032008-03-25 20:07:13 +00004692 if (isa<UndefValue>(Op1)) {
4693 if (isa<UndefValue>(Op0))
4694 // Handle undef ^ undef -> 0 special case. This is a common
4695 // idiom (misuse).
4696 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004697 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004698 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004699
4700 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4701 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004702 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004703 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4704 }
4705
4706 // See if we can simplify any instructions used by the instruction whose sole
4707 // purpose is to compute bits we don't care about.
4708 if (!isa<VectorType>(I.getType())) {
4709 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4710 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4711 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4712 KnownZero, KnownOne))
4713 return &I;
4714 } else if (isa<ConstantAggregateZero>(Op1)) {
4715 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4716 }
4717
4718 // Is this a ~ operation?
4719 if (Value *NotOp = dyn_castNotVal(&I)) {
4720 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4721 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4722 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4723 if (Op0I->getOpcode() == Instruction::And ||
4724 Op0I->getOpcode() == Instruction::Or) {
4725 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4726 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4727 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004728 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004729 Op0I->getOperand(1)->getName()+".not");
4730 InsertNewInstBefore(NotY, I);
4731 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004732 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004733 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004734 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004735 }
4736 }
4737 }
4738 }
4739
4740
4741 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004742 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4743 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4744 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004745 return new ICmpInst(ICI->getInversePredicate(),
4746 ICI->getOperand(0), ICI->getOperand(1));
4747
Nick Lewycky1405e922007-08-06 20:04:16 +00004748 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4749 return new FCmpInst(FCI->getInversePredicate(),
4750 FCI->getOperand(0), FCI->getOperand(1));
4751 }
4752
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004753 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4754 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4755 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4756 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4757 Instruction::CastOps Opcode = Op0C->getOpcode();
4758 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4759 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4760 Op0C->getDestTy())) {
4761 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4762 CI->getOpcode(), CI->getInversePredicate(),
4763 CI->getOperand(0), CI->getOperand(1)), I);
4764 NewCI->takeName(CI);
4765 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4766 }
4767 }
4768 }
4769 }
4770 }
4771
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004772 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4773 // ~(c-X) == X-c-1 == X+(-c-1)
4774 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4775 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4776 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4777 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4778 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004779 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004780 }
4781
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004782 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004783 if (Op0I->getOpcode() == Instruction::Add) {
4784 // ~(X-c) --> (-c-1)-X
4785 if (RHS->isAllOnesValue()) {
4786 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004787 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004788 ConstantExpr::getSub(NegOp0CI,
4789 ConstantInt::get(I.getType(), 1)),
4790 Op0I->getOperand(0));
4791 } else if (RHS->getValue().isSignBit()) {
4792 // (X + C) ^ signbit -> (X + C + signbit)
4793 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004794 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004795
4796 }
4797 } else if (Op0I->getOpcode() == Instruction::Or) {
4798 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4799 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4800 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4801 // Anything in both C1 and C2 is known to be zero, remove it from
4802 // NewRHS.
4803 Constant *CommonBits = And(Op0CI, RHS);
4804 NewRHS = ConstantExpr::getAnd(NewRHS,
4805 ConstantExpr::getNot(CommonBits));
4806 AddToWorkList(Op0I);
4807 I.setOperand(0, Op0I->getOperand(0));
4808 I.setOperand(1, NewRHS);
4809 return &I;
4810 }
4811 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004812 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004813 }
4814
4815 // Try to fold constant and into select arguments.
4816 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4817 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4818 return R;
4819 if (isa<PHINode>(Op0))
4820 if (Instruction *NV = FoldOpIntoPhi(I))
4821 return NV;
4822 }
4823
4824 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4825 if (X == Op1)
4826 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4827
4828 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4829 if (X == Op0)
4830 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4831
4832
4833 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4834 if (Op1I) {
4835 Value *A, *B;
4836 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4837 if (A == Op0) { // B^(B|A) == (A|B)^B
4838 Op1I->swapOperands();
4839 I.swapOperands();
4840 std::swap(Op0, Op1);
4841 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4842 I.swapOperands(); // Simplified below.
4843 std::swap(Op0, Op1);
4844 }
4845 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4846 if (Op0 == A) // A^(A^B) == B
4847 return ReplaceInstUsesWith(I, B);
4848 else if (Op0 == B) // A^(B^A) == B
4849 return ReplaceInstUsesWith(I, A);
4850 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4851 if (A == Op0) { // A^(A&B) -> A^(B&A)
4852 Op1I->swapOperands();
4853 std::swap(A, B);
4854 }
4855 if (B == Op0) { // A^(B&A) -> (B&A)^A
4856 I.swapOperands(); // Simplified below.
4857 std::swap(Op0, Op1);
4858 }
4859 }
4860 }
4861
4862 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4863 if (Op0I) {
4864 Value *A, *B;
4865 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4866 if (A == Op1) // (B|A)^B == (A|B)^B
4867 std::swap(A, B);
4868 if (B == Op1) { // (A|B)^B == A & ~B
4869 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004870 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4871 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004872 }
4873 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4874 if (Op1 == A) // (A^B)^A == B
4875 return ReplaceInstUsesWith(I, B);
4876 else if (Op1 == B) // (B^A)^A == B
4877 return ReplaceInstUsesWith(I, A);
4878 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4879 if (A == Op1) // (A&B)^A -> (B&A)^A
4880 std::swap(A, B);
4881 if (B == Op1 && // (B&A)^A == ~B & A
4882 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4883 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004884 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4885 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004886 }
4887 }
4888 }
4889
4890 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4891 if (Op0I && Op1I && Op0I->isShift() &&
4892 Op0I->getOpcode() == Op1I->getOpcode() &&
4893 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4894 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4895 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004896 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004897 Op1I->getOperand(0),
4898 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004899 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004900 Op1I->getOperand(1));
4901 }
4902
4903 if (Op0I && Op1I) {
4904 Value *A, *B, *C, *D;
4905 // (A & B)^(A | B) -> A ^ B
4906 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4907 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4908 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004909 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004910 }
4911 // (A | B)^(A & B) -> A ^ B
4912 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4913 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4914 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004915 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004916 }
4917
4918 // (A & B)^(C & D)
4919 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4920 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4921 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4922 // (X & Y)^(X & Y) -> (Y^Z) & X
4923 Value *X = 0, *Y = 0, *Z = 0;
4924 if (A == C)
4925 X = A, Y = B, Z = D;
4926 else if (A == D)
4927 X = A, Y = B, Z = C;
4928 else if (B == C)
4929 X = B, Y = A, Z = D;
4930 else if (B == D)
4931 X = B, Y = A, Z = C;
4932
4933 if (X) {
4934 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004935 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4936 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004937 }
4938 }
4939 }
4940
4941 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4942 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4943 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4944 return R;
4945
4946 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004947 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004948 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4949 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4950 const Type *SrcTy = Op0C->getOperand(0)->getType();
4951 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4952 // Only do this if the casts both really cause code to be generated.
4953 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4954 I.getType(), TD) &&
4955 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4956 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004957 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004958 Op1C->getOperand(0),
4959 I.getName());
4960 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004961 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004962 }
4963 }
Chris Lattner91882432007-10-24 05:38:08 +00004964 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004965
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004966 return Changed ? &I : 0;
4967}
4968
4969/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4970/// overflowed for this type.
4971static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4972 ConstantInt *In2, bool IsSigned = false) {
4973 Result = cast<ConstantInt>(Add(In1, In2));
4974
4975 if (IsSigned)
4976 if (In2->getValue().isNegative())
4977 return Result->getValue().sgt(In1->getValue());
4978 else
4979 return Result->getValue().slt(In1->getValue());
4980 else
4981 return Result->getValue().ult(In1->getValue());
4982}
4983
Dan Gohmanb80d5612008-09-10 23:30:57 +00004984/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
4985/// overflowed for this type.
4986static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4987 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00004988 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00004989
4990 if (IsSigned)
4991 if (In2->getValue().isNegative())
4992 return Result->getValue().slt(In1->getValue());
4993 else
4994 return Result->getValue().sgt(In1->getValue());
4995 else
4996 return Result->getValue().ugt(In1->getValue());
4997}
4998
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004999/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5000/// code necessary to compute the offset from the base pointer (without adding
5001/// in the base pointer). Return the result as a signed integer of intptr size.
5002static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5003 TargetData &TD = IC.getTargetData();
5004 gep_type_iterator GTI = gep_type_begin(GEP);
5005 const Type *IntPtrTy = TD.getIntPtrType();
5006 Value *Result = Constant::getNullValue(IntPtrTy);
5007
5008 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005009 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005010 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5011
Gabor Greif17396002008-06-12 21:37:33 +00005012 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5013 ++i, ++GTI) {
5014 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005015 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005016 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5017 if (OpC->isZero()) continue;
5018
5019 // Handle a struct index, which adds its field offset to the pointer.
5020 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5021 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5022
5023 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5024 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5025 else
5026 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005027 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005028 ConstantInt::get(IntPtrTy, Size),
5029 GEP->getName()+".offs"), I);
5030 continue;
5031 }
5032
5033 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5034 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5035 Scale = ConstantExpr::getMul(OC, Scale);
5036 if (Constant *RC = dyn_cast<Constant>(Result))
5037 Result = ConstantExpr::getAdd(RC, Scale);
5038 else {
5039 // Emit an add instruction.
5040 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005041 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005042 GEP->getName()+".offs"), I);
5043 }
5044 continue;
5045 }
5046 // Convert to correct type.
5047 if (Op->getType() != IntPtrTy) {
5048 if (Constant *OpC = dyn_cast<Constant>(Op))
5049 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5050 else
5051 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5052 Op->getName()+".c"), I);
5053 }
5054 if (Size != 1) {
5055 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5056 if (Constant *OpC = dyn_cast<Constant>(Op))
5057 Op = ConstantExpr::getMul(OpC, Scale);
5058 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005059 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005060 GEP->getName()+".idx"), I);
5061 }
5062
5063 // Emit an add instruction.
5064 if (isa<Constant>(Op) && isa<Constant>(Result))
5065 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5066 cast<Constant>(Result));
5067 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005068 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005069 GEP->getName()+".offs"), I);
5070 }
5071 return Result;
5072}
5073
Chris Lattnereba75862008-04-22 02:53:33 +00005074
5075/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5076/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5077/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5078/// complex, and scales are involved. The above expression would also be legal
5079/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5080/// later form is less amenable to optimization though, and we are allowed to
5081/// generate the first by knowing that pointer arithmetic doesn't overflow.
5082///
5083/// If we can't emit an optimized form for this expression, this returns null.
5084///
5085static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5086 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005087 TargetData &TD = IC.getTargetData();
5088 gep_type_iterator GTI = gep_type_begin(GEP);
5089
5090 // Check to see if this gep only has a single variable index. If so, and if
5091 // any constant indices are a multiple of its scale, then we can compute this
5092 // in terms of the scale of the variable index. For example, if the GEP
5093 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5094 // because the expression will cross zero at the same point.
5095 unsigned i, e = GEP->getNumOperands();
5096 int64_t Offset = 0;
5097 for (i = 1; i != e; ++i, ++GTI) {
5098 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5099 // Compute the aggregate offset of constant indices.
5100 if (CI->isZero()) continue;
5101
5102 // Handle a struct index, which adds its field offset to the pointer.
5103 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5104 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5105 } else {
5106 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5107 Offset += Size*CI->getSExtValue();
5108 }
5109 } else {
5110 // Found our variable index.
5111 break;
5112 }
5113 }
5114
5115 // If there are no variable indices, we must have a constant offset, just
5116 // evaluate it the general way.
5117 if (i == e) return 0;
5118
5119 Value *VariableIdx = GEP->getOperand(i);
5120 // Determine the scale factor of the variable element. For example, this is
5121 // 4 if the variable index is into an array of i32.
5122 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5123
5124 // Verify that there are no other variable indices. If so, emit the hard way.
5125 for (++i, ++GTI; i != e; ++i, ++GTI) {
5126 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5127 if (!CI) return 0;
5128
5129 // Compute the aggregate offset of constant indices.
5130 if (CI->isZero()) continue;
5131
5132 // Handle a struct index, which adds its field offset to the pointer.
5133 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5134 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5135 } else {
5136 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5137 Offset += Size*CI->getSExtValue();
5138 }
5139 }
5140
5141 // Okay, we know we have a single variable index, which must be a
5142 // pointer/array/vector index. If there is no offset, life is simple, return
5143 // the index.
5144 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5145 if (Offset == 0) {
5146 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5147 // we don't need to bother extending: the extension won't affect where the
5148 // computation crosses zero.
5149 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5150 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5151 VariableIdx->getNameStart(), &I);
5152 return VariableIdx;
5153 }
5154
5155 // Otherwise, there is an index. The computation we will do will be modulo
5156 // the pointer size, so get it.
5157 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5158
5159 Offset &= PtrSizeMask;
5160 VariableScale &= PtrSizeMask;
5161
5162 // To do this transformation, any constant index must be a multiple of the
5163 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5164 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5165 // multiple of the variable scale.
5166 int64_t NewOffs = Offset / (int64_t)VariableScale;
5167 if (Offset != NewOffs*(int64_t)VariableScale)
5168 return 0;
5169
5170 // Okay, we can do this evaluation. Start by converting the index to intptr.
5171 const Type *IntPtrTy = TD.getIntPtrType();
5172 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005173 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005174 true /*SExt*/,
5175 VariableIdx->getNameStart(), &I);
5176 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005177 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005178}
5179
5180
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005181/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5182/// else. At this point we know that the GEP is on the LHS of the comparison.
5183Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5184 ICmpInst::Predicate Cond,
5185 Instruction &I) {
5186 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5187
Chris Lattnereba75862008-04-22 02:53:33 +00005188 // Look through bitcasts.
5189 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5190 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005191
5192 Value *PtrBase = GEPLHS->getOperand(0);
5193 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005194 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005195 // This transformation (ignoring the base and scales) is valid because we
5196 // know pointers can't overflow. See if we can output an optimized form.
5197 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5198
5199 // If not, synthesize the offset the hard way.
5200 if (Offset == 0)
5201 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005202 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5203 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005204 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5205 // If the base pointers are different, but the indices are the same, just
5206 // compare the base pointer.
5207 if (PtrBase != GEPRHS->getOperand(0)) {
5208 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5209 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5210 GEPRHS->getOperand(0)->getType();
5211 if (IndicesTheSame)
5212 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5213 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5214 IndicesTheSame = false;
5215 break;
5216 }
5217
5218 // If all indices are the same, just compare the base pointers.
5219 if (IndicesTheSame)
5220 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5221 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5222
5223 // Otherwise, the base pointers are different and the indices are
5224 // different, bail out.
5225 return 0;
5226 }
5227
5228 // If one of the GEPs has all zero indices, recurse.
5229 bool AllZeros = true;
5230 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5231 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5232 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5233 AllZeros = false;
5234 break;
5235 }
5236 if (AllZeros)
5237 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5238 ICmpInst::getSwappedPredicate(Cond), I);
5239
5240 // If the other GEP has all zero indices, recurse.
5241 AllZeros = true;
5242 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5243 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5244 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5245 AllZeros = false;
5246 break;
5247 }
5248 if (AllZeros)
5249 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5250
5251 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5252 // If the GEPs only differ by one index, compare it.
5253 unsigned NumDifferences = 0; // Keep track of # differences.
5254 unsigned DiffOperand = 0; // The operand that differs.
5255 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5256 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5257 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5258 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5259 // Irreconcilable differences.
5260 NumDifferences = 2;
5261 break;
5262 } else {
5263 if (NumDifferences++) break;
5264 DiffOperand = i;
5265 }
5266 }
5267
5268 if (NumDifferences == 0) // SAME GEP?
5269 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005270 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005271 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005272
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005273 else if (NumDifferences == 1) {
5274 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5275 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5276 // Make sure we do a signed comparison here.
5277 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5278 }
5279 }
5280
5281 // Only lower this if the icmp is the only user of the GEP or if we expect
5282 // the result to fold to a constant!
5283 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5284 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5285 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5286 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5287 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5288 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5289 }
5290 }
5291 return 0;
5292}
5293
Chris Lattnere6b62d92008-05-19 20:18:56 +00005294/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5295///
5296Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5297 Instruction *LHSI,
5298 Constant *RHSC) {
5299 if (!isa<ConstantFP>(RHSC)) return 0;
5300 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5301
5302 // Get the width of the mantissa. We don't want to hack on conversions that
5303 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005304 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005305 if (MantissaWidth == -1) return 0; // Unknown.
5306
5307 // Check to see that the input is converted from an integer type that is small
5308 // enough that preserves all bits. TODO: check here for "known" sign bits.
5309 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5310 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5311
5312 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005313 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5314 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005315 ++InputSize;
5316
5317 // If the conversion would lose info, don't hack on this.
5318 if ((int)InputSize > MantissaWidth)
5319 return 0;
5320
5321 // Otherwise, we can potentially simplify the comparison. We know that it
5322 // will always come through as an integer value and we know the constant is
5323 // not a NAN (it would have been previously simplified).
5324 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5325
5326 ICmpInst::Predicate Pred;
5327 switch (I.getPredicate()) {
5328 default: assert(0 && "Unexpected predicate!");
5329 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005330 case FCmpInst::FCMP_OEQ:
5331 Pred = ICmpInst::ICMP_EQ;
5332 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005333 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005334 case FCmpInst::FCMP_OGT:
5335 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5336 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005337 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005338 case FCmpInst::FCMP_OGE:
5339 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5340 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005341 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005342 case FCmpInst::FCMP_OLT:
5343 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5344 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005345 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005346 case FCmpInst::FCMP_OLE:
5347 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5348 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005349 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005350 case FCmpInst::FCMP_ONE:
5351 Pred = ICmpInst::ICMP_NE;
5352 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005353 case FCmpInst::FCMP_ORD:
5354 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5355 case FCmpInst::FCMP_UNO:
5356 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5357 }
5358
5359 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5360
5361 // Now we know that the APFloat is a normal number, zero or inf.
5362
Chris Lattnerf13ff492008-05-20 03:50:52 +00005363 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005364 // comparing an i8 to 300.0.
5365 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5366
Bill Wendling20636df2008-11-09 04:26:50 +00005367 if (!LHSUnsigned) {
5368 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5369 // and large values.
5370 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5371 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5372 APFloat::rmNearestTiesToEven);
5373 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5374 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5375 Pred == ICmpInst::ICMP_SLE)
5376 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5377 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5378 }
5379 } else {
5380 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5381 // +INF and large values.
5382 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5383 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5384 APFloat::rmNearestTiesToEven);
5385 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5386 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5387 Pred == ICmpInst::ICMP_ULE)
5388 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5389 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5390 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005391 }
5392
Bill Wendling20636df2008-11-09 04:26:50 +00005393 if (!LHSUnsigned) {
5394 // See if the RHS value is < SignedMin.
5395 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5396 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5397 APFloat::rmNearestTiesToEven);
5398 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5399 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5400 Pred == ICmpInst::ICMP_SGE)
5401 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5402 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5403 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005404 }
5405
Bill Wendling20636df2008-11-09 04:26:50 +00005406 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5407 // [0, UMAX], but it may still be fractional. See if it is fractional by
5408 // casting the FP value to the integer value and back, checking for equality.
5409 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005410 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5411 if (!RHS.isZero() &&
5412 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005413 // If we had a comparison against a fractional value, we have to adjust the
5414 // compare predicate and sometimes the value. RHSC is rounded towards zero
5415 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005416 switch (Pred) {
5417 default: assert(0 && "Unexpected integer comparison!");
5418 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5419 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5420 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5421 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Bill Wendling20636df2008-11-09 04:26:50 +00005422 case ICmpInst::ICMP_ULE:
5423 // (float)int <= 4.4 --> int <= 4
5424 // (float)int <= -4.4 --> false
5425 if (RHS.isNegative())
5426 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5427 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005428 case ICmpInst::ICMP_SLE:
5429 // (float)int <= 4.4 --> int <= 4
5430 // (float)int <= -4.4 --> int < -4
5431 if (RHS.isNegative())
5432 Pred = ICmpInst::ICMP_SLT;
5433 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005434 case ICmpInst::ICMP_ULT:
5435 // (float)int < -4.4 --> false
5436 // (float)int < 4.4 --> int <= 4
5437 if (RHS.isNegative())
5438 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5439 Pred = ICmpInst::ICMP_ULE;
5440 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005441 case ICmpInst::ICMP_SLT:
5442 // (float)int < -4.4 --> int < -4
5443 // (float)int < 4.4 --> int <= 4
5444 if (!RHS.isNegative())
5445 Pred = ICmpInst::ICMP_SLE;
5446 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005447 case ICmpInst::ICMP_UGT:
5448 // (float)int > 4.4 --> int > 4
5449 // (float)int > -4.4 --> true
5450 if (RHS.isNegative())
5451 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5452 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005453 case ICmpInst::ICMP_SGT:
5454 // (float)int > 4.4 --> int > 4
5455 // (float)int > -4.4 --> int >= -4
5456 if (RHS.isNegative())
5457 Pred = ICmpInst::ICMP_SGE;
5458 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005459 case ICmpInst::ICMP_UGE:
5460 // (float)int >= -4.4 --> true
5461 // (float)int >= 4.4 --> int > 4
5462 if (!RHS.isNegative())
5463 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5464 Pred = ICmpInst::ICMP_UGT;
5465 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005466 case ICmpInst::ICMP_SGE:
5467 // (float)int >= -4.4 --> int >= -4
5468 // (float)int >= 4.4 --> int > 4
5469 if (!RHS.isNegative())
5470 Pred = ICmpInst::ICMP_SGT;
5471 break;
5472 }
5473 }
5474
5475 // Lower this FP comparison into an appropriate integer version of the
5476 // comparison.
5477 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5478}
5479
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005480Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5481 bool Changed = SimplifyCompare(I);
5482 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5483
5484 // Fold trivial predicates.
5485 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5486 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5487 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5488 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5489
5490 // Simplify 'fcmp pred X, X'
5491 if (Op0 == Op1) {
5492 switch (I.getPredicate()) {
5493 default: assert(0 && "Unknown predicate!");
5494 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5495 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5496 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5497 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5498 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5499 case FCmpInst::FCMP_OLT: // True if ordered and less than
5500 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5501 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5502
5503 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5504 case FCmpInst::FCMP_ULT: // True if unordered or less than
5505 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5506 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5507 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5508 I.setPredicate(FCmpInst::FCMP_UNO);
5509 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5510 return &I;
5511
5512 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5513 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5514 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5515 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5516 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5517 I.setPredicate(FCmpInst::FCMP_ORD);
5518 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5519 return &I;
5520 }
5521 }
5522
5523 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5524 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5525
5526 // Handle fcmp with constant RHS
5527 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005528 // If the constant is a nan, see if we can fold the comparison based on it.
5529 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5530 if (CFP->getValueAPF().isNaN()) {
5531 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5532 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005533 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5534 "Comparison must be either ordered or unordered!");
5535 // True if unordered.
5536 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005537 }
5538 }
5539
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005540 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5541 switch (LHSI->getOpcode()) {
5542 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005543 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5544 // block. If in the same block, we're encouraging jump threading. If
5545 // not, we are just pessimizing the code by making an i1 phi.
5546 if (LHSI->getParent() == I.getParent())
5547 if (Instruction *NV = FoldOpIntoPhi(I))
5548 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005549 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005550 case Instruction::SIToFP:
5551 case Instruction::UIToFP:
5552 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5553 return NV;
5554 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005555 case Instruction::Select:
5556 // If either operand of the select is a constant, we can fold the
5557 // comparison into the select arms, which will cause one to be
5558 // constant folded and the select turned into a bitwise or.
5559 Value *Op1 = 0, *Op2 = 0;
5560 if (LHSI->hasOneUse()) {
5561 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5562 // Fold the known value into the constant operand.
5563 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5564 // Insert a new FCmp of the other select operand.
5565 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5566 LHSI->getOperand(2), RHSC,
5567 I.getName()), I);
5568 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5569 // Fold the known value into the constant operand.
5570 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5571 // Insert a new FCmp of the other select operand.
5572 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5573 LHSI->getOperand(1), RHSC,
5574 I.getName()), I);
5575 }
5576 }
5577
5578 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005579 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005580 break;
5581 }
5582 }
5583
5584 return Changed ? &I : 0;
5585}
5586
5587Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5588 bool Changed = SimplifyCompare(I);
5589 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5590 const Type *Ty = Op0->getType();
5591
5592 // icmp X, X
5593 if (Op0 == Op1)
5594 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005595 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005596
5597 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5598 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005599
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005600 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5601 // addresses never equal each other! We already know that Op0 != Op1.
5602 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5603 isa<ConstantPointerNull>(Op0)) &&
5604 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5605 isa<ConstantPointerNull>(Op1)))
5606 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005607 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005608
5609 // icmp's with boolean values can always be turned into bitwise operations
5610 if (Ty == Type::Int1Ty) {
5611 switch (I.getPredicate()) {
5612 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005613 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005614 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005615 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005616 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005617 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005618 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005619 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005620
5621 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005622 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005623 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005624 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005625 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005626 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005627 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005628 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005629 case ICmpInst::ICMP_SGT:
5630 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005631 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005632 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5633 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5634 InsertNewInstBefore(Not, I);
5635 return BinaryOperator::CreateAnd(Not, Op0);
5636 }
5637 case ICmpInst::ICMP_UGE:
5638 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5639 // FALL THROUGH
5640 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005641 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005642 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005643 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005644 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005645 case ICmpInst::ICMP_SGE:
5646 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5647 // FALL THROUGH
5648 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5649 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5650 InsertNewInstBefore(Not, I);
5651 return BinaryOperator::CreateOr(Not, Op0);
5652 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005653 }
5654 }
5655
Dan Gohman58c09632008-09-16 18:46:06 +00005656 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005657 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005658 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005659
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005660 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5661 if (I.isEquality() && CI->isNullValue() &&
5662 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5663 // (icmp cond A B) if cond is equality
5664 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005665 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005666
Dan Gohman58c09632008-09-16 18:46:06 +00005667 // If we have an icmp le or icmp ge instruction, turn it into the
5668 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5669 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005670 switch (I.getPredicate()) {
5671 default: break;
5672 case ICmpInst::ICMP_ULE:
5673 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5674 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5675 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5676 case ICmpInst::ICMP_SLE:
5677 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5678 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5679 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5680 case ICmpInst::ICMP_UGE:
5681 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5682 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5683 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5684 case ICmpInst::ICMP_SGE:
5685 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5686 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5687 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5688 }
5689
Chris Lattnera1308652008-07-11 05:40:05 +00005690 // See if we can fold the comparison based on range information we can get
5691 // by checking whether bits are known to be zero or one in the input.
5692 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5693 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5694
5695 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005696 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005697 bool UnusedBit;
5698 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5699
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005700 if (SimplifyDemandedBits(Op0,
5701 isSignBit ? APInt::getSignBit(BitWidth)
5702 : APInt::getAllOnesValue(BitWidth),
5703 KnownZero, KnownOne, 0))
5704 return &I;
5705
5706 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005707 // in. Compute the Min, Max and RHS values based on the known bits. For the
5708 // EQ and NE we use unsigned values.
5709 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005710 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5711 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5712 else
5713 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5714
Chris Lattnera1308652008-07-11 05:40:05 +00005715 // If Min and Max are known to be the same, then SimplifyDemandedBits
5716 // figured out that the LHS is a constant. Just constant fold this now so
5717 // that code below can assume that Min != Max.
5718 if (Min == Max)
5719 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5720 ConstantInt::get(Min),
5721 CI));
5722
5723 // Based on the range information we know about the LHS, see if we can
5724 // simplify this comparison. For example, (x&4) < 8 is always true.
5725 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005726 switch (I.getPredicate()) { // LE/GE have been folded already.
5727 default: assert(0 && "Unknown icmp opcode!");
5728 case ICmpInst::ICMP_EQ:
5729 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5730 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5731 break;
5732 case ICmpInst::ICMP_NE:
5733 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5734 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5735 break;
5736 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005737 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005738 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005739 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005740 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005741 if (RHSVal == Max) // A <u MAX -> A != MAX
5742 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5743 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5744 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5745
5746 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5747 if (CI->isMinValue(true))
5748 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5749 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005750 break;
5751 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005752 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005753 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005754 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005755 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005756
5757 if (RHSVal == Min) // A >u MIN -> A != MIN
5758 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5759 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5760 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5761
5762 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5763 if (CI->isMaxValue(true))
5764 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5765 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005766 break;
5767 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005768 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005769 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005770 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005771 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005772 if (RHSVal == Max) // A <s MAX -> A != MAX
5773 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005774 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005775 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005776 break;
5777 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005778 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005779 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005780 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005781 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005782
5783 if (RHSVal == Min) // A >s MIN -> A != MIN
5784 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5785 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5786 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005787 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005788 }
Dan Gohman58c09632008-09-16 18:46:06 +00005789 }
5790
5791 // Test if the ICmpInst instruction is used exclusively by a select as
5792 // part of a minimum or maximum operation. If so, refrain from doing
5793 // any other folding. This helps out other analyses which understand
5794 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5795 // and CodeGen. And in this case, at least one of the comparison
5796 // operands has at least one user besides the compare (the select),
5797 // which would often largely negate the benefit of folding anyway.
5798 if (I.hasOneUse())
5799 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5800 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5801 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5802 return 0;
5803
5804 // See if we are doing a comparison between a constant and an instruction that
5805 // can be folded into the comparison.
5806 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005807 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5808 // instruction, see if that instruction also has constants so that the
5809 // instruction can be folded into the icmp
5810 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5811 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5812 return Res;
5813 }
5814
5815 // Handle icmp with constant (but not simple integer constant) RHS
5816 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5817 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5818 switch (LHSI->getOpcode()) {
5819 case Instruction::GetElementPtr:
5820 if (RHSC->isNullValue()) {
5821 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5822 bool isAllZeros = true;
5823 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5824 if (!isa<Constant>(LHSI->getOperand(i)) ||
5825 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5826 isAllZeros = false;
5827 break;
5828 }
5829 if (isAllZeros)
5830 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5831 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5832 }
5833 break;
5834
5835 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005836 // Only fold icmp into the PHI if the phi and fcmp are in the same
5837 // block. If in the same block, we're encouraging jump threading. If
5838 // not, we are just pessimizing the code by making an i1 phi.
5839 if (LHSI->getParent() == I.getParent())
5840 if (Instruction *NV = FoldOpIntoPhi(I))
5841 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005842 break;
5843 case Instruction::Select: {
5844 // If either operand of the select is a constant, we can fold the
5845 // comparison into the select arms, which will cause one to be
5846 // constant folded and the select turned into a bitwise or.
5847 Value *Op1 = 0, *Op2 = 0;
5848 if (LHSI->hasOneUse()) {
5849 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5850 // Fold the known value into the constant operand.
5851 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5852 // Insert a new ICmp of the other select operand.
5853 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5854 LHSI->getOperand(2), RHSC,
5855 I.getName()), I);
5856 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5857 // Fold the known value into the constant operand.
5858 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5859 // Insert a new ICmp of the other select operand.
5860 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5861 LHSI->getOperand(1), RHSC,
5862 I.getName()), I);
5863 }
5864 }
5865
5866 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005867 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005868 break;
5869 }
5870 case Instruction::Malloc:
5871 // If we have (malloc != null), and if the malloc has a single use, we
5872 // can assume it is successful and remove the malloc.
5873 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5874 AddToWorkList(LHSI);
5875 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005876 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005877 }
5878 break;
5879 }
5880 }
5881
5882 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5883 if (User *GEP = dyn_castGetElementPtr(Op0))
5884 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5885 return NI;
5886 if (User *GEP = dyn_castGetElementPtr(Op1))
5887 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5888 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5889 return NI;
5890
5891 // Test to see if the operands of the icmp are casted versions of other
5892 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5893 // now.
5894 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5895 if (isa<PointerType>(Op0->getType()) &&
5896 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5897 // We keep moving the cast from the left operand over to the right
5898 // operand, where it can often be eliminated completely.
5899 Op0 = CI->getOperand(0);
5900
5901 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5902 // so eliminate it as well.
5903 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5904 Op1 = CI2->getOperand(0);
5905
5906 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005907 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005908 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5909 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5910 } else {
5911 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005912 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005913 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005914 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005915 return new ICmpInst(I.getPredicate(), Op0, Op1);
5916 }
5917 }
5918
5919 if (isa<CastInst>(Op0)) {
5920 // Handle the special case of: icmp (cast bool to X), <cst>
5921 // This comes up when you have code like
5922 // int X = A < B;
5923 // if (X) ...
5924 // For generality, we handle any zero-extension of any operand comparison
5925 // with a constant or another cast from the same type.
5926 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5927 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5928 return R;
5929 }
5930
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005931 // See if it's the same type of instruction on the left and right.
5932 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5933 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005934 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
5935 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
5936 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00005937 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005938 default: break;
5939 case Instruction::Add:
5940 case Instruction::Sub:
5941 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005942 // a+x icmp eq/ne b+x --> a icmp b
5943 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
5944 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005945 break;
5946 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005947 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5948 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
5949 // Mask = -1 >> count-trailing-zeros(Cst).
5950 if (!CI->isZero() && !CI->isOne()) {
5951 const APInt &AP = CI->getValue();
5952 ConstantInt *Mask = ConstantInt::get(
5953 APInt::getLowBitsSet(AP.getBitWidth(),
5954 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005955 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005956 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
5957 Mask);
5958 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
5959 Mask);
5960 InsertNewInstBefore(And1, I);
5961 InsertNewInstBefore(And2, I);
5962 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005963 }
5964 }
5965 break;
5966 }
5967 }
5968 }
5969 }
5970
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005971 // ~x < ~y --> y < x
5972 { Value *A, *B;
5973 if (match(Op0, m_Not(m_Value(A))) &&
5974 match(Op1, m_Not(m_Value(B))))
5975 return new ICmpInst(I.getPredicate(), B, A);
5976 }
5977
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005978 if (I.isEquality()) {
5979 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005980
5981 // -x == -y --> x == y
5982 if (match(Op0, m_Neg(m_Value(A))) &&
5983 match(Op1, m_Neg(m_Value(B))))
5984 return new ICmpInst(I.getPredicate(), A, B);
5985
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005986 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5987 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5988 Value *OtherVal = A == Op1 ? B : A;
5989 return new ICmpInst(I.getPredicate(), OtherVal,
5990 Constant::getNullValue(A->getType()));
5991 }
5992
5993 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5994 // A^c1 == C^c2 --> A == C^(c1^c2)
5995 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5996 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5997 if (Op1->hasOneUse()) {
5998 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00005999 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006000 return new ICmpInst(I.getPredicate(), A,
6001 InsertNewInstBefore(Xor, I));
6002 }
6003
6004 // A^B == A^D -> B == D
6005 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6006 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6007 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6008 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6009 }
6010 }
6011
6012 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6013 (A == Op0 || B == Op0)) {
6014 // A == (A^B) -> B == 0
6015 Value *OtherVal = A == Op0 ? B : A;
6016 return new ICmpInst(I.getPredicate(), OtherVal,
6017 Constant::getNullValue(A->getType()));
6018 }
6019 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
6020 // (A-B) == A -> B == 0
6021 return new ICmpInst(I.getPredicate(), B,
6022 Constant::getNullValue(B->getType()));
6023 }
6024 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
6025 // A == (A-B) -> B == 0
6026 return new ICmpInst(I.getPredicate(), B,
6027 Constant::getNullValue(B->getType()));
6028 }
6029
6030 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6031 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6032 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6033 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6034 Value *X = 0, *Y = 0, *Z = 0;
6035
6036 if (A == C) {
6037 X = B; Y = D; Z = A;
6038 } else if (A == D) {
6039 X = B; Y = C; Z = A;
6040 } else if (B == C) {
6041 X = A; Y = D; Z = B;
6042 } else if (B == D) {
6043 X = A; Y = C; Z = B;
6044 }
6045
6046 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006047 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6048 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006049 I.setOperand(0, Op1);
6050 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6051 return &I;
6052 }
6053 }
6054 }
6055 return Changed ? &I : 0;
6056}
6057
6058
6059/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6060/// and CmpRHS are both known to be integer constants.
6061Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6062 ConstantInt *DivRHS) {
6063 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6064 const APInt &CmpRHSV = CmpRHS->getValue();
6065
6066 // FIXME: If the operand types don't match the type of the divide
6067 // then don't attempt this transform. The code below doesn't have the
6068 // logic to deal with a signed divide and an unsigned compare (and
6069 // vice versa). This is because (x /s C1) <s C2 produces different
6070 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6071 // (x /u C1) <u C2. Simply casting the operands and result won't
6072 // work. :( The if statement below tests that condition and bails
6073 // if it finds it.
6074 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6075 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6076 return 0;
6077 if (DivRHS->isZero())
6078 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006079 if (DivIsSigned && DivRHS->isAllOnesValue())
6080 return 0; // The overflow computation also screws up here
6081 if (DivRHS->isOne())
6082 return 0; // Not worth bothering, and eliminates some funny cases
6083 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006084
6085 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6086 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6087 // C2 (CI). By solving for X we can turn this into a range check
6088 // instead of computing a divide.
6089 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6090
6091 // Determine if the product overflows by seeing if the product is
6092 // not equal to the divide. Make sure we do the same kind of divide
6093 // as in the LHS instruction that we're folding.
6094 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6095 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6096
6097 // Get the ICmp opcode
6098 ICmpInst::Predicate Pred = ICI.getPredicate();
6099
6100 // Figure out the interval that is being checked. For example, a comparison
6101 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6102 // Compute this interval based on the constants involved and the signedness of
6103 // the compare/divide. This computes a half-open interval, keeping track of
6104 // whether either value in the interval overflows. After analysis each
6105 // overflow variable is set to 0 if it's corresponding bound variable is valid
6106 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6107 int LoOverflow = 0, HiOverflow = 0;
6108 ConstantInt *LoBound = 0, *HiBound = 0;
6109
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006110 if (!DivIsSigned) { // udiv
6111 // e.g. X/5 op 3 --> [15, 20)
6112 LoBound = Prod;
6113 HiOverflow = LoOverflow = ProdOV;
6114 if (!HiOverflow)
6115 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006116 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006117 if (CmpRHSV == 0) { // (X / pos) op 0
6118 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6119 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6120 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006121 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006122 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6123 HiOverflow = LoOverflow = ProdOV;
6124 if (!HiOverflow)
6125 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6126 } else { // (X / pos) op neg
6127 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006128 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006129 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6130 if (!LoOverflow) {
6131 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6132 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6133 true) ? -1 : 0;
6134 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006135 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006136 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006137 if (CmpRHSV == 0) { // (X / neg) op 0
6138 // e.g. X/-5 op 0 --> [-4, 5)
6139 LoBound = AddOne(DivRHS);
6140 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6141 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6142 HiOverflow = 1; // [INTMIN+1, overflow)
6143 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6144 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006145 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006146 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006147 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006148 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6149 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006150 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006151 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006152 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6153 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006154 if (!HiOverflow)
6155 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006156 }
6157
6158 // Dividing by a negative swaps the condition. LT <-> GT
6159 Pred = ICmpInst::getSwappedPredicate(Pred);
6160 }
6161
6162 Value *X = DivI->getOperand(0);
6163 switch (Pred) {
6164 default: assert(0 && "Unhandled icmp opcode!");
6165 case ICmpInst::ICMP_EQ:
6166 if (LoOverflow && HiOverflow)
6167 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6168 else if (HiOverflow)
6169 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6170 ICmpInst::ICMP_UGE, X, LoBound);
6171 else if (LoOverflow)
6172 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6173 ICmpInst::ICMP_ULT, X, HiBound);
6174 else
6175 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6176 case ICmpInst::ICMP_NE:
6177 if (LoOverflow && HiOverflow)
6178 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6179 else if (HiOverflow)
6180 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6181 ICmpInst::ICMP_ULT, X, LoBound);
6182 else if (LoOverflow)
6183 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6184 ICmpInst::ICMP_UGE, X, HiBound);
6185 else
6186 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6187 case ICmpInst::ICMP_ULT:
6188 case ICmpInst::ICMP_SLT:
6189 if (LoOverflow == +1) // Low bound is greater than input range.
6190 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6191 if (LoOverflow == -1) // Low bound is less than input range.
6192 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6193 return new ICmpInst(Pred, X, LoBound);
6194 case ICmpInst::ICMP_UGT:
6195 case ICmpInst::ICMP_SGT:
6196 if (HiOverflow == +1) // High bound greater than input range.
6197 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6198 else if (HiOverflow == -1) // High bound less than input range.
6199 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6200 if (Pred == ICmpInst::ICMP_UGT)
6201 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6202 else
6203 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6204 }
6205}
6206
6207
6208/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6209///
6210Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6211 Instruction *LHSI,
6212 ConstantInt *RHS) {
6213 const APInt &RHSV = RHS->getValue();
6214
6215 switch (LHSI->getOpcode()) {
6216 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6217 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6218 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6219 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006220 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6221 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006222 Value *CompareVal = LHSI->getOperand(0);
6223
6224 // If the sign bit of the XorCST is not set, there is no change to
6225 // the operation, just stop using the Xor.
6226 if (!XorCST->getValue().isNegative()) {
6227 ICI.setOperand(0, CompareVal);
6228 AddToWorkList(LHSI);
6229 return &ICI;
6230 }
6231
6232 // Was the old condition true if the operand is positive?
6233 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6234
6235 // If so, the new one isn't.
6236 isTrueIfPositive ^= true;
6237
6238 if (isTrueIfPositive)
6239 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6240 else
6241 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6242 }
6243 }
6244 break;
6245 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6246 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6247 LHSI->getOperand(0)->hasOneUse()) {
6248 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6249
6250 // If the LHS is an AND of a truncating cast, we can widen the
6251 // and/compare to be the input width without changing the value
6252 // produced, eliminating a cast.
6253 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6254 // We can do this transformation if either the AND constant does not
6255 // have its sign bit set or if it is an equality comparison.
6256 // Extending a relational comparison when we're checking the sign
6257 // bit would not work.
6258 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006259 (ICI.isEquality() ||
6260 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006261 uint32_t BitWidth =
6262 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6263 APInt NewCST = AndCST->getValue();
6264 NewCST.zext(BitWidth);
6265 APInt NewCI = RHSV;
6266 NewCI.zext(BitWidth);
6267 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006268 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006269 ConstantInt::get(NewCST),LHSI->getName());
6270 InsertNewInstBefore(NewAnd, ICI);
6271 return new ICmpInst(ICI.getPredicate(), NewAnd,
6272 ConstantInt::get(NewCI));
6273 }
6274 }
6275
6276 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6277 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6278 // happens a LOT in code produced by the C front-end, for bitfield
6279 // access.
6280 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6281 if (Shift && !Shift->isShift())
6282 Shift = 0;
6283
6284 ConstantInt *ShAmt;
6285 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6286 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6287 const Type *AndTy = AndCST->getType(); // Type of the and.
6288
6289 // We can fold this as long as we can't shift unknown bits
6290 // into the mask. This can only happen with signed shift
6291 // rights, as they sign-extend.
6292 if (ShAmt) {
6293 bool CanFold = Shift->isLogicalShift();
6294 if (!CanFold) {
6295 // To test for the bad case of the signed shr, see if any
6296 // of the bits shifted in could be tested after the mask.
6297 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6298 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6299
6300 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6301 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6302 AndCST->getValue()) == 0)
6303 CanFold = true;
6304 }
6305
6306 if (CanFold) {
6307 Constant *NewCst;
6308 if (Shift->getOpcode() == Instruction::Shl)
6309 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6310 else
6311 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6312
6313 // Check to see if we are shifting out any of the bits being
6314 // compared.
6315 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6316 // If we shifted bits out, the fold is not going to work out.
6317 // As a special case, check to see if this means that the
6318 // result is always true or false now.
6319 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6320 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6321 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6322 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6323 } else {
6324 ICI.setOperand(1, NewCst);
6325 Constant *NewAndCST;
6326 if (Shift->getOpcode() == Instruction::Shl)
6327 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6328 else
6329 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6330 LHSI->setOperand(1, NewAndCST);
6331 LHSI->setOperand(0, Shift->getOperand(0));
6332 AddToWorkList(Shift); // Shift is dead.
6333 AddUsesToWorkList(ICI);
6334 return &ICI;
6335 }
6336 }
6337 }
6338
6339 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6340 // preferable because it allows the C<<Y expression to be hoisted out
6341 // of a loop if Y is invariant and X is not.
6342 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6343 ICI.isEquality() && !Shift->isArithmeticShift() &&
6344 isa<Instruction>(Shift->getOperand(0))) {
6345 // Compute C << Y.
6346 Value *NS;
6347 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006348 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006349 Shift->getOperand(1), "tmp");
6350 } else {
6351 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006352 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006353 Shift->getOperand(1), "tmp");
6354 }
6355 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6356
6357 // Compute X & (C << Y).
6358 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006359 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006360 InsertNewInstBefore(NewAnd, ICI);
6361
6362 ICI.setOperand(0, NewAnd);
6363 return &ICI;
6364 }
6365 }
6366 break;
6367
6368 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6369 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6370 if (!ShAmt) break;
6371
6372 uint32_t TypeBits = RHSV.getBitWidth();
6373
6374 // Check that the shift amount is in range. If not, don't perform
6375 // undefined shifts. When the shift is visited it will be
6376 // simplified.
6377 if (ShAmt->uge(TypeBits))
6378 break;
6379
6380 if (ICI.isEquality()) {
6381 // If we are comparing against bits always shifted out, the
6382 // comparison cannot succeed.
6383 Constant *Comp =
6384 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6385 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6386 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6387 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6388 return ReplaceInstUsesWith(ICI, Cst);
6389 }
6390
6391 if (LHSI->hasOneUse()) {
6392 // Otherwise strength reduce the shift into an and.
6393 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6394 Constant *Mask =
6395 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6396
6397 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006398 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006399 Mask, LHSI->getName()+".mask");
6400 Value *And = InsertNewInstBefore(AndI, ICI);
6401 return new ICmpInst(ICI.getPredicate(), And,
6402 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6403 }
6404 }
6405
6406 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6407 bool TrueIfSigned = false;
6408 if (LHSI->hasOneUse() &&
6409 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6410 // (X << 31) <s 0 --> (X&1) != 0
6411 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6412 (TypeBits-ShAmt->getZExtValue()-1));
6413 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006414 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006415 Mask, LHSI->getName()+".mask");
6416 Value *And = InsertNewInstBefore(AndI, ICI);
6417
6418 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6419 And, Constant::getNullValue(And->getType()));
6420 }
6421 break;
6422 }
6423
6424 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6425 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006426 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006427 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006428 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006429
Chris Lattner5ee84f82008-03-21 05:19:58 +00006430 // Check that the shift amount is in range. If not, don't perform
6431 // undefined shifts. When the shift is visited it will be
6432 // simplified.
6433 uint32_t TypeBits = RHSV.getBitWidth();
6434 if (ShAmt->uge(TypeBits))
6435 break;
6436
6437 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006438
Chris Lattner5ee84f82008-03-21 05:19:58 +00006439 // If we are comparing against bits always shifted out, the
6440 // comparison cannot succeed.
6441 APInt Comp = RHSV << ShAmtVal;
6442 if (LHSI->getOpcode() == Instruction::LShr)
6443 Comp = Comp.lshr(ShAmtVal);
6444 else
6445 Comp = Comp.ashr(ShAmtVal);
6446
6447 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6448 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6449 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6450 return ReplaceInstUsesWith(ICI, Cst);
6451 }
6452
6453 // Otherwise, check to see if the bits shifted out are known to be zero.
6454 // If so, we can compare against the unshifted value:
6455 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006456 if (LHSI->hasOneUse() &&
6457 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006458 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6459 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6460 ConstantExpr::getShl(RHS, ShAmt));
6461 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006462
Evan Chengfb9292a2008-04-23 00:38:06 +00006463 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006464 // Otherwise strength reduce the shift into an and.
6465 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6466 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006467
Chris Lattner5ee84f82008-03-21 05:19:58 +00006468 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006469 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006470 Mask, LHSI->getName()+".mask");
6471 Value *And = InsertNewInstBefore(AndI, ICI);
6472 return new ICmpInst(ICI.getPredicate(), And,
6473 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006474 }
6475 break;
6476 }
6477
6478 case Instruction::SDiv:
6479 case Instruction::UDiv:
6480 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6481 // Fold this div into the comparison, producing a range check.
6482 // Determine, based on the divide type, what the range is being
6483 // checked. If there is an overflow on the low or high side, remember
6484 // it, otherwise compute the range [low, hi) bounding the new value.
6485 // See: InsertRangeTest above for the kinds of replacements possible.
6486 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6487 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6488 DivRHS))
6489 return R;
6490 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006491
6492 case Instruction::Add:
6493 // Fold: icmp pred (add, X, C1), C2
6494
6495 if (!ICI.isEquality()) {
6496 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6497 if (!LHSC) break;
6498 const APInt &LHSV = LHSC->getValue();
6499
6500 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6501 .subtract(LHSV);
6502
6503 if (ICI.isSignedPredicate()) {
6504 if (CR.getLower().isSignBit()) {
6505 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6506 ConstantInt::get(CR.getUpper()));
6507 } else if (CR.getUpper().isSignBit()) {
6508 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6509 ConstantInt::get(CR.getLower()));
6510 }
6511 } else {
6512 if (CR.getLower().isMinValue()) {
6513 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6514 ConstantInt::get(CR.getUpper()));
6515 } else if (CR.getUpper().isMinValue()) {
6516 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6517 ConstantInt::get(CR.getLower()));
6518 }
6519 }
6520 }
6521 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006522 }
6523
6524 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6525 if (ICI.isEquality()) {
6526 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6527
6528 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6529 // the second operand is a constant, simplify a bit.
6530 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6531 switch (BO->getOpcode()) {
6532 case Instruction::SRem:
6533 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6534 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6535 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6536 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6537 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006538 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006539 BO->getName());
6540 InsertNewInstBefore(NewRem, ICI);
6541 return new ICmpInst(ICI.getPredicate(), NewRem,
6542 Constant::getNullValue(BO->getType()));
6543 }
6544 }
6545 break;
6546 case Instruction::Add:
6547 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6548 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6549 if (BO->hasOneUse())
6550 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6551 Subtract(RHS, BOp1C));
6552 } else if (RHSV == 0) {
6553 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6554 // efficiently invertible, or if the add has just this one use.
6555 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6556
6557 if (Value *NegVal = dyn_castNegVal(BOp1))
6558 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6559 else if (Value *NegVal = dyn_castNegVal(BOp0))
6560 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6561 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006562 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006563 InsertNewInstBefore(Neg, ICI);
6564 Neg->takeName(BO);
6565 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6566 }
6567 }
6568 break;
6569 case Instruction::Xor:
6570 // For the xor case, we can xor two constants together, eliminating
6571 // the explicit xor.
6572 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6573 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6574 ConstantExpr::getXor(RHS, BOC));
6575
6576 // FALLTHROUGH
6577 case Instruction::Sub:
6578 // Replace (([sub|xor] A, B) != 0) with (A != B)
6579 if (RHSV == 0)
6580 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6581 BO->getOperand(1));
6582 break;
6583
6584 case Instruction::Or:
6585 // If bits are being or'd in that are not present in the constant we
6586 // are comparing against, then the comparison could never succeed!
6587 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6588 Constant *NotCI = ConstantExpr::getNot(RHS);
6589 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6590 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6591 isICMP_NE));
6592 }
6593 break;
6594
6595 case Instruction::And:
6596 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6597 // If bits are being compared against that are and'd out, then the
6598 // comparison can never succeed!
6599 if ((RHSV & ~BOC->getValue()) != 0)
6600 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6601 isICMP_NE));
6602
6603 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6604 if (RHS == BOC && RHSV.isPowerOf2())
6605 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6606 ICmpInst::ICMP_NE, LHSI,
6607 Constant::getNullValue(RHS->getType()));
6608
6609 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006610 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006611 Value *X = BO->getOperand(0);
6612 Constant *Zero = Constant::getNullValue(X->getType());
6613 ICmpInst::Predicate pred = isICMP_NE ?
6614 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6615 return new ICmpInst(pred, X, Zero);
6616 }
6617
6618 // ((X & ~7) == 0) --> X < 8
6619 if (RHSV == 0 && isHighOnes(BOC)) {
6620 Value *X = BO->getOperand(0);
6621 Constant *NegX = ConstantExpr::getNeg(BOC);
6622 ICmpInst::Predicate pred = isICMP_NE ?
6623 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6624 return new ICmpInst(pred, X, NegX);
6625 }
6626 }
6627 default: break;
6628 }
6629 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6630 // Handle icmp {eq|ne} <intrinsic>, intcst.
6631 if (II->getIntrinsicID() == Intrinsic::bswap) {
6632 AddToWorkList(II);
6633 ICI.setOperand(0, II->getOperand(1));
6634 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6635 return &ICI;
6636 }
6637 }
6638 } else { // Not a ICMP_EQ/ICMP_NE
6639 // If the LHS is a cast from an integral value of the same size,
6640 // then since we know the RHS is a constant, try to simlify.
6641 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6642 Value *CastOp = Cast->getOperand(0);
6643 const Type *SrcTy = CastOp->getType();
6644 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6645 if (SrcTy->isInteger() &&
6646 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6647 // If this is an unsigned comparison, try to make the comparison use
6648 // smaller constant values.
6649 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6650 // X u< 128 => X s> -1
6651 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6652 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6653 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6654 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6655 // X u> 127 => X s< 0
6656 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6657 Constant::getNullValue(SrcTy));
6658 }
6659 }
6660 }
6661 }
6662 return 0;
6663}
6664
6665/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6666/// We only handle extending casts so far.
6667///
6668Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6669 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6670 Value *LHSCIOp = LHSCI->getOperand(0);
6671 const Type *SrcTy = LHSCIOp->getType();
6672 const Type *DestTy = LHSCI->getType();
6673 Value *RHSCIOp;
6674
6675 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6676 // integer type is the same size as the pointer type.
6677 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6678 getTargetData().getPointerSizeInBits() ==
6679 cast<IntegerType>(DestTy)->getBitWidth()) {
6680 Value *RHSOp = 0;
6681 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6682 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6683 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6684 RHSOp = RHSC->getOperand(0);
6685 // If the pointer types don't match, insert a bitcast.
6686 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006687 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006688 }
6689
6690 if (RHSOp)
6691 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6692 }
6693
6694 // The code below only handles extension cast instructions, so far.
6695 // Enforce this.
6696 if (LHSCI->getOpcode() != Instruction::ZExt &&
6697 LHSCI->getOpcode() != Instruction::SExt)
6698 return 0;
6699
6700 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6701 bool isSignedCmp = ICI.isSignedPredicate();
6702
6703 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6704 // Not an extension from the same type?
6705 RHSCIOp = CI->getOperand(0);
6706 if (RHSCIOp->getType() != LHSCIOp->getType())
6707 return 0;
6708
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006709 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006710 // and the other is a zext), then we can't handle this.
6711 if (CI->getOpcode() != LHSCI->getOpcode())
6712 return 0;
6713
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006714 // Deal with equality cases early.
6715 if (ICI.isEquality())
6716 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6717
6718 // A signed comparison of sign extended values simplifies into a
6719 // signed comparison.
6720 if (isSignedCmp && isSignedExt)
6721 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6722
6723 // The other three cases all fold into an unsigned comparison.
6724 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006725 }
6726
6727 // If we aren't dealing with a constant on the RHS, exit early
6728 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6729 if (!CI)
6730 return 0;
6731
6732 // Compute the constant that would happen if we truncated to SrcTy then
6733 // reextended to DestTy.
6734 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6735 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6736
6737 // If the re-extended constant didn't change...
6738 if (Res2 == CI) {
6739 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6740 // For example, we might have:
6741 // %A = sext short %X to uint
6742 // %B = icmp ugt uint %A, 1330
6743 // It is incorrect to transform this into
6744 // %B = icmp ugt short %X, 1330
6745 // because %A may have negative value.
6746 //
Chris Lattner3d816532008-07-11 04:09:09 +00006747 // However, we allow this when the compare is EQ/NE, because they are
6748 // signless.
6749 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006750 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006751 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006752 }
6753
6754 // The re-extended constant changed so the constant cannot be represented
6755 // in the shorter type. Consequently, we cannot emit a simple comparison.
6756
6757 // First, handle some easy cases. We know the result cannot be equal at this
6758 // point so handle the ICI.isEquality() cases
6759 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6760 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6761 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6762 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6763
6764 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6765 // should have been folded away previously and not enter in here.
6766 Value *Result;
6767 if (isSignedCmp) {
6768 // We're performing a signed comparison.
6769 if (cast<ConstantInt>(CI)->getValue().isNegative())
6770 Result = ConstantInt::getFalse(); // X < (small) --> false
6771 else
6772 Result = ConstantInt::getTrue(); // X < (large) --> true
6773 } else {
6774 // We're performing an unsigned comparison.
6775 if (isSignedExt) {
6776 // We're performing an unsigned comp with a sign extended value.
6777 // This is true if the input is >= 0. [aka >s -1]
6778 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6779 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6780 NegOne, ICI.getName()), ICI);
6781 } else {
6782 // Unsigned extend & unsigned compare -> always true.
6783 Result = ConstantInt::getTrue();
6784 }
6785 }
6786
6787 // Finally, return the value computed.
6788 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006789 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006790 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006791
6792 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6793 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6794 "ICmp should be folded!");
6795 if (Constant *CI = dyn_cast<Constant>(Result))
6796 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6797 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006798}
6799
6800Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6801 return commonShiftTransforms(I);
6802}
6803
6804Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6805 return commonShiftTransforms(I);
6806}
6807
6808Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006809 if (Instruction *R = commonShiftTransforms(I))
6810 return R;
6811
6812 Value *Op0 = I.getOperand(0);
6813
6814 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6815 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6816 if (CSI->isAllOnesValue())
6817 return ReplaceInstUsesWith(I, CSI);
6818
6819 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006820 if (!isa<VectorType>(I.getType()) &&
6821 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006822 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006823 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006824
6825 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006826}
6827
6828Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6829 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6830 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6831
6832 // shl X, 0 == X and shr X, 0 == X
6833 // shl 0, X == 0 and shr 0, X == 0
6834 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6835 Op0 == Constant::getNullValue(Op0->getType()))
6836 return ReplaceInstUsesWith(I, Op0);
6837
6838 if (isa<UndefValue>(Op0)) {
6839 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6840 return ReplaceInstUsesWith(I, Op0);
6841 else // undef << X -> 0, undef >>u X -> 0
6842 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6843 }
6844 if (isa<UndefValue>(Op1)) {
6845 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6846 return ReplaceInstUsesWith(I, Op0);
6847 else // X << undef, X >>u undef -> 0
6848 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6849 }
6850
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006851 // Try to fold constant and into select arguments.
6852 if (isa<Constant>(Op0))
6853 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6854 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6855 return R;
6856
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006857 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6858 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6859 return Res;
6860 return 0;
6861}
6862
6863Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6864 BinaryOperator &I) {
6865 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6866
6867 // See if we can simplify any instructions used by the instruction whose sole
6868 // purpose is to compute bits we don't care about.
6869 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6870 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6871 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6872 KnownZero, KnownOne))
6873 return &I;
6874
6875 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6876 // of a signed value.
6877 //
6878 if (Op1->uge(TypeBits)) {
6879 if (I.getOpcode() != Instruction::AShr)
6880 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6881 else {
6882 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6883 return &I;
6884 }
6885 }
6886
6887 // ((X*C1) << C2) == (X * (C1 << C2))
6888 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6889 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6890 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006891 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006892 ConstantExpr::getShl(BOOp, Op1));
6893
6894 // Try to fold constant and into select arguments.
6895 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6896 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6897 return R;
6898 if (isa<PHINode>(Op0))
6899 if (Instruction *NV = FoldOpIntoPhi(I))
6900 return NV;
6901
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006902 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6903 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6904 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6905 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6906 // place. Don't try to do this transformation in this case. Also, we
6907 // require that the input operand is a shift-by-constant so that we have
6908 // confidence that the shifts will get folded together. We could do this
6909 // xform in more cases, but it is unlikely to be profitable.
6910 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6911 isa<ConstantInt>(TrOp->getOperand(1))) {
6912 // Okay, we'll do this xform. Make the shift of shift.
6913 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006914 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006915 I.getName());
6916 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6917
6918 // For logical shifts, the truncation has the effect of making the high
6919 // part of the register be zeros. Emulate this by inserting an AND to
6920 // clear the top bits as needed. This 'and' will usually be zapped by
6921 // other xforms later if dead.
6922 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6923 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6924 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6925
6926 // The mask we constructed says what the trunc would do if occurring
6927 // between the shifts. We want to know the effect *after* the second
6928 // shift. We know that it is a logical shift by a constant, so adjust the
6929 // mask as appropriate.
6930 if (I.getOpcode() == Instruction::Shl)
6931 MaskV <<= Op1->getZExtValue();
6932 else {
6933 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6934 MaskV = MaskV.lshr(Op1->getZExtValue());
6935 }
6936
Gabor Greifa645dd32008-05-16 19:29:10 +00006937 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006938 TI->getName());
6939 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6940
6941 // Return the value truncated to the interesting size.
6942 return new TruncInst(And, I.getType());
6943 }
6944 }
6945
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006946 if (Op0->hasOneUse()) {
6947 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6948 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6949 Value *V1, *V2;
6950 ConstantInt *CC;
6951 switch (Op0BO->getOpcode()) {
6952 default: break;
6953 case Instruction::Add:
6954 case Instruction::And:
6955 case Instruction::Or:
6956 case Instruction::Xor: {
6957 // These operators commute.
6958 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6959 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6960 match(Op0BO->getOperand(1),
6961 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006962 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006963 Op0BO->getOperand(0), Op1,
6964 Op0BO->getName());
6965 InsertNewInstBefore(YS, I); // (Y << C)
6966 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006967 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006968 Op0BO->getOperand(1)->getName());
6969 InsertNewInstBefore(X, I); // (X + (Y << C))
6970 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006971 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006972 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6973 }
6974
6975 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6976 Value *Op0BOOp1 = Op0BO->getOperand(1);
6977 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6978 match(Op0BOOp1,
6979 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6980 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6981 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006982 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006983 Op0BO->getOperand(0), Op1,
6984 Op0BO->getName());
6985 InsertNewInstBefore(YS, I); // (Y << C)
6986 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00006987 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006988 V1->getName()+".mask");
6989 InsertNewInstBefore(XM, I); // X & (CC << C)
6990
Gabor Greifa645dd32008-05-16 19:29:10 +00006991 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006992 }
6993 }
6994
6995 // FALL THROUGH.
6996 case Instruction::Sub: {
6997 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6998 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6999 match(Op0BO->getOperand(0),
7000 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007001 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007002 Op0BO->getOperand(1), Op1,
7003 Op0BO->getName());
7004 InsertNewInstBefore(YS, I); // (Y << C)
7005 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007006 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007007 Op0BO->getOperand(0)->getName());
7008 InsertNewInstBefore(X, I); // (X + (Y << C))
7009 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007010 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007011 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7012 }
7013
7014 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7015 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7016 match(Op0BO->getOperand(0),
7017 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7018 m_ConstantInt(CC))) && V2 == Op1 &&
7019 cast<BinaryOperator>(Op0BO->getOperand(0))
7020 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007021 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007022 Op0BO->getOperand(1), Op1,
7023 Op0BO->getName());
7024 InsertNewInstBefore(YS, I); // (Y << C)
7025 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007026 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007027 V1->getName()+".mask");
7028 InsertNewInstBefore(XM, I); // X & (CC << C)
7029
Gabor Greifa645dd32008-05-16 19:29:10 +00007030 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007031 }
7032
7033 break;
7034 }
7035 }
7036
7037
7038 // If the operand is an bitwise operator with a constant RHS, and the
7039 // shift is the only use, we can pull it out of the shift.
7040 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7041 bool isValid = true; // Valid only for And, Or, Xor
7042 bool highBitSet = false; // Transform if high bit of constant set?
7043
7044 switch (Op0BO->getOpcode()) {
7045 default: isValid = false; break; // Do not perform transform!
7046 case Instruction::Add:
7047 isValid = isLeftShift;
7048 break;
7049 case Instruction::Or:
7050 case Instruction::Xor:
7051 highBitSet = false;
7052 break;
7053 case Instruction::And:
7054 highBitSet = true;
7055 break;
7056 }
7057
7058 // If this is a signed shift right, and the high bit is modified
7059 // by the logical operation, do not perform the transformation.
7060 // The highBitSet boolean indicates the value of the high bit of
7061 // the constant which would cause it to be modified for this
7062 // operation.
7063 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007064 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007065 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007066
7067 if (isValid) {
7068 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7069
7070 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007071 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007072 InsertNewInstBefore(NewShift, I);
7073 NewShift->takeName(Op0BO);
7074
Gabor Greifa645dd32008-05-16 19:29:10 +00007075 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007076 NewRHS);
7077 }
7078 }
7079 }
7080 }
7081
7082 // Find out if this is a shift of a shift by a constant.
7083 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7084 if (ShiftOp && !ShiftOp->isShift())
7085 ShiftOp = 0;
7086
7087 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7088 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7089 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7090 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7091 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7092 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7093 Value *X = ShiftOp->getOperand(0);
7094
7095 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7096 if (AmtSum > TypeBits)
7097 AmtSum = TypeBits;
7098
7099 const IntegerType *Ty = cast<IntegerType>(I.getType());
7100
7101 // Check for (X << c1) << c2 and (X >> c1) >> c2
7102 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007103 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007104 ConstantInt::get(Ty, AmtSum));
7105 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7106 I.getOpcode() == Instruction::AShr) {
7107 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007108 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007109 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7110 I.getOpcode() == Instruction::LShr) {
7111 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7112 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007113 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007114 InsertNewInstBefore(Shift, I);
7115
7116 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007117 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007118 }
7119
7120 // Okay, if we get here, one shift must be left, and the other shift must be
7121 // right. See if the amounts are equal.
7122 if (ShiftAmt1 == ShiftAmt2) {
7123 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7124 if (I.getOpcode() == Instruction::Shl) {
7125 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007126 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007127 }
7128 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7129 if (I.getOpcode() == Instruction::LShr) {
7130 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007131 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007132 }
7133 // We can simplify ((X << C) >>s C) into a trunc + sext.
7134 // NOTE: we could do this for any C, but that would make 'unusual' integer
7135 // types. For now, just stick to ones well-supported by the code
7136 // generators.
7137 const Type *SExtType = 0;
7138 switch (Ty->getBitWidth() - ShiftAmt1) {
7139 case 1 :
7140 case 8 :
7141 case 16 :
7142 case 32 :
7143 case 64 :
7144 case 128:
7145 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7146 break;
7147 default: break;
7148 }
7149 if (SExtType) {
7150 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7151 InsertNewInstBefore(NewTrunc, I);
7152 return new SExtInst(NewTrunc, Ty);
7153 }
7154 // Otherwise, we can't handle it yet.
7155 } else if (ShiftAmt1 < ShiftAmt2) {
7156 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7157
7158 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7159 if (I.getOpcode() == Instruction::Shl) {
7160 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7161 ShiftOp->getOpcode() == Instruction::AShr);
7162 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007163 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007164 InsertNewInstBefore(Shift, I);
7165
7166 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007167 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007168 }
7169
7170 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7171 if (I.getOpcode() == Instruction::LShr) {
7172 assert(ShiftOp->getOpcode() == Instruction::Shl);
7173 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007174 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007175 InsertNewInstBefore(Shift, I);
7176
7177 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007178 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007179 }
7180
7181 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7182 } else {
7183 assert(ShiftAmt2 < ShiftAmt1);
7184 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7185
7186 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7187 if (I.getOpcode() == Instruction::Shl) {
7188 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7189 ShiftOp->getOpcode() == Instruction::AShr);
7190 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007191 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007192 ConstantInt::get(Ty, ShiftDiff));
7193 InsertNewInstBefore(Shift, I);
7194
7195 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007196 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007197 }
7198
7199 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7200 if (I.getOpcode() == Instruction::LShr) {
7201 assert(ShiftOp->getOpcode() == Instruction::Shl);
7202 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007203 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007204 InsertNewInstBefore(Shift, I);
7205
7206 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007207 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007208 }
7209
7210 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7211 }
7212 }
7213 return 0;
7214}
7215
7216
7217/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7218/// expression. If so, decompose it, returning some value X, such that Val is
7219/// X*Scale+Offset.
7220///
7221static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7222 int &Offset) {
7223 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7224 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7225 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007226 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007227 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007228 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7229 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7230 if (I->getOpcode() == Instruction::Shl) {
7231 // This is a value scaled by '1 << the shift amt'.
7232 Scale = 1U << RHS->getZExtValue();
7233 Offset = 0;
7234 return I->getOperand(0);
7235 } else if (I->getOpcode() == Instruction::Mul) {
7236 // This value is scaled by 'RHS'.
7237 Scale = RHS->getZExtValue();
7238 Offset = 0;
7239 return I->getOperand(0);
7240 } else if (I->getOpcode() == Instruction::Add) {
7241 // We have X+C. Check to see if we really have (X*C2)+C1,
7242 // where C1 is divisible by C2.
7243 unsigned SubScale;
7244 Value *SubVal =
7245 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7246 Offset += RHS->getZExtValue();
7247 Scale = SubScale;
7248 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007249 }
7250 }
7251 }
7252
7253 // Otherwise, we can't look past this.
7254 Scale = 1;
7255 Offset = 0;
7256 return Val;
7257}
7258
7259
7260/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7261/// try to eliminate the cast by moving the type information into the alloc.
7262Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7263 AllocationInst &AI) {
7264 const PointerType *PTy = cast<PointerType>(CI.getType());
7265
7266 // Remove any uses of AI that are dead.
7267 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7268
7269 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7270 Instruction *User = cast<Instruction>(*UI++);
7271 if (isInstructionTriviallyDead(User)) {
7272 while (UI != E && *UI == User)
7273 ++UI; // If this instruction uses AI more than once, don't break UI.
7274
7275 ++NumDeadInst;
7276 DOUT << "IC: DCE: " << *User;
7277 EraseInstFromFunction(*User);
7278 }
7279 }
7280
7281 // Get the type really allocated and the type casted to.
7282 const Type *AllocElTy = AI.getAllocatedType();
7283 const Type *CastElTy = PTy->getElementType();
7284 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7285
7286 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7287 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7288 if (CastElTyAlign < AllocElTyAlign) return 0;
7289
7290 // If the allocation has multiple uses, only promote it if we are strictly
7291 // increasing the alignment of the resultant allocation. If we keep it the
7292 // same, we open the door to infinite loops of various kinds.
7293 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7294
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007295 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7296 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007297 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7298
7299 // See if we can satisfy the modulus by pulling a scale out of the array
7300 // size argument.
7301 unsigned ArraySizeScale;
7302 int ArrayOffset;
7303 Value *NumElements = // See if the array size is a decomposable linear expr.
7304 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7305
7306 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7307 // do the xform.
7308 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7309 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7310
7311 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7312 Value *Amt = 0;
7313 if (Scale == 1) {
7314 Amt = NumElements;
7315 } else {
7316 // If the allocation size is constant, form a constant mul expression
7317 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7318 if (isa<ConstantInt>(NumElements))
7319 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7320 // otherwise multiply the amount and the number of elements
7321 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007322 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007323 Amt = InsertNewInstBefore(Tmp, AI);
7324 }
7325 }
7326
7327 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7328 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007329 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007330 Amt = InsertNewInstBefore(Tmp, AI);
7331 }
7332
7333 AllocationInst *New;
7334 if (isa<MallocInst>(AI))
7335 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7336 else
7337 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7338 InsertNewInstBefore(New, AI);
7339 New->takeName(&AI);
7340
7341 // If the allocation has multiple uses, insert a cast and change all things
7342 // that used it to use the new cast. This will also hack on CI, but it will
7343 // die soon.
7344 if (!AI.hasOneUse()) {
7345 AddUsesToWorkList(AI);
7346 // New is the allocation instruction, pointer typed. AI is the original
7347 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7348 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7349 InsertNewInstBefore(NewCast, AI);
7350 AI.replaceAllUsesWith(NewCast);
7351 }
7352 return ReplaceInstUsesWith(CI, New);
7353}
7354
7355/// CanEvaluateInDifferentType - Return true if we can take the specified value
7356/// and return it as type Ty without inserting any new casts and without
7357/// changing the computed value. This is used by code that tries to decide
7358/// whether promoting or shrinking integer operations to wider or smaller types
7359/// will allow us to eliminate a truncate or extend.
7360///
7361/// This is a truncation operation if Ty is smaller than V->getType(), or an
7362/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007363///
7364/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7365/// should return true if trunc(V) can be computed by computing V in the smaller
7366/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7367/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7368/// efficiently truncated.
7369///
7370/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7371/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7372/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007373bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7374 unsigned CastOpc,
7375 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007376 // We can always evaluate constants in another type.
7377 if (isa<ConstantInt>(V))
7378 return true;
7379
7380 Instruction *I = dyn_cast<Instruction>(V);
7381 if (!I) return false;
7382
7383 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7384
Chris Lattneref70bb82007-08-02 06:11:14 +00007385 // If this is an extension or truncate, we can often eliminate it.
7386 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7387 // If this is a cast from the destination type, we can trivially eliminate
7388 // it, and this will remove a cast overall.
7389 if (I->getOperand(0)->getType() == Ty) {
7390 // If the first operand is itself a cast, and is eliminable, do not count
7391 // this as an eliminable cast. We would prefer to eliminate those two
7392 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007393 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007394 ++NumCastsRemoved;
7395 return true;
7396 }
7397 }
7398
7399 // We can't extend or shrink something that has multiple uses: doing so would
7400 // require duplicating the instruction in general, which isn't profitable.
7401 if (!I->hasOneUse()) return false;
7402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007403 switch (I->getOpcode()) {
7404 case Instruction::Add:
7405 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007406 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007407 case Instruction::And:
7408 case Instruction::Or:
7409 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007410 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007411 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7412 NumCastsRemoved) &&
7413 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7414 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007415
7416 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007417 // If we are truncating the result of this SHL, and if it's a shift of a
7418 // constant amount, we can always perform a SHL in a smaller type.
7419 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7420 uint32_t BitWidth = Ty->getBitWidth();
7421 if (BitWidth < OrigTy->getBitWidth() &&
7422 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007423 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7424 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007425 }
7426 break;
7427 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007428 // If this is a truncate of a logical shr, we can truncate it to a smaller
7429 // lshr iff we know that the bits we would otherwise be shifting in are
7430 // already zeros.
7431 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7432 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7433 uint32_t BitWidth = Ty->getBitWidth();
7434 if (BitWidth < OrigBitWidth &&
7435 MaskedValueIsZero(I->getOperand(0),
7436 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7437 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007438 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7439 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007440 }
7441 }
7442 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007443 case Instruction::ZExt:
7444 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007445 case Instruction::Trunc:
7446 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007447 // can safely replace it. Note that replacing it does not reduce the number
7448 // of casts in the input.
7449 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007450 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007451 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007452 case Instruction::Select: {
7453 SelectInst *SI = cast<SelectInst>(I);
7454 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7455 NumCastsRemoved) &&
7456 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7457 NumCastsRemoved);
7458 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007459 case Instruction::PHI: {
7460 // We can change a phi if we can change all operands.
7461 PHINode *PN = cast<PHINode>(I);
7462 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7463 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7464 NumCastsRemoved))
7465 return false;
7466 return true;
7467 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007468 default:
7469 // TODO: Can handle more cases here.
7470 break;
7471 }
7472
7473 return false;
7474}
7475
7476/// EvaluateInDifferentType - Given an expression that
7477/// CanEvaluateInDifferentType returns true for, actually insert the code to
7478/// evaluate the expression.
7479Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7480 bool isSigned) {
7481 if (Constant *C = dyn_cast<Constant>(V))
7482 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7483
7484 // Otherwise, it must be an instruction.
7485 Instruction *I = cast<Instruction>(V);
7486 Instruction *Res = 0;
7487 switch (I->getOpcode()) {
7488 case Instruction::Add:
7489 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007490 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007491 case Instruction::And:
7492 case Instruction::Or:
7493 case Instruction::Xor:
7494 case Instruction::AShr:
7495 case Instruction::LShr:
7496 case Instruction::Shl: {
7497 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7498 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007499 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007500 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007501 break;
7502 }
7503 case Instruction::Trunc:
7504 case Instruction::ZExt:
7505 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007506 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007507 // just return the source. There's no need to insert it because it is not
7508 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007509 if (I->getOperand(0)->getType() == Ty)
7510 return I->getOperand(0);
7511
Chris Lattner4200c2062008-06-18 04:00:49 +00007512 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007513 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007514 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007515 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007516 case Instruction::Select: {
7517 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7518 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7519 Res = SelectInst::Create(I->getOperand(0), True, False);
7520 break;
7521 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007522 case Instruction::PHI: {
7523 PHINode *OPN = cast<PHINode>(I);
7524 PHINode *NPN = PHINode::Create(Ty);
7525 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7526 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7527 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7528 }
7529 Res = NPN;
7530 break;
7531 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007532 default:
7533 // TODO: Can handle more cases here.
7534 assert(0 && "Unreachable!");
7535 break;
7536 }
7537
Chris Lattner4200c2062008-06-18 04:00:49 +00007538 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007539 return InsertNewInstBefore(Res, *I);
7540}
7541
7542/// @brief Implement the transforms common to all CastInst visitors.
7543Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7544 Value *Src = CI.getOperand(0);
7545
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007546 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7547 // eliminate it now.
7548 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7549 if (Instruction::CastOps opc =
7550 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7551 // The first cast (CSrc) is eliminable so we need to fix up or replace
7552 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007553 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007554 }
7555 }
7556
7557 // If we are casting a select then fold the cast into the select
7558 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7559 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7560 return NV;
7561
7562 // If we are casting a PHI then fold the cast into the PHI
7563 if (isa<PHINode>(Src))
7564 if (Instruction *NV = FoldOpIntoPhi(CI))
7565 return NV;
7566
7567 return 0;
7568}
7569
7570/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7571Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7572 Value *Src = CI.getOperand(0);
7573
7574 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7575 // If casting the result of a getelementptr instruction with no offset, turn
7576 // this into a cast of the original pointer!
7577 if (GEP->hasAllZeroIndices()) {
7578 // Changing the cast operand is usually not a good idea but it is safe
7579 // here because the pointer operand is being replaced with another
7580 // pointer operand so the opcode doesn't need to change.
7581 AddToWorkList(GEP);
7582 CI.setOperand(0, GEP->getOperand(0));
7583 return &CI;
7584 }
7585
7586 // If the GEP has a single use, and the base pointer is a bitcast, and the
7587 // GEP computes a constant offset, see if we can convert these three
7588 // instructions into fewer. This typically happens with unions and other
7589 // non-type-safe code.
7590 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7591 if (GEP->hasAllConstantIndices()) {
7592 // We are guaranteed to get a constant from EmitGEPOffset.
7593 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7594 int64_t Offset = OffsetV->getSExtValue();
7595
7596 // Get the base pointer input of the bitcast, and the type it points to.
7597 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7598 const Type *GEPIdxTy =
7599 cast<PointerType>(OrigBase->getType())->getElementType();
7600 if (GEPIdxTy->isSized()) {
7601 SmallVector<Value*, 8> NewIndices;
7602
7603 // Start with the index over the outer type. Note that the type size
7604 // might be zero (even if the offset isn't zero) if the indexed type
7605 // is something like [0 x {int, int}]
7606 const Type *IntPtrTy = TD->getIntPtrType();
7607 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007608 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007609 FirstIdx = Offset/TySize;
7610 Offset %= TySize;
7611
7612 // Handle silly modulus not returning values values [0..TySize).
7613 if (Offset < 0) {
7614 --FirstIdx;
7615 Offset += TySize;
7616 assert(Offset >= 0);
7617 }
7618 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7619 }
7620
7621 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7622
7623 // Index into the types. If we fail, set OrigBase to null.
7624 while (Offset) {
7625 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7626 const StructLayout *SL = TD->getStructLayout(STy);
7627 if (Offset < (int64_t)SL->getSizeInBytes()) {
7628 unsigned Elt = SL->getElementContainingOffset(Offset);
7629 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7630
7631 Offset -= SL->getElementOffset(Elt);
7632 GEPIdxTy = STy->getElementType(Elt);
7633 } else {
7634 // Otherwise, we can't index into this, bail out.
7635 Offset = 0;
7636 OrigBase = 0;
7637 }
7638 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7639 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007640 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007641 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7642 Offset %= EltSize;
7643 } else {
7644 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7645 }
7646 GEPIdxTy = STy->getElementType();
7647 } else {
7648 // Otherwise, we can't index into this, bail out.
7649 Offset = 0;
7650 OrigBase = 0;
7651 }
7652 }
7653 if (OrigBase) {
7654 // If we were able to index down into an element, create the GEP
7655 // and bitcast the result. This eliminates one bitcast, potentially
7656 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007657 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7658 NewIndices.begin(),
7659 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007660 InsertNewInstBefore(NGEP, CI);
7661 NGEP->takeName(GEP);
7662
7663 if (isa<BitCastInst>(CI))
7664 return new BitCastInst(NGEP, CI.getType());
7665 assert(isa<PtrToIntInst>(CI));
7666 return new PtrToIntInst(NGEP, CI.getType());
7667 }
7668 }
7669 }
7670 }
7671 }
7672
7673 return commonCastTransforms(CI);
7674}
7675
7676
7677
7678/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7679/// integer types. This function implements the common transforms for all those
7680/// cases.
7681/// @brief Implement the transforms common to CastInst with integer operands
7682Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7683 if (Instruction *Result = commonCastTransforms(CI))
7684 return Result;
7685
7686 Value *Src = CI.getOperand(0);
7687 const Type *SrcTy = Src->getType();
7688 const Type *DestTy = CI.getType();
7689 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7690 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7691
7692 // See if we can simplify any instructions used by the LHS whose sole
7693 // purpose is to compute bits we don't care about.
7694 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7695 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7696 KnownZero, KnownOne))
7697 return &CI;
7698
7699 // If the source isn't an instruction or has more than one use then we
7700 // can't do anything more.
7701 Instruction *SrcI = dyn_cast<Instruction>(Src);
7702 if (!SrcI || !Src->hasOneUse())
7703 return 0;
7704
7705 // Attempt to propagate the cast into the instruction for int->int casts.
7706 int NumCastsRemoved = 0;
7707 if (!isa<BitCastInst>(CI) &&
7708 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007709 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007710 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007711 // eliminates the cast, so it is always a win. If this is a zero-extension,
7712 // we need to do an AND to maintain the clear top-part of the computation,
7713 // so we require that the input have eliminated at least one cast. If this
7714 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007715 // require that two casts have been eliminated.
7716 bool DoXForm;
7717 switch (CI.getOpcode()) {
7718 default:
7719 // All the others use floating point so we shouldn't actually
7720 // get here because of the check above.
7721 assert(0 && "Unknown cast type");
7722 case Instruction::Trunc:
7723 DoXForm = true;
7724 break;
7725 case Instruction::ZExt:
7726 DoXForm = NumCastsRemoved >= 1;
7727 break;
7728 case Instruction::SExt:
7729 DoXForm = NumCastsRemoved >= 2;
7730 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007731 }
7732
7733 if (DoXForm) {
7734 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7735 CI.getOpcode() == Instruction::SExt);
7736 assert(Res->getType() == DestTy);
7737 switch (CI.getOpcode()) {
7738 default: assert(0 && "Unknown cast type!");
7739 case Instruction::Trunc:
7740 case Instruction::BitCast:
7741 // Just replace this cast with the result.
7742 return ReplaceInstUsesWith(CI, Res);
7743 case Instruction::ZExt: {
7744 // We need to emit an AND to clear the high bits.
7745 assert(SrcBitSize < DestBitSize && "Not a zext?");
7746 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7747 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007748 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007749 }
7750 case Instruction::SExt:
7751 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007752 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007753 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7754 CI), DestTy);
7755 }
7756 }
7757 }
7758
7759 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7760 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7761
7762 switch (SrcI->getOpcode()) {
7763 case Instruction::Add:
7764 case Instruction::Mul:
7765 case Instruction::And:
7766 case Instruction::Or:
7767 case Instruction::Xor:
7768 // If we are discarding information, rewrite.
7769 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7770 // Don't insert two casts if they cannot be eliminated. We allow
7771 // two casts to be inserted if the sizes are the same. This could
7772 // only be converting signedness, which is a noop.
7773 if (DestBitSize == SrcBitSize ||
7774 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7775 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7776 Instruction::CastOps opcode = CI.getOpcode();
7777 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7778 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007779 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007780 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7781 }
7782 }
7783
7784 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7785 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7786 SrcI->getOpcode() == Instruction::Xor &&
7787 Op1 == ConstantInt::getTrue() &&
7788 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7789 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007790 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007791 }
7792 break;
7793 case Instruction::SDiv:
7794 case Instruction::UDiv:
7795 case Instruction::SRem:
7796 case Instruction::URem:
7797 // If we are just changing the sign, rewrite.
7798 if (DestBitSize == SrcBitSize) {
7799 // Don't insert two casts if they cannot be eliminated. We allow
7800 // two casts to be inserted if the sizes are the same. This could
7801 // only be converting signedness, which is a noop.
7802 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7803 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7804 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7805 Op0, DestTy, SrcI);
7806 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7807 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007808 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007809 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7810 }
7811 }
7812 break;
7813
7814 case Instruction::Shl:
7815 // Allow changing the sign of the source operand. Do not allow
7816 // changing the size of the shift, UNLESS the shift amount is a
7817 // constant. We must not change variable sized shifts to a smaller
7818 // size, because it is undefined to shift more bits out than exist
7819 // in the value.
7820 if (DestBitSize == SrcBitSize ||
7821 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7822 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7823 Instruction::BitCast : Instruction::Trunc);
7824 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7825 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007826 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007827 }
7828 break;
7829 case Instruction::AShr:
7830 // If this is a signed shr, and if all bits shifted in are about to be
7831 // truncated off, turn it into an unsigned shr to allow greater
7832 // simplifications.
7833 if (DestBitSize < SrcBitSize &&
7834 isa<ConstantInt>(Op1)) {
7835 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7836 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7837 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007838 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007839 }
7840 }
7841 break;
7842 }
7843 return 0;
7844}
7845
7846Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7847 if (Instruction *Result = commonIntCastTransforms(CI))
7848 return Result;
7849
7850 Value *Src = CI.getOperand(0);
7851 const Type *Ty = CI.getType();
7852 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7853 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7854
7855 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7856 switch (SrcI->getOpcode()) {
7857 default: break;
7858 case Instruction::LShr:
7859 // We can shrink lshr to something smaller if we know the bits shifted in
7860 // are already zeros.
7861 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7862 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7863
7864 // Get a mask for the bits shifting in.
7865 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7866 Value* SrcIOp0 = SrcI->getOperand(0);
7867 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7868 if (ShAmt >= DestBitWidth) // All zeros.
7869 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7870
7871 // Okay, we can shrink this. Truncate the input, then return a new
7872 // shift.
7873 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7874 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7875 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007876 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007877 }
7878 } else { // This is a variable shr.
7879
7880 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7881 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7882 // loop-invariant and CSE'd.
7883 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7884 Value *One = ConstantInt::get(SrcI->getType(), 1);
7885
7886 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007887 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007888 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007889 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007890 SrcI->getOperand(0),
7891 "tmp"), CI);
7892 Value *Zero = Constant::getNullValue(V->getType());
7893 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7894 }
7895 }
7896 break;
7897 }
7898 }
7899
7900 return 0;
7901}
7902
Evan Chenge3779cf2008-03-24 00:21:34 +00007903/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7904/// in order to eliminate the icmp.
7905Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7906 bool DoXform) {
7907 // If we are just checking for a icmp eq of a single bit and zext'ing it
7908 // to an integer, then shift the bit to the appropriate place and then
7909 // cast to integer to avoid the comparison.
7910 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7911 const APInt &Op1CV = Op1C->getValue();
7912
7913 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7914 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7915 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7916 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7917 if (!DoXform) return ICI;
7918
7919 Value *In = ICI->getOperand(0);
7920 Value *Sh = ConstantInt::get(In->getType(),
7921 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007922 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007923 In->getName()+".lobit"),
7924 CI);
7925 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007926 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007927 false/*ZExt*/, "tmp", &CI);
7928
7929 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7930 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007931 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007932 In->getName()+".not"),
7933 CI);
7934 }
7935
7936 return ReplaceInstUsesWith(CI, In);
7937 }
7938
7939
7940
7941 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7942 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7943 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7944 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7945 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7946 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7947 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7948 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7949 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7950 // This only works for EQ and NE
7951 ICI->isEquality()) {
7952 // If Op1C some other power of two, convert:
7953 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7954 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7955 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7956 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7957
7958 APInt KnownZeroMask(~KnownZero);
7959 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7960 if (!DoXform) return ICI;
7961
7962 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7963 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7964 // (X&4) == 2 --> false
7965 // (X&4) != 2 --> true
7966 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7967 Res = ConstantExpr::getZExt(Res, CI.getType());
7968 return ReplaceInstUsesWith(CI, Res);
7969 }
7970
7971 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7972 Value *In = ICI->getOperand(0);
7973 if (ShiftAmt) {
7974 // Perform a logical shr by shiftamt.
7975 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00007976 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00007977 ConstantInt::get(In->getType(), ShiftAmt),
7978 In->getName()+".lobit"), CI);
7979 }
7980
7981 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7982 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007983 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00007984 InsertNewInstBefore(cast<Instruction>(In), CI);
7985 }
7986
7987 if (CI.getType() == In->getType())
7988 return ReplaceInstUsesWith(CI, In);
7989 else
Gabor Greifa645dd32008-05-16 19:29:10 +00007990 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00007991 }
7992 }
7993 }
7994
7995 return 0;
7996}
7997
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007998Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
7999 // If one of the common conversion will work ..
8000 if (Instruction *Result = commonIntCastTransforms(CI))
8001 return Result;
8002
8003 Value *Src = CI.getOperand(0);
8004
8005 // If this is a cast of a cast
8006 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8007 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8008 // types and if the sizes are just right we can convert this into a logical
8009 // 'and' which will be much cheaper than the pair of casts.
8010 if (isa<TruncInst>(CSrc)) {
8011 // Get the sizes of the types involved
8012 Value *A = CSrc->getOperand(0);
8013 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8014 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8015 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8016 // If we're actually extending zero bits and the trunc is a no-op
8017 if (MidSize < DstSize && SrcSize == DstSize) {
8018 // Replace both of the casts with an And of the type mask.
8019 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8020 Constant *AndConst = ConstantInt::get(AndValue);
8021 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008022 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008023 // Unfortunately, if the type changed, we need to cast it back.
8024 if (And->getType() != CI.getType()) {
8025 And->setName(CSrc->getName()+".mask");
8026 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008027 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008028 }
8029 return And;
8030 }
8031 }
8032 }
8033
Evan Chenge3779cf2008-03-24 00:21:34 +00008034 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8035 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008036
Evan Chenge3779cf2008-03-24 00:21:34 +00008037 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8038 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8039 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8040 // of the (zext icmp) will be transformed.
8041 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8042 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8043 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8044 (transformZExtICmp(LHS, CI, false) ||
8045 transformZExtICmp(RHS, CI, false))) {
8046 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8047 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008048 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008049 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008050 }
8051
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008052 return 0;
8053}
8054
8055Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8056 if (Instruction *I = commonIntCastTransforms(CI))
8057 return I;
8058
8059 Value *Src = CI.getOperand(0);
8060
Dan Gohman35b76162008-10-30 20:40:10 +00008061 // Canonicalize sign-extend from i1 to a select.
8062 if (Src->getType() == Type::Int1Ty)
8063 return SelectInst::Create(Src,
8064 ConstantInt::getAllOnesValue(CI.getType()),
8065 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008066
8067 // See if the value being truncated is already sign extended. If so, just
8068 // eliminate the trunc/sext pair.
8069 if (getOpcode(Src) == Instruction::Trunc) {
8070 Value *Op = cast<User>(Src)->getOperand(0);
8071 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8072 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8073 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8074 unsigned NumSignBits = ComputeNumSignBits(Op);
8075
8076 if (OpBits == DestBits) {
8077 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8078 // bits, it is already ready.
8079 if (NumSignBits > DestBits-MidBits)
8080 return ReplaceInstUsesWith(CI, Op);
8081 } else if (OpBits < DestBits) {
8082 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8083 // bits, just sext from i32.
8084 if (NumSignBits > OpBits-MidBits)
8085 return new SExtInst(Op, CI.getType(), "tmp");
8086 } else {
8087 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8088 // bits, just truncate to i32.
8089 if (NumSignBits > OpBits-MidBits)
8090 return new TruncInst(Op, CI.getType(), "tmp");
8091 }
8092 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008093
8094 // If the input is a shl/ashr pair of a same constant, then this is a sign
8095 // extension from a smaller value. If we could trust arbitrary bitwidth
8096 // integers, we could turn this into a truncate to the smaller bit and then
8097 // use a sext for the whole extension. Since we don't, look deeper and check
8098 // for a truncate. If the source and dest are the same type, eliminate the
8099 // trunc and extend and just do shifts. For example, turn:
8100 // %a = trunc i32 %i to i8
8101 // %b = shl i8 %a, 6
8102 // %c = ashr i8 %b, 6
8103 // %d = sext i8 %c to i32
8104 // into:
8105 // %a = shl i32 %i, 30
8106 // %d = ashr i32 %a, 30
8107 Value *A = 0;
8108 ConstantInt *BA = 0, *CA = 0;
8109 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8110 m_ConstantInt(CA))) &&
8111 BA == CA && isa<TruncInst>(A)) {
8112 Value *I = cast<TruncInst>(A)->getOperand(0);
8113 if (I->getType() == CI.getType()) {
8114 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8115 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8116 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8117 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8118 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8119 CI.getName()), CI);
8120 return BinaryOperator::CreateAShr(I, ShAmtV);
8121 }
8122 }
8123
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008124 return 0;
8125}
8126
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008127/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8128/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008129static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008130 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008131 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008132 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8133 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008134 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008135 return 0;
8136}
8137
8138/// LookThroughFPExtensions - If this is an fp extension instruction, look
8139/// through it until we get the source value.
8140static Value *LookThroughFPExtensions(Value *V) {
8141 if (Instruction *I = dyn_cast<Instruction>(V))
8142 if (I->getOpcode() == Instruction::FPExt)
8143 return LookThroughFPExtensions(I->getOperand(0));
8144
8145 // If this value is a constant, return the constant in the smallest FP type
8146 // that can accurately represent it. This allows us to turn
8147 // (float)((double)X+2.0) into x+2.0f.
8148 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8149 if (CFP->getType() == Type::PPC_FP128Ty)
8150 return V; // No constant folding of this.
8151 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008152 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008153 return V;
8154 if (CFP->getType() == Type::DoubleTy)
8155 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008156 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008157 return V;
8158 // Don't try to shrink to various long double types.
8159 }
8160
8161 return V;
8162}
8163
8164Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8165 if (Instruction *I = commonCastTransforms(CI))
8166 return I;
8167
8168 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8169 // smaller than the destination type, we can eliminate the truncate by doing
8170 // the add as the smaller type. This applies to add/sub/mul/div as well as
8171 // many builtins (sqrt, etc).
8172 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8173 if (OpI && OpI->hasOneUse()) {
8174 switch (OpI->getOpcode()) {
8175 default: break;
8176 case Instruction::Add:
8177 case Instruction::Sub:
8178 case Instruction::Mul:
8179 case Instruction::FDiv:
8180 case Instruction::FRem:
8181 const Type *SrcTy = OpI->getType();
8182 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8183 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8184 if (LHSTrunc->getType() != SrcTy &&
8185 RHSTrunc->getType() != SrcTy) {
8186 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8187 // If the source types were both smaller than the destination type of
8188 // the cast, do this xform.
8189 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8190 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8191 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8192 CI.getType(), CI);
8193 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8194 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008195 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008196 }
8197 }
8198 break;
8199 }
8200 }
8201 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008202}
8203
8204Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8205 return commonCastTransforms(CI);
8206}
8207
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008208Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008209 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8210 if (OpI == 0)
8211 return commonCastTransforms(FI);
8212
8213 // fptoui(uitofp(X)) --> X
8214 // fptoui(sitofp(X)) --> X
8215 // This is safe if the intermediate type has enough bits in its mantissa to
8216 // accurately represent all values of X. For example, do not do this with
8217 // i64->float->i64. This is also safe for sitofp case, because any negative
8218 // 'X' value would cause an undefined result for the fptoui.
8219 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8220 OpI->getOperand(0)->getType() == FI.getType() &&
8221 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8222 OpI->getType()->getFPMantissaWidth())
8223 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008224
8225 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008226}
8227
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008228Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008229 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8230 if (OpI == 0)
8231 return commonCastTransforms(FI);
8232
8233 // fptosi(sitofp(X)) --> X
8234 // fptosi(uitofp(X)) --> X
8235 // This is safe if the intermediate type has enough bits in its mantissa to
8236 // accurately represent all values of X. For example, do not do this with
8237 // i64->float->i64. This is also safe for sitofp case, because any negative
8238 // 'X' value would cause an undefined result for the fptoui.
8239 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8240 OpI->getOperand(0)->getType() == FI.getType() &&
8241 (int)FI.getType()->getPrimitiveSizeInBits() <=
8242 OpI->getType()->getFPMantissaWidth())
8243 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008244
8245 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008246}
8247
8248Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8249 return commonCastTransforms(CI);
8250}
8251
8252Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8253 return commonCastTransforms(CI);
8254}
8255
8256Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8257 return commonPointerCastTransforms(CI);
8258}
8259
Chris Lattner7c1626482008-01-08 07:23:51 +00008260Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8261 if (Instruction *I = commonCastTransforms(CI))
8262 return I;
8263
8264 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8265 if (!DestPointee->isSized()) return 0;
8266
8267 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8268 ConstantInt *Cst;
8269 Value *X;
8270 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8271 m_ConstantInt(Cst)))) {
8272 // If the source and destination operands have the same type, see if this
8273 // is a single-index GEP.
8274 if (X->getType() == CI.getType()) {
8275 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008276 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008277
8278 // Convert the constant to intptr type.
8279 APInt Offset = Cst->getValue();
8280 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8281
8282 // If Offset is evenly divisible by Size, we can do this xform.
8283 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8284 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008285 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008286 }
8287 }
8288 // TODO: Could handle other cases, e.g. where add is indexing into field of
8289 // struct etc.
8290 } else if (CI.getOperand(0)->hasOneUse() &&
8291 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8292 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8293 // "inttoptr+GEP" instead of "add+intptr".
8294
8295 // Get the size of the pointee type.
8296 uint64_t Size = TD->getABITypeSize(DestPointee);
8297
8298 // Convert the constant to intptr type.
8299 APInt Offset = Cst->getValue();
8300 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8301
8302 // If Offset is evenly divisible by Size, we can do this xform.
8303 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8304 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8305
8306 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8307 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008308 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008309 }
8310 }
8311 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008312}
8313
8314Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8315 // If the operands are integer typed then apply the integer transforms,
8316 // otherwise just apply the common ones.
8317 Value *Src = CI.getOperand(0);
8318 const Type *SrcTy = Src->getType();
8319 const Type *DestTy = CI.getType();
8320
8321 if (SrcTy->isInteger() && DestTy->isInteger()) {
8322 if (Instruction *Result = commonIntCastTransforms(CI))
8323 return Result;
8324 } else if (isa<PointerType>(SrcTy)) {
8325 if (Instruction *I = commonPointerCastTransforms(CI))
8326 return I;
8327 } else {
8328 if (Instruction *Result = commonCastTransforms(CI))
8329 return Result;
8330 }
8331
8332
8333 // Get rid of casts from one type to the same type. These are useless and can
8334 // be replaced by the operand.
8335 if (DestTy == Src->getType())
8336 return ReplaceInstUsesWith(CI, Src);
8337
8338 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8339 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8340 const Type *DstElTy = DstPTy->getElementType();
8341 const Type *SrcElTy = SrcPTy->getElementType();
8342
Nate Begemandf5b3612008-03-31 00:22:16 +00008343 // If the address spaces don't match, don't eliminate the bitcast, which is
8344 // required for changing types.
8345 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8346 return 0;
8347
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008348 // If we are casting a malloc or alloca to a pointer to a type of the same
8349 // size, rewrite the allocation instruction to allocate the "right" type.
8350 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8351 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8352 return V;
8353
8354 // If the source and destination are pointers, and this cast is equivalent
8355 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8356 // This can enhance SROA and other transforms that want type-safe pointers.
8357 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8358 unsigned NumZeros = 0;
8359 while (SrcElTy != DstElTy &&
8360 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8361 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8362 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8363 ++NumZeros;
8364 }
8365
8366 // If we found a path from the src to dest, create the getelementptr now.
8367 if (SrcElTy == DstElTy) {
8368 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008369 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8370 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008371 }
8372 }
8373
8374 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8375 if (SVI->hasOneUse()) {
8376 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8377 // a bitconvert to a vector with the same # elts.
8378 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008379 cast<VectorType>(DestTy)->getNumElements() ==
8380 SVI->getType()->getNumElements() &&
8381 SVI->getType()->getNumElements() ==
8382 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008383 CastInst *Tmp;
8384 // If either of the operands is a cast from CI.getType(), then
8385 // evaluating the shuffle in the casted destination's type will allow
8386 // us to eliminate at least one cast.
8387 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8388 Tmp->getOperand(0)->getType() == DestTy) ||
8389 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8390 Tmp->getOperand(0)->getType() == DestTy)) {
8391 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8392 SVI->getOperand(0), DestTy, &CI);
8393 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8394 SVI->getOperand(1), DestTy, &CI);
8395 // Return a new shuffle vector. Use the same element ID's, as we
8396 // know the vector types match #elts.
8397 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8398 }
8399 }
8400 }
8401 }
8402 return 0;
8403}
8404
8405/// GetSelectFoldableOperands - We want to turn code that looks like this:
8406/// %C = or %A, %B
8407/// %D = select %cond, %C, %A
8408/// into:
8409/// %C = select %cond, %B, 0
8410/// %D = or %A, %C
8411///
8412/// Assuming that the specified instruction is an operand to the select, return
8413/// a bitmask indicating which operands of this instruction are foldable if they
8414/// equal the other incoming value of the select.
8415///
8416static unsigned GetSelectFoldableOperands(Instruction *I) {
8417 switch (I->getOpcode()) {
8418 case Instruction::Add:
8419 case Instruction::Mul:
8420 case Instruction::And:
8421 case Instruction::Or:
8422 case Instruction::Xor:
8423 return 3; // Can fold through either operand.
8424 case Instruction::Sub: // Can only fold on the amount subtracted.
8425 case Instruction::Shl: // Can only fold on the shift amount.
8426 case Instruction::LShr:
8427 case Instruction::AShr:
8428 return 1;
8429 default:
8430 return 0; // Cannot fold
8431 }
8432}
8433
8434/// GetSelectFoldableConstant - For the same transformation as the previous
8435/// function, return the identity constant that goes into the select.
8436static Constant *GetSelectFoldableConstant(Instruction *I) {
8437 switch (I->getOpcode()) {
8438 default: assert(0 && "This cannot happen!"); abort();
8439 case Instruction::Add:
8440 case Instruction::Sub:
8441 case Instruction::Or:
8442 case Instruction::Xor:
8443 case Instruction::Shl:
8444 case Instruction::LShr:
8445 case Instruction::AShr:
8446 return Constant::getNullValue(I->getType());
8447 case Instruction::And:
8448 return Constant::getAllOnesValue(I->getType());
8449 case Instruction::Mul:
8450 return ConstantInt::get(I->getType(), 1);
8451 }
8452}
8453
8454/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8455/// have the same opcode and only one use each. Try to simplify this.
8456Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8457 Instruction *FI) {
8458 if (TI->getNumOperands() == 1) {
8459 // If this is a non-volatile load or a cast from the same type,
8460 // merge.
8461 if (TI->isCast()) {
8462 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8463 return 0;
8464 } else {
8465 return 0; // unknown unary op.
8466 }
8467
8468 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008469 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8470 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008471 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008472 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008473 TI->getType());
8474 }
8475
8476 // Only handle binary operators here.
8477 if (!isa<BinaryOperator>(TI))
8478 return 0;
8479
8480 // Figure out if the operations have any operands in common.
8481 Value *MatchOp, *OtherOpT, *OtherOpF;
8482 bool MatchIsOpZero;
8483 if (TI->getOperand(0) == FI->getOperand(0)) {
8484 MatchOp = TI->getOperand(0);
8485 OtherOpT = TI->getOperand(1);
8486 OtherOpF = FI->getOperand(1);
8487 MatchIsOpZero = true;
8488 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8489 MatchOp = TI->getOperand(1);
8490 OtherOpT = TI->getOperand(0);
8491 OtherOpF = FI->getOperand(0);
8492 MatchIsOpZero = false;
8493 } else if (!TI->isCommutative()) {
8494 return 0;
8495 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8496 MatchOp = TI->getOperand(0);
8497 OtherOpT = TI->getOperand(1);
8498 OtherOpF = FI->getOperand(0);
8499 MatchIsOpZero = true;
8500 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8501 MatchOp = TI->getOperand(1);
8502 OtherOpT = TI->getOperand(0);
8503 OtherOpF = FI->getOperand(1);
8504 MatchIsOpZero = true;
8505 } else {
8506 return 0;
8507 }
8508
8509 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008510 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8511 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008512 InsertNewInstBefore(NewSI, SI);
8513
8514 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8515 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008516 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008517 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008518 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008519 }
8520 assert(0 && "Shouldn't get here");
8521 return 0;
8522}
8523
Dan Gohman58c09632008-09-16 18:46:06 +00008524/// visitSelectInstWithICmp - Visit a SelectInst that has an
8525/// ICmpInst as its first operand.
8526///
8527Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8528 ICmpInst *ICI) {
8529 bool Changed = false;
8530 ICmpInst::Predicate Pred = ICI->getPredicate();
8531 Value *CmpLHS = ICI->getOperand(0);
8532 Value *CmpRHS = ICI->getOperand(1);
8533 Value *TrueVal = SI.getTrueValue();
8534 Value *FalseVal = SI.getFalseValue();
8535
8536 // Check cases where the comparison is with a constant that
8537 // can be adjusted to fit the min/max idiom. We may edit ICI in
8538 // place here, so make sure the select is the only user.
8539 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008540 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008541 switch (Pred) {
8542 default: break;
8543 case ICmpInst::ICMP_ULT:
8544 case ICmpInst::ICMP_SLT: {
8545 // X < MIN ? T : F --> F
8546 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8547 return ReplaceInstUsesWith(SI, FalseVal);
8548 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8549 Constant *AdjustedRHS = SubOne(CI);
8550 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8551 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8552 Pred = ICmpInst::getSwappedPredicate(Pred);
8553 CmpRHS = AdjustedRHS;
8554 std::swap(FalseVal, TrueVal);
8555 ICI->setPredicate(Pred);
8556 ICI->setOperand(1, CmpRHS);
8557 SI.setOperand(1, TrueVal);
8558 SI.setOperand(2, FalseVal);
8559 Changed = true;
8560 }
8561 break;
8562 }
8563 case ICmpInst::ICMP_UGT:
8564 case ICmpInst::ICMP_SGT: {
8565 // X > MAX ? T : F --> F
8566 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8567 return ReplaceInstUsesWith(SI, FalseVal);
8568 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8569 Constant *AdjustedRHS = AddOne(CI);
8570 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8571 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8572 Pred = ICmpInst::getSwappedPredicate(Pred);
8573 CmpRHS = AdjustedRHS;
8574 std::swap(FalseVal, TrueVal);
8575 ICI->setPredicate(Pred);
8576 ICI->setOperand(1, CmpRHS);
8577 SI.setOperand(1, TrueVal);
8578 SI.setOperand(2, FalseVal);
8579 Changed = true;
8580 }
8581 break;
8582 }
8583 }
8584
Dan Gohman35b76162008-10-30 20:40:10 +00008585 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8586 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
8587 CmpInst::Predicate Pred = ICI->getPredicate();
8588 if (match(TrueVal, m_ConstantInt(0)) &&
8589 match(FalseVal, m_ConstantInt(-1)))
8590 Pred = CmpInst::getInversePredicate(Pred);
8591 else if (!match(TrueVal, m_ConstantInt(-1)) ||
8592 !match(FalseVal, m_ConstantInt(0)))
8593 Pred = CmpInst::BAD_ICMP_PREDICATE;
8594 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8595 // If we are just checking for a icmp eq of a single bit and zext'ing it
8596 // to an integer, then shift the bit to the appropriate place and then
8597 // cast to integer to avoid the comparison.
8598 const APInt &Op1CV = CI->getValue();
8599
8600 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8601 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8602 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8603 (Pred == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8604 Value *In = ICI->getOperand(0);
8605 Value *Sh = ConstantInt::get(In->getType(),
8606 In->getType()->getPrimitiveSizeInBits()-1);
8607 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8608 In->getName()+".lobit"),
8609 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008610 if (In->getType() != SI.getType())
8611 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008612 true/*SExt*/, "tmp", ICI);
8613
8614 if (Pred == ICmpInst::ICMP_SGT)
8615 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8616 In->getName()+".not"), *ICI);
8617
8618 return ReplaceInstUsesWith(SI, In);
8619 }
8620 }
8621 }
8622
Dan Gohman58c09632008-09-16 18:46:06 +00008623 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8624 // Transform (X == Y) ? X : Y -> Y
8625 if (Pred == ICmpInst::ICMP_EQ)
8626 return ReplaceInstUsesWith(SI, FalseVal);
8627 // Transform (X != Y) ? X : Y -> X
8628 if (Pred == ICmpInst::ICMP_NE)
8629 return ReplaceInstUsesWith(SI, TrueVal);
8630 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8631
8632 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8633 // Transform (X == Y) ? Y : X -> X
8634 if (Pred == ICmpInst::ICMP_EQ)
8635 return ReplaceInstUsesWith(SI, FalseVal);
8636 // Transform (X != Y) ? Y : X -> Y
8637 if (Pred == ICmpInst::ICMP_NE)
8638 return ReplaceInstUsesWith(SI, TrueVal);
8639 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8640 }
8641
8642 /// NOTE: if we wanted to, this is where to detect integer ABS
8643
8644 return Changed ? &SI : 0;
8645}
8646
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008647Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8648 Value *CondVal = SI.getCondition();
8649 Value *TrueVal = SI.getTrueValue();
8650 Value *FalseVal = SI.getFalseValue();
8651
8652 // select true, X, Y -> X
8653 // select false, X, Y -> Y
8654 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8655 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8656
8657 // select C, X, X -> X
8658 if (TrueVal == FalseVal)
8659 return ReplaceInstUsesWith(SI, TrueVal);
8660
8661 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8662 return ReplaceInstUsesWith(SI, FalseVal);
8663 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8664 return ReplaceInstUsesWith(SI, TrueVal);
8665 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8666 if (isa<Constant>(TrueVal))
8667 return ReplaceInstUsesWith(SI, TrueVal);
8668 else
8669 return ReplaceInstUsesWith(SI, FalseVal);
8670 }
8671
8672 if (SI.getType() == Type::Int1Ty) {
8673 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8674 if (C->getZExtValue()) {
8675 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008676 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008677 } else {
8678 // Change: A = select B, false, C --> A = and !B, C
8679 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008680 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008681 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008682 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008683 }
8684 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8685 if (C->getZExtValue() == false) {
8686 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008687 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008688 } else {
8689 // Change: A = select B, C, true --> A = or !B, C
8690 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008691 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008692 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008693 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008694 }
8695 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008696
8697 // select a, b, a -> a&b
8698 // select a, a, b -> a|b
8699 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008700 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008701 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008702 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008703 }
8704
8705 // Selecting between two integer constants?
8706 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8707 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8708 // select C, 1, 0 -> zext C to int
8709 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008710 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008711 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8712 // select C, 0, 1 -> zext !C to int
8713 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008714 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008715 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008716 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008717 }
8718
8719 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8720
8721 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8722
8723 // (x <s 0) ? -1 : 0 -> ashr x, 31
8724 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8725 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8726 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8727 // The comparison constant and the result are not neccessarily the
8728 // same width. Make an all-ones value by inserting a AShr.
8729 Value *X = IC->getOperand(0);
8730 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8731 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008732 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008733 ShAmt, "ones");
8734 InsertNewInstBefore(SRA, SI);
8735
8736 // Finally, convert to the type of the select RHS. We figure out
8737 // if this requires a SExt, Trunc or BitCast based on the sizes.
8738 Instruction::CastOps opc = Instruction::BitCast;
8739 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8740 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8741 if (SRASize < SISize)
8742 opc = Instruction::SExt;
8743 else if (SRASize > SISize)
8744 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008745 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008746 }
8747 }
8748
8749
8750 // If one of the constants is zero (we know they can't both be) and we
8751 // have an icmp instruction with zero, and we have an 'and' with the
8752 // non-constant value, eliminate this whole mess. This corresponds to
8753 // cases like this: ((X & 27) ? 27 : 0)
8754 if (TrueValC->isZero() || FalseValC->isZero())
8755 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8756 cast<Constant>(IC->getOperand(1))->isNullValue())
8757 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8758 if (ICA->getOpcode() == Instruction::And &&
8759 isa<ConstantInt>(ICA->getOperand(1)) &&
8760 (ICA->getOperand(1) == TrueValC ||
8761 ICA->getOperand(1) == FalseValC) &&
8762 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8763 // Okay, now we know that everything is set up, we just don't
8764 // know whether we have a icmp_ne or icmp_eq and whether the
8765 // true or false val is the zero.
8766 bool ShouldNotVal = !TrueValC->isZero();
8767 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8768 Value *V = ICA;
8769 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008770 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008771 Instruction::Xor, V, ICA->getOperand(1)), SI);
8772 return ReplaceInstUsesWith(SI, V);
8773 }
8774 }
8775 }
8776
8777 // See if we are selecting two values based on a comparison of the two values.
8778 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8779 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8780 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008781 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8782 // This is not safe in general for floating point:
8783 // consider X== -0, Y== +0.
8784 // It becomes safe if either operand is a nonzero constant.
8785 ConstantFP *CFPt, *CFPf;
8786 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8787 !CFPt->getValueAPF().isZero()) ||
8788 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8789 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008790 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008791 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008792 // Transform (X != Y) ? X : Y -> X
8793 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8794 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008795 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008796
8797 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8798 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008799 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8800 // This is not safe in general for floating point:
8801 // consider X== -0, Y== +0.
8802 // It becomes safe if either operand is a nonzero constant.
8803 ConstantFP *CFPt, *CFPf;
8804 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8805 !CFPt->getValueAPF().isZero()) ||
8806 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8807 !CFPf->getValueAPF().isZero()))
8808 return ReplaceInstUsesWith(SI, FalseVal);
8809 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008810 // Transform (X != Y) ? Y : X -> Y
8811 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8812 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008813 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008814 }
Dan Gohman58c09632008-09-16 18:46:06 +00008815 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008816 }
8817
8818 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008819 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8820 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8821 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008822
8823 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8824 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8825 if (TI->hasOneUse() && FI->hasOneUse()) {
8826 Instruction *AddOp = 0, *SubOp = 0;
8827
8828 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8829 if (TI->getOpcode() == FI->getOpcode())
8830 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8831 return IV;
8832
8833 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8834 // even legal for FP.
8835 if (TI->getOpcode() == Instruction::Sub &&
8836 FI->getOpcode() == Instruction::Add) {
8837 AddOp = FI; SubOp = TI;
8838 } else if (FI->getOpcode() == Instruction::Sub &&
8839 TI->getOpcode() == Instruction::Add) {
8840 AddOp = TI; SubOp = FI;
8841 }
8842
8843 if (AddOp) {
8844 Value *OtherAddOp = 0;
8845 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8846 OtherAddOp = AddOp->getOperand(1);
8847 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8848 OtherAddOp = AddOp->getOperand(0);
8849 }
8850
8851 if (OtherAddOp) {
8852 // So at this point we know we have (Y -> OtherAddOp):
8853 // select C, (add X, Y), (sub X, Z)
8854 Value *NegVal; // Compute -Z
8855 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8856 NegVal = ConstantExpr::getNeg(C);
8857 } else {
8858 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008859 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008860 }
8861
8862 Value *NewTrueOp = OtherAddOp;
8863 Value *NewFalseOp = NegVal;
8864 if (AddOp != TI)
8865 std::swap(NewTrueOp, NewFalseOp);
8866 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008867 SelectInst::Create(CondVal, NewTrueOp,
8868 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008869
8870 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008871 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008872 }
8873 }
8874 }
8875
8876 // See if we can fold the select into one of our operands.
8877 if (SI.getType()->isInteger()) {
8878 // See the comment above GetSelectFoldableOperands for a description of the
8879 // transformation we are doing here.
8880 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8881 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8882 !isa<Constant>(FalseVal))
8883 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8884 unsigned OpToFold = 0;
8885 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8886 OpToFold = 1;
8887 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8888 OpToFold = 2;
8889 }
8890
8891 if (OpToFold) {
8892 Constant *C = GetSelectFoldableConstant(TVI);
8893 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008894 SelectInst::Create(SI.getCondition(),
8895 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008896 InsertNewInstBefore(NewSel, SI);
8897 NewSel->takeName(TVI);
8898 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008899 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008900 else {
8901 assert(0 && "Unknown instruction!!");
8902 }
8903 }
8904 }
8905
8906 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8907 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8908 !isa<Constant>(TrueVal))
8909 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8910 unsigned OpToFold = 0;
8911 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8912 OpToFold = 1;
8913 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8914 OpToFold = 2;
8915 }
8916
8917 if (OpToFold) {
8918 Constant *C = GetSelectFoldableConstant(FVI);
8919 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008920 SelectInst::Create(SI.getCondition(), C,
8921 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008922 InsertNewInstBefore(NewSel, SI);
8923 NewSel->takeName(FVI);
8924 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008925 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008926 else
8927 assert(0 && "Unknown instruction!!");
8928 }
8929 }
8930 }
8931
8932 if (BinaryOperator::isNot(CondVal)) {
8933 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8934 SI.setOperand(1, FalseVal);
8935 SI.setOperand(2, TrueVal);
8936 return &SI;
8937 }
8938
8939 return 0;
8940}
8941
Dan Gohman2d648bb2008-04-10 18:43:06 +00008942/// EnforceKnownAlignment - If the specified pointer points to an object that
8943/// we control, modify the object's alignment to PrefAlign. This isn't
8944/// often possible though. If alignment is important, a more reliable approach
8945/// is to simply align all global variables and allocation instructions to
8946/// their preferred alignment from the beginning.
8947///
8948static unsigned EnforceKnownAlignment(Value *V,
8949 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008950
Dan Gohman2d648bb2008-04-10 18:43:06 +00008951 User *U = dyn_cast<User>(V);
8952 if (!U) return Align;
8953
8954 switch (getOpcode(U)) {
8955 default: break;
8956 case Instruction::BitCast:
8957 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8958 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008959 // If all indexes are zero, it is just the alignment of the base pointer.
8960 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008961 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008962 if (!isa<Constant>(*i) ||
8963 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008964 AllZeroOperands = false;
8965 break;
8966 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008967
8968 if (AllZeroOperands) {
8969 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008970 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008971 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008972 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008973 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008974 }
8975
8976 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
8977 // If there is a large requested alignment and we can, bump up the alignment
8978 // of the global.
8979 if (!GV->isDeclaration()) {
8980 GV->setAlignment(PrefAlign);
8981 Align = PrefAlign;
8982 }
8983 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
8984 // If there is a requested alignment and if this is an alloca, round up. We
8985 // don't do this for malloc, because some systems can't respect the request.
8986 if (isa<AllocaInst>(AI)) {
8987 AI->setAlignment(PrefAlign);
8988 Align = PrefAlign;
8989 }
8990 }
8991
8992 return Align;
8993}
8994
8995/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
8996/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
8997/// and it is more than the alignment of the ultimate object, see if we can
8998/// increase the alignment of the ultimate object, making this check succeed.
8999unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9000 unsigned PrefAlign) {
9001 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9002 sizeof(PrefAlign) * CHAR_BIT;
9003 APInt Mask = APInt::getAllOnesValue(BitWidth);
9004 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9005 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9006 unsigned TrailZ = KnownZero.countTrailingOnes();
9007 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9008
9009 if (PrefAlign > Align)
9010 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9011
9012 // We don't need to make any adjustment.
9013 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009014}
9015
Chris Lattner00ae5132008-01-13 23:50:23 +00009016Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009017 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9018 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009019 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9020 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9021
9022 if (CopyAlign < MinAlign) {
9023 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9024 return MI;
9025 }
9026
9027 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9028 // load/store.
9029 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9030 if (MemOpLength == 0) return 0;
9031
Chris Lattnerc669fb62008-01-14 00:28:35 +00009032 // Source and destination pointer types are always "i8*" for intrinsic. See
9033 // if the size is something we can handle with a single primitive load/store.
9034 // A single load+store correctly handles overlapping memory in the memmove
9035 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009036 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009037 if (Size == 0) return MI; // Delete this mem transfer.
9038
9039 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009040 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009041
Chris Lattnerc669fb62008-01-14 00:28:35 +00009042 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009043 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009044
9045 // Memcpy forces the use of i8* for the source and destination. That means
9046 // that if you're using memcpy to move one double around, you'll get a cast
9047 // from double* to i8*. We'd much rather use a double load+store rather than
9048 // an i64 load+store, here because this improves the odds that the source or
9049 // dest address will be promotable. See if we can find a better type than the
9050 // integer datatype.
9051 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9052 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9053 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9054 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9055 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009056 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009057 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9058 if (STy->getNumElements() == 1)
9059 SrcETy = STy->getElementType(0);
9060 else
9061 break;
9062 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9063 if (ATy->getNumElements() == 1)
9064 SrcETy = ATy->getElementType();
9065 else
9066 break;
9067 } else
9068 break;
9069 }
9070
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009071 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009072 NewPtrTy = PointerType::getUnqual(SrcETy);
9073 }
9074 }
9075
9076
Chris Lattner00ae5132008-01-13 23:50:23 +00009077 // If the memcpy/memmove provides better alignment info than we can
9078 // infer, use it.
9079 SrcAlign = std::max(SrcAlign, CopyAlign);
9080 DstAlign = std::max(DstAlign, CopyAlign);
9081
9082 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9083 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009084 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9085 InsertNewInstBefore(L, *MI);
9086 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9087
9088 // Set the size of the copy to 0, it will be deleted on the next iteration.
9089 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9090 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009091}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009092
Chris Lattner5af8a912008-04-30 06:39:11 +00009093Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9094 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9095 if (MI->getAlignment()->getZExtValue() < Alignment) {
9096 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9097 return MI;
9098 }
9099
9100 // Extract the length and alignment and fill if they are constant.
9101 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9102 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9103 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9104 return 0;
9105 uint64_t Len = LenC->getZExtValue();
9106 Alignment = MI->getAlignment()->getZExtValue();
9107
9108 // If the length is zero, this is a no-op
9109 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9110
9111 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9112 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9113 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9114
9115 Value *Dest = MI->getDest();
9116 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9117
9118 // Alignment 0 is identity for alignment 1 for memset, but not store.
9119 if (Alignment == 0) Alignment = 1;
9120
9121 // Extract the fill value and store.
9122 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9123 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9124 Alignment), *MI);
9125
9126 // Set the size of the copy to 0, it will be deleted on the next iteration.
9127 MI->setLength(Constant::getNullValue(LenC->getType()));
9128 return MI;
9129 }
9130
9131 return 0;
9132}
9133
9134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009135/// visitCallInst - CallInst simplification. This mostly only handles folding
9136/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9137/// the heavy lifting.
9138///
9139Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9140 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9141 if (!II) return visitCallSite(&CI);
9142
9143 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9144 // visitCallSite.
9145 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9146 bool Changed = false;
9147
9148 // memmove/cpy/set of zero bytes is a noop.
9149 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9150 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9151
9152 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9153 if (CI->getZExtValue() == 1) {
9154 // Replace the instruction with just byte operations. We would
9155 // transform other cases to loads/stores, but we don't know if
9156 // alignment is sufficient.
9157 }
9158 }
9159
9160 // If we have a memmove and the source operation is a constant global,
9161 // then the source and dest pointers can't alias, so we can change this
9162 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009163 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009164 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9165 if (GVSrc->isConstant()) {
9166 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009167 Intrinsic::ID MemCpyID;
9168 if (CI.getOperand(3)->getType() == Type::Int32Ty)
9169 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009170 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009171 MemCpyID = Intrinsic::memcpy_i64;
9172 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009173 Changed = true;
9174 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009175
9176 // memmove(x,x,size) -> noop.
9177 if (MMI->getSource() == MMI->getDest())
9178 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009179 }
9180
9181 // If we can determine a pointer alignment that is bigger than currently
9182 // set, update the alignment.
9183 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009184 if (Instruction *I = SimplifyMemTransfer(MI))
9185 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009186 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9187 if (Instruction *I = SimplifyMemSet(MSI))
9188 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009189 }
9190
9191 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009192 }
9193
9194 switch (II->getIntrinsicID()) {
9195 default: break;
9196 case Intrinsic::bswap:
9197 // bswap(bswap(x)) -> x
9198 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9199 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9200 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9201 break;
9202 case Intrinsic::ppc_altivec_lvx:
9203 case Intrinsic::ppc_altivec_lvxl:
9204 case Intrinsic::x86_sse_loadu_ps:
9205 case Intrinsic::x86_sse2_loadu_pd:
9206 case Intrinsic::x86_sse2_loadu_dq:
9207 // Turn PPC lvx -> load if the pointer is known aligned.
9208 // Turn X86 loadups -> load if the pointer is known aligned.
9209 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9210 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9211 PointerType::getUnqual(II->getType()),
9212 CI);
9213 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009214 }
Chris Lattner989ba312008-06-18 04:33:20 +00009215 break;
9216 case Intrinsic::ppc_altivec_stvx:
9217 case Intrinsic::ppc_altivec_stvxl:
9218 // Turn stvx -> store if the pointer is known aligned.
9219 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9220 const Type *OpPtrTy =
9221 PointerType::getUnqual(II->getOperand(1)->getType());
9222 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9223 return new StoreInst(II->getOperand(1), Ptr);
9224 }
9225 break;
9226 case Intrinsic::x86_sse_storeu_ps:
9227 case Intrinsic::x86_sse2_storeu_pd:
9228 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009229 // Turn X86 storeu -> store if the pointer is known aligned.
9230 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9231 const Type *OpPtrTy =
9232 PointerType::getUnqual(II->getOperand(2)->getType());
9233 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9234 return new StoreInst(II->getOperand(2), Ptr);
9235 }
9236 break;
9237
9238 case Intrinsic::x86_sse_cvttss2si: {
9239 // These intrinsics only demands the 0th element of its input vector. If
9240 // we can simplify the input based on that, do so now.
9241 uint64_t UndefElts;
9242 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9243 UndefElts)) {
9244 II->setOperand(1, V);
9245 return II;
9246 }
9247 break;
9248 }
9249
9250 case Intrinsic::ppc_altivec_vperm:
9251 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9252 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9253 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009254
Chris Lattner989ba312008-06-18 04:33:20 +00009255 // Check that all of the elements are integer constants or undefs.
9256 bool AllEltsOk = true;
9257 for (unsigned i = 0; i != 16; ++i) {
9258 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9259 !isa<UndefValue>(Mask->getOperand(i))) {
9260 AllEltsOk = false;
9261 break;
9262 }
9263 }
9264
9265 if (AllEltsOk) {
9266 // Cast the input vectors to byte vectors.
9267 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9268 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9269 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009270
Chris Lattner989ba312008-06-18 04:33:20 +00009271 // Only extract each element once.
9272 Value *ExtractedElts[32];
9273 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9274
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009275 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009276 if (isa<UndefValue>(Mask->getOperand(i)))
9277 continue;
9278 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9279 Idx &= 31; // Match the hardware behavior.
9280
9281 if (ExtractedElts[Idx] == 0) {
9282 Instruction *Elt =
9283 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9284 InsertNewInstBefore(Elt, CI);
9285 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009286 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009287
Chris Lattner989ba312008-06-18 04:33:20 +00009288 // Insert this value into the result vector.
9289 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9290 i, "tmp");
9291 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009292 }
Chris Lattner989ba312008-06-18 04:33:20 +00009293 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009294 }
Chris Lattner989ba312008-06-18 04:33:20 +00009295 }
9296 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009297
Chris Lattner989ba312008-06-18 04:33:20 +00009298 case Intrinsic::stackrestore: {
9299 // If the save is right next to the restore, remove the restore. This can
9300 // happen when variable allocas are DCE'd.
9301 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9302 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9303 BasicBlock::iterator BI = SS;
9304 if (&*++BI == II)
9305 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009306 }
Chris Lattner989ba312008-06-18 04:33:20 +00009307 }
9308
9309 // Scan down this block to see if there is another stack restore in the
9310 // same block without an intervening call/alloca.
9311 BasicBlock::iterator BI = II;
9312 TerminatorInst *TI = II->getParent()->getTerminator();
9313 bool CannotRemove = false;
9314 for (++BI; &*BI != TI; ++BI) {
9315 if (isa<AllocaInst>(BI)) {
9316 CannotRemove = true;
9317 break;
9318 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009319 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9320 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9321 // If there is a stackrestore below this one, remove this one.
9322 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9323 return EraseInstFromFunction(CI);
9324 // Otherwise, ignore the intrinsic.
9325 } else {
9326 // If we found a non-intrinsic call, we can't remove the stack
9327 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009328 CannotRemove = true;
9329 break;
9330 }
Chris Lattner989ba312008-06-18 04:33:20 +00009331 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009332 }
Chris Lattner989ba312008-06-18 04:33:20 +00009333
9334 // If the stack restore is in a return/unwind block and if there are no
9335 // allocas or calls between the restore and the return, nuke the restore.
9336 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9337 return EraseInstFromFunction(CI);
9338 break;
9339 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009340 }
9341
9342 return visitCallSite(II);
9343}
9344
9345// InvokeInst simplification
9346//
9347Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9348 return visitCallSite(&II);
9349}
9350
Dale Johannesen96021832008-04-25 21:16:07 +00009351/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9352/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009353static bool isSafeToEliminateVarargsCast(const CallSite CS,
9354 const CastInst * const CI,
9355 const TargetData * const TD,
9356 const int ix) {
9357 if (!CI->isLosslessCast())
9358 return false;
9359
9360 // The size of ByVal arguments is derived from the type, so we
9361 // can't change to a type with a different size. If the size were
9362 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009363 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009364 return true;
9365
9366 const Type* SrcTy =
9367 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9368 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9369 if (!SrcTy->isSized() || !DstTy->isSized())
9370 return false;
9371 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9372 return false;
9373 return true;
9374}
9375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009376// visitCallSite - Improvements for call and invoke instructions.
9377//
9378Instruction *InstCombiner::visitCallSite(CallSite CS) {
9379 bool Changed = false;
9380
9381 // If the callee is a constexpr cast of a function, attempt to move the cast
9382 // to the arguments of the call/invoke.
9383 if (transformConstExprCastCall(CS)) return 0;
9384
9385 Value *Callee = CS.getCalledValue();
9386
9387 if (Function *CalleeF = dyn_cast<Function>(Callee))
9388 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9389 Instruction *OldCall = CS.getInstruction();
9390 // If the call and callee calling conventions don't match, this call must
9391 // be unreachable, as the call is undefined.
9392 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009393 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9394 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009395 if (!OldCall->use_empty())
9396 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9397 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9398 return EraseInstFromFunction(*OldCall);
9399 return 0;
9400 }
9401
9402 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9403 // This instruction is not reachable, just remove it. We insert a store to
9404 // undef so that we know that this code is not reachable, despite the fact
9405 // that we can't modify the CFG here.
9406 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009407 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009408 CS.getInstruction());
9409
9410 if (!CS.getInstruction()->use_empty())
9411 CS.getInstruction()->
9412 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9413
9414 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9415 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009416 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9417 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009418 }
9419 return EraseInstFromFunction(*CS.getInstruction());
9420 }
9421
Duncan Sands74833f22007-09-17 10:26:40 +00009422 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9423 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9424 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9425 return transformCallThroughTrampoline(CS);
9426
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009427 const PointerType *PTy = cast<PointerType>(Callee->getType());
9428 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9429 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009430 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009431 // See if we can optimize any arguments passed through the varargs area of
9432 // the call.
9433 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009434 E = CS.arg_end(); I != E; ++I, ++ix) {
9435 CastInst *CI = dyn_cast<CastInst>(*I);
9436 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9437 *I = CI->getOperand(0);
9438 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009439 }
Dale Johannesen35615462008-04-23 18:34:37 +00009440 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009441 }
9442
Duncan Sands2937e352007-12-19 21:13:37 +00009443 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009444 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009445 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009446 Changed = true;
9447 }
9448
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009449 return Changed ? CS.getInstruction() : 0;
9450}
9451
9452// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9453// attempt to move the cast to the arguments of the call/invoke.
9454//
9455bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9456 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9457 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9458 if (CE->getOpcode() != Instruction::BitCast ||
9459 !isa<Function>(CE->getOperand(0)))
9460 return false;
9461 Function *Callee = cast<Function>(CE->getOperand(0));
9462 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009463 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009464
9465 // Okay, this is a cast from a function to a different type. Unless doing so
9466 // would cause a type conversion of one of our arguments, change this call to
9467 // be a direct call with arguments casted to the appropriate types.
9468 //
9469 const FunctionType *FT = Callee->getFunctionType();
9470 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009471 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009472
Duncan Sands7901ce12008-06-01 07:38:42 +00009473 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009474 return false; // TODO: Handle multiple return values.
9475
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009476 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009477 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009478 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009479 // Conversion is ok if changing from one pointer type to another or from
9480 // a pointer to an integer of the same size.
9481 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009482 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009483 return false; // Cannot transform this return value.
9484
Duncan Sands5c489582008-01-06 10:12:28 +00009485 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009486 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009487 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009488 return false; // Cannot transform this return value.
9489
Chris Lattner1c8733e2008-03-12 17:45:29 +00009490 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009491 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009492 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009493 return false; // Attribute not compatible with transformed value.
9494 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009495
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009496 // If the callsite is an invoke instruction, and the return value is used by
9497 // a PHI node in a successor, we cannot change the return type of the call
9498 // because there is no place to put the cast instruction (without breaking
9499 // the critical edge). Bail out in this case.
9500 if (!Caller->use_empty())
9501 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9502 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9503 UI != E; ++UI)
9504 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9505 if (PN->getParent() == II->getNormalDest() ||
9506 PN->getParent() == II->getUnwindDest())
9507 return false;
9508 }
9509
9510 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9511 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9512
9513 CallSite::arg_iterator AI = CS.arg_begin();
9514 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9515 const Type *ParamTy = FT->getParamType(i);
9516 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009517
9518 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009519 return false; // Cannot transform this parameter value.
9520
Devang Patelf2a4a922008-09-26 22:53:05 +00009521 if (CallerPAL.getParamAttributes(i + 1)
9522 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009523 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009524
Duncan Sands7901ce12008-06-01 07:38:42 +00009525 // Converting from one pointer type to another or between a pointer and an
9526 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009527 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009528 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9529 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009530 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009531 }
9532
9533 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9534 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009535 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009536
Chris Lattner1c8733e2008-03-12 17:45:29 +00009537 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9538 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009539 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009540 // won't be dropping them. Check that these extra arguments have attributes
9541 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009542 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9543 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009544 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009545 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009546 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009547 return false;
9548 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009549
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009550 // Okay, we decided that this is a safe thing to do: go ahead and start
9551 // inserting cast instructions as necessary...
9552 std::vector<Value*> Args;
9553 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009554 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009555 attrVec.reserve(NumCommonArgs);
9556
9557 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009558 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009559
9560 // If the return value is not being used, the type may not be compatible
9561 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009562 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009563
9564 // Add the new return attributes.
9565 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009566 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009567
9568 AI = CS.arg_begin();
9569 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9570 const Type *ParamTy = FT->getParamType(i);
9571 if ((*AI)->getType() == ParamTy) {
9572 Args.push_back(*AI);
9573 } else {
9574 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9575 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009576 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009577 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9578 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009579
9580 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009581 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009582 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009583 }
9584
9585 // If the function takes more arguments than the call was taking, add them
9586 // now...
9587 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9588 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9589
9590 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009591 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009592 if (!FT->isVarArg()) {
9593 cerr << "WARNING: While resolving call to function '"
9594 << Callee->getName() << "' arguments were dropped!\n";
9595 } else {
9596 // Add all of the arguments in their promoted form to the arg list...
9597 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9598 const Type *PTy = getPromotedType((*AI)->getType());
9599 if (PTy != (*AI)->getType()) {
9600 // Must promote to pass through va_arg area!
9601 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9602 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009603 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009604 InsertNewInstBefore(Cast, *Caller);
9605 Args.push_back(Cast);
9606 } else {
9607 Args.push_back(*AI);
9608 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009609
Duncan Sands4ced1f82008-01-13 08:02:44 +00009610 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009611 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009612 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009613 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009614 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009615 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009616
Devang Patelf2a4a922008-09-26 22:53:05 +00009617 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9618 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9619
Duncan Sands7901ce12008-06-01 07:38:42 +00009620 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009621 Caller->setName(""); // Void type should not have a name.
9622
Devang Pateld222f862008-09-25 21:00:45 +00009623 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009624
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009625 Instruction *NC;
9626 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009627 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009628 Args.begin(), Args.end(),
9629 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009630 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009631 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009632 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009633 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9634 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009635 CallInst *CI = cast<CallInst>(Caller);
9636 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009637 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009638 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009639 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009640 }
9641
9642 // Insert a cast of the return type as necessary.
9643 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009644 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009645 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009646 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009647 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009648 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009649
9650 // If this is an invoke instruction, we should insert it after the first
9651 // non-phi, instruction in the normal successor block.
9652 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009653 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009654 InsertNewInstBefore(NC, *I);
9655 } else {
9656 // Otherwise, it's a call, just insert cast right after the call instr
9657 InsertNewInstBefore(NC, *Caller);
9658 }
9659 AddUsersToWorkList(*Caller);
9660 } else {
9661 NV = UndefValue::get(Caller->getType());
9662 }
9663 }
9664
9665 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9666 Caller->replaceAllUsesWith(NV);
9667 Caller->eraseFromParent();
9668 RemoveFromWorkList(Caller);
9669 return true;
9670}
9671
Duncan Sands74833f22007-09-17 10:26:40 +00009672// transformCallThroughTrampoline - Turn a call to a function created by the
9673// init_trampoline intrinsic into a direct call to the underlying function.
9674//
9675Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9676 Value *Callee = CS.getCalledValue();
9677 const PointerType *PTy = cast<PointerType>(Callee->getType());
9678 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009679 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009680
9681 // If the call already has the 'nest' attribute somewhere then give up -
9682 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009683 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009684 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009685
9686 IntrinsicInst *Tramp =
9687 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9688
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009689 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009690 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9691 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9692
Devang Pateld222f862008-09-25 21:00:45 +00009693 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009694 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009695 unsigned NestIdx = 1;
9696 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009697 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009698
9699 // Look for a parameter marked with the 'nest' attribute.
9700 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9701 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009702 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009703 // Record the parameter type and any other attributes.
9704 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009705 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009706 break;
9707 }
9708
9709 if (NestTy) {
9710 Instruction *Caller = CS.getInstruction();
9711 std::vector<Value*> NewArgs;
9712 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9713
Devang Pateld222f862008-09-25 21:00:45 +00009714 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009715 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009716
Duncan Sands74833f22007-09-17 10:26:40 +00009717 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009718 // mean appending it. Likewise for attributes.
9719
Devang Patelf2a4a922008-09-26 22:53:05 +00009720 // Add any result attributes.
9721 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009722 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009723
Duncan Sands74833f22007-09-17 10:26:40 +00009724 {
9725 unsigned Idx = 1;
9726 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9727 do {
9728 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009729 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009730 Value *NestVal = Tramp->getOperand(3);
9731 if (NestVal->getType() != NestTy)
9732 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9733 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009734 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009735 }
9736
9737 if (I == E)
9738 break;
9739
Duncan Sands48b81112008-01-14 19:52:09 +00009740 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009741 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009742 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009743 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009744 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009745
9746 ++Idx, ++I;
9747 } while (1);
9748 }
9749
Devang Patelf2a4a922008-09-26 22:53:05 +00009750 // Add any function attributes.
9751 if (Attributes Attr = Attrs.getFnAttributes())
9752 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9753
Duncan Sands74833f22007-09-17 10:26:40 +00009754 // The trampoline may have been bitcast to a bogus type (FTy).
9755 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009756 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009757
Duncan Sands74833f22007-09-17 10:26:40 +00009758 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009759 NewTypes.reserve(FTy->getNumParams()+1);
9760
Duncan Sands74833f22007-09-17 10:26:40 +00009761 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009762 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009763 {
9764 unsigned Idx = 1;
9765 FunctionType::param_iterator I = FTy->param_begin(),
9766 E = FTy->param_end();
9767
9768 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009769 if (Idx == NestIdx)
9770 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009771 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009772
9773 if (I == E)
9774 break;
9775
Duncan Sands48b81112008-01-14 19:52:09 +00009776 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009777 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009778
9779 ++Idx, ++I;
9780 } while (1);
9781 }
9782
9783 // Replace the trampoline call with a direct call. Let the generic
9784 // code sort out any function type mismatches.
9785 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009786 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009787 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9788 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009789 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009790
9791 Instruction *NewCaller;
9792 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009793 NewCaller = InvokeInst::Create(NewCallee,
9794 II->getNormalDest(), II->getUnwindDest(),
9795 NewArgs.begin(), NewArgs.end(),
9796 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009797 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009798 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009799 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009800 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9801 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009802 if (cast<CallInst>(Caller)->isTailCall())
9803 cast<CallInst>(NewCaller)->setTailCall();
9804 cast<CallInst>(NewCaller)->
9805 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009806 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009807 }
9808 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9809 Caller->replaceAllUsesWith(NewCaller);
9810 Caller->eraseFromParent();
9811 RemoveFromWorkList(Caller);
9812 return 0;
9813 }
9814 }
9815
9816 // Replace the trampoline call with a direct call. Since there is no 'nest'
9817 // parameter, there is no need to adjust the argument list. Let the generic
9818 // code sort out any function type mismatches.
9819 Constant *NewCallee =
9820 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9821 CS.setCalledFunction(NewCallee);
9822 return CS.getInstruction();
9823}
9824
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009825/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9826/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9827/// and a single binop.
9828Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9829 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9830 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9831 isa<CmpInst>(FirstInst));
9832 unsigned Opc = FirstInst->getOpcode();
9833 Value *LHSVal = FirstInst->getOperand(0);
9834 Value *RHSVal = FirstInst->getOperand(1);
9835
9836 const Type *LHSType = LHSVal->getType();
9837 const Type *RHSType = RHSVal->getType();
9838
9839 // Scan to see if all operands are the same opcode, all have one use, and all
9840 // kill their operands (i.e. the operands have one use).
9841 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9842 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9843 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9844 // Verify type of the LHS matches so we don't fold cmp's of different
9845 // types or GEP's with different index types.
9846 I->getOperand(0)->getType() != LHSType ||
9847 I->getOperand(1)->getType() != RHSType)
9848 return 0;
9849
9850 // If they are CmpInst instructions, check their predicates
9851 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9852 if (cast<CmpInst>(I)->getPredicate() !=
9853 cast<CmpInst>(FirstInst)->getPredicate())
9854 return 0;
9855
9856 // Keep track of which operand needs a phi node.
9857 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9858 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9859 }
9860
9861 // Otherwise, this is safe to transform, determine if it is profitable.
9862
9863 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9864 // Indexes are often folded into load/store instructions, so we don't want to
9865 // hide them behind a phi.
9866 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9867 return 0;
9868
9869 Value *InLHS = FirstInst->getOperand(0);
9870 Value *InRHS = FirstInst->getOperand(1);
9871 PHINode *NewLHS = 0, *NewRHS = 0;
9872 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009873 NewLHS = PHINode::Create(LHSType,
9874 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009875 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9876 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9877 InsertNewInstBefore(NewLHS, PN);
9878 LHSVal = NewLHS;
9879 }
9880
9881 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009882 NewRHS = PHINode::Create(RHSType,
9883 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009884 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9885 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9886 InsertNewInstBefore(NewRHS, PN);
9887 RHSVal = NewRHS;
9888 }
9889
9890 // Add all operands to the new PHIs.
9891 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9892 if (NewLHS) {
9893 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9894 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9895 }
9896 if (NewRHS) {
9897 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9898 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9899 }
9900 }
9901
9902 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009903 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009904 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009905 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009906 RHSVal);
9907 else {
9908 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009909 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009910 }
9911}
9912
9913/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9914/// of the block that defines it. This means that it must be obvious the value
9915/// of the load is not changed from the point of the load to the end of the
9916/// block it is in.
9917///
9918/// Finally, it is safe, but not profitable, to sink a load targetting a
9919/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9920/// to a register.
9921static bool isSafeToSinkLoad(LoadInst *L) {
9922 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9923
9924 for (++BBI; BBI != E; ++BBI)
9925 if (BBI->mayWriteToMemory())
9926 return false;
9927
9928 // Check for non-address taken alloca. If not address-taken already, it isn't
9929 // profitable to do this xform.
9930 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9931 bool isAddressTaken = false;
9932 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9933 UI != E; ++UI) {
9934 if (isa<LoadInst>(UI)) continue;
9935 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9936 // If storing TO the alloca, then the address isn't taken.
9937 if (SI->getOperand(1) == AI) continue;
9938 }
9939 isAddressTaken = true;
9940 break;
9941 }
9942
9943 if (!isAddressTaken)
9944 return false;
9945 }
9946
9947 return true;
9948}
9949
9950
9951// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9952// operator and they all are only used by the PHI, PHI together their
9953// inputs, and do the operation once, to the result of the PHI.
9954Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9955 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9956
9957 // Scan the instruction, looking for input operations that can be folded away.
9958 // If all input operands to the phi are the same instruction (e.g. a cast from
9959 // the same type or "+42") we can pull the operation through the PHI, reducing
9960 // code size and simplifying code.
9961 Constant *ConstantOp = 0;
9962 const Type *CastSrcTy = 0;
9963 bool isVolatile = false;
9964 if (isa<CastInst>(FirstInst)) {
9965 CastSrcTy = FirstInst->getOperand(0)->getType();
9966 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9967 // Can fold binop, compare or shift here if the RHS is a constant,
9968 // otherwise call FoldPHIArgBinOpIntoPHI.
9969 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9970 if (ConstantOp == 0)
9971 return FoldPHIArgBinOpIntoPHI(PN);
9972 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9973 isVolatile = LI->isVolatile();
9974 // We can't sink the load if the loaded value could be modified between the
9975 // load and the PHI.
9976 if (LI->getParent() != PN.getIncomingBlock(0) ||
9977 !isSafeToSinkLoad(LI))
9978 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +00009979
9980 // If the PHI is of volatile loads and the load block has multiple
9981 // successors, sinking it would remove a load of the volatile value from
9982 // the path through the other successor.
9983 if (isVolatile &&
9984 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
9985 return 0;
9986
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009987 } else if (isa<GetElementPtrInst>(FirstInst)) {
9988 if (FirstInst->getNumOperands() == 2)
9989 return FoldPHIArgBinOpIntoPHI(PN);
9990 // Can't handle general GEPs yet.
9991 return 0;
9992 } else {
9993 return 0; // Cannot fold this operation.
9994 }
9995
9996 // Check to see if all arguments are the same operation.
9997 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9998 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
9999 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10000 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10001 return 0;
10002 if (CastSrcTy) {
10003 if (I->getOperand(0)->getType() != CastSrcTy)
10004 return 0; // Cast operation must match.
10005 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10006 // We can't sink the load if the loaded value could be modified between
10007 // the load and the PHI.
10008 if (LI->isVolatile() != isVolatile ||
10009 LI->getParent() != PN.getIncomingBlock(i) ||
10010 !isSafeToSinkLoad(LI))
10011 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010012
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010013 // If the PHI is of volatile loads and the load block has multiple
10014 // successors, sinking it would remove a load of the volatile value from
10015 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010016 if (isVolatile &&
10017 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10018 return 0;
10019
10020
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010021 } else if (I->getOperand(1) != ConstantOp) {
10022 return 0;
10023 }
10024 }
10025
10026 // Okay, they are all the same operation. Create a new PHI node of the
10027 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010028 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10029 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010030 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10031
10032 Value *InVal = FirstInst->getOperand(0);
10033 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10034
10035 // Add all operands to the new PHI.
10036 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10037 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10038 if (NewInVal != InVal)
10039 InVal = 0;
10040 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10041 }
10042
10043 Value *PhiVal;
10044 if (InVal) {
10045 // The new PHI unions all of the same values together. This is really
10046 // common, so we handle it intelligently here for compile-time speed.
10047 PhiVal = InVal;
10048 delete NewPN;
10049 } else {
10050 InsertNewInstBefore(NewPN, PN);
10051 PhiVal = NewPN;
10052 }
10053
10054 // Insert and return the new operation.
10055 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010056 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010057 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010058 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010059 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010060 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010061 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010062 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10063
10064 // If this was a volatile load that we are merging, make sure to loop through
10065 // and mark all the input loads as non-volatile. If we don't do this, we will
10066 // insert a new volatile load and the old ones will not be deletable.
10067 if (isVolatile)
10068 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10069 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10070
10071 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010072}
10073
10074/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10075/// that is dead.
10076static bool DeadPHICycle(PHINode *PN,
10077 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10078 if (PN->use_empty()) return true;
10079 if (!PN->hasOneUse()) return false;
10080
10081 // Remember this node, and if we find the cycle, return.
10082 if (!PotentiallyDeadPHIs.insert(PN))
10083 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010084
10085 // Don't scan crazily complex things.
10086 if (PotentiallyDeadPHIs.size() == 16)
10087 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010088
10089 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10090 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10091
10092 return false;
10093}
10094
Chris Lattner27b695d2007-11-06 21:52:06 +000010095/// PHIsEqualValue - Return true if this phi node is always equal to
10096/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10097/// z = some value; x = phi (y, z); y = phi (x, z)
10098static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10099 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10100 // See if we already saw this PHI node.
10101 if (!ValueEqualPHIs.insert(PN))
10102 return true;
10103
10104 // Don't scan crazily complex things.
10105 if (ValueEqualPHIs.size() == 16)
10106 return false;
10107
10108 // Scan the operands to see if they are either phi nodes or are equal to
10109 // the value.
10110 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10111 Value *Op = PN->getIncomingValue(i);
10112 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10113 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10114 return false;
10115 } else if (Op != NonPhiInVal)
10116 return false;
10117 }
10118
10119 return true;
10120}
10121
10122
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010123// PHINode simplification
10124//
10125Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10126 // If LCSSA is around, don't mess with Phi nodes
10127 if (MustPreserveLCSSA) return 0;
10128
10129 if (Value *V = PN.hasConstantValue())
10130 return ReplaceInstUsesWith(PN, V);
10131
10132 // If all PHI operands are the same operation, pull them through the PHI,
10133 // reducing code size.
10134 if (isa<Instruction>(PN.getIncomingValue(0)) &&
10135 PN.getIncomingValue(0)->hasOneUse())
10136 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10137 return Result;
10138
10139 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10140 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10141 // PHI)... break the cycle.
10142 if (PN.hasOneUse()) {
10143 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10144 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10145 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10146 PotentiallyDeadPHIs.insert(&PN);
10147 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10148 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10149 }
10150
10151 // If this phi has a single use, and if that use just computes a value for
10152 // the next iteration of a loop, delete the phi. This occurs with unused
10153 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10154 // common case here is good because the only other things that catch this
10155 // are induction variable analysis (sometimes) and ADCE, which is only run
10156 // late.
10157 if (PHIUser->hasOneUse() &&
10158 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10159 PHIUser->use_back() == &PN) {
10160 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10161 }
10162 }
10163
Chris Lattner27b695d2007-11-06 21:52:06 +000010164 // We sometimes end up with phi cycles that non-obviously end up being the
10165 // same value, for example:
10166 // z = some value; x = phi (y, z); y = phi (x, z)
10167 // where the phi nodes don't necessarily need to be in the same block. Do a
10168 // quick check to see if the PHI node only contains a single non-phi value, if
10169 // so, scan to see if the phi cycle is actually equal to that value.
10170 {
10171 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10172 // Scan for the first non-phi operand.
10173 while (InValNo != NumOperandVals &&
10174 isa<PHINode>(PN.getIncomingValue(InValNo)))
10175 ++InValNo;
10176
10177 if (InValNo != NumOperandVals) {
10178 Value *NonPhiInVal = PN.getOperand(InValNo);
10179
10180 // Scan the rest of the operands to see if there are any conflicts, if so
10181 // there is no need to recursively scan other phis.
10182 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10183 Value *OpVal = PN.getIncomingValue(InValNo);
10184 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10185 break;
10186 }
10187
10188 // If we scanned over all operands, then we have one unique value plus
10189 // phi values. Scan PHI nodes to see if they all merge in each other or
10190 // the value.
10191 if (InValNo == NumOperandVals) {
10192 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10193 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10194 return ReplaceInstUsesWith(PN, NonPhiInVal);
10195 }
10196 }
10197 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010198 return 0;
10199}
10200
10201static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10202 Instruction *InsertPoint,
10203 InstCombiner *IC) {
10204 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10205 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10206 // We must cast correctly to the pointer type. Ensure that we
10207 // sign extend the integer value if it is smaller as this is
10208 // used for address computation.
10209 Instruction::CastOps opcode =
10210 (VTySize < PtrSize ? Instruction::SExt :
10211 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10212 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10213}
10214
10215
10216Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10217 Value *PtrOp = GEP.getOperand(0);
10218 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10219 // If so, eliminate the noop.
10220 if (GEP.getNumOperands() == 1)
10221 return ReplaceInstUsesWith(GEP, PtrOp);
10222
10223 if (isa<UndefValue>(GEP.getOperand(0)))
10224 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10225
10226 bool HasZeroPointerIndex = false;
10227 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10228 HasZeroPointerIndex = C->isNullValue();
10229
10230 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10231 return ReplaceInstUsesWith(GEP, PtrOp);
10232
10233 // Eliminate unneeded casts for indices.
10234 bool MadeChange = false;
10235
10236 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010237 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10238 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010239 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010240 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010241 if (CI->getOpcode() == Instruction::ZExt ||
10242 CI->getOpcode() == Instruction::SExt) {
10243 const Type *SrcTy = CI->getOperand(0)->getType();
10244 // We can eliminate a cast from i32 to i64 iff the target
10245 // is a 32-bit pointer target.
10246 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10247 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010248 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010249 }
10250 }
10251 }
10252 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010253 // to what we need. If narrower, sign-extend it to what we need.
10254 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010255 // insert it. This explicit cast can make subsequent optimizations more
10256 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010257 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010258 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010259 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010260 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010261 MadeChange = true;
10262 } else {
10263 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10264 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010265 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010266 MadeChange = true;
10267 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010268 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10269 if (Constant *C = dyn_cast<Constant>(Op)) {
10270 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10271 MadeChange = true;
10272 } else {
10273 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10274 GEP);
10275 *i = Op;
10276 MadeChange = true;
10277 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010278 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010279 }
10280 }
10281 if (MadeChange) return &GEP;
10282
10283 // If this GEP instruction doesn't move the pointer, and if the input operand
10284 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10285 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010286 if (GEP.hasAllZeroIndices()) {
10287 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10288 // If the bitcast is of an allocation, and the allocation will be
10289 // converted to match the type of the cast, don't touch this.
10290 if (isa<AllocationInst>(BCI->getOperand(0))) {
10291 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010292 if (Instruction *I = visitBitCast(*BCI)) {
10293 if (I != BCI) {
10294 I->takeName(BCI);
10295 BCI->getParent()->getInstList().insert(BCI, I);
10296 ReplaceInstUsesWith(*BCI, I);
10297 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010298 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010299 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010300 }
10301 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10302 }
10303 }
10304
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010305 // Combine Indices - If the source pointer to this getelementptr instruction
10306 // is a getelementptr instruction, combine the indices of the two
10307 // getelementptr instructions into a single instruction.
10308 //
10309 SmallVector<Value*, 8> SrcGEPOperands;
10310 if (User *Src = dyn_castGetElementPtr(PtrOp))
10311 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10312
10313 if (!SrcGEPOperands.empty()) {
10314 // Note that if our source is a gep chain itself that we wait for that
10315 // chain to be resolved before we perform this transformation. This
10316 // avoids us creating a TON of code in some cases.
10317 //
10318 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10319 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10320 return 0; // Wait until our source is folded to completion.
10321
10322 SmallVector<Value*, 8> Indices;
10323
10324 // Find out whether the last index in the source GEP is a sequential idx.
10325 bool EndsWithSequential = false;
10326 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10327 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10328 EndsWithSequential = !isa<StructType>(*I);
10329
10330 // Can we combine the two pointer arithmetics offsets?
10331 if (EndsWithSequential) {
10332 // Replace: gep (gep %P, long B), long A, ...
10333 // With: T = long A+B; gep %P, T, ...
10334 //
10335 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10336 if (SO1 == Constant::getNullValue(SO1->getType())) {
10337 Sum = GO1;
10338 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10339 Sum = SO1;
10340 } else {
10341 // If they aren't the same type, convert both to an integer of the
10342 // target's pointer size.
10343 if (SO1->getType() != GO1->getType()) {
10344 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10345 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10346 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10347 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10348 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010349 unsigned PS = TD->getPointerSizeInBits();
10350 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010351 // Convert GO1 to SO1's type.
10352 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10353
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010354 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010355 // Convert SO1 to GO1's type.
10356 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10357 } else {
10358 const Type *PT = TD->getIntPtrType();
10359 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10360 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10361 }
10362 }
10363 }
10364 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10365 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10366 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010367 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010368 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10369 }
10370 }
10371
10372 // Recycle the GEP we already have if possible.
10373 if (SrcGEPOperands.size() == 2) {
10374 GEP.setOperand(0, SrcGEPOperands[0]);
10375 GEP.setOperand(1, Sum);
10376 return &GEP;
10377 } else {
10378 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10379 SrcGEPOperands.end()-1);
10380 Indices.push_back(Sum);
10381 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10382 }
10383 } else if (isa<Constant>(*GEP.idx_begin()) &&
10384 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10385 SrcGEPOperands.size() != 1) {
10386 // Otherwise we can do the fold if the first index of the GEP is a zero
10387 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10388 SrcGEPOperands.end());
10389 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10390 }
10391
10392 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010393 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10394 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010395
10396 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10397 // GEP of global variable. If all of the indices for this GEP are
10398 // constants, we can promote this to a constexpr instead of an instruction.
10399
10400 // Scan for nonconstants...
10401 SmallVector<Constant*, 8> Indices;
10402 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10403 for (; I != E && isa<Constant>(*I); ++I)
10404 Indices.push_back(cast<Constant>(*I));
10405
10406 if (I == E) { // If they are all constants...
10407 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10408 &Indices[0],Indices.size());
10409
10410 // Replace all uses of the GEP with the new constexpr...
10411 return ReplaceInstUsesWith(GEP, CE);
10412 }
10413 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10414 if (!isa<PointerType>(X->getType())) {
10415 // Not interesting. Source pointer must be a cast from pointer.
10416 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010417 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10418 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010419 //
10420 // This occurs when the program declares an array extern like "int X[];"
10421 //
10422 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10423 const PointerType *XTy = cast<PointerType>(X->getType());
10424 if (const ArrayType *XATy =
10425 dyn_cast<ArrayType>(XTy->getElementType()))
10426 if (const ArrayType *CATy =
10427 dyn_cast<ArrayType>(CPTy->getElementType()))
10428 if (CATy->getElementType() == XATy->getElementType()) {
10429 // At this point, we know that the cast source type is a pointer
10430 // to an array of the same type as the destination pointer
10431 // array. Because the array type is never stepped over (there
10432 // is a leading zero) we can fold the cast into this GEP.
10433 GEP.setOperand(0, X);
10434 return &GEP;
10435 }
10436 } else if (GEP.getNumOperands() == 2) {
10437 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010438 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10439 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010440 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10441 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10442 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010443 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10444 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010445 Value *Idx[2];
10446 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10447 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010448 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010449 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010450 // V and GEP are both pointer types --> BitCast
10451 return new BitCastInst(V, GEP.getType());
10452 }
10453
10454 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010455 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010456 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010457 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010458
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010459 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010460 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010461 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010462
10463 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10464 // allow either a mul, shift, or constant here.
10465 Value *NewIdx = 0;
10466 ConstantInt *Scale = 0;
10467 if (ArrayEltSize == 1) {
10468 NewIdx = GEP.getOperand(1);
10469 Scale = ConstantInt::get(NewIdx->getType(), 1);
10470 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10471 NewIdx = ConstantInt::get(CI->getType(), 1);
10472 Scale = CI;
10473 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10474 if (Inst->getOpcode() == Instruction::Shl &&
10475 isa<ConstantInt>(Inst->getOperand(1))) {
10476 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10477 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10478 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10479 NewIdx = Inst->getOperand(0);
10480 } else if (Inst->getOpcode() == Instruction::Mul &&
10481 isa<ConstantInt>(Inst->getOperand(1))) {
10482 Scale = cast<ConstantInt>(Inst->getOperand(1));
10483 NewIdx = Inst->getOperand(0);
10484 }
10485 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010486
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010487 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010488 // out, perform the transformation. Note, we don't know whether Scale is
10489 // signed or not. We'll use unsigned version of division/modulo
10490 // operation after making sure Scale doesn't have the sign bit set.
10491 if (Scale && Scale->getSExtValue() >= 0LL &&
10492 Scale->getZExtValue() % ArrayEltSize == 0) {
10493 Scale = ConstantInt::get(Scale->getType(),
10494 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010495 if (Scale->getZExtValue() != 1) {
10496 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010497 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010498 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010499 NewIdx = InsertNewInstBefore(Sc, GEP);
10500 }
10501
10502 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010503 Value *Idx[2];
10504 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10505 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010506 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010507 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010508 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10509 // The NewGEP must be pointer typed, so must the old one -> BitCast
10510 return new BitCastInst(NewGEP, GEP.getType());
10511 }
10512 }
10513 }
10514 }
10515
10516 return 0;
10517}
10518
10519Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10520 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010521 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010522 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10523 const Type *NewTy =
10524 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10525 AllocationInst *New = 0;
10526
10527 // Create and insert the replacement instruction...
10528 if (isa<MallocInst>(AI))
10529 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10530 else {
10531 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10532 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10533 }
10534
10535 InsertNewInstBefore(New, AI);
10536
10537 // Scan to the end of the allocation instructions, to skip over a block of
10538 // allocas if possible...
10539 //
10540 BasicBlock::iterator It = New;
10541 while (isa<AllocationInst>(*It)) ++It;
10542
10543 // Now that I is pointing to the first non-allocation-inst in the block,
10544 // insert our getelementptr instruction...
10545 //
10546 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010547 Value *Idx[2];
10548 Idx[0] = NullIdx;
10549 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010550 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10551 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010552
10553 // Now make everything use the getelementptr instead of the original
10554 // allocation.
10555 return ReplaceInstUsesWith(AI, V);
10556 } else if (isa<UndefValue>(AI.getArraySize())) {
10557 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10558 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010559 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010560
10561 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10562 // Note that we only do this for alloca's, because malloc should allocate and
10563 // return a unique pointer, even for a zero byte allocation.
10564 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010565 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010566 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10567
10568 return 0;
10569}
10570
10571Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10572 Value *Op = FI.getOperand(0);
10573
10574 // free undef -> unreachable.
10575 if (isa<UndefValue>(Op)) {
10576 // Insert a new store to null because we cannot modify the CFG here.
10577 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010578 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010579 return EraseInstFromFunction(FI);
10580 }
10581
10582 // If we have 'free null' delete the instruction. This can happen in stl code
10583 // when lots of inlining happens.
10584 if (isa<ConstantPointerNull>(Op))
10585 return EraseInstFromFunction(FI);
10586
10587 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10588 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10589 FI.setOperand(0, CI->getOperand(0));
10590 return &FI;
10591 }
10592
10593 // Change free (gep X, 0,0,0,0) into free(X)
10594 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10595 if (GEPI->hasAllZeroIndices()) {
10596 AddToWorkList(GEPI);
10597 FI.setOperand(0, GEPI->getOperand(0));
10598 return &FI;
10599 }
10600 }
10601
10602 // Change free(malloc) into nothing, if the malloc has a single use.
10603 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10604 if (MI->hasOneUse()) {
10605 EraseInstFromFunction(FI);
10606 return EraseInstFromFunction(*MI);
10607 }
10608
10609 return 0;
10610}
10611
10612
10613/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010614static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010615 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010616 User *CI = cast<User>(LI.getOperand(0));
10617 Value *CastOp = CI->getOperand(0);
10618
Devang Patela0f8ea82007-10-18 19:52:32 +000010619 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10620 // Instead of loading constant c string, use corresponding integer value
10621 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010622 std::string Str;
10623 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010624 unsigned len = Str.length();
10625 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10626 unsigned numBits = Ty->getPrimitiveSizeInBits();
10627 // Replace LI with immediate integer store.
10628 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010629 APInt StrVal(numBits, 0);
10630 APInt SingleChar(numBits, 0);
10631 if (TD->isLittleEndian()) {
10632 for (signed i = len-1; i >= 0; i--) {
10633 SingleChar = (uint64_t) Str[i];
10634 StrVal = (StrVal << 8) | SingleChar;
10635 }
10636 } else {
10637 for (unsigned i = 0; i < len; i++) {
10638 SingleChar = (uint64_t) Str[i];
10639 StrVal = (StrVal << 8) | SingleChar;
10640 }
10641 // Append NULL at the end.
10642 SingleChar = 0;
10643 StrVal = (StrVal << 8) | SingleChar;
10644 }
10645 Value *NL = ConstantInt::get(StrVal);
10646 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010647 }
10648 }
10649 }
10650
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010651 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10652 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10653 const Type *SrcPTy = SrcTy->getElementType();
10654
10655 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10656 isa<VectorType>(DestPTy)) {
10657 // If the source is an array, the code below will not succeed. Check to
10658 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10659 // constants.
10660 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10661 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10662 if (ASrcTy->getNumElements() != 0) {
10663 Value *Idxs[2];
10664 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10665 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10666 SrcTy = cast<PointerType>(CastOp->getType());
10667 SrcPTy = SrcTy->getElementType();
10668 }
10669
10670 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10671 isa<VectorType>(SrcPTy)) &&
10672 // Do not allow turning this into a load of an integer, which is then
10673 // casted to a pointer, this pessimizes pointer analysis a lot.
10674 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10675 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10676 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10677
10678 // Okay, we are casting from one integer or pointer type to another of
10679 // the same size. Instead of casting the pointer before the load, cast
10680 // the result of the loaded value.
10681 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10682 CI->getName(),
10683 LI.isVolatile()),LI);
10684 // Now cast the result of the load.
10685 return new BitCastInst(NewLoad, LI.getType());
10686 }
10687 }
10688 }
10689 return 0;
10690}
10691
10692/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10693/// from this value cannot trap. If it is not obviously safe to load from the
10694/// specified pointer, we do a quick local scan of the basic block containing
10695/// ScanFrom, to determine if the address is already accessed.
10696static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010697 // If it is an alloca it is always safe to load from.
10698 if (isa<AllocaInst>(V)) return true;
10699
Duncan Sandse40a94a2007-09-19 10:25:38 +000010700 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010701 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010702 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010703 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010704
10705 // Otherwise, be a little bit agressive by scanning the local block where we
10706 // want to check to see if the pointer is already being loaded or stored
10707 // from/to. If so, the previous load or store would have already trapped,
10708 // so there is no harm doing an extra load (also, CSE will later eliminate
10709 // the load entirely).
10710 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10711
10712 while (BBI != E) {
10713 --BBI;
10714
Chris Lattner476983a2008-06-20 05:12:56 +000010715 // If we see a free or a call (which might do a free) the pointer could be
10716 // marked invalid.
10717 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10718 return false;
10719
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010720 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10721 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010722 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010723 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010724 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010725
10726 }
10727 return false;
10728}
10729
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010730/// equivalentAddressValues - Test if A and B will obviously have the same
10731/// value. This includes recognizing that %t0 and %t1 will have the same
10732/// value in code like this:
10733/// %t0 = getelementptr @a, 0, 3
10734/// store i32 0, i32* %t0
10735/// %t1 = getelementptr @a, 0, 3
10736/// %t2 = load i32* %t1
10737///
10738static bool equivalentAddressValues(Value *A, Value *B) {
10739 // Test if the values are trivially equivalent.
10740 if (A == B) return true;
10741
10742 // Test if the values come form identical arithmetic instructions.
10743 if (isa<BinaryOperator>(A) ||
10744 isa<CastInst>(A) ||
10745 isa<PHINode>(A) ||
10746 isa<GetElementPtrInst>(A))
10747 if (Instruction *BI = dyn_cast<Instruction>(B))
10748 if (cast<Instruction>(A)->isIdenticalTo(BI))
10749 return true;
10750
10751 // Otherwise they may not be equivalent.
10752 return false;
10753}
10754
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010755Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10756 Value *Op = LI.getOperand(0);
10757
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010758 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010759 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10760 if (KnownAlign >
10761 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10762 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010763 LI.setAlignment(KnownAlign);
10764
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010765 // load (cast X) --> cast (load X) iff safe
10766 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010767 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010768 return Res;
10769
10770 // None of the following transforms are legal for volatile loads.
10771 if (LI.isVolatile()) return 0;
10772
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010773 // Do really simple store-to-load forwarding and load CSE, to catch cases
10774 // where there are several consequtive memory accesses to the same location,
10775 // separated by a few arithmetic operations.
10776 BasicBlock::iterator BBI = &LI;
10777 for (unsigned ScanInsts = 6; BBI != LI.getParent()->begin() && ScanInsts;
10778 --ScanInsts) {
10779 --BBI;
10780
10781 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
10782 if (equivalentAddressValues(SI->getOperand(1), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010783 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010784 } else if (LoadInst *LIB = dyn_cast<LoadInst>(BBI)) {
10785 if (equivalentAddressValues(LIB->getOperand(0), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010786 return ReplaceInstUsesWith(LI, LIB);
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010787 }
10788
10789 // Don't skip over things that can modify memory.
10790 if (BBI->mayWriteToMemory())
10791 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010792 }
10793
Christopher Lamb2c175392007-12-29 07:56:53 +000010794 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10795 const Value *GEPI0 = GEPI->getOperand(0);
10796 // TODO: Consider a target hook for valid address spaces for this xform.
10797 if (isa<ConstantPointerNull>(GEPI0) &&
10798 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010799 // Insert a new store to null instruction before the load to indicate
10800 // that this code is not reachable. We do this instead of inserting
10801 // an unreachable instruction directly because we cannot modify the
10802 // CFG.
10803 new StoreInst(UndefValue::get(LI.getType()),
10804 Constant::getNullValue(Op->getType()), &LI);
10805 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10806 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010807 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010808
10809 if (Constant *C = dyn_cast<Constant>(Op)) {
10810 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010811 // TODO: Consider a target hook for valid address spaces for this xform.
10812 if (isa<UndefValue>(C) || (C->isNullValue() &&
10813 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010814 // Insert a new store to null instruction before the load to indicate that
10815 // this code is not reachable. We do this instead of inserting an
10816 // unreachable instruction directly because we cannot modify the CFG.
10817 new StoreInst(UndefValue::get(LI.getType()),
10818 Constant::getNullValue(Op->getType()), &LI);
10819 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10820 }
10821
10822 // Instcombine load (constant global) into the value loaded.
10823 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10824 if (GV->isConstant() && !GV->isDeclaration())
10825 return ReplaceInstUsesWith(LI, GV->getInitializer());
10826
10827 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010828 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010829 if (CE->getOpcode() == Instruction::GetElementPtr) {
10830 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10831 if (GV->isConstant() && !GV->isDeclaration())
10832 if (Constant *V =
10833 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10834 return ReplaceInstUsesWith(LI, V);
10835 if (CE->getOperand(0)->isNullValue()) {
10836 // Insert a new store to null instruction before the load to indicate
10837 // that this code is not reachable. We do this instead of inserting
10838 // an unreachable instruction directly because we cannot modify the
10839 // CFG.
10840 new StoreInst(UndefValue::get(LI.getType()),
10841 Constant::getNullValue(Op->getType()), &LI);
10842 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10843 }
10844
10845 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010846 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010847 return Res;
10848 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010849 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010850 }
Chris Lattner0270a112007-08-11 18:48:48 +000010851
10852 // If this load comes from anywhere in a constant global, and if the global
10853 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010854 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010855 if (GV->isConstant() && GV->hasInitializer()) {
10856 if (GV->getInitializer()->isNullValue())
10857 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10858 else if (isa<UndefValue>(GV->getInitializer()))
10859 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10860 }
10861 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010862
10863 if (Op->hasOneUse()) {
10864 // Change select and PHI nodes to select values instead of addresses: this
10865 // helps alias analysis out a lot, allows many others simplifications, and
10866 // exposes redundancy in the code.
10867 //
10868 // Note that we cannot do the transformation unless we know that the
10869 // introduced loads cannot trap! Something like this is valid as long as
10870 // the condition is always false: load (select bool %C, int* null, int* %G),
10871 // but it would not be valid if we transformed it to load from null
10872 // unconditionally.
10873 //
10874 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10875 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10876 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10877 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10878 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10879 SI->getOperand(1)->getName()+".val"), LI);
10880 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10881 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010882 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010883 }
10884
10885 // load (select (cond, null, P)) -> load P
10886 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10887 if (C->isNullValue()) {
10888 LI.setOperand(0, SI->getOperand(2));
10889 return &LI;
10890 }
10891
10892 // load (select (cond, P, null)) -> load P
10893 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10894 if (C->isNullValue()) {
10895 LI.setOperand(0, SI->getOperand(1));
10896 return &LI;
10897 }
10898 }
10899 }
10900 return 0;
10901}
10902
10903/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10904/// when possible.
10905static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10906 User *CI = cast<User>(SI.getOperand(1));
10907 Value *CastOp = CI->getOperand(0);
10908
10909 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10910 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10911 const Type *SrcPTy = SrcTy->getElementType();
10912
10913 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10914 // If the source is an array, the code below will not succeed. Check to
10915 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10916 // constants.
10917 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10918 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10919 if (ASrcTy->getNumElements() != 0) {
10920 Value* Idxs[2];
10921 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10922 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10923 SrcTy = cast<PointerType>(CastOp->getType());
10924 SrcPTy = SrcTy->getElementType();
10925 }
10926
10927 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10928 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10929 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10930
10931 // Okay, we are casting from one integer or pointer type to another of
10932 // the same size. Instead of casting the pointer before
10933 // the store, cast the value to be stored.
10934 Value *NewCast;
10935 Value *SIOp0 = SI.getOperand(0);
10936 Instruction::CastOps opcode = Instruction::BitCast;
10937 const Type* CastSrcTy = SIOp0->getType();
10938 const Type* CastDstTy = SrcPTy;
10939 if (isa<PointerType>(CastDstTy)) {
10940 if (CastSrcTy->isInteger())
10941 opcode = Instruction::IntToPtr;
10942 } else if (isa<IntegerType>(CastDstTy)) {
10943 if (isa<PointerType>(SIOp0->getType()))
10944 opcode = Instruction::PtrToInt;
10945 }
10946 if (Constant *C = dyn_cast<Constant>(SIOp0))
10947 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10948 else
10949 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010950 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010951 SI);
10952 return new StoreInst(NewCast, CastOp);
10953 }
10954 }
10955 }
10956 return 0;
10957}
10958
10959Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10960 Value *Val = SI.getOperand(0);
10961 Value *Ptr = SI.getOperand(1);
10962
10963 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10964 EraseInstFromFunction(SI);
10965 ++NumCombined;
10966 return 0;
10967 }
10968
10969 // If the RHS is an alloca with a single use, zapify the store, making the
10970 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010971 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010972 if (isa<AllocaInst>(Ptr)) {
10973 EraseInstFromFunction(SI);
10974 ++NumCombined;
10975 return 0;
10976 }
10977
10978 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
10979 if (isa<AllocaInst>(GEP->getOperand(0)) &&
10980 GEP->getOperand(0)->hasOneUse()) {
10981 EraseInstFromFunction(SI);
10982 ++NumCombined;
10983 return 0;
10984 }
10985 }
10986
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010987 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010988 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
10989 if (KnownAlign >
10990 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
10991 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010992 SI.setAlignment(KnownAlign);
10993
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010994 // Do really simple DSE, to catch cases where there are several consequtive
10995 // stores to the same location, separated by a few arithmetic operations. This
10996 // situation often occurs with bitfield accesses.
10997 BasicBlock::iterator BBI = &SI;
10998 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
10999 --ScanInsts) {
11000 --BBI;
11001
11002 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11003 // Prev store isn't volatile, and stores to the same location?
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011004 if (!PrevSI->isVolatile() && equivalentAddressValues(PrevSI->getOperand(1),
11005 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011006 ++NumDeadStore;
11007 ++BBI;
11008 EraseInstFromFunction(*PrevSI);
11009 continue;
11010 }
11011 break;
11012 }
11013
11014 // If this is a load, we have to stop. However, if the loaded value is from
11015 // the pointer we're loading and is producing the pointer we're storing,
11016 // then *this* store is dead (X = load P; store X -> P).
11017 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011018 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11019 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011020 EraseInstFromFunction(SI);
11021 ++NumCombined;
11022 return 0;
11023 }
11024 // Otherwise, this is a load from some other location. Stores before it
11025 // may not be dead.
11026 break;
11027 }
11028
11029 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011030 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011031 break;
11032 }
11033
11034
11035 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11036
11037 // store X, null -> turns into 'unreachable' in SimplifyCFG
11038 if (isa<ConstantPointerNull>(Ptr)) {
11039 if (!isa<UndefValue>(Val)) {
11040 SI.setOperand(0, UndefValue::get(Val->getType()));
11041 if (Instruction *U = dyn_cast<Instruction>(Val))
11042 AddToWorkList(U); // Dropped a use.
11043 ++NumCombined;
11044 }
11045 return 0; // Do not modify these!
11046 }
11047
11048 // store undef, Ptr -> noop
11049 if (isa<UndefValue>(Val)) {
11050 EraseInstFromFunction(SI);
11051 ++NumCombined;
11052 return 0;
11053 }
11054
11055 // If the pointer destination is a cast, see if we can fold the cast into the
11056 // source instead.
11057 if (isa<CastInst>(Ptr))
11058 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11059 return Res;
11060 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11061 if (CE->isCast())
11062 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11063 return Res;
11064
11065
11066 // If this store is the last instruction in the basic block, and if the block
11067 // ends with an unconditional branch, try to move it to the successor block.
11068 BBI = &SI; ++BBI;
11069 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11070 if (BI->isUnconditional())
11071 if (SimplifyStoreAtEndOfBlock(SI))
11072 return 0; // xform done!
11073
11074 return 0;
11075}
11076
11077/// SimplifyStoreAtEndOfBlock - Turn things like:
11078/// if () { *P = v1; } else { *P = v2 }
11079/// into a phi node with a store in the successor.
11080///
11081/// Simplify things like:
11082/// *P = v1; if () { *P = v2; }
11083/// into a phi node with a store in the successor.
11084///
11085bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11086 BasicBlock *StoreBB = SI.getParent();
11087
11088 // Check to see if the successor block has exactly two incoming edges. If
11089 // so, see if the other predecessor contains a store to the same location.
11090 // if so, insert a PHI node (if needed) and move the stores down.
11091 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11092
11093 // Determine whether Dest has exactly two predecessors and, if so, compute
11094 // the other predecessor.
11095 pred_iterator PI = pred_begin(DestBB);
11096 BasicBlock *OtherBB = 0;
11097 if (*PI != StoreBB)
11098 OtherBB = *PI;
11099 ++PI;
11100 if (PI == pred_end(DestBB))
11101 return false;
11102
11103 if (*PI != StoreBB) {
11104 if (OtherBB)
11105 return false;
11106 OtherBB = *PI;
11107 }
11108 if (++PI != pred_end(DestBB))
11109 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011110
11111 // Bail out if all the relevant blocks aren't distinct (this can happen,
11112 // for example, if SI is in an infinite loop)
11113 if (StoreBB == DestBB || OtherBB == DestBB)
11114 return false;
11115
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011116 // Verify that the other block ends in a branch and is not otherwise empty.
11117 BasicBlock::iterator BBI = OtherBB->getTerminator();
11118 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11119 if (!OtherBr || BBI == OtherBB->begin())
11120 return false;
11121
11122 // If the other block ends in an unconditional branch, check for the 'if then
11123 // else' case. there is an instruction before the branch.
11124 StoreInst *OtherStore = 0;
11125 if (OtherBr->isUnconditional()) {
11126 // If this isn't a store, or isn't a store to the same location, bail out.
11127 --BBI;
11128 OtherStore = dyn_cast<StoreInst>(BBI);
11129 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11130 return false;
11131 } else {
11132 // Otherwise, the other block ended with a conditional branch. If one of the
11133 // destinations is StoreBB, then we have the if/then case.
11134 if (OtherBr->getSuccessor(0) != StoreBB &&
11135 OtherBr->getSuccessor(1) != StoreBB)
11136 return false;
11137
11138 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11139 // if/then triangle. See if there is a store to the same ptr as SI that
11140 // lives in OtherBB.
11141 for (;; --BBI) {
11142 // Check to see if we find the matching store.
11143 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11144 if (OtherStore->getOperand(1) != SI.getOperand(1))
11145 return false;
11146 break;
11147 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011148 // If we find something that may be using or overwriting the stored
11149 // value, or if we run out of instructions, we can't do the xform.
11150 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011151 BBI == OtherBB->begin())
11152 return false;
11153 }
11154
11155 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011156 // make sure nothing reads or overwrites the stored value in
11157 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011158 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11159 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011160 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011161 return false;
11162 }
11163 }
11164
11165 // Insert a PHI node now if we need it.
11166 Value *MergedVal = OtherStore->getOperand(0);
11167 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011168 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011169 PN->reserveOperandSpace(2);
11170 PN->addIncoming(SI.getOperand(0), SI.getParent());
11171 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11172 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11173 }
11174
11175 // Advance to a place where it is safe to insert the new store and
11176 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011177 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011178 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11179 OtherStore->isVolatile()), *BBI);
11180
11181 // Nuke the old stores.
11182 EraseInstFromFunction(SI);
11183 EraseInstFromFunction(*OtherStore);
11184 ++NumCombined;
11185 return true;
11186}
11187
11188
11189Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11190 // Change br (not X), label True, label False to: br X, label False, True
11191 Value *X = 0;
11192 BasicBlock *TrueDest;
11193 BasicBlock *FalseDest;
11194 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11195 !isa<Constant>(X)) {
11196 // Swap Destinations and condition...
11197 BI.setCondition(X);
11198 BI.setSuccessor(0, FalseDest);
11199 BI.setSuccessor(1, TrueDest);
11200 return &BI;
11201 }
11202
11203 // Cannonicalize fcmp_one -> fcmp_oeq
11204 FCmpInst::Predicate FPred; Value *Y;
11205 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11206 TrueDest, FalseDest)))
11207 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11208 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11209 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11210 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11211 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11212 NewSCC->takeName(I);
11213 // Swap Destinations and condition...
11214 BI.setCondition(NewSCC);
11215 BI.setSuccessor(0, FalseDest);
11216 BI.setSuccessor(1, TrueDest);
11217 RemoveFromWorkList(I);
11218 I->eraseFromParent();
11219 AddToWorkList(NewSCC);
11220 return &BI;
11221 }
11222
11223 // Cannonicalize icmp_ne -> icmp_eq
11224 ICmpInst::Predicate IPred;
11225 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11226 TrueDest, FalseDest)))
11227 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11228 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11229 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11230 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11231 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11232 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11233 NewSCC->takeName(I);
11234 // Swap Destinations and condition...
11235 BI.setCondition(NewSCC);
11236 BI.setSuccessor(0, FalseDest);
11237 BI.setSuccessor(1, TrueDest);
11238 RemoveFromWorkList(I);
11239 I->eraseFromParent();;
11240 AddToWorkList(NewSCC);
11241 return &BI;
11242 }
11243
11244 return 0;
11245}
11246
11247Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11248 Value *Cond = SI.getCondition();
11249 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11250 if (I->getOpcode() == Instruction::Add)
11251 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11252 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11253 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11254 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11255 AddRHS));
11256 SI.setOperand(0, I->getOperand(0));
11257 AddToWorkList(I);
11258 return &SI;
11259 }
11260 }
11261 return 0;
11262}
11263
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011264Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011265 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011266
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011267 if (!EV.hasIndices())
11268 return ReplaceInstUsesWith(EV, Agg);
11269
11270 if (Constant *C = dyn_cast<Constant>(Agg)) {
11271 if (isa<UndefValue>(C))
11272 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11273
11274 if (isa<ConstantAggregateZero>(C))
11275 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11276
11277 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11278 // Extract the element indexed by the first index out of the constant
11279 Value *V = C->getOperand(*EV.idx_begin());
11280 if (EV.getNumIndices() > 1)
11281 // Extract the remaining indices out of the constant indexed by the
11282 // first index
11283 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11284 else
11285 return ReplaceInstUsesWith(EV, V);
11286 }
11287 return 0; // Can't handle other constants
11288 }
11289 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11290 // We're extracting from an insertvalue instruction, compare the indices
11291 const unsigned *exti, *exte, *insi, *inse;
11292 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11293 exte = EV.idx_end(), inse = IV->idx_end();
11294 exti != exte && insi != inse;
11295 ++exti, ++insi) {
11296 if (*insi != *exti)
11297 // The insert and extract both reference distinctly different elements.
11298 // This means the extract is not influenced by the insert, and we can
11299 // replace the aggregate operand of the extract with the aggregate
11300 // operand of the insert. i.e., replace
11301 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11302 // %E = extractvalue { i32, { i32 } } %I, 0
11303 // with
11304 // %E = extractvalue { i32, { i32 } } %A, 0
11305 return ExtractValueInst::Create(IV->getAggregateOperand(),
11306 EV.idx_begin(), EV.idx_end());
11307 }
11308 if (exti == exte && insi == inse)
11309 // Both iterators are at the end: Index lists are identical. Replace
11310 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11311 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11312 // with "i32 42"
11313 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11314 if (exti == exte) {
11315 // The extract list is a prefix of the insert list. i.e. replace
11316 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11317 // %E = extractvalue { i32, { i32 } } %I, 1
11318 // with
11319 // %X = extractvalue { i32, { i32 } } %A, 1
11320 // %E = insertvalue { i32 } %X, i32 42, 0
11321 // by switching the order of the insert and extract (though the
11322 // insertvalue should be left in, since it may have other uses).
11323 Value *NewEV = InsertNewInstBefore(
11324 ExtractValueInst::Create(IV->getAggregateOperand(),
11325 EV.idx_begin(), EV.idx_end()),
11326 EV);
11327 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11328 insi, inse);
11329 }
11330 if (insi == inse)
11331 // The insert list is a prefix of the extract list
11332 // We can simply remove the common indices from the extract and make it
11333 // operate on the inserted value instead of the insertvalue result.
11334 // i.e., replace
11335 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11336 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11337 // with
11338 // %E extractvalue { i32 } { i32 42 }, 0
11339 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11340 exti, exte);
11341 }
11342 // Can't simplify extracts from other values. Note that nested extracts are
11343 // already simplified implicitely by the above (extract ( extract (insert) )
11344 // will be translated into extract ( insert ( extract ) ) first and then just
11345 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011346 return 0;
11347}
11348
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011349/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11350/// is to leave as a vector operation.
11351static bool CheapToScalarize(Value *V, bool isConstant) {
11352 if (isa<ConstantAggregateZero>(V))
11353 return true;
11354 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11355 if (isConstant) return true;
11356 // If all elts are the same, we can extract.
11357 Constant *Op0 = C->getOperand(0);
11358 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11359 if (C->getOperand(i) != Op0)
11360 return false;
11361 return true;
11362 }
11363 Instruction *I = dyn_cast<Instruction>(V);
11364 if (!I) return false;
11365
11366 // Insert element gets simplified to the inserted element or is deleted if
11367 // this is constant idx extract element and its a constant idx insertelt.
11368 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11369 isa<ConstantInt>(I->getOperand(2)))
11370 return true;
11371 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11372 return true;
11373 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11374 if (BO->hasOneUse() &&
11375 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11376 CheapToScalarize(BO->getOperand(1), isConstant)))
11377 return true;
11378 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11379 if (CI->hasOneUse() &&
11380 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11381 CheapToScalarize(CI->getOperand(1), isConstant)))
11382 return true;
11383
11384 return false;
11385}
11386
11387/// Read and decode a shufflevector mask.
11388///
11389/// It turns undef elements into values that are larger than the number of
11390/// elements in the input.
11391static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11392 unsigned NElts = SVI->getType()->getNumElements();
11393 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11394 return std::vector<unsigned>(NElts, 0);
11395 if (isa<UndefValue>(SVI->getOperand(2)))
11396 return std::vector<unsigned>(NElts, 2*NElts);
11397
11398 std::vector<unsigned> Result;
11399 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011400 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11401 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011402 Result.push_back(NElts*2); // undef -> 8
11403 else
Gabor Greif17396002008-06-12 21:37:33 +000011404 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011405 return Result;
11406}
11407
11408/// FindScalarElement - Given a vector and an element number, see if the scalar
11409/// value is already around as a register, for example if it were inserted then
11410/// extracted from the vector.
11411static Value *FindScalarElement(Value *V, unsigned EltNo) {
11412 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11413 const VectorType *PTy = cast<VectorType>(V->getType());
11414 unsigned Width = PTy->getNumElements();
11415 if (EltNo >= Width) // Out of range access.
11416 return UndefValue::get(PTy->getElementType());
11417
11418 if (isa<UndefValue>(V))
11419 return UndefValue::get(PTy->getElementType());
11420 else if (isa<ConstantAggregateZero>(V))
11421 return Constant::getNullValue(PTy->getElementType());
11422 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11423 return CP->getOperand(EltNo);
11424 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11425 // If this is an insert to a variable element, we don't know what it is.
11426 if (!isa<ConstantInt>(III->getOperand(2)))
11427 return 0;
11428 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11429
11430 // If this is an insert to the element we are looking for, return the
11431 // inserted value.
11432 if (EltNo == IIElt)
11433 return III->getOperand(1);
11434
11435 // Otherwise, the insertelement doesn't modify the value, recurse on its
11436 // vector input.
11437 return FindScalarElement(III->getOperand(0), EltNo);
11438 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011439 unsigned LHSWidth =
11440 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011441 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011442 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011443 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011444 else if (InEl < LHSWidth*2)
11445 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011446 else
11447 return UndefValue::get(PTy->getElementType());
11448 }
11449
11450 // Otherwise, we don't know.
11451 return 0;
11452}
11453
11454Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011455 // If vector val is undef, replace extract with scalar undef.
11456 if (isa<UndefValue>(EI.getOperand(0)))
11457 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11458
11459 // If vector val is constant 0, replace extract with scalar 0.
11460 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11461 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11462
11463 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011464 // If vector val is constant with all elements the same, replace EI with
11465 // that element. When the elements are not identical, we cannot replace yet
11466 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011467 Constant *op0 = C->getOperand(0);
11468 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11469 if (C->getOperand(i) != op0) {
11470 op0 = 0;
11471 break;
11472 }
11473 if (op0)
11474 return ReplaceInstUsesWith(EI, op0);
11475 }
11476
11477 // If extracting a specified index from the vector, see if we can recursively
11478 // find a previously computed scalar that was inserted into the vector.
11479 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11480 unsigned IndexVal = IdxC->getZExtValue();
11481 unsigned VectorWidth =
11482 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11483
11484 // If this is extracting an invalid index, turn this into undef, to avoid
11485 // crashing the code below.
11486 if (IndexVal >= VectorWidth)
11487 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11488
11489 // This instruction only demands the single element from the input vector.
11490 // If the input vector has a single use, simplify it based on this use
11491 // property.
11492 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11493 uint64_t UndefElts;
11494 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11495 1 << IndexVal,
11496 UndefElts)) {
11497 EI.setOperand(0, V);
11498 return &EI;
11499 }
11500 }
11501
11502 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11503 return ReplaceInstUsesWith(EI, Elt);
11504
11505 // If the this extractelement is directly using a bitcast from a vector of
11506 // the same number of elements, see if we can find the source element from
11507 // it. In this case, we will end up needing to bitcast the scalars.
11508 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11509 if (const VectorType *VT =
11510 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11511 if (VT->getNumElements() == VectorWidth)
11512 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11513 return new BitCastInst(Elt, EI.getType());
11514 }
11515 }
11516
11517 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11518 if (I->hasOneUse()) {
11519 // Push extractelement into predecessor operation if legal and
11520 // profitable to do so
11521 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11522 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11523 if (CheapToScalarize(BO, isConstantElt)) {
11524 ExtractElementInst *newEI0 =
11525 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11526 EI.getName()+".lhs");
11527 ExtractElementInst *newEI1 =
11528 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11529 EI.getName()+".rhs");
11530 InsertNewInstBefore(newEI0, EI);
11531 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011532 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011533 }
11534 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011535 unsigned AS =
11536 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011537 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11538 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011539 GetElementPtrInst *GEP =
11540 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011541 InsertNewInstBefore(GEP, EI);
11542 return new LoadInst(GEP);
11543 }
11544 }
11545 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11546 // Extracting the inserted element?
11547 if (IE->getOperand(2) == EI.getOperand(1))
11548 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11549 // If the inserted and extracted elements are constants, they must not
11550 // be the same value, extract from the pre-inserted value instead.
11551 if (isa<Constant>(IE->getOperand(2)) &&
11552 isa<Constant>(EI.getOperand(1))) {
11553 AddUsesToWorkList(EI);
11554 EI.setOperand(0, IE->getOperand(0));
11555 return &EI;
11556 }
11557 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11558 // If this is extracting an element from a shufflevector, figure out where
11559 // it came from and extract from the appropriate input element instead.
11560 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11561 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11562 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011563 unsigned LHSWidth =
11564 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11565
11566 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011567 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011568 else if (SrcIdx < LHSWidth*2) {
11569 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011570 Src = SVI->getOperand(1);
11571 } else {
11572 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11573 }
11574 return new ExtractElementInst(Src, SrcIdx);
11575 }
11576 }
11577 }
11578 return 0;
11579}
11580
11581/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11582/// elements from either LHS or RHS, return the shuffle mask and true.
11583/// Otherwise, return false.
11584static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11585 std::vector<Constant*> &Mask) {
11586 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11587 "Invalid CollectSingleShuffleElements");
11588 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11589
11590 if (isa<UndefValue>(V)) {
11591 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11592 return true;
11593 } else if (V == LHS) {
11594 for (unsigned i = 0; i != NumElts; ++i)
11595 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11596 return true;
11597 } else if (V == RHS) {
11598 for (unsigned i = 0; i != NumElts; ++i)
11599 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11600 return true;
11601 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11602 // If this is an insert of an extract from some other vector, include it.
11603 Value *VecOp = IEI->getOperand(0);
11604 Value *ScalarOp = IEI->getOperand(1);
11605 Value *IdxOp = IEI->getOperand(2);
11606
11607 if (!isa<ConstantInt>(IdxOp))
11608 return false;
11609 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11610
11611 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11612 // Okay, we can handle this if the vector we are insertinting into is
11613 // transitively ok.
11614 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11615 // If so, update the mask to reflect the inserted undef.
11616 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11617 return true;
11618 }
11619 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11620 if (isa<ConstantInt>(EI->getOperand(1)) &&
11621 EI->getOperand(0)->getType() == V->getType()) {
11622 unsigned ExtractedIdx =
11623 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11624
11625 // This must be extracting from either LHS or RHS.
11626 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11627 // Okay, we can handle this if the vector we are insertinting into is
11628 // transitively ok.
11629 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11630 // If so, update the mask to reflect the inserted value.
11631 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011632 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011633 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11634 } else {
11635 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011636 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011637 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11638
11639 }
11640 return true;
11641 }
11642 }
11643 }
11644 }
11645 }
11646 // TODO: Handle shufflevector here!
11647
11648 return false;
11649}
11650
11651/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11652/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11653/// that computes V and the LHS value of the shuffle.
11654static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11655 Value *&RHS) {
11656 assert(isa<VectorType>(V->getType()) &&
11657 (RHS == 0 || V->getType() == RHS->getType()) &&
11658 "Invalid shuffle!");
11659 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11660
11661 if (isa<UndefValue>(V)) {
11662 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11663 return V;
11664 } else if (isa<ConstantAggregateZero>(V)) {
11665 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11666 return V;
11667 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11668 // If this is an insert of an extract from some other vector, include it.
11669 Value *VecOp = IEI->getOperand(0);
11670 Value *ScalarOp = IEI->getOperand(1);
11671 Value *IdxOp = IEI->getOperand(2);
11672
11673 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11674 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11675 EI->getOperand(0)->getType() == V->getType()) {
11676 unsigned ExtractedIdx =
11677 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11678 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11679
11680 // Either the extracted from or inserted into vector must be RHSVec,
11681 // otherwise we'd end up with a shuffle of three inputs.
11682 if (EI->getOperand(0) == RHS || RHS == 0) {
11683 RHS = EI->getOperand(0);
11684 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011685 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011686 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11687 return V;
11688 }
11689
11690 if (VecOp == RHS) {
11691 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11692 // Everything but the extracted element is replaced with the RHS.
11693 for (unsigned i = 0; i != NumElts; ++i) {
11694 if (i != InsertedIdx)
11695 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11696 }
11697 return V;
11698 }
11699
11700 // If this insertelement is a chain that comes from exactly these two
11701 // vectors, return the vector and the effective shuffle.
11702 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11703 return EI->getOperand(0);
11704
11705 }
11706 }
11707 }
11708 // TODO: Handle shufflevector here!
11709
11710 // Otherwise, can't do anything fancy. Return an identity vector.
11711 for (unsigned i = 0; i != NumElts; ++i)
11712 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11713 return V;
11714}
11715
11716Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11717 Value *VecOp = IE.getOperand(0);
11718 Value *ScalarOp = IE.getOperand(1);
11719 Value *IdxOp = IE.getOperand(2);
11720
11721 // Inserting an undef or into an undefined place, remove this.
11722 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11723 ReplaceInstUsesWith(IE, VecOp);
11724
11725 // If the inserted element was extracted from some other vector, and if the
11726 // indexes are constant, try to turn this into a shufflevector operation.
11727 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11728 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11729 EI->getOperand(0)->getType() == IE.getType()) {
11730 unsigned NumVectorElts = IE.getType()->getNumElements();
11731 unsigned ExtractedIdx =
11732 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11733 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11734
11735 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11736 return ReplaceInstUsesWith(IE, VecOp);
11737
11738 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11739 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11740
11741 // If we are extracting a value from a vector, then inserting it right
11742 // back into the same place, just use the input vector.
11743 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11744 return ReplaceInstUsesWith(IE, VecOp);
11745
11746 // We could theoretically do this for ANY input. However, doing so could
11747 // turn chains of insertelement instructions into a chain of shufflevector
11748 // instructions, and right now we do not merge shufflevectors. As such,
11749 // only do this in a situation where it is clear that there is benefit.
11750 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11751 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11752 // the values of VecOp, except then one read from EIOp0.
11753 // Build a new shuffle mask.
11754 std::vector<Constant*> Mask;
11755 if (isa<UndefValue>(VecOp))
11756 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11757 else {
11758 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11759 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11760 NumVectorElts));
11761 }
11762 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11763 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11764 ConstantVector::get(Mask));
11765 }
11766
11767 // If this insertelement isn't used by some other insertelement, turn it
11768 // (and any insertelements it points to), into one big shuffle.
11769 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11770 std::vector<Constant*> Mask;
11771 Value *RHS = 0;
11772 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11773 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11774 // We now have a shuffle of LHS, RHS, Mask.
11775 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11776 }
11777 }
11778 }
11779
11780 return 0;
11781}
11782
11783
11784Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11785 Value *LHS = SVI.getOperand(0);
11786 Value *RHS = SVI.getOperand(1);
11787 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11788
11789 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011790
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011791 // Undefined shuffle mask -> undefined value.
11792 if (isa<UndefValue>(SVI.getOperand(2)))
11793 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011794
11795 uint64_t UndefElts;
11796 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011797
11798 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11799 return 0;
11800
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011801 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11802 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011803 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11804 LHS = SVI.getOperand(0);
11805 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011806 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011807 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011808
11809 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11810 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11811 if (LHS == RHS || isa<UndefValue>(LHS)) {
11812 if (isa<UndefValue>(LHS) && LHS == RHS) {
11813 // shuffle(undef,undef,mask) -> undef.
11814 return ReplaceInstUsesWith(SVI, LHS);
11815 }
11816
11817 // Remap any references to RHS to use LHS.
11818 std::vector<Constant*> Elts;
11819 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11820 if (Mask[i] >= 2*e)
11821 Elts.push_back(UndefValue::get(Type::Int32Ty));
11822 else {
11823 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011824 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011825 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011826 Elts.push_back(UndefValue::get(Type::Int32Ty));
11827 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011828 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011829 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11830 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011831 }
11832 }
11833 SVI.setOperand(0, SVI.getOperand(1));
11834 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11835 SVI.setOperand(2, ConstantVector::get(Elts));
11836 LHS = SVI.getOperand(0);
11837 RHS = SVI.getOperand(1);
11838 MadeChange = true;
11839 }
11840
11841 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11842 bool isLHSID = true, isRHSID = true;
11843
11844 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11845 if (Mask[i] >= e*2) continue; // Ignore undef values.
11846 // Is this an identity shuffle of the LHS value?
11847 isLHSID &= (Mask[i] == i);
11848
11849 // Is this an identity shuffle of the RHS value?
11850 isRHSID &= (Mask[i]-e == i);
11851 }
11852
11853 // Eliminate identity shuffles.
11854 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11855 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11856
11857 // If the LHS is a shufflevector itself, see if we can combine it with this
11858 // one without producing an unusual shuffle. Here we are really conservative:
11859 // we are absolutely afraid of producing a shuffle mask not in the input
11860 // program, because the code gen may not be smart enough to turn a merged
11861 // shuffle into two specific shuffles: it may produce worse code. As such,
11862 // we only merge two shuffles if the result is one of the two input shuffle
11863 // masks. In this case, merging the shuffles just removes one instruction,
11864 // which we know is safe. This is good for things like turning:
11865 // (splat(splat)) -> splat.
11866 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11867 if (isa<UndefValue>(RHS)) {
11868 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11869
11870 std::vector<unsigned> NewMask;
11871 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11872 if (Mask[i] >= 2*e)
11873 NewMask.push_back(2*e);
11874 else
11875 NewMask.push_back(LHSMask[Mask[i]]);
11876
11877 // If the result mask is equal to the src shuffle or this shuffle mask, do
11878 // the replacement.
11879 if (NewMask == LHSMask || NewMask == Mask) {
11880 std::vector<Constant*> Elts;
11881 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11882 if (NewMask[i] >= e*2) {
11883 Elts.push_back(UndefValue::get(Type::Int32Ty));
11884 } else {
11885 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11886 }
11887 }
11888 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11889 LHSSVI->getOperand(1),
11890 ConstantVector::get(Elts));
11891 }
11892 }
11893 }
11894
11895 return MadeChange ? &SVI : 0;
11896}
11897
11898
11899
11900
11901/// TryToSinkInstruction - Try to move the specified instruction from its
11902/// current block into the beginning of DestBlock, which can only happen if it's
11903/// safe to move the instruction past all of the instructions between it and the
11904/// end of its block.
11905static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11906 assert(I->hasOneUse() && "Invariants didn't hold!");
11907
11908 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011909 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11910 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011911
11912 // Do not sink alloca instructions out of the entry block.
11913 if (isa<AllocaInst>(I) && I->getParent() ==
11914 &DestBlock->getParent()->getEntryBlock())
11915 return false;
11916
11917 // We can only sink load instructions if there is nothing between the load and
11918 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011919 if (I->mayReadFromMemory()) {
11920 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011921 Scan != E; ++Scan)
11922 if (Scan->mayWriteToMemory())
11923 return false;
11924 }
11925
Dan Gohman514277c2008-05-23 21:05:58 +000011926 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011927
11928 I->moveBefore(InsertPos);
11929 ++NumSunkInst;
11930 return true;
11931}
11932
11933
11934/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11935/// all reachable code to the worklist.
11936///
11937/// This has a couple of tricks to make the code faster and more powerful. In
11938/// particular, we constant fold and DCE instructions as we go, to avoid adding
11939/// them to the worklist (this significantly speeds up instcombine on code where
11940/// many instructions are dead or constant). Additionally, if we find a branch
11941/// whose condition is a known constant, we only visit the reachable successors.
11942///
11943static void AddReachableCodeToWorklist(BasicBlock *BB,
11944 SmallPtrSet<BasicBlock*, 64> &Visited,
11945 InstCombiner &IC,
11946 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000011947 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011948 Worklist.push_back(BB);
11949
11950 while (!Worklist.empty()) {
11951 BB = Worklist.back();
11952 Worklist.pop_back();
11953
11954 // We have now visited this block! If we've already been here, ignore it.
11955 if (!Visited.insert(BB)) continue;
11956
11957 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11958 Instruction *Inst = BBI++;
11959
11960 // DCE instruction if trivially dead.
11961 if (isInstructionTriviallyDead(Inst)) {
11962 ++NumDeadInst;
11963 DOUT << "IC: DCE: " << *Inst;
11964 Inst->eraseFromParent();
11965 continue;
11966 }
11967
11968 // ConstantProp instruction if trivially constant.
11969 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11970 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11971 Inst->replaceAllUsesWith(C);
11972 ++NumConstProp;
11973 Inst->eraseFromParent();
11974 continue;
11975 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000011976
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011977 IC.AddToWorkList(Inst);
11978 }
11979
11980 // Recursively visit successors. If this is a branch or switch on a
11981 // constant, only visit the reachable successor.
11982 TerminatorInst *TI = BB->getTerminator();
11983 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
11984 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
11985 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011986 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011987 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011988 continue;
11989 }
11990 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
11991 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
11992 // See if this is an explicit destination.
11993 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
11994 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000011995 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000011996 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011997 continue;
11998 }
11999
12000 // Otherwise it is the default destination.
12001 Worklist.push_back(SI->getSuccessor(0));
12002 continue;
12003 }
12004 }
12005
12006 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12007 Worklist.push_back(TI->getSuccessor(i));
12008 }
12009}
12010
12011bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12012 bool Changed = false;
12013 TD = &getAnalysis<TargetData>();
12014
12015 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12016 << F.getNameStr() << "\n");
12017
12018 {
12019 // Do a depth-first traversal of the function, populate the worklist with
12020 // the reachable instructions. Ignore blocks that are not reachable. Keep
12021 // track of which blocks we visit.
12022 SmallPtrSet<BasicBlock*, 64> Visited;
12023 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12024
12025 // Do a quick scan over the function. If we find any blocks that are
12026 // unreachable, remove any instructions inside of them. This prevents
12027 // the instcombine code from having to deal with some bad special cases.
12028 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12029 if (!Visited.count(BB)) {
12030 Instruction *Term = BB->getTerminator();
12031 while (Term != BB->begin()) { // Remove instrs bottom-up
12032 BasicBlock::iterator I = Term; --I;
12033
12034 DOUT << "IC: DCE: " << *I;
12035 ++NumDeadInst;
12036
12037 if (!I->use_empty())
12038 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12039 I->eraseFromParent();
12040 }
12041 }
12042 }
12043
12044 while (!Worklist.empty()) {
12045 Instruction *I = RemoveOneFromWorkList();
12046 if (I == 0) continue; // skip null values.
12047
12048 // Check to see if we can DCE the instruction.
12049 if (isInstructionTriviallyDead(I)) {
12050 // Add operands to the worklist.
12051 if (I->getNumOperands() < 4)
12052 AddUsesToWorkList(*I);
12053 ++NumDeadInst;
12054
12055 DOUT << "IC: DCE: " << *I;
12056
12057 I->eraseFromParent();
12058 RemoveFromWorkList(I);
12059 continue;
12060 }
12061
12062 // Instruction isn't dead, see if we can constant propagate it.
12063 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12064 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12065
12066 // Add operands to the worklist.
12067 AddUsesToWorkList(*I);
12068 ReplaceInstUsesWith(*I, C);
12069
12070 ++NumConstProp;
12071 I->eraseFromParent();
12072 RemoveFromWorkList(I);
12073 continue;
12074 }
12075
Nick Lewyckyadb67922008-05-25 20:56:15 +000012076 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12077 // See if we can constant fold its operands.
12078 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12079 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12080 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12081 i->set(NewC);
12082 }
12083 }
12084 }
12085
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012086 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012087 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012088 BasicBlock *BB = I->getParent();
12089 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12090 if (UserParent != BB) {
12091 bool UserIsSuccessor = false;
12092 // See if the user is one of our successors.
12093 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12094 if (*SI == UserParent) {
12095 UserIsSuccessor = true;
12096 break;
12097 }
12098
12099 // If the user is one of our immediate successors, and if that successor
12100 // only has us as a predecessors (we'd have to split the critical edge
12101 // otherwise), we can keep going.
12102 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12103 next(pred_begin(UserParent)) == pred_end(UserParent))
12104 // Okay, the CFG is simple enough, try to sink this instruction.
12105 Changed |= TryToSinkInstruction(I, UserParent);
12106 }
12107 }
12108
12109 // Now that we have an instruction, try combining it to simplify it...
12110#ifndef NDEBUG
12111 std::string OrigI;
12112#endif
12113 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12114 if (Instruction *Result = visit(*I)) {
12115 ++NumCombined;
12116 // Should we replace the old instruction with a new one?
12117 if (Result != I) {
12118 DOUT << "IC: Old = " << *I
12119 << " New = " << *Result;
12120
12121 // Everything uses the new instruction now.
12122 I->replaceAllUsesWith(Result);
12123
12124 // Push the new instruction and any users onto the worklist.
12125 AddToWorkList(Result);
12126 AddUsersToWorkList(*Result);
12127
12128 // Move the name to the new instruction first.
12129 Result->takeName(I);
12130
12131 // Insert the new instruction into the basic block...
12132 BasicBlock *InstParent = I->getParent();
12133 BasicBlock::iterator InsertPos = I;
12134
12135 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12136 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12137 ++InsertPos;
12138
12139 InstParent->getInstList().insert(InsertPos, Result);
12140
12141 // Make sure that we reprocess all operands now that we reduced their
12142 // use counts.
12143 AddUsesToWorkList(*I);
12144
12145 // Instructions can end up on the worklist more than once. Make sure
12146 // we do not process an instruction that has been deleted.
12147 RemoveFromWorkList(I);
12148
12149 // Erase the old instruction.
12150 InstParent->getInstList().erase(I);
12151 } else {
12152#ifndef NDEBUG
12153 DOUT << "IC: Mod = " << OrigI
12154 << " New = " << *I;
12155#endif
12156
12157 // If the instruction was modified, it's possible that it is now dead.
12158 // if so, remove it.
12159 if (isInstructionTriviallyDead(I)) {
12160 // Make sure we process all operands now that we are reducing their
12161 // use counts.
12162 AddUsesToWorkList(*I);
12163
12164 // Instructions may end up in the worklist more than once. Erase all
12165 // occurrences of this instruction.
12166 RemoveFromWorkList(I);
12167 I->eraseFromParent();
12168 } else {
12169 AddToWorkList(I);
12170 AddUsersToWorkList(*I);
12171 }
12172 }
12173 Changed = true;
12174 }
12175 }
12176
12177 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012178
12179 // Do an explicit clear, this shrinks the map if needed.
12180 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012181 return Changed;
12182}
12183
12184
12185bool InstCombiner::runOnFunction(Function &F) {
12186 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12187
12188 bool EverMadeChange = false;
12189
12190 // Iterate while there is work to do.
12191 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012192 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012193 EverMadeChange = true;
12194 return EverMadeChange;
12195}
12196
12197FunctionPass *llvm::createInstructionCombiningPass() {
12198 return new InstCombiner();
12199}
12200
Chris Lattner6297fc72008-08-11 22:06:05 +000012201