blob: 84e113f885e1b63b6b53351cf5b4ccdad4b6f580 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000241 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
243 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
244 { X86::IDIV16r, X86::IDIV16m, 1 },
245 { X86::IDIV32r, X86::IDIV32m, 1 },
246 { X86::IDIV64r, X86::IDIV64m, 1 },
247 { X86::IDIV8r, X86::IDIV8m, 1 },
248 { X86::IMUL16r, X86::IMUL16m, 1 },
249 { X86::IMUL32r, X86::IMUL32m, 1 },
250 { X86::IMUL64r, X86::IMUL64m, 1 },
251 { X86::IMUL8r, X86::IMUL8m, 1 },
252 { X86::JMP32r, X86::JMP32m, 1 },
253 { X86::JMP64r, X86::JMP64m, 1 },
254 { X86::MOV16ri, X86::MOV16mi, 0 },
255 { X86::MOV16rr, X86::MOV16mr, 0 },
256 { X86::MOV16to16_, X86::MOV16_mr, 0 },
257 { X86::MOV32ri, X86::MOV32mi, 0 },
258 { X86::MOV32rr, X86::MOV32mr, 0 },
259 { X86::MOV32to32_, X86::MOV32_mr, 0 },
260 { X86::MOV64ri32, X86::MOV64mi32, 0 },
261 { X86::MOV64rr, X86::MOV64mr, 0 },
262 { X86::MOV8ri, X86::MOV8mi, 0 },
263 { X86::MOV8rr, X86::MOV8mr, 0 },
264 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
265 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
266 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
269 { X86::MOVSDrr, X86::MOVSDmr, 0 },
270 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
272 { X86::MOVSSrr, X86::MOVSSmr, 0 },
273 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
274 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
275 { X86::MUL16r, X86::MUL16m, 1 },
276 { X86::MUL32r, X86::MUL32m, 1 },
277 { X86::MUL64r, X86::MUL64m, 1 },
278 { X86::MUL8r, X86::MUL8m, 1 },
279 { X86::SETAEr, X86::SETAEm, 0 },
280 { X86::SETAr, X86::SETAm, 0 },
281 { X86::SETBEr, X86::SETBEm, 0 },
282 { X86::SETBr, X86::SETBm, 0 },
283 { X86::SETEr, X86::SETEm, 0 },
284 { X86::SETGEr, X86::SETGEm, 0 },
285 { X86::SETGr, X86::SETGm, 0 },
286 { X86::SETLEr, X86::SETLEm, 0 },
287 { X86::SETLr, X86::SETLm, 0 },
288 { X86::SETNEr, X86::SETNEm, 0 },
289 { X86::SETNPr, X86::SETNPm, 0 },
290 { X86::SETNSr, X86::SETNSm, 0 },
291 { X86::SETPr, X86::SETPm, 0 },
292 { X86::SETSr, X86::SETSm, 0 },
293 { X86::TAILJMPr, X86::TAILJMPm, 1 },
294 { X86::TEST16ri, X86::TEST16mi, 1 },
295 { X86::TEST32ri, X86::TEST32mi, 1 },
296 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000297 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000298 };
299
300 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
301 unsigned RegOp = OpTbl0[i][0];
302 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000303 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
304 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000305 assert(false && "Duplicated entries?");
306 unsigned FoldedLoad = OpTbl0[i][2];
307 // Index 0, folded load or store.
308 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
309 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
310 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000311 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000312 AmbEntries.push_back(MemOp);
313 }
314
315 static const unsigned OpTbl1[][2] = {
316 { X86::CMP16rr, X86::CMP16rm },
317 { X86::CMP32rr, X86::CMP32rm },
318 { X86::CMP64rr, X86::CMP64rm },
319 { X86::CMP8rr, X86::CMP8rm },
320 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
321 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
322 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
323 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
324 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
325 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
326 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
327 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
328 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
329 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
330 { X86::FsMOVAPDrr, X86::MOVSDrm },
331 { X86::FsMOVAPSrr, X86::MOVSSrm },
332 { X86::IMUL16rri, X86::IMUL16rmi },
333 { X86::IMUL16rri8, X86::IMUL16rmi8 },
334 { X86::IMUL32rri, X86::IMUL32rmi },
335 { X86::IMUL32rri8, X86::IMUL32rmi8 },
336 { X86::IMUL64rri32, X86::IMUL64rmi32 },
337 { X86::IMUL64rri8, X86::IMUL64rmi8 },
338 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
339 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
340 { X86::Int_COMISDrr, X86::Int_COMISDrm },
341 { X86::Int_COMISSrr, X86::Int_COMISSrm },
342 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
343 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
344 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
345 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
346 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
347 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
348 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
349 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
350 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
351 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
352 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
353 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
354 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
355 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
356 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
357 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
358 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
359 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
360 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
361 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
362 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
363 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
364 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
365 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
366 { X86::MOV16rr, X86::MOV16rm },
367 { X86::MOV16to16_, X86::MOV16_rm },
368 { X86::MOV32rr, X86::MOV32rm },
369 { X86::MOV32to32_, X86::MOV32_rm },
370 { X86::MOV64rr, X86::MOV64rm },
371 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
372 { X86::MOV64toSDrr, X86::MOV64toSDrm },
373 { X86::MOV8rr, X86::MOV8rm },
374 { X86::MOVAPDrr, X86::MOVAPDrm },
375 { X86::MOVAPSrr, X86::MOVAPSrm },
376 { X86::MOVDDUPrr, X86::MOVDDUPrm },
377 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
378 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
379 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
380 { X86::MOVSDrr, X86::MOVSDrm },
381 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
382 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
383 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
384 { X86::MOVSSrr, X86::MOVSSrm },
385 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
386 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
387 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
388 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
389 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
390 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
391 { X86::MOVUPDrr, X86::MOVUPDrm },
392 { X86::MOVUPSrr, X86::MOVUPSrm },
393 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
394 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
395 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
396 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
397 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
398 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
399 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000400 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000401 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
402 { X86::PSHUFDri, X86::PSHUFDmi },
403 { X86::PSHUFHWri, X86::PSHUFHWmi },
404 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000405 { X86::RCPPSr, X86::RCPPSm },
406 { X86::RCPPSr_Int, X86::RCPPSm_Int },
407 { X86::RSQRTPSr, X86::RSQRTPSm },
408 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
409 { X86::RSQRTSSr, X86::RSQRTSSm },
410 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
411 { X86::SQRTPDr, X86::SQRTPDm },
412 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
413 { X86::SQRTPSr, X86::SQRTPSm },
414 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
415 { X86::SQRTSDr, X86::SQRTSDm },
416 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
417 { X86::SQRTSSr, X86::SQRTSSm },
418 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
419 { X86::TEST16rr, X86::TEST16rm },
420 { X86::TEST32rr, X86::TEST32rm },
421 { X86::TEST64rr, X86::TEST64rm },
422 { X86::TEST8rr, X86::TEST8rm },
423 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
424 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000425 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000426 };
427
428 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
429 unsigned RegOp = OpTbl1[i][0];
430 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000431 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
432 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000433 assert(false && "Duplicated entries?");
434 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
435 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
436 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000437 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000438 AmbEntries.push_back(MemOp);
439 }
440
441 static const unsigned OpTbl2[][2] = {
442 { X86::ADC32rr, X86::ADC32rm },
443 { X86::ADC64rr, X86::ADC64rm },
444 { X86::ADD16rr, X86::ADD16rm },
445 { X86::ADD32rr, X86::ADD32rm },
446 { X86::ADD64rr, X86::ADD64rm },
447 { X86::ADD8rr, X86::ADD8rm },
448 { X86::ADDPDrr, X86::ADDPDrm },
449 { X86::ADDPSrr, X86::ADDPSrm },
450 { X86::ADDSDrr, X86::ADDSDrm },
451 { X86::ADDSSrr, X86::ADDSSrm },
452 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
453 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
454 { X86::AND16rr, X86::AND16rm },
455 { X86::AND32rr, X86::AND32rm },
456 { X86::AND64rr, X86::AND64rm },
457 { X86::AND8rr, X86::AND8rm },
458 { X86::ANDNPDrr, X86::ANDNPDrm },
459 { X86::ANDNPSrr, X86::ANDNPSrm },
460 { X86::ANDPDrr, X86::ANDPDrm },
461 { X86::ANDPSrr, X86::ANDPSrm },
462 { X86::CMOVA16rr, X86::CMOVA16rm },
463 { X86::CMOVA32rr, X86::CMOVA32rm },
464 { X86::CMOVA64rr, X86::CMOVA64rm },
465 { X86::CMOVAE16rr, X86::CMOVAE16rm },
466 { X86::CMOVAE32rr, X86::CMOVAE32rm },
467 { X86::CMOVAE64rr, X86::CMOVAE64rm },
468 { X86::CMOVB16rr, X86::CMOVB16rm },
469 { X86::CMOVB32rr, X86::CMOVB32rm },
470 { X86::CMOVB64rr, X86::CMOVB64rm },
471 { X86::CMOVBE16rr, X86::CMOVBE16rm },
472 { X86::CMOVBE32rr, X86::CMOVBE32rm },
473 { X86::CMOVBE64rr, X86::CMOVBE64rm },
474 { X86::CMOVE16rr, X86::CMOVE16rm },
475 { X86::CMOVE32rr, X86::CMOVE32rm },
476 { X86::CMOVE64rr, X86::CMOVE64rm },
477 { X86::CMOVG16rr, X86::CMOVG16rm },
478 { X86::CMOVG32rr, X86::CMOVG32rm },
479 { X86::CMOVG64rr, X86::CMOVG64rm },
480 { X86::CMOVGE16rr, X86::CMOVGE16rm },
481 { X86::CMOVGE32rr, X86::CMOVGE32rm },
482 { X86::CMOVGE64rr, X86::CMOVGE64rm },
483 { X86::CMOVL16rr, X86::CMOVL16rm },
484 { X86::CMOVL32rr, X86::CMOVL32rm },
485 { X86::CMOVL64rr, X86::CMOVL64rm },
486 { X86::CMOVLE16rr, X86::CMOVLE16rm },
487 { X86::CMOVLE32rr, X86::CMOVLE32rm },
488 { X86::CMOVLE64rr, X86::CMOVLE64rm },
489 { X86::CMOVNE16rr, X86::CMOVNE16rm },
490 { X86::CMOVNE32rr, X86::CMOVNE32rm },
491 { X86::CMOVNE64rr, X86::CMOVNE64rm },
492 { X86::CMOVNP16rr, X86::CMOVNP16rm },
493 { X86::CMOVNP32rr, X86::CMOVNP32rm },
494 { X86::CMOVNP64rr, X86::CMOVNP64rm },
495 { X86::CMOVNS16rr, X86::CMOVNS16rm },
496 { X86::CMOVNS32rr, X86::CMOVNS32rm },
497 { X86::CMOVNS64rr, X86::CMOVNS64rm },
498 { X86::CMOVP16rr, X86::CMOVP16rm },
499 { X86::CMOVP32rr, X86::CMOVP32rm },
500 { X86::CMOVP64rr, X86::CMOVP64rm },
501 { X86::CMOVS16rr, X86::CMOVS16rm },
502 { X86::CMOVS32rr, X86::CMOVS32rm },
503 { X86::CMOVS64rr, X86::CMOVS64rm },
504 { X86::CMPPDrri, X86::CMPPDrmi },
505 { X86::CMPPSrri, X86::CMPPSrmi },
506 { X86::CMPSDrr, X86::CMPSDrm },
507 { X86::CMPSSrr, X86::CMPSSrm },
508 { X86::DIVPDrr, X86::DIVPDrm },
509 { X86::DIVPSrr, X86::DIVPSrm },
510 { X86::DIVSDrr, X86::DIVSDrm },
511 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000512 { X86::FsANDNPDrr, X86::FsANDNPDrm },
513 { X86::FsANDNPSrr, X86::FsANDNPSrm },
514 { X86::FsANDPDrr, X86::FsANDPDrm },
515 { X86::FsANDPSrr, X86::FsANDPSrm },
516 { X86::FsORPDrr, X86::FsORPDrm },
517 { X86::FsORPSrr, X86::FsORPSrm },
518 { X86::FsXORPDrr, X86::FsXORPDrm },
519 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000520 { X86::HADDPDrr, X86::HADDPDrm },
521 { X86::HADDPSrr, X86::HADDPSrm },
522 { X86::HSUBPDrr, X86::HSUBPDrm },
523 { X86::HSUBPSrr, X86::HSUBPSrm },
524 { X86::IMUL16rr, X86::IMUL16rm },
525 { X86::IMUL32rr, X86::IMUL32rm },
526 { X86::IMUL64rr, X86::IMUL64rm },
527 { X86::MAXPDrr, X86::MAXPDrm },
528 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
529 { X86::MAXPSrr, X86::MAXPSrm },
530 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
531 { X86::MAXSDrr, X86::MAXSDrm },
532 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
533 { X86::MAXSSrr, X86::MAXSSrm },
534 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
535 { X86::MINPDrr, X86::MINPDrm },
536 { X86::MINPDrr_Int, X86::MINPDrm_Int },
537 { X86::MINPSrr, X86::MINPSrm },
538 { X86::MINPSrr_Int, X86::MINPSrm_Int },
539 { X86::MINSDrr, X86::MINSDrm },
540 { X86::MINSDrr_Int, X86::MINSDrm_Int },
541 { X86::MINSSrr, X86::MINSSrm },
542 { X86::MINSSrr_Int, X86::MINSSrm_Int },
543 { X86::MULPDrr, X86::MULPDrm },
544 { X86::MULPSrr, X86::MULPSrm },
545 { X86::MULSDrr, X86::MULSDrm },
546 { X86::MULSSrr, X86::MULSSrm },
547 { X86::OR16rr, X86::OR16rm },
548 { X86::OR32rr, X86::OR32rm },
549 { X86::OR64rr, X86::OR64rm },
550 { X86::OR8rr, X86::OR8rm },
551 { X86::ORPDrr, X86::ORPDrm },
552 { X86::ORPSrr, X86::ORPSrm },
553 { X86::PACKSSDWrr, X86::PACKSSDWrm },
554 { X86::PACKSSWBrr, X86::PACKSSWBrm },
555 { X86::PACKUSWBrr, X86::PACKUSWBrm },
556 { X86::PADDBrr, X86::PADDBrm },
557 { X86::PADDDrr, X86::PADDDrm },
558 { X86::PADDQrr, X86::PADDQrm },
559 { X86::PADDSBrr, X86::PADDSBrm },
560 { X86::PADDSWrr, X86::PADDSWrm },
561 { X86::PADDWrr, X86::PADDWrm },
562 { X86::PANDNrr, X86::PANDNrm },
563 { X86::PANDrr, X86::PANDrm },
564 { X86::PAVGBrr, X86::PAVGBrm },
565 { X86::PAVGWrr, X86::PAVGWrm },
566 { X86::PCMPEQBrr, X86::PCMPEQBrm },
567 { X86::PCMPEQDrr, X86::PCMPEQDrm },
568 { X86::PCMPEQWrr, X86::PCMPEQWrm },
569 { X86::PCMPGTBrr, X86::PCMPGTBrm },
570 { X86::PCMPGTDrr, X86::PCMPGTDrm },
571 { X86::PCMPGTWrr, X86::PCMPGTWrm },
572 { X86::PINSRWrri, X86::PINSRWrmi },
573 { X86::PMADDWDrr, X86::PMADDWDrm },
574 { X86::PMAXSWrr, X86::PMAXSWrm },
575 { X86::PMAXUBrr, X86::PMAXUBrm },
576 { X86::PMINSWrr, X86::PMINSWrm },
577 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000578 { X86::PMULDQrr, X86::PMULDQrm },
579 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000580 { X86::PMULHUWrr, X86::PMULHUWrm },
581 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000582 { X86::PMULLDrr, X86::PMULLDrm },
583 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000584 { X86::PMULLWrr, X86::PMULLWrm },
585 { X86::PMULUDQrr, X86::PMULUDQrm },
586 { X86::PORrr, X86::PORrm },
587 { X86::PSADBWrr, X86::PSADBWrm },
588 { X86::PSLLDrr, X86::PSLLDrm },
589 { X86::PSLLQrr, X86::PSLLQrm },
590 { X86::PSLLWrr, X86::PSLLWrm },
591 { X86::PSRADrr, X86::PSRADrm },
592 { X86::PSRAWrr, X86::PSRAWrm },
593 { X86::PSRLDrr, X86::PSRLDrm },
594 { X86::PSRLQrr, X86::PSRLQrm },
595 { X86::PSRLWrr, X86::PSRLWrm },
596 { X86::PSUBBrr, X86::PSUBBrm },
597 { X86::PSUBDrr, X86::PSUBDrm },
598 { X86::PSUBSBrr, X86::PSUBSBrm },
599 { X86::PSUBSWrr, X86::PSUBSWrm },
600 { X86::PSUBWrr, X86::PSUBWrm },
601 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
602 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
603 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
604 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
605 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
606 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
607 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
608 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
609 { X86::PXORrr, X86::PXORrm },
610 { X86::SBB32rr, X86::SBB32rm },
611 { X86::SBB64rr, X86::SBB64rm },
612 { X86::SHUFPDrri, X86::SHUFPDrmi },
613 { X86::SHUFPSrri, X86::SHUFPSrmi },
614 { X86::SUB16rr, X86::SUB16rm },
615 { X86::SUB32rr, X86::SUB32rm },
616 { X86::SUB64rr, X86::SUB64rm },
617 { X86::SUB8rr, X86::SUB8rm },
618 { X86::SUBPDrr, X86::SUBPDrm },
619 { X86::SUBPSrr, X86::SUBPSrm },
620 { X86::SUBSDrr, X86::SUBSDrm },
621 { X86::SUBSSrr, X86::SUBSSrm },
622 // FIXME: TEST*rr -> swapped operand of TEST*mr.
623 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
624 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
625 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
626 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
627 { X86::XOR16rr, X86::XOR16rm },
628 { X86::XOR32rr, X86::XOR32rm },
629 { X86::XOR64rr, X86::XOR64rm },
630 { X86::XOR8rr, X86::XOR8rm },
631 { X86::XORPDrr, X86::XORPDrm },
632 { X86::XORPSrr, X86::XORPSrm }
633 };
634
635 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636 unsigned RegOp = OpTbl2[i][0];
637 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000638 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
639 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000640 assert(false && "Duplicated entries?");
641 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
642 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000643 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000644 AmbEntries.push_back(MemOp);
645 }
646
647 // Remove ambiguous entries.
648 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649}
650
651bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
652 unsigned& sourceReg,
653 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000654 switch (MI.getOpcode()) {
655 default:
656 return false;
657 case X86::MOV8rr:
658 case X86::MOV16rr:
659 case X86::MOV32rr:
660 case X86::MOV64rr:
661 case X86::MOV16to16_:
662 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000663 case X86::MOVSSrr:
664 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000665
666 // FP Stack register class copies
667 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
668 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
669 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
670
Chris Lattnerff195282008-03-11 19:28:17 +0000671 case X86::FsMOVAPSrr:
672 case X86::FsMOVAPDrr:
673 case X86::MOVAPSrr:
674 case X86::MOVAPDrr:
675 case X86::MOVSS2PSrr:
676 case X86::MOVSD2PDrr:
677 case X86::MOVPS2SSrr:
678 case X86::MOVPD2SDrr:
679 case X86::MMX_MOVD64rr:
680 case X86::MMX_MOVQ64rr:
681 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000682 MI.getOperand(0).isReg() &&
683 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000684 "invalid register-register move instruction");
685 sourceReg = MI.getOperand(1).getReg();
686 destReg = MI.getOperand(0).getReg();
687 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689}
690
691unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8rm:
696 case X86::MOV16rm:
697 case X86::MOV16_rm:
698 case X86::MOV32rm:
699 case X86::MOV32_rm:
700 case X86::MOV64rm:
701 case X86::LD_Fp64m:
702 case X86::MOVSSrm:
703 case X86::MOVSDrm:
704 case X86::MOVAPSrm:
705 case X86::MOVAPDrm:
706 case X86::MMX_MOVD64rm:
707 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000708 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
709 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000710 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000712 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000713 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 return MI->getOperand(0).getReg();
715 }
716 break;
717 }
718 return 0;
719}
720
721unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
722 int &FrameIndex) const {
723 switch (MI->getOpcode()) {
724 default: break;
725 case X86::MOV8mr:
726 case X86::MOV16mr:
727 case X86::MOV16_mr:
728 case X86::MOV32mr:
729 case X86::MOV32_mr:
730 case X86::MOV64mr:
731 case X86::ST_FpP64m:
732 case X86::MOVSSmr:
733 case X86::MOVSDmr:
734 case X86::MOVAPSmr:
735 case X86::MOVAPDmr:
736 case X86::MMX_MOVD64mr:
737 case X86::MMX_MOVQ64mr:
738 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000739 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
740 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000741 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000743 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000744 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 return MI->getOperand(4).getReg();
746 }
747 break;
748 }
749 return 0;
750}
751
752
Evan Chengb819a512008-03-27 01:45:11 +0000753/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
754/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000755static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000756 bool isPICBase = false;
757 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
758 E = MRI.def_end(); I != E; ++I) {
759 MachineInstr *DefMI = I.getOperand().getParent();
760 if (DefMI->getOpcode() != X86::MOVPC32r)
761 return false;
762 assert(!isPICBase && "More than one PIC base?");
763 isPICBase = true;
764 }
765 return isPICBase;
766}
Evan Chenge9caab52008-03-31 07:54:19 +0000767
768/// isGVStub - Return true if the GV requires an extra load to get the
769/// real address.
770static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
771 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
772}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000773
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000774bool
775X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 switch (MI->getOpcode()) {
777 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000778 case X86::MOV8rm:
779 case X86::MOV16rm:
780 case X86::MOV16_rm:
781 case X86::MOV32rm:
782 case X86::MOV32_rm:
783 case X86::MOV64rm:
784 case X86::LD_Fp64m:
785 case X86::MOVSSrm:
786 case X86::MOVSDrm:
787 case X86::MOVAPSrm:
788 case X86::MOVAPDrm:
789 case X86::MMX_MOVD64rm:
790 case X86::MMX_MOVQ64rm: {
791 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000792 if (MI->getOperand(1).isReg() &&
793 MI->getOperand(2).isImm() &&
794 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
795 (MI->getOperand(4).isCPI() ||
796 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000797 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000798 unsigned BaseReg = MI->getOperand(1).getReg();
799 if (BaseReg == 0)
800 return true;
801 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000802 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000803 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000804 const MachineFunction &MF = *MI->getParent()->getParent();
805 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000806 bool isPICBase = false;
807 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
808 E = MRI.def_end(); I != E; ++I) {
809 MachineInstr *DefMI = I.getOperand().getParent();
810 if (DefMI->getOpcode() != X86::MOVPC32r)
811 return false;
812 assert(!isPICBase && "More than one PIC base?");
813 isPICBase = true;
814 }
815 return isPICBase;
816 }
817 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000818 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000819
820 case X86::LEA32r:
821 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000822 if (MI->getOperand(2).isImm() &&
823 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
824 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000825 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000826 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000827 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000828 unsigned BaseReg = MI->getOperand(1).getReg();
829 if (BaseReg == 0)
830 return true;
831 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000832 const MachineFunction &MF = *MI->getParent()->getParent();
833 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000834 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000835 }
836 return false;
837 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000838 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000839
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 // All other instructions marked M_REMATERIALIZABLE are always trivially
841 // rematerializable.
842 return true;
843}
844
Evan Chengc564ded2008-06-24 07:10:51 +0000845/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
846/// would clobber the EFLAGS condition register. Note the result may be
847/// conservative. If it cannot definitely determine the safety after visiting
848/// two instructions it assumes it's not safe.
849static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
850 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000851 // It's always safe to clobber EFLAGS at the end of a block.
852 if (I == MBB.end())
853 return true;
854
Evan Chengc564ded2008-06-24 07:10:51 +0000855 // For compile time consideration, if we are not able to determine the
856 // safety after visiting 2 instructions, we will assume it's not safe.
857 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000858 bool SeenDef = false;
859 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
860 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000861 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000862 continue;
863 if (MO.getReg() == X86::EFLAGS) {
864 if (MO.isUse())
865 return false;
866 SeenDef = true;
867 }
868 }
869
870 if (SeenDef)
871 // This instruction defines EFLAGS, no need to look any further.
872 return true;
873 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000874
875 // If we make it to the end of the block, it's safe to clobber EFLAGS.
876 if (I == MBB.end())
877 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000878 }
879
880 // Conservative answer.
881 return false;
882}
883
Evan Cheng7d73efc2008-03-31 20:40:39 +0000884void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
885 MachineBasicBlock::iterator I,
886 unsigned DestReg,
887 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000888 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000889 ? Orig->getOperand(0).getSubReg() : 0;
890 bool ChangeSubIdx = SubIdx != 0;
891 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
892 DestReg = RI.getSubReg(DestReg, SubIdx);
893 SubIdx = 0;
894 }
895
Evan Cheng7d73efc2008-03-31 20:40:39 +0000896 // MOV32r0 etc. are implemented with xor which clobbers condition code.
897 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000898 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000899 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000900 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000901 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000902 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000903 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000904 case X86::MOV64r0: {
905 if (!isSafeToClobberEFLAGS(MBB, I)) {
906 unsigned Opc = 0;
907 switch (Orig->getOpcode()) {
908 default: break;
909 case X86::MOV8r0: Opc = X86::MOV8ri; break;
910 case X86::MOV16r0: Opc = X86::MOV16ri; break;
911 case X86::MOV32r0: Opc = X86::MOV32ri; break;
912 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
913 }
914 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
915 Emitted = true;
916 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000917 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000918 }
919 }
920
921 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000922 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000923 MI->getOperand(0).setReg(DestReg);
924 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000925 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000926
927 if (ChangeSubIdx) {
928 MachineInstr *NewMI = prior(I);
929 NewMI->getOperand(0).setSubReg(SubIdx);
930 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000931}
932
Chris Lattnerea3a1812008-01-10 23:08:24 +0000933/// isInvariantLoad - Return true if the specified instruction (which is marked
934/// mayLoad) is loading from a location whose value is invariant across the
935/// function. For example, loading a value from the constant pool or from
936/// from the argument area of a function if it does not change. This should
937/// only return true of *all* loads the instruction does are invariant (if it
938/// does multiple loads).
939bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000940 // This code cares about loads from three cases: constant pool entries,
941 // invariant argument slots, and global stubs. In order to handle these cases
942 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000943 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000944 // none of these three cases is ever used as anything other than a load base
945 // and X86 doesn't have any instructions that load from multiple places.
946
947 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
948 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000949 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000950 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000951 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000952
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000953 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000954 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000955
956 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000957 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000958 const MachineFrameInfo &MFI =
959 *MI->getParent()->getParent()->getFrameInfo();
960 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000961 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
962 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000963 }
Chris Lattner0875b572008-01-12 00:35:08 +0000964
Chris Lattnerea3a1812008-01-10 23:08:24 +0000965 // All other instances of these instructions are presumed to have other
966 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000967 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000968}
969
Evan Chengfa1a4952007-10-05 08:04:01 +0000970/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
971/// is not marked dead.
972static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000973 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
974 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000975 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000976 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
977 return true;
978 }
979 }
980 return false;
981}
982
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000983/// convertToThreeAddress - This method must be implemented by targets that
984/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
985/// may be able to convert a two-address instruction into a true
986/// three-address instruction on demand. This allows the X86 target (for
987/// example) to convert ADD and SHL instructions into LEA instructions if they
988/// would require register copies due to two-addressness.
989///
990/// This method returns a null pointer if the transformation cannot be
991/// performed, otherwise it returns the new instruction.
992///
993MachineInstr *
994X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
995 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000996 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +0000998 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000999 // All instructions input are two-addr instructions. Get the known operands.
1000 unsigned Dest = MI->getOperand(0).getReg();
1001 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001002 bool isDead = MI->getOperand(0).isDead();
1003 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004
1005 MachineInstr *NewMI = NULL;
1006 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1007 // we have better subtarget support, enable the 16-bit LEA generation here.
1008 bool DisableLEA16 = true;
1009
Evan Cheng6b96ed32007-10-05 20:34:26 +00001010 unsigned MIOpc = MI->getOpcode();
1011 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012 case X86::SHUFPSrri: {
1013 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1014 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1015
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016 unsigned B = MI->getOperand(1).getReg();
1017 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001019 unsigned A = MI->getOperand(0).getReg();
1020 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001021 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001022 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023 break;
1024 }
1025 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001026 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1028 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 unsigned ShAmt = MI->getOperand(2).getImm();
1030 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001031
Dan Gohman221a4372008-07-07 23:14:23 +00001032 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001033 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001034 break;
1035 }
1036 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001037 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1039 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040 unsigned ShAmt = MI->getOperand(2).getImm();
1041 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001042
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1044 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001045 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001046 .addReg(0).addImm(1 << ShAmt)
1047 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048 break;
1049 }
1050 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001051 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001052 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1053 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001054 unsigned ShAmt = MI->getOperand(2).getImm();
1055 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001056
Christopher Lamb380c6272007-08-10 21:18:25 +00001057 if (DisableLEA16) {
1058 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001059 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001060 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1061 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001062 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1063 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001064
Christopher Lamb8d226a22008-03-11 10:27:36 +00001065 // Build and insert into an implicit UNDEF value. This is OK because
1066 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001067 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1068 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001069 .addReg(leaInReg).addReg(Src, false, false, isKill)
1070 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001071
Dan Gohman221a4372008-07-07 23:14:23 +00001072 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001073 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001074
Dan Gohman221a4372008-07-07 23:14:23 +00001075 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001076 .addReg(Dest, true, false, false, isDead)
1077 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001078 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001079 // Update live variables
1080 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1081 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1082 if (isKill)
1083 LV->replaceKillInstruction(Src, MI, InsMI);
1084 if (isDead)
1085 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001086 }
Evan Chenge52c1912008-07-03 09:09:37 +00001087 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001088 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001089 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001090 .addReg(0).addImm(1 << ShAmt)
1091 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001092 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001093 break;
1094 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001095 default: {
1096 // The following opcodes also sets the condition code register(s). Only
1097 // convert them to equivalent lea if the condition code register def's
1098 // are dead!
1099 if (hasLiveCondCodeDef(MI))
1100 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001101
Evan Chenga28a9562007-10-09 07:14:53 +00001102 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001103 switch (MIOpc) {
1104 default: return 0;
1105 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001106 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001107 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001108 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1109 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001110 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001111 .addReg(Dest, true, false, false, isDead),
1112 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001113 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001114 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001115 case X86::INC16r:
1116 case X86::INC64_16r:
1117 if (DisableLEA16) return 0;
1118 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001119 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001120 .addReg(Dest, true, false, false, isDead),
1121 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001122 break;
1123 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001124 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001125 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001126 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1127 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001128 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001129 .addReg(Dest, true, false, false, isDead),
1130 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001131 break;
1132 }
1133 case X86::DEC16r:
1134 case X86::DEC64_16r:
1135 if (DisableLEA16) return 0;
1136 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001137 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001138 .addReg(Dest, true, false, false, isDead),
1139 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001140 break;
1141 case X86::ADD64rr:
1142 case X86::ADD32rr: {
1143 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001144 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1145 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001146 unsigned Src2 = MI->getOperand(2).getReg();
1147 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001148 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001149 .addReg(Dest, true, false, false, isDead),
1150 Src, isKill, Src2, isKill2);
1151 if (LV && isKill2)
1152 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001153 break;
1154 }
Evan Chenge52c1912008-07-03 09:09:37 +00001155 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001156 if (DisableLEA16) return 0;
1157 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001158 unsigned Src2 = MI->getOperand(2).getReg();
1159 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001160 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001161 .addReg(Dest, true, false, false, isDead),
1162 Src, isKill, Src2, isKill2);
1163 if (LV && isKill2)
1164 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001165 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001166 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001167 case X86::ADD64ri32:
1168 case X86::ADD64ri8:
1169 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001170 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001171 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001172 .addReg(Dest, true, false, false, isDead),
1173 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001174 break;
1175 case X86::ADD32ri:
1176 case X86::ADD32ri8:
1177 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001178 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001179 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001180 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001181 .addReg(Dest, true, false, false, isDead),
1182 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001183 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001184 break;
1185 case X86::ADD16ri:
1186 case X86::ADD16ri8:
1187 if (DisableLEA16) return 0;
1188 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001189 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001190 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001191 .addReg(Dest, true, false, false, isDead),
1192 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001193 break;
1194 case X86::SHL16ri:
1195 if (DisableLEA16) return 0;
1196 case X86::SHL32ri:
1197 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001198 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001199 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001200 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001201 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1202 X86AddressMode AM;
1203 AM.Scale = 1 << ShAmt;
1204 AM.IndexReg = Src;
1205 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001206 : (MIOpc == X86::SHL32ri
1207 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001208 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001209 .addReg(Dest, true, false, false, isDead), AM);
1210 if (isKill)
1211 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001212 }
1213 break;
1214 }
1215 }
1216 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001217 }
1218
Evan Chengc3cb24d2008-02-07 08:29:53 +00001219 if (!NewMI) return 0;
1220
Evan Chenge52c1912008-07-03 09:09:37 +00001221 if (LV) { // Update live variables
1222 if (isKill)
1223 LV->replaceKillInstruction(Src, MI, NewMI);
1224 if (isDead)
1225 LV->replaceKillInstruction(Dest, MI, NewMI);
1226 }
1227
Evan Cheng6b96ed32007-10-05 20:34:26 +00001228 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229 return NewMI;
1230}
1231
1232/// commuteInstruction - We have a few instructions that must be hacked on to
1233/// commute them.
1234///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001235MachineInstr *
1236X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 switch (MI->getOpcode()) {
1238 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1239 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1240 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001241 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1242 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1243 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 unsigned Opc;
1245 unsigned Size;
1246 switch (MI->getOpcode()) {
1247 default: assert(0 && "Unreachable!");
1248 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1249 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1250 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1251 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001252 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1253 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001255 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001256 if (NewMI) {
1257 MachineFunction &MF = *MI->getParent()->getParent();
1258 MI = MF.CloneMachineInstr(MI);
1259 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001260 }
Dan Gohman921581d2008-10-17 01:23:35 +00001261 MI->setDesc(get(Opc));
1262 MI->getOperand(3).setImm(Size-Amt);
1263 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 }
Evan Cheng926658c2007-10-05 23:13:21 +00001265 case X86::CMOVB16rr:
1266 case X86::CMOVB32rr:
1267 case X86::CMOVB64rr:
1268 case X86::CMOVAE16rr:
1269 case X86::CMOVAE32rr:
1270 case X86::CMOVAE64rr:
1271 case X86::CMOVE16rr:
1272 case X86::CMOVE32rr:
1273 case X86::CMOVE64rr:
1274 case X86::CMOVNE16rr:
1275 case X86::CMOVNE32rr:
1276 case X86::CMOVNE64rr:
1277 case X86::CMOVBE16rr:
1278 case X86::CMOVBE32rr:
1279 case X86::CMOVBE64rr:
1280 case X86::CMOVA16rr:
1281 case X86::CMOVA32rr:
1282 case X86::CMOVA64rr:
1283 case X86::CMOVL16rr:
1284 case X86::CMOVL32rr:
1285 case X86::CMOVL64rr:
1286 case X86::CMOVGE16rr:
1287 case X86::CMOVGE32rr:
1288 case X86::CMOVGE64rr:
1289 case X86::CMOVLE16rr:
1290 case X86::CMOVLE32rr:
1291 case X86::CMOVLE64rr:
1292 case X86::CMOVG16rr:
1293 case X86::CMOVG32rr:
1294 case X86::CMOVG64rr:
1295 case X86::CMOVS16rr:
1296 case X86::CMOVS32rr:
1297 case X86::CMOVS64rr:
1298 case X86::CMOVNS16rr:
1299 case X86::CMOVNS32rr:
1300 case X86::CMOVNS64rr:
1301 case X86::CMOVP16rr:
1302 case X86::CMOVP32rr:
1303 case X86::CMOVP64rr:
1304 case X86::CMOVNP16rr:
1305 case X86::CMOVNP32rr:
1306 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001307 unsigned Opc = 0;
1308 switch (MI->getOpcode()) {
1309 default: break;
1310 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1311 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1312 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1313 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1314 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1315 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1316 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1317 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1318 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1319 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1320 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1321 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1322 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1323 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1324 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1325 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1326 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1327 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1328 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1329 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1330 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1331 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1332 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1333 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1334 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1335 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1336 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1337 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1338 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1339 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1340 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1341 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1342 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1343 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1344 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1345 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1346 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1347 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1348 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1349 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1350 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1351 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1352 }
Dan Gohman921581d2008-10-17 01:23:35 +00001353 if (NewMI) {
1354 MachineFunction &MF = *MI->getParent()->getParent();
1355 MI = MF.CloneMachineInstr(MI);
1356 NewMI = false;
1357 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001358 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001359 // Fallthrough intended.
1360 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001362 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001363 }
1364}
1365
1366static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1367 switch (BrOpc) {
1368 default: return X86::COND_INVALID;
1369 case X86::JE: return X86::COND_E;
1370 case X86::JNE: return X86::COND_NE;
1371 case X86::JL: return X86::COND_L;
1372 case X86::JLE: return X86::COND_LE;
1373 case X86::JG: return X86::COND_G;
1374 case X86::JGE: return X86::COND_GE;
1375 case X86::JB: return X86::COND_B;
1376 case X86::JBE: return X86::COND_BE;
1377 case X86::JA: return X86::COND_A;
1378 case X86::JAE: return X86::COND_AE;
1379 case X86::JS: return X86::COND_S;
1380 case X86::JNS: return X86::COND_NS;
1381 case X86::JP: return X86::COND_P;
1382 case X86::JNP: return X86::COND_NP;
1383 case X86::JO: return X86::COND_O;
1384 case X86::JNO: return X86::COND_NO;
1385 }
1386}
1387
1388unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1389 switch (CC) {
1390 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001391 case X86::COND_E: return X86::JE;
1392 case X86::COND_NE: return X86::JNE;
1393 case X86::COND_L: return X86::JL;
1394 case X86::COND_LE: return X86::JLE;
1395 case X86::COND_G: return X86::JG;
1396 case X86::COND_GE: return X86::JGE;
1397 case X86::COND_B: return X86::JB;
1398 case X86::COND_BE: return X86::JBE;
1399 case X86::COND_A: return X86::JA;
1400 case X86::COND_AE: return X86::JAE;
1401 case X86::COND_S: return X86::JS;
1402 case X86::COND_NS: return X86::JNS;
1403 case X86::COND_P: return X86::JP;
1404 case X86::COND_NP: return X86::JNP;
1405 case X86::COND_O: return X86::JO;
1406 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407 }
1408}
1409
1410/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1411/// e.g. turning COND_E to COND_NE.
1412X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1413 switch (CC) {
1414 default: assert(0 && "Illegal condition code!");
1415 case X86::COND_E: return X86::COND_NE;
1416 case X86::COND_NE: return X86::COND_E;
1417 case X86::COND_L: return X86::COND_GE;
1418 case X86::COND_LE: return X86::COND_G;
1419 case X86::COND_G: return X86::COND_LE;
1420 case X86::COND_GE: return X86::COND_L;
1421 case X86::COND_B: return X86::COND_AE;
1422 case X86::COND_BE: return X86::COND_A;
1423 case X86::COND_A: return X86::COND_BE;
1424 case X86::COND_AE: return X86::COND_B;
1425 case X86::COND_S: return X86::COND_NS;
1426 case X86::COND_NS: return X86::COND_S;
1427 case X86::COND_P: return X86::COND_NP;
1428 case X86::COND_NP: return X86::COND_P;
1429 case X86::COND_O: return X86::COND_NO;
1430 case X86::COND_NO: return X86::COND_O;
1431 }
1432}
1433
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001434bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001435 const TargetInstrDesc &TID = MI->getDesc();
1436 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001437
1438 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001439 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001440 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001441 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001442 return true;
1443 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444}
1445
Evan Cheng12515792007-07-26 17:32:14 +00001446// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1447static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1448 const X86InstrInfo &TII) {
1449 if (MI->getOpcode() == X86::FP_REG_KILL)
1450 return false;
1451 return TII.isUnpredicatedTerminator(MI);
1452}
1453
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1455 MachineBasicBlock *&TBB,
1456 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001457 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001458 // If the block has no terminators, it just falls into the block after it.
1459 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001460 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001461 return false;
1462
1463 // Get the last instruction in the block.
1464 MachineInstr *LastInst = I;
1465
1466 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001467 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001468 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001469 return true;
1470
1471 // If the block ends with a branch there are 3 possibilities:
1472 // it's an unconditional, conditional, or indirect branch.
1473
1474 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001475 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476 return false;
1477 }
1478 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1479 if (BranchCode == X86::COND_INVALID)
1480 return true; // Can't handle indirect branch.
1481
1482 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001483 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001484 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1485 return false;
1486 }
1487
1488 // Get the instruction before it if it's a terminator.
1489 MachineInstr *SecondLastInst = I;
1490
1491 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001492 if (SecondLastInst && I != MBB.begin() &&
1493 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 return true;
1495
1496 // If the block ends with X86::JMP and a conditional branch, handle it.
1497 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1498 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001499 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001501 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001502 return false;
1503 }
1504
1505 // If the block ends with two X86::JMPs, handle it. The second one is not
1506 // executed, so remove it.
1507 if (SecondLastInst->getOpcode() == X86::JMP &&
1508 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001509 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 I = LastInst;
1511 I->eraseFromParent();
1512 return false;
1513 }
1514
1515 // Otherwise, can't handle this.
1516 return true;
1517}
1518
1519unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1520 MachineBasicBlock::iterator I = MBB.end();
1521 if (I == MBB.begin()) return 0;
1522 --I;
1523 if (I->getOpcode() != X86::JMP &&
1524 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1525 return 0;
1526
1527 // Remove the branch.
1528 I->eraseFromParent();
1529
1530 I = MBB.end();
1531
1532 if (I == MBB.begin()) return 1;
1533 --I;
1534 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1535 return 1;
1536
1537 // Remove the branch.
1538 I->eraseFromParent();
1539 return 2;
1540}
1541
Owen Anderson81875432008-01-01 21:11:32 +00001542static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001543 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001544 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001545 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001546 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001547 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001548 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001549 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001550 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001551 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001552 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001553 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001554 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001555 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001556 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001557 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001558 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1559 else
1560 assert(0 && "Unknown operand for X86InstrAddOperand!");
1561
1562 return MIB;
1563}
1564
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565unsigned
1566X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1567 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001568 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001569 // Shouldn't be a fall through.
1570 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1571 assert((Cond.size() == 1 || Cond.size() == 0) &&
1572 "X86 branch conditions have one component!");
1573
1574 if (FBB == 0) { // One way branch.
1575 if (Cond.empty()) {
1576 // Unconditional branch?
1577 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1578 } else {
1579 // Conditional branch.
1580 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1581 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1582 }
1583 return 1;
1584 }
1585
1586 // Two-way Conditional branch.
1587 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1588 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1589 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1590 return 2;
1591}
1592
Owen Anderson9fa72d92008-08-26 18:03:31 +00001593bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001594 MachineBasicBlock::iterator MI,
1595 unsigned DestReg, unsigned SrcReg,
1596 const TargetRegisterClass *DestRC,
1597 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001598 if (DestRC == SrcRC) {
1599 unsigned Opc;
1600 if (DestRC == &X86::GR64RegClass) {
1601 Opc = X86::MOV64rr;
1602 } else if (DestRC == &X86::GR32RegClass) {
1603 Opc = X86::MOV32rr;
1604 } else if (DestRC == &X86::GR16RegClass) {
1605 Opc = X86::MOV16rr;
1606 } else if (DestRC == &X86::GR8RegClass) {
1607 Opc = X86::MOV8rr;
1608 } else if (DestRC == &X86::GR32_RegClass) {
1609 Opc = X86::MOV32_rr;
1610 } else if (DestRC == &X86::GR16_RegClass) {
1611 Opc = X86::MOV16_rr;
1612 } else if (DestRC == &X86::RFP32RegClass) {
1613 Opc = X86::MOV_Fp3232;
1614 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1615 Opc = X86::MOV_Fp6464;
1616 } else if (DestRC == &X86::RFP80RegClass) {
1617 Opc = X86::MOV_Fp8080;
1618 } else if (DestRC == &X86::FR32RegClass) {
1619 Opc = X86::FsMOVAPSrr;
1620 } else if (DestRC == &X86::FR64RegClass) {
1621 Opc = X86::FsMOVAPDrr;
1622 } else if (DestRC == &X86::VR128RegClass) {
1623 Opc = X86::MOVAPSrr;
1624 } else if (DestRC == &X86::VR64RegClass) {
1625 Opc = X86::MMX_MOVQ64rr;
1626 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001627 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001628 }
Chris Lattner59707122008-03-09 07:58:04 +00001629 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001630 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001631 }
Chris Lattner59707122008-03-09 07:58:04 +00001632
1633 // Moving EFLAGS to / from another register requires a push and a pop.
1634 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001635 if (SrcReg != X86::EFLAGS)
1636 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001637 if (DestRC == &X86::GR64RegClass) {
1638 BuildMI(MBB, MI, get(X86::PUSHFQ));
1639 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001640 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001641 } else if (DestRC == &X86::GR32RegClass) {
1642 BuildMI(MBB, MI, get(X86::PUSHFD));
1643 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001644 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001645 }
1646 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001647 if (DestReg != X86::EFLAGS)
1648 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001649 if (SrcRC == &X86::GR64RegClass) {
1650 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1651 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001652 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001653 } else if (SrcRC == &X86::GR32RegClass) {
1654 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1655 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001656 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001657 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001658 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001659
Chris Lattner0d128722008-03-09 09:15:31 +00001660 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001661 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001662 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001663 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1664 // Can only copy from ST(0)/ST(1) right now
1665 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001666 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001667 unsigned Opc;
1668 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001669 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001670 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001671 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001672 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001673 if (DestRC != &X86::RFP80RegClass)
1674 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001675 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001676 }
1677 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001678 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001679 }
Chris Lattner0d128722008-03-09 09:15:31 +00001680
1681 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1682 if (DestRC == &X86::RSTRegClass) {
1683 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001684 if (DestReg != X86::ST0)
1685 // Can only copy to TOS right now
1686 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001687 unsigned Opc;
1688 if (SrcRC == &X86::RFP32RegClass)
1689 Opc = X86::FpSET_ST0_32;
1690 else if (SrcRC == &X86::RFP64RegClass)
1691 Opc = X86::FpSET_ST0_64;
1692 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001693 if (SrcRC != &X86::RFP80RegClass)
1694 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001695 Opc = X86::FpSET_ST0_80;
1696 }
1697 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001698 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001699 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001700
Owen Anderson9fa72d92008-08-26 18:03:31 +00001701 // Not yet supported!
1702 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001703}
1704
Owen Anderson81875432008-01-01 21:11:32 +00001705static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001706 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001707 unsigned Opc = 0;
1708 if (RC == &X86::GR64RegClass) {
1709 Opc = X86::MOV64mr;
1710 } else if (RC == &X86::GR32RegClass) {
1711 Opc = X86::MOV32mr;
1712 } else if (RC == &X86::GR16RegClass) {
1713 Opc = X86::MOV16mr;
1714 } else if (RC == &X86::GR8RegClass) {
1715 Opc = X86::MOV8mr;
1716 } else if (RC == &X86::GR32_RegClass) {
1717 Opc = X86::MOV32_mr;
1718 } else if (RC == &X86::GR16_RegClass) {
1719 Opc = X86::MOV16_mr;
1720 } else if (RC == &X86::RFP80RegClass) {
1721 Opc = X86::ST_FpP80m; // pops
1722 } else if (RC == &X86::RFP64RegClass) {
1723 Opc = X86::ST_Fp64m;
1724 } else if (RC == &X86::RFP32RegClass) {
1725 Opc = X86::ST_Fp32m;
1726 } else if (RC == &X86::FR32RegClass) {
1727 Opc = X86::MOVSSmr;
1728 } else if (RC == &X86::FR64RegClass) {
1729 Opc = X86::MOVSDmr;
1730 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001731 // If stack is realigned we can use aligned stores.
1732 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001733 } else if (RC == &X86::VR64RegClass) {
1734 Opc = X86::MMX_MOVQ64mr;
1735 } else {
1736 assert(0 && "Unknown regclass");
1737 abort();
1738 }
1739
1740 return Opc;
1741}
1742
1743void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1744 MachineBasicBlock::iterator MI,
1745 unsigned SrcReg, bool isKill, int FrameIdx,
1746 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001747 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001748 bool isAligned = (RI.getStackAlignment() >= 16) ||
1749 RI.needsStackRealignment(MF);
1750 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001751 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1752 .addReg(SrcReg, false, false, isKill);
1753}
1754
1755void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1756 bool isKill,
1757 SmallVectorImpl<MachineOperand> &Addr,
1758 const TargetRegisterClass *RC,
1759 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001760 bool isAligned = (RI.getStackAlignment() >= 16) ||
1761 RI.needsStackRealignment(MF);
1762 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001763 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001764 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1765 MIB = X86InstrAddOperand(MIB, Addr[i]);
1766 MIB.addReg(SrcReg, false, false, isKill);
1767 NewMIs.push_back(MIB);
1768}
1769
1770static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001771 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001772 unsigned Opc = 0;
1773 if (RC == &X86::GR64RegClass) {
1774 Opc = X86::MOV64rm;
1775 } else if (RC == &X86::GR32RegClass) {
1776 Opc = X86::MOV32rm;
1777 } else if (RC == &X86::GR16RegClass) {
1778 Opc = X86::MOV16rm;
1779 } else if (RC == &X86::GR8RegClass) {
1780 Opc = X86::MOV8rm;
1781 } else if (RC == &X86::GR32_RegClass) {
1782 Opc = X86::MOV32_rm;
1783 } else if (RC == &X86::GR16_RegClass) {
1784 Opc = X86::MOV16_rm;
1785 } else if (RC == &X86::RFP80RegClass) {
1786 Opc = X86::LD_Fp80m;
1787 } else if (RC == &X86::RFP64RegClass) {
1788 Opc = X86::LD_Fp64m;
1789 } else if (RC == &X86::RFP32RegClass) {
1790 Opc = X86::LD_Fp32m;
1791 } else if (RC == &X86::FR32RegClass) {
1792 Opc = X86::MOVSSrm;
1793 } else if (RC == &X86::FR64RegClass) {
1794 Opc = X86::MOVSDrm;
1795 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001796 // If stack is realigned we can use aligned loads.
1797 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001798 } else if (RC == &X86::VR64RegClass) {
1799 Opc = X86::MMX_MOVQ64rm;
1800 } else {
1801 assert(0 && "Unknown regclass");
1802 abort();
1803 }
1804
1805 return Opc;
1806}
1807
1808void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001809 MachineBasicBlock::iterator MI,
1810 unsigned DestReg, int FrameIdx,
1811 const TargetRegisterClass *RC) const{
1812 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001813 bool isAligned = (RI.getStackAlignment() >= 16) ||
1814 RI.needsStackRealignment(MF);
1815 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001816 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1817}
1818
1819void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001820 SmallVectorImpl<MachineOperand> &Addr,
1821 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001822 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001823 bool isAligned = (RI.getStackAlignment() >= 16) ||
1824 RI.needsStackRealignment(MF);
1825 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001826 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001827 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1828 MIB = X86InstrAddOperand(MIB, Addr[i]);
1829 NewMIs.push_back(MIB);
1830}
1831
Owen Anderson6690c7f2008-01-04 23:57:37 +00001832bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001833 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001834 const std::vector<CalleeSavedInfo> &CSI) const {
1835 if (CSI.empty())
1836 return false;
1837
Evan Chengc275cf62008-09-26 19:14:21 +00001838 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001839 unsigned SlotSize = is64Bit ? 8 : 4;
1840
1841 MachineFunction &MF = *MBB.getParent();
1842 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1843 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1844
Owen Anderson6690c7f2008-01-04 23:57:37 +00001845 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1846 for (unsigned i = CSI.size(); i != 0; --i) {
1847 unsigned Reg = CSI[i-1].getReg();
1848 // Add the callee-saved register as live-in. It's killed at the spill.
1849 MBB.addLiveIn(Reg);
1850 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1851 }
1852 return true;
1853}
1854
1855bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001856 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001857 const std::vector<CalleeSavedInfo> &CSI) const {
1858 if (CSI.empty())
1859 return false;
1860
1861 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1862
1863 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1864 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1865 unsigned Reg = CSI[i].getReg();
1866 BuildMI(MBB, MI, get(Opc), Reg);
1867 }
1868 return true;
1869}
1870
Dan Gohman221a4372008-07-07 23:14:23 +00001871static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001872 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001873 MachineInstr *MI, const TargetInstrInfo &TII) {
1874 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001875 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001876 MachineInstrBuilder MIB(NewMI);
1877 unsigned NumAddrOps = MOs.size();
1878 for (unsigned i = 0; i != NumAddrOps; ++i)
1879 MIB = X86InstrAddOperand(MIB, MOs[i]);
1880 if (NumAddrOps < 4) // FrameIndex only
1881 MIB.addImm(1).addReg(0).addImm(0);
1882
1883 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001884 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001885 for (unsigned i = 0; i != NumOps; ++i) {
1886 MachineOperand &MO = MI->getOperand(i+2);
1887 MIB = X86InstrAddOperand(MIB, MO);
1888 }
1889 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1890 MachineOperand &MO = MI->getOperand(i);
1891 MIB = X86InstrAddOperand(MIB, MO);
1892 }
1893 return MIB;
1894}
1895
Dan Gohman221a4372008-07-07 23:14:23 +00001896static MachineInstr *FuseInst(MachineFunction &MF,
1897 unsigned Opcode, unsigned OpNo,
Dan Gohman46b948e2008-10-16 01:49:15 +00001898 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001899 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001900 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001901 MachineInstrBuilder MIB(NewMI);
1902
1903 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1904 MachineOperand &MO = MI->getOperand(i);
1905 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001906 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001907 unsigned NumAddrOps = MOs.size();
1908 for (unsigned i = 0; i != NumAddrOps; ++i)
1909 MIB = X86InstrAddOperand(MIB, MOs[i]);
1910 if (NumAddrOps < 4) // FrameIndex only
1911 MIB.addImm(1).addReg(0).addImm(0);
1912 } else {
1913 MIB = X86InstrAddOperand(MIB, MO);
1914 }
1915 }
1916 return MIB;
1917}
1918
1919static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001920 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001921 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001922 MachineFunction &MF = *MI->getParent()->getParent();
1923 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001924
1925 unsigned NumAddrOps = MOs.size();
1926 for (unsigned i = 0; i != NumAddrOps; ++i)
1927 MIB = X86InstrAddOperand(MIB, MOs[i]);
1928 if (NumAddrOps < 4) // FrameIndex only
1929 MIB.addImm(1).addReg(0).addImm(0);
1930 return MIB.addImm(0);
1931}
1932
1933MachineInstr*
Dan Gohman221a4372008-07-07 23:14:23 +00001934X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1935 MachineInstr *MI, unsigned i,
Dan Gohman46b948e2008-10-16 01:49:15 +00001936 const SmallVector<MachineOperand,4> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00001937 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1938 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001939 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001940 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001941 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001942
1943 MachineInstr *NewMI = NULL;
1944 // Folding a memory location into the two-address part of a two-address
1945 // instruction is different than folding it other places. It requires
1946 // replacing the *two* registers with the memory location.
1947 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001948 MI->getOperand(0).isReg() &&
1949 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00001950 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1951 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1952 isTwoAddrFold = true;
1953 } else if (i == 0) { // If operand 0
1954 if (MI->getOpcode() == X86::MOV16r0)
1955 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1956 else if (MI->getOpcode() == X86::MOV32r0)
1957 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1958 else if (MI->getOpcode() == X86::MOV64r0)
1959 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1960 else if (MI->getOpcode() == X86::MOV8r0)
1961 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00001962 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00001963 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001964
1965 OpcodeTablePtr = &RegOp2MemOpTable0;
1966 } else if (i == 1) {
1967 OpcodeTablePtr = &RegOp2MemOpTable1;
1968 } else if (i == 2) {
1969 OpcodeTablePtr = &RegOp2MemOpTable2;
1970 }
1971
1972 // If table selected...
1973 if (OpcodeTablePtr) {
1974 // Find the Opcode to fuse
1975 DenseMap<unsigned*, unsigned>::iterator I =
1976 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1977 if (I != OpcodeTablePtr->end()) {
1978 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00001979 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001980 else
Dan Gohman221a4372008-07-07 23:14:23 +00001981 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001982 return NewMI;
1983 }
1984 }
1985
1986 // No fusion
1987 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001988 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001989 return NULL;
1990}
1991
1992
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001993MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1994 MachineInstr *MI,
Dan Gohman46b948e2008-10-16 01:49:15 +00001995 const SmallVectorImpl<unsigned> &Ops,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001996 int FrameIndex) const {
1997 // Check switch flag
1998 if (NoFusing) return NULL;
1999
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002000 const MachineFrameInfo *MFI = MF.getFrameInfo();
2001 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2002 // FIXME: Move alignment requirement into tables?
2003 if (Alignment < 16) {
2004 switch (MI->getOpcode()) {
2005 default: break;
2006 // Not always safe to fold movsd into these instructions since their load
2007 // folding variants expects the address to be 16 byte aligned.
2008 case X86::FsANDNPDrr:
2009 case X86::FsANDNPSrr:
2010 case X86::FsANDPDrr:
2011 case X86::FsANDPSrr:
2012 case X86::FsORPDrr:
2013 case X86::FsORPSrr:
2014 case X86::FsXORPDrr:
2015 case X86::FsXORPSrr:
2016 return NULL;
2017 }
2018 }
2019
Owen Anderson9a184ef2008-01-07 01:35:02 +00002020 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2021 unsigned NewOpc = 0;
2022 switch (MI->getOpcode()) {
2023 default: return NULL;
2024 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2025 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2026 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2027 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2028 }
2029 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002030 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002031 MI->getOperand(1).ChangeToImmediate(0);
2032 } else if (Ops.size() != 1)
2033 return NULL;
2034
2035 SmallVector<MachineOperand,4> MOs;
2036 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohman221a4372008-07-07 23:14:23 +00002037 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002038}
2039
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002040MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2041 MachineInstr *MI,
Dan Gohman46b948e2008-10-16 01:49:15 +00002042 const SmallVectorImpl<unsigned> &Ops,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002043 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002044 // Check switch flag
2045 if (NoFusing) return NULL;
2046
Dan Gohmand0e8c752008-07-12 00:10:52 +00002047 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002048 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002049 if (LoadMI->hasOneMemOperand())
2050 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002051
2052 // FIXME: Move alignment requirement into tables?
2053 if (Alignment < 16) {
2054 switch (MI->getOpcode()) {
2055 default: break;
2056 // Not always safe to fold movsd into these instructions since their load
2057 // folding variants expects the address to be 16 byte aligned.
2058 case X86::FsANDNPDrr:
2059 case X86::FsANDNPSrr:
2060 case X86::FsANDPDrr:
2061 case X86::FsANDPSrr:
2062 case X86::FsORPDrr:
2063 case X86::FsORPSrr:
2064 case X86::FsXORPDrr:
2065 case X86::FsXORPSrr:
2066 return NULL;
2067 }
2068 }
2069
Owen Anderson9a184ef2008-01-07 01:35:02 +00002070 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2071 unsigned NewOpc = 0;
2072 switch (MI->getOpcode()) {
2073 default: return NULL;
2074 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2075 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2076 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2077 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2078 }
2079 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002080 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002081 MI->getOperand(1).ChangeToImmediate(0);
2082 } else if (Ops.size() != 1)
2083 return NULL;
2084
2085 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002086 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002087 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2088 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman221a4372008-07-07 23:14:23 +00002089 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002090}
2091
2092
Dan Gohman46b948e2008-10-16 01:49:15 +00002093bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2094 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002095 // Check switch flag
2096 if (NoFusing) return 0;
2097
2098 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2099 switch (MI->getOpcode()) {
2100 default: return false;
2101 case X86::TEST8rr:
2102 case X86::TEST16rr:
2103 case X86::TEST32rr:
2104 case X86::TEST64rr:
2105 return true;
2106 }
2107 }
2108
2109 if (Ops.size() != 1)
2110 return false;
2111
2112 unsigned OpNum = Ops[0];
2113 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002114 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002115 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002116 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002117
2118 // Folding a memory location into the two-address part of a two-address
2119 // instruction is different than folding it other places. It requires
2120 // replacing the *two* registers with the memory location.
2121 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2122 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2123 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2124 } else if (OpNum == 0) { // If operand 0
2125 switch (Opc) {
2126 case X86::MOV16r0:
2127 case X86::MOV32r0:
2128 case X86::MOV64r0:
2129 case X86::MOV8r0:
2130 return true;
2131 default: break;
2132 }
2133 OpcodeTablePtr = &RegOp2MemOpTable0;
2134 } else if (OpNum == 1) {
2135 OpcodeTablePtr = &RegOp2MemOpTable1;
2136 } else if (OpNum == 2) {
2137 OpcodeTablePtr = &RegOp2MemOpTable2;
2138 }
2139
2140 if (OpcodeTablePtr) {
2141 // Find the Opcode to fuse
2142 DenseMap<unsigned*, unsigned>::iterator I =
2143 OpcodeTablePtr->find((unsigned*)Opc);
2144 if (I != OpcodeTablePtr->end())
2145 return true;
2146 }
2147 return false;
2148}
2149
2150bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2151 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2152 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2153 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2154 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2155 if (I == MemOp2RegOpTable.end())
2156 return false;
2157 unsigned Opc = I->second.first;
2158 unsigned Index = I->second.second & 0xf;
2159 bool FoldedLoad = I->second.second & (1 << 4);
2160 bool FoldedStore = I->second.second & (1 << 5);
2161 if (UnfoldLoad && !FoldedLoad)
2162 return false;
2163 UnfoldLoad &= FoldedLoad;
2164 if (UnfoldStore && !FoldedStore)
2165 return false;
2166 UnfoldStore &= FoldedStore;
2167
Chris Lattner5b930372008-01-07 07:27:27 +00002168 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002169 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002170 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002171 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2172 SmallVector<MachineOperand,4> AddrOps;
2173 SmallVector<MachineOperand,2> BeforeOps;
2174 SmallVector<MachineOperand,2> AfterOps;
2175 SmallVector<MachineOperand,4> ImpOps;
2176 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2177 MachineOperand &Op = MI->getOperand(i);
2178 if (i >= Index && i < Index+4)
2179 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002180 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002181 ImpOps.push_back(Op);
2182 else if (i < Index)
2183 BeforeOps.push_back(Op);
2184 else if (i > Index)
2185 AfterOps.push_back(Op);
2186 }
2187
2188 // Emit the load instruction.
2189 if (UnfoldLoad) {
2190 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2191 if (UnfoldStore) {
2192 // Address operands cannot be marked isKill.
2193 for (unsigned i = 1; i != 5; ++i) {
2194 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002195 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002196 MO.setIsKill(false);
2197 }
2198 }
2199 }
2200
2201 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002202 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002203 MachineInstrBuilder MIB(DataMI);
2204
2205 if (FoldedStore)
2206 MIB.addReg(Reg, true);
2207 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2208 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2209 if (FoldedLoad)
2210 MIB.addReg(Reg);
2211 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2212 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2213 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2214 MachineOperand &MO = ImpOps[i];
2215 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2216 }
2217 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2218 unsigned NewOpc = 0;
2219 switch (DataMI->getOpcode()) {
2220 default: break;
2221 case X86::CMP64ri32:
2222 case X86::CMP32ri:
2223 case X86::CMP16ri:
2224 case X86::CMP8ri: {
2225 MachineOperand &MO0 = DataMI->getOperand(0);
2226 MachineOperand &MO1 = DataMI->getOperand(1);
2227 if (MO1.getImm() == 0) {
2228 switch (DataMI->getOpcode()) {
2229 default: break;
2230 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2231 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2232 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2233 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2234 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002235 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002236 MO1.ChangeToRegister(MO0.getReg(), false);
2237 }
2238 }
2239 }
2240 NewMIs.push_back(DataMI);
2241
2242 // Emit the store instruction.
2243 if (UnfoldStore) {
2244 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002245 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002246 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2247 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2248 }
2249
2250 return true;
2251}
2252
2253bool
2254X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2255 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002256 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002257 return false;
2258
2259 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002260 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002261 if (I == MemOp2RegOpTable.end())
2262 return false;
2263 unsigned Opc = I->second.first;
2264 unsigned Index = I->second.second & 0xf;
2265 bool FoldedLoad = I->second.second & (1 << 4);
2266 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002267 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002268 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002269 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002270 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002271 std::vector<SDValue> AddrOps;
2272 std::vector<SDValue> BeforeOps;
2273 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002274 unsigned NumOps = N->getNumOperands();
2275 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002276 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002277 if (i >= Index && i < Index+4)
2278 AddrOps.push_back(Op);
2279 else if (i < Index)
2280 BeforeOps.push_back(Op);
2281 else if (i > Index)
2282 AfterOps.push_back(Op);
2283 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002284 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002285 AddrOps.push_back(Chain);
2286
2287 // Emit the load instruction.
2288 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002289 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002290 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002291 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002292 bool isAligned = (RI.getStackAlignment() >= 16) ||
2293 RI.needsStackRealignment(MF);
2294 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002295 VT, MVT::Other,
2296 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002297 NewNodes.push_back(Load);
2298 }
2299
2300 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002301 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002302 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002303 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002304 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002305 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002306 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2307 VTs.push_back(*DstRC->vt_begin());
2308 }
2309 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002310 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002311 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002312 VTs.push_back(VT);
2313 }
2314 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002315 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002316 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2317 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2318 NewNodes.push_back(NewNode);
2319
2320 // Emit the store instruction.
2321 if (FoldedStore) {
2322 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002323 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002324 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002325 bool isAligned = (RI.getStackAlignment() >= 16) ||
2326 RI.needsStackRealignment(MF);
2327 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2328 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002329 NewNodes.push_back(Store);
2330 }
2331
2332 return true;
2333}
2334
2335unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2336 bool UnfoldLoad, bool UnfoldStore) const {
2337 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2338 MemOp2RegOpTable.find((unsigned*)Opc);
2339 if (I == MemOp2RegOpTable.end())
2340 return 0;
2341 bool FoldedLoad = I->second.second & (1 << 4);
2342 bool FoldedStore = I->second.second & (1 << 5);
2343 if (UnfoldLoad && !FoldedLoad)
2344 return 0;
2345 if (UnfoldStore && !FoldedStore)
2346 return 0;
2347 return I->second.first;
2348}
2349
Dan Gohman46b948e2008-10-16 01:49:15 +00002350bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351 if (MBB.empty()) return false;
2352
2353 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002354 case X86::TCRETURNri:
2355 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356 case X86::RET: // Return.
2357 case X86::RETI:
2358 case X86::TAILJMPd:
2359 case X86::TAILJMPr:
2360 case X86::TAILJMPm:
2361 case X86::JMP: // Uncond branch.
2362 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002363 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002364 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002365 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002366 return true;
2367 default: return false;
2368 }
2369}
2370
2371bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002372ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002374 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2375 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376 return false;
2377}
2378
2379const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2380 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2381 if (Subtarget->is64Bit())
2382 return &X86::GR64RegClass;
2383 else
2384 return &X86::GR32RegClass;
2385}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002386
2387unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2388 switch (Desc->TSFlags & X86II::ImmMask) {
2389 case X86II::Imm8: return 1;
2390 case X86II::Imm16: return 2;
2391 case X86II::Imm32: return 4;
2392 case X86II::Imm64: return 8;
2393 default: assert(0 && "Immediate size not set!");
2394 return 0;
2395 }
2396}
2397
2398/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2399/// e.g. r8, xmm8, etc.
2400bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002401 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002402 switch (MO.getReg()) {
2403 default: break;
2404 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2405 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2406 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2407 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2408 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2409 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2410 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2411 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2412 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2413 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2414 return true;
2415 }
2416 return false;
2417}
2418
2419
2420/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2421/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2422/// size, and 3) use of X86-64 extended registers.
2423unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2424 unsigned REX = 0;
2425 const TargetInstrDesc &Desc = MI.getDesc();
2426
2427 // Pseudo instructions do not need REX prefix byte.
2428 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2429 return 0;
2430 if (Desc.TSFlags & X86II::REX_W)
2431 REX |= 1 << 3;
2432
2433 unsigned NumOps = Desc.getNumOperands();
2434 if (NumOps) {
2435 bool isTwoAddr = NumOps > 1 &&
2436 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2437
2438 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2439 unsigned i = isTwoAddr ? 1 : 0;
2440 for (unsigned e = NumOps; i != e; ++i) {
2441 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002442 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002443 unsigned Reg = MO.getReg();
2444 if (isX86_64NonExtLowByteReg(Reg))
2445 REX |= 0x40;
2446 }
2447 }
2448
2449 switch (Desc.TSFlags & X86II::FormMask) {
2450 case X86II::MRMInitReg:
2451 if (isX86_64ExtendedReg(MI.getOperand(0)))
2452 REX |= (1 << 0) | (1 << 2);
2453 break;
2454 case X86II::MRMSrcReg: {
2455 if (isX86_64ExtendedReg(MI.getOperand(0)))
2456 REX |= 1 << 2;
2457 i = isTwoAddr ? 2 : 1;
2458 for (unsigned e = NumOps; i != e; ++i) {
2459 const MachineOperand& MO = MI.getOperand(i);
2460 if (isX86_64ExtendedReg(MO))
2461 REX |= 1 << 0;
2462 }
2463 break;
2464 }
2465 case X86II::MRMSrcMem: {
2466 if (isX86_64ExtendedReg(MI.getOperand(0)))
2467 REX |= 1 << 2;
2468 unsigned Bit = 0;
2469 i = isTwoAddr ? 2 : 1;
2470 for (; i != NumOps; ++i) {
2471 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002472 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002473 if (isX86_64ExtendedReg(MO))
2474 REX |= 1 << Bit;
2475 Bit++;
2476 }
2477 }
2478 break;
2479 }
2480 case X86II::MRM0m: case X86II::MRM1m:
2481 case X86II::MRM2m: case X86II::MRM3m:
2482 case X86II::MRM4m: case X86II::MRM5m:
2483 case X86II::MRM6m: case X86II::MRM7m:
2484 case X86II::MRMDestMem: {
2485 unsigned e = isTwoAddr ? 5 : 4;
2486 i = isTwoAddr ? 1 : 0;
2487 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2488 REX |= 1 << 2;
2489 unsigned Bit = 0;
2490 for (; i != e; ++i) {
2491 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002492 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002493 if (isX86_64ExtendedReg(MO))
2494 REX |= 1 << Bit;
2495 Bit++;
2496 }
2497 }
2498 break;
2499 }
2500 default: {
2501 if (isX86_64ExtendedReg(MI.getOperand(0)))
2502 REX |= 1 << 0;
2503 i = isTwoAddr ? 2 : 1;
2504 for (unsigned e = NumOps; i != e; ++i) {
2505 const MachineOperand& MO = MI.getOperand(i);
2506 if (isX86_64ExtendedReg(MO))
2507 REX |= 1 << 2;
2508 }
2509 break;
2510 }
2511 }
2512 }
2513 return REX;
2514}
2515
2516/// sizePCRelativeBlockAddress - This method returns the size of a PC
2517/// relative block address instruction
2518///
2519static unsigned sizePCRelativeBlockAddress() {
2520 return 4;
2521}
2522
2523/// sizeGlobalAddress - Give the size of the emission of this global address
2524///
2525static unsigned sizeGlobalAddress(bool dword) {
2526 return dword ? 8 : 4;
2527}
2528
2529/// sizeConstPoolAddress - Give the size of the emission of this constant
2530/// pool address
2531///
2532static unsigned sizeConstPoolAddress(bool dword) {
2533 return dword ? 8 : 4;
2534}
2535
2536/// sizeExternalSymbolAddress - Give the size of the emission of this external
2537/// symbol
2538///
2539static unsigned sizeExternalSymbolAddress(bool dword) {
2540 return dword ? 8 : 4;
2541}
2542
2543/// sizeJumpTableAddress - Give the size of the emission of this jump
2544/// table address
2545///
2546static unsigned sizeJumpTableAddress(bool dword) {
2547 return dword ? 8 : 4;
2548}
2549
2550static unsigned sizeConstant(unsigned Size) {
2551 return Size;
2552}
2553
2554static unsigned sizeRegModRMByte(){
2555 return 1;
2556}
2557
2558static unsigned sizeSIBByte(){
2559 return 1;
2560}
2561
2562static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2563 unsigned FinalSize = 0;
2564 // If this is a simple integer displacement that doesn't require a relocation.
2565 if (!RelocOp) {
2566 FinalSize += sizeConstant(4);
2567 return FinalSize;
2568 }
2569
2570 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002571 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002572 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002573 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002574 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002575 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002576 FinalSize += sizeJumpTableAddress(false);
2577 } else {
2578 assert(0 && "Unknown value to relocate!");
2579 }
2580 return FinalSize;
2581}
2582
2583static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2584 bool IsPIC, bool Is64BitMode) {
2585 const MachineOperand &Op3 = MI.getOperand(Op+3);
2586 int DispVal = 0;
2587 const MachineOperand *DispForReloc = 0;
2588 unsigned FinalSize = 0;
2589
2590 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002591 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002592 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002593 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002594 if (Is64BitMode || IsPIC) {
2595 DispForReloc = &Op3;
2596 } else {
2597 DispVal = 1;
2598 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002599 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002600 if (Is64BitMode || IsPIC) {
2601 DispForReloc = &Op3;
2602 } else {
2603 DispVal = 1;
2604 }
2605 } else {
2606 DispVal = 1;
2607 }
2608
2609 const MachineOperand &Base = MI.getOperand(Op);
2610 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2611
2612 unsigned BaseReg = Base.getReg();
2613
2614 // Is a SIB byte needed?
2615 if (IndexReg.getReg() == 0 &&
2616 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2617 if (BaseReg == 0) { // Just a displacement?
2618 // Emit special case [disp32] encoding
2619 ++FinalSize;
2620 FinalSize += getDisplacementFieldSize(DispForReloc);
2621 } else {
2622 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2623 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2624 // Emit simple indirect register encoding... [EAX] f.e.
2625 ++FinalSize;
2626 // Be pessimistic and assume it's a disp32, not a disp8
2627 } else {
2628 // Emit the most general non-SIB encoding: [REG+disp32]
2629 ++FinalSize;
2630 FinalSize += getDisplacementFieldSize(DispForReloc);
2631 }
2632 }
2633
2634 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2635 assert(IndexReg.getReg() != X86::ESP &&
2636 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2637
2638 bool ForceDisp32 = false;
2639 if (BaseReg == 0 || DispForReloc) {
2640 // Emit the normal disp32 encoding.
2641 ++FinalSize;
2642 ForceDisp32 = true;
2643 } else {
2644 ++FinalSize;
2645 }
2646
2647 FinalSize += sizeSIBByte();
2648
2649 // Do we need to output a displacement?
2650 if (DispVal != 0 || ForceDisp32) {
2651 FinalSize += getDisplacementFieldSize(DispForReloc);
2652 }
2653 }
2654 return FinalSize;
2655}
2656
2657
2658static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2659 const TargetInstrDesc *Desc,
2660 bool IsPIC, bool Is64BitMode) {
2661
2662 unsigned Opcode = Desc->Opcode;
2663 unsigned FinalSize = 0;
2664
2665 // Emit the lock opcode prefix as needed.
2666 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2667
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002668 // Emit segment overrid opcode prefix as needed.
2669 switch (Desc->TSFlags & X86II::SegOvrMask) {
2670 case X86II::FS:
2671 case X86II::GS:
2672 ++FinalSize;
2673 break;
2674 default: assert(0 && "Invalid segment!");
2675 case 0: break; // No segment override!
2676 }
2677
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002678 // Emit the repeat opcode prefix as needed.
2679 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2680
2681 // Emit the operand size opcode prefix as needed.
2682 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2683
2684 // Emit the address size opcode prefix as needed.
2685 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2686
2687 bool Need0FPrefix = false;
2688 switch (Desc->TSFlags & X86II::Op0Mask) {
2689 case X86II::TB: // Two-byte opcode prefix
2690 case X86II::T8: // 0F 38
2691 case X86II::TA: // 0F 3A
2692 Need0FPrefix = true;
2693 break;
2694 case X86II::REP: break; // already handled.
2695 case X86II::XS: // F3 0F
2696 ++FinalSize;
2697 Need0FPrefix = true;
2698 break;
2699 case X86II::XD: // F2 0F
2700 ++FinalSize;
2701 Need0FPrefix = true;
2702 break;
2703 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2704 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2705 ++FinalSize;
2706 break; // Two-byte opcode prefix
2707 default: assert(0 && "Invalid prefix!");
2708 case 0: break; // No prefix!
2709 }
2710
2711 if (Is64BitMode) {
2712 // REX prefix
2713 unsigned REX = X86InstrInfo::determineREX(MI);
2714 if (REX)
2715 ++FinalSize;
2716 }
2717
2718 // 0x0F escape code must be emitted just before the opcode.
2719 if (Need0FPrefix)
2720 ++FinalSize;
2721
2722 switch (Desc->TSFlags & X86II::Op0Mask) {
2723 case X86II::T8: // 0F 38
2724 ++FinalSize;
2725 break;
2726 case X86II::TA: // 0F 3A
2727 ++FinalSize;
2728 break;
2729 }
2730
2731 // If this is a two-address instruction, skip one of the register operands.
2732 unsigned NumOps = Desc->getNumOperands();
2733 unsigned CurOp = 0;
2734 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2735 CurOp++;
2736
2737 switch (Desc->TSFlags & X86II::FormMask) {
2738 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2739 case X86II::Pseudo:
2740 // Remember the current PC offset, this is the PIC relocation
2741 // base address.
2742 switch (Opcode) {
2743 default:
2744 break;
2745 case TargetInstrInfo::INLINEASM: {
2746 const MachineFunction *MF = MI.getParent()->getParent();
2747 const char *AsmStr = MI.getOperand(0).getSymbolName();
2748 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2749 FinalSize += AI->getInlineAsmLength(AsmStr);
2750 break;
2751 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002752 case TargetInstrInfo::DBG_LABEL:
2753 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002754 break;
2755 case TargetInstrInfo::IMPLICIT_DEF:
2756 case TargetInstrInfo::DECLARE:
2757 case X86::DWARF_LOC:
2758 case X86::FP_REG_KILL:
2759 break;
2760 case X86::MOVPC32r: {
2761 // This emits the "call" portion of this pseudo instruction.
2762 ++FinalSize;
2763 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2764 break;
2765 }
2766 }
2767 CurOp = NumOps;
2768 break;
2769 case X86II::RawFrm:
2770 ++FinalSize;
2771
2772 if (CurOp != NumOps) {
2773 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002774 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002775 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002776 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002777 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002778 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002779 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002780 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002781 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2782 } else {
2783 assert(0 && "Unknown RawFrm operand!");
2784 }
2785 }
2786 break;
2787
2788 case X86II::AddRegFrm:
2789 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002790 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002791
2792 if (CurOp != NumOps) {
2793 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2794 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002795 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002796 FinalSize += sizeConstant(Size);
2797 else {
2798 bool dword = false;
2799 if (Opcode == X86::MOV64ri)
2800 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002801 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002802 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002803 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002804 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002805 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002806 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002807 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002808 FinalSize += sizeJumpTableAddress(dword);
2809 }
2810 }
2811 break;
2812
2813 case X86II::MRMDestReg: {
2814 ++FinalSize;
2815 FinalSize += sizeRegModRMByte();
2816 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002817 if (CurOp != NumOps) {
2818 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002819 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002820 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002821 break;
2822 }
2823 case X86II::MRMDestMem: {
2824 ++FinalSize;
2825 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2826 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002827 if (CurOp != NumOps) {
2828 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002829 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002830 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002831 break;
2832 }
2833
2834 case X86II::MRMSrcReg:
2835 ++FinalSize;
2836 FinalSize += sizeRegModRMByte();
2837 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002838 if (CurOp != NumOps) {
2839 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002840 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002841 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002842 break;
2843
2844 case X86II::MRMSrcMem: {
2845
2846 ++FinalSize;
2847 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2848 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002849 if (CurOp != NumOps) {
2850 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002851 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002852 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002853 break;
2854 }
2855
2856 case X86II::MRM0r: case X86II::MRM1r:
2857 case X86II::MRM2r: case X86II::MRM3r:
2858 case X86II::MRM4r: case X86II::MRM5r:
2859 case X86II::MRM6r: case X86II::MRM7r:
2860 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002861 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002862 FinalSize += sizeRegModRMByte();
2863
2864 if (CurOp != NumOps) {
2865 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2866 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002867 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002868 FinalSize += sizeConstant(Size);
2869 else {
2870 bool dword = false;
2871 if (Opcode == X86::MOV64ri32)
2872 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002873 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002874 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002875 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002876 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002877 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002878 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002879 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002880 FinalSize += sizeJumpTableAddress(dword);
2881 }
2882 }
2883 break;
2884
2885 case X86II::MRM0m: case X86II::MRM1m:
2886 case X86II::MRM2m: case X86II::MRM3m:
2887 case X86II::MRM4m: case X86II::MRM5m:
2888 case X86II::MRM6m: case X86II::MRM7m: {
2889
2890 ++FinalSize;
2891 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2892 CurOp += 4;
2893
2894 if (CurOp != NumOps) {
2895 const MachineOperand &MO = MI.getOperand(CurOp++);
2896 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002897 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002898 FinalSize += sizeConstant(Size);
2899 else {
2900 bool dword = false;
2901 if (Opcode == X86::MOV64mi32)
2902 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002903 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002904 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002905 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002906 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002907 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002908 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002909 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002910 FinalSize += sizeJumpTableAddress(dword);
2911 }
2912 }
2913 break;
2914 }
2915
2916 case X86II::MRMInitReg:
2917 ++FinalSize;
2918 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2919 FinalSize += sizeRegModRMByte();
2920 ++CurOp;
2921 break;
2922 }
2923
2924 if (!Desc->isVariadic() && CurOp != NumOps) {
2925 cerr << "Cannot determine size: ";
2926 MI.dump();
2927 cerr << '\n';
2928 abort();
2929 }
2930
2931
2932 return FinalSize;
2933}
2934
2935
2936unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2937 const TargetInstrDesc &Desc = MI->getDesc();
2938 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002939 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002940 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2941 if (Desc.getOpcode() == X86::MOVPC32r) {
2942 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2943 }
2944 return Size;
2945}
Dan Gohmanb60482f2008-09-23 18:22:58 +00002946
Dan Gohman882ab732008-09-30 00:58:23 +00002947/// getGlobalBaseReg - Return a virtual register initialized with the
2948/// the global base register value. Output instructions required to
2949/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00002950///
Dan Gohman882ab732008-09-30 00:58:23 +00002951unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
2952 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
2953 "X86-64 PIC uses RIP relative addressing");
2954
2955 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2956 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
2957 if (GlobalBaseReg != 0)
2958 return GlobalBaseReg;
2959
Dan Gohmanb60482f2008-09-23 18:22:58 +00002960 // Insert the set of GlobalBaseReg into the first MBB of the function
2961 MachineBasicBlock &FirstMBB = MF->front();
2962 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
2963 MachineRegisterInfo &RegInfo = MF->getRegInfo();
2964 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
2965
2966 const TargetInstrInfo *TII = TM.getInstrInfo();
2967 // Operand of MovePCtoStack is completely ignored by asm printer. It's
2968 // only used in JIT code emission as displacement to pc.
2969 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
2970
2971 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
2972 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
2973 if (TM.getRelocationModel() == Reloc::PIC_ &&
2974 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00002975 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00002976 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
2977 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
2978 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00002979 } else {
2980 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00002981 }
2982
Dan Gohman882ab732008-09-30 00:58:23 +00002983 X86FI->setGlobalBaseReg(GlobalBaseReg);
2984 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00002985}